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The finite element method is a powerful tool for solving differential equations.
The method can easily deal with complex geometries and higher-order approxima-
tions of the solution. Figure 1 shows a two-dimensional domain with a non-trivial
geometry. The idea is to divide the domain into triangles (elements) and seek
a polynomial approximations to the unknown functions on each triangle. The
method glues these piecewise approximations together to find a global solution.
Linear and quadratic polynomials over the triangles are particularly popular.

Figure 1: Domain for flow around a dolphin.

Many successful numerical methods for differential equations, including the
finite element method, aim at approximating the unknown function by a sum

u(x) =

N∑
i=0

ciψi(x), (1)

where ψi(x) are prescribed functions and c0, . . . , cN are unknown coefficients to
be determined. Solution methods for differential equations utilizing (1) must
have a principle for constructing N + 1 equations to determine c0, . . . , cN . Then
there is a machinery regarding the actual constructions of the equations for
c0, . . . , cN , in a particular problem. Finally, there is a solve phase for computing
the solution c0, . . . , cN of the N + 1 equations.
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Especially in the finite element method, the machinery for constructing the
discrete equations to be implemented on a computer is quite comprehensive, with
many mathematical and implementational details entering the scene at the same
time. From an ease-of-learning perspective it can therefore be wise to introduce
the computational machinery for a trivial equation: u = f . Solving this equation
with f given and u on the form (1) means that we seek an approximation
u to f . This approximation problem has the advantage of introducing most
of the finite element toolbox, but with postponing demanding topics related
to differential equations (e.g., integration by parts, boundary conditions, and
coordinate mappings). This is the reason why we shall first become familiar
with finite element approximation before addressing finite element methods for
differential equations.

First, we refresh some linear algebra concepts about approximating vectors
in vector spaces. Second, we extend these concepts to approximating functions
in function spaces, using the same principles and the same notation. We present
examples on approximating functions by global basis functions with support
throughout the entire domain. Third, we introduce the finite element type of
local basis functions and explain the computational algorithms for working with
such functions. Three types of approximation principles are covered: 1) the least
squares method, 2) the L2 projection or Galerkin method, and 3) interpolation
or collocation.

1 Approximation of vectors

We shall start with introducing two fundamental methods for determining the
coefficients ci in (1) and illustrate the methods on approximation of vectors,
because vectors in vector spaces give a more intuitive understanding than starting
directly with approximation of functions in function spaces. The extension
from vectors to functions will be trivial as soon as the fundamental ideas are
understood.

The first method of approximation is called the least squares method and
consists in finding ci such that the difference u− f , measured in some norm, is
minimized. That is, we aim at finding the best approximation u to f (in some
norm). The second method is not as intuitive: we find u such that the error
u− f is orthogonal to the space where we seek u. This is known as projection,
or we may also call it a Galerkin method. When approximating vectors and
functions, the two methods are equivalent, but this is no longer the case when
applying the principles to differential equations.

1.1 Approximation of planar vectors

Suppose we have given a vector f = (3, 5) in the xy plane and that we want to
approximate this vector by a vector aligned in the direction of the vector (a, b).
Figure 2 depicts the situation.

We introduce the vector space V spanned by the vector ψ0 = (a, b):
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Figure 2: Approximation of a two-dimensional vector by a one-dimensional
vector.

V = span {ψ0} . (2)

We say that ψ0 is a basis vector in the space V . Our aim is to find the
vector u = c0ψ0 ∈ V which best approximates the given vector f = (3, 5). A
reasonable criterion for a best approximation could be to minimize the length of
the difference between the approximate u and the given f . The difference, or
error e = f − u, has its length given by the norm

||e|| = (e, e)
1
2 ,

where (e, e) is the inner product of e and itself. The inner product, also called
scalar product or dot product, of two vectors u = (u0, u1) and v = (v0, v1) is
defined as

(u,v) = u0v0 + u1v1 . (3)
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Remark 1. We should point out that we use the notation (·, ·) for two different
things: (a, b) for scalar quantities a and b means the vector starting in the origin
and ending in the point (a, b), while (u,v) with vectors u and v means the inner
product of these vectors. Since vectors are here written in boldface font there
should be no confusion. We may add that the norm associated with this inner
product is the usual Eucledian length of a vector.

Remark 2. It might be wise to refresh some basic linear algebra by consulting
a textbook. Exercises 1 and 2 suggest specific tasks to regain familiarity with
fundamental operations on inner product vector spaces.

The least squares method. We now want to find c0 such that it minimizes
||e||. The algebra is simplified if we minimize the square of the norm, ||e||2 =
(e, e), instead of the norm itself. Define the function

E(c0) = (e, e) = (f − c0ψ0,f − c0ψ0) . (4)

We can rewrite the expressions of the right-hand side in a more convenient form
for further work:

E(c0) = (f ,f)− 2c0(f ,ψ0) + c20(ψ0,ψ0) . (5)

The rewrite results from using the following fundamental rules for inner product
spaces:

(αu,v) = α(u,v), α ∈ R, (6)

(u+ v,w) = (u,w) + (v,w), (7)

(u,v) = (v,u) . (8)

Minimizing E(c0) implies finding c0 such that

∂E

∂c0
= 0 .

Differentiating (5) with respect to c0 gives

∂E

∂c0
= −2(f ,ψ0) + 2c0(ψ0,ψ0) . (9)

Setting the above expression equal to zero and solving for c0 gives

c0 =
(f ,ψ0)

(ψ0,ψ0)
, (10)

which in the present case with ψ0 = (a, b) results in
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c0 =
3a+ 5b

a2 + b2
. (11)

For later, it is worth mentioning that setting the key equation (9) to zero
can be rewritten as

(f − c0ψ0,ψ0) = 0,

or

(e,ψ0) = 0 . (12)

The projection method. We shall now show that minimizing ||e||2 implies
that e is orthogonal to any vector v in the space V . This result is visually quite
clear from Figure 2 (think of other vectors along the line (a, b): all of them will
lead to a larger distance between the approximation and f). To see this result
mathematically, we express any v ∈ V as v = sψ0 for any scalar parameter s,
recall that two vectors are orthogonal when their inner product vanishes, and
calculate the inner product

(e, sψ0) = (f − c0ψ0, sψ0)

= (f , sψ0)− (c0ψ0, sψ0)

= s(f ,ψ0)− sc0(ψ0,ψ0)

= s(f ,ψ0)− s (f ,ψ0)

(ψ0,ψ0)
(ψ0,ψ0)

= s ((f ,ψ0)− (f ,ψ0))

= 0 .

Therefore, instead of minimizing the square of the norm, we could demand that
e is orthogonal to any vector in V . This method is known as projection, because
it is the same as projecting the vector onto the subspace. (The approach can
also be referred to as a Galerkin method as explained at the end of Section ??.)

Mathematically the projection method is stated by the equation

(e,v) = 0, ∀v ∈ V . (13)

An arbitrary v ∈ V can be expressed as sψ0, s ∈ R, and therefore (13) implies

(e, sψ0) = s(e,ψ0) = 0,

which means that the error must be orthogonal to the basis vector in the space
V :

(e,ψ0) = 0 or (f − c0ψ0,ψ0) = 0 .

The latter equation gives (10) and it also arose from least squares computations
in (12).
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1.2 Approximation of general vectors

Let us generalize the vector approximation from the previous section to vectors
in spaces with arbitrary dimension. Given some vector f , we want to find the
best approximation to this vector in the space

V = span {ψ0, . . . ,ψN} .
We assume that the basis vectors ψ0, . . . ,ψN are linearly independent so that
none of them are redundant and the space has dimension N + 1. Any vector
u ∈ V can be written as a linear combination of the basis vectors,

u =

N∑
j=0

cjψj ,

where cj ∈ R are scalar coefficients to be determined.

The least squares method. Now we want to find c0, . . . , cN , such that u is
the best approximation to f in the sense that the distance (error) e = f − u
is minimized. Again, we define the squared distance as a function of the free
parameters c0, . . . , cN ,

E(c0, . . . , cN ) = (e, e) = (f −
∑
j

cjψj ,f −
∑
j

cjψj)

= (f ,f)− 2

N∑
j=0

cj(f ,ψj) +

N∑
p=0

N∑
q=0

cpcq(ψp,ψq) . (14)

Minimizing this E with respect to the independent variables c0, . . . , cN is obtained
by requiring

∂E

∂ci
= 0, i = 0, . . . , N .

The second term in (14) is differentiated as follows:

∂

∂ci

N∑
j=0

cj(f ,ψj) = (f ,ψi), (15)

since the expression to be differentiated is a sum and only one term, ci(f ,ψi),
contains ci and this term is linear in ci. To understand this differentiation in
detail, write out the sum specifically for, e.g, N = 3 and i = 1.

The last term in (14) is more tedious to differentiate. We start with

∂

∂ci
cpcq =


0, if p 6= i and q 6= i,
cq, if p = i and q 6= i,
cp, if p 6= i and q = i,
2ci, if p = q = i,

(16)
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Then

∂

∂ci

N∑
p=0

N∑
q=0

cpcq(ψp,ψq) =

N∑
p=0,p6=i

cp(ψp,ψi) +

N∑
q=0,q 6=i

cq(ψq,ψi) + 2ci(ψi,ψi) .

The last term can be included in the other two sums, resulting in

∂

∂ci

N∑
p=0

N∑
q=0

cpcq(ψp,ψq) = 2

N∑
j=0

ci(ψj ,ψi) . (17)

It then follows that setting

∂E

∂ci
= 0, i = 0, . . . , N,

leads to a linear system for c0, . . . , cN :

N∑
j=0

Ai,jcj = bi, i = 0, . . . , N, (18)

where

Ai,j = (ψi,ψj), (19)

bi = (ψi,f) . (20)

We have changed the order of the two vectors in the inner product according to
(1.1):

Ai,j = (ψj ,ψi) = (ψi,ψj),

simply because the sequence i-j looks more aesthetic.

The Galerkin or projection method. In analogy with the ”one-dimensional”
example in Section 1.1, it holds also here in the general case that minimizing the
distance (error) e is equivalent to demanding that e is orthogonal to all v ∈ V :

(e,v) = 0, ∀v ∈ V . (21)

Since any v ∈ V can be written as v =
∑N
i=0 ciψi, the statement (21) is

equivalent to saying that

(e,

N∑
i=0

ciψi) = 0,

for any choice of coefficients c0, . . . , cN . The latter equation can be rewritten as
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N∑
i=0

ci(e,ψi) = 0 .

If this is to hold for arbitrary values of c0, . . . , cN we must require that each
term in the sum vanishes,

(e,ψi) = 0, i = 0, . . . , N . (22)

These N + 1 equations result in the same linear system as (18):

(f −
N∑
j=0

cjψj ,ψi) = (f ,ψi)−
∑
j∈Is

(ψi,ψj)cj = 0,

and hence

N∑
j=0

(ψi,ψj)cj = (f ,ψi), i = 0, . . . , N .

So, instead of differentiating the E(c0, . . . , cN ) function, we could simply use
(21) as the principle for determining c0, . . . , cN , resulting in the N + 1 equations
(22).

The names least squares method or least squares approximation are natural
since the calculations consists of minimizing ||e||2, and ||e||2 is a sum of squares
of differences between the components in f and u. We find u such that this
sum of squares is minimized.

The principle (21), or the equivalent form (22), is known as projection.
Almost the same mathematical idea was used by the Russian mathematician
Boris Galerkin to solve differential equations, resulting in what is widely known
as Galerkin’s method.

2 Approximation of functions

Let V be a function space spanned by a set of basis functions ψ0, . . . , ψN ,

V = span {ψ0, . . . , ψN},

such that any function u ∈ V can be written as a linear combination of the basis
functions:

u =
∑
j∈Is

cjψj . (23)

The index set Is is defined as Is = {0, . . . , N} and is used both for compact
notation and for flexibility in the numbering of elements in sequences.

For now, in this introduction, we shall look at functions of a single variable
x: u = u(x), ψi = ψi(x), i ∈ Is. Later, we will almost trivially extend the
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mathematical details to functions of two- or three-dimensional physical spaces.
The approximation (23) is typically used to discretize a problem in space. Other
methods, most notably finite differences, are common for time discretization,
although the form (23) can be used in time as well.

2.1 The least squares method

Given a function f(x), how can we determine its best approximation u(x) ∈ V ?
A natural starting point is to apply the same reasoning as we did for vectors
in Section 1.2. That is, we minimize the distance between u and f . However,
this requires a norm for measuring distances, and a norm is most conveniently
defined through an inner product. Viewing a function as a vector of infinitely
many point values, one for each value of x, the inner product could intuitively
be defined as the usual summation of pairwise components, with summation
replaced by integration:

(f, g) =

∫
f(x)g(x) dx .

To fix the integration domain, we let f(x) and ψi(x) be defined for a domain
Ω ⊂ R. The inner product of two functions f(x) and g(x) is then

(f, g) =

∫
Ω

f(x)g(x) dx . (24)

The distance between f and any function u ∈ V is simply f − u, and the
squared norm of this distance is

E = (f(x)−
∑
j∈Is

cjψj(x), f(x)−
∑
j∈Is

cjψj(x)) . (25)

Note the analogy with (14): the given function f plays the role of the given
vector f , and the basis function ψi plays the role of the basis vector ψi. We can
rewrite (25), through similar steps as used for the result (14), leading to

E(ci, . . . , cN ) = (f, f)− 2
∑
j∈Is

cj(f, ψi) +
∑
p∈Is

∑
q∈Is

cpcq(ψp, ψq) . (26)

Minimizing this function of N+1 scalar variables {ci}i∈Is , requires differentiation
with respect to ci, for all i ∈ Is. The resulting equations are very similar to
those we had in the vector case, and we hence end up with a linear system of
the form (18), with basically the same expressions:

Ai,j = (ψi, ψj), (27)

bi = (f, ψi) . (28)
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2.2 The projection (or Galerkin) method

As in Section 1.2, the minimization of (e, e) is equivalent to

(e, v) = 0, ∀v ∈ V . (29)

This is known as a projection of a function f onto the subspace V . We may also
call it a Galerkin method for approximating functions. Using the same reasoning
as in (21)-(22), it follows that (29) is equivalent to

(e, ψi) = 0, i ∈ Is . (30)

Inserting e = f − u in this equation and ordering terms, as in the multi-
dimensional vector case, we end up with a linear system with a coefficient matrix
(27) and right-hand side vector (28).

Whether we work with vectors in the plane, general vectors, or functions
in function spaces, the least squares principle and the projection or Galerkin
method are equivalent.

2.3 Example: linear approximation

Let us apply the theory in the previous section to a simple problem: given a
parabola f(x) = 10(x− 1)2 − 1 for x ∈ Ω = [1, 2], find the best approximation
u(x) in the space of all linear functions:

V = span {1, x} .

With our notation, ψ0(x) = 1, ψ1(x) = x, and N = 1. We seek

u = c0ψ0(x) + c1ψ1(x) = c0 + c1x,

where c0 and c1 are found by solving a 2× 2 the linear system. The coefficient
matrix has elements

A0,0 = (ψ0, ψ0) =

∫ 2

1

1 · 1 dx = 1, (31)

A0,1 = (ψ0, ψ1) =

∫ 2

1

1 · x dx = 3/2, (32)

A1,0 = A0,1 = 3/2, (33)

A1,1 = (ψ1, ψ1) =

∫ 2

1

x · x dx = 7/3 . (34)

The corresponding right-hand side is
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b1 = (f, ψ0) =

∫ 2

1

(10(x− 1)2 − 1) · 1 dx = 7/3, (35)

b2 = (f, ψ1) =

∫ 2

1

(10(x− 1)2 − 1) · x dx = 13/3 . (36)

Solving the linear system results in

c0 = −38/3, c1 = 10, (37)

and consequently

u(x) = 10x− 38

3
. (38)

Figure 3 displays the parabola and its best approximation in the space of all
linear functions.
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Figure 3: Best approximation of a parabola by a straight line.

2.4 Implementation of the least squares method

The linear system can be computed either symbolically or numerically (a numer-
ical integration rule is needed in the latter case). Here is a function for symbolic
computation of the linear system, where f(x) is given as a sympy expression f
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involving the symbol x, psi is a list of expressions for {ψi}i∈Is , and Omega is a
2-tuple/list holding the limits of the domain Ω:

import sympy as sp

def least_squares(f, psi, Omega):
N = len(psi) - 1
A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))
x = sp.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
A[i,j] = sp.integrate(psi[i]*psi[j],

(x, Omega[0], Omega[1]))
A[j,i] = A[i,j]

b[i,0] = sp.integrate(psi[i]*f, (x, Omega[0], Omega[1]))
c = A.LUsolve(b)
u = 0
for i in range(len(psi)):

u += c[i,0]*psi[i]
return u, c

Observe that we exploit the symmetry of the coefficient matrix: only the
upper triangular part is computed. Symbolic integration in sympy is often
time consuming, and (roughly) halving the work has noticeable effect on the
waiting time for the function to finish execution.

Comparing the given f(x) and the approximate u(x) visually is done by
the following function, which with the aid of sympy’s lambdify tool converts a
sympy expression to a Python function for numerical computations:

def comparison_plot(f, u, Omega, filename=’tmp.pdf’):
x = sp.Symbol(’x’)
f = sp.lambdify([x], f, modules="numpy")
u = sp.lambdify([x], u, modules="numpy")
resolution = 401 # no of points in plot
xcoor = linspace(Omega[0], Omega[1], resolution)
exact = f(xcoor)
approx = u(xcoor)
plot(xcoor, approx)
hold(’on’)
plot(xcoor, exact)
legend([’approximation’, ’exact’])
savefig(filename)

The modules=’numpy’ argument to lambdify is important if there are mathe-
matical functions, such as sin or exp in the symbolic expressions in f or u, and
these mathematical functions are to be used with vector arguments, like xcoor

above.
Both the least_squares and comparison_plot are found and coded in the

file approx1D.py. The forthcoming examples on their use appear in ex_approx1D.py.

2.5 Perfect approximation

Let us use the code above to recompute the problem from Section 2.3 where we
want to approximate a parabola. What happens if we add an element x2 to the
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basis and test what the best approximation is if V is the space of all parabolic
functions? The answer is quickly found by running

>>> from approx1D import *
>>> x = sp.Symbol(’x’)
>>> f = 10*(x-1)**2-1
>>> u, c = least_squares(f=f, psi=[1, x, x**2], Omega=[1, 2])
>>> print u
10*x**2 - 20*x + 9
>>> print sp.expand(f)
10*x**2 - 20*x + 9

Now, what if we use ψi(x) = xi for i = 0, 1, . . . , N = 40? The output from
least_squares gives ci = 0 for i > 2, which means that the method finds the
perfect approximation.

In fact, we have a general result that if f ∈ V , the least squares and
projection/Galerkin methods compute the exact solution u = f . The proof is
straightforward: if f ∈ V , f can be expanded in terms of the basis functions,
f =

∑
j∈Is djψj , for some coefficients {di}i∈Is , and the right-hand side then has

entries

bi = (f, ψi) =
∑
j∈Is

dj(ψj , ψi) =
∑
j∈Is

djAi,j .

The linear system
∑
j Ai,jcj = bi, i ∈ Is, is then

∑
j∈Is

cjAi,j =
∑
j∈Is

djAi,j , i ∈ Is,

which implies that ci = di for i ∈ Is.

2.6 Ill-conditioning

The computational example in Section 2.5 applies the least_squares function
which invokes symbolic methods to calculate and solve the linear system. The
correct solution c0 = 9, c1 = −20, c2 = 10, ci = 0 for i ≥ 3 is perfectly recovered.

Suppose we convert the matrix and right-hand side to floating-point arrays
and then solve the system using finite-precision arithmetics, which is what one
will (almost) always do in real life. This time we get astonishing results! Up
to about N = 7 we get a solution that is reasonably close to the exact one.
Increasing N shows that seriously wrong coefficients are computed. Below is
a table showing the solution of the linear system arising from approximating
a parabola by functions on the form u(x) = c0 + c1x + c2x

2 + · · · + c10x
10.

Analytically, we know that cj = 0 for j > 2, but numerically we may get cj 6= 0
for j > 2.
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exact sympy numpy32 numpy64

9 9.62 5.57 8.98
-20 -23.39 -7.65 -19.93
10 17.74 -4.50 9.96
0 -9.19 4.13 -0.26
0 5.25 2.99 0.72
0 0.18 -1.21 -0.93
0 -2.48 -0.41 0.73
0 1.81 -0.013 -0.36
0 -0.66 0.08 0.11
0 0.12 0.04 -0.02
0 -0.001 -0.02 0.002

The exact value of cj , j = 0, 1, . . . , 10, appears in the first column while the
other columns correspond to results obtained by three different methods:

• Column 2: The matrix and vector are converted to the data structure
sympy.mpmath.fp.matrix and the sympy.mpmath.fp.lu_solve function
is used to solve the system.

• Column 3: The matrix and vector are converted to numpy arrays with data
type numpy.float32 (single precision floating-point number) and solved
by the numpy.linalg.solve function.

• Column 4: As column 3, but the data type is numpy.float64 (double
precision floating-point number).

We see from the numbers in the table that double precision performs much better
than single precision. Nevertheless, when plotting all these solutions the curves
cannot be visually distinguished (!). This means that the approximations look
perfect, despite the partially very wrong values of the coefficients.

Increasing N to 12 makes the numerical solver in numpy abort with the
message: ”matrix is numerically singular”. A matrix has to be non-singular to
be invertible, which is a requirement when solving a linear system. Already when
the matrix is close to singular, it is ill-conditioned, which here implies that the
numerical solution algorithms are sensitive to round-off errors and may produce
(very) inaccurate results.

The reason why the coefficient matrix is nearly singular and ill-conditioned
is that our basis functions ψi(x) = xi are nearly linearly dependent for large i.
That is, xi and xi+1 are very close for i not very small. This phenomenon is
illustrated in Figure 4. There are 15 lines in this figure, but only half of them
are visually distinguishable. Almost linearly dependent basis functions give rise
to an ill-conditioned and almost singular matrix. This fact can be illustrated by
computing the determinant, which is indeed very close to zero (recall that a zero
determinant implies a singular and non-invertible matrix): 10−65 for N = 10 and
10−92 for N = 12. Already for N = 28 the numerical determinant computation
returns a plain zero.
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Figure 4: The 15 first basis functions xi, i = 0, . . . , 14.

On the other hand, the double precision numpy solver do run for N = 100,
resulting in answers that are not significantly worse than those in the table
above, and large powers are associated with small coefficients (e.g., cj < 10−2

for 10 ≤ j ≤ 20 and c < 10−5 for j > 20). Even for N = 100 the approximation
still lies on top of the exact curve in a plot (!).

The conclusion is that visual inspection of the quality of the approximation
may not uncover fundamental numerical problems with the computations. How-
ever, numerical analysts have studied approximations and ill-conditioning for
decades, and it is well known that the basis {1, x, x2, x3, . . . , } is a bad basis.
The best basis from a matrix conditioning point of view is to have orthogonal
functions such that (ψi, ψj) = 0 for i 6= j. There are many known sets of orthog-
onal polynomials and other functions. The functions used in the finite element
methods are almost orthogonal, and this property helps to avoid problems with
solving matrix systems. Almost orthogonal is helpful, but not enough when
it comes to partial differential equations, and ill-conditioning of the coefficient
matrix is a theme when solving large-scale matrix systems arising from finite
element discretizations.

2.7 Fourier series

A set of sine functions is widely used for approximating functions (the sines are
also orthogonal as explained more in Section 2.6). Let us take
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V = span {sinπx, sin 2πx, . . . , sin(N + 1)πx} .

That is,

ψi(x) = sin((i+ 1)πx), i ∈ Is .

An approximation to the f(x) function from Section 2.3 can then be computed
by the least_squares function from Section 2.4:

N = 3
from sympy import sin, pi
x = sp.Symbol(’x’)
psi = [sin(pi*(i+1)*x) for i in range(N+1)]
f = 10*(x-1)**2 - 1
Omega = [0, 1]
u, c = least_squares(f, psi, Omega)
comparison_plot(f, u, Omega)

Figure 5 (left) shows the oscillatory approximation of
∑N
j=0 cj sin((j + 1)πx)

when N = 3. Changing N to 11 improves the approximation considerably, see
Figure 5 (right).
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Figure 5: Best approximation of a parabola by a sum of 3 (left) and 11 (right)
sine functions.

There is an error f(0)− u(0) = 9 at x = 0 in Figure 5 regardless of how large
N is, because all ψi(0) = 0 and hence u(0) = 0. We may help the approximation
to be correct at x = 0 by seeking

u(x) = f(0) +
∑
j∈Is

cjψj(x) . (39)

However, this adjustment introduces a new problem at x = 1 since we now get
an error f(1)− u(1) = f(1)− 0 = −1 at this point. A more clever adjustment is
to replace the f(0) term by a term that is f(0) at x = 0 and f(1) at x = 1. A
simple linear combination f(0)(1− x) + xf(1) does the job:

u(x) = f(0)(1− x) + xf(1) +
∑
j∈Is

cjψj(x) . (40)
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This adjustment of u alters the linear system slightly as we get an extra term
−(f(0)(1− x) + xf(1), ψi) on the right-hand side. Figure 6 shows the result of
this technique for ensuring right boundary values: even 3 sines can now adjust
the f(0)(1− x) + xf(1) term such that u approximates the parabola really well,
at least visually.
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Figure 6: Best approximation of a parabola by a sum of 3 (left) and 11 (right)
sine functions with a boundary term.

2.8 Orthogonal basis functions

The choice of sine functions ψi(x) = sin((i+ 1)πx) has a great computational
advantage: on Ω = [0, 1] these basis functions are orthogonal, implying that
Ai,j = 0 if i 6= j. This result is realized by trying

integrate(sin(j*pi*x)*sin(k*pi*x), x, 0, 1)

in WolframAlpha (avoid i in the integrand as this symbol means the imaginary

unit
√
−1). Also by asking WolframAlpha about

∫ 1

0
sin2(jπx) dx, we find it to

equal 1/2. With a diagonal matrix we can easily solve for the coefficients by
hand:

ci = 2

∫ 1

0

f(x) sin((i+ 1)πx) dx, i ∈ Is, (41)

which is nothing but the classical formula for the coefficients of the Fourier sine
series of f(x) on [0, 1]. In fact, when V contains the basic functions used in a
Fourier series expansion, the approximation method derived in Section 2 results
in the classical Fourier series for f(x) (see Exercise 8 for details).

With orthogonal basis functions we can make the least_squares function
(much) more efficient since we know that the matrix is diagonal and only the
diagonal elements need to be computed:

def least_squares_orth(f, psi, Omega):
N = len(psi) - 1
A = [0]*(N+1)

22

http://wolframalpha.com


b = [0]*(N+1)
x = sp.Symbol(’x’)
for i in range(N+1):

A[i] = sp.integrate(psi[i]**2, (x, Omega[0], Omega[1]))
b[i] = sp.integrate(psi[i]*f, (x, Omega[0], Omega[1]))

c = [b[i]/A[i] for i in range(len(b))]
u = 0
for i in range(len(psi)):

u += c[i]*psi[i]
return u, c

This function is found in the file approx1D.py.

2.9 Numerical computations

Sometimes the basis functions ψi and/or the function f have a nature that
makes symbolic integration CPU-time consuming or impossible. Even though we
implemented a fallback on numerical integration of

∫
fϕidx considerable time

might be required by sympy in the attempt to integrate symbolically. Therefore,
it will be handy to have function for fast numerical integration and numerical
solution of the linear system. Below is such a method. It requires Python
functions f(x) and psi(x,i) for f(x) and ψi(x) as input. The output is a mesh
function with values u on the mesh with points in the array x. Three numerical
integration methods are offered: scipy.integrate.quad (precision set to 10−8),
sympy.mpmath.quad (high precision), and a Trapezoidal rule based on the points
in x.

def least_squares_numerical(f, psi, N, x,
integration_method=’scipy’,
orthogonal_basis=False):

import scipy.integrate
A = np.zeros((N+1, N+1))
b = np.zeros(N+1)
Omega = [x[0], x[-1]]
dx = x[1] - x[0]

for i in range(N+1):
j_limit = i+1 if orthogonal_basis else N+1
for j in range(i, j_limit):

print ’(%d,%d)’ % (i, j)
if integration_method == ’scipy’:

A_ij = scipy.integrate.quad(
lambda x: psi(x,i)*psi(x,j),
Omega[0], Omega[1], epsabs=1E-9, epsrel=1E-9)[0]

elif integration_method == ’sympy’:
A_ij = sp.mpmath.quad(

lambda x: psi(x,i)*psi(x,j),
[Omega[0], Omega[1]])

else:
values = psi(x,i)*psi(x,j)
A_ij = trapezoidal(values, dx)

A[i,j] = A[j,i] = A_ij

if integration_method == ’scipy’:
b_i = scipy.integrate.quad(
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lambda x: f(x)*psi(x,i), Omega[0], Omega[1],
epsabs=1E-9, epsrel=1E-9)[0]

elif integration_method == ’sympy’:
b_i = sp.mpmath.quad(

lambda x: f(x)*psi(x,i), [Omega[0], Omega[1]])
else:

values = f(x)*psi(x,i)
b_i = trapezoidal(values, dx)

b[i] = b_i

c = b/np.diag(A) if orthogonal_basis else np.linalg.solve(A, b)
u = sum(c[i]*psi(x, i) for i in range(N+1))
return u, c

def trapezoidal(values, dx):
"""Integrate values by the Trapezoidal rule (mesh size dx)."""
return dx*(np.sum(values) - 0.5*values[0] - 0.5*values[-1])

Here is an example on calling the function:

from numpy import linspace, tanh, pi

def psi(x, i):
return sin((i+1)*x)

x = linspace(0, 2*pi, 501)
N = 20
u, c = least_squares_numerical(lambda x: tanh(x-pi), psi, N, x,

orthogonal_basis=True)

2.10 The interpolation (or collocation) method

The principle of minimizing the distance between u and f is an intuitive way
of computing a best approximation u ∈ V to f . However, there are other
approaches as well. One is to demand that u(xi) = f(xi) at some selected points
xi, i ∈ Is:

u(xi) =
∑
j∈Is

cjψj(xi) = f(xi), i ∈ Is . (42)

This criterion also gives a linear system with N+1 unknown coefficients {ci}i∈Is :∑
j∈Is

Ai,jcj = bi, i ∈ Is, (43)

with

Ai,j = ψj(xi), (44)

bi = f(xi) . (45)

This time the coefficient matrix is not symmetric because ψj(xi) 6= ψi(xj) in
general. The method is often referred to as an interpolation method since some
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point values of f are given (f(xi)) and we fit a continuous function u that goes
through the f(xi) points. In this case the xi points are called interpolation
points. When the same approach is used to approximate differential equations,
one usually applies the name collocation method and xi are known as collocation
points.

Given f as a sympy symbolic expression f, {ψi}i∈Is as a list psi, and a set
of points {xi}i∈Is as a list or array points, the following Python function sets
up and solves the matrix system for the coefficients {ci}i∈Is :

def interpolation(f, psi, points):
N = len(psi) - 1
A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))
x = sp.Symbol(’x’)
# Turn psi and f into Python functions
psi = [sp.lambdify([x], psi[i]) for i in range(N+1)]
f = sp.lambdify([x], f)
for i in range(N+1):

for j in range(N+1):
A[i,j] = psi[j](points[i])

b[i,0] = f(points[i])
c = A.LUsolve(b)
u = 0
for i in range(len(psi)):

u += c[i,0]*psi[i](x)
return u

The interpolation function is a part of the approx1D module.

We found it convenient in the above function to turn the expressions f

and psi into ordinary Python functions of x, which can be called with float

values in the list points when building the matrix and the right-hand side.
The alternative is to use the subs method to substitute the x variable in an
expression by an element from the points list. The following session illustrates
both approaches in a simple setting:

>>> from sympy import *
>>> x = Symbol(’x’)
>>> e = x**2 # symbolic expression involving x
>>> p = 0.5 # a value of x
>>> v = e.subs(x, p) # evaluate e for x=p
>>> v
0.250000000000000
>>> type(v)
sympy.core.numbers.Float
>>> e = lambdify([x], e) # make Python function of e
>>> type(e)
>>> function
>>> v = e(p) # evaluate e(x) for x=p
>>> v
0.25
>>> type(v)
float
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A nice feature of the interpolation or collocation method is that it avoids
computing integrals. However, one has to decide on the location of the xi points.
A simple, yet common choice, is to distribute them uniformly throughout Ω.

Example. Let us illustrate the interpolation or collocation method by approx-
imating our parabola f(x) = 10(x− 1)2 − 1 by a linear function on Ω = [1, 2],
using two collocation points x0 = 1 + 1/3 and x1 = 1 + 2/3:

f = 10*(x-1)**2 - 1
psi = [1, x]
Omega = [1, 2]
points = [1 + sp.Rational(1,3), 1 + sp.Rational(2,3)]
u = interpolation(f, psi, points)
comparison_plot(f, u, Omega)

The resulting linear system becomes(
1 4/3
1 5/3

)(
c0
c1

)
=

(
1/9
31/9

)
with solution c0 = −119/9 and c1 = 10. Figure 7 (left) shows the resulting
approximation u = −119/9 + 10x. We can easily test other interpolation points,
say x0 = 1 and x1 = 2. This changes the line quite significantly, see Figure 7
(right).
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Figure 7: Approximation of a parabola by linear functions computed by two
interpolation points: 4/3 and 5/3 (left) versus 1 and 2 (right).

2.11 Lagrange polynomials

In Section 2.7 we explain the advantage with having a diagonal matrix: formulas
for the coefficients {ci}i∈Is can then be derived by hand. For an interpolation/-
collocation method a diagonal matrix implies that ψj(xi) = 0 if i 6= j. One
set of basis functions ψi(x) with this property is the Lagrange interpolating
polynomials, or just Lagrange polynomials. (Although the functions are named
after Lagrange, they were first discovered by Waring in 1779, rediscovered by
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Euler in 1783, and published by Lagrange in 1795.) The Lagrange polynomials
have the form

ψi(x) =

N∏
j=0,j 6=i

x− xj
xi − xj

=
x− x0

xi − x0
· · · x− xi−1

xi − xi−1

x− xi+1

xi − xi+1
· · · x− xN

xi − xN
, (46)

for i ∈ Is. We see from (46) that all the ψi functions are polynomials of degree
N which have the property

ψi(xs) = δis, δis =

{
1, i = s,
0, i 6= s,

(47)

when xs is an interpolation/collocation point. Here we have used the Kronecker
delta symbol δis. This property implies that Ai,j = 0 for i 6= j and Ai,j = 1
when i = j. The solution of the linear system is them simply

ci = f(xi), i ∈ Is, (48)

and

u(x) =
∑
j∈Is

f(xi)ψi(x) . (49)

The following function computes the Lagrange interpolating polynomial ψi(x),
given the interpolation points x0, . . . , xN in the list or array points:

def Lagrange_polynomial(x, i, points):
p = 1
for k in range(len(points)):

if k != i:
p *= (x - points[k])/(points[i] - points[k])

return p

The next function computes a complete basis using equidistant points throughout
Ω:

def Lagrange_polynomials_01(x, N):
if isinstance(x, sp.Symbol):

h = sp.Rational(1, N-1)
else:

h = 1.0/(N-1)
points = [i*h for i in range(N)]
psi = [Lagrange_polynomial(x, i, points) for i in range(N)]
return psi, points

When x is an sp.Symbol object, we let the spacing between the interpolation
points, h, be a sympy rational number for nice end results in the formulas
for ψi. The other case, when x is a plain Python float, signifies numerical
computing, and then we let h be a floating-point number. Observe that the
Lagrange_polynomial function works equally well in the symbolic and numerical
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case - just think of x being an sp.Symbol object or a Python float. A little
interactive session illustrates the difference between symbolic and numerical
computing of the basis functions and points:

>>> import sympy as sp
>>> x = sp.Symbol(’x’)
>>> psi, points = Lagrange_polynomials_01(x, N=3)
>>> points
[0, 1/2, 1]
>>> psi
[(1 - x)*(1 - 2*x), 2*x*(2 - 2*x), -x*(1 - 2*x)]

>>> x = 0.5 # numerical computing
>>> psi, points = Lagrange_polynomials_01(x, N=3)
>>> points
[0.0, 0.5, 1.0]
>>> psi
[-0.0, 1.0, 0.0]

The Lagrange polynomials are very much used in finite element methods because
of their property (47).

Approximation of a polynomial. The Galerkin or least squares method lead
to an exact approximation if f lies in the space spanned by the basis functions. It
could be interest to see how the interpolation method with Lagrange polynomials
as basis is able to approximate a polynomial, e.g., a parabola. Running

for N in 2, 4, 5, 6, 8, 10, 12:
f = x**2
psi, points = Lagrange_polynomials_01(x, N)
u = interpolation(f, psi, points)

shows the result that up to N=4 we achieve an exact approximation, and then
round-off errors start to grow, such that N=15 leads to a 15-degree polynomial
for u where the coefficients in front of xr for r > 2 are of size 10−5 and smaller.

Successful example. Trying out the Lagrange polynomial basis for approxi-
mating f(x) = sin 2πx on Ω = [0, 1] with the least squares and the interpolation
techniques can be done by

x = sp.Symbol(’x’)
f = sp.sin(2*sp.pi*x)
psi, points = Lagrange_polynomials_01(x, N)
Omega=[0, 1]
u = least_squares(f, psi, Omega)
comparison_plot(f, u, Omega)
u = interpolation(f, psi, points)
comparison_plot(f, u, Omega)

Figure 8 shows the results. There is little difference between the least squares and
the interpolation technique. Increasing N gives visually better approximations.
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Figure 8: Approximation via least squares (left) and interpolation (right) of a
sine function by Lagrange interpolating polynomials of degree 3.

Less successful example. The next example concerns interpolating f(x) =
|1 − 2x| on Ω = [0, 1] using Lagrange polynomials. Figure 9 shows a peculiar
effect: the approximation starts to oscillate more and more as N grows. This
numerical artifact is not surprising when looking at the individual Lagrange
polynomials. Figure 10 shows two such polynomials, ψ2(x) and ψ7(x), both of
degree 11 and computed from uniformly spaced points xxi

= i/11, i = 0, . . . , 11,
marked with circles. We clearly see the property of Lagrange polynomials:
ψ2(xi) = 0 and ψ7(xi) = 0 for all i, except ψ2(x2) = 1 and ψ7(x7) = 1. The
most striking feature, however, is the significant oscillation near the boundary.
The reason is easy to understand: since we force the functions to zero at so many
points, a polynomial of high degree is forced to oscillate between the points. The
phenomenon is named Runge’s phenomenon and you can read a more detailed
explanation on Wikipedia.

Remedy for strong oscillations. The oscillations can be reduced by a more
clever choice of interpolation points, called the Chebyshev nodes:

xi =
1

2
(a+ b) +

1

2
(b− a) cos

(
2i+ 1

2(N + 1)
pi

)
, i = 0 . . . , N, (50)

on the interval Ω = [a, b]. Here is a flexible version of the Lagrange_polynomials_01
function above, valid for any interval Ω = [a, b] and with the possibility to gener-
ate both uniformly distributed points and Chebyshev nodes:

def Lagrange_polynomials(x, N, Omega, point_distribution=’uniform’):
if point_distribution == ’uniform’:

if isinstance(x, sp.Symbol):
h = sp.Rational(Omega[1] - Omega[0], N)

else:
h = (Omega[1] - Omega[0])/float(N)

points = [Omega[0] + i*h for i in range(N+1)]
elif point_distribution == ’Chebyshev’:

points = Chebyshev_nodes(Omega[0], Omega[1], N)
psi = [Lagrange_polynomial(x, i, points) for i in range(N+1)]
return psi, points
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def Chebyshev_nodes(a, b, N):
from math import cos, pi
return [0.5*(a+b) + 0.5*(b-a)*cos(float(2*i+1)/(2*N+1))*pi) \

for i in range(N+1)]

All the functions computing Lagrange polynomials listed above are found in the
module file Lagrange.py. Figure 11 shows the improvement of using Chebyshev
nodes (compared with Figure 9). The reason is that the corresponding Lagrange
polynomials have much smaller oscillations as seen in Figure 12 (compare with
Figure 10).

Another cure for undesired oscillation of higher-degree interpolating poly-
nomials is to use lower-degree Lagrange polynomials on many small patches of
the domain, which is the idea pursued in the finite element method. For in-
stance, linear Lagrange polynomials on [0, 1/2] and [1/2, 1] would yield a perfect
approximation to f(x) = |1− 2x| on Ω = [0, 1] since f is piecewise linear.
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Figure 9: Interpolation of an absolute value function by Lagrange polynomials
and uniformly distributed interpolation points: degree 7 (left) and 14 (right).

How does the least squares or projection methods work with Lagrange
polynomials? Unfortunately, sympy has problems integrating the f(x) = |1− 2x|
function times a polynomial. Other choices of f(x) can also make the symbolic
integration fail. Therefore, we should extend the least_squares function
such that it falls back on numerical integration if the symbolic integration is
unsuccessful. In the latter case, the returned value from sympy’s integrate

function is an object of type Integral. We can test on this type and utilize
the mpmath module in sympy to perform numerical integration of high precision.
Here is the code:

def least_squares(f, psi, Omega):
N = len(psi) - 1
A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))
x = sp.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
integrand = psi[i]*psi[j]
I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
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Figure 10: Illustration of the oscillatory behavior of two Lagrange polynomials
based on 12 uniformly spaced points (marked by circles).
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Figure 11: Interpolation of an absolute value function by Lagrange polynomials
and Chebyshev nodes as interpolation points: degree 7 (left) and 14 (right).

if isinstance(I, sp.Integral):
# Could not integrate symbolically, fallback
# on numerical integration with mpmath.quad
integrand = sp.lambdify([x], integrand)
I = sp.mpmath.quad(integrand, [Omega[0], Omega[1]])

A[i,j] = A[j,i] = I
integrand = psi[i]*f
I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sp.Integral):

integrand = sp.lambdify([x], integrand)
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Figure 12: Illustration of the less oscillatory behavior of two Lagrange polyno-
mials based on 12 Chebyshev points (marked by circles).

I = sp.mpmath.quad(integrand, [Omega[0], Omega[1]])
b[i,0] = I

c = A.LUsolve(b)
u = 0
for i in range(len(psi)):

u += c[i,0]*psi[i]
return u

3 Finite element basis functions

The specific basis functions exemplified in Section 2 are in general nonzero on the
entire domain Ω, see Figure 13 for an example where we plot ψ0(x) = sin 1

2πx
and ψ1(x) = sin 2πx together with a possible sum u(x) = 4ψ0(x) − 1

2ψ1(x).
We shall now turn the attention to basis functions that have compact support,
meaning that they are nonzero on only a small portion of Ω. Moreover, we
shall restrict the functions to be piecewise polynomials. This means that the
domain is split into subdomains and the function is a polynomial on one or more
subdomains, see Figure 14 for a sketch involving locally defined hat functions
that make u =

∑
j cjψj piecewise linear. At the boundaries between subdomains

one normally forces continuity of the function only so that when connecting two
polynomials from two subdomains, the derivative becomes discontinuous. These
type of basis functions are fundamental in the finite element method.
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Figure 13: A function resulting from adding two sine basis functions.

We first introduce the concepts of elements and nodes in a simplistic fashion
as often met in the literature. Later, we shall generalize the concept of an
element, which is a necessary step to treat a wider class of approximations within
the family of finite element methods. The generalization is also compatible with
the concepts used in the FEniCS finite element software.

3.1 Elements and nodes

Let us divide the interval Ω on which f and u are defined into non-overlapping
subintervals Ω(e), e = 0, . . . , Ne:

Ω = Ω(0) ∪ · · · ∪ Ω(Ne) . (51)

We shall for now refer to Ω(e) as an element, having number e. On each element
we introduce a set of points called nodes. For now we assume that the nodes
are uniformly spaced throughout the element and that the boundary points
of the elements are also nodes. The nodes are given numbers both within an
element and in the global domain. These are referred to as local and global node
numbers, respectively. Figure 15 shows element boundaries with small vertical
lines, nodes as small disks, element numbers in circles, and global node numbers
under the nodes.

Nodes and elements uniquely define a finite element mesh, which is our
discrete representation of the domain in the computations. A common special
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Figure 14: A function resulting from adding three local piecewise linear (hat)
functions.
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Figure 15: Finite element mesh with 5 elements and 6 nodes.

case is that of a uniformly partitioned mesh where each element has the same
length and the distance between nodes is constant.

Example. On Ω = [0, 1] we may introduce two elements, Ω(0) = [0, 0.4] and
Ω(1) = [0.4, 1]. Furthermore, let us introduce three nodes per element, equally
spaced within each element. Figure 16 shows the mesh. The three nodes in
element number 0 are x0 = 0, x1 = 0.2, and x2 = 0.4. The local and global node
numbers are here equal. In element number 1, we have the local nodes x0 = 0.4,
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x1 = 0.7, and x2 = 1 and the corresponding global nodes x2 = 0.4, x3 = 0.7,
and x4 = 1. Note that the global node x2 = 0.4 is shared by the two elements.
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Figure 16: Finite element mesh with 2 elements and 5 nodes.

For the purpose of implementation, we introduce two lists or arrays: nodes
for storing the coordinates of the nodes, with the global node numbers as indices,
and elements for holding the global node numbers in each element, with the
local node numbers as indices. The nodes and elements lists for the sample
mesh above take the form

nodes = [0, 0.2, 0.4, 0.7, 1]
elements = [[0, 1, 2], [2, 3, 4]]

Looking up the coordinate of local node number 2 in element 1 is here done by
nodes[elements[1][2]] (recall that nodes and elements start their numbering
at 0).

The numbering of elements and nodes does not need to be regular. Figure 17
shows and example corresponding to

nodes = [1.5, 5.5, 4.2, 0.3, 2.2, 3.1]
elements = [[2, 1], [4, 5], [0, 4], [3, 0], [5, 2]]

3.2 The basis functions

Construction principles. Finite element basis functions are in this text rec-
ognized by the notation ϕi(x), where the index now in the beginning corresponds
to a global node number. In the current approximation problem we shall simply
take ψi = ϕi.

Let i be the global node number corresponding to local node r in element
number e. The finite element basis functions ϕi are now defined as follows.
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Figure 17: Example on irregular numbering of elements and nodes.

• If local node number r is not on the boundary of the element, take ϕi(x)
to be the Lagrange polynomial that is 1 at the local node number r and
zero at all other nodes in the element. On all other elements, ϕi = 0.

• If local node number r is on the boundary of the element, let ϕi be made
up of the Lagrange polynomial over element e that is 1 at node i, combined
with the Lagrange polynomial over element e+ 1 that is also 1 at node i.
On all other elements, ϕi = 0.

A visual impression of three such basis functions are given in Figure 18.

Properties of ϕi. The construction of basis functions according to the princi-
ples above lead to two important properties of ϕi(x). First,

ϕi(xj) = δij , δij =

{
1, i = j,
0, i 6= j,

(52)

when xj is a node in the mesh with global node number j. The result ϕi(xj) = δij
arises because the Lagrange polynomials are constructed to have exactly this
property. The property also implies a convenient interpretation of ci as the value
of u at node i. To show this, we expand u in the usual way as

∑
j cjψj and

choose ψi = ϕi:

u(xi) =
∑
j∈Is

cjψj(xi) =
∑
j∈Is

cjϕj(xi) = ciϕi(xi) = ci .

Because of this interpretation, the coefficient ci is by many named ui or Ui.
Second, ϕi(x) is mostly zero throughout the domain:

• ϕi(x) 6= 0 only on those elements that contain global node i,

• ϕi(x)ϕj(x) 6= 0 if and only if i and j are global node numbers in the same
element.
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Figure 18: Illustration of the piecewise quadratic basis functions associated
with nodes in element 1.

Since Ai,j is the integral of ϕiϕj it means that most of the elements in the
coefficient matrix will be zero. We will come back to these properties and use
them actively in computations to save memory and CPU time.

We let each element have d+1 nodes, resulting in local Lagrange polynomials
of degree d. It is not a requirement to have the same d value in each element,
but for now we will assume so.

3.3 Example on piecewise quadratic finite element func-
tions

Figure 18 illustrates how piecewise quadratic basis functions can look like (d = 2).
We work with the domain Ω = [0, 1] divided into four equal-sized elements, each
having three nodes. The nodes and elements lists in this particular example
become

nodes = [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0]
elements = [[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]]

Figure 19 sketches the mesh and the numbering. Nodes are marked with circles
on the x axis and element boundaries are marked with vertical dashed lines in
Figure 18.

Let us explain in detail how the basis functions are constructed according
to the principles. Consider element number 1 in Figure 18, Ω(1) = [0.25, 0.5],
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Figure 19: Sketch of mesh with 4 elements and 3 nodes per element.

with local nodes 0, 1, and 2 corresponding to global nodes 2, 3, and 4. The
coordinates of these nodes are 0.25, 0.375, and 0.5, respectively. We define three
Lagrange polynomials on this element:

1. The polynomial that is 1 at local node 1 (x = 0.375, global node 3) makes
up the basis function ϕ3(x) over this element, with ϕ3(x) = 0 outside the
element.

2. The Lagrange polynomial that is 1 at local node 0 is the ”right part”
of the global basis function ϕ2(x). The ”left part” of ϕ2(x) consists of
a Lagrange polynomial associated with local node 2 in the neighboring
element Ω(0) = [0, 0.25].

3. Finally, the polynomial that is 1 at local node 2 (global node 4) is the ”left
part” of the global basis function ϕ4(x). The ”right part” comes from the
Lagrange polynomial that is 1 at local node 0 in the neighboring element
Ω(2) = [0.5, 0.75].

As mentioned earlier, any global basis function ϕi(x) is zero on elements that
do not contain the node with global node number i.

The other global functions associated with internal nodes, ϕ1, ϕ5, and ϕ7, are
all of the same shape as the drawn ϕ3, while the global basis functions associated
with shared nodes also have the same shape, provided the elements are of the
same length.

3.4 Example on piecewise linear finite element functions

Figure 20 shows piecewise linear basis functions (d = 1). Also here we have
four elements on Ω = [0, 1]. Consider the element Ω(1) = [0.25, 0.5]. Now there
are no internal nodes in the elements so that all basis functions are associated
with nodes at the element boundaries and hence made up of two Lagrange
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Figure 20: Illustration of the piecewise linear basis functions associated with
nodes in element 1.

polynomials from neighboring elements. For example, ϕ1(x) results from the
Lagrange polynomial in element 0 that is 1 at local node 1 and 0 at local node
0, combined with the Lagrange polynomial in element 1 that is 1 at local node 0
and 0 at local node 1. The other basis functions are constructed similarly.

Explicit mathematical formulas are needed for ϕi(x) in computations. In the
piecewise linear case, one can show that

ϕi(x) =


0, x < xi−1,
(x− xi−1)/(xi − xi−1), xi−1 ≤ x < xi,
1− (x− xi)/(xi+1 − xi), xi ≤ x < xi+1,
0, x ≥ xi+1 .

(53)

Here, xj , j = i− 1, i, i+ 1, denotes the coordinate of node j. For elements of
equal length h the formulas can be simplified to

ϕi(x) =


0, x < xi−1,
(x− xi−1)/h, xi−1 ≤ x < xi,
1− (x− xi)/h, xi ≤ x < xi+1,
0, x ≥ xi+1

(54)
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3.5 Example on piecewise cubic finite element basis func-
tions

Piecewise cubic basis functions can be defined by introducing four nodes per
element. Figure 21 shows examples on ϕi(x), i = 3, 4, 5, 6, associated with
element number 1. Note that ϕ4 and ϕ5 are nonzero on element number 1, while
ϕ3 and ϕ6 are made up of Lagrange polynomials on two neighboring elements.
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Figure 21: Illustration of the piecewise cubic basis functions associated with
nodes in element 1.

We see that all the piecewise linear basis functions have the same ”hat” shape.
They are naturally referred to as hat functions, also called chapeau functions.
The piecewise quadratic functions in Figure 18 are seen to be of two types.
”Rounded hats” associated with internal nodes in the elements and some more
”sombrero” shaped hats associated with element boundary nodes. Higher-order
basis functions also have hat-like shapes, but the functions have pronounced
oscillations in addition, as illustrated in Figure 21.

A common terminology is to speak about linear elements as elements with two
local nodes associated with piecewise linear basis functions. Similarly, quadratic
elements and cubic elements refer to piecewise quadratic or cubic functions
over elements with three or four local nodes, respectively. Alternative names,
frequently used later, are P1 elements for linear elements, P2 for quadratic
elements, and so forth: Pd signifies degree d of the polynomial basis functions.
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3.6 Calculating the linear system

The elements in the coefficient matrix and right-hand side are given by the
formulas (27) and (28), but now the choice of ψi is ϕi. Consider P1 elements
where ϕi(x) piecewise linear. Nodes and elements numbered consecutively from
left to right in a uniformly partitioned mesh imply the nodes

xi = ih, i = 0, . . . , N,

and the elements

Ω(i) = [xi, xi+1] = [ih, (i+ 1)h], i = 0, . . . , Ne = N − 1 . (55)

We have in this case N elements and N + 1 nodes, and Ω = [x0, xN ]. The
formula for ϕi(x) is given by (54) and a graphical illustration is provided in
Figures 20 and 23. First we clearly see from the figures the very important
property ϕi(x)ϕj(x) 6= 0 if and only if j = i − 1, j = i, or j = i + 1, or
alternatively expressed, if and only if i and j are nodes in the same element.
Otherwise, ϕi and ϕj are too distant to have an overlap and consequently their
product vanishes.
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Figure 22: Illustration of the piecewise linear basis functions corresponding to
global node 2 and 3.

Calculating a specific matrix entry. Let us calculate the specific matrix
entry A2,3 =

∫
Ω
ϕ2ϕ3 dx. Figure 22 shows how ϕ2 and ϕ3 look like. We realize

from this figure that the product ϕ2ϕ3 6= 0 only over element 2, which contains
node 2 and 3. The particular formulas for ϕ2(x) and ϕ3(x) on [x2, x3] are found
from (54). The function ϕ3 has positive slope over [x2, x3] and corresponds to
the interval [xi−1, xi] in (54). With i = 3 we get

ϕ3(x) = (x− x2)/h,

while ϕ2(x) has negative slope over [x2, x3] and corresponds to setting i = 2 in
(54),
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ϕ2(x) = 1− (x− x2)/h .

We can now easily integrate,

A2,3 =

∫
Ω

ϕ2ϕ3 dx =

∫ x3

x2

(
1− x− x2

h

)
x− x2

h
dx =

h

6
.

The diagonal entry in the coefficient matrix becomes

A2,2 =

∫ x2

x1

(
x− x1

h

)2

dx+

∫ x3

x2

(
1− x− x2

h

)2

dx =
h

3
.

The entry A2,1 has an the integral that is geometrically similar to the situation
in Figure 22, so we get A2,1 = h/6.

Calculating a general row in the matrix. We can now generalize the
calculation of matrix entries to a general row number i. The entry Ai,i−1 =∫

Ω
ϕiϕi−1 dx involves hat functions as depicted in Figure 23. Since the integral

is geometrically identical to the situation with specific nodes 2 and 3, we realize
that Ai,i−1 = Ai,i+1 = h/6 and Ai,i = 2h/3. However, we can compute the
integral directly too:

Ai,i−1 =

∫
Ω

ϕiϕi−1 dx

=

∫ xi−1

xi−2

ϕiϕi−1 dx︸ ︷︷ ︸
ϕi=0

+

∫ xi

xi−1

ϕiϕi−1 dx+

∫ xi+1

xi

ϕiϕi−1 dx︸ ︷︷ ︸
ϕi−1=0

=

∫ xi

xi−1

(
x− xi
h

)
︸ ︷︷ ︸

ϕi(x)

(
1− x− xi−1

h

)
︸ ︷︷ ︸

ϕi−1(x)

dx =
h

6
.

The particular formulas for ϕi−1(x) and ϕi(x) on [xi−1, xi] are found from
(54): ϕi is the linear function with positive slope, corresponding to the interval
[xi−1, xi] in (54), while φi−1 has a negative slope so the definition in interval
[xi, xi+1] in (54) must be used. (The appearance of i in (54) and the integral
might be confusing, as we speak about two different i indices.)

The first and last row of the coefficient matrix lead to slightly different
integrals:

A0,0 =

∫
Ω

ϕ2
0 dx =

∫ x1

x0

(
1− x− x0

h

)2

dx =
h

3
.

Similarly, AN,N involves an integral over only one element and equals hence h/3.
The general formula for bi, see Figure 24, is now easy to set up
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Figure 23: Illustration of two neighboring linear (hat) functions with general
node numbers.
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Figure 24: Right-hand side integral with the product of a basis function and
the given function to approximate.

bi =

∫
Ω

ϕi(x)f(x) dx =

∫ xi

xi−1

x− xi−1

h
f(x) dx+

∫ xi+1

xi

(
1− x− xi

h

)
f(x) dx .

(56)
We need a specific f(x) function to compute these integrals. With two equal-sized
elements in Ω = [0, 1] and f(x) = x(1− x), one gets

A =
h

6

 2 1 0
1 4 1
0 1 2

 , b =
h2

12

 2− 3h
12− 14h
10− 17h

 .

The solution becomes

c0 =
h2

6
, c1 = h− 5

6
h2, c2 = 2h− 23

6
h2 .

The resulting function
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u(x) = c0ϕ0(x) + c1ϕ1(x) + c2ϕ2(x)

is displayed in Figure 25 (left). Doubling the number of elements to four leads
to the improved approximation in the right part of Figure 25.
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Figure 25: Least squares approximation of a parabola using 2 (left) and 4
(right) P1 elements.

3.7 Assembly of elementwise computations

The integrals above are naturally split into integrals over individual elements
since the formulas change with the elements. This idea of splitting the integral
is fundamental in all practical implementations of the finite element method.

Let us split the integral over Ω into a sum of contributions from each element:

Ai,j =

∫
Ω

ϕiϕj dx =
∑
e

A
(e)
i,j , A

(e)
i,j =

∫
Ω(e)

ϕiϕj dx . (57)

Now, A
(e)
i,j 6= 0 if and only if i and j are nodes in element e. Introduce i = q(e, r)

as the mapping of local node number r in element e to the global node number i.
This is just a short mathematical notation for the expression i=elements[e][r]

in a program. Let r and s be the local node numbers corresponding to the global
node numbers i = q(e, r) and j = q(e, s). With d nodes per element, all the

nonzero elements in A
(e)
i,j arise from the integrals involving basis functions with

indices corresponding to the global node numbers in element number e:∫
Ω(e)

ϕq(e,r)ϕq(e,s) dx, r, s = 0, . . . , d .

These contributions can be collected in a (d + 1) × (d + 1) matrix known as
the element matrix. Let Id = {0, . . . , d} be the valid indices of r and s. We
introduce the notation

Ã(e) = {Ã(e)
r,s}, r, s ∈ Id,
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for the element matrix. For the case d = 2 we have

Ã(e) =

 Ã
(e)
0,0 Ã

(e)
0,1 Ã

(e)
0,2

Ã
(e)
1,0 Ã

(e)
1,1 Ã

(e)
1,2

Ã
(e)
2,0 Ã

(e)
2,1 Ã

(e)
2,2

 .
Given the numbers Ã

(e)
r,s , we should according to (57) add the contributions to

the global coefficient matrix by

Aq(e,r),q(e,s) := Aq(e,r),q(e,s) + Ã(e)
r,s , r, s ∈ Id . (58)

This process of adding in elementwise contributions to the global matrix is called
finite element assembly or simply assembly. Figure 26 illustrates how element
matrices for elements with two nodes are added into the global matrix. More
specifically, the figure shows how the element matrix associated with elements 1
and 2 assembled, assuming that global nodes are numbered from left to right in
the domain. With regularly numbered P3 elements, where the element matrices
have size 4× 4, the assembly of elements 1 and 2 are sketched in Figure 27.

Figure 26: Illustration of matrix assembly: regularly numbered P1 elements.

After assembly of element matrices corresponding to regularly numbered
elements and nodes are understood, it is wise to study the assembly process for
irregularly numbered elements and nodes. Figure 17 shows a mesh where the
elements array, or q(e, r) mapping in mathematical notation, is given as
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Figure 27: Illustration of matrix assembly: regularly numbered P3 elements.

elements = [[2, 1], [4, 5], [0, 4], [3, 0], [5, 2]]

The associated assembly of element matrices 1 and 2 is sketched in Figure 28.
These three assembly processes can also be animated.
The right-hand side of the linear system is also computed elementwise:

bi =

∫
Ω

f(x)ϕi(x) dx =
∑
e

b
(e)
i , b

(e)
i =

∫
Ω(e)

f(x)ϕi(x) dx . (59)

We observe that b
(e)
i 6= 0 if and only if global node i is a node in element e.

With d nodes per element we can collect the d+ 1 nonzero contributions b
(e)
i ,

for i = q(e, r), r ∈ Id, in an element vector

b̃(e)r = {b̃(e)r }, r ∈ Id .

These contributions are added to the global right-hand side by an assembly
process similar to that for the element matrices:
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Figure 28: Illustration of matrix assembly: irregularly numbered P1 elements.

bq(e,r) := bq(e,r) + b̃(e)r , r ∈ Id . (60)

3.8 Mapping to a reference element

Instead of computing the integrals

Ã(e)
r,s =

∫
Ω(e)

ϕq(e,r)(x)ϕq(e,s)(x) dx

over some element Ω(e) = [xL, xR], it is convenient to map the element domain
[xL, xR] to a standardized reference element domain [−1, 1]. (We have now
introduced xL and xR as the left and right boundary points of an arbitrary
element. With a natural, regular numbering of nodes and elements from left to
right through the domain, we have xL = xe and xR = xe+1 for P1 elements.)

Let X ∈ [−1, 1] be the coordinate in the reference element. A linear or affine
mapping from X to x reads

x =
1

2
(xL + xR) +

1

2
(xR − xL)X . (61)

This relation can alternatively be expressed by

x = xm +
1

2
hX, (62)
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where we have introduced the element midpoint xm = (xL + xR)/2 and the
element length h = xR − xL.

Integrating on the reference element is a matter of just changing the integra-
tion variable from x to X. Let

ϕ̃r(X) = ϕq(e,r)(x(X)) (63)

be the basis function associated with local node number r in the reference
element. The integral transformation reads

Ã(e)
r,s =

∫
Ω(e)

ϕq(e,r)(x)ϕq(e,s)(x) dx =

∫ 1

−1

ϕ̃r(X)ϕ̃s(X)
dx

dX
dX . (64)

The stretch factor dx/dX between the x and X coordinates becomes the deter-
minant of the Jacobian matrix of the mapping between the coordinate systems
in 2D and 3D. To obtain a uniform notation for 1D, 2D, and 3D problems we
therefore replace dx/dX by det J already now. In 1D, det J = dx/dX = h/2.
The integration over the reference element is then written as

Ã(e)
r,s =

∫ 1

−1

ϕ̃r(X)ϕ̃s(X) detJ dX . (65)

The corresponding formula for the element vector entries becomes

b̃(e)r =

∫
Ω(e)

f(x)ϕq(e,r)(x)dx =

∫ 1

−1

f(x(X))ϕ̃r(X) detJ dX . (66)

Since we from now on will work in the reference element, we need explicit
mathematical formulas for the basis functions ϕi(x) in the reference element
only, i.e., we only need to specify formulas for ϕ̃r(X). This is a very convenient
simplification compared to specifying piecewise polynomials in the physical
domain.

The ϕ̃r(x) functions are simply the Lagrange polynomials defined through
the local nodes in the reference element. For d = 1 and two nodes per element,
we have the linear Lagrange polynomials

ϕ̃0(X) =
1

2
(1−X) (67)

ϕ̃1(X) =
1

2
(1 +X) (68)

Quadratic polynomials, d = 2, have the formulas

ϕ̃0(X) =
1

2
(X − 1)X (69)

ϕ̃1(X) = 1−X2 (70)

ϕ̃2(X) =
1

2
(X + 1)X (71)
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In general,

ϕ̃r(X) =

d∏
s=0,s6=r

X −X(s)

X(r) −X(s)
, (72)

where X(0), . . . , X(d) are the coordinates of the local nodes in the reference
element. These are normally uniformly spaced: X(r) = −1 + 2r/d, r ∈ Id.

Why reference elements?

The great advantage of using reference elements is that the formulas for
the basis functions, ϕ̃r(X), are the same for all elements and independent
of the element geometry (length and location in the mesh). The geometric
information is ”factored out” in the simple mapping formula and the asso-
ciated det J quantity, but this information is (here taken as) the same for
element types. Also, the integration domain is the same for all elements.

3.9 Example: Integration over a reference element

To illustrate the concepts from the previous section in a specific example, we
now consider calculation of the element matrix and vector for a specific choice
of d and f(x). A simple choice is d = 1 (P1 elements) and f(x) = x(1 − x)

on Ω = [0, 1]. We have the general expressions (65) and (66) for Ã
(e)
r,s and b̃

(e)
r .

Writing these out for the choices (67) and (68), and using that det J = h/2, we
can do the following calculations of the element matrix entries:

Ã
(e)
0,0 =

∫ 1

−1

ϕ̃0(X)ϕ̃0(X)
h

2
dX

=

∫ 1

−1

1

2
(1−X)

1

2
(1−X)

h

2
dX =

h

8

∫ 1

−1

(1−X)2dX =
h

3
, (73)

Ã
(e)
1,0 =

∫ 1

−1

ϕ̃1(X)ϕ̃0(X)
h

2
dX

=

∫ 1

−1

1

2
(1 +X)

1

2
(1−X)

h

2
dX =

h

8

∫ 1

−1

(1−X2)dX =
h

6
, (74)

Ã
(e)
0,1 = Ã

(e)
1,0, (75)

Ã
(e)
1,1 =

∫ 1

−1

ϕ̃1(X)ϕ̃1(X)
h

2
dX

=

∫ 1

−1

1

2
(1 +X)

1

2
(1 +X)

h

2
dX =

h

8

∫ 1

−1

(1 +X)2dX =
h

3
. (76)

The corresponding entries in the element vector becomes
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b̃
(e)
0 =

∫ 1

−1

f(x(X))ϕ̃0(X)
h

2
dX

=

∫ 1

−1

(xm +
1

2
hX)(1− (xm +

1

2
hX))

1

2
(1−X)

h

2
dX

= − 1

24
h3 +

1

6
h2xm −

1

12
h2 − 1

2
hx2

m +
1

2
hxm (77)

b̃
(e)
1 =

∫ 1

−1

f(x(X))ϕ̃1(X)
h

2
dX

=

∫ 1

−1

(xm +
1

2
hX)(1− (xm +

1

2
hX))

1

2
(1 +X)

h

2
dX

= − 1

24
h3 − 1

6
h2xm +

1

12
h2 − 1

2
hx2

m +
1

2
hxm . (78)

In the last two expressions we have used the element midpoint xm.
Integration of lower-degree polynomials above is tedious, and higher-degree

polynomials involve very much more algebra, but sympy may help. For example,
we can easily calculate (73), (73), and (77) by

>>> import sympy as sp
>>> x, x_m, h, X = sp.symbols(’x x_m h X’)
>>> sp.integrate(h/8*(1-X)**2, (X, -1, 1))
h/3
>>> sp.integrate(h/8*(1+X)*(1-X), (X, -1, 1))
h/6
>>> x = x_m + h/2*X
>>> b_0 = sp.integrate(h/4*x*(1-x)*(1-X), (X, -1, 1))
>>> print b_0
-h**3/24 + h**2*x_m/6 - h**2/12 - h*x_m**2/2 + h*x_m/2

For inclusion of formulas in documents (like the present one), sympy can print
expressions in LATEX format:

>>> print sp.latex(b_0, mode=’plain’)
- \frac{1}{24} h^{3} + \frac{1}{6} h^{2} x_{m}
- \frac{1}{12} h^{2} - \half h x_{m}^{2}
+ \half h x_{m}

4 Implementation

Based on the experience from the previous example, it makes sense to write
some code to automate the analytical integration process for any choice of finite
element basis functions. In addition, we can automate the assembly process
and linear system solution. Appropriate functions for this purpose document
all details of all steps in the finite element computations and can found in the
module file fe_approx1D.py. The key steps in the computational machinery are
now explained in detail in terms of code and text.
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4.1 Integration

First we need a Python function for defining ϕ̃r(X) in terms of a Lagrange
polynomial of degree d:

import sympy as sp
import numpy as np

def phi_r(r, X, d):
if isinstance(X, sp.Symbol):

h = sp.Rational(1, d) # node spacing
nodes = [2*i*h - 1 for i in range(d+1)]

else:
# assume X is numeric: use floats for nodes
nodes = np.linspace(-1, 1, d+1)

return Lagrange_polynomial(X, r, nodes)

def Lagrange_polynomial(x, i, points):
p = 1
for k in range(len(points)):

if k != i:
p *= (x - points[k])/(points[i] - points[k])

return p

Observe how we construct the phi_r function to be a symbolic expression for
ϕ̃r(X) if X is a Symbol object from sympy. Otherwise, we assume that X is a float

object and compute the corresponding floating-point value of ϕ̃r(X). Recall that
the Lagrange_polynomial function, here simply copied from Section 2.7, works
with both symbolic and numeric variables.

The complete basis ϕ̃0(X), . . . , ϕ̃d(X) on the reference element, represented
as a list of symbolic expressions, is constructed by

def basis(d=1):
X = sp.Symbol(’X’)
phi = [phi_r(r, X, d) for r in range(d+1)]
return phi

Now we are in a position to write the function for computing the element matrix:

def element_matrix(phi, Omega_e, symbolic=True):
n = len(phi)
A_e = sp.zeros((n, n))
X = sp.Symbol(’X’)
if symbolic:

h = sp.Symbol(’h’)
else:

h = Omega_e[1] - Omega_e[0]
detJ = h/2 # dx/dX
for r in range(n):

for s in range(r, n):
A_e[r,s] = sp.integrate(phi[r]*phi[s]*detJ, (X, -1, 1))
A_e[s,r] = A_e[r,s]

return A_e

In the symbolic case (symbolic is True), we introduce the element length as
a symbol h in the computations. Otherwise, the real numerical value of the
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element interval Omega_e is used and the final matrix elements are numbers, not
symbols. This functionality can be demonstrated:

>>> from fe_approx1D import *
>>> phi = basis(d=1)
>>> phi
[1/2 - X/2, 1/2 + X/2]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=True)
[h/3, h/6]
[h/6, h/3]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=False)
[0.0333333333333333, 0.0166666666666667]
[0.0166666666666667, 0.0333333333333333]

The computation of the element vector is done by a similar procedure:

def element_vector(f, phi, Omega_e, symbolic=True):
n = len(phi)
b_e = sp.zeros((n, 1))
# Make f a function of X
X = sp.Symbol(’X’)
if symbolic:

h = sp.Symbol(’h’)
else:

h = Omega_e[1] - Omega_e[0]
x = (Omega_e[0] + Omega_e[1])/2 + h/2*X # mapping
f = f.subs(’x’, x) # substitute mapping formula for x
detJ = h/2 # dx/dX
for r in range(n):

b_e[r] = sp.integrate(f*phi[r]*detJ, (X, -1, 1))
return b_e

Here we need to replace the symbol x in the expression for f by the mapping

formula such that f can be integrated in terms of X, cf. the formula b̃
(e)
r =∫ 1

−1
f(x(X))ϕ̃r(X)h2dX.
The integration in the element matrix function involves only products of

polynomials, which sympy can easily deal with, but for the right-hand side sympy

may face difficulties with certain types of expressions f. The result of the integral
is then an Integral object and not a number or expression as when symbolic
integration is successful. It may therefore be wise to introduce a fallback on
numerical integration. The symbolic integration can also take much time before
an unsuccessful conclusion so we may also introduce a parameter symbolic and
set it to False to avoid symbolic integration:

def element_vector(f, phi, Omega_e, symbolic=True):
...
if symbolic:

I = sp.integrate(f*phi[r]*detJ, (X, -1, 1))
if not symbolic or isinstance(I, sp.Integral):

h = Omega_e[1] - Omega_e[0] # Ensure h is numerical
detJ = h/2
integrand = sp.lambdify([X], f*phi[r]*detJ)
I = sp.mpmath.quad(integrand, [-1, 1])

b_e[r] = I
...
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Numerical integration requires that the symbolic integrand is converted to a plain
Python function (integrand) and that the element length h is a real number.

4.2 Linear system assembly and solution

The complete algorithm for computing and assembling the elementwise contribu-
tions takes the following form

def assemble(nodes, elements, phi, f, symbolic=True):
N_n, N_e = len(nodes), len(elements)
if symbolic:

A = sp.zeros((N_n, N_n))
b = sp.zeros((N_n, 1)) # note: (N_n, 1) matrix

else:
A = np.zeros((N_n, N_n))
b = np.zeros(N_n)

for e in range(N_e):
Omega_e = [nodes[elements[e][0]], nodes[elements[e][-1]]]

A_e = element_matrix(phi, Omega_e, symbolic)
b_e = element_vector(f, phi, Omega_e, symbolic)

for r in range(len(elements[e])):
for s in range(len(elements[e])):

A[elements[e][r],elements[e][s]] += A_e[r,s]
b[elements[e][r]] += b_e[r]

return A, b

The nodes and elements variables represent the finite element mesh as explained
earlier.

Given the coefficient matrix A and the right-hand side b, we can compute
the coefficients {ci}i∈Is in the expansion u(x) =

∑
j cjϕj as the solution vector

c of the linear system:

if symbolic:
c = A.LUsolve(b)

else:
c = np.linalg.solve(A, b)

When A and b are sympy arrays, the solution procedure implied by A.LUsolve is
symbolic. Otherwise, A and b are numpy arrays and a standard numerical solver
is called. The symbolic version is suited for small problems only (small N values)
since the calculation time becomes prohibitively large otherwise. Normally, the
symbolic integration will be more time consuming in small problems than the
symbolic solution of the linear system.

4.3 Example on computing symbolic approximations

We can exemplify the use of assemble on the computational case from Section 3.6
with two P1 elements (linear basis functions) on the domain Ω = [0, 1]. Let us
first work with a symbolic element length:
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>>> h, x = sp.symbols(’h x’)
>>> nodes = [0, h, 2*h]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, 0]
[h/6, 2*h/3, h/6]
[ 0, h/6, h/3]
>>> b
[ h**2/6 - h**3/12]
[ h**2 - 7*h**3/6]
[5*h**2/6 - 17*h**3/12]
>>> c = A.LUsolve(b)
>>> c
[ h**2/6]
[12*(7*h**2/12 - 35*h**3/72)/(7*h)]
[ 7*(4*h**2/7 - 23*h**3/21)/(2*h)]

4.4 Comparison with finite elements and interpolation/-
collocation

We may, for comparison, compute the c vector corresponding to an interpola-
tion/collocation method with finite element basis functions. Choosing the nodes
as points, the principle is

u(xi) =
∑
j∈Is

cjϕj(xi) = f(xi), i ∈ Is .

The coefficient matrix Ai,j = ϕj(xi) becomes the identity matrix because basis
function number j vanishes at all nodes, except node j: ϕj(xi = δij . Therefore,
ci = f(xi.

The associated sympy calculations are

>>> fn = sp.lambdify([x], f)
>>> c = [fn(xc) for xc in nodes]
>>> c
[0, h*(1 - h), 2*h*(1 - 2*h)]

These expressions are much simpler than those based on least squares or projec-
tion in combination with finite element basis functions.

4.5 Example on computing numerical approximations

The numerical computations corresponding to the symbolic ones in Section 4.3,
and still done by sympy and the assemble function, go as follows:

>>> nodes = [0, 0.5, 1]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> x = sp.Symbol(’x’)
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>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=False)
>>> A
[ 0.166666666666667, 0.0833333333333333, 0]
[0.0833333333333333, 0.333333333333333, 0.0833333333333333]
[ 0, 0.0833333333333333, 0.166666666666667]
>>> b
[ 0.03125]
[0.104166666666667]
[ 0.03125]
>>> c = A.LUsolve(b)
>>> c
[0.0416666666666666]
[ 0.291666666666667]
[0.0416666666666666]

The fe_approx1D module contains functions for generating the nodes and
elements lists for equal-sized elements with any number of nodes per element.
The coordinates in nodes can be expressed either through the element length
symbol h (symbolic=True) or by real numbers (symbolic=False):

nodes, elements = mesh_uniform(N_e=10, d=3, Omega=[0,1],
symbolic=True)

There is also a function

def approximate(f, symbolic=False, d=1, N_e=4, filename=’tmp.pdf’):

which computes a mesh with N_e elements, basis functions of degree d, and
approximates a given symbolic expression f by a finite element expansion u(x) =∑
j cjϕj(x). When symbolic is False, u(x) =

∑
j cjϕj(x) can be computed at

a (large) number of points and plotted together with f(x). The construction of u
points from the solution vector c is done elementwise by evaluating

∑
r crϕ̃r(X)

at a (large) number of points in each element in the local coordinate system,
and the discrete (x, u) values on each element are stored in separate arrays that
are finally concatenated to form a global array for x and for u. The details are
found in the u_glob function in fe_approx1D.py.

4.6 The structure of the coefficient matrix

Let us first see how the global matrix looks like if we assemble symbolic element
matrices, expressed in terms of h, from several elements:

>>> d=1; N_e=8; Omega=[0,1] # 8 linear elements on [0,1]
>>> phi = basis(d)
>>> f = x*(1-x)
>>> nodes, elements = mesh_symbolic(N_e, d, Omega)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, 0, 0, 0, 0, 0, 0, 0]
[h/6, 2*h/3, h/6, 0, 0, 0, 0, 0, 0]
[ 0, h/6, 2*h/3, h/6, 0, 0, 0, 0, 0]
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[ 0, 0, h/6, 2*h/3, h/6, 0, 0, 0, 0]
[ 0, 0, 0, h/6, 2*h/3, h/6, 0, 0, 0]
[ 0, 0, 0, 0, h/6, 2*h/3, h/6, 0, 0]
[ 0, 0, 0, 0, 0, h/6, 2*h/3, h/6, 0]
[ 0, 0, 0, 0, 0, 0, h/6, 2*h/3, h/6]
[ 0, 0, 0, 0, 0, 0, 0, h/6, h/3]

The reader is encouraged to assemble the element matrices by hand and verify
this result, as this exercise will give a hands-on understanding of what the
assembly is about. In general we have a coefficient matrix that is tridiagonal:

A =
h

6



2 1 0 · · · · · · · · · · · · · · · 0

1 4 1
. . .

...

0 1 4 1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 1 4 1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . 1 4 1
0 · · · · · · · · · · · · · · · 0 1 2



(79)

The structure of the right-hand side is more difficult to reveal since it involves
an assembly of elementwise integrals of f(x(X))ϕ̃r(X)h/2, which obviously
depend on the particular choice of f(x). Numerical integration can give some
insight into the nature of the right-hand side. For this purpose it is easier to
look at the integration in x coordinates, which gives the general formula (56).
For equal-sized elements of length h, we can apply the Trapezoidal rule at the
global node points to arrive at

bi = h

1

2
ϕi(x0)f(x0) +

1

2
ϕi(xN )f(xN ) +

N−1∑
j=1

ϕi(xj)f(xj)

 (80)

=

{
1
2hf(xi), i = 0 or i = N,
hf(xi), 1 ≤ i ≤ N − 1

(81)

The reason for this simple formula is simply that ϕi is either 0 or 1 at the nodes
and 0 at all but one of them.

Going to P2 elements (d=2) leads to the element matrix

A(e) =
h

30

 4 2 −1
2 16 2
−1 2 4

 (82)

and the following global assembled matrix from four elements:
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A =
h

30



4 2 −1 0 0 0 0 0 0
2 16 2 0 0 0 0 0 0
−1 2 8 2 −1 0 0 0 0
0 0 2 16 2 0 0 0 0
0 0 −1 2 8 2 −1 0 0
0 0 0 0 2 16 2 0 0
0 0 0 0 −1 2 8 2 −1
0 0 0 0 0 0 2 16 2
0 0 0 0 0 0 −1 2 4


(83)

In general, for i odd we have the nonzeroes

Ai,i−2 = −1, Ai−1,i = 2, Ai,i = 8, Ai+1,i = 2, Ai+2,i = −1,

multiplied by h/30, and for i even we have the nonzeros

Ai−1,i = 2, Ai,i = 16, Ai+1,i = 2,

multiplied by h/30. The rows with odd numbers correspond to nodes at the
element boundaries and get contributions from two neighboring elements in the
assembly process, while the even numbered rows correspond to internal nodes in
the elements where the only one element contributes to the values in the global
matrix.

4.7 Applications

With the aid of the approximate function in the fe_approx1D module we can
easily investigate the quality of various finite element approximations to some
given functions. Figure 29 shows how linear and quadratic elements approximates
the polynomial f(x) = x(1− x)8 on Ω = [0, 1], using equal-sized elements. The
results arise from the program

import sympy as sp
from fe_approx1D import approximate
x = sp.Symbol(’x’)

approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=4)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=2)
approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=8)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=4)

The quadratic functions are seen to be better than the linear ones for the same
value of N , as we increase N . This observation has some generality: higher
degree is not necessarily better on a coarse mesh, but it is as we refined the
mesh.
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Figure 29: Comparison of the finite element approximations: 4 P1 elements with
5 nodes (upper left), 2 P2 elements with 5 nodes (upper right), 8 P1 elements
with 9 nodes (lower left), and 4 P2 elements with 9 nodes (lower right).

4.8 Sparse matrix storage and solution

Some of the examples in the preceding section took several minutes to compute,
even on small meshes consisting of up to eight elements. The main explanation
for slow computations is unsuccessful symbolic integration: sympy may use a
lot of energy on integrals like

∫
f(x(X))ϕ̃r(X)h/2dx before giving up, and the

program then resorts to numerical integration. Codes that can deal with a large
number of basis functions and accept flexible choices of f(x) should compute all
integrals numerically and replace the matrix objects from sympy by the far more
efficient array objects from numpy.

Another reason for slow code is related to the fact that most of the matrix
entries Ai,j are zero, because (ϕi, ϕj) = 0 unless i and j are nodes in the same
element. A matrix whose majority of entries are zeros, is known as a sparse
matrix. The sparsity should be utilized in software as it dramatically decreases
the storage demands and the CPU-time needed to compute the solution of the
linear system. This optimization is not critical in 1D problems where modern
computers can afford computing with all the zeros in the complete square matrix,
but in 2D and especially in 3D, sparse matrices are fundamental for feasible
finite element computations.
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In 1D problems, using a numbering of nodes and elements from left to right
over the domain, the assembled coefficient matrix has only a few diagonals
different from zero. More precisely, 2d + 1 diagonals are different from zero.
With a different numbering of global nodes, say a random ordering, the diagonal
structure is lost, but the number of nonzero elements is unaltered. Figures 30
and 31 exemplify sparsity patterns.

Figure 30: Matrix sparsity pattern for left-to-right numbering (left) and random
numbering (right) of nodes in P1 elements.

Figure 31: Matrix sparsity pattern for left-to-right numbering (left) and random
numbering (right) of nodes in P3 elements.

The scipy.sparse library supports creation of sparse matrices and linear
system solution.

• scipy.sparse.diags for matrix defined via diagonals

• scipy.sparse.lil_matrix for creation via setting matrix entries

• scipy.sparse.dok_matrix for creation via setting matrix entries

5 Comparison of finite element and finite differ-
ence approximation

The previous sections on approximating f by a finite element function u utilize
the projection/Galerkin or least squares approaches to minimize the approxi-

59



mation error. We may, alternatively, use the collocation/interpolation method
as described in Section 4.4. Here we shall compare these three approaches with
what one does in the finite difference method when representing a given function
on a mesh.

5.1 Finite difference approximation of given functions

Approximating a given function f(x) on a mesh in a finite difference context will
typically just sample f at the mesh points. If ui is the value of the approximate u
at the mesh point xi, we have ui = f(xi). The collocation/interpolation method
using finite element basis functions gives exactly the same representation, as
shown Section 4.4,

u(xi) = ci = f(xi) .

How does a finite element Galerkin or least squares approximation differ from
this straightforward interpolation of f? This is the question to be addressed
next. We now limit the scope to P1 elements since this is the element type that
gives formulas closest to those arising in the finite difference method.

5.2 Finite difference interpretation of a finite element ap-
proximation

The linear system arising from a Galerkin or least squares approximation reads
in general ∑

j∈Is

cj(ψi, ψj) = (f, ψi), i ∈ Is .

In the finite element approximation we choose ψi = ϕi. With ϕi corresponding
to P1 elements and a uniform mesh of element length h we have in Section 3.6
calculated the matrix with entries (ϕi, ϕj). Equation number i reads

h

6
(ui−1 + 4ui + ui+1) = (f, ϕi) . (84)

The first and last equation, corresponding to i = 0 and i = N are slightly
different, see Section 4.6.

The finite difference counterpart to (84) is just ui = fi as explained in
Section 5.1. To easier compare this result to the finite element approach to
approximating functions, we can rewrite the left-hand side of (84) as

h(ui +
1

6
(ui−1 − 2ui + ui+1)) . (85)

Thinking in terms of finite differences, we can write this expression using finite
difference operator notation:

[h(u+
h2

6
DxDxu)]i,
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which is nothing but the standard discretization of

h(u+
h2

6
u′′) .

Before interpreting the approximation procedure as solving a differential
equation, we need to work out what the right-hand side is in the context of P1
elements. Since ϕi is the linear function that is 1 at xi and zero at all other
nodes, only the interval [xi−1, xi+1] contribute to the integral on the right-hand
side. This integral is naturally split into two parts according to (54):

(f, ϕi) =

∫ xi

xi−1

f(x)
1

h
(x− xi−1)dx+

∫ xi+1

xi

f(x)
1

h
(1− (x− xi))dx .

However, if f is not known we cannot do much else with this expression. It is
clear that many values of f around xi contributes to the right-hand side, not
just the single point value f(xi) as in the finite difference method.

To proceed with the right-hand side, we can turn to numerical integration
schemes. The Trapezoidal method for (f, ϕi), based on sampling the integrand
fϕi at the node points xi = ih gives

(f, ϕi) =

∫
Ω

fϕidx ≈ h
1

2
(f(x0)ϕi(x0) + f(xN )ϕi(xN )) + h

N−1∑
j=1

f(xj)ϕi(xj) .

Since ϕi is zero at all these points, except at xi, the Trapezoidal rule collapses
to one term:

(f, ϕi) ≈ hf(xi), (86)

for i = 1, . . . , N − 1, which is the same result as with collocation/interpolation,
and of course the same result as in the finite difference method. For i = 0 and
i = N we get contribution from only one element so

(f, ϕi) ≈
1

2
hf(xi), i = 0, i = N . (87)

Simpson’s rule with sample points also in the middle of the elements, at
xi+ 1

2
= (xi + xi+1)/2, can be written as

∫
Ω

g(x)dx ≈ h̃

3

g(x0) + 2

N−1∑
j=1

g(xj) + 4

N−1∑
j=0

g(xj+ 1
2
) + f(x2N )

 ,

where h̃ = h/2 is the spacing between the sample points. Our integrand is g =

fϕi. For all the node points, ϕi(xj) = δij , and therefore
∑N−1
j=1 f(xj)ϕi(xj) =

f(xi). At the midpoints, ϕi(xi± 1
2
) = 1/2 and ϕi(xj+ 1

2
) = 0 for j > 1 and

j < i− 1. Consequently,

61



N−1∑
j=0

f(xj+ 1
2
)ϕi(xj+ 1

2
) =

1

2
(fxj− 1

2
+ xj+ 1

2
) .

When 1 ≤ i ≤ N − 1 we then get

(f, ϕi) ≈
h

3
(fi− 1

2
+ fi + fi+ 1

2
) . (88)

This result shows that, with Simpson’s rule, the finite element method operates
with the average of f over three points, while the finite difference method just
applies f at one point. We may interpret this as a ”smearing” or smoothing of
f by the finite element method.

We can now summarize our findings. With the approximation of (f, ϕi) by
the Trapezoidal rule, P1 elements give rise to equations that can be expressed
as a finite difference discretization of

u+
h2

6
u′′ = f, u′(0) = u′(L) = 0, (89)

expressed with operator notation as

[u+
h2

6
DxDxu = f ]i . (90)

As h→ 0, the extra term proportional to u′′ goes to zero, and the two methods
are then equal.

With the Simpson’s rule, we may say that we solve

[u+
h2

6
DxDxu = f̄ ]i, (91)

where f̄i means the average 1
3 (fi−1/2 + fi + fi+1/2).

The extra term h2

6 u
′′ represents a smoothing effect: with just this term,

we would find u by integrating f twice and thereby smooth f considerably.
In addition, the finite element representation of f involves an average, or a
smoothing, of f on the right-hand side of the equation system. If f is a noisy
function, direct interpolation ui = fi may result in a noisy u too, but with a
Galerkin or least squares formulation and P1 elements, we should expect that u
is smoother than f unless h is very small.

The interpretation that finite elements tend to smooth the solution is valid
in applications far beyond approximation of 1D functions.

5.3 Making finite elements behave as finite differences

With a simple trick, using numerical integration, we can easily produce the result
ui = fi with the Galerkin or least square formulation with P1 elements. This is
useful in many occasions when we deal with more difficult differential equations
and want the finite element method to have properties like the finite difference
method (solving standard linear wave equations is one primary example).
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Computations in physical space. We have already seen that applying the
Trapezoidal rule to the right-hand side (f, ϕi) simply gives f sampled at xi.
Using the Trapezoidal rule on the matrix entries Ai,j = (ϕi, ϕj) involves a sum∑

k

ϕi(xk)ϕj(xk),

but ϕi(xk) = δik and ϕj(xk) = δjk. The product ϕiϕj is then different from
zero only when sampled at xi and i = j. The Trapezoidal approximation to the
integral is then

(ϕi, ϕj) ≈ h, i = j,

and zero if i 6= j. This means that we have obtained a diagonal matrix! The first
and last diagonal elements, (ϕ0, ϕ0) and (ϕN , ϕN ) get contribution only from
the first and last element, respectively, resulting in the approximate integral
value h/2. The corresponding right-hand side also has a factor 1/2 for i = 0 and
i = N . Therefore, the least squares or Galerkin approach with P1 elements and
Trapezoidal integration results in

ci = fi, i ∈ Is .

Simpsons’s rule can be used to achieve a similar result for P2 elements, i.e, a
diagonal coefficient matrix, but with the previously derived average of f on the
right-hand side.

Elementwise computations. Identical results to those above will arise if
we perform elementwise computations. The idea is to use the Trapezoidal rule
on the reference element for computing the element matrix and vector. When
assembled, the same equations ci = f(xi) arise. Exercise 19 encourages you to
carry out the details.

Terminology. The matrix with entries (ϕi, ϕj) typically arises from terms
proportional to u in a differential equation where u is the unknown function.
This matrix is often called the mass matrix, because in the early days of the
finite element method, the matrix arose from the mass times acceleration term
in Newton’s second law of motion. Making the mass matrix diagonal by, e.g.,
numerical integration, as demonstrated above, is a widely used technique and is
called mass lumping. In time-dependent problems it can sometimes enhance the
numerical accuracy and computational efficiency of the finite element method.
However, there are also examples where mass lumping destroys accuracy.

6 A generalized element concept

So far, finite element computing has employed the nodes and element lists
together with the definition of the basis functions in the reference element.

63



Suppose we want to introduce a piecewise constant approximation with one basis
function ϕ̃0(x) = 1 in the reference element, corresponding to a ϕi(x) function
that is 1 on element number i and zero on all other elements. Although we could
associate the function value with a node in the middle of the elements, there are
no nodes at the ends, and the previous code snippets will not work because we
cannot find the element boundaries from the nodes list.

6.1 Cells, vertices, and degrees of freedom

We now introduce cells as the subdomains Ω(e) previously referred as elements.
The cell boundaries are denoted as vertices. The reason for this name is that
cells are recognized by their vertices in 2D and 3D. We also define a set of degrees
of freedom, which are the quantities we aim to compute. The most common type
of degree of freedom is the value of the unknown function u at some point. (For
example, we can introduce nodes as before and say the degrees of freedom are the
values of u at the nodes.) The basis functions are constructed so that they equal
unity for one particular degree of freedom and zero for the rest. This property
ensures that when we evaluate u =

∑
j cjϕj for degree of freedom number i, we

get u = ci. Integrals are performed over cells, usually by mapping the cell of
interest to a reference cell.

With the concepts of cells, vertices, and degrees of freedom we increase the
decoupling of the geometry (cell, vertices) from the space of basis functions.
We will associate different sets of basis functions with a cell. In 1D, all cells
are intervals, while in 2D we can have cells that are triangles with straight
sides, or any polygon, or in fact any two-dimensional geometry. Triangles and
quadrilaterals are most common, though. The popular cell types in 3D are
tetrahedra and hexahedra.

6.2 Extended finite element concept

The concept of a finite element is now

• a reference cell in a local reference coordinate system;

• a set of basis functions ϕ̃i defined on the cell;

• a set of degrees of freedom that uniquely determines the basis functions
such that ϕ̃i = 1 for degree of freedom number i and ϕ̃i = 0 for all other
degrees of freedom;

• a mapping between local and global degree of freedom numbers, here called
the dof map;

• a geometric mapping of the reference cell onto to cell in the physical
domain.

There must be a geometric description of a cell. This is trivial in 1D since the
cell is an interval and is described by the interval limits, here called vertices. If
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the cell is Ω(e) = [xL, xR], vertex 0 is xL and vertex 1 is xR. The reference cell
in 1D is [−1, 1] in the reference coordinate system X.

The expansion of u over one cell is often used:

u(x) = ũ(X) =
∑
r

crϕ̃r(X), x ∈ Ω(e), X ∈ [−1, 1], (92)

where the sum is taken over the numbers of the degrees of freedom and cr is the
value of u for degree of freedom number r.

Our previous P1, P2, etc., elements are defined by introducing d+ 1 equally
spaced nodes in the reference cell and saying that the degrees of freedom are the
d+ 1 function values at these nodes. The basis functions must be 1 at one node
and 0 at the others, and the Lagrange polynomials have exactly this property.
The nodes can be numbered from left to right with associated degrees of freedom
that are numbered in the same way. The degree of freedom mapping becomes
what was previously represented by the elements lists. The cell mapping is the
same affine mapping (61) as before.

6.3 Implementation

Implementationwise,

• we replace nodes by vertices;

• we introduce cells such that cell[e][r] gives the mapping from local
vertex r in cell e to the global vertex number in vertices;

• we replace elements by dof_map (the contents are the same for Pd ele-
ments).

Consider the example from Section 3.1 where Ω = [0, 1] is divided into two cells,
Ω(0) = [0, 0.4] and Ω(1) = [0.4, 1], as depicted in Figure 16. The vertices are
[0, 0.4, 1]. Local vertex 0 and 1 are 0 and 0.4 in cell 0 and 0.4 and 1 in cell 1. A
P2 element means that the degrees of freedom are the value of u at three equally
spaced points (nodes) in each cell. The data structures become

vertices = [0, 0.4, 1]
cells = [[0, 1], [1, 2]]
dof_map = [[0, 1, 2], [2, 3, 4]]

If we would approximate f by piecewise constants, known as P0 elements, we
simply introduce one point or node in an element, preferably X = 0, and define
one degree of freedom, which is the function value at this node. Moreover, we
set ϕ̃0(X) = 1. The cells and vertices arrays remain the same, but dof_map
is altered:

dof_map = [[0], [1]]
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We use the cells and vertices lists to retrieve information on the geometry
of a cell, while dof_map is the q(e, r) mapping introduced earlier in the assembly
of element matrices and vectors. For example, the Omega_e variable (representing
the cell interval) in previous code snippets must now be computed as

Omega_e = [vertices[cells[e][0], vertices[cells[e][1]]

The assembly is done by

A[dof_map[e][r], dof_map[e][s]] += A_e[r,s]
b[dof_map[e][r]] += b_e[r]

We will hereafter drop the nodes and elements arrays and work exculsively
with cells, vertices, and dof_map. The module fe_approx1D_numint.py

now replaces the module fe_approx1D and offers similar functions that work
with the new concepts:

from fe_approx1D_numint import *
x = sp.Symbol(’x’)
f = x*(1 - x)
N_e = 10
vertices, cells, dof_map = mesh_uniform(N_e, d=3, Omega=[0,1])
phi = [basis(len(dof_map[e])-1) for e in range(N_e)]
A, b = assemble(vertices, cells, dof_map, phi, f)
c = np.linalg.solve(A, b)
# Make very fine mesh and sample u(x) on this mesh for plotting
x_u, u = u_glob(c, vertices, cells, dof_map,

resolution_per_element=51)
plot(x_u, u)

These steps are offered in the approximate function, which we here apply to see
how well four P0 elements (piecewise constants) can approximate a parabola:

from fe_approx1D_numint import *
x=sp.Symbol("x")
for N_e in 4, 8:

approximate(x*(1-x), d=0, N_e=N_e, Omega=[0,1])

Figure 32 shows the result.

6.4 Computing the error of the approximation

So far we have focused on computing the coefficients cj in the approximation
u(x) =

∑
j cjϕj as well as on plotting u and f for visual comparison. A more

quantitative comparison needs to investigate the error e(x) = f(x)− u(x). We
mostly want a single number to reflect the error and use a norm for this purpose,
usually the L2 norm

||e||L2 =

(∫
Ω

e2dx

)1/2

.
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Figure 32: Approximation of a parabola by 4 (left) and 8 (right) P0 elements.

Since the finite element approximation is defined for all x ∈ Ω, and we are
interested in how u(x) deviates from f(x) through all the elements, we can either
integrate analytically or use an accurate numerical approximation. The latter is
more convenient as it is a generally feasible and simple approach. The idea is to
sample e(x) at a large number of points in each element. The function u_glob

in the fe_approx1D_numint module does this for u(x) and returns an array x

with coordinates and an array u with the u values:

x, u = u_glob(c, vertices, cells, dof_map,
resolution_per_element=101)

e = f(x) - u

Let us use the Trapezoidal method to approximate the integral. Because different
elements may have different lengths, the x array has a non-uniformly distributed
set of coordinates. Also, the u_glob function works in an element by element
fashion such that coordinates at the boundaries between elements appear twice.
We therefore need to use a ”raw” version of the Trapezoidal rule where we just
add up all the trapezoids:∫

Ω

g(x)dx ≈
n−1∑
j=0

1

2
(g(xj) + g(xj+1))(xj+1 − xj),

if x0, . . . , xn are all the coordinates in x. In vectorized Python code,

g_x = g(x)
integral = 0.5*np.sum((g_x[:-1] + g_x[1:])*(x[1:] - x[:-1]))

Computing the L2 norm of the error, here named E, is now achieved by

e2 = e**2
E = np.sqrt(0.5*np.sum((e2[:-1] + e2[1:])*(x[1:] - x[:-1]))
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How does the error depend on h and d?

Theory and experiments show that the least squares or projection/Galerkin
method in combination with Pd elements of equal length h has an error

||e||L2 = Chd+1, (93)

where C is a constant depending on f , but not on h or d.

6.5 Example: Cubic Hermite polynomials

The finite elements considered so far represent u as piecewise polynomials with
discontinuous derivatives at the cell boundaries. Sometimes it is desirable to
have continuous derivatives. A primary examples is the solution of differential
equations with fourth-order derivatives where standard finite element formula-
tions lead to a need for basis functions with continuous first-order derivatives.
The most common type of such basis functions in 1D is the so-called cubic
Hermite polynomials. The construction of such polynomials, as explained next,
will further exemplify the concepts of a cell, vertex, degree of freedom, and dof
map.

Given a reference cell [−1, 1], we seek cubic polynomials with the values of
the function and its first-order derivative at X = −1 and X = 1 as the four
degrees of freedom. Let us number the degrees of freedom as

• 0: value of function at X = −1

• 1: value of first derivative at X = −1

• 2: value of function at X = 1

• 3: value of first derivative at X = 1

By having the derivatives as unknowns, we ensure that the derivative of a basis
function in two neighboring elements is the same at the node points.

The four basis functions can be written in a general form

ϕ̃i(X) =

3∑
j=0

Ci,jX
j ,

with four coefficients Ci,j , j = 0, 1, 2, 3, to be determined for each i. The
constraints that basis function number i must be 1 for degree of freedom number
i and zero for the other three degrees of freedom, gives four equations to determine
Ci,j for each i. In mathematical detail,

ϕ̃0(−1) = 1, ϕ̃0(1) = ϕ̃′0(−1) = ϕ̃′i(1) = 0,

ϕ̃′1(−1) = 1, ϕ̃1(−1) = ϕ̃1(1) = ϕ̃′1(1) = 0,

ϕ̃2(1) = 1, ϕ̃2(−1) = ϕ̃′2(−1) = ϕ̃′2(1) = 0,

ϕ̃′3(1) = 1, ϕ̃3(−1) = ϕ̃′3(−1) = ϕ̃3(1) = 0 .
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These four 4× 4 linear equations can be solved, yielding the following formulas
for the cubic basis functions:

ϕ̃0(X) = 1− 3

4
(X + 1)2 +

1

4
(X + 1)3 (94)

ϕ̃1(X) = −(X + 1)(1− 1

2
(X + 1))2 (95)

ϕ̃2(X) =
3

4
(X + 1)2 − 1

2
(X + 1)3 (96)

ϕ̃3(X) = −1

2
(X + 1)(

1

2
(X + 1)2 − (X + 1)) (97)

(98)

The construction of the dof map needs a scheme for numbering the global
degrees of freedom. A natural left-to-right numbering has the function value at
vertex xi as degree of freedom number 2i and the value of the derivative at xi
as degree of freedom number 2i+ 1, i = 0, . . . , Ne + 1.

7 Numerical integration

Finite element codes usually apply numerical approximations to integrals. Since
the integrands in the coefficient matrix often are (lower-order) polynomials,
integration rules that can integrate polynomials exactly are popular.

The numerical integration rules can be expressed in a common form,∫ 1

−1

g(X)dX ≈
M∑
j=0

wjg(X̄j), (99)

where X̄j are integration points and wj are integration weights, j = 0, . . . ,M .
Different rules correspond to different choices of points and weights.

The very simplest method is the Midpoint rule,∫ 1

−1

g(X)dX ≈ 2g(0), X̄0 = 0, w0 = 2, (100)

which integrates linear functions exactly.

7.1 Newton-Cotes rules

The Newton-Cotes rules are based on a fixed uniform distribution of the integra-
tion points. The first two formulas in this family are the well-known Trapezoidal
rule,

∫ 1

−1

g(X)dX ≈ g(−1) + g(1), X̄0 = −1, X̄1 = 1, w0 = w1 = 1, (101)
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and Simpson’s rule,∫ 1

−1

g(X)dX ≈ 1

3
(g(−1) + 4g(0) + g(1)) , (102)

where

X̄0 = −1, X̄1 = 0, X̄2 = 1, w0 = w2 =
1

3
, w1 =

4

3
. (103)

Newton-Cotes rules up to five points is supported in the module file numint.py.
For higher accuracy one can divide the reference cell into a set of subintervals

and use the rules above on each subinterval. This approach results in composite

rules, well-known from basic introductions to numerical integration of
∫ b
a
f(x)dx.

7.2 Gauss-Legendre rules with optimized points

More accurate rules, for a given M , arise if the location of the integration points
are optimized for polynomial integrands. The Gauss-Legendre rules (also known
as Gauss-Legendre quadrature or Gaussian quadrature) constitute one such class
of integration methods. Two widely applied Gauss-Legendre rules in this family
have the choice

M = 1 : X̄0 = − 1√
3
, X̄1 =

1√
3
, w0 = w1 = 1 (104)

M = 2 : X̄0 = −
√

3

5
, X̄0 = 0, X̄2 =

√
3

5
, w0 = w2 =

5

9
, w1 =

8

9
. (105)

These rules integrate 3rd and 5th degree polynomials exactly. In general, an
M -point Gauss-Legendre rule integrates a polynomial of degree 2M + 1 exactly.
The code numint.py contains a large collection of Gauss-Legendre rules.

8 Approximation of functions in 2D

All the concepts and algorithms developed for approximation of 1D functions
f(x) can readily be extended to 2D functions f(x, y) and 3D functions f(x, y, z).
Basically, the extensions consists of defining basis functions ψi(x, y) or ψi(x, y, z)
over some domain Ω, and for the least squares and Galerkin methods, the
integration is done over Ω.

As in 1D, the least squares and projection/Galerkin methods two lead to
linear systems

∑
j∈Is

Ai,jcj = bi, i ∈ Is,

Ai,j = (ψi, ψj),

bi = (f, ψi),
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where the inner product of two functions f(x, y) and g(x, y) is defined completely
analogously to the 1D case (24):

(f, g) =

∫
Ω

f(x, y)g(x, y)dxdy (106)

8.1 2D basis functions as tensor products of 1D functions

One straightforward way to construct a basis in 2D is to combine 1D basis
functions. Say we have the 1D vector space

Vx = span{ψ̂0(x), . . . , ψ̂Nx
(x)} . (107)

A similar space for variation in y can be defined,

Vy = span{ψ̂0(y), . . . , ψ̂Ny
(y)} . (108)

We can then form 2D basis functions as tensor products of 1D basis functions.

Tensor products.

Given two vectors a = (a0, . . . , aM ) and b = (b0, . . . , bN ), their outer tensor
product, also called the dyadic product, is p = a⊗ b, defined through

pi,j = aibj , i = 0, . . . ,M, j = 0, . . . , N .

In the tensor terminology, a and b are first-order tensors (vectors with one
index, also termed rank-1 tensors), and then their outer tensor product is a
second-order tensor (matrix with two indices, also termed rank-2 tensor).
The corresponding inner tensor product is the well-known scalar or dot
product of two vectors: p = a · b =

∑N
j=0 ajbj . Now, p is a rank-0 tensor.

Tensors are typically represented by arrays in computer code. In the
above example, a and b are represented by one-dimensional arrays of length
M and N , respectively, while p = a ⊗ b must be represented by a two-
dimensional array of size M ×N .

Tensor products can be used in a variety of context.

Given the vector spaces Vx and Vy as defined in (107) and (108), the tensor
product space V = Vx ⊗ Vy has a basis formed as the tensor product of the
basis for Vx and Vy. That is, if {ϕi(x)}i∈Ix and {ϕi(y)}i∈Iy are basis for Vx
and Vy, respectively, the elements in the basis for V arise from the tensor
product: {ϕi(x)ϕj(y)}i∈Ix,j∈Iy . The index sets are Ix = {0, . . . , Nx} and

Iy = {0, . . . , Ny}.
The notation for a basis function in 2D can employ a double index as in

ψp,q(x, y) = ψ̂p(x)ψ̂q(y), p ∈ Ix, q ∈ Iy .

The expansion for u is then written as a double sum
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u =
∑
p∈Ix

∑
q∈Iy

cp,qψp,q(x, y) .

Alternatively, we may employ a single index,

ψi(x, y) = ψ̂p(x)ψ̂q(y),

and use the standard form for u,

u =
∑
j∈Is

cjψj(x, y) .

The single index is related to the double index through i = pNy+q or i = qNx+p.

8.2 Example: Polynomial basis in 2D

Suppose we choose ψ̂p(x) = xp, and try an approximation with Nx = Ny = 1:

ψ0,0 = 1, ψ1,0 = x, ψ0,1 = y, ψ1,1 = xy .

Using a mapping to one index like i = qNx + p, we get

ψ0 = 1, ψ1 = x, ψ2 = y, ψ3 = xy .

With the specific choice f(x, y) = (1 + x2)(1 + 2y2) on Ω = [0, Lx]× [0, Ly],
we can perform actual calculations:

A0,0 = (ψ0, ψ0) =

∫ Ly

0

∫ Lx

0

ψ0(x, y)2dxdy =

∫ Ly

0

∫ Lx

0

dxdy = LxLy,

A1,0 = (ψ1, ψ0) =

∫ Ly

0

∫ Lx

0

xdxdy =
1

2
L2
xLy,

A0,1 = (ψ0, ψ1) =

∫ Ly

0

∫ Lx

0

ydxdy =
1

2
L2
yLx,

A0,1 = (ψ0, ψ1) =

∫ Ly

0

∫ Lx

0

xydxdy =

∫ Ly

0

ydy

∫ Lx

0

xdx =
1

4
L2
yL

2
x .

The right-hand side vector has the entries
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b0 = (ψ0, f) =

∫ Ly

0

∫ Lx

0

1 · (1 + x2)(1 + 2y2)dxdy

=

∫ Ly

0

(1 + 2y2)dy

∫ Lx

0

(1 + x2)dx = (Ly +
2

3
L3
y)(Lx +

1

3
L3
x)

b1 = (ψ1, f) =

∫ Ly

0

∫ Lx

0

x(1 + x2)(1 + 2y2)dxdy

=

∫ Ly

0

(1 + 2y2)dy

∫ Lx

0

x(1 + x2)dx = (Ly +
2

3
L3
y)(

1

2
L2
x +

1

4
L4
x)

b2 = (ψ2, f) =

∫ Ly

0

∫ Lx

0

y(1 + x2)(1 + 2y2)dxdy

=

∫ Ly

0

y(1 + 2y2)dy

∫ Lx

0

(1 + x2)dx = (
1

2
Ly +

1

2
L4
y)(Lx +

1

3
L3
x)

b3 = (ψ2, f) =

∫ Ly

0

∫ Lx

0

xy(1 + x2)(1 + 2y2)dxdy

=

∫ Ly

0

y(1 + 2y2)dy

∫ Lx

0

x(1 + x2)dx = (
1

2
L2
y +

1

2
L4
y)(

1

2
L2
x +

1

4
L4
x) .

There is a general pattern in these calculations that we can explore. An
arbitrary matrix entry has the formula

Ai,j = (ψi, ψj) =

∫ Ly

0

∫ Lx

0

ψiψjdxdy

=

∫ Ly

0

∫ Lx

0

ψp,qψr,sdxdy =

∫ Ly

0

∫ Lx

0

ψ̂p(x)ψ̂q(y)ψ̂r(x)ψ̂s(y)dxdy

=

∫ Ly

0

ψ̂q(y)ψ̂s(y)dy

∫ Lx

0

ψ̂p(x)ψ̂r(x)dx

= Â(x)
p,rÂ

(y)
q,s ,

where

Â(x)
p,r =

∫ Lx

0

ψ̂p(x)ψ̂r(x)dx, Â(y)
q,s =

∫ Ly

0

ψ̂q(y)ψ̂s(y)dy,

are matrix entries for one-dimensional approximations. Moreover, i = qNy + q
and j = sNy + r.

With ψ̂p(x) = xp we have

Â(x)
p,r =

1

p+ r + 1
Lp+r+1
x , Â(y)

q,s =
1

q + s+ 1
Lq+s+1
y ,

and
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Ai,j = Â(x)
p,rÂ

(y)
q,s =

1

p+ r + 1
Lp+r+1
x

1

q + s+ 1
Lq+s+1
y ,

for p, r ∈ Ix and q, s ∈ Iy.
Corresponding reasoning for the right-hand side leads to

bi = (ψi, f) =

∫ Ly

0

∫ Lx

0

ψif dxdx

=

∫ Ly

0

∫ Lx

0

ψ̂p(x)ψ̂q(y)f dxdx

=

∫ Ly

0

ψ̂q(y)(1 + 2y2)dy

∫ Ly

0

ψ̂p(x)xp(1 + x2)dx

=

∫ Ly

0

yq(1 + 2y2)dy

∫ Ly

0

xp(1 + x2)dx

= (
1

q + 1
Lq+1
y +

2

q + 3
Lq+3
y )(

1

p+ 1
Lp+1
x +

2

q + 3
Lp+3
x )

Choosing Lx = Ly = 2, we have

A =


4 4 4 4
4 16

3 4 16
3

4 4 16
3

16
3

4 16
3

16
3

64
9

 , b =


308
9

140
3

44
60

 , c =


− 1

9
4
3
− 2

3
8

 .
Figure 33 illustrates the result.
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Figure 33: Approximation of a 2D quadratic function (left) by a 2D bilinear
function (right) using the Galerkin or least squares method.

8.3 Implementation

The least_squares function from Section 2.8 and/or the file approx1D.py

can with very small modifications solve 2D approximation problems. First,
let Omega now be a list of the intervals in x and y direction. For example,
Ω = [0, Lx]× [0, Ly] can be represented by Omega = [[0, L_x], [0, L_y]].

Second, the symbolic integration must be extended to 2D:
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import sympy as sp

integrand = psi[i]*psi[j]
I = sp.integrate(integrand,

(x, Omega[0][0], Omega[0][1]),
(y, Omega[1][0], Omega[1][1]))

provided integrand is an expression involving the sympy symbols x and y. The
2D version of numerical integration becomes

if isinstance(I, sp.Integral):
integrand = sp.lambdify([x,y], integrand)
I = sp.mpmath.quad(integrand,

[Omega[0][0], Omega[0][1]],
[Omega[1][0], Omega[1][1]])

The right-hand side integrals are modified in a similar way.
Third, we must construct a list of 2D basis functions. Here are two examples

based on tensor products of 1D ”Taylor-style” polynomials xi and 1D sine
functions sin((i+ 1)πx):

def taylor(x, y, Nx, Ny):
return [x**i*y**j for i in range(Nx+1) for j in range(Ny+1)]

def sines(x, y, Nx, Ny):
return [sp.sin(sp.pi*(i+1)*x)*sp.sin(sp.pi*(j+1)*y)

for i in range(Nx+1) for j in range(Ny+1)]

The complete code appears in approx2D.py.
The previous hand calculation where a quadratic f was approximated by a

bilinear function can be computed symbolically by

>>> from approx2D import *
>>> f = (1+x**2)*(1+2*y**2)
>>> psi = taylor(x, y, 1, 1)
>>> Omega = [[0, 2], [0, 2]]
>>> u = least_squares(f, psi, Omega)
>>> print u
8*x*y - 2*x/3 + 4*y/3 - 1/9
>>> print sp.expand(f)
2*x**2*y**2 + x**2 + 2*y**2 + 1

We may continue with adding higher powers to the basis:

>>> psi = taylor(x, y, 2, 2)
>>> u = least_squares(f, psi, Omega)
>>> print u
2*x**2*y**2 + x**2 + 2*y**2 + 1
>>> print u-f
0

For Nx ≥ 2 and Ny ≥ 2 we recover the exact function f , as expected, since in
that case f ∈ V (see Section 2.5).
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8.4 Extension to 3D

Extension to 3D is in principle straightforward once the 2D extension is un-
derstood. The only major difference is that we need the repeated outer tensor
product,

V = Vx ⊗ Vy ⊗ Vz .

In general, given vectors (first-order tensors) a(q) = (a
(q)
0 , . . . , a

(q)
Nq

, q = 0, . . . ,m,

the tensor product p = a(0) ⊗ · · · ⊗ am has elements

pi0,i1,...,im = a
(0)
i1
a

(1)
i1
· · · a(m)

im
.

The basis functions in 3D are then

ψp,q,r(x, y, z) = ψ̂p(x)ψ̂q(y)ψ̂r(z),

with p ∈ Ix, q ∈ Iy, r ∈ Iz. The expansion of u becomes

u(x, y, z) =
∑
p∈Ix

∑
q∈Iy

∑
r∈Iz

cp,q,rψp,q,r(x, y, z) .

A single index can be introduced also here, e.g., i = NxNyr + qNx + p, u =∑
i ciψi(x, y, z).

Use of tensor product spaces.

Constructing a multi-dimensional space and basis from tensor products of
1D spaces is a standard technique when working with global basis functions.
In the world of finite elements, constructing basis functions by tensor
products is much used on quadrilateral and hexahedra cell shapes, but not
on triangles and tetrahedra. Also, the global finite element basis functions
are almost exclusively denoted by a single index and not by the natural
tuple of indices that arises from tensor products.

9 Finite elements in 2D and 3D

Finite element approximation is particularly powerful in 2D and 3D because
the method can handle a geometrically complex domain Ω with ease. The
principal idea is, as in 1D, to divide the domain into cells and use polynomials
for approximating a function over a cell. Two popular cell shapes are triangles
and the quadrilaterals. Figures 34, 35, and 36 provide examples. P1 elements
means linear functions (a0 + a1x+ a2y) over triangles, while Q1 elements have
bilinear functions (a0 + a1x+ a2y + a3xy) over rectangular cells. Higher-order
elements can easily be defined.
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Figure 34: Examples on 2D P1 elements.
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Figure 35: Examples on 2D P1 elements in a deformed geometry.

9.1 Basis functions over triangles in the physical domain

Cells with triangular shape will be in main focus here. With the P1 triangular
element, u is a linear function over each cell, as depicted in Figure 37, with
discontinuous derivatives at the cell boundaries.

We give the vertices of the cells global and local numbers as in 1D. The
degrees of freedom in the P1 element are the function values at a set of nodes,
which are the three vertices. The basis function ϕi(x, y) is then 1 at the vertex
with global vertex number i and zero at all other vertices. On an element, the
three degrees of freedom uniquely determine the linear basis functions in that
element, as usual. The global ϕi(x, y) function is then a combination of the linear
functions (planar surfaces) over all the neighboring cells that have vertex number
i in common. Figure 38 tries to illustrate the shape of such a ”pyramid”-like
function.
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Figure 36: Examples on 2D Q1 elements.

Element matrices and vectors. As in 1D, we split the integral over Ω into
a sum of integrals over cells. Also as in 1D, ϕi overlaps ϕj (i.e., ϕiϕj 6= 0) if
and only if i and j are vertices in the same cell. Therefore, the integral of ϕiϕj
over an element is nonzero only when i and j run over the vertex numbers in
the element. These nonzero contributions to the coefficient matrix are, as in 1D,
collected in an element matrix. The size of the element matrix becomes 3× 3
since there are three degrees of freedom that i and j run over. Again, as in 1D,
we number the local vertices in a cell, starting at 0, and add the entries in the
element matrix into the global system matrix, exactly as in 1D. All details and
code appear below.

9.2 Basis functions over triangles in the reference cell

As in 1D, we can define the basis functions and the degrees of freedom in a
reference cell and then use a mapping from the reference coordinate system to
the physical coordinate system. We also have a mapping of local degrees of
freedom numbers to global degrees of freedom numbers.

The reference cell in an (X,Y ) coordinate system has vertices (0, 0), (1, 0),
and (0, 1), corresponding to local vertex numbers 0, 1, and 2, respectively. The
P1 element has linear functions ϕ̃r(X,Y ) as basis functions, r = 0, 1, 2. Since a
linear function ϕ̃r(X,Y ) in 2D is on the form Cr,0 + Cr,1X + Cr,2Y , and hence
has three parameters Cr,0, Cr,1, and Cr,2, we need three degrees of freedom.
These are in general taken as the function values at a set of nodes. For the P1
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Figure 37: Example on piecewise linear 2D functions defined on triangles.

element the set of nodes is the three vertices. Figure 39 displays the geometry
of the element and the location of the nodes.

Requiring ϕ̃r = 1 at node number r and ϕ̃r = 0 at the two other nodes, gives
three linear equations to determine Cr,0, Cr,1, and Cr,2. The result is

ϕ̃0(X,Y ) = 1−X − Y, (109)

ϕ̃1(X,Y ) = X, (110)

ϕ̃2(X,Y ) = Y (111)

Higher-order approximations are obtained by increasing the polynomial order,
adding additional nodes, and letting the degrees of freedom be function values
at the nodes. Figure 40 shows the location of the six nodes in the P2 element.

A polynomial of degree p in X and Y has np = (p+ 1)(p+ 2)/2 terms and
hence needs np nodes. The values at the nodes constitute np degrees of freedom.
The location of the nodes for ϕ̃r up to degree 6 is displayed in Figure 41.

The generalization to 3D is straightforward: the reference element is a
tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) in a X,Y, Z
reference coordinate system. The P1 element has its degrees of freedom as four
nodes, which are the four vertices, see Figure 42. The P2 element adds additional
nodes along the edges of the cell, yielding a total of 10 nodes and degrees of
freedom, see Figure 43.

The interval in 1D, the triangle in 2D, the tetrahedron in 3D, and its
generalizations to higher space dimensions are known as simplex cells (the
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Figure 38: Example on a piecewise linear 2D basis function over a patch of
triangles.

Figure 39: 2D P1 element.

geometry) or simplex elements (the geometry, basis functions, degrees of freedom,
etc.). The plural forms simplices and simplexes are also a much used shorter
terms when referring to this type of cells or elements. The side of a simplex is
called a face, while the tetrahedron also has edges.

Acknowledgment. Figures 39 to 43 are created by Anders Logg and taken
from the FEniCS book: Automated Solution of Differential Equations by the
Finite Element Method, edited by A. Logg, K.-A. Mardal, and G. N. Wells,
published by Springer, 2012.
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Figure 40: 2D P2 element.

Figure 41: 2D P1, P2, P3, P4, P5, and P6 elements.

9.3 Affine mapping of the reference cell

Let ϕ̃
(1)
r denote the basis functions associated with the P1 element in 1D, 2D, or

3D, and let xq(e,r) be the physical coordinates of local vertex number r in cell e.
Furthermore, let X be a point in the reference coordinate system corresponding
to the point x in the physical coordinate system. The affine mapping of any X
onto x is then defined by

x =
∑
r

ϕ̃(1)
r (X)xq(e,r), (112)

where r runs over the local vertex numbers in the cell. The affine mapping
essentially stretches, translates, and rotates the triangle. Straight or planar
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Figure 42: P1 elements in 1D, 2D, and 3D.

Figure 43: P2 elements in 1D, 2D, and 3D.

faces of the reference cell are therefore mapped onto straight or planar faces
in the physical coordinate system. The mapping can be used for both P1 and
higher-order elements, but note that the mapping itself always applies the P1
basis functions.

9.4 Isoparametric mapping of the reference cell

Instead of using the P1 basis functions in the mapping (112), we may use the
basis functions of the actual Pd element:

x =
∑
r

ϕ̃r(X)xq(e,r), (113)

where r runs over all nodes, i.e., all points associated with the degrees of freedom.
This is called an isoparametric mapping. For P1 elements it is identical to
the affine mapping (112), but for higher-order elements the mapping of the
straight or planar faces of the reference cell will result in a curved face in the
physical coordinate system. For example, when we use the basis functions of the
triangular P2 element in 2D in (113), the straight faces of the reference triangle
are mapped onto curved faces of parabolic shape in the physical coordinate
system, see Figure 45.
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Figure 45: Isoparametric mapping of a P2 element.

From (112) or (113) it is easy to realize that the vertices are correctly mapped.
Consider a vertex with local number s. Then ϕ̃s = 1 at this vertex and zero at
the others. This means that only one term in the sum is nonzero and x = xq(e,s),
which is the coordinate of this vertex in the global coordinate system.

9.5 Computing integrals

Let Ω̃r denote the reference cell and Ω(e) the cell in the physical coordinate
system. The transformation of the integral from the physical to the reference
coordinate system reads
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∫
Ω(e)

ϕi(x)ϕj(x) dx =

∫
Ω̃r

ϕ̃i(X)ϕ̃j(X) detJ dX, (114)∫
Ω(e)

ϕi(x)f(x) dx =

∫
Ω̃r

ϕ̃i(X)f(x(X)) det J dX, (115)

where dx means the infinitesimal area element dxdy in 2D and dxdydz in 3D,
with a similar definition of dX. The quantity det J is the determinant of the
Jacobian of the mapping x(X). In 2D,

J =

[
∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

]
, det J =

∂x

∂X

∂y

∂Y
− ∂x

∂Y

∂y

∂X
. (116)

With the affine mapping (112), det J = 2∆, where ∆ is the area or volume of
the cell in the physical coordinate system.

Remark. Observe that finite elements in 2D and 3D builds on the same ideas
and concepts as in 1D, but there is simply much more to compute because the
specific mathematical formulas in 2D and 3D are more complicated and the book
keeping with dof maps also gets more complicated. The manual work is tedious,
lengthy, and error-prone so automation by the computer is a must.

10 Exercises

Exercise 1: Linear algebra refresher I

Look up the topic of vector space in your favorite linear algebra book or search
for the term at Wikipedia. Prove that vectors in the plane (a, b) form a vector
space by showing that all the axioms of a vector space are satisfied. Similarly,
prove that all linear functions of the form ax + b constitute a vector space,
a, b ∈ R.

On the contrary, show that all quadratic functions of the form 1 + ax2 + bx
do not constitute a vector space. Filename: linalg1.pdf.

Exercise 2: Linear algebra refresher II

As an extension of Exercise 1, check out the topic of inner product spaces. Suggest
a possible inner product for the space of all linear functions of the form ax+ b,
a, b ∈ R. Show that this inner product satisfies the general requirements of an
inner product in a vector space. Filename: linalg2.pdf.

Exercise 3: Approximate a three-dimensional vector in a
plane

Given f = (1, 1, 1) in R3, find the best approximation vector u in the plane
spanned by the unit vectors (1, 0) and (0, 1). Repeat the calculations using the
vectors (2, 1) and (1, 2). Filename: vec111_approx.pdf.

84



Exercise 4: Approximate the exponential function by power
functions

Let V be a function space with basis functions xi, i = 0, 1, . . . , N . Find the best
approximation to f(x) = exp(−x) on Ω = [0, 4] among all functions in V for
N = 2, 4, 6. Illustrate the three approximations in three separate plots. Add
the corresponding Taylor polynomial approximation of degree N in each plot.
Filename: exp_powers.py.

Exercise 5: Approximate the sine function by power func-
tions

Let V be a function space with basis functions x2i+1, i = 0, 1, . . . , N . Find the
best approximation to f(x) = sin(x) among all functions in V , using N = 8
for a domain that includes more and more half-periods of the sine function:
Ω = [0, kπ/2], k = 2, 3, . . . , 12. How does a Taylor series of sin(x) around x up
to degree 9 behave for the largest domain?

Hint. One can make a loop over k and call the functions least_squares and
comparison_plot from the approx1D module.

Filename: sin_powers.py.

Exercise 6: Approximate a steep function by sines

Find the best approximation of f(x) = tanh(s(x− π)) on [0, 2π] in the space V
with basis ψi(x) = sin((2i+ 1)x), i ∈ Is = {0, . . . , N}. Make a movie showing
how u =

∑
j∈Is cjψj(x) approximates f(x) as N grows. Choose s such that f is

steep (s = 20 may be appropriate).

Hint. One may naively call the least_squares_orth and comparison_plot

from the approx1D module in a loop and extend the basis with one new element
in each pass. This approach implies a lot of recomputations. A more efficient
strategy is to let least_squares_orth compute with only one basis function at
a time and accumulate the corresponding u in the total solution.

Filename: tanh_sines_approx1.py.

Exercise 7: Animate the approximation of a steep function
by sines

Make a movie where the steepness (s) of the tanh function in Exercise 6 grows
in ”time”, and for each value of the steepness, the movie shows how the approxi-
mation improves with increasing N . Filename: tanh_sines_approx2.py.
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Exercise 8: Fourier series as a least squares approximation

Given a function f(x) on an interval [0, L], look up the formula for the coefficients
aj and bj in the Fourier series of f :

f(x) = a0 +

∞∑
j=1

aj cos
(
j
πx

L

)
+

∞∑
j=1

bj sin
(
j
πx

L

)
.

Let an infinite-dimensional vector space V have the basis functions cos j πxL
for j = 0, 1, . . . ,∞ and sin j πxL for j = 1, . . . ,∞. Show that the least squares
approximation method from Section 2 leads to a linear system whose solution
coincides with the standard formulas for the coefficients in a Fourier series of
f(x) (see also Section 2.7). You may choose

ψ2i = cos
(
i
π

L
x
)
, ψ2i+1 = sin

(
i
π

L
x
)
,

for i = 0, 1, . . . , N →∞.

Choose f(x) = tanh(s(x− 1
2 )) on Ω = [0, 1], which is a smooth function, but

with considerable steepness around x = 1/2 as s grows in size. Calculate the
coefficients in the Fourier expansion by solving the linear system, arising from
the least squares or Galerkin methods, by hand. Plot some truncated versions
of the series together with f(x) to show how the series expansion converges for
s = 10 and s = 100. Filename: Fourier_approx.py.

Exercise 9: Approximate a steep function by Lagrange poly-
nomials

Use interpolation/collocation with uniformly distributed points and Chebychev
nodes to approximate

f(x) = − tanh(s(x− 1

2
)), x ∈ [0, 1],

by Lagrange polynomials for s = 10 and s = 100, and N = 3, 6, 9, 11. Make
separate plots of the approximation for each combination of s, point type
(Chebyshev or uniform), and N . Filename: tanh_Lagrange.py.

Exercise 10: Define nodes and elements

Consider a domain Ω = [0, 2] divided into the three P2 elements [0, 1], [1, 1.2],
and [1.2, 2].

For P1 and P2 elements, set up the list of coordinates and nodes (nodes)
and the numbers of the nodes that belong to each element (elements) in two
cases: 1) nodes and elements numbered from left to right, and 2) nodes and
elements numbered from right to left. Filename: fe_numberings1.py..
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Exercise 11: Define vertices, cells, and dof maps

Repeat Exercise 10, but define the data structures vertices, cells, and dof_map

instead of nodes and elements. Filename: fe_numberings2.py.

Exercise 12: Construct matrix sparsity patterns

Exercise 10 describes a element mesh with a total of five elements, but with two
different element and node orderings. For each of the two orderings, make a
5× 5 matrix and fill in the entries that will be nonzero.

Hint. A matrix entry (i, j) is nonzero if i and j are nodes in the same element.
Filename: fe_sparsity_pattern.pdf.

Exercise 13: Perform symbolic finite element computations

Perform hand calculations to find formulas for the coefficient matrix and right-
hand side when approximating f(x) = sin(x) on Ω = [0, π] by two P1 elements
of size π/2. Solve the system and compare u(π/2) with the exact value 1.

Filename: sin_approx_P1.py.

Exercise 14: Approximate a steep function by P1 and P2
elements

Given

f(x) = tanh(s(x− 1

2
))

use the Galerkin or least squares method with finite elements to find an
approximate function u(x). Choose s = 40 and try Ne = 4, 8, 16 P1 ele-
ments and Ne = 2, 4, 8 P2 elements. Integrate fϕi numerically. Filename:
tanh_fe_P1P2_approx.py.

Exercise 15: Approximate a steep function by P3 and P4
elements

Solve Exercise 14 using Ne = 1, 2, 4 P3 and P4 elements. How will a colloca-
tion/interpolation method work in this case with the same number of nodes?
Filename: tanh_fe_P3P4_approx.py.

Exercise 16: Investigate the approximation error in finite
elements

The theory (93) from Section ?? predicts that the error in the Pd approximation
of a function should behave as hd+1. Use experiments to verify this asymptotic
behavior (i.e., for small enough h). Choose two examples: f(x) = Ae−ωx on
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[0, 3/ω] and f(x) = A sin(ωx) on Ω = [0, 2π/ω] for constants A and ω. What
happens if you try f(x) =

√
x on [0, 1]?

Hint. Run a series of experiments: (hi, E), i = 0, . . . ,m, where Ei is the L2

norm of the error corresponding to element length hi. Assume an error model
E = Chr and compute r from two successive experiments:

ri = ln(Ei+1/Ei)/ ln(hi+1/hi), i = 0, . . . ,m− 1 .

Hopefully, the sequence r0, . . . , rm−1 converges to the true r, and rm−1 can be
taken as an approximation to r.

Filename: Asinwt_interpolation_error.py.

Exercise 17: Approximate a step function by finite elements

Approximate the step function

f(x) =

{
1 x < 1/2,
2 x ≥ 1/2

by 2, 4, and 8 P1 and P2 elements. Compare approximations visually.

Hint. This f can also be expressed in terms of the Heaviside function H(x):
f(x) = H(x− 1/2). Therefore, f can be defined by

f = sp.Heaviside(x - sp.Rational(1,2))

making the approximate function in the fe_approx1D.py module an obvious
candidate to solve the problem. However, sympy does not handle symbolic
integration with this particular integrand, and the approximate function faces a
problem when converting f to a Python function (for plotting) since Heaviside

is not an available function in numpy. It is better to make special-purpose code
for this case or perform all calculations by hand.

Filename: Heaviside_approx_P1P2.py..

Exercise 18: 2D approximation with orthogonal functions

Assume we have basis functions ϕi(x, y) in 2D that are orthogonal such that
(ϕi, ϕj) = 0 when i 6= j. The function least_squares in the file approx2D.py

will then spend much time on computing off-diagonal terms in the coefficient
matrix that we know are zero. To speed up the computations, make a version
least_squares_orth that utilizes the orthogonality among the basis functions.
Apply the function to approximate

f(x, y) = x(1− x)y(1− y)e−x−y

on Ω = [0, 1]× [0, 1] via basis functions

ϕi(x, y) = sin(pπx) sin(qπy), i = qNx + p .
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Hint. Get ideas from the function least_squares_orth in Section 2.8 and
file approx1D.py.

Filename: approx2D_lsorth_sin.py.

Exercise 19: Use the Trapezoidal rule and P1 elements

Consider approximation of some f(x) on an interval Ω using the least squares or
Galerkin methods with P1 elements. Derive the element matrix and vector using
the Trapezoidal rule (101) for calculating integrals on the reference element.
Assemble the contributions, assuming a uniform cell partitioning, and show
that the resulting linear system has the form ci = f(xi) for i ∈ Is. Filename:
fe_P1_trapez.pdf.

Problem 20: Compare P1 elements and interpolation

We shall approximate the function

f(x) = 1 + ε sin(2πnx), x ∈ Ω = [0, 1],

where n ∈ Z and ε ≥ 0.

a) Sketch f(x) and find the wave length of the function.

b) We want to use NP elements per wave length. Show that the number of
elements is then nNP .

c) The critical quantity for accuracy is the number of elements per wave length,
not the element size in itself. It therefore suffices to study an f with just one
wave length in Ω = [0, 1]. Set ε = 0.5.

Run the least squares or projection/Galerkin method for NP = 2, 4, 8, 16, 32.
Compute the error E = ||u− f ||L2 .

Hint. Use the fe_approx1D_numint module to compute u and use the tech-
nique from Section 6.4 to compute the norm of the error.

d) Repeat the set of experiments in the above point, but use interpolation/col-
location based on the node points to compute u(x) (recall that ci is now simply
f(xi)). Compute the error E = ||u − f ||L2 . Which method seems to be most
accurate?

Filename: P1_vs_interp.py.
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Exercise 21: Implement 3D computations with global basis
functions

Extend the approx2D.py code to 3D applying ideas from Section 8.4. Use a
3D generalization of the test problem in Section 8.3 to test the implementation.
Filename: approx3D.py.

Exercise 22: Use Simpson’s rule and P2 elements

Redo Exercise 19, but use P2 elements and Simpson’s rule based on sampling
the integrands at the nodes in the reference cell.

Filename: fe_P2_simpson.pdf.

11 Basic principles for approximating differen-
tial equations

The finite element method is a very flexible approach for solving partial differential
equations. Its two most attractive features are the ease of handling domains of
complex shape in two and three dimensions and the ease of constructing higher-
order discretization methods. The finite element method is usually applied for
discretization in space, and therefore spatial problems will be our focus in the
coming sections. Extensions to time-dependent problems may, for instance, use
finite difference approximations in time.

Before studying how finite element methods are used to tackle differential
equation, we first look at how global basis functions and the least squares,
Galerkin, and collocation principles can be used to solve differential equations.

11.1 Differential equation models

Let us consider an abstract differential equation for a function u(x) of one
variable, written as

L(u) = 0, x ∈ Ω . (117)

Here are a few examples on possible choices of L(u), of increasing complexity:

L(u) =
d2u

dx2
− f(x), (118)

L(u) =
d

dx

(
α(x)

du

dx

)
+ f(x), (119)

L(u) =
d

dx

(
α(u)

du

dx

)
− au+ f(x), (120)

L(u) =
d

dx

(
α(u)

du

dx

)
+ f(u, x) . (121)
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Both α(x) and f(x) are considered as specified functions, while a is a prescribed
parameter. Differential equations corresponding to (118)-(119) arise in diffusion
phenomena, such as steady transport of heat in solids and flow of viscous fluids
between flat plates. The form (120) arises when transient diffusion or wave
phenomenon are discretized in time by finite differences. The equation (121)
appear in chemical models when diffusion of a substance is combined with
chemical reactions. Also in biology, (121) plays an important role, both for
spreading of species and in models involving generation and propagation of
electrical signals.

Let Ω = [0, L] be the domain in one space dimension. In addition to the
differential equation, u must fulfill boundary conditions at the boundaries of the
domain, x = 0 and x = L. When L contains up to second-order derivatives, as
in the examples above, m = 1, we need one boundary condition at each of the
(two) boundary points, here abstractly specified as

B0(u) = 0, x = 0, B1(u) = 0, x = L (122)

There are three common choices of boundary conditions:

Bi(u) = u− g, Dirichlet condition (123)

Bi(u) = −αdu
dx
− g, Neumann condition (124)

Bi(u) = −αdu
dx
− h(u− g), Robin condition (125)

Here, g and a are specified quantities.

From now on we shall use ue(x) as symbol for the exact solution, fulfilling

L(ue) = 0, x ∈ Ω, (126)

while u(x) is our notation for an approximate solution of the differential equation.

Remark on notation.
In the literature about the finite element method, is common to use u
as the exact solution and uh as the approximate solution, where h is a
discretization parameter. However, the vast part of the present text is
about the approximate solutions, and having a subscript h attached all
the time is cumbersome. Of equal importance is the close correspondence
between implementation and mathematics that we strive to achieve in
this text: when it is natural to use u and not u_h in code, we let the
mathematical notation be dictated by the code’s preferred notation. After
all, it is the powerful computer implementations of the finite element method
that justifies studying the mathematical formulation and aspects of the
method.
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11.2 Simple model problems

A common model problem used much in the forthcoming examples is

− u′′(x) = f(x), x ∈ Ω = [0, L], u(0) = 0, u(L) = D . (127)

A closely related problem with a different boundary condition at x = 0 reads

− u′′(x) = f(x), x ∈ Ω = [0, L], u′(0) = C, u(L) = D . (128)

A third variant has a variable coefficient,

− (α(x)u′(x))′ = f(x), x ∈ Ω = [0, L], u′(0) = C, u(L) = D . (129)

We can easily solve these using sympy. For (127) we can write the function

def model1(f, L, D):
"""Solve -u’’ = f(x), u(0)=0, u(L)=D."""
u_x = - sp.integrate(f, (x, 0, x)) + c_0
u = sp.integrate(u_x, (x, 0, x)) + c_1
r = sp.solve([u.subs(x, 0)-0, u.subs(x,L)-D], [c_0, c_1])
u = u.subs(c_0, r[c_0]).subs(c_1, r[c_1])
u = sp.simplify(sp.expand(u))
return u

Calling model1(2, L, D) results in the solution

u(x) =
1

L
x
(
D + L2 − Lx

)
(130)

Model (128) can be solved by

def model2(f, L, C, D):
"""Solve -u’’ = f(x), u’(0)=C, u(L)=D."""
u_x = - sp.integrate(f, (x, 0, x)) + c_0
u = sp.integrate(u_x, (x, 0, x)) + c_1
r = sp.solve([sp.diff(u,x).subs(x, 0)-C, u.subs(x,L)-D], [c_0, c_1])
u = u.subs(c_0, r[c_0]).subs(c_1, r[c_1])
u = sp.simplify(sp.expand(u))
return u

to yield

u(x) = −x2 + Cx− CL+D + L2, (131)

if f(x) = 2. Model (129) requires a bit more involved code,

def model3(f, a, L, C, D):
"""Solve -(a*u’)’ = f(x), u(0)=C, u(L)=D."""
au_x = - sp.integrate(f, (x, 0, x)) + c_0
u = sp.integrate(au_x/a, (x, 0, x)) + c_1
r = sp.solve([u.subs(x, 0)-C, u.subs(x,L)-D], [c_0, c_1])
u = u.subs(c_0, r[c_0]).subs(c_1, r[c_1])
u = sp.simplify(sp.expand(u))
return u
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With f(x) = 0 and α(x) = 1 + x2 we get

u(x) =
C atan (L)− C atan (x) +D atan (x)

atan (L)

11.3 Forming the residual

The fundamental idea is to seek an approximate solution u in some space V ,

V = span{ψ0(x), . . . , ψN (x)},

which means that u can always be expressed as a linear combination of the basis
functions {ϕi}i∈Is , with Is as the index set {0, . . . , N}:

u(x) =
∑
j∈Is

cjψj(x) .

The coefficients {ci}i∈Is are unknowns to be computed.

(Later, in Section 14, we will see that if we specify boundary values of u
different from zero, we must look for an approximate solution u(x) = B(x) +∑
j cjψj(x), where

∑
j cjψj ∈ V and B(x) is some function for incorporating

the right boundary values. Because of B(x), u will not necessarily lie in V . This
modification does not imply any difficulties.)

We need principles for deriving N + 1 equations to determine the N + 1
unknowns {ci}i∈Is . When approximating a given function f by u =

∑
j cjϕj , a

key idea is to minimize the square norm of the approximation error e = u− f or
(equvalently) demand that e is orthogonal to V . Working with e is not so useful
here since the approximation error in our case is e = ue − u and ue is unknown.
The only general indicator we have on the quality of the approximate solution is
to what degree u fulfills the differential equation. Inserting u =

∑
j cjψj into

L(u) reveals that the result is not zero, because u is only likely to equal ue. The
nonzero result,

R = L(u) = L(
∑
j

cjψj), (132)

is called the residual and measures the error in fulfilling the governing equation.

Various principles for determining {ci}i∈Is try to minimize R in some sense.
Note that R varies with x and the {ci}i∈Is parameters. We may write this
dependence explicitly as

R = R(x; c0, . . . , cN ) . (133)

Below, we present three principles for making R small: a least squares method,
a projection or Galerkin method, and a collocation or interpolation method.
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11.4 The least squares method

The least-squares method aims to find {ci}i∈Is such that the square norm of the
residual

||R|| = (R,R) =

∫
Ω

R2 dx (134)

is minimized. By introducing an inner product of two functions f and g on Ω as

(f, g) =

∫
Ω

f(x)g(x) dx, (135)

the least-squares method can be defined as

min
c0,...,cN

E = (R,R) . (136)

Differentiating with respect to the free parameters {ci}i∈Is gives the N + 1
equations ∫

Ω

2R
∂R

∂ci
dx = 0 ⇔ (R,

∂R

∂ci
) = 0, i ∈ Is . (137)

11.5 The Galerkin method

The least-squares principle is equivalent to demanding the error to be orthogonal
to the space V when approximating a function f by u ∈ V . With a differential
equation we do not know the true error so we must instead require the residual
R to be orthogonal to V . This idea implies seeking {ci}i∈Is such that

(R, v) = 0, ∀v ∈ V . (138)

This is the Galerkin method for differential equations.
This statement is equivalent to R being orthogonal to the N+1 basis functions

only:

(R,ψi) = 0, i ∈ Is, (139)

resulting in N + 1 equations for determining {ci}i∈Is .

11.6 The Method of Weighted Residuals

A generalization of the Galerkin method is to demand that R is orthogonal
to some space W , but not necessarily the same space as V where we seek the
unknown function. This generalization is naturally called the method of weighted
residuals:

(R, v) = 0, ∀v ∈W . (140)

If {w0, . . . , wN} is a basis for W , we can equivalently express the method of
weighted residuals as
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(R,wi) = 0, i ∈ Is . (141)

The result is N + 1 equations for {ci}i∈Is .
The least-squares method can also be viewed as a weighted residual method

with wi = ∂R/∂ci.

Variational formulation of the continuous problem.

Formulations like (140) (or (141)) and (138) (or (139)) are known as varia-
tional formulations. These equations are in this text primarily used for a
numerical approximation u ∈ V , where V is a finite-dimensional space with
dimension N + 1. However, we may also let V be an infinite-dimensional
space containing the exact solution ue(x) such that also ue fulfills the
same variational formulation. The variational formulation is in that case a
mathematical way of stating the problem and acts as an alternative to the
usual formulation of a differential equation with initial and/or boundary
conditions.

11.7 Test and Trial Functions

In the context of the Galerkin method and the method of weighted residuals it is
common to use the name trial function for the approximate u =

∑
j cjψj . The

space containing the trial function is known as the trial space. The function v
entering the orthogonality requirement in the Galerkin method and the method
of weighted residuals is called test function, and so are the ψi or wi functions
that are used as weights in the inner products with the residual. The space
where the test functions comes from is naturally called the test space.

We see that in the method of weighted residuals the test and trial spaces are
different and so are the test and trial functions. In the Galerkin method the test
and trial spaces are the same (so far).

Remark.
It may be subject to debate whether it is only the form of (140) or (138)
after integration by parts, as explained in Section 11.10, that qualifies for the
term variational formulation. The result after integration by parts is what
is obtained after taking the first variation of an optimization problem, see
Section 11.13. However, here we use variational formulation as a common
term for formulations which, in contrast to the differential equation R = 0,
instead demand that an average of R is zero: (R, v) = 0 for all v in some
space.

11.8 The collocation method

The idea of the collocation method is to demand that R vanishes at N + 1
selected points x0, . . . , xN in Ω:
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R(xi; c0, . . . , cN ) = 0, i ∈ Is . (142)

The collocation method can also be viewed as a method of weighted residuals
with Dirac delta functions as weighting functions. Let δ(x− xi) be the Dirac
delta function centered around x = xi with the properties that δ(x− xi) = 0 for
x 6= xi and ∫

Ω

f(x)δ(x− xi) dx = f(xi), xi ∈ Ω . (143)

Intuitively, we may think of δ(x− xi) as a very peak-shaped function around
x = xi with integral 1, roughly visualized in Figure 46. Because of (143), we can
let wi = δ(x− xi) be weighting functions in the method of weighted residuals,
and (141) becomes equivalent to (142).
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Figure 46: Approximation of delta functions by narrow Gaussian functions.

The subdomain collocation method. The idea of this approach is to de-
mand the integral of R to vanish over N + 1 subdomains Ωi of Ω:∫

Ωi

R dx = 0, i ∈ Is . (144)

This statement can also be expressed as a weighted residual method
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∫
Ω

Rwi dx = 0, i ∈ Is, (145)

where wi = 1 for x ∈ Ωi and wi = 0 otherwise.

11.9 Examples on using the principles

Let us now apply global basis functions to illustrate the principles for minimizing
R.

The model problem. We consider the differential equation problem

− u′′(x) = f(x), x ∈ Ω = [0, L], u(0) = 0, u(L) = 0 . (146)

Basis functions. Our choice of basis functions ψi for V is

ψi(x) = sin
(

(i+ 1)π
x

L

)
, i ∈ Is . (147)

An important property of these functions is that ψi(0) = ψi(L) = 0, which
means that the boundary conditions on u are fulfilled:

u(0) =
∑
j

cjψj(0) = 0, u(L) =
∑
j

cjψj(L) = 0 .

Another nice property is that the chosen sine functions are orthogonal on Ω:

L∫
0

sin
(

(i+ 1)π
x

L

)
sin
(

(j + 1)π
x

L

)
dx =

{
1
2L i = j
0, i 6= j

(148)

provided i and j are integers.

The residual. We can readily calculate the following explicit expression for
the residual:

R(x; c0, . . . , cN ) = u′′(x) + f(x),

=
d2

dx2

∑
j∈Is

cjψj(x)

+ f(x),

=
∑
j∈Is

cjψ
′′
j (x) + f(x) . (149)
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The least squares method. The equations (137) in the least squares method
require an expression for ∂R/∂ci. We have

∂R

∂ci
=

∂

∂ci

∑
j∈Is

cjψ
′′
j (x) + f(x)

 =
∑
j∈Is

∂cj
∂ci

ψ′′j (x) = ψ′′i (x) . (150)

The governing equations for {ci}i∈Is are then

(
∑
j

cjψ
′′
j + f, ψ′′i ) = 0, i ∈ Is, (151)

which can be rearranged as∑
j∈Is

(ψ′′i , ψ
′′
j )cj = −(f, ψ′′i ), i ∈ Is . (152)

This is nothing but a linear system∑
j∈Is

Ai,jcj = bi, i ∈ Is,

with

Ai,j = (ψ′′i , ψ
′′
j )

= π4(i+ 1)2(j + 1)2L−4

∫ L

0

sin
(

(i+ 1)π
x

L

)
sin
(

(j + 1)π
x

L

)
dx

=

{
1
2L
−3π4(i+ 1)4 i = j

0, i 6= j
(153)

bi = −(f, ψ′′i ) = (i+ 1)2π2L−2

∫ L

0

f(x) sin
(

(i+ 1)π
x

L

)
dx (154)

Since the coefficient matrix is diagonal we can easily solve for

ci =
2L

π2(i+ 1)2

∫ L

0

f(x) sin
(

(i+ 1)π
x

L

)
dx . (155)

With the special choice of f(x) = 2 can be calculated in sympy by

from sympy import *
import sys

i, j = symbols(’i j’, integer=True)
x, L = symbols(’x L’)
f = 2
a = 2*L/(pi**2*(i+1)**2)
c_i = a*integrate(f*sin((i+1)*pi*x/L), (x, 0, L))
c_i = simplify(c_i)
print c_i
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The answer becomes

ci = 4
L2
(

(−1)
i
+ 1
)

π3 (i3 + 3i2 + 3i+ 1)

Now, 1+(−1)i = 0 for i odd, so only the coefficients with even index are nonzero.
Introducing i = 2k for k = 0, . . . , N/2 to count the relevant indices (for N odd,
k goes to (N − 1)/2), we get the solution

u(x) =

N/2∑
k=0

8L2

π3(2k + 1)3
sin
(

(2k + 1)π
x

L

)
. (156)

The coefficients decay very fast: c2 = c0/27, c4 = c0/125. The solution will
therefore be dominated by the first term,

u(x) ≈ 8L2

π3
sin
(
π
x

L

)
.

The Galerkin method. The Galerkin principle (138) applied to (146) consists
of inserting our special residual (149) in (138)

(u′′ + f, v) = 0, ∀v ∈ V,

or

(u′′, v) = −(f, v), ∀v ∈ V . (157)

This is the variational formulation, based on the Galerkin principle, of our
differential equation. The ∀v ∈ V requirement is equivalent to demanding the
equation (u′′, v) = −(f, v) to be fulfilled for all basis functions v = ψi, i ∈ Is,
see (138) and (139). We therefore have

(
∑
j∈Is

cjψ
′′
j , ψi) = −(f, ψi), i ∈ Is . (158)

This equation can be rearranged to a form that explicitly shows that we get a
linear system for the unknowns {ci}i∈Is :

∑
j∈Is

(ψi, ψ
′′
j )cj = (f, ψi), i ∈ Is . (159)

For the particular choice of the basis functions (147) we get in fact the same
linear system as in the least squares method because ψ′′ = −(i+ 1)2π2L−2ψ.
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The collocation method. For the collocation method (142) we need to decide
upon a set of N + 1 collocation points in Ω. A simple choice is to use uniformly
spaced points: xi = i∆x, where ∆x = L/N in our case (N ≥ 1). However, these
points lead to at least two rows in the matrix consisting of zeros (since ψi(x0) = 0
and ψi(xN ) = 0), thereby making the matrix singular and non-invertible. This
forces us to choose some other collocation points, e.g., random points or points
uniformly distributed in the interior of Ω. Demanding the residual to vanish at
these points leads, in our model problem (146), to the equations

−
∑
j∈Is

cjψ
′′
j (xi) = f(xi), i ∈ Is, (160)

which is seen to be a linear system with entries

Ai,j = −ψ′′j (xi) = (j + 1)2π2L−2 sin
(

(j + 1)π
xi
L

)
,

in the coefficient matrix and entries bi = 2 for the right-hand side (when
f(x) = 2).

The special case of N = 0 can sometimes be of interest. A natural choice is
then the midpoint x0 = L/2 of the domain, resulting in A0,0 = −ψ′′0 (x0) = π2L−2,
f(x0) = 2, and hence c0 = 2L2/π2.

Comparison. In the present model problem, with f(x) = 2, the exact solution
is u(x) = x(L − x), while for N = 0 the Galerkin and least squares method
result in u(x) = 8L2π−3 sin(πx/L) and the collocation method leads to u(x) =
2L2π−2 sin(πx/L). Since all methods fulfill the boundary conditions u(0) =
u(L) = 0, we expect the largest discrepancy to occur at the midpoint of the
domain: x = L/2. The error at the midpoint becomes −0.008L2 for the Galerkin
and least squares method, and 0.047L2 for the collocation method.

11.10 Integration by parts

A problem arises if we want to apply popular finite element functions to solve
our model problem (146) by the standard least squares, Galerkin, or collocation
methods: the piecewise polynomials ψi(x) have discontinuous derivatives at
the cell boundaries which makes it problematic to compute the second-order
derivative. This fact actually makes the least squares and collocation methods less
suitable for finite element approximation of the unknown function. (By rewriting
the equation −u′′ = f as a system of two first-order equations, u′ = v and −v′ =
f , the least squares method can be applied. Also, differentiating discontinuous
functions can actually be handled by distribution theory in mathematics.) The
Galerkin method and the method of weighted residuals can, however, be applied
together with finite element basis functions if we use integration by parts as a
means for transforming a second-order derivative to a first-order one.

Consider the model problem (146) and its Galerkin formulation

−(u′′, v) = (f, v) ∀v ∈ V .
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Using integration by parts in the Galerkin method, we can move a derivative of
u onto v:

∫ L

0

u′′(x)v(x) dx = −
∫ L

0

u′(x)v′(x) dx+ [vu′]L0

= −
∫ L

0

u′(x)v′(x) dx+ u′(L)v(L)− u′(0)v(0) . (161)

Usually, one integrates the problem at the stage where the u and v functions
enter the formulation. Alternatively, but less common, we can integrate by parts
in the expressions for the matrix entries:

∫ L

0

ψi(x)ψ′′j (x) dx = −
∫ L

0

ψ′i(x)ψ′j(x)dx+ [ψiψ
′
j ]
L
0

= −
∫ L

0

ψ′i(x)ψ′j(x) dx+ ψi(L)ψ′j(L)− ψi(0)ψ′j(0) . (162)

Integration by parts serves to reduce the order of the derivatives and to make the
coefficient matrix symmetric since (ψ′i, ψ

′
j) = (ψ′i, ψ

′
j). The symmetry property

depends on the type of terms that enter the differential equation. As will be seen
later in Section 15, integration by parts also provides a method for implementing
boundary conditions involving u′.

With the choice (147) of basis functions we see that the ”boundary terms”
ψi(L)ψ′j(L) and ψi(0)ψ′j(0) vanish since ψi(0) = ψi(L) = 0.

Weak form. Since the variational formulation after integration by parts make
weaker demands on the differentiability of u and the basis functions ψi, the result-
ing integral formulation is referred to as a weak form of the differential equation
problem. The original variational formulation with second-order derivatives, or
the differential equation problem with second-order derivative, is then the strong
form, with stronger requirements on the differentiability of the functions.

For differential equations with second-order derivatives, expressed as varia-
tional formulations and solved by finite element methods, we will always perform
integration by parts to arrive at expressions involving only first-order derivatives.

11.11 Boundary function

So far we have assumed zero Dirichlet boundary conditions, typically u(0) =
u(L) = 0, and we have demanded that ψi(0) = ψi(L) = 0 for i ∈ Is. What
about a boundary condition like u(L) = D 6= 0? This condition immediately
faces a problem: u =

∑
j cjϕj(L) = 0 since all ϕi(L) = 0.

A boundary condition of the form u(L) = D can be implemented by demand-
ing that all ψi(L) = 0, but adding a boundary function B(x) with the right
boundary value, B(L) = D, to the expansion for u:
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u(x) = B(x) +
∑
j∈Is

cjψj(x) .

This u gets the right value at x = L:

u(L) = B(L) +
∑
j∈Is

cjψj(L) = B(L) = D .

The idea is that for any boundary where u is known we demand ψi to vanish
and construct a function B(x) to attain the boundary value of u. There are
no restrictions how B(x) varies with x in the interior of the domain, so this
variation needs to be constructed in some way.

For example, with u(0) = 0 and u(L) = D, we can choose B(x) = xD/L,
since this form ensures that B(x) fulfills the boundary conditions: B(0) = 0 and
B(L) = D. The unknown function is then sought on the form

u(x) =
x

L
D +

∑
j∈Is

cjψj(x), (163)

with ψi(0) = ψi(L) = 0.
The B(x) function can be chosen in many ways as long as its boundary values

are correct. For example, B(x) = D(x/L)p for any power p will work fine in the
above example.

As another example, consider a domain Ω = [a, b] where the boundary
conditions are u(a) = Ua and u(b) = Ub. A class of possible B(x) functions is

B(x) = Ua +
Ub − Ua
(b− a)p

(x− a)p, p > 0 . (164)

Real applications will most likely use the simplest version, p = 1, but here such
a p parameter was included to demonstrate the ambiguity in the construction of
B(x).

Summary.

The general procedure of incorporating Dirichlet boundary conditions goes
as follows. Let ∂ΩE be the part(s) of the boundary ∂Ω of the domain Ω
where u is specified. Set ψi = 0 at the points in ∂ΩE and seek u as

u(x) = B(x) +
∑
j∈Is

cjψj(x), (165)

where B(x) equals the boundary conditions on u at ∂ΩE .

Remark. With theB(x) term, u does not in general lie in V = span {ψ0, . . . , ψN}
anymore. Moreover, when a prescribed value of u at the boundary, say u(a) = Ua
is different from zero, it does not make sense to say that u lies in a vector space,
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because this space does not obey the requirements of addition and scalar mul-
tiplication. For example, 2u does not lie in the space since its boundary value
is 2Ua, which is incorrect. It only makes sense to split u in two parts, as done
above, and have the unknown part

∑
j cjψj in a proper function space.

11.12 Abstract notation for variational formulations

We have seen that variational formulations end up with a formula involving u and
v, such as (u′, v′) and a formula involving v and known functions, such as (f, v).
A widely used notation is to introduce an abstract variational statement written
as a(u, v) = L(v), where a(u, v) is a so-called bilinear form involving all the
terms that contain both the test and trial function, while L(v) is a linear form
containing all the terms without the trial function. For example, the statement∫

Ω

u′v′ dx =

∫
Ω

fv dx or (u′, v′) = (f, v) ∀v ∈ V

can be written in abstract form: find u such that

a(u, v) = L(v) ∀v ∈ V,

where we have the definitions

a(u, v) = (u′, v′), L(v) = (f, v) .

The term linear means that L(α1v1 + α2v2) = α1L(v1) + α2L(v2) for two
test functions v1 and v2, and scalar parameters α1 and α2. Similarly, the term
bilinear means that a(u, v) is linear in both its arguments:

a(α1u1 + α2u2, v) = α1a(u1, v) + α2a(u2, v),

a(u, α1v1 + α2v2) = α1a(u, v1) + α2a(u, v2) .

In nonlinear problems these linearity properties do not hold in general and the
abstract notation is then F (u; v) = 0.

The matrix system associated with a(u, v) = L(v) can also be written in an
abstract form by inserting v = ψi and u =

∑
j cjψj in a(u, v) = L(v). Using the

linear properties, we get∑
j∈Is

a(ψj , ψi)cj = L(ψi), i ∈ Is,

which is a linear system ∑
j∈Is

Ai,jcj = bi, i ∈ Is,

where

Ai,j = a(ψj , ψi), bi = L(ψi) .
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In many problems, a(u, v) is symmetric such that a(ψj , ψi) = a(ψi, ψj). In those
cases the coefficient matrix becomes symmetric, Ai,j = Aj,i, a property that can
simplify solution algorithms for linear systems and make them more stable in
addition to saving memory and computations.

The abstract notation a(u, v) = L(v) for linear differential equation problems
is much used in the literature and in description of finite element software
(in particular the FEniCS documentation). We shall frequently summarize
variational forms using this notation.

11.13 Variational problems and optimization of function-
als

If a(u, v) = a(v, u), it can be shown that the variational statement

a(u, v) = L(v) ∀v ∈ V,

is equivalent to minimizing the functional

F (v) =
1

2
a(v, v)− L(v)

over all functions v ∈ V . That is,

F (u) ≤ F (v) ∀v ∈ V .

Inserting a v =
∑
j cjψj turns minimization of F (v) into minimization of a

quadratic function

F̄ (c0, . . . , cN ) =
∑
j∈Is

∑
i∈Is

a(ψi, ψj)cicj −
∑
j∈Is

L(ψj)cj

of N + 1 parameters.

Minimization of F̄ implies

∂F̄

∂ci
= 0, i ∈ Is .

After some algebra one finds∑
j ∈ Isa(ψi, ψj)cj = L(ψi), i ∈ Is,

which is the same system as that arising from a(u, v) = L(v).

Many traditional applications of the finite element method, especially in solid
mechanics and structural analysis, start with formulating F (v) from physical
principles, such as minimization of energy, and then proceeds with deriving
a(u, v) = L(v), which is the equation usually desired in implementations.
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12 Examples on variational formulations

The following sections derive variational formulations for some prototype differ-
ential equations in 1D, and demonstrate how we with ease can handle variable
coefficients, mixed Dirichlet and Neumann boundary conditions, first-order
derivatives, and nonlinearities.

12.1 Variable coefficient

Consider the problem

− d

dx

(
α(x)

du

dx

)
= f(x), x ∈ Ω = [0, L], u(0) = C, u(L) = D . (166)

There are two new features of this problem compared with previous examples:
a variable coefficient a(x) and nonzero Dirichlet conditions at both boundary
points.

Let us first deal with the boundary conditions. We seek

u(x) = B(x) +
∑
j∈Is

cjψi(x),

with ψi(0) = ψi(L) = 0 for i ∈ Is. The function B(x) must then fulfill B(0) = C
and B(L) = D. How B varies in between x = 0 and x = L is not of importance.
One possible choice is

B(x) = C +
1

L
(D − C)x,

which follows from (164) with p = 1.
We seek (u−B) ∈ V . As usual,

V = span{ψ0, . . . , ψN},

but the two Dirichlet boundary conditions demand that

ψi(0) = ψi(L) = 0, i ∈ Is .

Note that any v ∈ V has the property v(0) = v(L) = 0.
The residual arises by inserting our u in the differential equation:

R = − d

dx

(
α
du

dx

)
− f .

Galerkin’s method is

(R, v) = 0, ∀v ∈ V,

or written with explicit integrals,
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∫
Ω

(
d

dx

(
α
du

dx

)
− f

)
v dx = 0, ∀v ∈ V .

We proceed with integration by parts to lower the derivative from second to first
order:

−
∫

Ω

d

dx

(
α(x)

du

dx

)
v dx =

∫
Ω

α(x)
du

dx

dv

dx
dx−

[
α
du

dx
v

]L
0

.

The boundary term vanishes since v(0) = v(L) = 0. The variational formula-
tion is then ∫

Ω

α(x)
du

dx

dv

dx
dx =

∫
Ω

f(x)v dx, ∀v ∈ V .

The variational formulation can alternatively be written in a more compact form:

(αu′, v′) = (f, v), ∀v ∈ V .

The corresponding abstract notation reads

a(u, v) = L(v) ∀v ∈ V,

with

a(u, v) = (αu′, v′), L(v) = (f, v) .

Note that the a in the notation a(·, ·) is not to be mixed with the variable
coefficient a(x) in the differential equation.

We may insert u = B +
∑
j cjψj and v = ψi to derive the linear system:

(αB′ + α
∑
j∈Is

cjψ
′
j , ψ
′
i) = (f, ψi), i ∈ Is .

Isolating everything with the cj coefficients on the left-hand side and all known
terms on the right-hand side gives∑

j∈Is

(αψ′j , ψ
′
i)cj = (f, ψi) + (a(D − C)L−1, ψ′i), i ∈ Is .

This is nothing but a linear system
∑
j Ai,jcj = bi with

Ai,j = (aψ′j , ψ
′
i) =

∫
Ω

α(x)ψ′j(x), ψ′i(x) dx,

bi = (f, ψi) + (a(D − C)L−1, ψ′i) =

∫
Ω

(
f(x)ψi(x) + α(x)

D − C
L

ψ′i(x)

)
dx .
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12.2 First-order derivative in the equation and boundary
condition

The next problem to formulate in variational form reads

− u′′(x) + bu′(x) = f(x), x ∈ Ω = [0, L], u(0) = C, u′(L) = E . (167)

The new features are a first-order derivative u′ in the equation and the boundary
condition involving the derivative: u′(L) = E. Since we have a Dirichlet condition
at x = 0, we must force ψi(0) = 0 and use a boundary function to take care of
the condition u(0) = C. Because there is no Dirichlet condition on x = L we do
not make any requirements to ψi(L). The simplest possible choice of B(x) is
B(x) = C.

The expansion for u becomes

u = C +
∑
j∈Is

cjψi(x) .

The variational formulation arises from multiplying the equation by a test
function v ∈ V and integrating over Ω:

(−u′′ + bu′ − f, v) = 0, ∀v ∈ V

We apply integration by parts to the u′′v term only. Although we could also
integrate u′v by parts, this is not common. The result becomes

(u′ + bu′, v′) = (f, v) + [u′v]L0 , ∀v ∈ V .

Now, v(0) = 0 so

[u′v]L0 = u′(L)v(L) = Ev(L),

because u′(L) = E. Integration by parts allows us to take care of the Neumann
condition in the boundary term.

Natural and essential boundary conditions.

Omitting a boundary term like [u′v]L0 implies that we actually impose the
condition u′ = 0 unless there is a Dirichlet condition (i.e., v = 0) at that
point! This result has great practical consequences, because it is easy to
forget the boundary term, and this mistake may implicitly set a boundary
condition! Since homogeneous Neumann conditions can be incorporated
without doing anything, and non-homogeneous Neumann conditions can
just be inserted in the boundary term, such conditions are known as natural
boundary conditions. Dirichlet conditions requires more essential steps in
the mathematical formulation, such as forcing all ϕi = 0 on the boundary
and constructing a B(x), and are therefore known as essential boundary
conditions.
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The final variational form reads

(u′, v′) + (bu′, v) = (f, v) + Ev(L), ∀v ∈ V .

In the abstract notation we have

a(u, v) = L(v) ∀v ∈ V,

with the particular formulas

a(u, v) = (u′, v′) + (bu′, v), L(v) = (f, v) + Ev(L) .

The associated linear system is derived by inserting u = B +
∑
j cjψj and

replacing v by ψi for i ∈ Is. Some algebra results in∑
j∈Is

((ψ′j , ψ
′
i) + (bψ′j , ψi))︸ ︷︷ ︸
Ai,j

cj = (f, ψi) + Eψi(L)︸ ︷︷ ︸
bi

.

Observe that in this problem, the coefficient matrix is not symmetric, because
of the term

(bψ′j , ψi) =

∫
Ω

bψ′jψi dx 6=
∫

Ω

bψ′iψj dx = (ψ′i, bψj) .

12.3 Nonlinear coefficient

Finally, we show that the techniques used above to derive variational forms
also apply to nonlinear differential equation problems as well. Here is a model
problem with a nonlinear coefficient and right-hand side:

− (α(u)u′)′ = f(u), x ∈ [0, L], u(0) = 0, u′(L) = E . (168)

Our space V has basis {ψi}i∈Is , and because of the condition u(0) = 0, we must
require ψi(0) = 0, i ∈ Is.

Galerkin’s method is about inserting the approximate u, multiplying the
differential equation by v ∈ V , and integrate,

−
∫ L

0

d

dx

(
α(u)

du

dx

)
v dx =

∫ L

0

f(u)v dx ∀v ∈ V .

The integration by parts does not differ from the case where we have α(x) instead
of α(u): ∫ L

0

α(u)
du

dx

dv

dx
dx =

∫ L

0

f(u)v dx+ [α(u)vu′]L0 ∀v ∈ V .

The term α(u(0))v(0)u′(0) = 0 since v(0). The other term, α(u(L))v(L)u′(L), is
used to impose the other boundary condition u′(L) = E, resulting in
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∫ L

0

α(u)
du

dx

dv

dx
v dx =

∫ L

0

f(u)v dx+ α(u(L))v(L)E ∀v ∈ V,

or alternatively written more compactly as

(α(u)u′, v′) = (f(u), v) + α(L)v(L)E ∀v ∈ V .
Since the problem is nonlinear, we cannot identify a bilinear form a(u, v) and a
linear form L(v). An abstract notation is typically find u such that

F (u; v) = 0 ∀v ∈ V,
with

F (u; v) = (a(u)u′, v′)− (f(u), v)− a(L)v(L)E .

By inserting u =
∑
j cjψj we get a nonlinear system of algebraic equations

for the unknowns ci, i ∈ Is. Such systems must be solved by constructing a
sequence of linear systems whose solutions hopefully converge to the solution
of the nonlinear system. Frequently applied methods are Picard iteration and
Newton’s method.

12.4 Computing with Dirichlet and Neumann conditions

Let us perform the necessary calculations to solve

−u′′(x) = 2, x ∈ Ω = [0, 1], u′(0) = C, u(1) = D,

using a global polynomial basis ψi ∼ xi. The requirements on ψi is that ψi(1) = 0,
because u is specified at x = 1, so a proper set of polynomial basis functions can
be

ψi(x) = (1− x)i+1, i ∈ Is .
A suitable B(x) function to handle the boundary condition u(1) = D is B(x) =
Dx. The variational formulation becomes

(u′, v′) = (2, v)− Cv(0) ∀v ∈ V .
The entries in the linear system are then

Ai,j = (ψj , ψi) =

∫ 1

0

ψ′i(x)ψ′j(x) dx =

∫ 1

0

(i+ 1)(j + 1)(1− x)i+j dx =
ij + i+ j + 1

i+ j + 1
,

bi = (2, ψi)− (D,ψ′i)− Cψi(0)

=

∫ 1

0

(2ψi(x)−Dψ′i(x)) dx− Cψi(0)

=

∫ 1

0

(
2(1− x)i+1 −D(i+ 1)(1− x)i

)
dx− Cψi(0)

=
2− (2 + i)(D + C)

i+ 2
.
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With N = 1 the global matrix system is(
1 1
1 4/3

)(
c0
c1

)
=

(
−C +D + 1
2/3− C +D

)
The solution becomes c0 = −C +D + 2 and c1 = −1, resulting in

u(x) = 1− x2 +D + C(x− 1), (169)

The exact solution is found by. integrating twice and applying the boundary
conditions, either by hand or using sympy as shown in Section 11.2. It appears
that the numerical solution coincides with the exact one. This result is to be
expected because if (ue −B) ∈ V , u = ue, as proved next.

12.5 When the numerical method is exact

We have some variational formulation: find (u − B) ∈ V such that a(u, v) =
L(u) ∀V . The exact solution also fulfills a(ue, v) = L(v), but normally (ue −B)
lies in a much larger (infinite-dimensional) space. Suppose, nevertheless, that
ue = B + E, where E ∈ V . That is, apart from Dirichlet conditions, ue lines in
our finite-dimensional space V we use to compute u. Writing also u on the same
form u = B + F , we have

a(B + E, v) = L(v) ∀v ∈ V,
a(B + F, v) = L(v) ∀v ∈ V .

Subtracting the equations show that a(E −F, v) = 0 for all v ∈ V , and therefore
E − F = 0 and u = ue.

The case treated in Section 12.4 is of the type where ue −B is a quadratic
function that is 0 at x = 1, and therefore (ue −B) ∈ V , and the method finds
the exact solution.

13 Computing with finite elements

The purpose of this section is to demonstrate in detail how the finite element
method can the be applied to the model problem

−u′′(x) = 2, x ∈ (0, L), u(0) = u(L) = 0,

with variational formulation

(u′, v′) = (2, v) ∀v ∈ V .

The variational formulation is derived in Section 11.10.
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13.1 Finite element mesh and basis functions

We introduce a finite element mesh with Ne cells, all with length h, and number
the cells from left to right. global nodes. Choosing P1 elements, there are two
nodes per cell, and the coordinates of the nodes become

xi = ih, h = L/Ne, i = 0, . . . , Nn = Ne + 1,

provided we number the nodes from left to right.
Each of the nodes, i, is associated a finite element basis function ϕi(x). When

approximating a given function f by a finite element function u, we expand
u using finite element basis functions associated with all nodes in the mesh,
i.e., N = Nn. However, when solving differential equations we will often have
N < Nn because of Dirichlet boundary conditions. Why this is the case will
now be explained in detail.

In our case with homogeneous Dirichlet boundary conditions we do not need
any boundary function B(x) and can work with the expansion

u(x) =
∑
j∈Is

cjψj(x) . (170)

Because of the boundary conditions, we must demand ψi(0) = ψi(L) = 0, i ∈ Is.
When ψi, i = 0, . . . , N , is to be selected among the finite element basis functions
ϕj , i = 0, . . . , Nn, we have to avoid using ϕj functions that do not vanish at
x0 = 0 and xNn = L. However, all ϕj vanish at these two nodes for j = 1, . . . , Nn.
Only basis functions associated with the end nodes, ϕ0 and ϕNn

, violate the
boundary conditions of our differential equation. Therefore, we select the basis
functions ϕi to be the set of finite element basis functions associated with all
the interior nodes in the mesh:

ψi = ϕi+1, i = 0, . . . , N .

Here, N = Nn − 2.
In the general case, the nodes are not necessarily numbered from left to right,

so we introduce a mapping from the node numbering, or more precisely the
degree of freedom numbering, to the numbering of the unknowns in the final
equation system. These unknowns take on the numbers 0, . . . , N . Unknown
number j in the linear system corresponds to degree of freedom number ν(j),
j ∈ Is. We can then write

ψi = ϕν(i), i = 0, . . . , N .

With a regular numbering as in the present example, ν(j) = j+1, j = 1, . . . , N =
Nn − 2.

13.2 Computation in the global physical domain

We shall first perform a computation in the x coordinate system because the
integrals can be easily computed here by simple, visual, geometric considerations.
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This is called a global approach since we work in the x coordinate system and
compute integrals on the global domain [0, L].

The entries in the coefficient matrix and right-hand side are

Ai,j =

∫ L

0

ψ′i(x)ψ′j(x) dx, bi =

∫ L

0

2ψi(x) dx, i, j ∈ Is .

Expressed in terms of finite element basis functions ϕi we get the alternative
expressions

Ai,j =

∫ L

0

ϕ′i+1(x)ϕ′j+1(x) dx, bi =

∫ L

0

2ϕi+1(x) dx, i, j ∈ Is .

For the following calculations the subscripts on the finite element basis functions
are more conveniently written as i and j instead of i + 1 and j + 1, so our
notation becomes

Ai−1,j−1 =

∫ L

0

ϕ′i(x)ϕ′j(x) dx, bi−1 =

∫ L

0

2ϕi(x) dx,

where the i and j indices run as i, j = 1, . . . , Nn − 1 = N + 1.
The ϕi(x) function is a hat function with peak at x = xi and a linear variation

in [xi−1, xi] and [xi, xi+1]. The derivative is 1/h to the left of xi and −1/h to
the right, or more formally,

ϕ′i(x) =


0, x < xi−1,
h−1, xi−1 ≤ x < xi,
−h−1, xi ≤ x < xi+1,
0, x ≥ xi+1

(171)

Figure 47 shows ϕ′1(x) and ϕ′2(x).

0 2 4 6
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

543210

x

Ω(4)Ω(0) Ω(1) Ω(2) Ω(3)

φ ′2 φ ′3

Figure 47: Illustration of the derivative of piecewise linear basis functions
associated with nodes in cell 2.
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We realize that ϕ′i and ϕ′j has no overlap, and hence their product van-
ishes, unless i and j are nodes belonging to the same cell. The only nonzero
contributions to the coefficient matrix are therefore

Ai−1,i−2 =

∫ L

0

ϕ′i(x)ϕ′i−1(x) dx,

Ai−1,i−1 =

∫ L

0

ϕ′i(x)2 dx,

Ai−1,i =

∫ L

0

ϕ′i(x)ϕ′i+1(x) dx,

for i = 1, . . . , Nn − 1, but for i = 1, Ai−1,i−2 is not defined, and for i = Nn − 1,
Ai−1,i is not defined.

We see that ϕ′i−1(x) and ϕ′i(x) have overlap of one cell Ω(i−1) = [xi−1, xi]
and that their product then is −1/h2. The integrand is constant and therefore
Ai−1,i−2 = −h−2h = −h−1. A similar reasoning can be applied to Ai−1,i, which
also becomes −h−1. The integral of ϕ′i(x)2 gets contributions from two cells,
Ω(i−1) = [xi−1, xi] and Ω(i) = [xi, xi+1], but ϕ′i(x)2 = h−2 in both cells, and the
length of the integration interval is 2h so we get Ai−1,i−1 = 2h−1.

The right-hand side involves an integral of 2ϕi(x), i = 1, . . . , Nn − 1, which
is just the area under a hat function of height 1 and width 2h, i.e., equal to h.
Hence, bi−1 = 2h.

To summarize the linear system, we switch from i to i+ 1 such that we can
write

Ai,i−1 = Ai,i−1 = −h−1, Ai,i = 2h−1, bi = 2h .

The equation system to be solved only involves the unknowns ci for i ∈ Is.
With our numbering of unknowns and nodes, we have that ci equals u(xi+1).
The complete matrix system that takes the following form:

1

h



2 −1 0 · · · · · · · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 −1 2 −1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . −1
0 · · · · · · · · · · · · · · · 0 −1 2





c0
...
...
...
...
...
...
...
cN



=



2h
...
...
...
...
...
...
...

2h


(172)
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13.3 Comparison with a finite difference discretization

A typical row in the matrix system can be written as

− 1

h
ci−1 +

2

h
ci −

1

h
ci+1 = 2h . (173)

Let us introduce the notation uj for the value of u at node j: uj = u(xj) since
we have the interpretation u(xj) =

∑
j cjϕ(xj) =

∑
j cjδij = cj . The unknowns

c0, . . . , cN are u1, . . . , uNn
. Shifting i with i+ 1 in (173) and inserting ui = ci−1,

we get

− 1

h
ui−1 +

2

h
ui −

1

h
ui+1 = 2h, (174)

A finite difference discretization of −u′′(x) = 2 by a centered, second-order
finite difference approximation u′′(xi) ≈ [DxDxu]i with ∆x = h yields

− ui−1 − 2ui + ui+1

h2
= 2, (175)

which is, in fact, equivalent to (174) if (174) is divided by h. Therefore, the
finite difference and the finite element method are equivalent in this simple test
problem.

Sometimes a finite element method generates the finite difference equations
on a uniform mesh, and sometimes the finite element method generates equations
that are different. The differences are modest, but may influence the numerical
quality of the solution significantly, especially in time-dependent problems.

13.4 Cellwise computations

We now employ the cell by cell computational procedure where an element matrix
and vector are calculated for each cell and assembled in the global linear system.
All integrals are mapped to the local reference coordinate system X ∈ [−1, 1].
In the present case, the matrix entries contain derivatives with respect to x,

A
(e)
i−1,j−1 =

∫
Ω(e)

ϕ′i(x)ϕ′j(x) dx =

∫ 1

−1

d

dx
ϕ̃r(X)

d

dx
ϕ̃s(X)

h

2
dX,

where the global degree of freedom i is related to the local degree of freedom r
through i = q(e, r). Similarly, j = q(e, s). The local degrees of freedom run as
r, s = 0, 1 for a P1 element.

The integral for the element matrix. There are simple formulas for the
basis functions ϕ̃r(X) as functions of X. However, we now need to find the
derivative of ϕ̃r(X) with respect to x. Given

ϕ̃0(X) =
1

2
(1−X), ϕ̃1(X) =

1

2
(1 +X),

we can easily compute dϕ̃r/dX:
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dϕ̃0

dX
= −1

2
,

dϕ̃1

dX
=

1

2
.

From the chain rule,

dϕ̃r
dx

=
dϕ̃r
dX

dX

dx
=

2

h

dϕ̃r
dX

. (176)

The transformed integral is then

A
(e)
i−1,j−1 =

∫
Ω(e)

ϕ′i(x)ϕ′j(x) dx =

∫ 1

−1

2

h

dϕ̃r
dX

2

h

dϕ̃s
dX

h

2
dX .

The integral for the element vector. The right-hand side is transformed
according to

b
(e)
i−1 =

∫
Ω(e)

2ϕi(x) dx =

∫ 1

−1

2ϕ̃r(X)
h

2
dX, i = q(e, r), r = 0, 1 .

Detailed calculations of the element matrix and vector. Specifically
for P1 elements we arrive at the following calculations for the element matrix
entries:

Ã
(e)
0,0 =

∫ 1

−1

2

h

(
−1

2

)
2

h

(
−1

2

)
2

h
dX =

1

h

Ã
(e)
0,1 =

∫ 1

−1

2

h

(
−1

2

)
2

h

(
1

2

)
2

h
dX = − 1

h

Ã
(e)
1,0 =

∫ 1

−1

2

h

(
1

2

)
2

h

(
−1

2

)
2

h
dX = − 1

h

Ã
(e)
1,1 =

∫ 1

−1

2

h

(
1

2

)
2

h

(
1

2

)
2

h
dX =

1

h

The element vector entries become

b̃
(e)
0 =

∫ 1

−1

2
1

2
(1−X)

h

2
dX = h

b̃
(e)
1 =

∫ 1

−1

2
1

2
(1 +X)

h

2
dX = h .

Expressing these entries in matrix and vector notation, we have

Ã(e) =
1

h

(
1 −1
−1 1

)
, b̃(e) = h

(
1
1

)
. (177)
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Contributions from the first and last cell. The first and last cell involve
only one unknown and one basis function because of the Dirichlet boundary
conditions at the first and last node. The element matrix therefore becomes a
1× 1 matrix and there is only one entry in the element vector. On cell 0, only
ψ0 = ϕ1 is involved, corresponding to integration with ϕ̃1. On cell Ne, only
ψN = ϕNn−1 is involved, corresponding to integration with ϕ̃0. We then get the
special end-cell contributions

Ã(e) =
1

h

(
1
)
, b̃(e) = h

(
1
)
, (178)

for e = 0 and e = Ne. In these cells, we have only one degree of freedom, not
two as in the interior cells.

Assembly. The next step is to assemble the contributions from the various
cells. The assembly of an element matrix and vector into the global matrix and
right-hand side can be expressed as

Aq(e,r),q(e,s) = Aq(e,r),q(e,s) + Ã(e)
r,s , bq(e,r) = bq(e,r) + b̃(e)r ,

for r and s running over all local degrees of freedom in cell e.

To make the assembly algorithm more precise, it is convenient to set up
Python data structures and a code snippet for carrying out all details of the
algorithm. For a mesh of four equal-sized P1 elements and L = 2 we have

vertices = [0, 0.5, 1, 1.5, 2]
cells = [[0, 1], [1, 2], [2, 3], [3, 4]]
dof_map = [[0], [0, 1], [1, 2], [2]]

The total number of degrees of freedom is 3, being the function values at the
internal 3 nodes where u is unknown. In cell 0 we have global degree of freedom
0, the next cell has u unknown at its two nodes, which become global degrees of
freedom 0 and 1, and so forth according to the dof_map list. The mathematical
q(e, r) quantity is nothing but the dof_map list.

Assume all element matrices are stored in a list Ae such that Ae[e][i,j] is

Ã
(e)
i,j . A corresponding list for the element vectors is named be, where be[e][r]

is b̃
(e)
r . A Python code snippet illustrates all details of the assembly algorithm:

# A[i,j]: coefficient matrix, b[i]: right-hand side
for e in range(len(Ae)):

for r in range(Ae[e].shape[0]):
for s in range(Ae[e].shape[1]):

A[dof_map[e,r],dof_map[e,s]] += Ae[e][i,j]
b[dof_map[e,r]] += be[e][i,j]

The general case with N_e P1 elements of length h has
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N_n = N_e + 1
vertices = [i*h for i in range(N_n)]
cells = [[e, e+1] for e in range(N_e)]
dof_map = [[0]] + [[e-1, e] for i in range(1, N_e)] + [[N_n-2]]

Carrying out the assembly results in a linear system that is identical to (172),
which is not surprising since the procedures is mathematically equivalent to the
calculations in the physical domain.

A fundamental problem with the matrix system we have assembled is that
the boundary conditions are not incorporated if u(0) or u(L) are different from
zero. The next sections deals with this issue.

14 Boundary conditions: specified nonzero value

We have to take special actions to incorporate Dirichlet conditions, such as
u(L) = D, into the computational procedures. The present section outlines
alternative, yet mathematically equivalent, methods.

14.1 General construction of a boundary function

In Section 11.11 we introduce a boundary function B(x) to deal with nonzero
Dirichlet boundary conditions for u. The construction of such a function is not
always trivial, especially not in multiple dimensions. However, a simple and
general construction idea exists when the basis functions have the property

ϕi(xj) = δij , δij =

{
1, i = j,
0, i 6= j,

where xj is a boundary point. Examples on such functions are the Lagrange
interpolating polynomials and finite element functions.

Suppose now that u has Dirichlet boundary conditions at nodes with numbers
i ∈ Ib. For example, Ib = {0, Nn} in a 1D mesh with node numbering from left
to right. Let Ui be the corresponding prescribed values of u(xi). We can then,
in general, use

B(x) =
∑
j∈Ib

Ujϕj(x) . (179)

It is easy to verify that B(xi) =
∑
j∈Ib Ujϕj(xi) = Ui.

The unknown function can then be written as

u(x) =
∑
j∈Ib

Ujϕj(x) +
∑
j∈Is

cjϕν(j), (180)

where ν(j) maps unknown number j in the equation system to node ν(j). We
can easily show that with this u, a Dirichlet condition u(xk) = Uk is fulfilled:
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u(xk) =
∑
j∈Ib

Uj ϕj(x)︸ ︷︷ ︸
6=0 only for j=k

+
∑
j∈Is

cj ϕν(j)(xk)︸ ︷︷ ︸
=0, k 6∈Is

= Uk

Some examples will further clarify the notation. With a regular left-to-right
numbering of nodes in a mesh with P1 elements, and Dirichlet conditions at
x = 0, we use finite element basis functions associated with the nodes 1, 2, . . . , Nn,
implying that ν(j) = j + 1, j = 0, . . . , N , where N = Nn − 1. For the particular
mesh below the expansion becomes

u(x) = U0ϕ0(x) + c0ϕ1(x) + c1ϕ2(x) + · · ·+ c4ϕ5(x) .
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Here is a mesh with an irregular cell and node numbering:
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Say we in this latter mesh have Dirichlet conditions on the left-most and
right-most node, with numbers 3 and 1, respectively. Then we can number the
unknowns at the interior nodes from left to right, giving ν(0) = 0, ν(1) = 4,
ν(2) = 5, ν(3) = 2. This gives

B(x) = U3ϕ3(x) + U1ϕ1(x),
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and

u(x) = B(x) +

3∑
j=0

cjϕν(j) = U3ϕ3 + U1ϕ1 + c0ϕ0 + c1ϕ4 + c2ϕ5 + c3ϕ2 .

Switching to the more standard case of left-to-right numbering and boundary
conditions u(0) = C, u(L) = D, we have N = Nn − 2 and

u(x) = Cϕ0 +DϕNn
+
∑
j∈Is

cjϕj+1

= Cϕ0 +DϕNn + c0ϕ1 + c1ϕ2 + · · ·+ cNϕNn−1 .

The idea of constructing B described here generalizes almost trivially to 2D
and 3D problems: B =

∑
j∈Ib Ujϕj , where Ib is the index set containing the

numbers of all the nodes on the boundaries where Dirichlet values are prescribed.

14.2 Example on computing with finite element-based a
boundary function

Let us see how the model problem −u′′ = 2, u(0) = C, u(L) = D, is affected by
a B(x) to incorporate boundary values. Inserting the expression

u(x) = B(x) +
∑
j∈Is

cjψj(x)

in −(u′′, ψi) = (f, ψi) and integrating by parts results in a linear system with

Ai,j =

∫ L

0

ψ′i(x)ψ′j(x) dx, bi =

∫ L

0

(f(x)−B′(x))ψi(x) dx .

We choose ψi = ϕi+1, i = 0, . . . , N = Nn − 2 if the node numbering is from left
to right. (Later we also need the assumption that the cells too are numbered
from left to right.) The boundary function becomes

B(x) = Cϕ0(x) +DϕNn(x) .

The expansion for u(x) is

u(x) = B(x) +
∑
j∈Is

cjϕj+1(x) .

We can write the matrix and right-hand side entries as

Ai−1,j−1 =

∫ L

0

ϕ′i(x)ϕ′j(x) dx, bi−1 =

∫ L

0

(f(x)−Cϕ′0(x)−Dϕ′Nn
(x))ϕi(x) dx,

for i, j = 1, . . . , N +1 = Nn−1. Note that we have here used B′ = Cϕ′0 +Dϕ′Nn
.
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Computations in physical coordinates. Most of the terms in the linear
system have already been computed so we concentrate on the new contribution

from the boundary function. The integral C
∫ L

0
ϕ′0(x))ϕi(x) dx can only get a

nonzero contribution from the first cell, Ω(0) = [x0, x1] since ϕ′0(x) = 0 on all
other cells. Moreover, ϕ′0(x)ϕi(x) dx 6= 0 only for i = 0 and i = 1 (but i = 0 is
excluded), since ϕi = 0 on the first cell if i > 1. With a similar reasoning we

realize that D
∫ L

0
ϕ′Nn

(x))ϕi(x) dx can only get a nonzero contribution from the
last cell. From the explanations of the calculations in Section 3.6 we then find
that

∫ L

0

ϕ′0(x)ϕ1(x) dx =
1

h
· 1

h
= −1

2
,

∫ L

0

ϕ′Nn
(x)ϕNn−1(x) dx =

1

h
· 1

h
=

1

2
.

The extra boundary term because of B(x) boils down to adding C/2 to b0 and
−D/2 to bN .

Cellwise computations on the reference element. As an equivalent al-
ternative, we now turn to cellwise computations. The element matrices and
vectors are calculated as Section 13.4, so we concentrate on the impact of the
new term involving B(x). We observe that Cϕ′0 = 0 on all cells except e = 0,
and Dϕ′Nn

= 0 on all cells except e = Ne. In this case there is only one unknown
in these cells since u(0) and u(L) are prescribed, so the element vector has only
one entry. The entry for the last cell, e = Ne, becomes

b̃
(e)
0 =

∫ 1

−1

(
f −D 2

h

dϕ̃1

dX

)
ϕ̃0
h

2
dX = (

h

2
(2−D 2

h

1

2
)

∫ 1

−1

ϕ̃0 dX = h−D/2 .

Similar computations on the first cell yield

b̃
(0)
0 =

∫ 1

−1

(
f − C 2

h

dϕ̃0

dX

)
ϕ̃1
h

2
dX = (

h

2
(2 + C

2

h

1

2
)

∫ 1

−1

ϕ̃1 dX = h+ C/2 .

When assembling these contributions, we see that b0 gets right-hand side of the
linear system gets an extra term C/2 and bN gets −D/2, as in the computations
in the physical domain.

14.3 Modification of the linear system

From an implementational point of view, there is a convenient alternative to
adding the B(x) function and using only the basis functions associated with
nodes where u is truly unknown. Instead of seeking

u(x) =
∑
j∈Ib

Ujϕj(x) +
∑
j∈Is

cjϕν(j)(x), (181)
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we use the sum over all degrees of freedom, including the known boundary values:

u(x) =
∑
j∈Is

cjϕj(x) . (182)

Note that the collections of unknowns {ci}i∈Is in (181) and (182) are different:
in (181) N counts the number of nodes where u is not known, while in (181) N
counts all the nodes (N = Nn).

The idea is to compute the entries in the linear system as if no Dirichlet
values are prescribed. Afterwards, we modify the linear system to ensure that
the known cj values are incorporated.

A potential problem arises for the boundary term [u′v]L0 from the integration
by parts: imagining no Dirichlet conditions means that we no longer require
v = 0 at Dirichlet points, and the boundary term is then nonzero at these
points. However, when we modify the linear system, we will erase whatever the
contribution from [u′v]L0 should be at the Dirichlet points in the right-hand side
of the linear system. We can therefore safely forget [u′v]L0 at any point where a
Dirichlet condition applies.

Computations in the physical system. Let us redo the computations in
the example in Section 14.1. We solve −u′′ = 2 with u(0) = 0 and u(L) = D.
The expressions for Ai,j and bi are the same, but the numbering is different as
the numbering of unknowns and nodes now coincide:

Ai,j =

∫ L

0

ϕ′i(x)ϕ′j(x) dx, bi =

∫ L

0

f(x)ϕi(x) dx,

for i, j = 0, . . . , N = Nn. The integrals involving basis functions corresponding
to interior mesh nodes, i, j = 1, . . . , Nn − 1, are obviously the same as before.
We concentrate on the contributions from ϕ0 and ϕNn

:

A0,0 =

∫ L

0

(ϕ′0)2 dx =

∫ x1

0

= (ϕ′0)2 dx
1

h
,

A0,1 =

∫ L

0

ϕ′0ϕ
′
1 dx =

∫ x1

0

ϕ′0ϕ
′
1 dx = − 1

h
,

AN,N =

∫ L

0

(ϕ′0)2 dx =

∫ xNn

xNn−1

(ϕ′0)2 dx =
1

h
,

AN,N−1 =

∫ L

0

(ϕ′0)2 dx =

∫ xNn

xNn−1

(ϕ′0)2 dx = − 1

h
.

The new terms on the right-hand side are also those involving ϕ0 and ϕNn
:
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b0 =

∫ L

0

2ϕ0(x) dx =

∫ x1

0

2ϕ0(x) dx = h,

bN =

∫ L

0

2ϕNn
dx =

∫ xNn

xNn−1

2ϕNn
dx = h .

The complete matrix system, involving all degrees of freedom, takes the form

1

h



1 −1 0 · · · · · · · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 −1 2 −1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . −1
0 · · · · · · · · · · · · · · · 0 −1 1





c0
...
...
...
...
...
...
...
cN



=



h
2h
...
...
...
...
...

2h
h


(183)

Incorporation of Dirichlet values can now be done by replacing the first and
last equation by c0 = 0 and cN = D. This action changes the system to

1

h



h 0 0 · · · · · · · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 −1 2 −1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . −1
0 · · · · · · · · · · · · · · · 0 0 h





c0
...
...
...
...
...
...
...
cN



=



0
2h
...
...
...
...
...

2h
D


(184)

Note that because we do not require ϕi(0) = 0 and ϕi(L), i ∈ Is, the boundary
term [u′v]L0 gives in principle contributions u′(0)ϕ0(0) to b0 and u′(L)ϕN (L) to
bN (u′ϕi vanishes for x = 0 or x = L for i = 1, . . . , N − 1). Nevertheless, we
erase these contributions in b0 and bN and insert boundary values instead. This
argument shows why we can drop computing [u′v]L0 at Dirichlet nodes when we
implement the Dirichlet values by modifying the linear system.
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14.4 Symmetric modification of the linear system

The original matrix system (172) is symmetric, but the modifications in (184)
destroy the symmetry. Our described modification will in general destroy an
initial symmetry in the matrix system. This is not a particular computational
disadvantage for tridiagonal systems arising in 1D problems, but may be more
serious in 2D and 3D problems when the systems are large and exploiting
symmetry can be important for halving the storage demands, speeding up
computations, and/or making the solution algorithm more robust. Therefore,
an alternative modification which preserves symmetry is frequently applied.

Let ck be a coefficient corresponding to a known value u(xk) = Uk. We
want to replace equation k in the system by ck = Uk, i.e., insert zeroes in row
number k in the coefficient matrix, set 1 on the diagonal, and replace bk by Uk.
A symmetry-preserving modification consists in first subtracting column number
k in the coefficient matrix, i.e., Ai,k for i ∈ Is, times the boundary value Uk,
from the right-hand side: bi ← bi −Ai,kUk. Then we put zeroes in row number
k and column number k in the coefficient matrix, and finally set bk = Uk. The
steps in algorithmic form becomes

1. bi ← bi −Ai,kUk for i ∈ Is

2. Ai,k = Ak,i = 0 for i ∈ Is

3. Ak,k = 1

4. bi = Uk

This modification goes as follows for the specific linear system written out in
(183) in Section 14.3. First we subtract the first column in the coefficient matrix,
times the boundary value, from the right-hand side. Because c0 = 0, this
subtraction has no effect. Then we subtract the last column, times the boundary
value D, from the right-hand side. This action results in bN−1 = 2h + D/h
and bN = h − 2D/h. Thereafter, we place zeros in the first and last row and
column in the coefficient matrix and 1 on the two corresponding diagonal entries.
Finally, we set b0 = 0 and bN = D. The result becomes
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1

h



h 0 0 · · · · · · · · · · · · · · · 0

0 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 −1 2 −1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . 0
0 · · · · · · · · · · · · · · · 0 0 h





c0
...
...
...
...
...
...
...
cN



=



0
2h
...
...
...
...
...

2h+D/h
D


(185)

14.5 Modification of the element matrix and vector

The modifications of the global linear system can alternatively be done for the
element matrix and vector. (The assembled system will get the value n on the
main diagonal if n elements contribute to the same unknown, but the factor n
will also appear on the right-hand side and hence cancel out.)

We have, in the present computational example, the element matrix and
vector (177). The modifications are needed in cells where one of the degrees
of freedom is known. Here, this means the first and last cell. We compute the
element matrix and vector as there are no Dirichlet conditions. The boundary
term [u′v]L0 is simply forgotten at nodes that have Dirichlet conditions because
the modification of the element vector will anyway erase the contribution from
the boundary term. In the first cell, local degree of freedom number 0 is known
and the modification becomes

Ã(0) = A =
1

h

(
h 0
−1 1

)
, b̃(0) =

(
0
h

)
. (186)

In the last cell we set

Ã(Ne) = A =
1

h

(
1 −1
0 h

)
, b̃(Ne) =

(
h
D

)
. (187)

We can also perform the symmetric modification. This operation affects only
the last cell with a nonzero Dirichlet condition. The algorithm is the same as
for the global linear system, resulting in

Ã(N−1) = A =
1

h

(
h 0
0 1

)
, b̃(N−1) =

(
h+D/h

D

)
. (188)

The reader is encouraged to assemble the element matrices and vectors and check
that the result coincides with the system (185).
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15 Boundary conditions: specified derivative

Suppose our model problem −u′′(x) = f(x) features the boundary conditions
u′(0) = C and u(L) = D. As already indicated in Section 12, the former
condition can be incorporated through the boundary term that arises from
integration by parts. This details of this method will now be illustrated in the
context of finite element basis functions.

15.1 The variational formulation

Starting with the Galerkin method,∫ L

0

(u′′(x) + f(x))ψi(x) dx = 0, i ∈ Is,

integrating u′′ψi by parts results in

∫ L

0

u′(x)′ψ′i(x) dx− (u′(L)ψi(L)− u′(0)ψi(0)) =

∫ L

0

f(x)ψi(x) dx, i ∈ Is .

The first boundary term, u′(L)ψi(L), vanishes because u(L) = D. There are
two arguments for this result, explained in detail below. The second boundary
term, u′(0)ψi(0), can be used to implement the condition u′(0) = C, provided
ψi(0) 6= 0 for some i (but with finite elements we fortunately have ψ0(0) = 1).
The variational form of the differential equation then becomes∫ L

0

u′(x)ϕ′i(x) dx+ Cϕi(0) =

∫ L

0

f(x)ϕi(x) dx, i ∈ Is .

15.2 Boundary term vanishes because of the test functions

At points where u is known we may require ψi to vanish. Here, u(L) = D and
then ψi(L) = 0, i ∈ Is. Obviously, the boundary term u′(L)ψi(L) then vanishes.

The set of basis functions {ψi}i∈Is contains in this case all the finite element
basis functions on the mesh, expect the one that is 1 at x = L. The basis
function that is left out is used in a boundary function B(x) instead. With a
left-to-right numbering, ψi = ϕi, i = 0, . . . , Nn − 1, and B(x) = DϕNn

:

u(x) = DϕNn
(x) +

N=Nn−1∑
j=0

cjϕj(x) .

Inserting this expansion for u in the variational form (15.1) leads to the linear
system

N∑
j=0

(∫ L

0

ϕ′i(x)ϕ′j(x) dx

)
cj =

∫ L

0

(
f(x)ϕi(x)−Dϕ′Nn

(x)ϕi(x)
)

dx− Cϕi(0),

(189)
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for i = 0, . . . , N = Nn − 1.

15.3 Boundary term vanishes because of linear system
modifications

We may, as an alternative to the approach in the previous section, use a basis
{ψi}i∈Is which contains all the finite element functions on the mesh: ψi = ϕi,
i = 0, . . . , Nn = N . In this case, u′(L)ψi(L) = u′(L)ϕi(L) 6= 0 for the i
corresponding to the boundary node at x = L (where ϕi = 1). The number of
this node is i = Nn = N if a left-to-right numbering of nodes is utilized.

However, even though u′(L)ϕN (L) 6= 0, we do not need to compute this term.
For i < N we realize that ϕi(L) = 0. The only nonzero contribution to the
right-hand side from the affects bN (i = N). Without a boundary function we
must implement the condition u(L) = D by the equivalent statement cN = D
and modify the linear system accordingly. This modification will earse the last
row and replace bN by another value. Any attempt to compute the boundary
term u′(L)ϕN (L) and store it in bN will be lost. Therefore, we can safely forget
about boundary terms corresponding to Dirichlet boundary conditions also when
we use the methods from Section 14.3 or Section 14.4.

The expansion for u reads

u(x) =
∑
j∈Is

cjϕj(x), B(x) = DϕN (x),

with N = Nn. Insertion in the variational form (15.1) leads to the linear system

∑
j∈Is

(∫ L

0

ϕ′i(x)ϕ′j(x) dx

)
cj =

∫ L

0

(f(x)ϕi(x)) dx− Cϕi(0), i ∈ Is . (190)

After having computed the system, we replace the last row by cN = D, either
straightforwardly as in Section refreffem:deq:1D:fem:essBC:Bfunc:modsys or in a
symmetric fashion as in Section refreffem:deq:1D:fem:essBC:Bfunc:modsys:symm.
These modifications can also be performed in the element matrix and vector for
the right-most cell.

15.4 Direct computation of the global linear system

We now turn to actual computations with P1 finite elements. The focus is on
how the linear system and the element matrices and vectors are modified by the
condition u′(0) = C.

Consider first the approach where Dirichlet conditions are incorporated by a
B(x) function and the known degree of freedom CNn is left out from the linear
system (see Section 15.2). The relevant formula for the linear system is given
by (189). There are three differences compared to the extensively computed
case where u(0) = 0 in Sections 13.2 and 13.4. First, because we do not have a
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Dirichlet condition at the left boundary, we need to extend the linear system (172)
with an equation associated with the node x0 = 0. According to Section 14.3, this
extension consists of including A0,0 = 1/h, A0,1 = −1/h, and b0 = h. For i > 0
we have Ai,i = 2/h, Ai−1,i = Ai,i+1 = −1/h. Second, we need to include the
extra term −Cϕi(0) on the right-hand side. Since all ϕi(0) = 0 for i = 1, . . . , N ,
this term reduces to −Cϕ0(0) = −C and affects only the first equation (i = 0).
We simply add −C to b0 such that b0 = h − C. Third, the boundary term

−
∫ L

0
DϕNn

(x)ϕi dx must be computed. Since i = 0, . . . , N = Nn − 1, this
integral can only get a nonzero contribution with i = Nn − 1 over the last cell.
The result becomes −Dh/6. The resulting linear system can be summarized in
the form

1

h



1 −1 0 · · · · · · · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 −1 2 −1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . −1
0 · · · · · · · · · · · · · · · 0 −1 2





c0
...
...
...
...
...
...
...
cN



=



h− C
2h
...
...
...
...
...
...

2h−Dh/6



.

(191)

Next we consider the technique where we modify the linear system to incor-
porate Dirichlet conditions (see Section 15.3). Now N = Nn. The two differences

from the case above is that the −
∫ L

0
DϕNnϕi dx term is left out of the right-hand

side and an extra last row associated with the node xNn = L where the Dirichlet
condition applies is appended to the system. This last row is anyway replaced
by the condition CN = D or this condition can be incorporated in a symmetric
fashion. Using the simplest, former approach gives
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1

h



1 −1 0 · · · · · · · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 −1 2 −1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . −1 2 −1
0 · · · · · · · · · · · · · · · 0 0 1





c0
...
...
...
...
...
...
...
cN



=



h− C
2h
...
...
...
...
...

2h
D



.

(192)

15.5 Cellwise computations

Now we compute with one element at a time, working in the reference coordinate
system X ∈ [−1, 1]. We need to see how the u′(0) = C condition affects
the element matrix and vector. The extra term −Cϕi(0) in the variational
formulation only affects the element vector in the first cell. On the reference cell,
−Cϕi(0) is transformed to −Cϕ̃r(−1), where r counts local degrees of freedom.
We have ϕ̃0(−1) = 1 and ϕ̃1(−1) = 0 so we are left with the contribution

−Cϕ̃0(−1) = −C to b̃
(0)
0 :

Ã(0) = A =
1

h

(
1 1
−1 1

)
, b̃(0) =

(
h− C
h

)
. (193)

No other element matrices or vectors are affected by the −Cϕi(0) boundary
term.

There are two alternative ways of incorporating the Dirichlet condition.
Following Section 15.2, we get a 1 × 1 element matrix in the last cell and an
element vector with an extra term containing D:

Ã(e) =
1

h

(
1
)
, b̃(e) = h

(
1−D/6

)
, (194)

Alternatively, we include the degree of freedom at the node with u specified.
The element matrix and vector must then be modified to constrain the c̃1 = cN
value at local node r = 1:

Ã(Ne) = A =
1

h

(
1 1
0 1

)
, b̃(Ne) =

(
h
D

)
. (195)
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16 Implementation

It is tempting to create a program with symbolic calculations to perform all the
steps in the computational machinery, both for automating the work and for
documenting the complete algorithms. As we have seen, there are quite many
details involved with finite element computations and incorporation of boundary
conditions. An implementation will also act as a structured summary of all these
details.

16.1 Global basis functions

We first consider implementations when ψi are global functions are hence different
from zero on most of Ω = [0, L] so all integrals need integration over the entire
domain. Since the expressions for the entries in the linear system depend on the
differential equation problem being solved, the user must supply the necessary
formulas via Python functions. The implementations here attempt to perform
symbolic calculations, but fall back on numerical computations if the symbolic
ones fail.

The user must prepare a function integrand_lhs(psi, i, j) for returning
the integrand of the integral that contributes to matrix entry (i, j). The psi

variable is a Python dictionary holding the basis functions and their derivatives
in symbolic form. More precisely, psi[q] is a list of

{d
qψ0

dxq
, . . . ,

dqψN
dxq

} .

Similarly, integrand_rhs(psi, i) returns the integrand for entry number i in
the right-hand side vector.

Since we also have contributions to the right-hand side vector, and potentially
also the matrix, from boundary terms without any integral, we introduce two
additional functions, boundary_lhs(psi, i, j) and boundary_rhs(psi, i)

for returning terms in the variational formulation that are not to be integrated
over the domain Ω. Examples shown later will explain in more detail how these
user-supplied function may look like.

The linear system can be computed and solved symbolically by the following
function:

import sympy as sp

def solve(integrand_lhs, integrand_rhs, psi, Omega,
boundary_lhs=None, boundary_rhs=None):

N = len(psi[0]) - 1
A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))
x = sp.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
integrand = integrand_lhs(psi, i, j)
I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
if boundary_lhs is not None:
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I += boundary_lhs(psi, i, j)
A[i,j] = A[j,i] = I # assume symmetry

integrand = integrand_rhs(psi, i)
I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
if boundary_rhs is not None:

I += boundary_rhs(psi, i)
b[i,0] = I

c = A.LUsolve(b)
u = sum(c[i,0]*psi[0][i] for i in range(len(psi[0])))
return u

Not surprisingly, symbolic solution of differential equations, discretized by
a Galerkin or least squares method with global basis functions, is of limited
interest beyond the simplest problems, because symbolic integration might be
very time consuming or impossible, not only in sympy but also in WolframAlpha
(which applies the perhaps most powerful symbolic integration software available
today: Mathematica). Numerical integration as an option is therefore desirable.

The extended solve function below tries to combine symbolic and numerical
integration. The latter can be enforced by the user, or it can be invoked after a
non-successful symbolic integration (being detected by an Integral object as
the result of the integration in sympy). Note that for a numerical integration,
symbolic expressions must be converted to Python functions (using lambdify),
and the expressions cannot contain other symbols than x. The real solve routine
in the varform1D.py file has error checking and meaningful error messages in
such cases. The solve code below is a condensed version of the real one, with
the purpose of showing how to automate the Galerkin or least squares method
for solving differential equations in 1D with global basis functions:

def solve(integrand_lhs, integrand_rhs, psi, Omega,
boundary_lhs=None, boundary_rhs=None, symbolic=True):

N = len(psi[0]) - 1
A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))
x = sp.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
integrand = integrand_lhs(psi, i, j)
if symbolic:

I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sp.Integral):

symbolic = False # force num.int. hereafter
if not symbolic:

integrand = sp.lambdify([x], integrand)
I = sp.mpmath.quad(integrand, [Omega[0], Omega[1]])

if boundary_lhs is not None:
I += boundary_lhs(psi, i, j)

A[i,j] = A[j,i] = I
integrand = integrand_rhs(psi, i)
if symbolic:

I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sp.Integral):

symbolic = False
if not symbolic:

integrand = sp.lambdify([x], integrand)
I = sp.mpmath.quad(integrand, [Omega[0], Omega[1]])
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if boundary_rhs is not None:
I += boundary_rhs(psi, i)

b[i,0] = I
c = A.LUsolve(b)
u = sum(c[i,0]*psi[0][i] for i in range(len(psi[0])))
return u

16.2 Example: constant right-hand side

To demonstrate the code above, we address

−u′′(x) = b, x ∈ Ω = [0, 1], u(0) = 1, u(1) = 0,

with b as a (symbolic) constant. A possible basis for the space V is ψi(x) =
xi+1(1 − x), i ∈ Is. Note that ψi(0) = ψi(1) = 0 as required by the Dirichlet
conditions. We need a B(x) function to take care of the known boundary values
of u. Any function B(x) = 1 − xp, p ∈ R, is a candidate, and one arbitrary
choice from this family is B(x) = 1− x3. The unknown function is then written
as

u(x) = B(x) +
∑
j∈Is

cjψj(x) .

Let us use the Galerkin method to derive the variational formulation. Multi-
plying the differential equation by v and integrate by parts yield∫ 1

0

u′v′ dx =

∫ 1

0

fv dx ∀v ∈ V,

and with u = B +
∑
j cjψj we get the linear system

∑
j∈Is

(∫ 1

0

ψ′iψ
′
j dx

)
cj =

∫ 1

0

(f −B′)ψi dx, i ∈ Is . (196)

The application can be coded as follows in sympy:

x, b = sp.symbols(’x b’)
f = b
B = 1 - x**3
dBdx = sp.diff(B, x)

# Compute basis functions and their derivatives
N = 3
psi = {0: [x**(i+1)*(1-x) for i in range(N+1)]}
psi[1] = [sp.diff(psi_i, x) for psi_i in psi[0]]

def integrand_lhs(psi, i, j):
return psi[1][i]*psi[1][j]

def integrand_rhs(psi, i):
return f*psi[0][i] - dBdx*psi[1][i]
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Omega = [0, 1]

u_bar = solve(integrand_lhs, integrand_rhs, psi, Omega,
verbose=True, symbolic=True)

u = B + u_bar
print ’solution u:’, sp.simplify(sp.expand(u))

The printout of u reads -b*x**2/2 + b*x/2 - x + 1. Note that expanding u

and then simplifying is in the present case necessary to get a compact, final
expression with sympy. A non-expanded u might be preferable in other cases -
this depends on the problem in question.

The exact solution ue(x) can be derived by some sympy code that closely
follows the examples in Section 11.2. The idea is to integrate −u′′ = b twice and
determine the integration constants from the boundary conditions:

C1, C2 = sp.symbols(’C1 C2’) # integration constants
f1 = sp.integrate(f, x) + C1
f2 = sp.integrate(f1, x) + C2
# Find C1 and C2 from the boundary conditions u(0)=0, u(1)=1
s = sp.solve([u_e.subs(x,0) - 1, u_e.subs(x,1) - 0], [C1, C2])
# Form the exact solution
u_e = -f2 + s[C1]*x + s[C2]
print ’analytical solution:’, u_e
print ’error:’, sp.simplify(sp.expand(u - u_e))

The last line prints 0, which is not surprising when ue(x) is a parabola and our
approximate u contains polynomials up to degree 4. It suffices to have N = 1,
i.e., polynomials of degree 2, to recover the exact solution.

We can play around with the code and test that with f ∼ xp, the solution is
a polynomial of degree p+ 2, and N = p+ 1 guarantees that the approximate
solution is exact.

Although the symbolic code is capable of integrating many choices of f(x),
the symbolic expressions for u quickly become lengthy and non-informative,
so numerical integration in the code, and hence numerical answers, have the
greatest application potential.

16.3 Finite elements

Implementation of the finite element algorithms for differential equations fol-
lows closely the algorithm for approximation of functions. The new additional
ingredients are

1. other types of integrands (as implied by the variational formulation)

2. additional boundary terms in the variational formulation for Neumann
boundary conditions

3. modification of element matrices and vectors due to Dirichlet boundary
conditions
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Point 1 and 2 can be taken care of by letting the user supply functions defining
the integrands and boundary terms on the left- and right-hand side of the
equation system:

integrand_lhs(phi, r, s, x)
boundary_lhs(phi, r, s, x)
integrand_rhs(phi, r, x)
boundary_rhs(phi, r, x)

Here, phi is a dictionary where phi[q] holds a list of the derivatives of order
q of the basis functions at the an evaluation point; r and s are indices for the
corresponding entries in the element matrix and vector, and x is the global
coordinate value corresponding to the current evaluation point.

Given a mesh represented by vertices, cells, and dof_map as explained be-
fore, we can write a pseudo Python code to list all the steps in the computational
algorithm for finite element solution of a differential equation.

<Declare global matrix and rhs: A, b>

for e in range(len(cells)):

# Compute element matrix and vector
n = len(dof_map[e]) # no of dofs in this element
h = vertices[cells[e][1]] - vertices[cells[e][1]]
<Declare element matrix and vector: A_e, b_e>

# Integrate over the reference cell
points, weights = <numerical integration rule>
for X, w in zip(points, weights):

phi = <basis functions and derivatives at X>
detJ = h/2
x = <affine mapping from X>
for r in range(n):

for s in range(n):
A_e[r,s] += integrand_lhs(phi, r, s, x)*detJ*w

b_e[r] += integrand_rhs(phi, r, x)*detJ*w

# Add boundary terms
for r in range(n):

for s in range(n):
A_e[r,s] += boundary_lhs(phi, r, s, x)*detJ*w

b_e[r] += boundary_rhs(phi, r, x)*detJ*w

# Incorporate essential boundary conditions
for r in range(n):

global_dof = dof_map[e][r]
if global_dof in essbc_dofs:

# dof r is subject to an essential condition
value = essbc_docs[global_dof]
# Symmetric modification
b_e -= value*A_e[:,r]
A_e[r,:] = 0
A_e[:,r] = 0
A_e[r,r] = 1
b_e[r] = value

# Assemble
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for r in range(n):
for s in range(n):

A[dof_map[e][r], dof_map[e][r]] += A_e[r,s]
b[dof_map[e][r] += b_e[r]

<solve linear system>

17 Variational formulations in 2D and 3D

The major difference between deriving variational formulations in 2D and 3D
compared to 1D is the rule for integrating by parts. A typical second-order term
in a PDE may be written in dimension-independent notation as

∇2u or ∇ · (a(x)∇u) .

The explicit forms in a 2D problem become

∇2u = ∇ · ∇u =
∂2u

∂x2
+
∂2u

∂y2
,

and

∇ · (a(x)∇u) =
∂

∂x

(
a(x, y)

∂u

∂x

)
+

∂

∂y

(
a(x, y)

∂u

∂y

)
.

We shall continue with the latter operator as the form arises from just setting
a = 1.

The general rule for integrating by parts is often referred to as Green’s first
identity:

−
∫

Ω

∇ · (a(x)∇u)v dx =

∫
Ω

a(x)∇u · ∇v dx−
∫
∂Ω

a
∂u

∂n
v ds, (197)

where ∂Ω is the boundary of Ω and ∂u/∂n = n · ∇u is the derivative of u in the
outward normal direction, n being an outward unit normal to ∂Ω. The integrals∫

Ω
() dx are area integrals in 2D and volume integrals in 3D, while

∫
∂Ω

() ds is a
line integral in 2D and a surface integral in 3D.

Let us divide the boundary into two parts:

• ∂ΩN , where we have Neumann conditions −a ∂u∂n = g, and

• ∂ΩD, where we have Dirichlet conditions u = u0.

The test functions v are required to vanish on ∂ΩD.
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Example. Here is a quite general, stationary, linear PDE arising in many
problems:

v · ∇u+ αu = ∇ · (a∇u) + f, x ∈ Ω, (198)

u = u0, x ∈ ∂ΩD, (199)

−a∂u
∂n

= g, x ∈ ∂ΩN . (200)

The vector field v and the scalar functions a, α, f , u0, and g may vary with the
spatial coordinate x and must be known.

Such a second-order PDE needs exactly one boundary condition at each point
of the boundary, so ∂ΩN ∪ ∂ΩD must be the complete boundary ∂Ω.

Assume that the boundary function u0(x) is defined for all x ∈ Ω. The
unknown function can then be expanded as

u = B +
∑
j∈Is

cjψj , B = u0 .

The variational formula is obtained from Galerkin’s method, which technically
implies multiplying the PDE by a test function v and integrating over Ω:∫

Ω

(v · ∇u+ αu)v dx =

∫
Ω

∇ · (a∇u) dx+

∫
Ω

fv dx .

The second-order term is integrated by parts, according to∫
Ω

∇ · (a∇u) v dx = −
∫

Ω

a∇u · ∇v dx+

∫
∂Ω

a
∂u

∂n
v ds .

The variational form now reads

∫
Ω

(v · ∇u+ αu)v dx = −
∫

Ω

a∇u · ∇v dx+

∫
∂Ω

a
∂u

∂n
v ds+

∫
Ω

fv dx .

The boundary term can be developed further by noticing that v 6= 0 only on
∂ΩN , ∫

∂Ω

a
∂u

∂n
v ds =

∫
∂ΩN

a
∂u

∂n
v ds,

and that on ∂ΩN , we have the condition a ∂u∂n = −g, so the term becomes

−
∫
∂ΩN

gv ds .

The variational form is then

∫
Ω

(v · ∇u+ αu)v dx = −
∫

Ω

a∇u · ∇v dx−
∫
∂ΩN

gv ds+

∫
Ω

fv dx .
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Instead of using the integral signs we may use the inner product notation:

(v · ∇u, v) + (αu, v) = −(a∇u,∇v)− (g, v)N + (f, v) .

The subscript N in (g, v)N is a notation for a line or surface integral over ∂ΩN .
Inserting the u expansion results in

∑
j∈Is

((v · ∇ψj , ψi) + (αψj , ψi) + (a∇ψj ,∇ψi))cj =

(g, ψi)N + (f, ψi)− (v · ∇u0, ψi) + (αu0, ψi) + (a∇u0,∇ψi) .

This is a linear system with matrix entries

Ai,j = (v · ∇ψj , ψi) + (αψj , ψi) + (a∇ψj ,∇ψi)

and right-hand side entries

bi = (g, ψi)N + (f, ψi)− (v · ∇u0, ψi) + (αu0, ψi) + (a∇u0,∇ψi),

for i, j ∈ Is.
In the finite element method, we usually express u0 in terms of basis functions

and restrict i and j to run over the degrees of freedom that are not prescribed as
Dirichlet conditions. However, we can also keep all the cj , j ∈ Is, as unknowns
drop the u0 in the expansion for u, and incorporate all the known cj values in
the linear system. This has been explained in detail in the 1D case.

17.1 Transformation to a reference cell in 2D and 3D

We consider an integral of the type∫
Ω(e)

a(x)∇ϕi · ∇ϕj dx, (201)

where the ϕi functions are finite element basis functions in 2D or 3D, defined in
the physical domain. Suppose we want to calculate this integral over a reference
cell, denoted by Ω̃r, in a coordinate system with coordinates X = (X0, X1) (2D)
or X = (X0, X1, X2) (3D). The mapping between a point X in the reference
coordinate system and the corresponding point x in the physical coordinate
system is given by a vector relation x(X). The corresponding Jacobian, J , of
this mapping has entries

Ji,j =
∂xj
∂Xi

.

The change of variables requires dx to be replaced by det J dX. The deriva-
tives in the ∇ operator in the variational form are with respect to x, which
we may denote by ∇x. The ϕi(x) functions in the integral are replaced by
local basis functions ϕ̃r(X) so the integral features ∇xϕ̃r(X). We readily have

136



∇X ϕ̃r(X) from formulas for the basis functions in the reference cell, but the
desired quantity ∇xϕ̃r(X) requires some efforts to compute. All the details are
provided below.

Let i = q(e, r) and consider two space dimensions. By the chain rule,

∂ϕ̃r
∂X

=
∂ϕi
∂X

=
∂ϕi
∂x

∂x

∂X
+
∂ϕi
∂y

∂y

∂X
,

and
∂ϕ̃r
∂Y

=
∂ϕi
∂Y

=
∂ϕi
∂x

∂x

∂Y
+
∂ϕi
∂y

∂y

∂Y
.

We can write these two equations as a vector equation[
∂ϕ̃r

∂X
∂ϕ̃r

∂Y

]
=

[
∂x
∂X

∂y
∂X

∂x
∂Y

∂y
∂Y

] [ ∂ϕi

∂x
∂ϕi

∂y

]

Identifying

∇X ϕ̃r =

[
∂ϕ̃r

∂X
∂ϕ̃r

∂Y

]
, J =

[
∂x
∂X

∂y
∂X

∂x
∂Y

∂y
∂Y

]
, ∇xϕr =

[
∂ϕi

∂x
∂ϕi

∂y

]
,

we have the relation

∇X ϕ̃r = J · ∇xϕi,

which we can solve with respect to ∇xϕi:

∇xϕi = J−1 · ∇X ϕ̃r . (202)

On the reference cell, ϕi(x) = ϕ̃r(X), so

∇xϕ̃r(X) = J−1(X) · ∇X ϕ̃r(X) . (203)

This means that we have the following transformation of the integral in the
physical domain to its counterpart over the reference cell:

∫ (e)

Ω

a(x)∇xϕi·∇xϕj dx

∫
Ω̃r

a(x(X))(J−1·∇X ϕ̃r)·(J−1·∇ϕ̃s) detJ dX (204)

17.2 Numerical integration

Integrals are normally computed by numerical integration rules. For multi-
dimensional cells, various families of rules exist. All of them are similar to
what is shown in 1D:

∫
f dx ≈

∑
j wif(xj), where wj are weights and xj are

corresponding points.
The file numint.py contains the functions quadrature_for_triangles(n)

and quadrature_for_tetrahedra(n), which returns lists of points and weights
corresponding to integration rules with n points over the reference triangle
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with vertices (0, 0), (1, 0), (0, 1), and the reference tetrahedron with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), respectively. For example, the first two rules
for integration over a triangle have 1 and 3 points:

>>> import numint
>>> x, w = numint.quadrature_for_triangles(num_points=1)
>>> x
[(0.3333333333333333, 0.3333333333333333)]
>>> w
[0.5]
>>> x, w = numint.quadrature_for_triangles(num_points=3)
>>> x
[(0.16666666666666666, 0.16666666666666666),
(0.66666666666666666, 0.16666666666666666),
(0.16666666666666666, 0.66666666666666666)]
>>> w
[0.16666666666666666, 0.16666666666666666, 0.16666666666666666]

Rules with 1, 3, 4, and 7 points over the triangle will exactly integrate polynomials
of degree 1, 2, 3, and 4, respectively. In 3D, rules with 1, 4, 5, and 11 points
over the tetrahedron will exactly integrate polynomials of degree 1, 2, 3, and 4,
respectively.

17.3 Convenient formulas for P1 elements in 2D

We shall now provide some formulas for piecewise linear ϕi functions and their
integrals in the physical coordinate system. These formulas make it convenient to
compute with P1 elements without the need to work in the reference coordinate
system and deal with mappings and Jacobians. A lot of computational and
algorithmic details are hidden by this approach.

Let Ω(e) be cell number e, and let the three vertices have global vertex
numbers I, J , and K. The corresponding coordinates are (xI , yI), (xJ , yJ ), and
(xK , yK). The basis function ϕI over Ω(e) have the explicit formula

ϕI(x, y) =
1

2
∆ (αI + βIx+ γIy) , (205)

where

αI = xJyK − xKyJ , (206)

βI = yJ − yK , (207)

γI = xK − xJ , (208)

2∆ = det

 1 xI yI
1 xJ yJ
1 xK yK

 . (209)

The quantity ∆ is the area of the cell.
The following formula is often convenient when computing element matrices

and vectors:
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∫
Ω(e)

ϕpIϕ
q
Jϕ

r
Kdxdy =

p!q!r!

(p+ q + r + 2)!
2∆ . (210)

(Note that the q in this formula is not to be mixed with the q(e, r) mapping of
degrees of freedom.)

As an example, the element matrix entry
∫

Ω(e) ϕIϕJ dx can be computed
by setting p = q = 1 and r = 0, when I 6= J , yielding ∆/12, and p = 2 and
q = r = 0, when I = J , resulting in ∆/6. We collect these numbers in a local
element matrix:

∆

12

 2 1 1
1 2 1
1 1 2


The common element matrix entry

∫
Ω(e) ∇ϕI ·∇ϕJ dx, arising from a Laplace

term ∇2u, can also easily be computed by the formulas above. We have

∇ϕI · ∇ϕJ =
∆2

4
(βIβJ + γIγJ) = const,

so that the element matrix entry becomes 1
4∆3(βIβJ + γIγJ).

From an implementational point of view, one will work with local vertex
numbers r = 0, 1, 2, parameterize the coefficients in the basis functions by r, and
look up vertex coordinates through q(e, r).

Similar formulas exist for integration of P1 elements in 3D.

18 Summary

• When approximating f by u =
∑
j cjϕj , the least squares method and the

Galerkin/projection method give the same result. The interpolation/collo-
cation method is simpler and yields different (mostly inferior) results.

• Fourier series expansion can be viewed as a least squares or Galerkin
approximation procedure with sine and cosine functions.

• Basis functions should optimally be orthogonal or almost orthogonal,
because this gives little round-off errors when solving the linear system,
and the coefficient matrix becomes diagonal or sparse.

• Finite element basis functions are piecewise polynomials, normally with
discontinuous derivatives at the cell boundaries. The basis functions overlap
very little, leading to stable numerics and sparse matrices.

• To use the finite element method for differential equations, we use the
Galerkin method or the method of weighted residuals to arrive at a varia-
tional form. Technically, the differential equation is multiplied by a test
function and integrated over the domain. Second-order derivatives are
integrated by parts to allow for typical finite element basis functions that
have discontinuous derivatives.
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• The least squares method is not much used for finite element solution of
differential equations of second order, because it then involves second-order
derivatives which cause trouble for basis functions with discontinuous
derivatives.

• We have worked with two common finite element terminologies and associ-
ated data structures (both are much used, especially the first one, while
the other is more general):

1. elements, nodes, and mapping between local and global node numbers

2. an extended element concept consisting of cell, vertices, degrees of
freedom, local basis functions, geometry mapping, and mapping between
local and global degrees of freedom

• The meaning of the word ”element” is multi-fold: the geometry of a finite
element (also known as a cell), the geometry and its basis functions, or all
information listed under point 2 above.

• One normally computes integrals in the finite element method element
by element (cell by cell), either in a local reference coordinate system or
directly in the physical domain.

• The advantage of working in the reference coordinate system is that the
mathematical expressions for the basis functions depend on the element
type only, not the geometry of that element in the physical domain. The
disadvantage is that a mapping must be used, and derivatives must be
transformed from reference to physical coordinates.

• Element contributions to the global linear system are collected in an element
matrix and vector, which must be assembled into the global system using
the degree of freedom mapping (dof_map) or the node numbering mapping
(elements), depending on which terminology that is used.

• Dirichlet conditions, involving prescribed values of u at the boundary, are
implemented either via a boundary function that take on the right Dirichlet
values, while the basis functions vanish at such boundaries. In the finite
element method, one has a general expression for the boundary function,
but one can also incorporate Dirichlet conditions in the element matrix
and vector or in the global matrix system.

• Neumann conditions, involving prescribed values of the derivative (or
flux) of u, are incorporated in boundary terms arising from integrating
terms with second-order derivatives by part. Forgetting to account for the
boundary terms implies the condition ∂u/∂n = 0 at parts of the boundary
where no Dirichlet condition is set.
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19 Time-dependent problems

The finite element method is normally used for discretization in space. There
are two alternative strategies for performing a discretization in time:

• use finite differences for time derivatives to arrive at a recursive set of
spatial problems that can be discretized by the finite element method, or

• discretize in space by finite elements first, and then solve the resulting
system of ordinary differential equations (ODEs) by some standard method
for ODEs.

We shall exemplify these strategies using a simple diffusion problem

∂u

∂t
= α∇2u+ f(x, t), x ∈ Ω, t ∈ (0, T ], (211)

u(x, 0) = I(x), x ∈ Ω, (212)

∂u

∂n
= 0, x ∈ ∂Ω, t ∈ (0, T ] . (213)

Here, u(x, t) is the unknown function, α is a constant, and f(x, t) and I(x)
are given functions. We have assigned the particular boundary condition (213)
to minimize the details on handling boundary conditions in the finite element
method.

19.1 Discretization in time by a Forward Euler scheme

Time discretization. We can apply a finite difference method in time to
(211). First we need a mesh in time, here taken as uniform with mesh points
tn = n∆t, n = 0, 1, . . . , Nt. A Forward Euler scheme consists of sampling
(211) at tn and approximating the time derivative by a forward difference
[D+

t u]n ≈ (un+1 − un)/∆t. This approximation turns (211) into a differential
equation that is discrete in time, but still continuous in space. With a finite
difference operator notation we can write the time-discrete problem as

[D+
t u = α∇2u+ f ]n, (214)

for n = 1, 2, . . . , Nt − 1. Writing this equation out in detail and isolating the
unknown un+1 on the left-hand side, demonstrates that the time-discrete problem
is a recursive set of problems that are continuous in space:

un+1 = un + ∆t
(
α∇2un + f(x, tn)

)
. (215)

Given u0 = I, we can use (215) to compute u1, u2, . . . , uNt .
For absolute clarity in the various stages of the discretizations, we introduce

ue(x, t) as the exact solution of the space-and time-continuous partial differential
equation (211) and une (x) as the time-discrete approximation, arising from the
finite difference method in time (214). More precisely, ue fulfills
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∂ue
∂t

= α∇2ue + f(x, t), (216)

while un+1
e , with a superscript, is the solution of the time-discrete equations

un+1
e = une + ∆t

(
α∇2une + f(x, tn)

)
. (217)

Space discretization. We now introduce a finite element approximation to
une and un+1

e in (217), where the coefficients depend on the time level:

une ≈ un =

N∑
j=0

cnj ψj(x), (218)

un+1
e ≈ un+1 =

N∑
j=0

cn+1
j ψj(x) . (219)

Note that, as before, N denotes the number of degrees of freedom in the spatial
domain. The number of time points is denoted by Nt. We define a space V
spanned by the basis functions {ψi}i∈Is .

19.2 Variational forms

A weighted residual method with weighting functions wi can now be formulated.
We insert (218) and (219) in (217) to obtain the residual

R = un+1 − un −∆t
(
α∇2un + f(x, tn)

)
.

The weighted residual principle,∫
Ω

Rw dx = 0, ∀w ∈W,

results in∫
Ω

[
un+1 − un −∆t

(
α∇2un + f(x, tn)

)]
w dx = 0, ∀w ∈W .

From now on we use the Galerkin method so W = V . Isolating the unknown
un+1 on the left-hand side gives

∫
Ω

un+1ψi dx =

∫
Ω

[
un −∆t

(
α∇2un + f(x, tn)

)]
v dx, ∀v ∈ V .

As usual in spatial finite element problems involving second-order derivatives,
we apply integration by parts on the term

∫
(∇2un)v dx:∫

Ω

α(∇2un)v dx = −
∫

Ω

α∇un · ∇v dx+

∫
∂Ω

α
∂un

∂n
v dx .
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The last term vanishes because we have the Neumann condition ∂un/∂n = 0 for
all n. Our discrete problem in space and time then reads

∫
Ω

un+1v dx =

∫
Ω

unvdx−∆t

∫
Ω

α∇un · ∇v dx+ ∆t

∫
Ω

fnv dx, ∀v ∈ V .

(220)
This is the variational formulation of our recursive set of spatial problems.

Nonzero Dirichlet boundary conditions.

As in stationary problems, we can introduce a boundary function B(x, t)
to take care of nonzero Dirichlet conditions:

une ≈ un = B(x, tn) +

N∑
j=0

cnj ψj(x), (221)

un+1
e ≈ un+1 = B(x, tn+1) +

N∑
j=0

cn+1
j ψj(x) . (222)

19.3 Simplified notation for the solution at recent time
levels

In a program it is only necessary to store un+1 and un at the same time. We
therefore drop the n index in programs and work with two functions: u for un+1,
the new unknown, and u_1 for un, the solution at the previous time level. This
is also convenient in the mathematics to maximize the correspondence with
the code. From now on u1 means the discrete unknown at the previous time
level (un) and u represents the discrete unknown at the new time level (un+1).
Equation (220) with this new naming convention is expressed as

∫
Ω

uvdx =

∫
Ω

u1vdx−∆t

∫
Ω

α∇u1 · ∇v dx+ ∆t

∫
Ω

fnv dx . (223)

This variational form can alternatively be expressed by the inner product nota-
tion:

(u, v) = (u1, v)−∆t(α∇u1,∇v) + (fn, v) . (224)

19.4 Deriving the linear systems

To derive the equations for the new unknown coefficients cn+1
j , now just called

cj , we insert

u =

N∑
j=0

cjψj(x), u1 =

N∑
j=0

c1,jψj(x)
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in (223) or (224), let the equation hold for all v = ψ, i = 0, . . . ,N, and order the
terms as matrix-vector products:

N∑
j=0

(ψi, ψj)cj =

N∑
j=0

(ψi, ψj)c1,j−∆t

N∑
j=0

(∇ψi, α∇ψj)c1,j+(fn, ψi), i = 0, . . . , N .

(225)
This is a linear system

∑
j Ai,jcj = bi with

Ai,j = (ψi, ψj)

and

bi =

N∑
j=0

(ψi, ψj)c1,j −∆t

N∑
j=0

(∇ψi, α∇ψj)c1,j + (fn, ψi) .

It is instructive and convenient for implementations to write the linear system
on the form

Mc = Mc1 −∆tKc1 + f, (226)

where

M = {Mi,j}, Mi,j = (ψi, ψj), i, j ∈ Is,
K = {Ki,j}, Ki,j = (∇ψi, α∇ψj), i, j ∈ Is,
f = {(f(x, tn), ψi)}i∈Is ,
c = {ci}i∈Is ,
c1 = {c1,i}i∈Is .

We realize that M is the matrix arising from a term with the zero-th derivative
of u, and called the mass matrix, while K is the matrix arising from a Laplace
term ∇2u. The K matrix is often known as the stiffness matrix. (The terms
mass and stiffness stem from the early days of finite elements when applications
to vibrating structures dominated. The mass matrix arises from the mass times
acceleration term in Newton’s second law, while the stiffness matrix arises from
the elastic forces in that law. The mass and stiffness matrix appearing in a
diffusion have slightly different mathematical formulas.)

Remark. The mathematical symbol f has two meanings, either the function
f(x, t) in the PDE or the f vector in the linear system to be solved at each time
level. The symbol u also has different meanings, basically the unknown in the
PDE or the finite element function representing the unknown at a time level.
The actual meaning should be evident from the context.
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19.5 Computational algorithm

We observe that M and K can be precomputed so that we can avoid computing
the matrix entries at every time level. Instead, some matrix-vector multiplications
will produce the linear system to be solved. The computational algorithm has
the following steps:

1. Compute M and K.

2. Initialize u0 by interpolation or projection

3. For n = 1, 2, . . . , Nt:

(a) compute b = Mc1 −∆tKc1 + f

(b) solve Mc = b

(c) set c1 = c

In case of finite element basis functions, interpolation of the initial condition
at the nodes means c1,j = I(xj). Otherwise one has to solve the linear system∑
j ψj(xi)cj = I(xi), where xj denotes an interpolation point. Projection (or

Galerkin’s method) implies solving a linear system with M as coefficient matrix
:
∑
jMi,jc1,j = (I, ψi), i ∈ Is.

19.6 Comparing P1 elements with the finite difference
method

We can compute the M and K matrices using P1 elements in 1D. A uniform
mesh on [0, L] is introduced for this purpose. Since the boundary conditions are
solely of Neumann type in this sample problem, we have no restrictions on the
basis functions ψi and can simply choose ψi = ϕi, i = 0, . . . , N = Nn.

From Section 13.2 or 13.4 we have that the K matrix is the same as we get
from the finite difference method: h[DxDxu]ni , while from Section 5.2 we know
that M can be interpreted as the finite difference approximation [u+ 1

6h
2DxDxu]ni

(times h). The equation system Mc = b in the algorithm is therefore equivalent
to the finite difference scheme

[D+
t (u+

1

6
h2DxDxu) = αDxDxu+ f ]ni . (227)

(More precisely, Mc = b divided by h gives the equation above.)

Lumping the mass matrix. By applying Trapezoidal integration one can
turn M into a diagonal matrix with (h/2, h, . . . , h, h/2) on the diagonal. Then
there is no need to solve a linear system at each time level, and the finite element
scheme becomes identical to a standard finite difference method

[D+
t u = αDxDxu+ f ]ni . (228)
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The Trapezoidal integration is not as accurate as exact integration and
introduces therefore an error. Whether this error has a good or bad influence
on the overall numerical method is not immediately obvious, and is analyzed in
detail in Section 19.10. The effect of the error is at least not more severe than
what is produced by the finite difference method.

Making M diagonal is usually referred to as lumping the mass matrix. There
is an alternative method to using an integration rule based on the node points:
one can sum the entries in each row, place the sum on the diagonal, and set all
other entries in the row equal to zero. For P1 elements the methods of lumping
the mass matrix give the same result.

19.7 Discretization in time by a Backward Euler scheme

Time discretization. The Backward Euler scheme in time applied to our
diffusion problem can be expressed as follows using the finite difference operator
notation:

[D−t u = α∇2u+ f(x, t)]n .

Written out, and collecting the unknown un on the left-hand side and all the
known terms on the right-hand side, the time-discrete differential equation
becomes

une −∆t
(
α∇2une + f(x, tn)

)
= un−1

e . (229)

Equation (229) can compute u1
e, u

2
e, . . . , u

Nt
e , if we have a start u0

e = I from the
initial condition. However, (229) is a partial differential equation in space and
needs a solution method based on discretization in space. For this purpose we
use an expansion as in (218)-(219).

Variational forms. Inserting (218)-(219) in (229), multiplying by ψi (or
v ∈ V ), and integrating by parts, as we did in the Forward Euler case, results in
the variational form

∫
Ω

(unv + ∆tα∇un · ∇v) dx =

∫
Ω

un−1v dx−∆t

∫
Ω

fnv dx, ∀v ∈ V . (230)

Expressed with u as un and u1 as un−1, this becomes∫
Ω

(uv + ∆tα∇u · ∇v) dx =

∫
Ω

u1v dx+ ∆t

∫
Ω

fnv dx, (231)

or with the more compact inner product notation,

(u, v) + ∆t(α∇u,∇v) = (u1, v) + ∆t(fn, v) . (232)
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Linear systems. Inserting u =
∑
j cjψi and u1 =

∑
j c1,jψi, and choosing v

to be the basis functions ψi ∈ V , i = 0, . . . , N , together with doing some algebra,
lead to the following linear system to be solved at each time level:

(M + ∆tK)c = Mc1 + f, (233)

where M , K, and f are as in the Forward Euler case. This time we really have
to solve a linear system at each time level. The computational algorithm goes as
follows.

1. Compute M , K, and A = M + ∆tK

2. Initialize u0 by interpolation or projection

3. For n = 1, 2, . . . , Nt:

(a) compute b = Mc1 + f

(b) solve Ac = b

(c) set c1 = c

In case of finite element basis functions, interpolation of the initial condition
at the nodes means c1,j = I(xj). Otherwise one has to solve the linear system∑
j ψj(xi)cj = I(xi), where xj denotes an interpolation point. Projection (or

Galerkin’s method) implies solving a linear system with M as coefficient matrix
:
∑
jMi,jc1,j = (I, ψi), i ∈ Is.
We know what kind of finite difference operators the M and K matrices

correspond to (after dividing by h), so (233) can be interpreted as the following
finite difference method:

[D−t (u+
1

6
h2DxDxu) = αDxDxu+ f ]ni . (234)

The mass matrix M can be lumped, as explained in Section 19.6, and then
the linear system arising from the finite element method with P1 elements
corresponds to a plain Backward Euler finite difference method for the diffusion
equation:

[D−t u = αDxDxu+ f ]ni . (235)

19.8 Dirichlet boundary conditions

Suppose now that the boundary condition (213) is replaced by a mixed Neumann
and Dirichlet condition,

u(x, t) = u0(x, t), x ∈ ∂ΩD, (236)

−α ∂

∂n
u(x, t) = g(x, t), x ∈ ∂ΩN . (237)
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Using a Forward Euler discretization in time, the variational form at a time
level becomes

∫
Ω

un+1v dx =

∫
Ω

(un −∆tα∇un · ∇v) dx−∆t

∫
∂ΩN

gv ds, ∀v ∈ V . (238)

Boundary function. The Dirichlet condition u = u0 at ∂ΩD can be incorpo-
rated through a boundary function B(x) = u0(x) and demanding that v = 0 at
∂ΩD. The expansion for un is written as

un(x) = u0(x, tn) +
∑
j∈Is

cnj ψj(x) .

Inserting this expansion in the variational formulation and letting it hold for all
basis functions ψi leads to the linear system

∑
j∈Is

(∫
Ω

ψiψj dx

)
cn+1
j =

∑
j∈Is

(∫
Ω

(ψiψj −∆tα∇ψi · ∇ψj) dx

)
cnj−∫

Ω

(u0(x, tn+1)− u0(x, tn) + ∆tα∇u0(x, tn) · ∇ψi) dx

+ ∆t

∫
Ω

fψi dx−∆t

∫
∂ΩN

gψi ds, i ∈ Is .

In the following, we adopt the convention that the unknowns cn+1
j are written

as cj , while the known cnj from the previous time level are denoted by c1,j .

Finite element basis functions. When using finite elements, each basis
function ϕi is associated with a node xi. We have a collection of nodes {xi}i∈Ib
on the boundary ∂ΩD. Suppose Unk is the known Dirichlet value at xk at time
tn (Unk = u0(xk, tn)). The appropriate boundary function is then

B(x, tn) =
∑
j∈Ib

Unj ϕj .

The unknown coefficients cj are associated with the rest of the nodes, which
have numbers ν(i), i ∈ Is = {0, . . . , N}. The basis functions for V are chosen as
ψi = ϕν(i), i ∈ Is, and all of these vanish at the boundary nodes as they should.
The expansion for un+1 and un become

un =
∑
j∈Ib

Unj ϕj +
∑
j∈Is

c1,jϕν(j),

un+1 =
∑
j∈Ib

Un+1
j ϕj +

∑
j∈Is

cjϕν(j) .
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The equations for the unknown coefficients ci become

∑
j∈Is

(∫
Ω

ϕiϕj dx

)
cj =

∑
j∈Is

(∫
Ω

(ϕiϕj −∆tα∇ϕi · ∇ϕj) dx

)
c1,j−

∑
j∈Ib

∫
Ω

(
ϕiϕj(U

n+1
j − Unj ) + ∆tα∇ϕi · ∇ϕjUnj

)
dx

+ ∆t

∫
Ω

fϕi dx−∆t

∫
∂ΩN

gϕi ds, i ∈ Is .

Modification of the linear system. Instead of introducing a boundary
function B we can work with basis functions associated with all the nodes and
incorporate the Dirichlet conditions by modifying the linear system. Let Is be
the index set that counts all the nodes: {0, 1, . . . , N = Nn}. The expansion for
un is then

∑
j∈Is c

n
j ϕj and the variational form becomes

∑
j∈Is

(∫
Ω

ϕiϕj dx

)
cj =

∑
j∈Is

(∫
Ω

(ϕiϕj −∆tα∇ϕi · ∇ϕj) dx

)
c1,j

−∆t

∫
Ω

fϕi dx−∆t

∫
∂ΩN

gϕi ds .

We introduce the matrices M and K with entries Mi,j =
∫

Ω
ϕiϕj dx and Ki,j =∫

Ω
α∇ϕi · ∇ϕj dx, respectively. In addition, we define the vectors c, c1, and f

with entries ci, c1,i, and
∫

Ω
fϕi dx−

∫
∂ΩN

gϕi ds. The equation system can then
be written as

Mc = Mc1 −∆tKc1 + ∆tf . (239)

When M , K, and b are assembled without paying attention to Dirichlet boundary
conditions, we need to replace equation k by ck = Uk for k corresponding
to all boundary nodes (k ∈ Ib). The modification of M consists in setting
Mk,j = 0, j ∈ Is, and the Mk,k = 1. Alternatively, a modification that
preserves the symmetry of M can be applied. At each time level one forms
b = Mc1 − ∆tKc1 + ∆tf and sets bk = Un+1

k , k ∈ Ib, and solves the system
Mc = b.

In case of a Backward Euler method, the system becomes (233). We can
write the system as Ac = b, with A = M + ∆tK and b = Mc1 + f . Both M
and K needs to be modified because of Dirichlet boundary conditions, but the
diagonal entries in K should be set to zero and those in M to unity. In this
way, Ak,k = 1. The right-hand side must read bk = Unk for k ∈ Ib (assuming the
unknown is sought at time level tn).

19.9 Example: Oscillating Dirichlet boundary condition

We shall address the one-dimensional initial-boundary value problem
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ut = (αux)x + f, x ∈ Ω = [0, L], t ∈ (0, T ], (240)

u(x, 0) = 0, x ∈ Ω, (241)

u(0, t) = a sinωt, t ∈ (0, T ], (242)

ux(L, t) = 0, t ∈ (0, T ] . (243)

A physical interpretation may be that u is the temperature deviation from
a constant mean temperature in a body Ω that is subject to an oscillating
temperature (e.g., day and night, or seasonal, variations) at x = 0.

We use a Backward Euler scheme in time and P1 elements of constant length
h in space. Incorporation of the Dirichlet condition at x = 0 through modifying
the linear system at each time level means that we carry out the computations
as explained in Section 19.7 and get a system (233). The M and K matrices
computed without paying attention to Dirichlet boundary conditions become

M =
h

6



2 1 0 · · · · · · · · · · · · · · · 0

1 4 1
. . .

...

0 1 4 1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 1 4 1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . 1 4 1
0 · · · · · · · · · · · · · · · 0 1 2



(244)

K =
α

h



1 −1 0 · · · · · · · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 −1 2 −1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . −1 2 −1
0 · · · · · · · · · · · · · · · 0 −1 1



(245)

The right-hand side of the variational form contains Mc1 since there is no source
term (f) and no boundary term from the integration by parts (ux = 0 at x = L
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and we compute as if ux = 0 at x = 0 too). We must incorporate the Dirichlet
boundary condition c0 = a sinωtn by ensuring that this is the first equation in
the linear system. To this end, the first row in K and M are set to zero, but
the diagonal entry M0,0 is set to 1. The right-hand side is b = Mc1, and we set
b0 = a sinωtn. Note that in this approach, N = Nn, and c equals the unknown
u at each node in the mesh. We can write the complete linear system as

c0 = a sinωtn, (246)

h

6
(ci−1 + 4ci + ci+1) + ∆t

α

h
(−ci−1 + 2ci + ci+1) =

h

6
(c1,i−1 + 4c1,i + c1,i+1),

(247)

i = 1, . . . , Nn − 1,

h

6
(ci−1 + 2ci) + ∆t

α

h
(−ci−1 + ci) =

h

6
(c1,i−1 + 2c1,i), i = Nn .

(248)

The Dirichlet boundary condition can alternatively be implemented through
a boundary function B(x, t) = a sinωtϕ0(x):

un(x) = a sinωtnϕ0(x) +
∑
j∈Is

cjϕν(j)(x), ν(j) = j + 1 .

Now, N = Nn − 1 and the c vector contains values of u at nodes 1, 2, . . . , Nn.
The right-hand side gets a contribution

∫ L

0

(a(sinωtn − sinωtn−1)ϕ0ϕi −∆tαa sinωtn∇ϕ0 · ∇ϕi) dx . (249)

19.10 Analysis of the discrete equations

The diffusion equation ut = αuxx allows a (Fourier) wave component u =
exp (βt+ ikx) as solution if β = −αk2, which follows from inserting the wave
component in the equation. The exact wave component can alternatively be
written as

u = Ane e
ikx, Ae = e−αk

2∆t . (250)

Many numerical schemes for the diffusion equation has a similar wave component
as solution:

unq = Aneikx, (251)

where is an amplification factor to be calculated by inserting (252) in the scheme.
We introduce x = qh, or x = q∆x to align the notation with that frequently
used in finite difference methods.
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A convenient start of the calculations is to establish some results for various
finite difference operators acting on

unq = Aneikq∆x . (252)

[D+
t A

neikq∆x]n = Aneikq∆x
A− 1

∆t
,

[D−t A
neikq∆x]n = Aneikq∆x

1−A−1

∆t
,

[DtA
neikq∆x]n+ 1

2 = An+ 1
2 eikq∆x

A
1
2 −A− 1

2

∆t
= Aneikq∆x

A− 1

∆t
,

[DxDxA
neikq∆x]q = −An 4

∆x2
sin2

(
k∆x

2

)
.

Forward Euler discretization. We insert (252) in the Forward Euler scheme
with P1 elements in space and f = 0 (this type of analysis can only be carried
out if f = 0),

[D+
t (u+

1

6
h2DxDxu) = αDxDxu]nq . (253)

We have

[D+
t DxDxAe

ikx]nq = [D+
t A]n[DxDxe

ikx]q = −Aneikp∆xA− 1

∆t

4

∆x2
sin2(

k∆x

2
) .

The term [D+
t Ae

ikx + 1
6∆x2D+

t DxDxAe
ikx]nq then reduces to

A− 1

∆t
− 1

6
∆x2A− 1

∆t

4

∆x2
sin2(

k∆x

2
),

or
A− 1

∆t

(
1− 2

3
sin2(k∆x/2)

)
.

Introducing p = k∆x/2 and C = α∆t/∆x2, the complete scheme becomes

(A− 1)

(
1− 2

3
sin2 p

)
= −4C sin2 p,

from which we find A to be

A = 1− 4C
sin2 p

1− 2
3 sin2 p

.

How does this A change the stability criterion compared to the Forward
Euler finite difference scheme and centered differences in space? The stability
criterion is |A| ≤ 1, which here implies A ≤ 1 and A ≥ −1. The former is always
fulfilled, while the latter leads to
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4C
sin2 p

1 + 2
3 sin2 p

≤ 2 .

The factor sin2 p/(1− 2
3 sin2 p) can be plotted for p ∈ [0, π/2], and the maximum

value goes to 3 as p→ π/2. The worst case for stability therefore occurs for the
shortest possible wave, p = π/2, and the stability criterion becomes

C ≤ 1

6
⇒ ∆t ≤ ∆x2

6α
, (254)

which is a factor 1/3 worse than for the standard Forward Euler finite difference
method for the diffusion equation, which demands C ≤ 1/2. Lumping the mass
matrix will, however, recover the finite difference method and therefore imply
C ≤ 1/2 for stability.

Backward Euler discretization. We can use the same approach and insert
(252) in the Backward Euler scheme with P1 elements in space and f = 0:

[D−t (u+
1

6
h2DxDxu) = αDxDxu]ni . (255)

Similar calculations as in the Forward Euler case lead to

(1−A−1)

(
1− 2

3
sin2 p

)
= −4C sin2 p,

and hence

A =

(
1 + 4C

sin2 p

1− 2
3 sin2 p

)−1

.

Comparing amplification factors. It is of interest to compare A and Ae as
functions of p for some C values. Figure 48 display the amplification factors
for the Backward Euler scheme corresponding a coarse mesh with C = 2 and a
mesh at the stability limit of the Forward Euler scheme in the finite difference
method, C = 1/2. Figures 49 and 50 shows how the accuracy increases with
lower C values for both the Forward Euler and Backward schemes, respectively.
The striking fact, however, is that the accuracy of the finite element method
is significantly less than the finite difference method for the same value of C.
Lumping the mass matrix to recover the numerical amplification factor A of the
finite difference method is therefore a good idea in this problem.

Remaining tasks:

• Taylor expansion of the error in the amplification factor Ae −A

• Taylor expansion of the error e = (Ane −An)eikx

• L2 norm of e
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Figure 48: Comparison of coarse-mesh amplification factors for Backward Euler
discretization of a 1D diffusion equation.
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Figure 49: Comparison of fine-mesh amplification factors for Forward Euler
discretization of a 1D diffusion equation.
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Figure 50: Comparison of fine-mesh amplification factors for Backward Euler
discretization of a 1D diffusion equation.
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20 Systems of differential equations

Many mathematical models involve m + 1 unknown functions governed by a
system of m + 1 differential equations. In abstract form we may denote the
unknowns by u(0), . . . , u(m) and write the governing equations as

L0(u(0), . . . , u(m)) = 0,

...

Lm(u(0), . . . , u(m)) = 0,

where Li is some differential operator defining differential equation number i.

20.1 Variational forms

There are basically two ways of formulating a variational form for a system of
differential equations. The first method treats each equation independently as
a scalar equation, while the other method views the total system as a vector
equation with a vector function as unknown.

Let us start with the one equation at a time approach. We multiply equation
number i by some test function v(i) ∈ V (i) and integrate over the domain:

∫
Ω

L(0)(u(0), . . . , u(m))v(0) dx = 0, (256)

... (257)∫
Ω

L(m)(u(0), . . . , u(m))v(m) dx = 0 . (258)

Terms with second-order derivatives may be integrated by parts, with Neumann
conditions inserted in boundary integrals. Let

V (i) = span{ψ(i)
0 , . . . , ψ

(i)
Ni
},

such that

u(i) = B(i)(x) +

Ni∑
j=0

c
(i)
j ψ

(i)
j (x),

where B(i) is a boundary function to handle nonzero Dirichlet conditions. Observe
that different unknowns live in different spaces with different basis functions and
numbers of degrees of freedom.

From the m equations in the variational forms we can derive m coupled

systems of algebraic equations for the Πm
i=0Ni unknown coefficients c

(i)
j , j =

0, . . . , Ni, i = 0, . . . ,m.
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The alternative method for deriving a variational form for a system of
differential equations introduces a vector of unknown functions

u = (u(0), . . . , u(m)),

a vector of test functions

v = (u(0), . . . , u(m)),

with

u,v ∈ V = V (0) × · · · × V (m) .

With nonzero Dirichlet conditions, we have a vector B = (B(0), . . . , B(m)) with
boundary functions and then it is u−B that lies in V , not u itself.

The governing system of differential equations is written

L(u) = 0,

where

L(u) = (L(0)(u), . . . ,L(m)(u)) .

The variational form is derived by taking the inner product of the vector of
equations and the test function vector:∫

Ω

L(u) · v = 0 ∀v ∈ V . (259)

Observe that (259) is one scalar equation. To derive systems of algebraic
equations for the unknown coefficients in the expansions of the unknown func-
tions, one chooses m linearly independent v vectors to generate m independent
variational forms from (259). The particular choice v = (v(0), 0, . . . , 0) recovers
(256), v = (0, . . . , 0, v(m) recovers (258), and v = (0, . . . , 0, v(i), 0, . . . , 0) recovers
the variational form number i,

∫
Ω
L(i)v(i) dx = 0, in (256)-(258).

20.2 A worked example

We now consider a specific system of two partial differential equations in two
space dimensions:

µ∇2w = −β, (260)

κ∇2T = −µ||∇w||2 . (261)

The unknown functions w(x, y) and T (x, y) are defined in a domain Ω, while
µ, β, and κ are given constants. The norm in (261) is the standard Eucledian
norm:

||∇w||2 = ∇w · ∇w = w2
x + w2

y .
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The boundary conditions associated with (260)-(261) are w = 0 on ∂Ω and
T = T0 on ∂Ω. Each of the equations (260) and (261) need one condition at
each point on the boundary.

The system (260)-(261) arises from fluid flow in a straight pipe, with the z axis
in the direction of the pipe. The domain Ω is a cross section of the pipe, w is the
velocity in the z direction, µ is the viscosity of the fluid, β is the pressure gradient
along the pipe, T is the temperature, and κ is the heat conduction coefficient
of the fluid. The equation (260) comes from the Navier-Stokes equations, and
(261) follows from the energy equation. The term −µ||∇w||2 models heating of
the fluid due to internal friction.

Observe that the system (260)-(261) has only a one-way coupling: T depends
on w, but w does not depend on T , because we can solve (260) with respect
to w and then (261) with respect to T . Some may argue that this is not a
real system of PDEs, but just two scalar PDEs. Nevertheless, the one-way
coupling is convenient when comparing different variational forms and different
implementations.

20.3 Identical function spaces for the unknowns

Let us first apply the same function space V for w and T (or more precisely,
w ∈ V and T − T0 ∈ V ). With

V = span{ψ0(x, y), . . . , ψN (x, y)},

we write

w =

N∑
j=0

c
(w)
j ψj , T = T0 +

N∑
j=0

c
(T )
j ψj . (262)

Note that w and T in (260)-(261) denote the exact solution of the PDEs, while
w and T (262) are the discrete functions that approximate the exact solution.
It should be clear from the context whether a symbol means the exact or
approximate solution, but when we need both at the same time, we use a
subscript e to denote the exact solution.

Variational form of each individual PDE. Inserting the expansions (262)
in the governing PDEs, results in a residual in each equation,

Rw = µ∇2w + β, (263)

RT = κ∇2T + µ||∇w||2 . (264)

A Galerkin method demands Rw and RT do be orthogonal to V :
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∫
Ω

Rwv dx = 0 ∀v ∈ V,∫
Ω

RT v dx = 0 ∀v ∈ V .

Because of the Dirichlet conditions, v = 0 on ∂Ω. We integrate the Laplace
terms by parts and note that the boundary terms vanish since v = 0 on ∂Ω:

∫
Ω

µ∇w · ∇v dx =

∫
Ω

βv dx ∀v ∈ V, (265)∫
Ω

κ∇T · ∇v dx =

∫
Ω

µ∇w · ∇w v dx ∀v ∈ V . (266)

Compound scalar variational form. The alternative way of deriving the
variational from is to introduce a test vector function v ∈ V = V × V and take
the inner product of v and the residuals, integrated over the domain:∫

Ω

(Rw, RT ) · v dx = 0 ∀v ∈ V .

With v = (v0, v1) we get∫
Ω

(Rwv0 +RT v1) dx = 0 ∀v ∈ V .

Integrating the Laplace terms by parts results in

∫
Ω

(µ∇w ·∇v0 +κ∇T ·∇v1) dx =

∫
Ω

(βv0 +µ∇w ·∇w v1) dx, ∀v ∈ V . (267)

Choosing v0 = v and v1 = 0 gives the variational form (265), while v0 = 0 and
v1 = v gives (266).

With the inner product notation, (p, q) =
∫

Ω
pq dx, we can alternatively write

(265) and (266) as

(µ∇w,∇v) = (β, v) ∀v ∈ V,
(κ∇T,∇v) = (µ∇w · ∇w, v) ∀v ∈ V,

or since µ and κ are considered constant,

µ(∇w,∇v) = (β, v) ∀v ∈ V, (268)

κ(∇T,∇v) = µ(∇w · ∇w, v) ∀v ∈ V . (269)
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Decoupled linear systems. The linear systems governing the coefficients

c
(w)
j and c

(T )
j , j = 0, . . . , N , are derived by inserting the expansions (262) in

(265) and (266), and choosing v = ψi for i = 0, . . . , N . The result becomes

N∑
j=0

A
(w)
i,j c

(w)
j = b

(w)
i , i = 0, . . . , N, (270)

N∑
j=0

A
(T )
i,j c

(T )
j = b

(T )
i , i = 0, . . . , N, (271)

A
(w)
i,j = µ(∇ψj ,∇ψi), (272)

b
(w)
i = (β, ψi), (273)

A
(T )
i,j = κ(∇ψj ,∇ψi), (274)

b
(T )
i = µ((

∑
j

c
(w)
j ∇ψj) · (

∑
k

c
(w)
k ∇ψk), ψi) . (275)

It can also be instructive to write the linear systems using matrices and
vectors. Define K as the matrix corresponding to the Laplace operator ∇2. That
is, Ki,j = (∇ψj ,∇ψi). Let us introduce the vectors

b(w) = (b
(w)
0 , . . . , b

(w)
N ),

b(T ) = (b
(T )
0 , . . . , b

(T )
N ),

c(w) = (c
(w)
0 , . . . , c

(w)
N ),

c(T ) = (c
(T )
0 , . . . , c

(T )
N ) .

The system (270)-(271) can now be expressed in matrix-vector form as

µKc(w) = b(w), (276)

κKc(T ) = b(T ) . (277)

We can solve the first system for c(w), and then the right-hand side b(T ) is
known such that we can solve the second system for c(T ).

Coupled linear systems. Despite the fact that w can be computed first,
without knowing T , we shall now pretend that w and T enter a two-way coupling
such that we need to derive the algebraic equations as one system for all the

unknowns c
(w)
j and c

(T )
j , j = 0, . . . , N . This system is nonlinear in c

(w)
j because

of the ∇w · ∇w product. To remove this nonlinearity, imagine that we introduce
an iteration method where we replace ∇w · ∇w by ∇w− · ∇w, w− being the w
computed in the previous iteration. Then the term ∇w− · ∇w is linear in w
since w− is known. The total linear system becomes
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N∑
j=0

A
(w,w)
i,j c

(w)
j +

N∑
j=0

A
(w,T )
i,j c

(T )
j = b

(w)
i , i = 0, . . . , N, (278)

N∑
j=0

A
(T,w)
i,j c

(w)
j +

N∑
j=0

A
(T,T )
i,j c

(T )
j = b

(T )
i , i = 0, . . . , N, (279)

A
(w,w)
i,j = µ(∇ψj , ψi), (280)

A
(w,T )
i,j = 0, (281)

b
(w)
i = (β, ψi), (282)

A
(w,T )
i,j = µ((∇ψw−) · ∇ψj), ψi), (283)

A
(T,T )
i,j = κ(∇ψj , ψi), (284)

b
(T )
i = 0 . (285)

This system can alternatively be written in matrix-vector form as

µKc(w) = 0b(w), (286)

Lc(w) + κKc(T ) = 0, (287)

with L as the matrix from the ∇w− · ∇ operator: Li,j = A
(w,T )
i,j .

The matrix-vector equations are often conveniently written in block form:(
µK 0
L κK

)(
c(w)

c(T )

)
=

(
b(w)

0

)
,

Note that in the general case where all unknowns enter all equations, we
have to solve the compound system (297)-(298) since then we cannot utilize the
special property that (270) does not involve T and can be solved first.

When the viscosity depends on the temperature, the µ∇2w term must be
replaced by ∇ · (µ(T )∇w), and then T enters the equation for w. Now we have
a two-way coupling since both equations contain w and T and therefore must
be solved simultaneously Th equation ∇ · (µ(T )∇w) = −β is nonlinear, and if
some iteration procedure is invoked, where we use a previously computed T− in
the viscosity (µ(T−)), the coefficient is known, and the equation involves only
one unknown, w. In that case we are back to the one-way coupled set of PDEs.

We may also formulate our PDE system as a vector equation. To this end, we
introduce the vector of unknowns u = (u(0), u(1)), where u(0) = w and u(1) = T .
We then have

∇2u =

(
−µ−1β

−κ−1µ∇u(0) · ∇u(0)

)
.
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20.4 Different function spaces for the unknowns

It is easy to generalize the previous formulation to the case where w ∈ V (w) and
T ∈ V (T ), where V (w) and V (T ) can be different spaces with different numbers
of degrees of freedom. For example, we may use quadratic basis functions for
w and linear for T . Approximation of the unknowns by different finite element
spaces is known as mixed finite element methods.

We write

V (w) = span{ψ(w)
0 , . . . , ψ

(w)
Nw
},

V (T ) = span{ψ(T )
0 , . . . , ψ

(T )
NT
} .

The next step is to multiply (260) by a test function v(w) ∈ V (w) and (261) by a
v(T ) ∈ V (T ), integrate by parts and arrive at

∫
Ω

µ∇w · ∇v(w) dx =

∫
Ω

βv(w) dx ∀v(w) ∈ V (w), (288)∫
Ω

κ∇T · ∇v(T ) dx =

∫
Ω

µ∇w · ∇w v(T ) dx ∀v(T ) ∈ V (T ) . (289)

The compound scalar variational formulation applies a test vector function
v = (v(w), v(T )) and reads

∫
Ω

(µ∇w · ∇v(w) + κ∇T · ∇v(T )) dx =

∫
Ω

(βv(w) + µ∇w · ∇w v(T )) dx, (290)

valid ∀v ∈ V = V (w) × V (T ).
The associated linear system is similar to (270)-(271) or (297)-(298), except

that we need to distinguish between ψ
(w)
i and ψ

(T )
i , and the range in the sums

over j must match the number of degrees of freedom in the spaces V (w) and
V (T ). The formulas become

Nw∑
j=0

A
(w)
i,j c

(w)
j = b

(w)
i , i = 0, . . . , Nw, (291)

NT∑
j=0

A
(T )
i,j c

(T )
j = b

(T )
i , i = 0, . . . , NT , (292)

A
(w)
i,j = µ(∇ψ(w)

j , ψ
(w)
i ), (293)

b
(w)
i = (β, ψ

(w)
i ), (294)

A
(T )
i,j = κ(∇ψ(T )

j , ψ
(T )
i ), (295)

b
(T )
i = µ(∇w−, ψ(T )

i ) . (296)
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In the case we formulate one compound linear system involving both c
(w)
j ,

j = 0, . . . , Nw, and c
(T )
j , j = 0, . . . , NT , (297)-(298) becomes

Nw∑
j=0

A
(w,w)
i,j c

(w)
j +

NT∑
j=0

A
(w,T )
i,j c

(T )
j = b

(w)
i , i = 0, . . . , Nw, (297)

Nw∑
j=0

A
(T,w)
i,j c

(w)
j +

NT∑
j=0

A
(T,T )
i,j c

(T )
j = b

(T )
i , i = 0, . . . , NT , (298)

A
(w,w)
i,j = µ(∇ψ(w)

j , ψ
(w)
i ), (299)

A
(w,T )
i,j = 0, (300)

b
(w)
i = (β, ψ

(w)
i ), (301)

A
(w,T )
i,j = µ(∇w− · ∇ψ(w)

j ), ψ
(T )
i ), (302)

A
(T,T )
i,j = κ(∇ψ(T )

j , ψ
(T )
i ), (303)

b
(T )
i = 0 . (304)

The corresponding block form(
µK(w) 0
L κK(T )

)(
c(w)

c(T )

)
=

(
b(w)

0

)
,

has square and rectangular block matrices: K(w) is Nw ×Nw, K(T ) is NT ×NT ,
while L is NT ×Nw,

20.5 Computations in 1D

We can reduce the system (260)-(261) to one space dimension, which corresponds
to flow in a channel between two flat plates. Alternatively, one may consider
flow in a circular pipe, introduce cylindrical coordinates, and utilize the radial
symmetry to reduce the equations to a one-dimensional problem in the radial
coordinate. The former model becomes

µwxx = −β, (305)

κTxx = −µw2
x, (306)

while the model in the radial coordinate r reads

µ
1

r

d

dr

(
r
dw

dr

)
= −β, (307)

κ
1

r

d

dr

(
r
dT

dr

)
= −µ

(
dw

dr

)2

. (308)
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The domain for (305)-(306) is Ω = [0, H], with boundary conditions w(0) =
w(H) = 0 and T (0) = T (H) = T0. For (307)-(308) the domain is [0, R] (R being
the radius of the pipe) and the boundary conditions are du/dr = dT/dr = 0 for
r = 0, u(R) = 0, and T (R) = T0.

Calculations to be continued...

21 Exercises

Exercise 23: Refactor functions into a more general class

Section 11.2 displays three functions for computing the analytical solution of
some simple model problems. There is quite some repetitive code, suggesting
that the functions can benefit from being refactored into a class where the user
can define the f(x), a(x), and the boundary conditions in particular methods
in subclasses. Demonstrate how the new class can be used to solve the three
particular problems in Section 11.2.

In the method that computes the solution, check that the solution found fulfills
the differential equation and the boundary conditions. Filename: uxx_f_sympy_class.py.

Exercise 24: Compute the deflection of a cable with sine
functions

A hanging cable of length L with significant tension has a downward deflection
w(x) governed by

Solve

Tw′′(x) = `(x),

where T is the tension in the cable and `(x) the load per unit length. The cable
is fixed at x = 0 and x = L so the boundary conditions become T (0) = T (L) = 0.
We assume a constant load `(x) = const.

The solution is expected to be symmetric around x = L/2. Formulating the
problem for x ∈ Ω = [0, L/2] and then scaling it, results in the scaled problem
for the dimensionless vertical deflection u:

u′′ = 1, x ∈ (0, 1), u(0) = 0, u′(1) = 0 .

Introduce the function space spanned by ψi = sin((i + 1)πx/2), i = 1, . . . , N .
Use a Galerkin and a least squares method to find the coefficients cj in u(x) =∑
j cjψj . Find how fast the coefficients decrease in magnitude by looking at

cj/cj−1. Find the error in the maximum deflection at x = 1 when only one basis
function is used (N = 0).

What happens if we choose basis functions ψi = sin((i+ 1)πx)? These basis
functions are appropriate if we do not utilize symmetry and solve the problem
on [0, L]. A scaled version of this problem reads

u′′ = 1, x ∈ (0, 1), u(0) = u(1) = 0 .
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Carry out the computations with N = 0 and demonstrate that the maximum
deflection u(1/2) is the same in the problem utilizing symmetry and the problem
covering the whole cable. Filename: cable_sin.pdf.

Exercise 25: Check integration by parts

Consider the Galerkin method for the problem involving u in Exercise 24. Show
that the formulas for cj are independent of whether we perform integration by
parts or not. Filename: cable_integr_by_parts.pdf.

Exercise 26: Compute the deflection of a cable with 2 P1
elements

Solve the problem for u in Exercise 24 using two P1 linear elements. Filename:
cable_2P1.pdf.

Exercise 27: Compute the deflection of a cable with 1 P2
element

Solve the problem for u in Exercise 24 using one P2 element with quadratic basis
functions. Filename: cable_1P2.pdf.

Exercise 28: Compute the deflection of a cable with a step
load

We consider the deflection of a tension cable as described in Exercise 24. Now
the load is

`(x) =

{
`1, x < L/2,
`2, x ≥ L/2 x ∈ [0, L] .

This load is not symmetric with respect to the midpoint x = L/2 so the solution
loses its symmetry and we must solve the scaled problem

u′′ =

{
1, x < 1/2,
0, x ≥ 1/2

x ∈ (0, 1), u(0) = 0, u(1) = 0 .

a) Use ψi = sin((i + 1)πx), i = 0, . . . , N and the Galerkin method without
integration by parts. Derive a formula for cj in the solution expansion u =∑
j cjψj . Plot how fast the coefficients cj tend to zero (on a log scale).

b) Solve the problem with P1 finite elements. Plot the solution for Ne = 2, 4, 8
elements.

Filename: cable_discont_load.pdf.
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Exercise 29: Show equivalence between linear systems

Incorporation of Dirichlet conditions at x = 0 and x = L in a finite element
mesh on Ω = [0, L] can either be done by introducing an expansion u(x) =

U0ϕ0 + UNn
ϕNn

+
∑N
j=0 cjϕν(j), with N = Nn − 2 and considering u values

at the inner nodes as unknowns, or one can assemble the matrix system with
u(x) =

∑N=Nn

j=0 cjϕj and afterwards replace the rows corresponding to known cj
values by the boundary conditions. Show that the two approaches are equivalent.

Exercise 30: Compute with a non-uniform mesh

Derive the linear system for the problem −u′′ = 2 on [0, 1], with u(0) = 0
and u(1) = 1, using P1 elements and a non-uniform mesh. The vertices have
coordinates x0 = 0 < x1 < · · · < xN = 1, and the length of cell number e is
he = xe+1 − xe.

It is of interest to compare the discrete equations for the finite element
method in a non-uniform mesh with the corresponding discrete equations arising
from a finite difference method. Go through the derivation of the finite difference
formula u′′(xi) ≈ [DxDxu]i and modify it to find a natural discretization of
u′′(xi) on a non-uniform mesh. Filename: nonuniform_P1.pdf.

Problem 31: Solve a 1D finite element problem by hand

The following scaled 1D problem is a very simple, yet relevant, model for
convective transport in fluids:

u′ = εu′′, u(0) = 0, u(1) = 1, x ∈ [0, 1] . (309)

a) Find the analytical solution to this problem. (Introduce w = u′, solve the
first-order differential equation for w(x), and integrate once more.)

b) Derive the variational form of this problem.

c) Introduce a finite element mesh with uniform partitioning. Use P1 elements
and compute the element matrix and vector for a general element.

d) Incorporate the boundary conditions and assemble the element contribu-
tions.

e) Identify the resulting linear system as a finite difference discretization of
the differential equation using

[D2xu = εDxDxu]i .
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f) Compute the numerical solution and plot it together with the exact solution
for a mesh with 20 elements and ε = 10, 1, 0.1, 0.01.

Filename: convdiff1D_P1.pdf.

Exercise 32: Compare finite elements and differences for a
radially symmetric Poisson equation

We consider the Poisson problem in a disk with radius R with Dirichlet conditions
at the boundary. Given that the solution is radially symmetric and hence
dependent only on the radial coordinate (r =

√
x2 + y2), we can reduce the

problem to a 1D Poisson equation

− 1

r

d

dr

(
r
du

dr

)
= f(r), r ∈ (0, R), u′(0) = 0, u(R) = UR . (310)

a) Derive a variational form of (310) by integrating over the whole disk, or
posed equivalently: use a weighting function 2πrv(r) and integrate r from 0 to
R.

b) Use a uniform mesh partition with P1 elements and show what the resulting
set of equations becomes. Integrate the matrix entries exact by hand, but use a
Trapezoidal rule to integrate the f term.

c) Explain that an intuitive finite difference method applied to (310) gives

1

ri

1

h2

(
ri+ 1

2
(ui+1 − ui)− ri− 1

2
(ui − ui−1)

)
= fi, i = rh .

For i = 0 the factor 1/ri seemingly becomes problematic. One must always
have u′(0) = 0, because of the radial symmetry, which implies u−1 = u1, if we
allow introduction of a fictitious value u−1. Using this u−1 in the difference
equation for i = 0 gives

1

r0

1

h2

(
r 1

2
(u1 − u0)− r− 1

2
(u0 − u1)

)
=

1

r0

1

2h2
((r0 + r1)(u1 − u0)− (r−1 + r0)(u0 − u1)) ≈ 2(u1 − u0),

if we use r−1 + r1 ≈ 2r0.

Set up the complete set of equations for the finite difference method and
compare to the finite element method in case a Trapezoidal rule is used to
integrate the f term in the latter method.

Filename: radial_Poisson1D_P1.pdf.
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Exercise 33: Compute with variable coefficients and P1 el-
ements by hand

Consider the problem

− d

dx

(
a(x)

du

dx

)
+ γu = f(x), x ∈ Ω = [0, L], u(0) = α, u′(L) = β . (311)

We choose a(x) = 1 + x2. Then

u(x) = α+ β(1 + L2) tan−1(x), (312)

is an exact solution if f(x) = γu.

Derive a variational formulation and compute general expressions for the
element matrix and vector in an arbitrary element, using P1 elements and a
uniform partitioning of [0, L]. The right-hand side integral is challenging and
can be computed by a numerical integration rule. The Trapezoidal rule (101)
gives particularly simple expressions. Filename: atan1D_P1.pdf.

Exercise 34: Solve a 2D Poisson equation using polynomials
and sines

The classical problem of applying a torque to the ends of a rod can be modeled
by a Poisson equation defined in the cross section Ω:

−∇2u = 2, (x, y) ∈ Ω,

with u = 0 on ∂Ω. Exactly the same problem arises for the deflection of a
membrane with shape Ω under a constant load.

For a circular cross section one can readily find an analytical solution. For a
rectangular cross section the analytical approach ends up with a sine series. The
idea in this exercise is to use a single basis function to obtain an approximate
answer.

We assume for simplicity that the cross section is the unit square: Ω =
[0, 1]× [0, 1].

a) We consider the basis ψp,q(x, y) = sin((p + 1)πx) sin(qπy), p, q = 0, . . . , n.
These basis functions fulfill the Dirichlet condition. Use a Galerkin method and
n = 0.

b) The basis function involving sine functions are orthogonal. Use this
property in the Galerkin method to derive the coefficients cp,q in a formula
u =

∑
p

∑
q cp,qψp,q(x, y).
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c) Another possible basis is ψi(x, y) = (x(1−x)y(1− y))i+1, i = 0, . . . , N . Use
the Galerkin method to compute the solution for N = 0. Which choice of a
single basis function is best, u ∼ x(1 − x)y(1 − y) or u ∼ sin(πx) sin(πy)? In
order to answer the question, it is necessary to search the web or the literature
for an accurate estimate of the maximum u value at x = y = 1/2.

Filename: torsion_sin_xy.pdf.

Exercise 35: Analyze a Crank-Nicolson scheme for the dif-
fusion equation

Perform the analysis in Section 19.10 for a 1D diffusion equation ut = αuxx
discretized by the Crank-Nicolson scheme in time:

un+1 − un

∆t
= α

1

2

(
un+1

∂x2

un

∂x2

)
,

or written compactly with finite difference operators,

[Dtu = αDxDxu
t]n+ 1

2 .

(From a strict mathematical point of view, the un and un+1 in these equations
should be replaced by une and un+1

e to indicate that the unknown is the exact
solution of the PDE discretized in time, but not yet in space, see Section 19.1.)
Make plots similar to those in Section 19.10. Filename: fe_diffusion.pdf.
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affine mapping, 47, 81
approximation

by sines, 20
collocation, 24
interpolation, 25
of functions, 13
of general vectors, 11
of vectors in the plane, 7

assembly, 45

cell, 64
cells list, 65
chapeau function, 40
Chebyshev nodes, 29
collocation method (approximation), 24

degree of freedom, 64
dof map, 64
dof map list, 65

edges, 79
element matrix, 44
essential boundary condition, 107

faces, 79
finite element basis function, 40
finite element expansion

reference element, 65
finite element mesh, 33
finite element, definition, 64

Galerkin method
functions, 15
vectors, 10, 12

Gauss-Legendre quadrature, 70

hat function, 40
Hermite polynomials, 68

integration by parts, 100
interpolation, 25
isoparametric mapping, 82

Kronecker delta, 27, 36

Lagrange (interpolating) polynomial,
26

least squreas method
vectors, 9

linear elements, 40
lumped mass matrix, 63, 146

mapping of reference cells
affine mapping, 47
isoparametric mapping, 82

mass lumping, 63, 146
mass matrix, 63, 144, 146
mesh

finite elements, 33
Midpoint rule, 69
mixed finite elements, 162

natural boundary condition, 107
Newton-Cotes rules, 69
numerical integration

Midpoint rule, 69
Newton-Cotes formulas, 69
Simpson’s rule, 69
Trapezoidal rule, 69

P1 element, 40
P2 element, 40
projection

functions, 15
vectors, 10, 12

quadratic elements, 40

reference cell, 64
residual, 93
Runge’s phenomenon, 28

simplex elements, 79
simplices, 79
Simpson’s rule, 69
sparse matrices, 58
stiffness matrix, 144
strong form, 101
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tensor product, 71
test function, 95
test space, 95
Trapezoidal rule, 69
trial function, 95
trial space, 95

variational formulation, 95
vertex, 64
vertices list, 65

weak form, 101
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