Hans Petter Langtangen ${ }^{1,2}$
${ }^{1}$ Center for Biomedical Computing, Simula Research Laboratory ${ }^{2}$ Department of Informatics, University of Oslo

Dec 16, 2013

PRELIMINARY VERSION

Jontents

Approximation of vectors 7
1.1 Approximation of planar vectors 7
1.2 Approximation of general vectors 11
Approximation of functions 13
2.1 The least squares method 14
2.2 The projection (or Galerkin) method 15
2.3 Example: linear approximation 15
2.4 Implementation of the least squares method 16
2.5 Perfect approximation 18
2.6 Ill-conditioning 18
2.7 Fourier series 20
2.8 Orthogonal basis functions 22
2.9 Numerical computations 23
2.10 The interpolation (or collocation) method 24
2.11 Lagrange polynomials 26
Finite element basis functions 32
3.1 Elements and nodes 33
3.2 The basis functions 35
3.3 Example on piecewise quadratic finite element functions 37
3.4 Example on piecewise linear finite element functions 39
3.5 Example on piecewise cubic finite element basis functions 40
3.6 Calculating the linear system 41
3.7 Assembly of elementwise computations 44
3.8 Mapping to a reference element 46
3.9 Example: Integration over a reference element 49

4 Implementation
4.1 Integration
4.2 Linear system assembly and solution
4.3 Example on computing symbolic approximations
4.4 Comparison with finite elements and interpolation/collocation
4.5 Example on computing numerical approximations
4.6 The structure of the coefficient matrix
4.7 Applications
4.8 Sparse matrix storage and solution

5 Comparison of finite element and finite difference approxi tion
5.1 Finite difference approximation of given functions
5.2 Finite difference interpretation of a finite element approximati
5.3 Making finite elements behave as finite differences

6 A generalized element concept
6.1 Cells, vertices, and degrees of freedom
6.2 Extended finite element concept
6.3 Implementation
6.4 Computing the error of the approximation
6.5 Example: Cubic Hermite polynomials

7 Numerical integration
7.1 Newton-Cotes rules
7.2 Gauss-Legendre rules with optimized points

8 Approximation of functions in 2D
8.1 2D basis functions as tensor products of 1D functions
8.2 Example: Polynomial basis in 2D
8.3 Implementation
8.4 Extension to 3D

9 Finite elements in 2D and 3D
9.1 Basis functions over triangles in the physical domain
9.2 Basis functions over triangles in the reference cell
9.3 Affine mapping of the reference cell.
9.4 Isoparametric mapping of the reference cell
9.5 Computing integrals

10 Exercises

11 Basic principles for approximating differential equations
11.1 Differential equation models
11.2 Simple model problems
11.3 Forming the residual
11.4 The least squares method
11.5 The Galerkin method 95
11.6 The Method of Weighted Residuals 96
11.7 Test and Trial Functions 96
11.8 The collocation method 97
11.9 Examples on using the principles 97
11.10Integration by parts 101
11.11Boundary function 102
11.12 Abstract notation for variational formulations 104
11.13Variational problems and optimization of functionals 105
2 Examples on variational formulations 106
2.1 Variable coefficient 106
12.2 First-order derivative in the equation and boundary condition 108
12.3 Nonlinear coefficient 109
12.4 Computing with Dirichlet and Neumann conditions 110
12.5 When the numerical method is exact 11
3 Computing with finite elements 111
13.1 Finite element mesh and basis functions 112
13.2 Computation in the global physical domain 112
13.3 Comparison with a finite difference discretization 115
13.4 Cellwise computations 115
4 Boundary conditions: specified nonzero value 118
14.1 General construction of a boundary function 118
14.2 Example on computing with finite element-based a boundary function 120
14.3 Modification of the linear system 121
14.4 Symmetric modification of the linear system 124
14.5 Modification of the element matrix and vector 125
5 Boundary conditions: specified derivative 126
15.1 The variational formulation 126
15.2 Boundary term vanishes because of the test functions 126
15.3 Boundary term vanishes because of linear system modifications 127
15.4 Direct computation of the global linear system 127
15.5 Cellwise computations 129
6 Implementation 130
16.1 Global basis functions 130
16.2 Example: constant right-hand side 132
16.3 Finite elements 133

17 Variational formulations in 2D and 3D
17.1 Transformation to a reference cell in 2D and 3D
17.2 Numerical integration
17.3 Convenient formulas for P1 elements in 2D

18 Summary

19 Time-dependent problems

19.1 Discretization in time by a Forward Euler scheme
19.2 Variational forms
19.3 Simplified notation for the solution at recent time levels
19.4 Deriving the linear systems
19.5 Computational algorithm
19.6 Comparing P1 elements with the finite difference method
19.7 Discretization in time by a Backward Euler scheme
19.8 Dirichlet boundary conditions
19.9 Example: Oscillating Dirichlet boundary condition
19.10Analysis of the discrete equations

20 Systems of differential equations

20.1 Variational forms
20.2 A worked example .
20.3 Identical function spaces for the unknowns
20.4 Different function spaces for the unknowns
20.5 Computations in 1D

21 Exercises

ist of Exercises and Problems

Exercise 1 Linear algebra refresher I
Exercise 2 Linear algebra refresher II
p. 85

Exercise 3 Approximate a three-dimensional vector in ...
p. 86

Exercise 4 Approximate the exponential function by power ...
p. 86

Exercise 5 Approximate the sine function by power functions ... p. 86
Exercise 6 Approximate a steep function by sines p. 86
Exercise 7 Animate the approximation of a steep function ... p. 87
Exercise 8 Fourier series as a least squares approximation ... p. 87
Exercise 9 Approximate a steep function by Lagrange polynomials ... p. 88
Exercise 10 Define nodes and 10 ent
Exercise 11 Define vertices, cells, and dof maps
p. 87
p. 88

Exercise 12 Construct matrix sparsity patterns
13 Perform symbolic finite element computations
Exercise 14 Approximate a steep function by P1 and P2 ..
p. 88
p. 88
p. 88

Exercise 15 Approximate a steep function by P3 and P4 ...
Exercise 16 Investigate the approximation error in finite ...
p. 88
p. 89

Exercise 17 Approximate a step function by finite elements ... p. 89
Exercise 18 2D approximation with orthogonal functions p. 89
Exercise 19° Use The Trapeidal rule and P1
Problem 20 Compare P1 elements and interpolation
Exercise 21 Implement 3D computations with global basis...
Exercise 22 Use Simpson's rule and P2 elements
Exercise 23 Refactor functions into a more general class
Exercise 24 Compute the deflection of a cable with sine ..
Exercise 25 Check integration by parts
Exercise 26 Compute the deflection of a cable with 2 P 1 ..
Exercise 27 Compute the deflection of a cable with 1 P2 ...
Exercise 28 Compute the deflection of a cable with a step ..
Exercise 29 Show equivalence between linear systems
Exercise 30 Compute with a non-uniform mesh
Problem 31 Solve a 1D finite element problem by hand
Exercise 32 Compare finite elements and differences for ...
Exercise 33 Compute with variable coefficients and P1 ...
Exercise 34 Solve a 2D Poisson equation using polynomials ...
\qquad
Exercise 35 Analyze a Crank-Nicolson scheme for the diffusion ...

The finite element method is a powerful tool for solving differential ec The method can easily deal with complex geometries and higher-order apt tions of the solution. Figure 1 shows a two-dimensional domain with a no geometry. The idea is to divide the domain into triangles (elements) a a polynomial approximations to the unknown functions on each triang method glues these piecewise approximations together to find a global : Linear and quadratic polynomials over the triangles are particularly pc

Figure 1: Domain for flow around a dolphin.
Many successful numerical methods for differential equations, incluc finite element method, aim at approximating the unknown function by

$$
u(x)=\sum_{i=0}^{N} c_{i} \psi_{i}(x)
$$

where $\psi_{i}(x)$ are prescribed functions and c_{0}, \ldots, c_{N} are unknown coeffic be determined. Solution methods for differential equations utilizing (have a principle for constructing $N+1$ equations to determine c_{0}, \ldots, c_{I} there is a machinery regarding the actual constructions of the equat c_{0}, \ldots, c_{N}, in a particular problem. Finally, there is a solve phase for cos the solution c_{0}, \ldots, c_{N} of the $N+1$ equations.

Especially in the finite element method, the machinery for constructing the iscrete equations to be implemented on a computer is quite comprehensive, with tany mathematical and implementational details entering the scene at the same me. From an ease-of-learning perspective it can therefore be wise to introduce ie computational machinery for a trivial equation: $u=f$. Solving this equation ith f given and u on the form (1) means that we seek an approximation to f. This approximation problem has the advantage of introducing most f the finite element toolbox, but with postponing demanding topics related , differential equations (e.g., integration by parts, boundary conditions, and jordinate mappings). This is the reason why we shall first become familiar ith finite element approximation before addressing finite element methods for ifferential equations.
First, we refresh some linear algebra concepts about approximating vectors 1 vector spaces. Second, we extend these concepts to approximating functions i function spaces, using the same principles and the same notation. We present xamples on approximating functions by global basis functions with support aroughout the entire domain. Third, we introduce the finite element type of ical basis functions and explain the computational algorithms for working with 1ch functions. Three types of approximation principles are covered: 1) the least孔uares method, 2) the L_{2} projection or Galerkin method, and 3) interpolation r collocation.

Approximation of vectors

le shall start with introducing two fundamental methods for determining the jefficients c_{i} in (1) and illustrate the methods on approximation of vectors, ecause vectors in vector spaces give a more intuitive understanding than starting irectly with approximation of functions in function spaces. The extension om vectors to functions will be trivial as soon as the fundamental ideas are nderstood.
The first method of approximation is called the least squares method and msists in finding c_{i} such that the difference $u-f$, measured in some norm, is inimized. That is, we aim at finding the best approximation u to f (in some orm). The second method is not as intuitive: we find u such that the error $-f$ is orthogonal to the space where we seek u. This is known as projection, r we may also call it a Galerkin method. When approximating vectors and metions, the two methods are equivalent, but this is no longer the case when pplying the principles to differential equations.

. 1 Approximation of planar vectors

uppose we have given a vector $\boldsymbol{f}=(3,5)$ in the $x y$ plane and that we want to pproximate this vector by a vector aligned in the direction of the vector (a, b). igure 2 depicts the situation.

We introduce the vector space V spanned by the vector $\boldsymbol{\psi}_{0}=(a, b)$:

Figure 2: Approximation of a two-dimensional vector by a one-dimı vector.

$$
V=\operatorname{span}\left\{\boldsymbol{\psi}_{0}\right\} .
$$

We say that ψ_{0} is a basis vector in the space V. Our aim is to f vector $\boldsymbol{u}=c_{0} \boldsymbol{\psi}_{0} \in V$ which best approximates the given vector $\boldsymbol{f}=($ reasonable criterion for a best approximation could be to minimize the 1 , the difference between the approximate \boldsymbol{u} and the given \boldsymbol{f}. The differ error $\boldsymbol{e}=\boldsymbol{f}-\boldsymbol{u}$, has its length given by the norm

$$
\|e\|=(e, e)^{\frac{1}{2}}
$$

where $(\boldsymbol{e}, \boldsymbol{e})$ is the inner product of \boldsymbol{e} and itself. The inner product, als scalar product or dot product, of two vectors $\boldsymbol{u}=\left(u_{0}, u_{1}\right)$ and $\boldsymbol{v}=(\imath$ defined as

$$
(\boldsymbol{u}, \boldsymbol{v})=u_{0} v_{0}+u_{1} v_{1}
$$

Lemark 1. We should point out that we use the notation (\cdot, \cdot) for two different ings: (a, b) for scalar quantities a and b means the vector starting in the origin ad ending in the point (a, b), while $(\boldsymbol{u}, \boldsymbol{v})$ with vectors \boldsymbol{u} and \boldsymbol{v} means the inner roduct of these vectors. Since vectors are here written in boldface font there rould be no confusion. We may add that the norm associated with this inner roduct is the usual Eucledian length of a vector.

Lemark 2. It might be wise to refresh some basic linear algebra by consulting textbook. Exercises 1 and 2 suggest specific tasks to regain familiarity with indamental operations on inner product vector spaces.
'he least squares method. We now want to find c_{0} such that it minimizes $e \|$. The algebra is simplified if we minimize the square of the norm, $\|e\|^{2}=$ \geq, \boldsymbol{e}), instead of the norm itself. Define the function

$$
\begin{equation*}
E\left(c_{0}\right)=(\boldsymbol{e}, \boldsymbol{e})=\left(\boldsymbol{f}-c_{0} \boldsymbol{\psi}_{0}, \boldsymbol{f}-c_{0} \boldsymbol{\psi}_{0}\right) \tag{4}
\end{equation*}
$$

le can rewrite the expressions of the right-hand side in a more convenient form r further work:

$$
\begin{equation*}
E\left(c_{0}\right)=(\boldsymbol{f}, \boldsymbol{f})-2 c_{0}\left(\boldsymbol{f}, \boldsymbol{\psi}_{0}\right)+c_{0}^{2}\left(\boldsymbol{\psi}_{0}, \boldsymbol{\psi}_{0}\right) . \tag{5}
\end{equation*}
$$

he rewrite results from using the following fundamental rules for inner product jaces:

$$
\begin{gather*}
(\alpha \boldsymbol{u}, \boldsymbol{v})=\alpha(\boldsymbol{u}, \boldsymbol{v}), \quad \alpha \in \mathbb{R}, \tag{6}\\
(\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{w})=(\boldsymbol{u}, \boldsymbol{w})+(\boldsymbol{v}, \boldsymbol{w}), \tag{7}\\
(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{v}, \boldsymbol{u}) . \tag{8}
\end{gather*}
$$

Minimizing $E\left(c_{0}\right)$ implies finding c_{0} such that

$$
\frac{\partial E}{\partial c_{0}}=0 .
$$

।ifferentiating (5) with respect to c_{0} gives

$$
\begin{equation*}
\frac{\partial E}{\partial c_{0}}=-2\left(\boldsymbol{f}, \boldsymbol{\psi}_{0}\right)+2 c_{0}\left(\boldsymbol{\psi}_{0}, \boldsymbol{\psi}_{0}\right) . \tag{9}
\end{equation*}
$$

etting the above expression equal to zero and solving for c_{0} gives

$$
\begin{equation*}
c_{0}=\frac{\left(\boldsymbol{f}, \boldsymbol{\psi}_{0}\right)}{\left(\boldsymbol{\psi}_{0}, \boldsymbol{\psi}_{0}\right)} \tag{10}
\end{equation*}
$$

hich in the present case with $\boldsymbol{\psi}_{0}=(a, b)$ results in

$$
c_{0}=\frac{3 a+5 b}{a^{2}+b^{2}} .
$$

For later, it is worth mentioning that setting the key equation (9) can be rewritten as

$$
\left(\boldsymbol{f}-c 0 \boldsymbol{\psi}_{0}, \boldsymbol{\psi}_{0}\right)=0,
$$

or

$$
\left(\boldsymbol{e}, \boldsymbol{\psi}_{0}\right)=0
$$

The projection method. We shall now show that minimizing $\|\boldsymbol{e}\|^{2}$ that \boldsymbol{e} is orthogonal to any vector \boldsymbol{v} in the space V. This result is visua] clear from Figure 2 (think of other vectors along the line (a, b) : all of tl lead to a larger distance between the approximation and $\boldsymbol{f})$. To see th mathematically, we express any $\boldsymbol{v} \in V$ as $\boldsymbol{v}=s \boldsymbol{\psi}_{0}$ for any scalar para: recall that two vectors are orthogonal when their inner product vanisk calculate the inner product

$$
\begin{aligned}
\left(\boldsymbol{e}, s \boldsymbol{\psi}_{0}\right) & =\left(\boldsymbol{f}-c_{0} \boldsymbol{\psi}_{0}, s \boldsymbol{\psi}_{0}\right) \\
& =\left(\boldsymbol{f}, s \boldsymbol{\psi}_{0}\right)-\left(c_{0} \boldsymbol{\psi}_{0}, s \boldsymbol{\psi}_{0}\right) \\
& =s\left(\boldsymbol{f}, \boldsymbol{\psi}_{0}\right)-s c_{0}\left(\boldsymbol{\psi}_{0}, \boldsymbol{\psi}_{0}\right) \\
& =s\left(\boldsymbol{f}, \boldsymbol{\psi}_{0}\right)-s \frac{\left(\boldsymbol{f}, \boldsymbol{\psi}_{0}\right)}{\left(\boldsymbol{\psi}_{0}, \boldsymbol{\psi}_{0}\right)}\left(\boldsymbol{\psi}_{0}, \boldsymbol{\psi}_{0}\right) \\
& =s\left(\left(\boldsymbol{f}, \boldsymbol{\psi}_{0}\right)-\left(\boldsymbol{f}, \boldsymbol{\psi}_{0}\right)\right) \\
& =0 .
\end{aligned}
$$

Therefore, instead of minimizing the square of the norm, we could dem ε e is orthogonal to any vector in V. This method is known as projection, it is the same as projecting the vector onto the subspace. (The appro also be referred to as a Galerkin method as explained at the end of Sect

Mathematically the projection method is stated by the equation

$$
(\boldsymbol{e}, \boldsymbol{v})=0, \quad \forall \boldsymbol{v} \in V
$$

An arbitrary $\boldsymbol{v} \in V$ can be expressed as $s \boldsymbol{\psi}_{0}, s \in \mathbb{R}$, and therefore (13)

$$
\left(\boldsymbol{e}, s \boldsymbol{\psi}_{0}\right)=s\left(\boldsymbol{e}, \boldsymbol{\psi}_{0}\right)=0
$$

which means that the error must be orthogonal to the basis vector in tl V :

$$
\left(\boldsymbol{e}, \boldsymbol{\psi}_{0}\right)=0 \quad \text { or } \quad\left(\boldsymbol{f}-c_{0} \boldsymbol{\psi}_{0}, \boldsymbol{\psi}_{0}\right)=0 .
$$

The latter equation gives (10) and it also arose from least squares comp in (12).

. 2 Approximation of general vectors

et us generalize the vector approximation from the previous section to vectors 1 spaces with arbitrary dimension. Given some vector \boldsymbol{f}, we want to find the est approximation to this vector in the space

$$
V=\operatorname{span}\left\{\boldsymbol{\psi}_{0}, \ldots, \boldsymbol{\psi}_{N}\right\}
$$

Je assume that the basis vectors $\boldsymbol{\psi}_{0}, \ldots, \boldsymbol{\psi}_{N}$ are linearly independent so that one of them are redundant and the space has dimension $N+1$. Any vector $\in V$ can be written as a linear combination of the basis vectors,

$$
\boldsymbol{u}=\sum_{j=0}^{N} c_{j} \boldsymbol{\psi}_{j}
$$

here $c_{j} \in \mathbb{R}$ are scalar coefficients to be determined.
'he least squares method. Now we want to find c_{0}, \ldots, c_{N}, such that \boldsymbol{u} is re best approximation to \boldsymbol{f} in the sense that the distance (error) $\boldsymbol{e}=\boldsymbol{f}-\boldsymbol{u}$ minimized. Again, we define the squared distance as a function of the free arameters c_{0}, \ldots, c_{N},

$$
\begin{align*}
E\left(c_{0}, \ldots, c_{N}\right) & =(\boldsymbol{e}, \boldsymbol{e})=\left(\boldsymbol{f}-\sum_{j} c_{j} \boldsymbol{\psi}_{j}, \boldsymbol{f}-\sum_{j} c_{j} \boldsymbol{\psi}_{j}\right) \\
& =(\boldsymbol{f}, \boldsymbol{f})-2 \sum_{j=0}^{N} c_{j}\left(\boldsymbol{f}, \boldsymbol{\psi}_{j}\right)+\sum_{p=0}^{N} \sum_{q=0}^{N} c_{p} c_{q}\left(\boldsymbol{\psi}_{p}, \boldsymbol{\psi}_{q}\right) \tag{14}
\end{align*}
$$

Iinimizing this E with respect to the independent variables c_{0}, \ldots, c_{N} is obtained y requiring

$$
\frac{\partial E}{\partial c_{i}}=0, \quad i=0, \ldots, N
$$

he second term in (14) is differentiated as follows:

$$
\begin{equation*}
\frac{\partial}{\partial c_{i}} \sum_{j=0}^{N} c_{j}\left(\boldsymbol{f}, \boldsymbol{\psi}_{j}\right)=\left(\boldsymbol{f}, \boldsymbol{\psi}_{i}\right) \tag{15}
\end{equation*}
$$

nce the expression to be differentiated is a sum and only one term, $c_{i}\left(\boldsymbol{f}, \boldsymbol{\psi}_{i}\right)$, ontains c_{i} and this term is linear in c_{i}. To understand this differentiation in etail, write out the sum specifically for, e.g, $N=3$ and $i=1$.

The last term in (14) is more tedious to differentiate. We start with

$$
\frac{\partial}{\partial c_{i}} c_{p} c_{q}= \begin{cases}0, & \text { if } p \neq i \text { and } q \neq i \tag{16}\\ c_{q}, & \text { if } p=i \text { and } q \neq i \\ c_{p}, & \text { if } p \neq i \text { and } q=i \\ 2 c_{i}, & \text { if } p=q=i\end{cases}
$$

Then
$\frac{\partial}{\partial c_{i}} \sum_{p=0}^{N} \sum_{q=0}^{N} c_{p} c_{q}\left(\boldsymbol{\psi}_{p}, \boldsymbol{\psi}_{q}\right)=\sum_{p=0, p \neq i}^{N} c_{p}\left(\boldsymbol{\psi}_{p}, \boldsymbol{\psi}_{i}\right)+\sum_{q=0, q \neq i}^{N} c_{q}\left(\boldsymbol{\psi}_{q}, \boldsymbol{\psi}_{i}\right)+2 c_{i}\left({ }^{\prime}\right.$
The last term can be included in the other two sums, resulting in

$$
\frac{\partial}{\partial c_{i}} \sum_{p=0}^{N} \sum_{q=0}^{N} c_{p} c_{q}\left(\boldsymbol{\psi}_{p}, \boldsymbol{\psi}_{q}\right)=2 \sum_{j=0}^{N} c_{i}\left(\boldsymbol{\psi}_{j}, \boldsymbol{\psi}_{i}\right)
$$

It then follows that setting

$$
\frac{\partial E}{\partial c_{i}}=0, \quad i=0, \ldots, N
$$

leads to a linear system for c_{0}, \ldots, c_{N} :

$$
\sum_{j=0}^{N} A_{i, j} c_{j}=b_{i}, \quad i=0, \ldots, N
$$

where

$$
\begin{aligned}
A_{i, j} & =\left(\boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right) \\
b_{i} & =\left(\boldsymbol{\psi}_{i}, \boldsymbol{f}\right)
\end{aligned}
$$

We have changed the order of the two vectors in the inner product acco (1.1):

$$
A_{i, j}=\left(\boldsymbol{\psi}_{j}, \boldsymbol{\psi}_{i}\right)=\left(\boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right)
$$

simply because the sequence $i-j$ looks more aesthetic.

The Galerkin or projection method. In analogy with the "one-dimf example in Section 1.1, it holds also here in the general case that minimi distance (error) \boldsymbol{e} is equivalent to demanding that \boldsymbol{e} is orthogonal to all

$$
(\boldsymbol{e}, \boldsymbol{v})=0, \quad \forall \boldsymbol{v} \in V
$$

Since any $\boldsymbol{v} \in V$ can be written as $\boldsymbol{v}=\sum_{i=0}^{N} c_{i} \boldsymbol{\psi}_{i}$, the statement equivalent to saying that

$$
\left(\boldsymbol{e}, \sum_{i=0}^{N} c_{i} \boldsymbol{\psi}_{i}\right)=0
$$

for any choice of coefficients c_{0}, \ldots, c_{N}. The latter equation can be rewı

$$
\sum_{i=0}^{N} c_{i}\left(\boldsymbol{e}, \boldsymbol{\psi}_{i}\right)=0 .
$$

'this is to hold for arbitrary values of c_{0}, \ldots, c_{N} we must require that each rrm in the sum vanishes,

$$
\begin{equation*}
\left(\boldsymbol{e}, \boldsymbol{\psi}_{i}\right)=0, \quad i=0, \ldots, N \tag{22}
\end{equation*}
$$

hese $N+1$ equations result in the same linear system as (18):

$$
\left(\boldsymbol{f}-\sum_{j=0}^{N} c_{j} \boldsymbol{\psi}_{j}, \boldsymbol{\psi}_{i}\right)=\left(\boldsymbol{f}, \boldsymbol{\psi}_{i}\right)-\sum_{j \in \mathcal{I}_{s}}\left(\boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right) c_{j}=0,
$$

nd hence

$$
\sum_{j=0}^{N}\left(\boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right) c_{j}=\left(\boldsymbol{f}, \boldsymbol{\psi}_{i}\right), \quad i=0, \ldots, N
$$

o, instead of differentiating the $E\left(c_{0}, \ldots, c_{N}\right)$ function, we could simply use !1) as the principle for determining c_{0}, \ldots, c_{N}, resulting in the $N+1$ equations :2).
The names least squares method or least squares approximation are natural nce the calculations consists of minimizing $\|\boldsymbol{e}\|^{2}$, and $\|\boldsymbol{e}\|^{2}$ is a sum of squares f differences between the components in \boldsymbol{f} and \boldsymbol{u}. We find \boldsymbol{u} such that this mm of squares is minimized.

The principle (21), or the equivalent form (22), is known as projection. lmost the same mathematical idea was used by the Russian mathematician oris Galerkin ${ }^{1}$ to solve differential equations, resulting in what is widely known ; Galerkin's method.

: Approximation of functions

et V be a function space spanned by a set of basis functions $\psi_{0}, \ldots, \psi_{N}$,

$$
V=\operatorname{span}\left\{\psi_{0}, \ldots, \psi_{N}\right\}
$$

ach that any function $u \in V$ can be written as a linear combination of the basis unctions:

$$
\begin{equation*}
u=\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j} . \tag{23}
\end{equation*}
$$

he index set \mathcal{I}_{s} is defined as $\mathcal{I}_{s}=\{0, \ldots, N\}$ and is used both for compact otation and for flexibility in the numbering of elements in sequences.

[^0]For now, in this introduction, we shall look at functions of a single $x: u=u(x), \psi_{i}=\psi_{i}(x), i \in \mathcal{I}_{s}$. Later, we will almost trivially ext mathematical details to functions of two- or three-dimensional physica The approximation (23) is typically used to discretize a problem in spact methods, most notably finite differences, are common for time discre ${ }^{1}$ although the form (23) can be used in time as well.

2.1 The least squares method

Given a function $f(x)$, how can we determine its best approximation $u($ A natural starting point is to apply the same reasoning as we did for in Section 1.2. That is, we minimize the distance between u and f. F this requires a norm for measuring distances, and a norm is most conv defined through an inner product. Viewing a function as a vector of is many point values, one for each value of x, the inner product could int be defined as the usual summation of pairwise components, with sum replaced by integration:

$$
(f, g)=\int f(x) g(x) \mathrm{d} x
$$

To fix the integration domain, we let $f(x)$ and $\psi_{i}(x)$ be defined for a $\Omega \subset \mathbb{R}$. The inner product of two functions $f(x)$ and $g(x)$ is then

$$
(f, g)=\int_{\Omega} f(x) g(x) \mathrm{d} x
$$

The distance between f and any function $u \in V$ is simply $f-u$, squared norm of this distance is

$$
E=\left(f(x)-\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}(x), f(x)-\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}(x)\right)
$$

Note the analogy with (14): the given function f plays the role of tr vector \boldsymbol{f}, and the basis function ψ_{i} plays the role of the basis vector $\boldsymbol{\psi}_{i}$. rewrite (25), through similar steps as used for the result (14), leading t

$$
E\left(c_{i}, \ldots, c_{N}\right)=(f, f)-2 \sum_{j \in \mathcal{I}_{s}} c_{j}\left(f, \psi_{i}\right)+\sum_{p \in \mathcal{I}_{s}} \sum_{q \in \mathcal{I}_{s}} c_{p} c_{q}\left(\psi_{p}, \psi_{q}\right) .
$$

Minimizing this function of $N+1$ scalar variables $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$, requires differe with respect to c_{i}, for all $i \in \mathcal{I}_{s}$. The resulting equations are very sis those we had in the vector case, and we hence end up with a linear sy the form (18), with basically the same expressions:

$$
\begin{aligned}
A_{i, j} & =\left(\psi_{i}, \psi_{j}\right), \\
b_{i} & =\left(f, \psi_{i}\right)
\end{aligned}
$$

. 2 The projection (or Galerkin) method

s in Section 1.2, the minimization of (e, e) is equivalent to

$$
\begin{equation*}
(e, v)=0, \quad \forall v \in V \tag{29}
\end{equation*}
$$

his is known as a projection of a function f onto the subspace V. We may also all it a Galerkin method for approximating functions. Using the same reasoning s in (21)-(22), it follows that (29) is equivalent to

$$
\begin{equation*}
\left(e, \psi_{i}\right)=0, \quad i \in \mathcal{I}_{s} \tag{30}
\end{equation*}
$$

aserting $e=f-u$ in this equation and ordering terms, as in the multiimensional vector case, we end up with a linear system with a coefficient matrix $: 7$) and right-hand side vector (28).

Whether we work with vectors in the plane, general vectors, or functions 1 function spaces, the least squares principle and the projection or Galerkin rethod are equivalent.

. 3 Example: linear approximation

et us apply the theory in the previous section to a simple problem: given a arabola $f(x)=10(x-1)^{2}-1$ for $x \in \Omega=[1,2]$, find the best approximation (x) in the space of all linear functions:

$$
V=\operatorname{span}\{1, x\}
$$

Jith our notation, $\psi_{0}(x)=1, \psi_{1}(x)=x$, and $N=1$. We seek

$$
u=c_{0} \psi_{0}(x)+c_{1} \psi_{1}(x)=c_{0}+c_{1} x
$$

here c_{0} and c_{1} are found by solving a 2×2 the linear system. The coefficient tatrix has elements

$$
\begin{align*}
& A_{0,0}=\left(\psi_{0}, \psi_{0}\right)=\int_{1}^{2} 1 \cdot 1 \mathrm{~d} x=1 \tag{31}\\
& A_{0,1}=\left(\psi_{0}, \psi_{1}\right)=\int_{1}^{2} 1 \cdot x \mathrm{~d} x=3 / 2 \tag{32}\\
& A_{1,0}=A_{0,1}=3 / 2 \tag{33}\\
& A_{1,1}=\left(\psi_{1}, \psi_{1}\right)=\int_{1}^{2} x \cdot x \mathrm{~d} x=7 / 3 \tag{34}
\end{align*}
$$

he corresponding right-hand side is

$$
\begin{aligned}
& b_{1}=\left(f, \psi_{0}\right)=\int_{1}^{2}\left(10(x-1)^{2}-1\right) \cdot 1 \mathrm{~d} x=7 / 3 \\
& b_{2}=\left(f, \psi_{1}\right)=\int_{1}^{2}\left(10(x-1)^{2}-1\right) \cdot x \mathrm{~d} x=13 / 3
\end{aligned}
$$

Solving the linear system results in

$$
c_{0}=-38 / 3, \quad c_{1}=10
$$

and consequently

$$
u(x)=10 x-\frac{38}{3}
$$

Figure 3 displays the parabola and its best approximation in the spar linear functions.

Figure 3: Best approximation of a parabola by a straight line.

2.4 Implementation of the least squares method

The linear system can be computed either symbolically or numerically (ε ical integration rule is needed in the latter case). Here is a function for s computation of the linear system, where $f(x)$ is given as a sympy expr
ıvolving the symbol x , psi is a list of expressions for $\left\{\psi_{i}\right\}_{i \in \mathcal{I}}$, and Omega is a -tuple/list holding the limits of the domain Ω

import sympy as sp

lef least_squares(f, psi, Omega):
$\mathrm{N}=\operatorname{len}(\mathrm{psi})-1$
$A=s p \cdot z \operatorname{eros}((N+1, N+1))$
$b=\operatorname{sp} \cdot \operatorname{zeros}((N+1,1))$
x $=$ sp.Symbol('x')
for i in range $(\mathrm{N}+1)$
for j in range (i, N+1):

$$
\mathrm{A}[\mathrm{i}, \mathrm{j}]=\operatorname{sp} . \operatorname{integrate(psi}[\mathrm{i}] * \mathrm{psi}[j],
$$

$$
\mathrm{b}[\mathrm{i}, 0]=\operatorname{sp} . \operatorname{integrate}(\mathrm{psi}[\mathrm{i}] * \mathrm{f},(\mathrm{x}, \text { Omega[0], Omega[1])) }
$$

$\mathrm{c}=\mathrm{A} . L U s o l v e(\mathrm{~b})$
$\mathrm{u}=0$
for i in range(len(psi)):
u += c[i,0]*psi[i]
return u, c

Ibserve that we exploit the symmetry of the coefficient matrix: only the pper triangular part is computed. Symbolic integration in sympy is often me consuming, and (roughly) halving the work has noticeable effect on the aiting time for the function to finish execution.

Comparing the given $f(x)$ and the approximate $u(x)$ visually is done by re following function, which with the aid of sympy's lambdify tool converts a ympy expression to a Python function for numerical computations:

```
lef comparison_plot(f, u, Omega, filename='tmp.pdf')
    x = sp.Symbol('x')
    f = sp.lambdify([x], f, modules="numpy")
    u = sp.lambdify([x], u, modules="numpy")
    resolution = 401 # no of points in plot
    xcoor = linspace(Omega[0], Omega[1], resolution)
    exact = f(xcoor)
    approx = u(xcoor)
    plot(xcoor,
    hold('on')
    plot(xcoor, exact)
    legend(['approximation', 'exact'])
    savefig(filename)
```

he modules='numpy' argument to lambdify is important if there are mathetatical functions, such as sin or exp in the symbolic expressions in f or u, and rese mathematical functions are to be used with vector arguments, like xcoor bove.
Both the least_squares and comparison_plot are found and coded in re file approx1D. py^{2}. The forthcoming examples on their use appear in x_approx1D.py.

[^1]
2.5 Perfect approximation

Let us use the code above to recompute the problem from Section 2.3 w want to approximate a parabola. What happens if we add an element x basis and test what the best approximation is if V is the space of all p . functions? The answer is quickly found by running

```
>>> from approx1D import *
>>> x = sp.Symbol('x')
>>> f = 10*(x-1)**2-1
>>> u, c = least_squares(f=f, psi=[1, x, x**2], Omega=[1, 2])
>>> print u
10*x**2 - 20*x + 9
>>> print sp.expand(f)
10*x**2 - 20*x + 9
```

Now, what if we use $\psi_{i}(x)=x^{i}$ for $i=0,1, \ldots, N=40$? The outp least_squares gives $c_{i}=0$ for $i>2$, which means that the method f perfect approximation.

In fact, we have a general result that if $f \in V$, the least squa projection/Galerkin methods compute the exact solution $u=f$. The straightforward: if $f \in V, f$ can be expanded in terms of the basis fu $f=\sum_{j \in \mathcal{I}_{s}} d_{j} \psi_{j}$, for some coefficients $\left\{d_{i}\right\}_{i \in \mathcal{I}_{s}}$, and the right-hand side t entries

$$
b_{i}=\left(f, \psi_{i}\right)=\sum_{j \in \mathcal{I}_{s}} d_{j}\left(\psi_{j}, \psi_{i}\right)=\sum_{j \in \mathcal{I}_{s}} d_{j} A_{i, j} .
$$

The linear system $\sum_{j} A_{i, j} c_{j}=b_{i}, i \in \mathcal{I}_{s}$, is then

$$
\sum_{j \in \mathcal{I}_{s}} c_{j} A_{i, j}=\sum_{j \in \mathcal{I}_{s}} d_{j} A_{i, j}, \quad i \in \mathcal{I}_{s}
$$

which implies that $c_{i}=d_{i}$ for $i \in \mathcal{I}_{s}$.

2.6 Ill-conditioning

The computational example in Section 2.5 applies the least_squares \dagger which invokes symbolic methods to calculate and solve the linear syste correct solution $c_{0}=9, c_{1}=-20, c_{2}=10, c_{i}=0$ for $i \geq 3$ is perfectly re

Suppose we convert the matrix and right-hand side to floating-poin and then solve the system using finite-precision arithmetics, which is w will (almost) always do in real life. This time we get astonishing rest to about $N=7$ we get a solution that is reasonably close to the ex Increasing N shows that seriously wrong coefficients are computed. I a table showing the solution of the linear system arising from approx a parabola by functions on the form $u(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+$ Analytically, we know that $c_{j}=0$ for $j>2$, but numerically we may ge for $j>2$.

exact	sympy	numpy32	numpy64
9	9.62	5.57	8.98
-20	-23.39	-7.65	-19.93
10	17.74	-4.50	9.96
0	-9.19	4.13	-0.26
0	5.25	2.99	0.72
0	0.18	-1.21	-0.93
0	-2.48	-0.41	0.73
0	1.81	-0.013	-0.36
0	-0.66	0.08	0.11
0	0.12	0.04	-0.02
0	-0.001	-0.02	0.002

'he exact value of $c_{j}, j=0,1, \ldots, 10$, appears in the first column while the ther columns correspond to results obtained by three different methods:

- Column 2: The matrix and vector are converted to the data structure sympy.mpmath.fp.matrix and the sympy.mpmath.fp.lu_solve function is used to solve the system.
- Column 3: The matrix and vector are converted to numpy arrays with data type numpy.float32 (single precision floating-point number) and solved by the numpy.linalg.solve function.
- Column 4: As column 3, but the data type is numpy.float64 (double precision floating-point number).

Te see from the numbers in the table that double precision performs much better an single precision. Nevertheless, when plotting all these solutions the curves mnnot be visually distinguished (!). This means that the approximations look erfect, despite the partially very wrong values of the coefficients.
Increasing N to 12 makes the numerical solver in numpy abort with the ressage: "matrix is numerically singular". A matrix has to be non-singular to e invertible, which is a requirement when solving a linear system. Already when re matrix is close to singular, it is ill-conditioned, which here implies that the umerical solution algorithms are sensitive to round-off errors and may produce rery) inaccurate results.

The reason why the coefficient matrix is nearly singular and ill-conditioned that our basis functions $\psi_{i}(x)=x^{i}$ are nearly linearly dependent for large i. hat is, x^{i} and x^{i+1} are very close for i not very small. This phenomenon is lustrated in Figure 4. There are 15 lines in this figure, but only half of them re visually distinguishable. Almost linearly dependent basis functions give rise) an ill-conditioned and almost singular matrix. This fact can be illustrated by mmputing the determinant, which is indeed very close to zero (recall that a zero eterminant implies a singular and non-invertible matrix): 10^{-65} for $N=10$ and J^{-92} for $N=12$. Already for $N=28$ the numerical determinant computation sturns a plain zero.

Figure 4: The 15 first basis functions $x^{i}, i=0, \ldots, 14$.

On the other hand, the double precision numpy solver do run for Λ resulting in answers that are not significantly worse than those in tl above, and large powers are associated with small coefficients (e.g., c_{j} for $10 \leq j \leq 20$ and $c<10^{-5}$ for $j>20$). Even for $N=100$ the approx still lies on top of the exact curve in a plot (!).

The conclusion is that visual inspection of the quality of the approx may not uncover fundamental numerical problems with the computatior ever, numerical analysts have studied approximations and ill-conditio decades, and it is well known that the basis $\left\{1, x, x^{2}, x^{3}, \ldots,\right\}$ is a $\mathrm{b} \varepsilon$ The best basis from a matrix conditioning point of view is to have ort functions such that $\left(\psi_{i}, \psi_{j}\right)=0$ for $i \neq j$. There are many known sets of onal polynomials and other functions. The functions used in the finite methods are almost orthogonal, and this property helps to avoid proble solving matrix systems. Almost orthogonal is helpful, but not enoug it comes to partial differential equations, and ill-conditioning of the co matrix is a theme when solving large-scale matrix systems arising fro element discretizations.

2.7 Fourier series

A set of sine functions is widely used for approximating functions (the s also orthogonal as explained more in Section 2.6). Let us take

$$
V=\operatorname{span}\{\sin \pi x, \sin 2 \pi x, \ldots, \sin (N+1) \pi x\} .
$$

hat is,

$$
\psi_{i}(x)=\sin ((i+1) \pi x), \quad i \in \mathcal{I}_{s} .
$$

n approximation to the $f(x)$ function from Section 2.3 can then be computed y the least_squares function from Section 2.4:

$\mathrm{J}=3$

'rom sympy import sin, pi
s = sp.Symbol('x')
ssi $=[\sin (p i *(i+1) * x)$ for i in range $(N+1)]$
$\vdots=10 *(x-1) * * 2-1$
${ }^{\mathrm{J}} \mathrm{mega}=[0,1]$
1, c = least_squares (f, psi, Omega)
:omparison_plot(f, u, Omega)
igure 5 (left) shows the oscillatory approximation of $\sum_{j=0}^{N} c_{j} \sin ((j+1) \pi x)$ hen $N=3$. Changing N to 11 improves the approximation considerably, see igure 5 (right).

igure 5: Best approximation of a parabola by a sum of 3 (left) and 11 (right) ne functions.

There is an error $f(0)-u(0)=9$ at $x=0$ in Figure 5 regardless of how large τ is, because all $\psi_{i}(0)=0$ and hence $u(0)=0$. We may help the approximation , be correct at $x=0$ by seeking

$$
\begin{equation*}
u(x)=f(0)+\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}(x) . \tag{39}
\end{equation*}
$$

owever, this adjustment introduces a new problem at $x=1$ since we now get n error $f(1)-u(1)=f(1)-0=-1$ at this point. A more clever adjustment is , replace the $f(0)$ term by a term that is $f(0)$ at $x=0$ and $f(1)$ at $x=1$. A mple linear combination $f(0)(1-x)+x f(1)$ does the job:

$$
\begin{equation*}
u(x)=f(0)(1-x)+x f(1)+\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}(x) . \tag{40}
\end{equation*}
$$

This adjustment of u alters the linear system slightly as we get an ext $-\left(f(0)(1-x)+x f(1), \psi_{i}\right)$ on the right-hand side. Figure 6 shows the 1 this technique for ensuring right boundary values: even 3 sines can nov the $f(0)(1-x)+x f(1)$ term such that u approximates the parabola reє at least visually.

Figure 6: Best approximation of a parabola by a sum of 3 (left) and 1 sine functions with a boundary term.

2.8 Orthogonal basis functions

The choice of sine functions $\psi_{i}(x)=\sin ((i+1) \pi x)$ has a great compu advantage: on $\Omega=[0,1]$ these basis functions are orthogonal, implyi $A_{i, j}=0$ if $i \neq j$. This result is realized by trying
integrate(sin(j*pi*x)*sin(k*pi*x), $x, 0,1)$
in WolframAlpha ${ }^{3}$ (avoid i in the integrand as this symbol means the in unit $\sqrt{-1}$). Also by asking WolframAlpha about $\int_{0}^{1} \sin ^{2}(j \pi x) \mathrm{d} x$, we fi equal $1 / 2$. With a diagonal matrix we can easily solve for the coeffic: hand:

$$
c_{i}=2 \int_{0}^{1} f(x) \sin ((i+1) \pi x) \mathrm{d} x, \quad i \in \mathcal{I}_{s},
$$

which is nothing but the classical formula for the coefficients of the Fou series of $f(x)$ on $[0,1]$. In fact, when V contains the basic functions u Fourier series expansion, the approximation method derived in Section ؛ in the classical Fourier series for $f(x)$ (see Exercise 8 for details).

With orthogonal basis functions we can make the least_squares f (much) more efficient since we know that the matrix is diagonal and c diagonal elements need to be computed:

[^2]lef least_squares_orth(f, psi, Omega):
$\mathrm{N}=\operatorname{len}(\mathrm{psi})-1$
$A=[0] *(N+1)$
$\mathrm{x}=\mathrm{sp}$.Symbol(${ }^{\prime} \mathrm{x}$ ')
for i in rane (N+1)
$\mathrm{A}[\mathrm{i}]=$ sp.integrate(psi[i] $* * 2$, (x, Omega[0], Omega[1]))
A[i] $=$ sp.integrate(psi[i]**2, (x, Omega[0], Omega[1]))
$\mathrm{b}[\mathrm{i}]=\mathrm{sp} . \operatorname{integrate(psi[i]*f,~(x,~Omega[0],~Omega[1]))~}$
$c=[b[i] / A[i]$ for i in range(len(b))]
$\mathrm{u}=0$
for i in range(len(psi)):
$\mathrm{u}+=\mathrm{c}[\mathrm{i}] * \mathrm{psi}[\mathrm{i}]$
return u, c
his function is found in the file approx1D.py.

. 9 Numerical computations

ometimes the basis functions ψ_{i} and/or the function f have a nature that takes symbolic integration CPU-time consuming or impossible. Even though we nplemented a fallback on numerical integration of $\int f \varphi_{i} d x$ considerable time right be required by sympy in the attempt to integrate symbolically. Therefore, will be handy to have function for fast numerical integration and numerical slution of the linear system. Below is such a method. It requires Python unctions $\mathrm{f}(\mathrm{x})$ and $\mathrm{psi}(\mathrm{x}, \mathrm{i})$ for $f(x)$ and $\psi_{i}(x)$ as input. The output is a mesh inction with values u on the mesh with points in the array x. Three numerical Itegration methods are offered: scipy.integrate.quad (precision set to 10^{-8}), ympy.mpmath.quad (high precision), and a Trapezoidal rule based on the points 1 x .
lef least_squares_numerical(f, psi, N, x,
integration_method='scipy'
orthogonal_basis=False):
import scipy.integrate
$A=n p \cdot \operatorname{zeros}((N+1, N+1))$
$\mathrm{b}=$ np.zeros $(\mathrm{N}+1)$,
Omega $=[x[0], x[-1]]$
$\mathrm{dx}=\mathrm{x}[1]$ - $\mathrm{x}[0]$
for i in range $(N+1)$:
j_limit = i+1 if orthogonal_basis else N+1
for j in range (i, j_limit):
print ' (\%d, \%d) ' \% (i, j)
if integration_method $==$ 'scipy':
$A_{-} i j=$ scipy.integrate.quad (
lambda x: psi(x,i)*psi (x, j),
elif intega[0], Omega[1], epsabs=1E-9, epsrel=1E-9) [0]
$A_{i} i j=$ ration_method $==$ 'sympy'
$A_{-} i j=$ sp.mpmath.quad (
lambda x: psi(x,i)*psi(x,j),
else:
values $=$ psi $(x, i) * p s i(x, j)$
$A_{-} i j=$ trapezoidal(values, $d x$)

```
if integration_method == 'scipy':
    b_i = scipy.inted == 'scipy':
        lambda x: f(x)*psi(x,i), Omega[0], Omega[1],
        epsabs=1E-9, epsrel=1E-9) [0]
elif integration_method == 'sympy':
    b_i = sp.mpmath.quad(
        lambda x: f(x)*psi(x,i), [Omega[0], Omega[1]])
else:
    values = f(x)*psi(x,i)
b_i = trapezoidal(values, dx)
b[i] = b_i
\(\mathrm{c}=\mathrm{b} / \mathrm{np} . \operatorname{diag}(\mathrm{A})\) if orthogonal_basis else np.linalg.solve(A, \(u=\operatorname{sum}(c[i] * p s i(x, i)\) for \(i\) in range ( \(N+1)\) )
return u, c
def trapezoidal(values, dx):
"""Integrate values by the Trapezoidal rule (mesh size dx)."" return dx*(np.sum(values) - 0.5*values [0] - 0.5*values [-1])
```

Here is an example on calling the function:

```
from numpy import linspace, tanh, pi
def psi(x, i):
    return sin}((i+1)*x
x = linspace(0, 2*pi, 501)
N = 20
u, c = least_squares_numerical(lambda x: tanh(x-pi), psi, N, x,
    orthogonal_basis=True)
```


2.10 The interpolation (or collocation) method

The principle of minimizing the distance between u and f is an intuit of computing a best approximation $u \in V$ to f. However, there al approaches as well. One is to demand that $u\left(x_{i}\right)=f\left(x_{i}\right)$ at some selecte $x_{i}, i \in \mathcal{I}_{s}:$

$$
u\left(x_{i}\right)=\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}\left(x_{i}\right)=f\left(x_{i}\right), \quad i \in \mathcal{I}_{s}
$$

This criterion also gives a linear system with $N+1$ unknown coefficients *

$$
\sum_{j \in \mathcal{I}_{s}} A_{i, j} c_{j}=b_{i}, \quad i \in \mathcal{I}_{s},
$$

with

$$
\begin{aligned}
A_{i, j} & =\psi_{j}\left(x_{i}\right) \\
b_{i} & =f\left(x_{i}\right)
\end{aligned}
$$

his time the coefficient matrix is not symmetric because $\psi_{j}\left(x_{i}\right) \neq \psi_{i}\left(x_{j}\right)$ in eneral. The method is often referred to as an interpolation method since some oint values of f are given $\left(f\left(x_{i}\right)\right)$ and we fit a continuous function u that goes rrough the $f\left(x_{i}\right)$ points. In this case the x_{i} points are called interpolation oints. When the same approach is used to approximate differential equations, ne usually applies the name collocation method and x_{i} are known as collocation oints.

Given f as a sympy symbolic expression $\mathrm{f},\left\{\psi_{i}\right\}_{i \in \mathcal{I}}$ as a list psi, and a set E points $\left\{x_{i}\right\}_{i \in \mathcal{I}_{s}}$ as a list or array points, the following Python function sets p and solves the matrix system for the coefficients $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$:

```
lef interpolation(f, psi, points):
    N = len(psi) - 1
    A = sp.zeros((N+1,N+1))
    b = sp.zeros((N+1, 1)
    x = sp.Symbol('x')
    # Turn psi and f into Python functions
    psi = [sp.lambdify([x], psi[i]) for i in range(N+1)]
    f = sp.lambdify([x], f)
    for i in range(N+1):
        for }j\mathrm{ in range( }\textrm{N}+1)\mathrm{ :
            A[i,j] = psi[j](points[i])
        b[i,0] = f(points[i])
    c = A.LUsolve(b)
    u = 0
    for i in range(len(psi)):
        u += c[i,0]*psi[i](x)
    return u
```

he interpolation function is a part of the approx1D module.
We found it convenient in the above function to turn the expressions f nd psi into ordinary Python functions of x, which can be called with float alues in the list points when building the matrix and the right-hand side. he alternative is to use the subs method to substitute the x variable in an xpression by an element from the points list. The following session illustrates oth approaches in a simple setting:

```
>> from sympy import *
>> x = Symbol('x')
M> e= x**2
    # symbolic expression involving x
    # a value of x
>>> p = 0.5
    # evaluate e for x=p
>> v
). }25000000000000
>> type(v)
sympy.core.numbers.Float
>> e = lambdify([x], e) # make Python function of e
>> type(e)
>> function
>> v = e(p)
    # evaluate e(x) for x=p
>> v
). }2
>> type(v)
:loat
```

A nice feature of the interpolation or collocation method is that i computing integrals. However, one has to decide on the location of the x A simple, yet common choice, is to distribute them uniformly throughc

Example. Let us illustrate the interpolation or collocation method by imating our parabola $f(x)=10(x-1)^{2}-1$ by a linear function on Ω using two collocation points $x_{0}=1+1 / 3$ and $x_{1}=1+2 / 3$:

```
f = 10*(x-1)**2 - 
psi = [1, x]
Omega = [1, 2]
points = [1 + sp.Rational(1,3), 1 + sp.Rational(2,3)]
u = interpolation(f, psi, points)
comparison_plot(f, u, Omega)
```

The resulting linear system becomes

$$
\left(\begin{array}{ll}
1 & 4 / 3 \\
1 & 5 / 3
\end{array}\right)\binom{c_{0}}{c_{1}}=\binom{1 / 9}{31 / 9}
$$

with solution $c_{0}=-119 / 9$ and $c_{1}=10$. Figure 7 (left) shows the r approximation $u=-119 / 9+10 x$. We can easily test other interpolatior say $x_{0}=1$ and $x_{1}=2$. This changes the line quite significantly, see I (right).

Figure 7: Approximation of a parabola by linear functions computed interpolation points: $4 / 3$ and $5 / 3$ (left) versus 1 and 2 (right).

2.11 Lagrange polynomials

In Section 2.7 we explain the advantage with having a diagonal matrix: f for the coefficients $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$ can then be derived by hand. For an interpc collocation method a diagonal matrix implies that $\psi_{j}\left(x_{i}\right)=0$ if $i \neq$ set of basis functions $\psi_{i}(x)$ with this property is the Lagrange inter polynomials, or just Lagrange polynomials. (Although the functions art after Lagrange, they were first discovered by Waring in 1779, rediscov
uler in 1783, and published by Lagrange in 1795.) The Lagrange polynomials ave the form

$$
\begin{equation*}
\psi_{i}(x)=\prod_{j=0, j \neq i}^{N} \frac{x-x_{j}}{x_{i}-x_{j}}=\frac{x-x_{0}}{x_{i}-x_{0}} \cdots \frac{x-x_{i-1}}{x_{i}-x_{i-1}} \frac{x-x_{i+1}}{x_{i}-x_{i+1}} \cdots \frac{x-x_{N}}{x_{i}-x_{N}} \tag{46}
\end{equation*}
$$

rr $i \in \mathcal{I}_{s}$. We see from (46) that all the ψ_{i} functions are polynomials of degree ${ }^{I}$ which have the property

$$
\psi_{i}\left(x_{s}\right)=\delta_{i s}, \quad \delta_{i s}= \begin{cases}1, & i=s \tag{47}\\ 0, & i \neq s,\end{cases}
$$

hen x_{s} is an interpolation/collocation point. Here we have used the Kronecker elta symbol $\delta_{i s}$. This property implies that $A_{i, j}=0$ for $i \neq j$ and $A_{i, j}=1$ hen $i=j$. The solution of the linear system is them simply

$$
\begin{equation*}
c_{i}=f\left(x_{i}\right), \quad i \in \mathcal{I}_{s}, \tag{48}
\end{equation*}
$$

nd

$$
\begin{equation*}
u(x)=\sum_{j \in \mathcal{I}_{s}} f\left(x_{i}\right) \psi_{i}(x) \tag{49}
\end{equation*}
$$

The following function computes the Lagrange interpolating polynomial $\psi_{i}(x)$, iven the interpolation points x_{0}, \ldots, x_{N} in the list or array points:

```
lef Lagrange_polynomial(x, i, points)
    p = 1
    p for k in range(len(points)):
        if k != i:
            p *= (x - points[k])/(points[i] - points[k])
    return p
```

he next function computes a complete basis using equidistant points throughout ::
lef Lagrange_polynomials_01(x, N)
if isinstance(x, sp.Symbol):
$\mathrm{h}=$ sp.Rational(1, $\mathrm{N}-1$)
else:
$h=1.0 /(N-1)$
points $=[i * h$ for i in range (N)]
psi = [Lagrange_polynomial(x, i, points) for i in range(N)]
return psi, points
Jhen x is an sp.Symbol object, we let the spacing between the interpolation oints, h, be a sympy rational number for nice end results in the formulas rr ψ_{i}. The other case, when x is a plain Python float, signifies numerical omputing, and then we let h be a floating-point number. Observe that the agrange_polynomial function works equally well in the symbolic and numerical
case - just think of x being an sp.Symbol object or a Python float interactive session illustrates the difference between symbolic and nu computing of the basis functions and points:

```
>>> import sympy as sp
>>> psi, points = Lagrange_polynomials_01(x, N=3)
>>> points
[0, 1/2, 1]
>>> psi
>>> psi
>>> x = 0.5 # numerical computing
>>> psi, points = Lagrange_polynomials_01(x, N=3)
>>> points
[0.0, 0.5, 1.0]
>>> psi
```

The Lagrange polynomials are very much used in finite element methods of their property (47).

Approximation of a polynomial. The Galerkin or least squares metl to an exact approximation if f lies in the space spanned by the basis func could be interest to see how the interpolation method with Lagrange poly as basis is able to approximate a polynomial, e.g., a parabola. Running

```
for \(N\) in 2, 4, 5, 6, 8, 10, 12:
    \(\mathrm{f}=\mathrm{x} * * 2\)
    psi, points = Lagrange_polynomials_01(x, N)
    u = interpolation(f, psi, points)
```

shows the result that up to $\mathrm{N}=4$ we achieve an exact approximation, a round-off errors start to grow, such that $\mathrm{N}=15$ leads to a 15 -degree pol: for u where the coefficients in front of x^{r} for $r>2$ are of size 10^{-5} and

Successful example. Trying out the Lagrange polynomial basis for mating $f(x)=\sin 2 \pi x$ on $\Omega=[0,1]$ with the least squares and the inter: techniques can be done by

```
x = sp.Symbol('x')
x = sp.Symbol
psi, points = Lagrange_polynomials_01(x, N)
Omega=[0, 1]
u = least_squares(f, psi, Omega)
comparison_plot(f, u, Omega)
u = interpolation(f, psi, points)
comparison_plot(f, u, Omega)
```

Figure 8 shows the results. There is little difference between the least squ: the interpolation technique. Increasing N gives visually better approxis

igure 8: Approximation via least squares (left) and interpolation (right) of a ne function by Lagrange interpolating polynomials of degree 3.
ess successful example. The next example concerns interpolating $f(x)=$. $-2 x \mid$ on $\Omega=[0,1]$ using Lagrange polynomials. Figure 9 shows a peculiar fect: the approximation starts to oscillate more and more as N grows. This umerical artifact is not surprising when looking at the individual Lagrange olynomials. Figure 10 shows two such polynomials, $\psi_{2}(x)$ and $\psi_{7}(x)$, both of egree 11 and computed from uniformly spaced points $x_{x_{i}}=i / 11, i=0, \ldots, 11$, ıarked with circles. We clearly see the property of Lagrange polynomials: ${ }_{2}\left(x_{i}\right)=0$ and $\psi_{7}\left(x_{i}\right)=0$ for all i, except $\psi_{2}\left(x_{2}\right)=1$ and $\psi_{7}\left(x_{7}\right)=1$. The lost striking feature, however, is the significant oscillation near the boundary. he reason is easy to understand: since we force the functions to zero at so many oints, a polynomial of high degree is forced to oscillate between the points. The henomenon is named Runge's phenomenon and you can read a more detailed xplanation on Wikipedia ${ }^{4}$
iemedy for strong oscillations. The oscillations can be reduced by a more ever choice of interpolation points, called the Chebyshev nodes:

$$
\begin{equation*}
x_{i}=\frac{1}{2}(a+b)+\frac{1}{2}(b-a) \cos \left(\frac{2 i+1}{2(N+1)} p i\right), \quad i=0 \ldots, N \tag{50}
\end{equation*}
$$

n the interval $\Omega=[a, b]$. Here is a flexible version of the Lagrange_polynomials_01 unction above, valid for any interval $\Omega=[a, b]$ and with the possibility to generte both uniformly distributed points and Chebyshev nodes:
lef Lagrange_polynomials(x, N, Omega, point_distribution='uniform')
if point_distribution == 'uniform'.
if isinstance(x, sp.Symbol):
h = sp.Rational(Omega[1] - Omega[0], N)

else

$\mathrm{h}=$ (Omega[1] - Omega[0])/float(N)
points $=[0 m e g a[0]+i * h$ for i in range $(N+1)]$
elif point_distribution == 'Chebyshev': points $=$ Chebyshev_nodes(Omega[0], Omega[1], N)

[^3]psi = [Lagrange_polynomial(x, i, points) for i in range(N+1)] return psi, points
def Chebyshev_nodes(a, b, N):
from math import cos, pi
return $[0.5 *(a+b)+0.5 *(b-a) * \cos (f l o a t(2 * i+1) /(2 * N+1)) * p i)$ for i in range $(\mathrm{N}+1)$]

All the functions computing Lagrange polynomials listed above are foun module file Lagrange.py. Figure 11 shows the improvement of using Ch nodes (compared with Figure 9). The reason is that the corresponding L polynomials have much smaller oscillations as seen in Figure 12 (comp Figure 10).

Another cure for undesired oscillation of higher-degree interpolati, nomials is to use lower-degree Lagrange polynomials on many small pa the domain, which is the idea pursued in the finite element method. stance, linear Lagrange polynomials on $[0,1 / 2]$ and $[1 / 2,1]$ would yield a approximation to $f(x)=|1-2 x|$ on $\Omega=[0,1]$ since f is piecewise line

Figure 9: Interpolation of an absolute value function by Lagrange poly and uniformly distributed interpolation points: degree 7 (left) and 14 (

How does the least squares or projection methods work with L polynomials? Unfortunately, sympy has problems integrating the $f(x)=$ function times a polynomial. Other choices of $f(x)$ can also make the s integration fail. Therefore, we should extend the least_squares f such that it falls back on numerical integration if the symbolic integr unsuccessful. In the latter case, the returned value from sympy's int function is an object of type Integral. We can test on this type anc the mpmath module in sympy to perform numerical integration of high p Here is the code:
def least_squares(f, psi, Omega):
$\mathrm{N}=\operatorname{len}(\mathrm{psi})-1$
$A=\operatorname{sp} \cdot \operatorname{zeros}((N+1, N+1))$
$\mathrm{b}=\operatorname{sp} \cdot \operatorname{zeros}((\mathrm{N}+1,1))$
$\mathrm{x}=\mathrm{sp}$. Symbol('x')
for i in range $(N+1)$:

igure 10: Illustration of the oscillatory behavior of two Lagrange polynomials ased on 12 uniformly spaced points (marked by circles).

igure 11: Interpolation of an absolute value function by Lagrange polynomials nd Chebyshev nodes as interpolation points: degree 7 (left) and 14 (right).
for j in range ($\mathrm{i}, \mathrm{N}+1$):
integrand $=$ psi[i]*psi[j]
I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sp.Integral):
\# Could not integrate symbolically, fallback
\# on numerical integration with mpmath.quad
integrand $=$ sp.lambdify ([x], integrand)
I = sp.mpmath.quad(integrand, [Omega[0], Omega[1]])
$\mathrm{A}[\mathrm{i}, \mathrm{j}]=\mathrm{A}[\mathrm{j}, \mathrm{i}]=\mathrm{I}$
integrand $=$ psi[i]*f

Figure 12: Illustration of the less oscillatory behavior of two Lagrange mials based on 12 Chebyshev points (marked by circles).
$\mathrm{I}=$ sp.integrate (integrand, (x, Omega[0], Omega[1])) if isinstance(I, sp.Integral):
integrand = sp.lambdify([x], integrand)
I = sp.mpmath.quad(integrand, [Omega[0], Omega[1]])
$b[i, 0]=-\mathrm{I}$
$c=A . L U s o l v e(b)$
$\mathrm{u}=0$
for i in range(len(psi)):
u += c[i,0]*psi[i]
return u

3 Finite element basis functions

The specific basis functions exemplified in Section 2 are in general nonzer entire domain Ω, see Figure 13 for an example where we plot $\psi_{0}(x)=$ and $\psi_{1}(x)=\sin 2 \pi x$ together with a possible sum $u(x)=4 \psi_{0}(x)-$ We shall now turn the attention to basis functions that have compact meaning that they are nonzero on only a small portion of Ω. Morec shall restrict the functions to be piecewise polynomials. This means t domain is split into subdomains and the function is a polynomial on one subdomains, see Figure 14 for a sketch involving locally defined hat fi that make $u=\sum_{j} c_{j} \psi_{j}$ piecewise linear. At the boundaries between subr one normally forces continuity of the function only so that when connect
olynomials from two subdomains, the derivative becomes discontinuous. These rpe of basis functions are fundamental in the finite element method.

Figure 13: A function resulting from adding two sine basis functions.
We first introduce the concepts of elements and nodes in a simplistic fashion s often met in the literature. Later, we shall generalize the concept of an ement, which is a necessary step to treat a wider class of approximations within ıe family of finite element methods. The generalization is also compatible with re concepts used in the FEniCS ${ }^{5}$ finite element software.

. 1 Elements and nodes

et us divide the interval Ω on which f and u are defined into non-overlapping 1bintervals $\Omega^{(e)}, e=0, \ldots, N_{e}$:

$$
\begin{equation*}
\Omega=\Omega^{(0)} \cup \cdots \cup \Omega^{\left(N_{e}\right)} . \tag{51}
\end{equation*}
$$

Te shall for now refer to $\Omega^{(e)}$ as an element, having number e. On each element e introduce a set of points called nodes. For now we assume that the nodes re uniformly spaced throughout the element and that the boundary points f the elements are also nodes. The nodes are given numbers both within an ement and in the global domain. These are referred to as local and global node umbers, respectively. Figure 15 shows element boundaries with small vertical

[^4]

Figure 14: A function resulting from adding three local piecewise line functions.
lines, nodes as small disks, element numbers in circles, and global node 1 under the nodes.

Figure 15: Finite element mesh with 5 elements and 6 nodes.

Nodes and elements uniquely define a finite element mesh, whicl discrete representation of the domain in the computations. A common case is that of a uniformly partitioned mesh where each element has t] length and the distance between nodes is constant.
ixample. On $\Omega=[0,1]$ we may introduce two elements, $\Omega^{(0)}=[0,0.4]$ and ${ }_{(}^{(1)}=[0.4,1]$. Furthermore, let us introduce three nodes per element, equally jaced within each element. Figure 16 shows the mesh. The three nodes in ement number 0 are $x_{0}=0, x_{1}=0.2$, and $x_{2}=0.4$. The local and global node umbers are here equal. In element number 1 , we have the local nodes $x_{0}=0.4$, $1_{1}=0.7$, and $x_{2}=1$ and the corresponding global nodes $x_{2}=0.4, x_{3}=0.7$, nd $x_{4}=1$. Note that the global node $x_{2}=0.4$ is shared by the two elements.

Figure 16: Finite element mesh with 2 elements and 5 nodes.
For the purpose of implementation, we introduce two lists or arrays: nodes ir storing the coordinates of the nodes, with the global node numbers as indices, nd elements for holding the global node numbers in each element, with the , cal node numbers as indices. The nodes and elements lists for the sample lesh above take the form

1odes $=[0,0.2,0.4,0.7,1]$
3lements $=[[0,1,2],[2,3,4]]$
ooking up the coordinate of local node number 2 in element 1 is here done by odes [elements [1] [2]] (recall that nodes and elements start their numbering t 0).
The numbering of elements and nodes does not need to be regular. Figure 17 lows and example corresponding to

1odes $=[1.5,5.5,4.2,0.3,2.2,3.1]$
?lements $=[[2,1],[4,5],[0,4],[3,0],[5,2]]$

. 2 The basis functions

'onstruction principles. Finite element basis functions are in this text recgnized by the notation $\varphi_{i}(x)$, where the index now in the beginning corresponds

Figure 17: Example on irregular numbering of elements and nod ϵ
to a global node number. In the current approximation problem we shal take $\psi_{i}=\varphi_{i}$.

Let i be the global node number corresponding to local node r in number e. The finite element basis functions φ_{i} are now defined as foll

- If local node number r is not on the boundary of the element, ta to be the Lagrange polynomial that is 1 at the local node numbe zero at all other nodes in the element. On all other elements, φ_{i} :
- If local node number r is on the boundary of the element, let φ_{i} l up of the Lagrange polynomial over element e that is 1 at node i, cc with the Lagrange polynomial over element $e+1$ that is also 1 at On all other elements, $\varphi_{i}=0$.
A visual impression of three such basis functions are given in Figure 18
Properties of φ_{i}. The construction of basis functions according to th ples above lead to two important properties of $\varphi_{i}(x)$. First,

$$
\varphi_{i}\left(x_{j}\right)=\delta_{i j}, \quad \delta_{i j}= \begin{cases}1, & i=j, \\ 0, & i \neq j,\end{cases}
$$

when x_{j} is a node in the mesh with global node number j. The result $\varphi_{i}(x$ arises because the Lagrange polynomials are constructed to have exac property. The property also implies a convenient interpretation of c_{i} as t. of u at node i. To show this, we expand u in the usual way as $\sum_{j} c_{\text {: }}$ choose $\psi_{i}=\varphi_{i}$:

$$
u\left(x_{i}\right)=\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}\left(x_{i}\right)=\sum_{j \in \mathcal{I}_{s}} c_{j} \varphi_{j}\left(x_{i}\right)=c_{i} \varphi_{i}\left(x_{i}\right)=c_{i}
$$

Because of this interpretation, the coefficient c_{i} is by many named u_{i} o Second, $\varphi_{i}(x)$ is mostly zero throughout the domain:

igure 18: Illustration of the piecewise quadratic basis functions associated ith nodes in element 1.

- $\varphi_{i}(x) \neq 0$ only on those elements that contain global node i,
- $\varphi_{i}(x) \varphi_{j}(x) \neq 0$ if and only if i and j are global node numbers in the same element.
ince $A_{i, j}$ is the integral of $\varphi_{i} \varphi_{j}$ it means that most of the elements in the eefficient matrix will be zero. We will come back to these properties and use rem actively in computations to save memory and CPU time.
We let each element have $d+1$ nodes, resulting in local Lagrange polynomials f degree d. It is not a requirement to have the same d value in each element, ut for now we will assume so.

. 3 Example on piecewise quadratic finite element functions

igure 18 illustrates how piecewise quadratic basis functions can look like ($d=2$). le work with the domain $\Omega=[0,1]$ divided into four equal-sized elements, each aving three nodes. The nodes and elements lists in this particular example ecome

1odes $=[0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1.0]$ 3lements $=[[0,1,2],[2,3,4],[4,5,6],[6,7,8]]$

Figure 19 sketches the mesh and the numbering. Nodes are marked wit] on the x axis and element boundaries are marked with vertical dashed Figure 18.

Figure 19: Sketch of mesh with 4 elements and 3 nodes per eleme
Let us explain in detail how the basis functions are constructed ac to the principles. Consider element number 1 in Figure 18, $\Omega^{(1)}=[0$ with local nodes 0,1 , and 2 corresponding to global nodes 2 , 3 , and coordinates of these nodes are $0.25,0.375$, and 0.5 , respectively. We defi Lagrange polynomials on this element:

1. The polynomial that is 1 at local node $1(x=0.375$, global node 3 up the basis function $\varphi_{3}(x)$ over this element, with $\varphi_{3}(x)=0$ out element.
2. The Lagrange polynomial that is 1 at local node 0 is the "rig of the global basis function $\varphi_{2}(x)$. The "left part" of $\varphi_{2}(x)$ cor a Lagrange polynomial associated with local node 2 in the neig element $\Omega^{(0)}=[0,0.25]$.
3. Finally, the polynomial that is 1 at local node 2 (global node 4) is part" of the global basis function $\varphi_{4}(x)$. The "right part" comes f Lagrange polynomial that is 1 at local node 0 in the neighboring $\Omega^{(2)}=[0.5,0.75]$.

As mentioned earlier, any global basis function $\varphi_{i}(x)$ is zero on eleme: do not contain the node with global node number i.

The other global functions associated with internal nodes, φ_{1}, φ_{5}, and all of the same shape as the drawn φ_{3}, while the global basis functions as: with shared nodes also have the same shape, provided the elements ar same length.

igure 20: Illustration of the piecewise linear basis functions associated with odes in element 1.

. 4 Example on piecewise linear finite element functions

igure 20 shows piecewise linear basis functions $(d=1)$. Also here we have ,ur elements on $\Omega=[0,1]$. Consider the element $\Omega^{(1)}=[0.25,0.5]$. Now there re no internal nodes in the elements so that all basis functions are associated ith nodes at the element boundaries and hence made up of two Lagrange olynomials from neighboring elements. For example, $\varphi_{1}(x)$ results from the agrange polynomial in element 0 that is 1 at local node 1 and 0 at local node , combined with the Lagrange polynomial in element 1 that is 1 at local node 0 nd 0 at local node 1 . The other basis functions are constructed similarly.
Explicit mathematical formulas are needed for $\varphi_{i}(x)$ in computations. In the iecewise linear case, one can show that

$$
\varphi_{i}(x)= \begin{cases}0, & x<x_{i-1} \tag{53}\\ \left(x-x_{i-1}\right) /\left(x_{i}-x_{i-1}\right), & x_{i-1} \leq x<x_{i} \\ 1-\left(x-x_{i}\right) /\left(x_{i+1}-x_{i}\right), & x_{i} \leq x<x_{i+1} \\ 0, & x \geq x_{i+1}\end{cases}
$$

ere, $x_{j}, j=i-1, i, i+1$, denotes the coordinate of node j. For elements of qual length h the formulas can be simplified to

$$
\varphi_{i}(x)= \begin{cases}0, & x<x_{i-1}, \\ \left(x-x_{i-1}\right) / h, & x_{i-1} \leq x<x_{i}, \\ 1-\left(x-x_{i}\right) / h, & x_{i} \leq x<x_{i+1} \\ 0, & x \geq x_{i+1}\end{cases}
$$

3.5 Example on piecewise cubic finite element basis tions

Piecewise cubic basis functions can be defined by introducing four nc element. Figure 21 shows examples on $\varphi_{i}(x), i=3,4,5,6$, associat element number 1. Note that φ_{4} and φ_{5} are nonzero on element number φ_{3} and φ_{6} are made up of Lagrange polynomials on two neighboring el

Figure 21: Illustration of the piecewise cubic basis functions associat nodes in element 1.

We see that all the piecewise linear basis functions have the same "hat They are naturally referred to as hat functions, also called chapeau fu The piecewise quadratic functions in Figure 18 are seen to be of tw "Rounded hats" associated with internal nodes in the elements and sor "sombrero" shaped hats associated with element boundary nodes. High basis functions also have hat-like shapes, but the functions have pror oscillations in addition, as illustrated in Figure 21.

A common terminology is to speak about linear elements as elements \boldsymbol{r} local nodes associated with piecewise linear basis functions. Similarly, q
lements and cubic elements refer to piecewise quadratic or cubic functions ver elements with three or four local nodes, respectively. Alternative names, equently used later, are P1 elements for linear elements, P2 for quadratic ements, and so forth: $\mathrm{P} d$ signifies degree d of the polynomial basis functions.

. 6 Calculating the linear system

he elements in the coefficient matrix and right-hand side are given by the rmulas (27) and (28), but now the choice of ψ_{i} is φ_{i}. Consider P1 elements here $\varphi_{i}(x)$ piecewise linear. Nodes and elements numbered consecutively from ft to right in a uniformly partitioned mesh imply the nodes

$$
x_{i}=i h, \quad i=0, \ldots, N
$$

nd the elements

$$
\begin{equation*}
\Omega^{(i)}=\left[x_{i}, x_{i+1}\right]=[i h,(i+1) h], \quad i=0, \ldots, N_{e}=N-1 \tag{55}
\end{equation*}
$$

le have in this case N elements and $N+1$ nodes, and $\Omega=\left[x_{0}, x_{N}\right]$. The rmula for $\varphi_{i}(x)$ is given by (54) and a graphical illustration is provided in igures 20 and 23. First we clearly see from the figures the very important roperty $\varphi_{i}(x) \varphi_{j}(x) \neq 0$ if and only if $j=i-1, j=i$, or $j=i+1$, or Iternatively expressed, if and only if i and j are nodes in the same element. 'therwise, φ_{i} and φ_{j} are too distant to have an overlap and consequently their roduct vanishes.

igure 22: Illustration of the piecewise linear basis functions corresponding to lobal node 2 and 3 .
'alculating a specific matrix entry. Let us calculate the specific matrix atry $A_{2,3}=\int_{\Omega} \varphi_{2} \varphi_{3} \mathrm{~d} x$. Figure 22 shows how φ_{2} and φ_{3} look like. We realize om this figure that the product $\varphi_{2} \varphi_{3} \neq 0$ only over element 2 , which contains ode 2 and 3 . The particular formulas for $\varphi_{2}(x)$ and $\varphi_{3}(x)$ on $\left[x_{2}, x_{3}\right]$ are found
from (54). The function φ_{3} has positive slope over $\left[x_{2}, x_{3}\right]$ and corresp the interval $\left[x_{i-1}, x_{i}\right]$ in (54). With $i=3$ we get

$$
\varphi_{3}(x)=\left(x-x_{2}\right) / h,
$$

while $\varphi_{2}(x)$ has negative slope over $\left[x_{2}, x_{3}\right]$ and corresponds to setting (54),

$$
\varphi_{2}(x)=1-\left(x-x_{2}\right) / h .
$$

We can now easily integrate,

$$
A_{2,3}=\int_{\Omega} \varphi_{2} \varphi_{3} \mathrm{~d} x=\int_{x_{2}}^{x_{3}}\left(1-\frac{x-x_{2}}{h}\right) \frac{x-x_{2}}{h} \mathrm{~d} x=\frac{h}{6} .
$$

The diagonal entry in the coefficient matrix becomes

$$
A_{2,2}=\int_{x_{1}}^{x_{2}}\left(\frac{x-x_{1}}{h}\right)^{2} \mathrm{~d} x+\int_{x_{2}}^{x_{3}}\left(1-\frac{x-x_{2}}{h}\right)^{2} \mathrm{~d} x=\frac{h}{3}
$$

The entry $A_{2,1}$ has an the integral that is geometrically similar to the s in Figure 22, so we get $A_{2,1}=h / 6$.

Calculating a general row in the matrix. We can now genera calculation of matrix entries to a general row number i. The entry f $\int_{\Omega} \varphi_{i} \varphi_{i-1} \mathrm{~d} x$ involves hat functions as depicted in Figure 23. Since the is geometrically identical to the situation with specific nodes 2 and $3, \mathrm{w}$ that $A_{i, i-1}=A_{i, i+1}=h / 6$ and $A_{i, i}=2 h / 3$. However, we can comf integral directly too:

$$
\begin{aligned}
A_{i, i-1} & =\int_{\Omega} \varphi_{i} \varphi_{i-1} \mathrm{~d} x \\
& =\underbrace{\int_{x_{i-2}}^{x_{i-1}} \varphi_{i} \varphi_{i-1} \mathrm{~d} x}_{\varphi_{i}=0}+\int_{x_{i-1}}^{x_{i}} \varphi_{i} \varphi_{i-1} \mathrm{~d} x+\underbrace{\int_{x_{i}}^{x_{i+1}} \varphi_{i} \varphi_{i-1} \mathrm{~d} x}_{\varphi_{i-1}=0} \\
& =\int_{x_{i-1}}^{x_{i}} \underbrace{\left(\frac{x-x_{i}}{h}\right)}_{\varphi_{i}(x)} \underbrace{\left(1-\frac{x-x_{i-1}}{h}\right)}_{\varphi_{i-1}(x)} \mathrm{d} x=\frac{h}{6}
\end{aligned}
$$

The particular formulas for $\varphi_{i-1}(x)$ and $\varphi_{i}(x)$ on $\left[x_{i-1}, x_{i}\right]$ are four (54): φ_{i} is the linear function with positive slope, corresponding to the [x_{i-1}, x_{i}] in (54), while ϕ_{i-1} has a negative slope so the definition in $\left[x_{i}, x_{i+1}\right]$ in (54) must be used. (The appearance of i in (54) and the might be confusing, as we speak about two different i indices.)

The first and last row of the coefficient matrix lead to slightly (integrals:

igure 23: Illustration of two neighboring linear (hat) functions with general ode numbers.

$$
A_{0,0}=\int_{\Omega} \varphi_{0}^{2} \mathrm{~d} x=\int_{x_{0}}^{x_{1}}\left(1-\frac{x-x_{0}}{h}\right)^{2} \mathrm{~d} x=\frac{h}{3}
$$

imilarly, $A_{N, N}$ involves an integral over only one element and equals hence $h / 3$.

igure 24: Right-hand side integral with the product of a basis function and le given function to approximate.

The general formula for b_{i}, see Figure 24, is now easy to set up
${ }_{i}=\int_{\Omega} \varphi_{i}(x) f(x) \mathrm{d} x=\int_{x_{i-1}}^{x_{i}} \frac{x-x_{i-1}}{h} f(x) \mathrm{d} x+\int_{x_{i}}^{x_{i+1}}\left(1-\frac{x-x_{i}}{h}\right) f(x) \mathrm{d} x$.
Te need a specific $f(x)$ function to compute these integrals. With two equal-sized ements in $\Omega=[0,1]$ and $f(x)=x(1-x)$, one gets

$$
A=\frac{h}{6}\left(\begin{array}{ccc}
2 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 2
\end{array}\right), \quad b=\frac{h^{2}}{12}\left(\begin{array}{c}
2-3 h \\
12-14 h \\
10-17 h
\end{array}\right) .
$$

The solution becomes

$$
c_{0}=\frac{h^{2}}{6}, \quad c_{1}=h-\frac{5}{6} h^{2}, \quad c_{2}=2 h-\frac{23}{6} h^{2}
$$

The resulting function

$$
u(x)=c_{0} \varphi_{0}(x)+c_{1} \varphi_{1}(x)+c_{2} \varphi_{2}(x)
$$

is displayed in Figure 25 (left). Doubling the number of elements to fo to the improved approximation in the right part of Figure 25.

Figure 25: Least squares approximation of a parabola using 2 (left (right) P1 elements.

3.7 Assembly of elementwise computations

The integrals above are naturally split into integrals over individual e since the formulas change with the elements. This idea of splitting the is fundamental in all practical implementations of the finite element m

Let us split the integral over Ω into a sum of contributions from each

$$
A_{i, j}=\int_{\Omega} \varphi_{i} \varphi_{j} \mathrm{~d} x=\sum_{e} A_{i, j}^{(e)}, \quad A_{i, j}^{(e)}=\int_{\Omega^{(e)}} \varphi_{i} \varphi_{j} \mathrm{~d} x
$$

Now, $A_{i, j}^{(e)} \neq 0$ if and only if i and j are nodes in element e. Introduce i : as the mapping of local node number r in element e to the global node n This is just a short mathematical notation for the expression i=elements in a program. Let r and s be the local node numbers corresponding to th node numbers $i=q(e, r)$ and $j=q(e, s)$. With d nodes per element, nonzero elements in $A_{i, j}^{(e)}$ arise from the integrals involving basis functic indices corresponding to the global node numbers in element number e

$$
\int_{\Omega^{(e)}} \varphi_{q(e, r)} \varphi_{q(e, s)} \mathrm{d} x, \quad r, s=0, \ldots, d
$$

'hese contributions can be collected in a $(d+1) \times(d+1)$ matrix known as re element matrix. Let $I_{d}=\{0, \ldots, d\}$ be the valid indices of r and s. We stroduce the notation

$$
\tilde{A}^{(e)}=\left\{\tilde{A}_{r, s}^{(e)}\right\}, \quad r, s \in I_{d}
$$

or the element matrix. For the case $d=2$ we have

$$
\tilde{A}^{(e)}=\left[\begin{array}{ccc}
\tilde{A}_{0,0}^{(e)} & \tilde{A}_{0,1}^{(e)} & \tilde{A}_{0,2}^{(e)} \\
\tilde{A}_{1,0}^{(e)} & \tilde{A}_{1,1}^{(e)} & \tilde{A}_{1,2}^{(e)} \\
\tilde{A}_{2,0}^{(e)} & \tilde{A}_{2,1}^{(e)} & \tilde{A}_{2,2}^{(e)}
\end{array}\right]
$$

!iven the numbers $\tilde{A}_{r, s}^{(e)}$, we should according to (57) add the contributions to re global coefficient matrix by

$$
\begin{equation*}
A_{q(e, r), q(e, s)}:=A_{q(e, r), q(e, s)}+\tilde{A}_{r, s}^{(e)}, \quad r, s \in I_{d} \tag{58}
\end{equation*}
$$

his process of adding in elementwise contributions to the global matrix is called nite element assembly or simply assembly. Figure 26 illustrates how element latrices for elements with two nodes are added into the global matrix. More secifically, the figure shows how the element matrix associated with elements 1 nd 2 assembled, assuming that global nodes are numbered from left to right in 1e domain. With regularly numbered P3 elements, where the element matrices ave size 4×4, the assembly of elements 1 and 2 are sketched in Figure 27 .

After assembly of element matrices corresponding to regularly numbered ements and nodes are understood, it is wise to study the assembly process for regularly numbered elements and nodes. Figure 17 shows a mesh where the lements array, or $q(e, r)$ mapping in mathematical notation, is given as

3lements $=[[2,1],[4,5],[0,4],[3,0],[5,2]]$
he associated assembly of element matrices 1 and 2 is sketched in Figure 28.
These three assembly processes can also be animated ${ }^{6}$.
The right-hand side of the linear system is also computed elementwise:

$$
\begin{equation*}
b_{i}=\int_{\Omega} f(x) \varphi_{i}(x) \mathrm{d} x=\sum_{e} b_{i}^{(e)}, \quad b_{i}^{(e)}=\int_{\Omega^{(e)}} f(x) \varphi_{i}(x) \mathrm{d} x \tag{59}
\end{equation*}
$$

Ve observe that $b_{i}^{(e)} \neq 0$ if and only if global node i is a node in element e. Jith d nodes per element we can collect the $d+1$ nonzero contributions $b_{i}^{(e)}$, ri $i=q(e, r), r \in I_{d}$, in an element vector

$$
\tilde{b}_{r}^{(e)}=\left\{\tilde{b}_{r}^{(e)}\right\}, \quad r \in I_{d}
$$

hese contributions are added to the global right-hand side by an assembly rocess similar to that for the element matrices:

$$
\begin{equation*}
b_{q(e, r)}:=b_{q(e, r)}+\tilde{b}_{r}^{(e)}, \quad r \in I_{d} \tag{60}
\end{equation*}
$$

[^5]

Figure 26: Illustration of matrix assembly: regularly numbered P1 ele

3.8 Mapping to a reference element

Instead of computing the integrals

$$
\tilde{A}_{r, s}^{(e)}=\int_{\Omega^{(e)}} \varphi_{q(e, r)}(x) \varphi_{q(e, s)}(x) \mathrm{d} x
$$

over some element $\Omega^{(e)}=\left[x_{L}, x_{R}\right]$, it is convenient to map the element $\left[x_{L}, x_{R}\right]$ to a standardized reference element domain $[-1,1]$. (We he introduced x_{L} and x_{R} as the left and right boundary points of an a element. With a natural, regular numbering of nodes and elements fror right through the domain, we have $x_{L}=x_{e}$ and $x_{R}=x_{e+1}$ for P1 eler

Let $X \in[-1,1]$ be the coordinate in the reference element. A linear , mapping from X to x reads

$$
x=\frac{1}{2}\left(x_{L}+x_{R}\right)+\frac{1}{2}\left(x_{R}-x_{L}\right) X .
$$

This relation can alternatively be expressed by

$$
x=x_{m}+\frac{1}{2} h X,
$$

where we have introduced the element midpoint $x_{m}=\left(x_{L}+x_{R}\right) / 2$ element length $h=x_{R}-x_{L}$.

igure 27: Illustration of matrix assembly: regularly numbered P3 elements.

Integrating on the reference element is a matter of just changing the integraon variable from x to X. Let

$$
\begin{equation*}
\tilde{\varphi}_{r}(X)=\varphi_{q(e, r)}(x(X)) \tag{63}
\end{equation*}
$$

e the basis function associated with local node number r in the reference ement. The integral transformation reads

$$
\begin{equation*}
\tilde{A}_{r, s}^{(e)}=\int_{\Omega^{(e)}} \varphi_{q(e, r)}(x) \varphi_{q(e, s)}(x) \mathrm{d} x=\int_{-1}^{1} \tilde{\varphi}_{r}(X) \tilde{\varphi}_{s}(X) \frac{d x}{d X} \mathrm{~d} X \tag{64}
\end{equation*}
$$

he stretch factor $d x / d X$ between the x and X coordinates becomes the deterlinant of the Jacobian matrix of the mapping between the coordinate systems 12 D and 3 D . To obtain a uniform notation for $1 \mathrm{D}, 2 \mathrm{D}$, and 3 D problems we rerefore replace $d x / d X$ by $\operatorname{det} J$ already now. In 1 D , $\operatorname{det} J=d x / d X=h / 2$. he integration over the reference element is then written as

Figure 28: Illustration of matrix assembly: irregularly numbered P1 elf

$$
\tilde{A}_{r, s}^{(e)}=\int_{-1}^{1} \tilde{\varphi}_{r}(X) \tilde{\varphi}_{s}(X) \operatorname{det} J d X
$$

The corresponding formula for the element vector entries becomes

$$
\tilde{b}_{r}^{(e)}=\int_{\Omega^{(e)}} f(x) \varphi_{q(e, r)}(x) d x=\int_{-1}^{1} f(x(X)) \tilde{\varphi}_{r}(X) \operatorname{det} J d X
$$

Since we from now on will work in the reference element, we need mathematical formulas for the basis functions $\varphi_{i}(x)$ in the reference only, i.e., we only need to specify formulas for $\tilde{\varphi}_{r}(X)$. This is a very col simplification compared to specifying piecewise polynomials in the $]$ domain.

The $\tilde{\varphi}_{r}(x)$ functions are simply the Lagrange polynomials defined the local nodes in the reference element. For $d=1$ and two nodes per , we have the linear Lagrange polynomials

$$
\begin{aligned}
& \tilde{\varphi}_{0}(X)=\frac{1}{2}(1-X) \\
& \tilde{\varphi}_{1}(X)=\frac{1}{2}(1+X)
\end{aligned}
$$

Quadratic polynomials, $d=2$, have the formulas

$$
\begin{align*}
& \tilde{\varphi}_{0}(X)=\frac{1}{2}(X-1) X \tag{69}\\
& \tilde{\varphi}_{1}(X)=1-X^{2} \tag{70}\\
& \tilde{\varphi}_{2}(X)=\frac{1}{2}(X+1) X \tag{71}
\end{align*}
$$

1 general,

$$
\begin{equation*}
\tilde{\varphi}_{r}(X)=\prod_{s=0, s \neq r}^{d} \frac{X-X_{(s)}}{X_{(r)}-X_{(s)}}, \tag{72}
\end{equation*}
$$

here $X_{(0)}, \ldots, X_{(d)}$ are the coordinates of the local nodes in the reference ement. These are normally uniformly spaced: $X_{(r)}=-1+2 r / d, r \in I_{d}$.

Why reference elements?

The great advantage of using reference elements is that the formulas for the basis functions, $\tilde{\varphi}_{r}(X)$, are the same for all elements and independent of the element geometry (length and location in the mesh). The geometric information is "factored out" in the simple mapping formula and the associated $\operatorname{det} J$ quantity, but this information is (here taken as) the same for element types. Also, the integration domain is the same for all elements.

. 9 Example: Integration over a reference element

o illustrate the concepts from the previous section in a specific example, we ow consider calculation of the element matrix and vector for a specific choice f d and $f(x)$. A simple choice is $d=1$ (P1 elements) and $f(x)=x(1-x)$ n $\Omega=[0,1]$. We have the general expressions (65) and (66) for $\tilde{A}_{r, s}^{(e)}$ and $\tilde{b}_{r}^{(e)}$. J riting these out for the choices (67) and (68), and using that $\operatorname{det} J=h / 2$, we m do the following calculations of the element matrix entries:

$$
\begin{aligned}
\tilde{A}_{0,0}^{(e)} & =\int_{-1}^{1} \tilde{\varphi}_{0}(X) \tilde{\varphi}_{0}(X) \frac{h}{2} d X \\
& =\int_{-1}^{1} \frac{1}{2}(1-X) \frac{1}{2}(1-X) \frac{h}{2} d X=\frac{h}{8} \int_{-1}^{1}(1-X)^{2} d X=\frac{h}{3}, \\
\tilde{A}_{1,0}^{(e)} & =\int_{-1}^{1} \tilde{\varphi}_{1}(X) \tilde{\varphi}_{0}(X) \frac{h}{2} d X \\
& =\int_{-1}^{1} \frac{1}{2}(1+X) \frac{1}{2}(1-X) \frac{h}{2} d X=\frac{h}{8} \int_{-1}^{1}\left(1-X^{2}\right) d X=\frac{h}{6}, \\
\tilde{A}_{0,1}^{(e)} & =\tilde{A}_{1,0}^{(e)}, \\
\tilde{A}_{1,1}^{(e)} & =\int_{-1}^{1} \tilde{\varphi}_{1}(X) \tilde{\varphi}_{1}(X) \frac{h}{2} d X \\
& =\int_{-1}^{1} \frac{1}{2}(1+X) \frac{1}{2}(1+X) \frac{h}{2} d X=\frac{h}{8} \int_{-1}^{1}(1+X)^{2} d X=\frac{h}{3} .
\end{aligned}
$$

The corresponding entries in the element vector becomes

$$
\begin{aligned}
\tilde{b}_{0}^{(e)} & =\int_{-1}^{1} f(x(X)) \tilde{\varphi}_{0}(X) \frac{h}{2} d X \\
& =\int_{-1}^{1}\left(x_{m}+\frac{1}{2} h X\right)\left(1-\left(x_{m}+\frac{1}{2} h X\right)\right) \frac{1}{2}(1-X) \frac{h}{2} d X \\
& =-\frac{1}{24} h^{3}+\frac{1}{6} h^{2} x_{m}-\frac{1}{12} h^{2}-\frac{1}{2} h x_{m}^{2}+\frac{1}{2} h x_{m} \\
\tilde{b}_{1}^{(e)} & =\int_{-1}^{1} f(x(X)) \tilde{\varphi}_{1}(X) \frac{h}{2} d X \\
& =\int_{-1}^{1}\left(x_{m}+\frac{1}{2} h X\right)\left(1-\left(x_{m}+\frac{1}{2} h X\right)\right) \frac{1}{2}(1+X) \frac{h}{2} d X \\
& =-\frac{1}{24} h^{3}-\frac{1}{6} h^{2} x_{m}+\frac{1}{12} h^{2}-\frac{1}{2} h x_{m}^{2}+\frac{1}{2} h x_{m} .
\end{aligned}
$$

In the last two expressions we have used the element midpoint x_{m}.
Integration of lower-degree polynomials above is tedious, and highe: polynomials involve very much more algebra, but sympy may help. For ϵ we can easily calculate (73), (73), and (77) by

```
>>> import sympy as sp
>>> x, x_m, h, X = sp.symbols('x x_m h X')
>>> sp.integrate(h/8*(1-X)**2, (X, -1, 1))
h/3
>>> sp.integrate(h/8*(1+X)*(1-X), (X, -1, 1))
h/6
>>> x = x m + h/2*X
```

>>> b_0 = sp.integrate(h/4*x*(1-x)*(1-X), (X, -1, 1))
>>> print b_0
$-\mathrm{h} * * 3 / 24+\mathrm{h} * * 2 * x _m / 6-\mathrm{h} * * 2 / 12-\mathrm{h} * \mathrm{x}_{-} \mathrm{m} * * 2 / 2+\mathrm{h} * \mathrm{x}_{-} \mathrm{m} / 2$
or inclusion of formulas in documents (like the present one), sympy can print xpressions in $\mathrm{A}_{\mathrm{A}} \mathrm{EX}$ format:
>> print sp.latex(b_0, mode='plain')

- \frac\{1\}\{24\} $h^{\wedge}\{3\}+$ \frac\{1\}\{6\} $h^{\wedge}\{2\} x_{-}\{m\}$
- \frac\{1\}\{12\} h^\{2\} - \half h x_\{m \} ${ }^{\wedge}\{2\}$
+ \half h x_\{m\}

Implementation

ased on the experience from the previous example, it makes sense to write me code to automate the analytical integration process for any choice of finite ement basis functions. In addition, we can automate the assembly process nd linear system solution. Appropriate functions for this purpose document $1 l$ details of all steps in the finite element computations and can found in the rodule file fe_approx1D.py ${ }^{7}$. The key steps in the computational machinery re now explained in detail in terms of code and text.

. 1 Integration

irst we need a Python function for defining $\tilde{\varphi}_{r}(X)$ in terms of a Lagrange olynomial of degree d:

```
import sympy as sp
import numpy as np
lef phi_r(r, X, d)
    if isinstance(X, sp.Symbol):
    h = sp.Rational(1, d) # node spacing
    nodes = [2*i*h - 1 for i in range(d+1)]
    else:
    # assume X is numeric: use floats for nodes
    nodes = np.linspace(-1, 1, d+1)
    _ nodes = np.linspace(-1, 1, d+1)
lef Lagrange_polynomial(x, i, points):
    p=1
    for k in range(len(points)):
        if k != i:
        p *= (x - points[k])/(points[i] - points[k])
    return p
```

Ibserve how we construct the phi_r function to be a symbolic expression for ${ }_{r}(X)$ if X is a Symbol object from sympy. Otherwise, we assume that X is a float bject and compute the corresponding floating-point value of $\tilde{\varphi}_{r}(X)$. Recall that

[^6]the Lagrange_polynomial function, here simply copied from Section 2.' with both symbolic and numeric variables.

The complete basis $\tilde{\varphi}_{0}(X), \ldots, \tilde{\varphi}_{d}(X)$ on the reference element, reps as a list of symbolic expressions, is constructed by

```
def basis(d=1)
    X = sp.Symbol('X')
    phi = [phi_r(r, X, d) for r in range(d+1)]
    return phi
```

Now we are in a position to write the function for computing the element

```
def element_matrix(phi, Omega_e, symbolic=True):
    n = len(phi)
    A_e = sp.zeros((n, n))
    X = sp.Symbol('X')
    if symbolic:
        h = sp.Symbol('h')
    else:
        h = Omega_e[1] - Omega_e [0]
    detJ = h/2 # dx/dX
    for r in range(n):
        for s in range(r, n):
            A_e[r,s] = sp.integrate(phi[r]*phi[s]*\operatorname{detJ, (X, -1, 1}
            A_e[s,r] = A_e[r,s]
    return A_e
```

In the symbolic case (symbolic is True), we introduce the element le a symbol h in the computations. Otherwise, the real numerical valur element interval Omega_e is used and the final matrix elements are numk symbols. This functionality can be demonstrated:

```
>>> from fe_approx1D import *
>>> phi = basis(d=1)
>> phi
[1/2 - X/2, 1/2 + X/2]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=True)
[h/3, h/6]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=False)
>>> element_matrix(phi,Omega_e=[0.1, 0.2]
[0.0166666666666667, 0.0333333333333333]
```

The computation of the element vector is done by a similar procedt

```
def element_vector(f, phi, Omega_e, symbolic=True):
    n = len(phi)
    b_e = sp.zeros((n, 1))
    # Make f a function of 
    X = sp.Symbol('X')
    if symbolic:
        h = sp.Symbol('h')
    else:
    h = Omega_e[1] - Omega_e[0]
    x = (Omega_e[0] + Omega_e[1])/2 +h/2*X # mapping
```

```
f = f.subs('x', x) # substitute mapping formula for x
detJ = h/2 # dx/dX
for r in range(n):
    b_e[r] = sp.integrate(f*phi[r]*detJ, (X, -1, 1))
return b_e
```

ere we need to replace the symbol x in the expression for f by the mapping rmula such that f can be integrated in terms of X, cf. the formula $\tilde{b}_{r}^{(e)}=$ ${ }_{-1}^{1} f(x(X)) \tilde{\varphi}_{r}(X) \frac{h}{2} d X$.

The integration in the element matrix function involves only products of olynomials, which sympy can easily deal with, but for the right-hand side sympy lay face difficulties with certain types of expressions f. The result of the integral then an Integral object and not a number or expression as when symbolic itegration is successful. It may therefore be wise to introduce a fallback on umerical integration. The symbolic integration can also take much time before n unsuccessful conclusion so we may also introduce a parameter symbolic and st it to False to avoid symbolic integration:

```
lef element_vector(f, phi, Omega_e, symbolic=True)
```

if symbolic:
$\mathrm{I}=\mathrm{sp}$.integrate $(\mathrm{f} * \mathrm{phi}[\mathrm{r}] * \operatorname{det} \mathrm{~J},(\mathrm{X},-1,1))$
if not symbolic or isinstance(I, sp. Integral):
$h=$ Omega_e[1] - Omega_e[0] \# Ensure h is numerical $\operatorname{det} J=h / 2$
integrand $=$ sp.lambdify $([\mathrm{X}], \mathrm{f} * \mathrm{phi}[r] * \operatorname{detJ})$
$I=$ sp.mpmath.quad(integrand, $[-1,1]$)
b_e $[r]=\mathrm{I}$
umerical integration requires that the symbolic integrand is converted to a plain ython function (integrand) and that the element length h is a real number.

. 2 Linear system assembly and solution

he complete algorithm for computing and assembling the elementwise contribuons takes the following form

```
lef assemble(nodes, elements, phi, f, symbolic=True)
    N_n, N_e = len(nodes), len(elements)
    if symbolic:
        A = sp.zeros((N_n, N_n))
        b = sp.zeros((N_n, 1)) # note: (N_n, 1) matrix
    else:
        A = np.zeros((N_n, N_n))
    b = np.zeros(N_n)
    for e in range(N_e):
    Omega_e = [nodes[elements[e][0]], nodes[elements[e][-1]]]
    A_e = element_matrix(phi, Omega_e, symbolic)
    b_e = element_vector(f, phi, Omega_e, symbolic)
    for r in range(len(elements[e])):
```

```
    for s in range(len(elements[e]))
    A[elements[e][r],elements[e][s]] += A_e[r,s]
    b[elements[e][r]] += b_e[r]
```

return A, b

The nodes and elements variables represent the finite element mesh as ex earlier.

Given the coefficient matrix A and the right-hand side b , we can c the coefficients $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$ in the expansion $u(x)=\sum_{j} c_{j} \varphi_{j}$ as the solutio: c of the linear system:

```
if symbolic:
    c = A.LUsolve(b)
else:
    c = np.linalg.solve(A, b)
```

When A and b are sympy arrays, the solution procedure implied by A.LU: symbolic. Otherwise, A and b are numpy arrays and a standard numeric: is called. The symbolic version is suited for small problems only (small Λ since the calculation time becomes prohibitively large otherwise. Norm symbolic integration will be more time consuming in small problems t symbolic solution of the linear system.

4.3 Example on computing symbolic approximation

We can exemplify the use of assemble on the computational case from Ser with two P1 elements (linear basis functions) on the domain $\Omega=[0,1]$ first work with a symbolic element length:

```
>>> h, x = sp.symbols('h x')
>>> nodes = [0, h, 2*h]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, 0
[h/6, 2*h/3, h/6
[ 0, h/6, h/3
>>> b
h**2/6 - h**3/12
    h**2 - 7*h**3/6
[5*h**2/6 - 17*h**3/12]
>>> c = A.LUsolve(b)
>>> c
[12*(7*h*
[ 7*(4*h**2/7 - 23*h**3/21)/(2*h)]
```


. 4 Comparison with finite elements and interpolation/collocation

le may, for comparison, compute the c vector corresponding to an interpolaon/collocation method with finite element basis functions. Choosing the nodes s points, the principle is

$$
u\left(x_{i}\right)=\sum_{j \in \mathcal{I}_{s}} c_{j} \varphi_{j}\left(x_{i}\right)=f\left(x_{i}\right), \quad i \in \mathcal{I}_{s} .
$$

he coefficient matrix $A_{i, j}=\varphi_{j}\left(x_{i}\right)$ becomes the identity matrix because basis unction number j vanishes at all nodes, except node $j: \varphi_{j}\left(x_{i}=\delta_{i j}\right.$. Therefore, $=f\left(x_{i}\right.$.
The associated sympy calculations are

```
>> fn = sp.lambdify([x], f)
>> c = [fn(xc) for xc in nodes
>> c
[0,h*(1 - h), 2*h*(1 - 2*h)]
```

hese expressions are much simpler than those based on least squares or projecon in combination with finite element basis functions.

. 5 Example on computing numerical approximations

he numerical computations corresponding to the symbolic ones in Section 4.3, nd still done by sympy and the assemble function, go as follows:

```
>> nodes = [0, 0.5, 1]
>> elements = [[0, 1], [1, 2]]
>> phi = basis(d=1)
>> x = sp.Symbol('x')
>> f = x*(1-x)
>> A, b = assemble(nodes, elements, phi, f, symbolic=False)
>> A
[ 0.166666666666667, 0.0833333333333333, 0]
0.0833333333333333, 0.333333333333333, 0.0833333333333333]
>>> b
0.03125]
0.104166666666667]
>>> c = A.LUsolve(b)
>> c
0.0416666666666666]
0.291666666666667]
0.0416666666666666]
```

The fe_approx1D module contains functions for generating the nodes and lements lists for equal-sized elements with any number of nodes per element. he coordinates in nodes can be expressed either through the element length rmbol h (symbolic=True) or by real numbers (symbolic=False)
nodes, elements $=$ mesh uniform($N e=10, d=3$, Omega= 0,1$]$,
def approximate(f, symbolic=False, d=1, N_e=4, filename='tmp.pdf'
which computes a mesh with N_e elements, basis functions of degree approximates a given symbolic expression f by a finite element expansior $\sum_{j} c_{j} \varphi_{j}(x)$. When symbolic is False, $u(x)=\sum_{j} c_{j} \varphi_{j}(x)$ can be comI a (large) number of points and plotted together with $f(x)$. The construct points from the solution vector c is done elementwise by evaluating \sum_{r}, at a (large) number of points in each element in the local coordinate and the discrete (x, u) values on each element are stored in separate arr. are finally concatenated to form a global array for x and for u. The de found in the u_glob function in fe_approx1D.py.

4.6 The structure of the coefficient matrix

Let us first see how the global matrix looks like if we assemble symbolic matrices, expressed in terms of h, from several elements:

The reader is encouraged to assemble the element matrices by hand an this result, as this exercise will give a hands-on understanding of w assembly is about. In general we have a coefficient matrix that is tridic

$$
A=\frac{h}{6}\left(\begin{array}{ccccccccc}
2 & 1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \tag{79}\\
1 & 4 & 1 & \ddots & & & & & \vdots \\
0 & 1 & 4 & 1 & \ddots & & & & \vdots \\
\vdots & \ddots & & \ddots & \ddots & 0 & & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots \\
\vdots & & & 0 & 1 & 4 & 1 & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & 1 & 4 & 1 \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 1 & 2
\end{array}\right)
$$

The structure of the right-hand side is more difficult to reveal since it involves n assembly of elementwise integrals of $f(x(X)) \tilde{\varphi}_{r}(X) h / 2$, which obviously epend on the particular choice of $f(x)$. Numerical integration can give some ısight into the nature of the right-hand side. For this purpose it is easier to rok at the integration in x coordinates, which gives the general formula (56). or equal-sized elements of length h, we can apply the Trapezoidal rule at the lobal node points to arrive at

$$
\begin{align*}
b_{i} & =h\left(\frac{1}{2} \varphi_{i}\left(x_{0}\right) f\left(x_{0}\right)+\frac{1}{2} \varphi_{i}\left(x_{N}\right) f\left(x_{N}\right)+\sum_{j=1}^{N-1} \varphi_{i}\left(x_{j}\right) f\left(x_{j}\right)\right) \tag{80}\\
& = \begin{cases}\frac{1}{2} h f\left(x_{i}\right), & i=0 \text { or } i=N, \\
h f\left(x_{i}\right), & 1 \leq i \leq N-1\end{cases} \tag{81}
\end{align*}
$$

he reason for this simple formula is simply that φ_{i} is either 0 or 1 at the nodes nd 0 at all but one of them.
Going to P2 elements ($\mathrm{d}=2$) leads to the element matrix

$$
A^{(e)}=\frac{h}{30}\left(\begin{array}{ccc}
4 & 2 & -1 \tag{82}\\
2 & 16 & 2 \\
-1 & 2 & 4
\end{array}\right)
$$

nd the following global assembled matrix from four elements:

$$
A=\frac{h}{30}\left(\begin{array}{ccccccccc}
4 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 16 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & 8 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 16 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & 8 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 16 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & 8 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 16 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 4
\end{array}\right)
$$

In general, for i odd we have the nonzeroes

$$
A_{i, i-2}=-1, \quad A_{i-1, i}=2, \quad A_{i, i}=8, \quad A_{i+1, i}=2, \quad A_{i+2, i}=-
$$

multiplied by $h / 30$, and for i even we have the nonzeros

$$
A_{i-1, i}=2, \quad A_{i, i}=16, \quad A_{i+1, i}=2,
$$

multiplied by $h / 30$. The rows with odd numbers correspond to node element boundaries and get contributions from two neighboring element assembly process, while the even numbered rows correspond to internal 1 the elements where the only one element contributes to the values in th matrix.

4.7 Applications

With the aid of the approximate function in the fe_approx1D module easily investigate the quality of various finite element approximations given functions. Figure 29 shows how linear and quadratic elements apprc the polynomial $f(x)=x(1-x)^{8}$ on $\Omega=[0,1]$, using equal-sized elemer results arise from the program
import sympy as sp
from fe_approx1D import approximate
$\mathrm{x}=\mathrm{sp}$.Symbol('x')
approximate $\left(\mathrm{f}=\mathrm{x} *(1-\mathrm{x}) * * 8\right.$, symbolic=False, $\mathrm{d}=1, \mathrm{~N}_{\mathrm{e}}=4$ approximate $(\mathrm{f}=\mathrm{x} *(1-\mathrm{x}) * * 8$, symbolic $=$ False, $\mathrm{d}=2, \quad \mathrm{~N}, \mathrm{e}=2$) approximate $\left(f=x *(1-x) * * 8\right.$, symbolic=False, $\left.d=1, N_{-}=8\right)$ approximate $\left(f=x *(1-x) * * 8\right.$, symbolic=False, $\left.d=2, N_{-} e=4\right)$

The quadratic functions are seen to be better than the linear ones for t . value of N, as we increase N. This observation has some generality: degree is not necessarily better on a coarse mesh, but it is as we refi mesh.

4.8 Sparse matrix storage and solution

Some of the examples in the preceding section took several minutes to c even on small meshes consisting of up to eight elements. The main exp] for slow computations is unsuccessful symbolic integration: sympy me lot of energy on integrals like $\int f(x(X)) \tilde{\varphi}_{r}(X) h / 2 d x$ before giving up, program then resorts to numerical integration. Codes that can deal with number of basis functions and accept flexible choices of $f(x)$ should com integrals numerically and replace the matrix objects from sympy by the f efficient array objects from numpy.

Another reason for slow code is related to the fact that most of the entries $A_{i, j}$ are zero, because $\left(\varphi_{i}, \varphi_{j}\right)=0$ unless i and j are nodes in t.

igure 29: Comparison of the finite element approximations: 4 P1 elements with nodes (upper left), 2 P2 elements with 5 nodes (upper right), 8 P1 elements ith 9 nodes (lower left), and 4 P 2 elements with 9 nodes (lower right).
ement. A matrix whose majority of entries are zeros, is known as a sparse tatrix. The sparsity should be utilized in software as it dramatically decreases re storage demands and the CPU-time needed to compute the solution of the near system. This optimization is not critical in 1D problems where modern mputers can afford computing with all the zeros in the complete square matrix, ut in 2D and especially in 3D, sparse matrices are fundamental for feasible nite element computations.
In 1D problems, using a numbering of nodes and elements from left to right ver the domain, the assembled coefficient matrix has only a few diagonals ifferent from zero. More precisely, $2 d+1$ diagonals are different from zero. Iith a different numbering of global nodes, say a random ordering, the diagonal ructure is lost, but the number of nonzero elements is unaltered. Figures 30 nd 31 exemplify sparsity patterns.
The scipy.sparse library supports creation of sparse matrices and linear rstem solution.

- scipy.sparse.diags for matrix defined via diagonals
- scipy.sparse.lil_matrix for creation via setting matrix entries

Figure 30: Matrix sparsity pattern for left-to-right numbering (left) and numbering (right) of nodes in P1 elements.

Figure 31: Matrix sparsity pattern for left-to-right numbering (left) and numbering (right) of nodes in P3 elements.

- scipy.sparse.dok_matrix for creation via setting matrix entries

5 Comparison of finite element and finite c ence approximation

The previous sections on approximating f by a finite element function the projection/Galerkin or least squares approaches to minimize the : mation error. We may, alternatively, use the collocation/interpolation as described in Section 4.4. Here we shall compare these three approacl what one does in the finite difference method when representing a given on a mesh.

5.1 Finite difference approximation of given functic

Approximating a given function $f(x)$ on a mesh in a finite difference con 1 typically just sample f at the mesh points. If u_{i} is the value of the approx at the mesh point x_{i}, we have $u_{i}=f\left(x_{i}\right)$. The collocation/interpolation using finite element basis functions gives exactly the same representa shown Section 4.4,

$$
u\left(x_{i}\right)=c_{i}=f\left(x_{i}\right)
$$

How does a finite element Galerkin or least squares approximation differ from iis straightforward interpolation of f ? This is the question to be addressed ext. We now limit the scope to P1 elements since this is the element type that ives formulas closest to those arising in the finite difference method.

. 2 Finite difference interpretation of a finite element approximation

he linear system arising from a Galerkin or least squares approximation reads 1 general

$$
\sum_{j \in \mathcal{I}_{s}} c_{j}\left(\psi_{i}, \psi_{j}\right)=\left(f, \psi_{i}\right), \quad i \in \mathcal{I}_{s} .
$$

1 the finite element approximation we choose $\psi_{i}=\varphi_{i}$. With φ_{i} corresponding , P1 elements and a uniform mesh of element length h we have in Section 3.6 alculated the matrix with entries $\left(\varphi_{i}, \varphi_{j}\right)$. Equation number i reads

$$
\begin{equation*}
\frac{h}{6}\left(u_{i-1}+4 u_{i}+u_{i+1}\right)=\left(f, \varphi_{i}\right) . \tag{84}
\end{equation*}
$$

he first and last equation, corresponding to $i=0$ and $i=N$ are slightly ifferent, see Section 4.6.
The finite difference counterpart to (84) is just $u_{i}=f_{i}$ as explained in ection 5.1. To easier compare this result to the finite element approach to pproximating functions, we can rewrite the left-hand side of (84) as

$$
\begin{equation*}
h\left(u_{i}+\frac{1}{6}\left(u_{i-1}-2 u_{i}+u_{i+1}\right)\right) . \tag{85}
\end{equation*}
$$

hinking in terms of finite differences, we can write this expression using finite ifference operator notation:

$$
\left[h\left(u+\frac{h^{2}}{6} D_{x} D_{x} u\right)\right]_{i},
$$

hich is nothing but the standard discretization of

$$
h\left(u+\frac{h^{2}}{6} u^{\prime \prime}\right)
$$

Before interpreting the approximation procedure as solving a differential quation, we need to work out what the right-hand side is in the context of P1 ements. Since φ_{i} is the linear function that is 1 at x_{i} and zero at all other odes, only the interval $\left[x_{i-1}, x_{i+1}\right]$ contribute to the integral on the right-hand de. This integral is naturally split into two parts according to (54):

$$
\left(f, \varphi_{i}\right)=\int_{x_{i-1}}^{x_{i}} f(x) \frac{1}{h}\left(x-x_{i-1}\right) d x+\int_{x_{i}}^{x_{i+1}} f(x) \frac{1}{h}\left(1-\left(x-x_{i}\right)\right) d s
$$

However, if f is not known we cannot do much else with this expressic clear that many values of f around x_{i} contributes to the right-hand s just the single point value $f\left(x_{i}\right)$ as in the finite difference method.

To proceed with the right-hand side, we can turn to numerical ints schemes. The Trapezoidal method for $\left(f, \varphi_{i}\right)$, based on sampling the in $f \varphi_{i}$ at the node points $x_{i}=i h$ gives

$$
\left(f, \varphi_{i}\right)=\int_{\Omega} f \varphi_{i} d x \approx h \frac{1}{2}\left(f\left(x_{0}\right) \varphi_{i}\left(x_{0}\right)+f\left(x_{N}\right) \varphi_{i}\left(x_{N}\right)\right)+h \sum_{j=1}^{N-1} f\left(x_{j}\right) \psi
$$

Since φ_{i} is zero at all these points, except at x_{i}, the Trapezoidal rule c to one term:

$$
\left(f, \varphi_{i}\right) \approx h f\left(x_{i}\right),
$$

for $i=1, \ldots, N-1$, which is the same result as with collocation/interf and of course the same result as in the finite difference method. For i : $i=N$ we get contribution from only one element so

$$
\left(f, \varphi_{i}\right) \approx \frac{1}{2} h f\left(x_{i}\right), \quad i=0, i=N
$$

Simpson's rule with sample points also in the middle of the elem $x_{i+\frac{1}{2}}=\left(x_{i}+x_{i+1}\right) / 2$, can be written as

$$
\int_{\Omega} g(x) d x \approx \frac{\tilde{h}}{3}\left(g\left(x_{0}\right)+2 \sum_{j=1}^{N-1} g\left(x_{j}\right)+4 \sum_{j=0}^{N-1} g\left(x_{j+\frac{1}{2}}\right)+f\left(x_{2 N}\right)\right)
$$

where $\tilde{h}=h / 2$ is the spacing between the sample points. Our integran $f \varphi_{i}$. For all the node points, $\varphi_{i}\left(x_{j}\right)=\delta_{i j}$, and therefore $\sum_{j=1}^{N-1} f\left(x_{j}\right)_{\psi}$ $f\left(x_{i}\right)$. At the midpoints, $\varphi_{i}\left(x_{i \pm \frac{1}{2}}\right)=1 / 2$ and $\varphi_{i}\left(x_{j+\frac{1}{2}}\right)=0$ for j ン $j<i-1$. Consequently,

$$
\sum_{j=0}^{N-1} f\left(x_{j+\frac{1}{2}}\right) \varphi_{i}\left(x_{j+\frac{1}{2}}\right)=\frac{1}{2}\left(f x_{j-\frac{1}{2}}+x_{j+\frac{1}{2}}\right) .
$$

When $1 \leq i \leq N-1$ we then get

$$
\left(f, \varphi_{i}\right) \approx \frac{h}{3}\left(f_{i-\frac{1}{2}}+f_{i}+f_{i+\frac{1}{2}}\right)
$$

his result shows that, with Simpson's rule, the finite element method operates ith the average of f over three points, while the finite difference method just pplies f at one point. We may interpret this as a "smearing" or smoothing of by the finite element method.
We can now summarize our findings. With the approximation of $\left(f, \varphi_{i}\right)$ by 1e Trapezoidal rule, P1 elements give rise to equations that can be expressed з a finite difference discretization of

$$
\begin{equation*}
u+\frac{h^{2}}{6} u^{\prime \prime}=f, \quad u^{\prime}(0)=u^{\prime}(L)=0 \tag{8}
\end{equation*}
$$

xpressed with operator notation as

$$
\begin{equation*}
\left[u+\frac{h^{2}}{6} D_{x} D_{x} u=f\right]_{i} . \tag{90}
\end{equation*}
$$

s $h \rightarrow 0$, the extra term proportional to $u^{\prime \prime}$ goes to zero, and the two methods re then equal.
With the Simpson's rule, we may say that we solve

$$
\begin{equation*}
\left[u+\frac{h^{2}}{6} D_{x} D_{x} u=\bar{f}\right]_{i} \tag{91}
\end{equation*}
$$

here \bar{f}_{i} means the average $\frac{1}{3}\left(f_{i-1 / 2}+f_{i}+f_{i+1 / 2}\right)$.
The extra term $\frac{h^{2}}{6} u^{\prime \prime}$ represents a smoothing effect: with just this term, e would find u by integrating f twice and thereby smooth f considerably. 1 addition, the finite element representation of f involves an average, or a noothing, of f on the right-hand side of the equation system. If f is a noisy inction, direct interpolation $u_{i}=f_{i}$ may result in a noisy u too, but with a talerkin or least squares formulation and P1 elements, we should expect that u smoother than f unless h is very small.
The interpretation that finite elements tend to smooth the solution is valid 1 applications far beyond approximation of 1D functions.

. 3 Making finite elements behave as finite differences

Jith a simple trick, using numerical integration, we can easily produce the result ${ }_{i}=f_{i}$ with the Galerkin or least square formulation with P 1 elements. This is seful in many occasions when we deal with more difficult differential equations nd want the finite element method to have properties like the finite difference rethod (solving standard linear wave equations is one primary example).
'omputations in physical space. We have already seen that applying the rapezoidal rule to the right-hand side $\left(f, \varphi_{i}\right)$ simply gives f sampled at x_{i}. sing the Trapezoidal rule on the matrix entries $A_{i, j}=\left(\varphi_{i}, \varphi_{j}\right)$ involves a sum

$$
\sum_{k} \varphi_{i}\left(x_{k}\right) \varphi_{j}\left(x_{k}\right)
$$

but $\varphi_{i}\left(x_{k}\right)=\delta_{i k}$ and $\varphi_{j}\left(x_{k}\right)=\delta_{j k}$. The product $\varphi_{i} \varphi_{j}$ is then differe zero only when sampled at x_{i} and $i=j$. The Trapezoidal approximatio integral is then

$$
\left(\varphi_{i}, \varphi_{j}\right) \approx h, \quad i=j
$$

and zero if $i \neq j$. This means that we have obtained a diagonal matrix! : and last diagonal elements, $\left(\varphi_{0}, \varphi_{0}\right)$ and $\left(\varphi_{N}, \varphi_{N}\right)$ get contribution or the first and last element, respectively, resulting in the approximate value $h / 2$. The corresponding right-hand side also has a factor $1 / 2$ for i $i=N$. Therefore, the least squares or Galerkin approach with P1 elemt Trapezoidal integration results in

$$
c_{i}=f_{i}, \quad i \in \mathcal{I}_{s} .
$$

Simpsons's rule can be used to achieve a similar result for P2 elemen diagonal coefficient matrix, but with the previously derived average of j right-hand side.

Elementwise computations. Identical results to those above will we perform elementwise computations. The idea is to use the Trapezoi on the reference element for computing the element matrix and vector assembled, the same equations $c_{i}=f\left(x_{i}\right)$ arise. Exercise 19 encourages carry out the details.

Terminology. The matrix with entries $\left(\varphi_{i}, \varphi_{j}\right)$ typically arises fror proportional to u in a differential equation where u is the unknown f This matrix is often called the mass matrix, because in the early day finite element method, the matrix arose from the mass times accelerati in Newton's second law of motion. Making the mass matrix diagonal numerical integration, as demonstrated above, is a widely used techniqu called mass lumping. In time-dependent problems it can sometimes enhi numerical accuracy and computational efficiency of the finite element However, there are also examples where mass lumping destroys accurac

6 A generalized element concept

So far, finite element computing has employed the nodes and eleme together with the definition of the basis functions in the reference, Suppose we want to introduce a piecewise constant approximation with o function $\tilde{\varphi}_{0}(x)=1$ in the reference element, corresponding to a $\varphi_{i}(x)$ f that is 1 on element number i and zero on all other elements. Although τ associate the function value with a node in the middle of the elements, t no nodes at the ends, and the previous code snippets will not work bec cannot find the element boundaries from the nodes list.

. 1 Cells, vertices, and degrees of freedom

Te now introduce cells as the subdomains $\Omega^{(e)}$ previously referred as elements. he cell boundaries are denoted as vertices. The reason for this name is that alls are recognized by their vertices in 2D and 3D. We also define a set of degrees f freedom, which are the quantities we aim to compute. The most common type E degree of freedom is the value of the unknown function u at some point. (For zample, we can introduce nodes as before and say the degrees of freedom are the alues of u at the nodes.) The basis functions are constructed so that they equal nity for one particular degree of freedom and zero for the rest. This property asures that when we evaluate $u=\sum_{j} c_{j} \varphi_{j}$ for degree of freedom number i, we at $u=c_{i}$. Integrals are performed over cells, usually by mapping the cell of iterest to a reference cell.

With the concepts of cells, vertices, and degrees of freedom we increase the ecoupling of the geometry (cell, vertices) from the space of basis functions. Je will associate different sets of basis functions with a cell. In 1D, all cells re intervals, while in 2 D we can have cells that are triangles with straight des, or any polygon, or in fact any two-dimensional geometry. Triangles and uadrilaterals are most common, though. The popular cell types in 3D are strahedra and hexahedra.

. 2 Extended finite element concept

he concept of a finite element is now

- a reference cell in a local reference coordinate system;
- a set of basis functions $\tilde{\varphi}_{i}$ defined on the cell;
- a set of degrees of freedom that uniquely determines the basis functions such that $\tilde{\varphi}_{i}=1$ for degree of freedom number i and $\tilde{\varphi}_{i}=0$ for all other degrees of freedom;
- a mapping between local and global degree of freedom numbers, here called the dof map;
- a geometric mapping of the reference cell onto to cell in the physical domain.
here must be a geometric description of a cell. This is trivial in 1D since the all is an interval and is described by the interval limits, here called vertices. If re cell is $\Omega^{(e)}=\left[x_{L}, x_{R}\right]$, vertex 0 is x_{L} and vertex 1 is x_{R}. The reference cell 11 D is $[-1,1]$ in the reference coordinate system X.

The expansion of u over one cell is often used:

$$
\begin{equation*}
u(x)=\tilde{u}(X)=\sum_{r} c_{r} \tilde{\varphi}_{r}(X), \quad x \in \Omega^{(e)}, X \in[-1,1] \tag{92}
\end{equation*}
$$

where the sum is taken over the numbers of the degrees of freedom and, value of u for degree of freedom number r.

Our previous P1, P2, etc., elements are defined by introducing $d+1$ spaced nodes in the reference cell and saying that the degrees of freedom $d+1$ function values at these nodes. The basis functions must be 1 at o and 0 at the others, and the Lagrange polynomials have exactly this F The nodes can be numbered from left to right with associated degrees of that are numbered in the same way. The degree of freedom mapping k what was previously represented by the elements lists. The cell mappir same affine mapping (61) as before.

6.3 Implementation

Implementationwise,

- we replace nodes by vertices;
- we introduce cells such that cell [e] [r] gives the mapping frc vertex r in cell e to the global vertex number in vertices;
- we replace elements by dof_map (the contents are the same for ments).

Consider the example from Section 3.1 where $\Omega=[0,1]$ is divided into t $\Omega^{(0)}=[0,0.4]$ and $\Omega^{(1)}=[0.4,1]$, as depicted in Figure 16. The vert $[0,0.4,1]$. Local vertex 0 and 1 are 0 and 0.4 in cell 0 and 0.4 and 1 in c P2 element means that the degrees of freedom are the value of u at three spaced points (nodes) in each cell. The data structures become

```
vertices = [0, 0.4, 1]
cells = [[0, 1], [1, 2]]
cells = [[0, 1], [1, 2]] , 3, 4]]
```

If we would approximate f by piecewise constants, known as P 0 elem simply introduce one point or node in an element, preferably $X=0$, an one degree of freedom, which is the function value at this node. Mores set $\tilde{\varphi}_{0}(X)=1$. The cells and vertices arrays remain the same, but c is altered:

dof_map $=[[0],[1]]$

We use the cells and vertices lists to retrieve information on the g of a cell, while dof_map is the $q(e, r)$ mapping introduced earlier in the a of element matrices and vectors. For example, the Omega_e variable (repr the cell interval) in previous code snippets must now be computed as
he assembly is done by

```
\[dof_map[e][r], dof_map[e][s]] += A_e[r,s]
,[dof_map[e][r]] += b
```

We will hereafter drop the nodes and elements arrays and work exculsively ith cells, vertices, and dof_map. The module fe_approx1D_numint.py ow replaces the module fe_approx1D and offers similar functions that work ith the new concepts:

Erom fe_approx1D_numint import *
§ = sp.Symbol('x')
$\vdots=x *(1-x)$
J_e = 10
tertices, cells, dof_map $=$ mesh_uniform(N_e, d=3, Omega=[0,1])
,hi = [basis(len(dof_map[e])-1) for e in range(N_e)]
$1, \mathrm{~b}=$ assemble(vertices, cells, dof_map, phi, f)
, = np.linalg.solve(A, b)
\neq Make very fine mesh and sample $u(x)$ on this mesh for plotting
s_u, u = u_glob(c, vertices, cells, dof_map,
) lot(x _u, u)
hese steps are offered in the approximate function, which we here apply to see ow well four P0 elements (piecewise constants) can approximate a parabola:

Erom fe_approx1D_numint import

=sp. Symbol("x")
:or N_e in 4, 8 :
approximate $\left(x *(1-x), d=0, N_{-} e=N_{-} e\right.$, Omega=[0,1])
igure 32 shows the result.

igure 32: Approximation of a parabola by 4 (left) and 8 (right) P0 elements.

6.4 Computing the error of the approximation

So far we have focused on computing the coefficients c_{j} in the approx $u(x)=\sum_{j} c_{j} \varphi_{j}$ as well as on plotting u and f for visual comparison. quantitative comparison needs to investigate the error $e(x)=f(x)-u$ mostly want a single number to reflect the error and use a norm for this usually the L^{2} norm

$$
\|e\|_{L^{2}}=\left(\int_{\Omega} e^{2} d x\right)^{1 / 2}
$$

Since the finite element approximation is defined for all $x \in \Omega$, and interested in how $u(x)$ deviates from $f(x)$ through all the elements, we ca integrate analytically or use an accurate numerical approximation. The more convenient as it is a generally feasible and simple approach. The is sample $e(x)$ at a large number of points in each element. The function in the fe _approx1D_numint module does this for $u(x)$ and returns an with coordinates and an array u with the u values:

$$
\begin{aligned}
& x, u=u_{-} g l o b(c, \text { vertices, cells, dof_map, } \\
& e=f(x)-u
\end{aligned}
$$

Let us use the Trapezoidal method to approximate the integral. Because, elements may have different lengths, the x array has a non-uniformly dis set of coordinates. Also, the u_glob function works in an element by fashion such that coordinates at the boundaries between elements appe: We therefore need to use a "raw" version of the Trapezoidal rule where add up all the trapezoids:

$$
\int_{\Omega} g(x) d x \approx \sum_{j=0}^{n-1} \frac{1}{2}\left(g\left(x_{j}\right)+g\left(x_{j+1}\right)\right)\left(x_{j+1}-x_{j}\right)
$$

if x_{0}, \ldots, x_{n} are all the coordinates in x . In vectorized Python code,
$g_{-} x=g(x)$
integral $=0.5 * n p . \operatorname{sum}\left(\left(g_{-} x[:-1]+g_{-}[1:]\right) *(x[1:]-x[:-1])\right)$
Computing the L^{2} norm of the error, here named E , is now achieved by
$\mathrm{e} 2=\mathrm{e} * * 2$
$\mathrm{E}=\mathrm{np} . \operatorname{sqrt}(0.5 * \mathrm{np} . \operatorname{sum}((\mathrm{e} 2[:-1]+\mathrm{e} 2[1:]) *(\mathrm{x}[1:]-\mathrm{x}[:-1]))$

How does the error depend on h and d ?

Theory and experiments show that the least squares or projection/Ga method in combination with $\mathrm{P} d$ elements of equal length h has an er

$$
\|e\|_{L^{2}}=C h^{d+1},
$$

. 5 Example: Cubic Hermite polynomials

he finite elements considered so far represent u as piecewise polynomials with iscontinuous derivatives at the cell boundaries. Sometimes it is desirable to ave continuous derivatives. A primary examples is the solution of differential quations with fourth-order derivatives where standard finite element formulaons lead to a need for basis functions with continuous first-order derivatives. he most common type of such basis functions in 1D is the so-called cubic ermite polynomials. The construction of such polynomials, as explained next, ill further exemplify the concepts of a cell, vertex, degree of freedom, and dof tap.
Given a reference cell $[-1,1]$, we seek cubic polynomials with the values of ne function and its first-order derivative at $X=-1$ and $X=1$ as the four egrees of freedom. Let us number the degrees of freedom as

- 0 : value of function at $X=-1$
- 1: value of first derivative at $X=-1$
- 2: value of function at $X=1$
- 3: value of first derivative at $X=1$
y having the derivatives as unknowns, we ensure that the derivative of a basis inction in two neighboring elements is the same at the node points.

The four basis functions can be written in a general form

$$
\tilde{\varphi}_{i}(X)=\sum_{j=0}^{3} C_{i, j} X^{j},
$$

ith four coefficients $C_{i, j}, j=0,1,2,3$, to be determined for each i. The mstraints that basis function number i must be 1 for degree of freedom number and zero for the other three degrees of freedom, gives four equations to determine ${ }_{i, j}$ for each i. In mathematical detail,

$$
\begin{aligned}
\tilde{\varphi}_{0}(-1)=1, & \tilde{\varphi}_{0}(1)=\tilde{\varphi}_{0}^{\prime}(-1)=\tilde{\varphi}_{i}^{\prime}(1)=0 \\
\tilde{\varphi}_{1}^{\prime}(-1)=1, & \tilde{\varphi}_{1}(-1)=\tilde{\varphi}_{1}(1)=\tilde{\varphi}_{1}^{\prime}(1)=0 \\
\tilde{\varphi}_{2}(1)=1, & \tilde{\varphi}_{2}(-1)=\tilde{\varphi}_{2}^{\prime}(-1)=\tilde{\varphi}_{2}^{\prime}(1)=0 \\
\tilde{\varphi}_{3}^{\prime}(1)=1, & \tilde{\varphi}_{3}(-1)=\tilde{\varphi}_{3}^{\prime}(-1)=\tilde{\varphi}_{3}(1)=0 .
\end{aligned}
$$

hese four 4×4 linear equations can be solved, yielding the following formulas or the cubic basis functions:

$$
\begin{aligned}
& \tilde{\varphi}_{0}(X)=1-\frac{3}{4}(X+1)^{2}+\frac{1}{4}(X+1)^{3} \\
& \tilde{\varphi}_{1}(X)=-(X+1)\left(1-\frac{1}{2}(X+1)\right)^{2} \\
& \tilde{\varphi}_{2}(X)=\frac{3}{4}(X+1)^{2}-\frac{1}{2}(X+1)^{3} \\
& \tilde{\varphi}_{3}(X)=-\frac{1}{2}(X+1)\left(\frac{1}{2}(X+1)^{2}-(X+1)\right)
\end{aligned}
$$

The construction of the dof map needs a scheme for numbering th degrees of freedom. A natural left-to-right numbering has the function vertex x_{i} as degree of freedom number $2 i$ and the value of the derivati as degree of freedom number $2 i+1, i=0, \ldots, N_{e}+1$.

7 Numerical integration

Finite element codes usually apply numerical approximations to integral the integrands in the coefficient matrix often are (lower-order) poly integration rules that can integrate polynomials exactly are popular.

The numerical integration rules can be expressed in a common form

$$
\int_{-1}^{1} g(X) d X \approx \sum_{j=0}^{M} w_{j} g\left(\bar{X}_{j}\right)
$$

where \bar{X}_{j} are integration points and w_{j} are integration weights, $j=0$ Different rules correspond to different choices of points and weights.

The very simplest method is the Midpoint rule,

$$
\int_{-1}^{1} g(X) d X \approx 2 g(0), \quad \bar{X}_{0}=0, w_{0}=2
$$

which integrates linear functions exactly.

7.1 Newton-Cotes rules

The Newton-Cotes ${ }^{8}$ rules are based on a fixed uniform distributior integration points. The first two formulas in this family are the wel Trapezoidal rule,

$$
\int_{-1}^{1} g(X) d X \approx g(-1)+g(1), \quad \bar{X}_{0}=-1, \quad \bar{X}_{1}=1, \quad w_{0}=w_{1}=1
$$

[^7]nd Simpson's rule,
\[

$$
\begin{equation*}
\int_{-1}^{1} g(X) d X \approx \frac{1}{3}(g(-1)+4 g(0)+g(1)), \tag{102}
\end{equation*}
$$

\]

here

$$
\begin{equation*}
\bar{X}_{0}=-1, \bar{X}_{1}=0, \bar{X}_{2}=1, w_{0}=w_{2}=\frac{1}{3}, w_{1}=\frac{4}{3} . \tag{103}
\end{equation*}
$$

ewton-Cotes rules up to five points is supported in the module file numint. py ${ }^{9}$. For higher accuracy one can divide the reference cell into a set of subintervals nd use the rules above on each subinterval. This approach results in composite les, well-known from basic introductions to numerical integration of $\int_{a}^{b} f(x) d x$.

. 2 Gauss-Legendre rules with optimized points

Iore accurate rules, for a given M, arise if the location of the integration points re optimized for polynomial integrands. The Gauss-Legendre rules ${ }^{10}$ (also nown as Gauss-Legendre quadrature or Gaussian quadrature) constitute one ıch class of integration methods. Two widely applied Gauss-Legendre rules in nis family have the choice

$$
\begin{array}{ll}
M=1: & \bar{X}_{0}=-\frac{1}{\sqrt{3}}, \bar{X}_{1}=\frac{1}{\sqrt{3}}, w_{0}=w_{1}=1 \\
M=2: & \bar{X}_{0}=-\sqrt{\frac{3}{5}}, \bar{X}_{0}=0, \bar{X}_{2}=\sqrt{\frac{3}{5}}, w_{0}=w_{2}=\frac{5}{9}, w_{1}=\frac{8}{9} \tag{105}
\end{array}
$$

hese rules integrate 3 rd and 5 th degree polynomials exactly. In general, an I-point Gauss-Legendre rule integrates a polynomial of degree $2 M+1$ exactly. he code numint.py contains a large collection of Gauss-Legendre rules.

; Approximation of functions in 2D

11 the concepts and algorithms developed for approximation of 1D functions (x) can readily be extended to 2D functions $f(x, y)$ and 3D functions $f(x, y, z)$. asically, the extensions consists of defining basis functions $\psi_{i}(x, y)$ or $\psi_{i}(x, y, z)$ ver some domain Ω, and for the least squares and Galerkin methods, the itegration is done over Ω.
As in 1D, the least squares and projection/Galerkin methods two lead to near systems

[^8]\[

$$
\begin{aligned}
\sum_{j \in \mathcal{I}_{s}} A_{i, j} c_{j} & =b_{i}, \quad i \in \mathcal{I}_{s} \\
A_{i, j} & =\left(\psi_{i}, \psi_{j}\right) \\
b_{i} & =\left(f, \psi_{i}\right)
\end{aligned}
$$
\]

where the inner product of two functions $f(x, y)$ and $g(x, y)$ is defined cor analogously to the 1D case (24):

$$
(f, g)=\int_{\Omega} f(x, y) g(x, y) d x d y
$$

8.1 2 D basis functions as tensor products of 1 D fun

One straightforward way to construct a basis in 2D is to combine 1 functions. Say we have the 1D vector space

$$
V_{x}=\operatorname{span}\left\{\hat{\psi}_{0}(x), \ldots, \hat{\psi}_{N_{x}}(x)\right\}
$$

A similar space for variation in y can be defined,

$$
V_{y}=\operatorname{span}\left\{\hat{\psi}_{0}(y), \ldots, \hat{\psi}_{N_{y}}(y)\right\}
$$

We can then form 2D basis functions as tensor products of 1D basis fur

Tensor products.

Given two vectors $a=\left(a_{0}, \ldots, a_{M}\right)$ and $b=\left(b_{0}, \ldots, b_{N}\right)$, their outer t product, also called the dyadic product, is $p=a \otimes b$, defined through

$$
p_{i, j}=a_{i} b_{j}, \quad i=0, \ldots, M, j=0, \ldots, N .
$$

In the tensor terminology, a and b are first-order tensors (vectors wit index, also termed rank- 1 tensors), and then their outer tensor produc second-order tensor (matrix with two indices, also termed rank- 2 te The corresponding inner tensor product is the well-known scalar c product of two vectors: $p=a \cdot b=\sum_{j=0}^{N} a_{j} b_{j}$. Now, p is a rank-0 ter

Tensors are typically represented by arrays in computer code. I above example, a and b are represented by one-dimensional arrays of 1 M and N, respectively, while $p=a \otimes b$ must be represented by ε dimensional array of size $M \times N$.

Tensor products ${ }^{a}$ can be used in a variety of context.
${ }^{{ }^{a} \text { http://en.wikipedia.org/wiki/Tensor_product }}$
Given the vector spaces V_{x} and V_{y} as defined in (107) and (108), th product space $V=V_{x} \otimes V_{y}$ has a basis formed as the tensor produc basis for V_{x} and V_{y}. That is, if $\left\{\varphi_{i}(x)\right\}_{i \in \mathcal{I}_{x}}$ and $\left\{\varphi_{i}(y)\right\}_{i \in \mathcal{I}_{y}}$ are basi
nd V_{y}, respectively, the elements in the basis for V arise from the tensor roduct: $\left\{\varphi_{i}(x) \varphi_{j}(y)\right\}_{i \in \mathcal{I}_{x}, j \in \mathcal{I}_{y}}$. The index sets are $I_{x}=\left\{0, \ldots, N_{x}\right\}$ and ,$=\left\{0, \ldots, N_{y}\right\}$.

The notation for a basis function in 2D can employ a double index as in

$$
\psi_{p, q}(x, y)=\hat{\psi}_{p}(x) \hat{\psi}_{q}(y), \quad p \in \mathcal{I}_{x}, q \in \mathcal{I}_{y}
$$

he expansion for u is then written as a double sum

$$
u=\sum_{p \in \mathcal{I}_{x}} \sum_{q \in \mathcal{I}_{y}} c_{p, q} \psi_{p, q}(x, y)
$$

lternatively, we may employ a single index,

$$
\psi_{i}(x, y)=\hat{\psi}_{p}(x) \hat{\psi}_{q}(y)
$$

nd use the standard form for u,

$$
u=\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}(x, y)
$$

he single index is related to the double index through $i=p N_{y}+q$ or $i=q N_{x}+p$.

. 2 Example: Polynomial basis in 2D

uppose we choose $\hat{\psi}_{p}(x)=x^{p}$, and try an approximation with $N_{x}=N_{y}=1$:

$$
\psi_{0,0}=1, \quad \psi_{1,0}=x, \quad \psi_{0,1}=y, \quad \psi_{1,1}=x y
$$

sing a mapping to one index like $i=q N_{x}+p$, we get

$$
\psi_{0}=1, \quad \psi_{1}=x, \quad \psi_{2}=y, \quad \psi_{3}=x y
$$

With the specific choice $f(x, y)=\left(1+x^{2}\right)\left(1+2 y^{2}\right)$ on $\Omega=\left[0, L_{x}\right] \times\left[0, L_{y}\right]$, e can perform actual calculations:

$$
\begin{aligned}
& A_{0,0}=\left(\psi_{0}, \psi_{0}\right)=\int_{0}^{L_{y}} \int_{0}^{L_{x}} \psi_{0}(x, y)^{2} d x d y=\int_{0}^{L_{y}} \int_{0}^{L_{x}} d x d y=L_{x} L_{y} \\
& A_{1,0}=\left(\psi_{1}, \psi_{0}\right)=\int_{0}^{L_{y}} \int_{0}^{L_{x}} x d x d y=\frac{1}{2} L_{x}^{2} L_{y} \\
& A_{0,1}=\left(\psi_{0}, \psi_{1}\right)=\int_{0}^{L_{y}} \int_{0}^{L_{x}} y d x d y=\frac{1}{2} L_{y}^{2} L_{x} \\
& A_{0,1}=\left(\psi_{0}, \psi_{1}\right)=\int_{0}^{L_{y}} \int_{0}^{L_{x}} x y d x d y=\int_{0}^{L_{y}} y d y \int_{0}^{L_{x}} x d x=\frac{1}{4} L_{y}^{2} L_{x}^{2}
\end{aligned}
$$

he right-hand side vector has the entries

$$
\begin{aligned}
b_{0} & =\left(\psi_{0}, f\right)=\int_{0}^{L_{y}} \int_{0}^{L_{x}} 1 \cdot\left(1+x^{2}\right)\left(1+2 y^{2}\right) d x d y \\
& =\int_{0}^{L_{y}}\left(1+2 y^{2}\right) d y \int_{0}^{L_{x}}\left(1+x^{2}\right) d x=\left(L_{y}+\frac{2}{3} L_{y}^{3}\right)\left(L_{x}+\frac{1}{3} L_{x}^{3}\right) \\
b_{1} & =\left(\psi_{1}, f\right)=\int_{0}^{L_{y}} \int_{0}^{L_{x}} x\left(1+x^{2}\right)\left(1+2 y^{2}\right) d x d y \\
& =\int_{0}^{L_{y}}\left(1+2 y^{2}\right) d y \int_{0}^{L_{x}} x\left(1+x^{2}\right) d x=\left(L_{y}+\frac{2}{3} L_{y}^{3}\right)\left(\frac{1}{2} L_{x}^{2}+\frac{1}{4} L_{x}^{4}\right) \\
b_{2} & =\left(\psi_{2}, f\right)=\int_{0}^{L_{y}} \int_{0}^{L_{x}} y\left(1+x^{2}\right)\left(1+2 y^{2}\right) d x d y \\
& =\int_{0}^{L_{y}} y\left(1+2 y^{2}\right) d y \int_{0}^{L_{x}}\left(1+x^{2}\right) d x=\left(\frac{1}{2} L_{y}+\frac{1}{2} L_{y}^{4}\right)\left(L_{x}+\frac{1}{3} L_{x}^{3}\right) \\
b_{3} & =\left(\psi_{2}, f\right)=\int_{0}^{L_{y}} \int_{0}^{L_{x}} x y\left(1+x^{2}\right)\left(1+2 y^{2}\right) d x d y \\
& =\int_{0}^{L_{y}} y\left(1+2 y^{2}\right) d y \int_{0}^{L_{x}} x\left(1+x^{2}\right) d x=\left(\frac{1}{2} L_{y}^{2}+\frac{1}{2} L_{y}^{4}\right)\left(\frac{1}{2} L_{x}^{2}+\frac{1}{4} 1\right.
\end{aligned}
$$

There is a general pattern in these calculations that we can explc arbitrary matrix entry has the formula

$$
\begin{aligned}
A_{i, j} & =\left(\psi_{i}, \psi_{j}\right)=\int_{0}^{L_{y}} \int_{0}^{L_{x}} \psi_{i} \psi_{j} d x d y \\
& =\int_{0}^{L_{y}} \int_{0}^{L_{x}} \psi_{p, q} \psi_{r, s} d x d y=\int_{0}^{L_{y}} \int_{0}^{L_{x}} \hat{\psi}_{p}(x) \hat{\psi}_{q}(y) \hat{\psi}_{r}(x) \hat{\psi}_{s}(y) d x \\
& =\int_{0}^{L_{y}} \hat{\psi}_{q}(y) \hat{\psi}_{s}(y) d y \int_{0}^{L_{x}} \hat{\psi}_{p}(x) \hat{\psi}_{r}(x) d x \\
& =\hat{A}_{p, r}^{(x)} \hat{A}_{q, s}^{(y)}
\end{aligned}
$$

where

$$
\hat{A}_{p, r}^{(x)}=\int_{0}^{L_{x}} \hat{\psi}_{p}(x) \hat{\psi}_{r}(x) d x, \quad \hat{A}_{q, s}^{(y)}=\int_{0}^{L_{y}} \hat{\psi}_{q}(y) \hat{\psi}_{s}(y) d y
$$

are matrix entries for one-dimensional approximations. Moreover, $i=$ and $j=s N_{y}+r$.

With $\hat{\psi}_{p}(x)=x^{p}$ we have

$$
\hat{A}_{p, r}^{(x)}=\frac{1}{p+r+1} L_{x}^{p+r+1}, \quad \hat{A}_{q, s}^{(y)}=\frac{1}{q+s+1} L_{y}^{q+s+1}
$$

and

$$
A_{i, j}=\hat{A}_{p, r}^{(x)} \hat{A}_{q, s}^{(y)}=\frac{1}{p+r+1} L_{x}^{p+r+1} \frac{1}{q+s+1} L_{y}^{q+s+1}
$$

rr $p, r \in \mathcal{I}_{x}$ and $q, s \in \mathcal{I}_{y}$.
Corresponding reasoning for the right-hand side leads to

$$
\begin{aligned}
b_{i} & =\left(\psi_{i}, f\right)=\int_{0}^{L_{y}} \int_{0}^{L_{x}} \psi_{i} f d x d x \\
& =\int_{0}^{L_{y}} \int_{0}^{L_{x}} \hat{\psi}_{p}(x) \hat{\psi}_{q}(y) f d x d x \\
& =\int_{0}^{L_{y}} \hat{\psi}_{q}(y)\left(1+2 y^{2}\right) d y \int_{0}^{L_{y}} \hat{\psi}_{p}(x) x^{p}\left(1+x^{2}\right) d x \\
& =\int_{0}^{L_{y}} y^{q}\left(1+2 y^{2}\right) d y \int_{0}^{L_{y}} x^{p}\left(1+x^{2}\right) d x \\
& =\left(\frac{1}{q+1} L_{y}^{q+1}+\frac{2}{q+3} L_{y}^{q+3}\right)\left(\frac{1}{p+1} L_{x}^{p+1}+\frac{2}{q+3} L_{x}^{p+3}\right)
\end{aligned}
$$

Choosing $L_{x}=L_{y}=2$, we have

$$
A=\left[\begin{array}{cccc}
4 & 4 & 4 & 4 \\
4 & \frac{16}{3} & 4 & \frac{16}{3} \\
4 & 4 & \frac{16}{3} & \frac{16}{3} \\
4 & \frac{16}{3} & \frac{16}{3} & \frac{64}{9}
\end{array}\right], \quad b=\left[\begin{array}{c}
\frac{308}{9} \\
\frac{140}{3} \\
44 \\
60
\end{array}\right], \quad c=\left[\begin{array}{r}
-\frac{1}{9} \\
\frac{4}{3} \\
-\frac{2}{3} \\
8
\end{array}\right]
$$

igure 33 illustrates the result.

igure 33: Approximation of a 2D quadratic function (left) by a 2D bilinear unction (right) using the Galerkin or least squares method.

. 3 Implementation

he least_squares function from Section 2.8 and/or the file approx1D.py ${ }^{11}$ mn with very small modifications solve 2D approximation problems. First,

[^9]let Omega now be a list of the intervals in x and y direction. For e $\Omega=\left[0, L_{x}\right] \times\left[0, L_{y}\right]$ can be represented by Omega $=$ [[0, L_x], [0,] Second, the symbolic integration must be extended to 2D:

import sympy as sp

integrand $=$ psi[i]*psi[j]
I = sp.integrate(integrand,
(x, Omega[0] [0], Omega[0] [1])
(y, Omega[1] [0], Omega[1] [1]))
provided integrand is an expression involving the sympy symbols x and 2 D version of numerical integration becomes
if isinstance(I, sp. Integral):
integrand $=$ sp.lambdify $([x, y]$, integrand)
$\mathrm{I}=$ sp.mpmath.quad(integrand,
[Omega[0][0], Omega[0] [1]],
[Omega[1] [0], Omega[1][1]])
The right-hand side integrals are modified in a similar way.
Third, we must construct a list of 2 D basis functions. Here are two e based on tensor products of 1D "Taylor-style" polynomials x^{i} and functions $\sin ((i+1) \pi x)$:
def taylor(x, y, Nx, Ny):
return [x**i*y**j for i in range($\mathrm{Nx}+1$) for j in range $(\mathrm{Ny}+1)$]
def sines(x, y, Nx, Ny):
return $[\mathrm{sp} . \sin (\mathrm{sp} . \mathrm{pi} *(\mathrm{i}+1) * \mathrm{x}) * \mathrm{sp} . \sin (\mathrm{sp} . \mathrm{pi} *(\mathrm{j}+1) * \mathrm{y})$ for i in range $(N x+1)$ for j in range $(N y+1)$]

The complete code appears in approx2D. py ${ }^{12}$.
The previous hand calculation where a quadratic f was approximat bilinear function can be computed symbolically by

```
>>> from approx2D import *
>>> f = (1+x**2)*(1+2*y**2)
>>> f = (1+x**2)*(1+2*y**2)
>>> psi = taylor(x, y, 1, 1)
[0, 2], [0, 2]]
>>> u = least_squares(f, psi, Omega)
>>> print u
8*x*y - 2*x/3 + 4*y/3 - 1/9
>>> print sp.expand(f)
2*x**2*y**2 + x**2 + 2*y**2 + 1
```

We may continue with adding higher powers to the basis:

```
>>> psi = taylor(x, y, 2, 2)
>>> u = least_squares(f, psi, Omega)
>>> print u
2*x**2*y**2 + x**2 + 2*y**2 + 1
>>> print u-f
```

1
0

or $N_{x} \geq 2$ and $N_{y} \geq 2$ we recover the exact function f, as expected, since in lat case $f \in V$ (see Section 2.5).

. 4 Extension to 3D

xtension to 3 D is in principle straightforward once the 2 D extension is unerstood. The only major difference is that we need the repeated outer tensor roduct,

$$
V=V_{x} \otimes V_{y} \otimes V_{z}
$$

1 general, given vectors (first-order tensors) $a^{(q)}=\left(a_{0}^{(q)}, \ldots, a_{N_{q}}^{(q)}, q=0, \ldots, m\right.$, 1e tensor product $p=a^{(0)} \otimes \cdots \otimes a^{m}$ has elements

$$
p_{i_{0}, i_{1}, \ldots, i_{m}}=a_{i_{1}}^{(0)} a_{i_{1}}^{(1)} \cdots a_{i_{m}}^{(m)}
$$

he basis functions in 3D are then

$$
\psi_{p, q, r}(x, y, z)=\hat{\psi}_{p}(x) \hat{\psi}_{q}(y) \hat{\psi}_{r}(z)
$$

ith $p \in \mathcal{I}_{x}, q \in \mathcal{I}_{y}, r \in \mathcal{I}_{z}$. The expansion of u becomes

$$
u(x, y, z)=\sum_{p \in \mathcal{I}_{x}} \sum_{q \in \mathcal{I}_{y}} \sum_{r \in \mathcal{I}_{z}} c_{p, q, r} \psi_{p, q, r}(x, y, z)
$$

single index can be introduced also here, e.g., $i=N_{x} N_{y} r+q_{N} x+p, u=$ $\bar{\zeta}_{i} c_{i} \psi_{i}(x, y, z)$.

Use of tensor product spaces.

Constructing a multi-dimensional space and basis from tensor products of 1D spaces is a standard technique when working with global basis functions. In the world of finite elements, constructing basis functions by tensor products is much used on quadrilateral and hexahedra cell shapes, but not on triangles and tetrahedra. Also, the global finite element basis functions are almost exclusively denoted by a single index and not by the natural tuple of indices that arises from tensor products.

1 Finite elements in 2D and 3D

inite element approximation is particularly powerful in 2D and 3D because re method can handle a geometrically complex domain Ω with ease. The rincipal idea is, as in 1D, to divide the domain into cells and use polynomials or approximating a function over a cell. Two popular cell shapes are triangles nd the quadrilaterals. Figures 34,35 , and 36 provide examples. P1 elements leans linear functions ($a_{0}+a_{1} x+a_{2} y$) over triangles, while Q1 elements have ilinear functions $\left(a_{0}+a_{1} x+a_{2} y+a_{3} x y\right)$ over rectangular cells. Higher-order ements can easily be defined.
(2.0)

Figure 34: Examples on 2D P1 elements.

Figure 35: Examples on 2D P1 elements in a deformed geometry

9.1 Basis functions over triangles in the physical dc

Cells with triangular shape will be in main focus here. With the P1 tri element, u is a linear function over each cell, as depicted in Figure § discontinuous derivatives at the cell boundaries

We give the vertices of the cells global and local numbers as in 1 degrees of freedom in the P1 element are the function values at a set c which are the three vertices. The basis function $\varphi_{i}(x, y)$ is then 1 at th with global vertex number i and zero at all other vertices. On an elem three degrees of freedom uniquely determine the linear basis functions element, as usual. The global $\varphi_{i}(x, y)$ function is then a combination of tl functions (planar surfaces) over all the neighboring cells that have vertex i in common. Figure 38 tries to illustrate the shape of such a "pyram function.

Figure 36: Examples on 2D Q1 elements.
lement matrices and vectors. As in 1D, we split the integral over Ω into sum of integrals over cells. Also as in 1D, φ_{i} overlaps φ_{j} (i.e., $\varphi_{i} \varphi_{j} \neq 0$) if nd only if i and j are vertices in the same cell. Therefore, the integral of $\varphi_{i} \varphi_{j}$ ver an element is nonzero only when i and j run over the vertex numbers in re element. These nonzero contributions to the coefficient matrix are, as in 1D, ollected in an element matrix. The size of the element matrix becomes 3×3 nce there are three degrees of freedom that i and j run over. Again, as in 1D, e number the local vertices in a cell, starting at 0 , and add the entries in the ement matrix into the global system matrix, exactly as in 1D. All details and sde appear below.

. 2 Basis functions over triangles in the reference cell

s in 1D, we can define the basis functions and the degrees of freedom in a sference cell and then use a mapping from the reference coordinate system to re physical coordinate system. We also have a mapping of local degrees of eedom numbers to global degrees of freedom numbers.
The reference cell in an (X, Y) coordinate system has vertices $(0,0),(1,0)$, nd $(0,1)$, corresponding to local vertex numbers 0,1 , and 2 , respectively. The 1 element has linear functions $\tilde{\varphi}_{r}(X, Y)$ as basis functions, $r=0,1,2$. Since a near function $\tilde{\varphi}_{r}(X, Y)$ in 2 D is on the form $C_{r, 0}+C_{r, 1} X+C_{r, 2} Y$, and hence as three parameters $C_{r, 0}, C_{r, 1}$, and $C_{r, 2}$, we need three degrees of freedom. hese are in general taken as the function values at a set of nodes. For the P1

Figure 37: Example on piecewise linear 2D functions defined on trias
element the set of nodes is the three vertices. Figure 39 displays the g_{1} of the element and the location of the nodes.

Requiring $\tilde{\varphi}_{r}=1$ at node number r and $\tilde{\varphi}_{r}=0$ at the two other nod' three linear equations to determine $C_{r, 0}, C_{r, 1}$, and $C_{r, 2}$. The result is

$$
\begin{aligned}
& \tilde{\varphi}_{0}(X, Y)=1-X-Y, \\
& \tilde{\varphi}_{1}(X, Y)=X \\
& \tilde{\varphi}_{2}(X, Y)=Y
\end{aligned}
$$

Higher-order approximations are obtained by increasing the polynomi adding additional nodes, and letting the degrees of freedom be functios at the nodes. Figure 40 shows the location of the six nodes in the P2 e

A polynomial of degree p in X and Y has $n_{p}=(p+1)(p+2) / 2$ tes hence needs n_{p} nodes. The values at the nodes constitute n_{p} degrees of The location of the nodes for $\tilde{\varphi}_{r}$ up to degree 6 is displayed in Figure 4

The generalization to 3 D is straightforward: the reference elemı tetrahedron ${ }^{13}$ with vertices $(0,0,0),(1,0,0),(0,1,0)$, and $(0,0,1)$ in a reference coordinate system. The P1 element has its degrees of freedom nodes, which are the four vertices, see Figure 42. The P2 element adds ad nodes along the edges of the cell, yielding a total of 10 nodes and de freedom, see Figure 43.

[^10]
igure 38: Example on a piecewise linear 2D basis function over a patch of :iangles.

Figure 39: 2D P1 element.

The interval in 1 D , the triangle in 2 D , the tetrahedron in 3 D , and its eneralizations to higher space dimensions are known as simplex cells (the zometry) or simplex elements (the geometry, basis functions, degrees of freedom, jc.). The plural forms simplices ${ }^{14}$ and simplexes are also a much used shorter arms when referring to this type of cells or elements. The side of a simplex is tlled a face, while the tetrahedron also has edges.
ıcknowledgment. Figures 39 to 43 are created by Anders Logg and taken om the FEniCS book ${ }^{15}$: Automated Solution of Differential Equations by the

[^11]

Figure 40: 2D P2 element.

Figure 41: 2D P1, P2, P3, P4, P5, and P6 elements.

Finite Element Method, edited by A. Logg, K.-A. Mardal, and G. N published by Springer ${ }^{16}$, 2012.

9.3 Affine mapping of the reference cell

Let $\tilde{\varphi}_{r}^{(1)}$ denote the basis functions associated with the P1 element in 1D 3D, and let $\boldsymbol{x}_{q(e, r)}$ be the physical coordinates of local vertex number r Furthermore, let \boldsymbol{X} be a point in the reference coordinate system corres to the point \boldsymbol{x} in the physical coordinate system. The affine mapping of onto \boldsymbol{x} is then defined by

[^12]

Figure 42: P1 elements in 1D, 2D, and 3D.

Figure 43: P2 elements in 1D, 2D, and 3D.

$$
\begin{equation*}
\boldsymbol{x}=\sum_{r} \tilde{\varphi}_{r}^{(1)}(\boldsymbol{X}) \boldsymbol{x}_{q(e, r)}, \tag{112}
\end{equation*}
$$

here r runs over the local vertex numbers in the cell. The affine mapping isentially stretches, translates, and rotates the triangle. Straight or planar ices of the reference cell are therefore mapped onto straight or planar faces 1 the physical coordinate system. The mapping can be used for both P1 and igher-order elements, but note that the mapping itself always applies the P1 asis functions.

.4 Isoparametric mapping of the reference cell

1stead of using the P1 basis functions in the mapping (112), we may use the asis functions of the actual $\mathrm{P} d$ element:

$$
\begin{equation*}
\boldsymbol{x}=\sum_{r} \tilde{\varphi}_{r}(\boldsymbol{X}) \boldsymbol{x}_{q(e, r)}, \tag{113}
\end{equation*}
$$

here r runs over all nodes, i.e., all points associated with the degrees of freedom. his is called an isoparametric mapping. For P1 elements it is identical to le affine mapping (112), but for higher-order elements the mapping of the raight or planar faces of the reference cell will result in a curved face in the

Figure 44: Affine mapping of a P1 element.
physical coordinate system. For example, when we use the basis functior triangular P2 element in 2D in (113), the straight faces of the reference are mapped onto curved faces of parabolic shape in the physical coc system, see Figure 45.

Figure 45: Isoparametric mapping of a P2 element.

From (112) or (113) it is easy to realize that the vertices are correctly Consider a vertex with local number s. Then $\tilde{\varphi}_{s}=1$ at this vertex and the others. This means that only one term in the sum is nonzero and $\boldsymbol{x}=$ which is the coordinate of this vertex in the global coordinate system.

. 5 Computing integrals

et $\tilde{\Omega}^{r}$ denote the reference cell and $\Omega^{(e)}$ the cell in the physical coordinate rstem. The transformation of the integral from the physical to the reference zordinate system reads

$$
\begin{align*}
\int_{\Omega^{(e)}} \varphi_{i}(\boldsymbol{x}) \varphi_{j}(\boldsymbol{x}) \mathrm{d} x & =\int_{\tilde{\Omega}^{r}} \tilde{\varphi}_{i}(\boldsymbol{X}) \tilde{\varphi}_{j}(\boldsymbol{X}) \operatorname{det} J \mathrm{~d} X \tag{114}\\
\int_{\Omega^{(e)}} \varphi_{i}(\boldsymbol{x}) f(\boldsymbol{x}) \mathrm{d} x & =\int_{\tilde{\Omega}^{r}} \tilde{\varphi}_{i}(\boldsymbol{X}) f(\boldsymbol{x}(\boldsymbol{X})) \operatorname{det} J \mathrm{~d} X, \tag{115}
\end{align*}
$$

here $\mathrm{d} x$ means the infinitesimal area element $d x d y$ in 2 D and $d x d y d z$ in 3D, ith a similar definition of $\mathrm{d} X$. The quantity $\operatorname{det} J$ is the determinant of the acobian of the mapping $\boldsymbol{x}(\boldsymbol{X})$. In 2D,

$$
J=\left[\begin{array}{ll}
\frac{\partial x}{\partial X} & \frac{\partial x}{\partial Y} \tag{116}\\
\frac{\partial y}{\partial X} & \frac{\partial y}{\partial Y}
\end{array}\right], \quad \operatorname{det} J=\frac{\partial x}{\partial X} \frac{\partial y}{\partial Y}-\frac{\partial x}{\partial Y} \frac{\partial y}{\partial X} .
$$

J ith the affine mapping (112), det $J=2 \Delta$, where Δ is the area or volume of re cell in the physical coordinate system.

Lemark. Observe that finite elements in 2D and 3D builds on the same ideas nd concepts as in 1D, but there is simply much more to compute because the secific mathematical formulas in 2D and 3D are more complicated and the book دeping with dof maps also gets more complicated. The manual work is tedious, ngthy, and error-prone so automation by the computer is a must.

0 Exercises

\xercise 1: Linear algebra refresher I

ook up the topic of vector space in your favorite linear algebra book or search or the term at Wikipedia. Prove that vectors in the plane (a, b) form a vector jace by showing that all the axioms of a vector space are satisfied. Similarly, rove that all linear functions of the form $a x+b$ constitute a vector space, ,$b \in \mathbb{R}$.
On the contrary, show that all quadratic functions of the form $1+a x^{2}+b x$ o not constitute a vector space. Filename: linalg1.pdf.

’xercise 2: Linear algebra refresher II

s an extension of Exercise 1, check out the topic of inner product spaces. Suggest possible inner product for the space of all linear functions of the form $a x+b$, ,$b \in \mathbb{R}$. Show that this inner product satisfies the general requirements of an mer product in a vector space. Filename: linalg2.pdf.

Exercise 3: Approximate a three-dimensional vecto plane

Given $\boldsymbol{f}=(1,1,1)$ in \mathbb{R}^{3}, find the best approximation vector \boldsymbol{u} in tr spanned by the unit vectors $(1,0)$ and $(0,1)$. Repeat the calculations u vectors $(2,1)$ and $(1,2)$. Filename: vec111_approx.pdf.

Exercise 4: Approximate the exponential function by functions

Let V be a function space with basis functions $x^{i}, i=0,1, \ldots, N$. Find approximation to $f(x)=\exp (-x)$ on $\Omega=[0,4]$ among all functions i $N=2,4,6$. Illustrate the three approximations in three separate plot the corresponding Taylor polynomial approximation of degree N in eє Filename: exp_powers.py.

Exercise 5: Approximate the sine function by power tions

Let V be a function space with basis functions $x^{2 i+1}, i=0,1, \ldots, N$. F best approximation to $f(x)=\sin (x)$ among all functions in V, using for a domain that includes more and more half-periods of the sine f $\Omega=[0, k \pi / 2], k=2,3, \ldots, 12$. How does a Taylor series of $\sin (x)$ arou: to degree 9 behave for the largest domain?

Hint. One can make a loop over k and call the functions least_squa: comparison_plot from the approx1D module.

Filename: sin_powers.py.

Exercise 6: Approximate a steep function by sines

Find the best approximation of $f(x)=\tanh (s(x-\pi))$ on $[0,2 \pi]$ in the with basis $\psi_{i}(x)=\sin ((2 i+1) x), i \in \mathcal{I}_{s}=\{0, \ldots, N\}$. Make a movie : how $u=\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}(x)$ approximates $f(x)$ as N grows. Choose s such t steep ($s=20$ may be appropriate).

Hint. One may naively call the least_squares_orth and comparisc from the approx1D module in a loop and extend the basis with one new in each pass. This approach implies a lot of recomputations. A more strategy is to let least_squares_orth compute with only one basis fun a time and accumulate the corresponding u in the total solution.

Filename: tanh_sines_approx1.py.

'xercise 7: Animate the approximation of a steep function

 y sinesLake a movie where the steepness (s) of the tanh function in Exercise 6 grows I "time", and for each value of the steepness, the movie shows how the approxilation improves with increasing N. Filename: tanh_sines_approx2.py.

Xxercise 8: Fourier series as a least squares approximation

fiven a function $f(x)$ on an interval $[0, L]$, look up the formula for the coefficients j and b_{j} in the Fourier series of f :

$$
f(x)=a_{0}+\sum_{j=1}^{\infty} a_{j} \cos \left(j \frac{\pi x}{L}\right)+\sum_{j=1}^{\infty} b_{j} \sin \left(j \frac{\pi x}{L}\right) .
$$

Let an infinite-dimensional vector space V have the basis functions $\cos j \frac{\pi x}{L}$ r $j=0,1, \ldots, \infty$ and $\sin j \frac{\pi x}{L}$ for $j=1, \ldots, \infty$. Show that the least squares pproximation method from Section 2 leads to a linear system whose solution jincides with the standard formulas for the coefficients in a Fourier series of (x) (see also Section 2.7). You may choose

$$
\psi_{2 i}=\cos \left(i \frac{\pi}{L} x\right), \quad \psi_{2 i+1}=\sin \left(i \frac{\pi}{L} x\right)
$$

r $i=0,1, \ldots, N \rightarrow \infty$.
Choose $f(x)=\tanh \left(s\left(x-\frac{1}{2}\right)\right)$ on $\Omega=[0,1]$, which is a smooth function, but ith considerable steepness around $x=1 / 2$ as s grows in size. Calculate the jefficients in the Fourier expansion by solving the linear system, arising from re least squares or Galerkin methods, by hand. Plot some truncated versions £ the series together with $f(x)$ to show how the series expansion converges for $=10$ and $s=100$. Filename: Fourier_approx.py.

冫xercise 9: Approximate a steep function by Lagrange polyomials
se interpolation/collocation with uniformly distributed points and Chebychev odes to approximate

$$
f(x)=-\tanh \left(s\left(x-\frac{1}{2}\right)\right), \quad x \in[0,1],
$$

y Lagrange polynomials for $s=10$ and $s=100$, and $N=3,6,9,11$. Make sparate plots of the approximation for each combination of s, point type Jhebyshev or uniform), and N. Filename: tanh_Lagrange.py

¡xercise 10: Define nodes and elements

'onsider a domain $\Omega=[0,2]$ divided into the three P2 elements $[0,1],[1,1.2]$, nd [1.2, 2].

For P1 and P2 elements, set up the list of coordinates and nodes and the numbers of the nodes that belong to each element (elements cases: 1) nodes and elements numbered from left to right, and 2) no elements numbered from right to left. Filename: fe_numberings1.py

Exercise 11: Define vertices, cells, and dof maps

Repeat Exercise 10, but define the data structures vertices, cells, and c instead of nodes and elements. Filename: fe_numberings2.py.

Exercise 12: Construct matrix sparsity patterns

Exercise 10 describes a element mesh with a total of five elements, but v different element and node orderings. For each of the two orderings, 5×5 matrix and fill in the entries that will be nonzero.

Hint. A matrix entry (i, j) is nonzero if i and j are nodes in the same Filename: fe_sparsity_pattern.pdf.

Exercise 13: Perform symbolic finite element comput:

Perform hand calculations to find formulas for the coefficient matrix ar hand side when approximating $f(x)=\sin (x)$ on $\Omega=[0, \pi]$ by two P 1 e of size $\pi / 2$. Solve the system and compare $u(\pi / 2)$ with the exact value

Filename: sin_approx_P1.py.

Exercise 14: Approximate a steep function by P1 a

 elementsGiven

$$
f(x)=\tanh \left(s\left(x-\frac{1}{2}\right)\right)
$$

use the Galerkin or least squares method with finite elements to approximate function $u(x)$. Choose $s=40$ and try $N_{e}=4,8,16$ ments and $N_{e}=2,4,8 \mathrm{P} 2$ elements. Integrate $f \varphi_{i}$ numerically. Fj tanh_fe_P1P2_approx.py.

Exercise 15: Approximate a steep function by P3 as elements

Solve Exercise 14 using $N_{e}=1,2,4 \mathrm{P} 3$ and P4 elements. How will a tion/interpolation method work in this case with the same number of Filename: tanh_fe_P3P4_approx.py.

准ercise 16: Investigate the approximation error in finite lements

he theory (93) from Section ?? predicts that the error in the $\mathrm{P} d$ approximation E a function should behave as h^{d+1}. Use experiments to verify this asymptotic ehavior (i.e., for small enough h). Choose two examples: $f(x)=A e^{-\omega x}$ on $1,3 / \omega]$ and $f(x)=A \sin (\omega x)$ on $\Omega=[0,2 \pi / \omega]$ for constants A and ω. What appens if you try $f(x)=\sqrt{x}$ on $[0,1]$?
[int. Run a series of experiments: $\left(h_{i}, E\right), i=0, \ldots, m$, where E_{i} is the L^{2} orm of the error corresponding to element length h_{i}. Assume an error model l $=C h^{r}$ and compute r from two successive experiments:

$$
r_{i}=\ln \left(E_{i+1} / E_{i}\right) / \ln \left(h_{i+1} / h_{i}\right), \quad i=0, \ldots, m-1 .
$$

opefully, the sequence r_{0}, \ldots, r_{m-1} converges to the true r, and r_{m-1} can be aken as an approximation to r.
Filename: Asinwt_interpolation_error.py

Xxercise 17: Approximate a step function by finite elements

 pproximate the step function$$
f(x)= \begin{cases}1 & x<1 / 2, \\ 2 & x \geq 1 / 2\end{cases}
$$

y 2, 4, and 8 P1 and P2 elements. Compare approximations visually.
[int. This f can also be expressed in terms of the Heaviside function $H(x)$: $(x)=H(x-1 / 2)$. Therefore, f can be defined by

ミ = sp.Heaviside(x - sp.Rational(1,2))
laking the approximate function in the fe_approx1D.py module an obvious andidate to solve the problem. However, sympy does not handle symbolic Itegration with this particular integrand, and the approximate function faces a roblem when converting f to a Python function (for plotting) since Heaviside not an available function in numpy. It is better to make special-purpose code or this case or perform all calculations by hand.
Filename: Heaviside_approx_P1P2.py..

jxercise 18: 2D approximation with orthogonal functions

ssume we have basis functions $\varphi_{i}(x, y)$ in 2D that are orthogonal such that $\left.\partial_{i}, \varphi_{j}\right)=0$ when $i \neq j$. The function least_squares in the file approx2D.py ${ }^{17}$ ill then spend much time on computing off-diagonal terms in the coefficient

[^13]matrix that we know are zero. To speed up the computations, make a least_squares_orth that utilizes the orthogonality among the basis fı Apply the function to approximate
$$
f(x, y)=x(1-x) y(1-y) e^{-x-y}
$$
on $\Omega=[0,1] \times[0,1]$ via basis functions
$$
\varphi_{i}(x, y)=\sin (p \pi x) \sin (q \pi y), \quad i=q N_{x}+p
$$

Hint. Get ideas from the function least_squares_orth in Section file approx1D.py ${ }^{18}$.

Filename: approx2D_lsorth_sin.py.

Exercise 19: Use the Trapezoidal rule and P1 elemer

Consider approximation of some $f(x)$ on an interval Ω using the least sq Galerkin methods with P1 elements. Derive the element matrix and vect the Trapezoidal rule (101) for calculating integrals on the reference , Assemble the contributions, assuming a uniform cell partitioning, ar that the resulting linear system has the form $c_{i}=f\left(x_{i}\right)$ for $i \in \mathcal{I}_{s}$. Fi fe_P1_trapez.pdf.

Problem 20: Compare P1 elements and interpolatior

We shall approximate the function

$$
f(x)=1+\epsilon \sin (2 \pi n x), \quad x \in \Omega=[0,1],
$$

where $n \in \mathbb{Z}$ and $\epsilon \geq 0$.
a) Sketch $f(x)$ and find the wave length of the function.
b) We want to use N_{P} elements per wave length. Show that the nu elements is then $n N_{P}$.
c) The critical quantity for accuracy is the number of elements per wav not the element size in itself. It therefore suffices to study an f with : wave length in $\Omega=[0,1]$. Set $\epsilon=0.5$.

Run the least squares or projection/Galerkin method for $N_{P}=2,4$, Compute the error $E=\|u-f\|_{L^{2}}$.

Hint. Use the fe_approx1D_numint module to compute u and use t nique from Section 6.4 to compute the norm of the error.

[^14]) Repeat the set of experiments in the above point, but use interpolation/colcation based on the node points to compute $u(x)$ (recall that c_{i} is now simply $\left.\left(x_{i}\right)\right)$. Compute the error $E=\|u-f\|_{L^{2}}$. Which method seems to be most scurate?

Filename: P1_vs_interp.py.

\xercise 21: Implement 3D computations with global basis unctions

xtend the approx2D.py ${ }^{19}$ code to 3D applying ideas from Section 8.4. Use a D generalization of the test problem in Section 8.3 to test the implementation. ilename: approx3D.py.

¿xercise 22: Use Simpson's rule and P2 elements

edo Exercise 19, but use P2 elements and Simpson's rule based on sampling re integrands at the nodes in the reference cell.
Filename: fe_P2_simpson.pdf.

1 Basic principles for approximating differential equations

he finite element method is a very flexible approach for solving partial differential quations. Its two most attractive features are the ease of handling domains of mmplex shape in two and three dimensions and the ease of constructing higherrder discretization methods. The finite element method is usually applied for iscretization in space, and therefore spatial problems will be our focus in the oming sections. Extensions to time-dependent problems may, for instance, use nite difference approximations in time.
Before studying how finite element methods are used to tackle differential quation, we first look at how global basis functions and the least squares, 'alerkin, and collocation principles can be used to solve differential equations.

1.1 Differential equation models

et us consider an abstract differential equation for a function $u(x)$ of one ariable, written as

$$
\begin{equation*}
\mathcal{L}(u)=0, \quad x \in \Omega \tag{117}
\end{equation*}
$$

ere are a few examples on possible choices of $\mathcal{L}(u)$, of increasing complexity:

[^15]\[

$$
\begin{aligned}
& \mathcal{L}(u)=\frac{d^{2} u}{d x^{2}}-f(x) \\
& \mathcal{L}(u)=\frac{d}{d x}\left(\alpha(x) \frac{d u}{d x}\right)+f(x) \\
& \mathcal{L}(u)=\frac{d}{d x}\left(\alpha(u) \frac{d u}{d x}\right)-a u+f(x) \\
& \mathcal{L}(u)=\frac{d}{d x}\left(\alpha(u) \frac{d u}{d x}\right)+f(u, x)
\end{aligned}
$$
\]

Both $\alpha(x)$ and $f(x)$ are considered as specified functions, while a is a pr parameter. Differential equations corresponding to (118)-(119) arise in c phenomena, such as steady transport of heat in solids and flow of viscor between flat plates. The form (120) arises when transient diffusion phenomenon are discretized in time by finite differences. The equatic appear in chemical models when diffusion of a substance is combin chemical reactions. Also in biology, (121) plays an important role, k spreading of species and in models involving generation and propag: electrical signals.

Let $\Omega=[0, L]$ be the domain in one space dimension. In additior differential equation, u must fulfill boundary conditions at the boundarif domain, $x=0$ and $x=L$. When \mathcal{L} contains up to second-order deriva ${ }^{1}$ in the examples above, $m=1$, we need one boundary condition at eac (two) boundary points, here abstractly specified as

$$
\mathcal{B}_{0}(u)=0, x=0, \quad \mathcal{B}_{1}(u)=0, x=L
$$

There are three common choices of boundary conditions:

$$
\begin{array}{lr}
\mathcal{B}_{i}(u)=u-g, & \text { Dirichlet condition } \\
\mathcal{B}_{i}(u)=-\alpha \frac{d u}{d x}-g, & \text { Neumann condition } \\
\mathcal{B}_{i}(u)=-\alpha \frac{d u}{d x}-h(u-g), & \text { Robin condition }
\end{array}
$$

Here, g and a are specified quantities.
From now on we shall use $u_{\mathrm{e}}(x)$ as symbol for the exact solution, ft

$$
\mathcal{L}\left(u_{\mathrm{e}}\right)=0, \quad x \in \Omega,
$$

while $u(x)$ is our notation for an approximate solution of the differential e

Remark on notation.

In the literature about the finite element method, is common to as the exact solution and u_{h} as the approximate solution, where $/$ discretization parameter. However, the vast part of the present t_{1}
about the approximate solutions, and having a subscript h attached all the time is cumbersome. Of equal importance is the close correspondence between implementation and mathematics that we strive to achieve in this text: when it is natural to use u and not $u_{-} h$ in code, we let the mathematical notation be dictated by the code's preferred notation. After all, it is the powerful computer implementations of the finite element method that justifies studying the mathematical formulation and aspects of the method.

1.2 Simple model problems

common model problem used much in the forthcoming examples is

$$
\begin{equation*}
-u^{\prime \prime}(x)=f(x), \quad x \in \Omega=[0, L], \quad u(0)=0, u(L)=D . \tag{127}
\end{equation*}
$$

closely related problem with a different boundary condition at $x=0$ reads

$$
\begin{equation*}
-u^{\prime \prime}(x)=f(x), \quad x \in \Omega=[0, L], \quad u^{\prime}(0)=C, u(L)=D . \tag{128}
\end{equation*}
$$

third variant has a variable coefficient,

$$
\begin{equation*}
-\left(\alpha(x) u^{\prime}(x)\right)^{\prime}=f(x), \quad x \in \Omega=[0, L], \quad u^{\prime}(0)=C, u(L)=D . \tag{129}
\end{equation*}
$$

We can easily solve these using sympy. For (127) we can write the function
lef model1(f, L, D):
"""Solve $-u$ ', $=f(x), u(0)=0, u(L)=D . " " "$
$u_{-} \mathrm{x}=-\operatorname{sp} . \operatorname{integrate}(\mathrm{f},(\mathrm{x}, 0, \mathrm{x}))+\mathrm{c}_{-} 0$
$\mathrm{u}=\mathrm{sp}$.integrate (u_x, (x, $0, \mathrm{x})$) $+\mathrm{c}_{1} 1$
$r=s p . s o l v e\left([u . \operatorname{subs}(x, 0)-0, u . \operatorname{subs}(x, L)-D],\left[c_{-} 0, c_{-} 1\right]\right)$
$\mathrm{u}=\mathrm{u} . \operatorname{subs}\left(\mathrm{c}_{1} 0, \mathrm{r}\left[\mathrm{c}_{-} 0\right]\right)$. subs $\left(\mathrm{c}_{-} 1, r\left[\mathrm{c}_{-} 1\right]\right)$
$\mathrm{u}=\mathrm{sp}$.simplify (sp.expand(u))
$\mathrm{u}=\mathrm{sp} . \mathrm{s}$
return u
'alling model1 (2, L, D) results in the solution

$$
\begin{equation*}
u(x)=\frac{1}{L} x\left(D+L^{2}-L x\right) \tag{130}
\end{equation*}
$$

Iodel (128) can be solved by
lef model2(f, L, C, D):
"""Solve -u', $=f(x), u^{\prime}(0)=C, u(L)=D . " " "$
$u_{-} x=-$ sp.integrate $(f,(x, 0, x))+c_{-} 0$
$u^{-}=$sp.integrate $\left(u_{-} x,(x, 0, x)\right)+c-1$
$r=s p . s o l v e([s p . \operatorname{diff}(u, x)$.subs $(x, 0)-C, u . \operatorname{subs}(x, L)-D]$, [c_0, c_1])
$u=u . \operatorname{subs}\left(c_{-} 0, r\left[c_{0} 0\right]\right)$.subs (c_1, r[c_1])
$u=\operatorname{sp} . \operatorname{simplify}(s p . \operatorname{expand}(u))$
return u
to yield

$$
u(x)=-x^{2}+C x-C L+D+L^{2},
$$

if $f(x)=2$. Model (129) requires a bit more involved code,
def model3(f, a, L, C, D):
"""Solve -(a*u')' = f(x), u(0)=C, u(L)=D."""
au_x $=$ - sp.integrate $(f,(x, 0, x))+c _0$
au_x $=-$ sp.integrate $(f,(x, 0, x))+c$
u
$\mathrm{r}=\mathrm{sp} . \operatorname{solve}\left([\mathrm{u} . \operatorname{subs}(\mathrm{x}, 0)-\mathrm{C}, \mathrm{u} . \operatorname{subs}(\mathrm{x}, \mathrm{L})-\mathrm{D}], \quad\left[\mathrm{c}_{-} 0, c_{-} 1\right]\right)$

$\mathrm{u}=\mathrm{sp} . \mathrm{si}$
return u
With $f(x)=0$ and $\alpha(x)=1+x^{2}$ we get

$$
u(x)=\frac{C \operatorname{atan}(L)-C \operatorname{atan}(x)+D \operatorname{atan}(x)}{\operatorname{atan}(L)}
$$

11.3 Forming the residual

The fundamental idea is to seek an approximate solution u in some spa

$$
V=\operatorname{span}\left\{\psi_{0}(x), \ldots, \psi_{N}(x)\right\}
$$

which means that u can always be expressed as a linear combination of t functions $\left\{\varphi_{i}\right\}_{i \in \mathcal{I}_{s}}$, with \mathcal{I}_{s} as the index set $\{0, \ldots, N\}$:

$$
u(x)=\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}(x)
$$

The coefficients $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$ are unknowns to be computed.
(Later, in Section 14, we will see that if we specify boundary valı different from zero, we must look for an approximate solution $u(x)=$ $\sum_{j} c_{j} \psi_{j}(x)$, where $\sum_{j} c_{j} \psi_{j} \in V$ and $B(x)$ is some function for incork the right boundary values. Because of $B(x), u$ will not necessarily lie in modification does not imply any difficulties.)

We need principles for deriving $N+1$ equations to determine thı unknowns $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$. When approximating a given function f by $u=\sum_{j}$ key idea is to minimize the square norm of the approximation error $e=$. (equvalently) demand that e is orthogonal to V. Working with e is not s here since the approximation error in our case is $e=u_{\mathrm{e}}-u$ and u_{e} is u The only general indicator we have on the quality of the approximate so to what degree u fulfills the differential equation. Inserting $u=\sum_{j} c_{s}$ $\mathcal{L}(u)$ reveals that the result is not zero, because u is only likely to equal nonzero result,

$$
R=\mathcal{L}(u)=\mathcal{L}\left(\sum_{j} c_{j} \psi_{j}\right)
$$

called the residual and measures the error in fulfilling the governing equation. Various principles for determining $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$ try to minimize R in some sense. ote that R varies with x and the $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$ parameters. We may write this ependence explicitly as

$$
\begin{equation*}
R=R\left(x ; c_{0}, \ldots, c_{N}\right) \tag{133}
\end{equation*}
$$

elow, we present three principles for making R small: a least squares method, projection or Galerkin method, and a collocation or interpolation method.

1.4 The least squares method

he least-squares method aims to find $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$ such that the square norm of the esidual

$$
\begin{equation*}
\|R\|=(R, R)=\int_{\Omega} R^{2} \mathrm{~d} x \tag{134}
\end{equation*}
$$

minimized. By introducing an inner product of two functions f and g on Ω as

$$
\begin{equation*}
(f, g)=\int_{\Omega} f(x) g(x) \mathrm{d} x \tag{135}
\end{equation*}
$$

ne least-squares method can be defined as

$$
\begin{equation*}
\min _{c_{0}, \ldots, c_{N}} E=(R, R) . \tag{136}
\end{equation*}
$$

${ }^{\prime}$ ifferentiating with respect to the free parameters $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$ gives the $N+1$ quations

$$
\begin{equation*}
\int_{\Omega} 2 R \frac{\partial R}{\partial c_{i}} \mathrm{~d} x=0 \quad \Leftrightarrow \quad\left(R, \frac{\partial R}{\partial c_{i}}\right)=0, \quad i \in \mathcal{I}_{s} \tag{137}
\end{equation*}
$$

1.5 The Galerkin method

he least-squares principle is equivalent to demanding the error to be orthogonal , the space V when approximating a function f by $u \in V$. With a differential quation we do not know the true error so we must instead require the residual ' to be orthogonal to V. This idea implies seeking $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$ such that

$$
\begin{equation*}
(R, v)=0, \quad \forall v \in V . \tag{138}
\end{equation*}
$$

his is the Galerkin method for differential equations.
This statement is equivalent to R being orthogonal to the $N+1$ basis functions nly:

$$
\begin{equation*}
\left(R, \psi_{i}\right)=0, \quad i \in \mathcal{I}_{s} \tag{139}
\end{equation*}
$$

3sulting in $N+1$ equations for determining $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$.

11.6 The Method of Weighted Residuals

A generalization of the Galerkin method is to demand that R is ort to some space W, but not necessarily the same space as V where we s unknown function. This generalization is naturally called the method of : residuals:

$$
(R, v)=0, \quad \forall v \in W
$$

If $\left\{w_{0}, \ldots, w_{N}\right\}$ is a basis for W, we can equivalently express the $\mathrm{m} \epsilon$ weighted residuals as

$$
\left(R, w_{i}\right)=0, \quad i \in \mathcal{I}_{s}
$$

The result is $N+1$ equations for $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$.
The least-squares method can also be viewed as a weighted residual with $w_{i}=\partial R / \partial c_{i}$.

Variational formulation of the continuous problem.

Formulations like (140) (or (141)) and (138) (or (139)) are known as tional formulations. These equations are in this text primarily used numerical approximation $u \in V$, where V is a finite-dimensional space dimension $N+1$. However, we may also let V be an infinite-dimen: space containing the exact solution $u_{\mathrm{e}}(x)$ such that also u_{e} fulfill same variational formulation. The variational formulation is in that c mathematical way of stating the problem and acts as an alternative t usual formulation of a differential equation with initial and/or bous conditions.

11.7 Test and Trial Functions

In the context of the Galerkin method and the method of weighted resid, common to use the name trial function for the approximate $u=\sum_{j} c_{j^{\prime}}$ space containing the trial function is known as the trial space. The fur entering the orthogonality requirement in the Galerkin method and the of weighted residuals is called test function, and so are the ψ_{i} or $w_{i} \mathrm{fv}$ that are used as weights in the inner products with the residual. Tr where the test functions comes from is naturally called the test space.

We see that in the method of weighted residuals the test and trial sp different and so are the test and trial functions. In the Galerkin method and trial spaces are the same (so far).

Remark.

It may be subject to debate whether it is only the form of (140) or after integration by parts, as explained in Section 11.10, that qualifies ff_{f} term variational formulation. The result after integration by parts is is obtained after taking the first variation of an optimization probler

Section 11.13. However, here we use variational formulation as a common term for formulations which, in contrast to the differential equation $R=0$, instead demand that an average of R is zero: $(R, v)=0$ for all v in some space.

1.8 The collocation method

he idea of the collocation method is to demand that R vanishes at $N+1$ slected points x_{0}, \ldots, x_{N} in Ω :

$$
\begin{equation*}
R\left(x_{i} ; c_{0}, \ldots, c_{N}\right)=0, \quad i \in \mathcal{I}_{s} \tag{142}
\end{equation*}
$$

he collocation method can also be viewed as a method of weighted residuals ith Dirac delta functions as weighting functions. Let $\delta\left(x-x_{i}\right)$ be the Dirac elta function centered around $x=x_{i}$ with the properties that $\delta\left(x-x_{i}\right)=0$ for $\neq x_{i}$ and

$$
\begin{equation*}
\int_{\Omega} f(x) \delta\left(x-x_{i}\right) \mathrm{d} x=f\left(x_{i}\right), \quad x_{i} \in \Omega \tag{143}
\end{equation*}
$$

1tuitively, we may think of $\delta\left(x-x_{i}\right)$ as a very peak-shaped function around $=x_{i}$ with integral 1, roughly visualized in Figure 46. Because of (143), we can t $w_{i}=\delta\left(x-x_{i}\right)$ be weighting functions in the method of weighted residuals, nd (141) becomes equivalent to (142).
'he subdomain collocation method. The idea of this approach is to deland the integral of R to vanish over $N+1$ subdomains Ω_{i} of Ω :

$$
\begin{equation*}
\int_{\Omega_{i}} R \mathrm{~d} x=0, \quad i \in \mathcal{I}_{s} . \tag{144}
\end{equation*}
$$

his statement can also be expressed as a weighted residual method

$$
\begin{equation*}
\int_{\Omega} R w_{i} \mathrm{~d} x=0, \quad i \in \mathcal{I}_{s}, \tag{145}
\end{equation*}
$$

here $w_{i}=1$ for $x \in \Omega_{i}$ and $w_{i}=0$ otherwise.

1.9 Examples on using the principles

et us now apply global basis functions to illustrate the principles for minimizing \therefore
'he model problem. We consider the differential equation problem

$$
\begin{equation*}
-u^{\prime \prime}(x)=f(x), \quad x \in \Omega=[0, L], \quad u(0)=0, u(L)=0 . \tag{146}
\end{equation*}
$$

Figure 46: Approximation of delta functions by narrow Gaussian funı

Basis functions. Our choice of basis functions ψ_{i} for V is

$$
\psi_{i}(x)=\sin \left((i+1) \pi \frac{x}{L}\right), \quad i \in \mathcal{I}_{s}
$$

An important property of these functions is that $\psi_{i}(0)=\psi_{i}(L)=c$ means that the boundary conditions on u are fulfilled:

$$
u(0)=\sum_{j} c_{j} \psi_{j}(0)=0, \quad u(L)=\sum_{j} c_{j} \psi_{j}(L)=0
$$

Another nice property is that the chosen sine functions are orthogonal

$$
\int_{0}^{L} \sin \left((i+1) \pi \frac{x}{L}\right) \sin \left((j+1) \pi \frac{x}{L}\right) \mathrm{d} x= \begin{cases}\frac{1}{2} L & i=j \\ 0, & i \neq j\end{cases}
$$

provided i and j are integers.

The residual. We can readily calculate the following explicit expres the residual:

$$
\begin{align*}
R\left(x ; c_{0}, \ldots, c_{N}\right) & =u^{\prime \prime}(x)+f(x), \\
& =\frac{d^{2}}{d x^{2}}\left(\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}(x)\right)+f(x), \\
& =\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}^{\prime \prime}(x)+f(x) . \tag{149}
\end{align*}
$$

'he least squares method. The equations (137) in the least squares method equire an expression for $\partial R / \partial c_{i}$. We have

$$
\begin{equation*}
\frac{\partial R}{\partial c_{i}}=\frac{\partial}{\partial c_{i}}\left(\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}^{\prime \prime}(x)+f(x)\right)=\sum_{j \in \mathcal{I}_{s}} \frac{\partial c_{j}}{\partial c_{i}} \psi_{j}^{\prime \prime}(x)=\psi_{i}^{\prime \prime}(x) \tag{150}
\end{equation*}
$$

he governing equations for $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$ are then

$$
\begin{equation*}
\left(\sum_{j} c_{j} \psi_{j}^{\prime \prime}+f, \psi_{i}^{\prime \prime}\right)=0, \quad i \in \mathcal{I}_{s} \tag{151}
\end{equation*}
$$

hich can be rearranged as

$$
\begin{equation*}
\sum_{j \in \mathcal{I}_{s}}\left(\psi_{i}^{\prime \prime}, \psi_{j}^{\prime \prime}\right) c_{j}=-\left(f, \psi_{i}^{\prime \prime}\right), \quad i \in \mathcal{I}_{s} . \tag{152}
\end{equation*}
$$

his is nothing but a linear system

$$
\sum_{j \in \mathcal{I}_{s}} A_{i, j} c_{j}=b_{i}, \quad i \in \mathcal{I}_{s}
$$

ith

$$
\begin{align*}
A_{i, j} & =\left(\psi_{i}^{\prime \prime}, \psi_{j}^{\prime \prime}\right) \\
& =\pi^{4}(i+1)^{2}(j+1)^{2} L^{-4} \int_{0}^{L} \sin \left((i+1) \pi \frac{x}{L}\right) \sin \left((j+1) \pi \frac{x}{L}\right) \mathrm{d} x \\
& = \begin{cases}\frac{1}{2} L^{-3} \pi^{4}(i+1)^{4} & i=j \\
0, & i \neq j\end{cases} \tag{153}\\
b_{i} & =-\left(f, \psi_{i}^{\prime \prime}\right)=(i+1)^{2} \pi^{2} L^{-2} \int_{0}^{L} f(x) \sin \left((i+1) \pi \frac{x}{L}\right) \mathrm{d} x \tag{154}
\end{align*}
$$

ince the coefficient matrix is diagonal we can easily solve for

$$
\begin{equation*}
c_{i}=\frac{2 L}{\pi^{2}(i+1)^{2}} \int_{0}^{L} f(x) \sin \left((i+1) \pi \frac{x}{L}\right) \mathrm{d} x \tag{155}
\end{equation*}
$$

J ith the special choice of $f(x)=2$ can be calculated in sympy by

from sympy import

import sys
i, $\quad \mathrm{j}=$ symbols('i ${ }^{\prime}$ ', integer=True)
$\mathrm{x}, \mathrm{L}=$
$\mathrm{f}=2$
$\mathrm{a}=2 * \mathrm{~L} /(\mathrm{pi} * * 2 *(\mathrm{i}+1) * * 2)$
$c_{\text {_ }}=$ a*integrate $(f * \sin ((i+1) * p i * x / L),(x, 0, L))$
$c_{-} i=\operatorname{simplify}\left(c_{-} i\right)$
print c_i
The answer becomes

$$
c_{i}=4 \frac{L^{2}\left((-1)^{i}+1\right)}{\pi^{3}\left(i^{3}+3 i^{2}+3 i+1\right)}
$$

Now, $1+(-1)^{i}=0$ for i odd, so only the coefficients with even index are Introducing $i=2 k$ for $k=0, \ldots, N / 2$ to count the relevant indices (for k goes to $(N-1) / 2)$, we get the solution

$$
u(x)=\sum_{k=0}^{N / 2} \frac{8 L^{2}}{\pi^{3}(2 k+1)^{3}} \sin \left((2 k+1) \pi \frac{x}{L}\right)
$$

The coefficients decay very fast: $c_{2}=c_{0} / 27, c_{4}=c_{0} / 125$. The solut therefore be dominated by the first term,

$$
u(x) \approx \frac{8 L^{2}}{\pi^{3}} \sin \left(\pi \frac{x}{L}\right)
$$

The Galerkin method. The Galerkin principle (138) applied to (146) of inserting our special residual (149) in (138)

$$
\left(u^{\prime \prime}+f, v\right)=0, \quad \forall v \in V
$$

or

$$
\left(u^{\prime \prime}, v\right)=-(f, v), \quad \forall v \in V
$$

This is the variational formulation, based on the Galerkin principle differential equation. The $\forall v \in V$ requirement is equivalent to demanc equation $\left(u^{\prime \prime}, v\right)=-(f, v)$ to be fulfilled for all basis functions $v=\psi_{i}$ see (138) and (139). We therefore have

$$
\left(\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}^{\prime \prime}, \psi_{i}\right)=-\left(f, \psi_{i}\right), \quad i \in \mathcal{I}_{s}
$$

This equation can be rearranged to a form that explicitly shows that I linear system for the unknowns $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$:

$$
\sum_{j \in \mathcal{I}_{s}}\left(\psi_{i}, \psi_{j}^{\prime \prime}\right) c_{j}=\left(f, \psi_{i}\right), \quad i \in \mathcal{I}_{s}
$$

or the particular choice of the basis functions (147) we get in fact the same near system as in the least squares method because $\psi^{\prime \prime}=-(i+1)^{2} \pi^{2} L^{-2} \psi$.
'he collocation method. For the collocation method (142) we need to decide pon a set of $N+1$ collocation points in Ω. A simple choice is to use uniformly saced points: $x_{i}=i \Delta x$, where $\Delta x=L / N$ in our case $(N \geq 1)$. However, these oints lead to at least two rows in the matrix consisting of zeros (since $\psi_{i}\left(x_{0}\right)=0$ nd $\psi_{i}\left(x_{N}\right)=0$), thereby making the matrix singular and non-invertible. This rces us to choose some other collocation points, e.g., random points or points niformly distributed in the interior of Ω. Demanding the residual to vanish at rese points leads, in our model problem (146), to the equations

$$
\begin{equation*}
-\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}^{\prime \prime}\left(x_{i}\right)=f\left(x_{i}\right), \quad i \in \mathcal{I}_{s}, \tag{160}
\end{equation*}
$$

hich is seen to be a linear system with entries

$$
A_{i, j}=-\psi_{j}^{\prime \prime}\left(x_{i}\right)=(j+1)^{2} \pi^{2} L^{-2} \sin \left((j+1) \pi \frac{x_{i}}{L}\right),
$$

1 the coefficient matrix and entries $b_{i}=2$ for the right-hand side (when $(x)=2)$.
The special case of $N=0$ can sometimes be of interest. A natural choice is ren the midpoint $x_{0}=L / 2$ of the domain, resulting in $A_{0,0}=-\psi_{0}^{\prime \prime}\left(x_{0}\right)=\pi^{2} L^{-2}$, $\left(x_{0}\right)=2$, and hence $c_{0}=2 L^{2} / \pi^{2}$.
'omparison. In the present model problem, with $f(x)=2$, the exact solution $u(x)=x(L-x)$, while for $N=0$ the Galerkin and least squares method sult in $u(x)=8 L^{2} \pi^{-3} \sin (\pi x / L)$ and the collocation method leads to $u(x)=$ $L^{2} \pi^{-2} \sin (\pi x / L)$. Since all methods fulfill the boundary conditions $u(0)=$ $(L)=0$, we expect the largest discrepancy to occur at the midpoint of the omain: $x=L / 2$. The error at the midpoint becomes $-0.008 L^{2}$ for the Galerkin nd least squares method, and $0.047 L^{2}$ for the collocation method.

1.10 Integration by parts

problem arises if we want to apply popular finite element functions to solve ur model problem (146) by the standard least squares, Galerkin, or collocation rethods: the piecewise polynomials $\psi_{i}(x)$ have discontinuous derivatives at re cell boundaries which makes it problematic to compute the second-order erivative. This fact actually makes the least squares and collocation methods less itable for finite element approximation of the unknown function. (By rewriting re equation $-u^{\prime \prime}=f$ as a system of two first-order equations, $u^{\prime}=v$ and $-v^{\prime}=$, the least squares method can be applied. Also, differentiating discontinuous unctions can actually be handled by distribution theory in mathematics.) The talerkin method and the method of weighted residuals can, however, be applied gether with finite element basis functions if we use integration by parts as a leans for transforming a second-order derivative to a first-order one.

Consider the model problem (146) and its Galerkin formulation

$$
-\left(u^{\prime \prime}, v\right)=(f, v) \quad \forall v \in V
$$

Using integration by parts in the Galerkin method, we can move a derix u onto v :

$$
\begin{aligned}
\int_{0}^{L} u^{\prime \prime}(x) v(x) \mathrm{d} x & =-\int_{0}^{L} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x+\left[v u^{\prime}\right]_{0}^{L} \\
& =-\int_{0}^{L} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x+u^{\prime}(L) v(L)-u^{\prime}(0) v(0) .
\end{aligned}
$$

Usually, one integrates the problem at the stage where the u and $v \mathrm{fv}$ enter the formulation. Alternatively, but less common, we can integrate 1 in the expressions for the matrix entries:

$$
\begin{aligned}
\int_{0}^{L} \psi_{i}(x) \psi_{j}^{\prime \prime}(x) \mathrm{d} x & =-\int_{0}^{L} \psi_{i}^{\prime}(x) \psi_{j}^{\prime}(x) d x+\left[\psi_{i} \psi_{j}^{\prime}\right]_{0}^{L} \\
& =-\int_{0}^{L} \psi_{i}^{\prime}(x) \psi_{j}^{\prime}(x) \mathrm{d} x+\psi_{i}(L) \psi_{j}^{\prime}(L)-\psi_{i}(0) \psi_{j}^{\prime}(0)
\end{aligned}
$$

Integration by parts serves to reduce the order of the derivatives and to n coefficient matrix symmetric since $\left(\psi_{i}^{\prime}, \psi_{j}^{\prime}\right)=\left(\psi_{i}^{\prime}, \psi_{j}^{\prime}\right)$. The symmetry F depends on the type of terms that enter the differential equation. As will later in Section 15, integration by parts also provides a method for imple boundary conditions involving u^{\prime}.

With the choice (147) of basis functions we see that the "boundar: $\psi_{i}(L) \psi_{j}^{\prime}(L)$ and $\psi_{i}(0) \psi_{j}^{\prime}(0)$ vanish since $\psi_{i}(0)=\psi_{i}(L)=0$.

Weak form. Since the variational formulation after integration by par weaker demands on the differentiability of u and the basis functions ψ_{i}, th ing integral formulation is referred to as a weak form of the differential ϵ problem. The original variational formulation with second-order deriva the differential equation problem with second-order derivative, is then th form, with stronger requirements on the differentiability of the functior

For differential equations with second-order derivatives, expressed ; tional formulations and solved by finite element methods, we will always integration by parts to arrive at expressions involving only first-order der

11.11 Boundary function

So far we have assumed zero Dirichlet boundary conditions, typically $u(L)=0$, and we have demanded that $\psi_{i}(0)=\psi_{i}(L)=0$ for $i \in \mathcal{I}_{s}$ about a boundary condition like $u(L)=D \neq 0$? This condition imm faces a problem: $u=\sum_{j} c_{j} \varphi_{j}(L)=0$ since all $\varphi_{i}(L)=0$.

A boundary condition of the form $u(L)=D$ can be implemented by demandg that all $\psi_{i}(L)=0$, but adding a boundary function $B(x)$ with the right oundary value, $B(L)=D$, to the expansion for u :

$$
u(x)=B(x)+\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}(x)
$$

his u gets the right value at $x=L$:

$$
u(L)=B(L)+\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}(L)=B(L)=D
$$

he idea is that for any boundary where u is known we demand ψ_{i} to vanish nd construct a function $B(x)$ to attain the boundary value of u. There are o restrictions how $B(x)$ varies with x in the interior of the domain, so this ariation needs to be constructed in some way.
For example, with $u(0)=0$ and $u(L)=D$, we can choose $B(x)=x D / L$, nce this form ensures that $B(x)$ fulfills the boundary conditions: $B(0)=0$ and $\therefore(L)=D$. The unknown function is then sought on the form

$$
\begin{equation*}
u(x)=\frac{x}{L} D+\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}(x) \tag{163}
\end{equation*}
$$

ith $\psi_{i}(0)=\psi_{i}(L)=0$.
The $B(x)$ function can be chosen in many ways as long as its boundary values ce correct. For example, $B(x)=D(x / L)^{p}$ for any power p will work fine in the bove example.
As another example, consider a domain $\Omega=[a, b]$ where the boundary onditions are $u(a)=U_{a}$ and $u(b)=U_{b}$. A class of possible $B(x)$ functions is

$$
\begin{equation*}
B(x)=U_{a}+\frac{U_{b}-U_{a}}{(b-a)^{p}}(x-a)^{p}, \quad p>0 \tag{164}
\end{equation*}
$$

eal applications will most likely use the simplest version, $p=1$, but here such p parameter was included to demonstrate the ambiguity in the construction of : x).

Summary.

The general procedure of incorporating Dirichlet boundary conditions goes as follows. Let $\partial \Omega_{E}$ be the part(s) of the boundary $\partial \Omega$ of the domain Ω where u is specified. Set $\psi_{i}=0$ at the points in $\partial \Omega_{E}$ and seek u as

$$
\begin{equation*}
u(x)=B(x)+\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}(x), \tag{165}
\end{equation*}
$$

where $B(x)$ equals the boundary conditions on u at $\partial \Omega_{E}$.

Remark. With the $B(x)$ term, u does not in general lie in $V=\operatorname{span}\left\{\psi_{0}\right.$ anymore. Moreover, when a prescribed value of u at the boundary, say u (is different from zero, it does not make sense to say that u lies in a vectc because this space does not obey the requirements of addition and sca tiplication. For example, $2 u$ does not lie in the space since its boundas is $2 U_{a}$, which is incorrect. It only makes sense to split u in two parts, above, and have the unknown part $\sum_{j} c_{j} \psi_{j}$ in a proper function space.

11.12 Abstract notation for variational formulation

We have seen that variational formulations end up with a formula involvir v, such as $\left(u^{\prime}, v^{\prime}\right)$ and a formula involving v and known functions, such : A widely used notation is to introduce an abstract variational statement as $a(u, v)=L(v)$, where $a(u, v)$ is a so-called bilinear form involving terms that contain both the test and trial function, while $L(v)$ is a lint containing all the terms without the trial function. For example, the st.

$$
\int_{\Omega} u^{\prime} v^{\prime} \mathrm{d} x=\int_{\Omega} f v \mathrm{~d} x \quad \text { or } \quad\left(u^{\prime}, v^{\prime}\right)=(f, v) \quad \forall v \in V
$$

can be written in abstract form: find u such that

$$
a(u, v)=L(v) \quad \forall v \in V,
$$

where we have the definitions

$$
a(u, v)=\left(u^{\prime}, v^{\prime}\right), \quad L(v)=(f, v)
$$

The term linear means that $L\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}\right)=\alpha_{1} L\left(v_{1}\right)+\alpha_{2} L\left(v_{2}\right)$ test functions v_{1} and v_{2}, and scalar parameters α_{1} and α_{2}. Similarly, t bilinear means that $a(u, v)$ is linear in both its arguments:

$$
\begin{aligned}
a\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}, v\right) & =\alpha_{1} a\left(u_{1}, v\right)+\alpha_{2} a\left(u_{2}, v\right) \\
a\left(u, \alpha_{1} v_{1}+\alpha_{2} v_{2}\right) & =\alpha_{1} a\left(u, v_{1}\right)+\alpha_{2} a\left(u, v_{2}\right) .
\end{aligned}
$$

In nonlinear problems these linearity properties do not hold in general abstract notation is then $F(u ; v)=0$.

The matrix system associated with $a(u, v)=L(v)$ can also be writt. abstract form by inserting $v=\psi_{i}$ and $u=\sum_{j} c_{j} \psi_{j}$ in $a(u, v)=L(v) . \mathrm{U}$ linear properties, we get

$$
\sum_{j \in \mathcal{I}_{s}} a\left(\psi_{j}, \psi_{i}\right) c_{j}=L\left(\psi_{i}\right), \quad i \in \mathcal{I}_{s}
$$

which is a linear system

$$
\sum_{j \in \mathcal{I}_{s}} A_{i, j} c_{j}=b_{i}, \quad i \in \mathcal{I}_{s}
$$

here

$$
A_{i, j}=a\left(\psi_{j}, \psi_{i}\right), \quad b_{i}=L\left(\psi_{i}\right)
$$

1 many problems, $a(u, v)$ is symmetric such that $a\left(\psi_{j}, \psi_{i}\right)=a\left(\psi_{i}, \psi_{j}\right)$. In those ases the coefficient matrix becomes symmetric, $A_{i, j}=A_{j, i}$, a property that can mplify solution algorithms for linear systems and make them more stable in ddition to saving memory and computations.
The abstract notation $a(u, v)=L(v)$ for linear differential equation problems much used in the literature and in description of finite element software n particular the FEniCS ${ }^{20}$ documentation). We shall frequently summarize ariational forms using this notation.

1.13 Variational problems and optimization of function-

 als$a(u, v)=a(v, u)$, it can be shown that the variational statement

$$
a(u, v)=L(v) \quad \forall v \in V,
$$

equivalent to minimizing the functional

$$
F(v)=\frac{1}{2} a(v, v)-L(v)
$$

ver all functions $v \in V$. That is,

$$
F(u) \leq F(v) \quad \forall v \in V .
$$

1serting a $v=\sum_{j} c_{j} \psi_{j}$ turns minimization of $F(v)$ into minimization of a uadratic function

$$
\bar{F}\left(c_{0}, \ldots, c_{N}\right)=\sum_{j \in \mathcal{I}_{s}} \sum_{i \in \mathcal{I}_{s}} a\left(\psi_{i}, \psi_{j}\right) c_{i} c_{j}-\sum_{j \in \mathcal{I}_{s}} L\left(\psi_{j}\right) c_{j}
$$

f $N+1$ parameters.
Minimization of \bar{F} implies

$$
\frac{\partial \bar{F}}{\partial c_{i}}=0, \quad i \in \mathcal{I}_{s}
$$

fter some algebra one finds

$$
\sum j \in \mathcal{I}_{s} a\left(\psi_{i}, \psi_{j}\right) c_{j}=L\left(\psi_{i}\right), \quad i \in \mathcal{I}_{s}
$$

hich is the same system as that arising from $a(u, v)=L(v)$.
Many traditional applications of the finite element method, especially in solid rechanics and structural analysis, start with formulating $F(v)$ from physical rinciples, such as minimization of energy, and then proceeds with deriving $(u, v)=L(v)$, which is the equation usually desired in implementations.

[^16]
12 Examples on variational formulations

The following sections derive variational formulations for some prototyf ential equations in 1D, and demonstrate how we with ease can handle coefficients, mixed Dirichlet and Neumann boundary conditions, fir derivatives, and nonlinearities.

12.1 Variable coefficient

Consider the problem

$$
-\frac{d}{d x}\left(\alpha(x) \frac{d u}{d x}\right)=f(x), \quad x \in \Omega=[0, L], u(0)=C, u(L)=D .
$$

There are two new features of this problem compared with previous es a variable coefficient $a(x)$ and nonzero Dirichlet conditions at both bc points.

Let us first deal with the boundary conditions. We seek

$$
u(x)=B(x)+\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{i}(x)
$$

with $\psi_{i}(0)=\psi_{i}(L)=0$ for $i \in \mathcal{I}_{s}$. The function $B(x)$ must then fulfill B and $B(L)=D$. How B varies in between $x=0$ and $x=L$ is not of imp One possible choice is

$$
B(x)=C+\frac{1}{L}(D-C) x
$$

which follows from (164) with $p=1$.
We seek $(u-B) \in V$. As usual,

$$
V=\operatorname{span}\left\{\psi_{0}, \ldots, \psi_{N}\right\}
$$

but the two Dirichlet boundary conditions demand that

$$
\psi_{i}(0)=\psi_{i}(L)=0, \quad i \in \mathcal{I}_{s}
$$

Note that any $v \in V$ has the property $v(0)=v(L)=0$.
The residual arises by inserting our u in the differential equation:

$$
R=-\frac{d}{d x}\left(\alpha \frac{d u}{d x}\right)-f
$$

Galerkin's method is

$$
(R, v)=0, \quad \forall v \in V
$$

or written with explicit integrals,

$$
\int_{\Omega}\left(\frac{d}{d x}\left(\alpha \frac{d u}{d x}\right)-f\right) v \mathrm{~d} x=0, \quad \forall v \in V
$$

le proceed with integration by parts to lower the derivative from second to first rder:

$$
-\int_{\Omega} \frac{d}{d x}\left(\alpha(x) \frac{d u}{d x}\right) v \mathrm{~d} x=\int_{\Omega} \alpha(x) \frac{d u}{d x} \frac{d v}{d x} \mathrm{~d} x-\left[\alpha \frac{d u}{d x} v\right]_{0}^{L}
$$

The boundary term vanishes since $v(0)=v(L)=0$. The variational formulaon is then

$$
\int_{\Omega} \alpha(x) \frac{d u}{d x} \frac{d v}{d x} \mathrm{~d} x=\int_{\Omega} f(x) v \mathrm{~d} x, \quad \forall v \in V
$$

he variational formulation can alternatively be written in a more compact form:

$$
\left(\alpha u^{\prime}, v^{\prime}\right)=(f, v), \quad \forall v \in V .
$$

he corresponding abstract notation reads

$$
a(u, v)=L(v) \quad \forall v \in V,
$$

ith

$$
a(u, v)=\left(\alpha u^{\prime}, v^{\prime}\right), \quad L(v)=(f, v)
$$

ote that the a in the notation $a(\cdot, \cdot)$ is not to be mixed with the variable Jefficient $a(x)$ in the differential equation.
We may insert $u=B+\sum_{j} c_{j} \psi_{j}$ and $v=\psi_{i}$ to derive the linear system:

$$
\left(\alpha B^{\prime}+\alpha \sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}^{\prime}, \psi_{i}^{\prime}\right)=\left(f, \psi_{i}\right), \quad i \in \mathcal{I}_{s}
$$

;olating everything with the c_{j} coefficients on the left-hand side and all known rms on the right-hand side gives

$$
\sum_{j \in \mathcal{I}_{s}}\left(\alpha \psi_{j}^{\prime}, \psi_{i}^{\prime}\right) c_{j}=\left(f, \psi_{i}\right)+\left(a(D-C) L^{-1}, \psi_{i}^{\prime}\right), \quad i \in \mathcal{I}_{s}
$$

his is nothing but a linear system $\sum_{j} A_{i, j} c_{j}=b_{i}$ with

$$
\begin{aligned}
\mathrm{A}_{i, j} & =\left(a \psi_{j}^{\prime}, \psi_{i}^{\prime}\right)=\int_{\Omega} \alpha(x) \psi_{j}^{\prime}(x), \psi_{i}^{\prime}(x) \mathrm{d} x \\
b_{i} & =\left(f, \psi_{i}\right)+\left(a(D-C) L^{-1}, \psi_{i}^{\prime}\right)=\int_{\Omega}\left(f(x) \psi_{i}(x)+\alpha(x) \frac{D-C}{L} \psi_{i}^{\prime}(x)\right) \mathrm{d} x
\end{aligned}
$$

12.2 First-order derivative in the equation and bou condition

The next problem to formulate in variational form reads

$$
-u^{\prime \prime}(x)+b u^{\prime}(x)=f(x), \quad x \in \Omega=[0, L], u(0)=C, u^{\prime}(L)=E .
$$

The new features are a first-order derivative u^{\prime} in the equation and the b . condition involving the derivative: $u^{\prime}(L)=E$. Since we have a Dirichlet cı at $x=0$, we must force $\psi_{i}(0)=0$ and use a boundary function to take the condition $u(0)=C$. Because there is no Dirichlet condition on $x=$. not make any requirements to $\psi_{i}(L)$. The simplest possible choice of $B(x)=C$.

The expansion for u becomes

$$
u=C+\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{i}(x)
$$

The variational formulation arises from multiplying the equation b function $v \in V$ and integrating over Ω :

$$
\left(-u^{\prime \prime}+b u^{\prime}-f, v\right)=0, \quad \forall v \in V
$$

We apply integration by parts to the $u^{\prime \prime} v$ term only. Although we co integrate $u^{\prime} v$ by parts, this is not common. The result becomes

$$
\left(u^{\prime}+b u^{\prime}, v^{\prime}\right)=(f, v)+\left[u^{\prime} v\right]_{0}^{L}, \quad \forall v \in V .
$$

Now, $v(0)=0$ so

$$
\left[u^{\prime} v\right]_{0}^{L}=u^{\prime}(L) v(L)=E v(L)
$$

because $u^{\prime}(L)=E$. Integration by parts allows us to take care of the N condition in the boundary term.

Natural and essential boundary conditions.

Omitting a boundary term like $\left[u^{\prime} v\right]_{0}^{L}$ implies that we actually impos condition $u^{\prime}=0$ unless there is a Dirichlet condition (i.e., $v=0$) at point! This result has great practical consequences, because it is ez forget the boundary term, and this mistake may implicitly set a bou condition! Since homogeneous Neumann conditions can be incorpo without doing anything, and non-homogeneous Neumann condition just be inserted in the boundary term, such conditions are known as n boundary conditions. Dirichlet conditions requires more essential stє the mathematical formulation, such as forcing all $\varphi_{i}=0$ on the bous and constructing a $B(x)$, and are therefore known as essential bou: conditions.

The final variational form reads

$$
\left(u^{\prime}, v^{\prime}\right)+\left(b u^{\prime}, v\right)=(f, v)+E v(L), \quad \forall v \in V
$$

1 the abstract notation we have

$$
a(u, v)=L(v) \quad \forall v \in V
$$

ith the particular formulas

$$
a(u, v)=\left(u^{\prime}, v^{\prime}\right)+\left(b u^{\prime}, v\right), \quad L(v)=(f, v)+E v(L)
$$

The associated linear system is derived by inserting $u=B+\sum_{j} c_{j} \psi_{j}$ and splacing v by ψ_{i} for $i \in \mathcal{I}_{s}$. Some algebra results in

$$
\sum_{j \in \mathcal{I}_{s}} \underbrace{\left(\left(\psi_{j}^{\prime}, \psi_{i}^{\prime}\right)+\left(b \psi_{j}^{\prime}, \psi_{i}\right)\right)}_{A_{i, j}} c_{j}=\underbrace{\left(f, \psi_{i}\right)+E \psi_{i}(L)}_{b_{i}}
$$

Ibserve that in this problem, the coefficient matrix is not symmetric, because £ the term

$$
\left(b \psi_{j}^{\prime}, \psi_{i}\right)=\int_{\Omega} b \psi_{j}^{\prime} \psi_{i} \mathrm{~d} x \neq \int_{\Omega} b \psi_{i}^{\prime} \psi_{j} \mathrm{~d} x=\left(\psi_{i}^{\prime}, b \psi_{j}\right)
$$

2.3 Nonlinear coefficient

inally, we show that the techniques used above to derive variational forms lso apply to nonlinear differential equation problems as well. Here is a model roblem with a nonlinear coefficient and right-hand side:

$$
\begin{equation*}
-\left(\alpha(u) u^{\prime}\right)^{\prime}=f(u), \quad x \in[0, L], u(0)=0, u^{\prime}(L)=E \tag{168}
\end{equation*}
$$

'ur space V has basis $\left\{\psi_{i}\right\}_{i \in \mathcal{I}_{s}}$, and because of the condition $u(0)=0$, we must squire $\psi_{i}(0)=0, i \in \mathcal{I}_{s}$.

Galerkin's method is about inserting the approximate u, multiplying the ifferential equation by $v \in V$, and integrate,

$$
-\int_{0}^{L} \frac{d}{d x}\left(\alpha(u) \frac{d u}{d x}\right) v \mathrm{~d} x=\int_{0}^{L} f(u) v \mathrm{~d} x \quad \forall v \in V
$$

he integration by parts does not differ from the case where we have $\alpha(x)$ instead E $\alpha(u)$:

$$
\int_{0}^{L} \alpha(u) \frac{d u}{d x} \frac{d v}{d x} \mathrm{~d} x=\int_{0}^{L} f(u) v \mathrm{~d} x+\left[\alpha(u) v u^{\prime}\right]_{0}^{L} \quad \forall v \in V
$$

he term $\alpha(u(0)) v(0) u^{\prime}(0)=0$ since $v(0)$. The other term, $\alpha(u(L)) v(L) u^{\prime}(L)$, is sed to impose the other boundary condition $u^{\prime}(L)=E$, resulting in

$$
\int_{0}^{L} \alpha(u) \frac{d u}{d x} \frac{d v}{d x} v \mathrm{~d} x=\int_{0}^{L} f(u) v \mathrm{~d} x+\alpha(u(L)) v(L) E \quad \forall v \in V
$$

or alternatively written more compactly as

$$
\left(\alpha(u) u^{\prime}, v^{\prime}\right)=(f(u), v)+\alpha(L) v(L) E \quad \forall v \in V
$$

Since the problem is nonlinear, we cannot identify a bilinear form $a(u, \imath$ linear form $L(v)$. An abstract notation is typically find u such that

$$
F(u ; v)=0 \quad \forall v \in V,
$$

with

$$
F(u ; v)=\left(a(u) u^{\prime}, v^{\prime}\right)-(f(u), v)-a(L) v(L) E
$$

By inserting $u=\sum_{j} c_{j} \psi_{j}$ we get a nonlinear system of algebraic e! for the unknowns $c_{i}, i \in \mathcal{I}_{s}$. Such systems must be solved by constrı sequence of linear systems whose solutions hopefully converge to the : of the nonlinear system. Frequently applied methods are Picard iterat Newton's method.

12.4 Computing with Dirichlet and Neumann cond

Let us perform the necessary calculations to solve

$$
-u^{\prime \prime}(x)=2, \quad x \in \Omega=[0,1], \quad u^{\prime}(0)=C, u(1)=D
$$

using a global polynomial basis $\psi_{i} \sim x^{i}$. The requirements on ψ_{i} is that ψ_{i} because u is specified at $x=1$, so a proper set of polynomial basis funct: be

$$
\psi_{i}(x)=(1-x)^{i+1}, \quad i \in \mathcal{I}_{s}
$$

A suitable $B(x)$ function to handle the boundary condition $u(1)=D$ is $D x$. The variational formulation becomes

$$
\left(u^{\prime}, v^{\prime}\right)=(2, v)-C v(0) \quad \forall v \in V
$$

The entries in the linear system are then

$$
\begin{aligned}
A_{i, j} & =\left(\psi_{j}, \psi_{i}\right)=\int_{0}^{1} \psi_{i}^{\prime}(x) \psi_{j}^{\prime}(x) \mathrm{d} x=\int_{0}^{1}(i+1)(j+1)(1-x)^{i+j} \mathrm{~d} x= \\
b_{i} & =\left(2, \psi_{i}\right)-\left(D, \psi_{i}^{\prime}\right)-C \psi_{i}(0) \\
& =\int_{0}^{1}\left(2 \psi_{i}(x)-D \psi_{i}^{\prime}(x)\right) \mathrm{d} x-C \psi_{i}(0) \\
& =\int_{0}^{1}\left(2(1-x)^{i+1}-D(i+1)(1-x)^{i}\right) \mathrm{d} x-C \psi_{i}(0) \\
& =\frac{2-(2+i)(D+C)}{i+2} .
\end{aligned}
$$

With $N=1$ the global matrix system is

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & 4 / 3
\end{array}\right)\binom{c_{0}}{c_{1}}=\binom{-C+D+1}{2 / 3-C+D}
$$

he solution becomes $c_{0}=-C+D+2$ and $c_{1}=-1$, resulting in

$$
\begin{equation*}
u(x)=1-x^{2}+D+C(x-1) \tag{169}
\end{equation*}
$$

The exact solution is found by. integrating twice and applying the boundary onditions, either by hand or using sympy as shown in Section 11.2. It appears at the numerical solution coincides with the exact one. This result is to be xpected because if $\left(u_{\mathrm{e}}-B\right) \in V, u=u_{\mathrm{e}}$, as proved next.

2.5 When the numerical method is exact

τ have some variational formulation: find $(u-B) \in V$ such that $a(u, v)=$ $(u) \forall V$. The exact solution also fulfills $a\left(u_{\mathrm{e}}, v\right)=L(v)$, but normally ($u_{\mathrm{e}}-B$) es in a much larger (infinite-dimensional) space. Suppose, nevertheless, that e $=B+E$, where $E \in V$. That is, apart from Dirichlet conditions, u_{e} lines in ur finite-dimensional space V we use to compute u. Writing also u on the same rm $u=B+F$, we have

$$
\begin{aligned}
& a(B+E, v)=L(v) \quad \forall v \in V \\
& a(B+F, v)=L(v) \quad \forall v \in V
\end{aligned}
$$

ubtracting the equations show that $a(E-F, v)=0$ for all $v \in V$, and therefore : $-F=0$ and $u=u_{\mathrm{e}}$.
The case treated in Section 12.4 is of the type where $u_{\mathrm{e}}-B$ is a quadratic unction that is 0 at $x=1$, and therefore $\left(u_{\mathrm{e}}-B\right) \in V$, and the method finds re exact solution

3 Computing with finite elements

he purpose of this section is to demonstrate in detail how the finite element rethod can the be applied to the model problem

$$
-u^{\prime \prime}(x)=2, \quad x \in(0, L), u(0)=u(L)=0
$$

ith variational formulation

$$
\left(u^{\prime}, v^{\prime}\right)=(2, v) \quad \forall v \in V .
$$

he variational formulation is derived in Section 11.10.

13.1 Finite element mesh and basis functions

We introduce a finite element mesh with N_{e} cells, all with length h, and the cells from left to right. global nodes. Choosing P1 elements, there nodes per cell, and the coordinates of the nodes become

$$
x_{i}=i h, \quad h=L / N_{e}, \quad i=0, \ldots, N_{n}=N_{e}+1
$$

provided we number the nodes from left to right.
Each of the nodes, i, is associated a finite element basis function $\varphi_{i}(x)$ approximating a given function f by a finite element function u, we u using finite element basis functions associated with all nodes in th i.e., $N=N_{n}$. However, when solving differential equations we will oft $N<N_{n}$ because of Dirichlet boundary conditions. Why this is the c now be explained in detail.

In our case with homogeneous Dirichlet boundary conditions we do r any boundary function $B(x)$ and can work with the expansion

$$
u(x)=\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}(x)
$$

Because of the boundary conditions, we must demand $\psi_{i}(0)=\psi_{i}(L)=c$ When $\psi_{i}, i=0, \ldots, N$, is to be selected among the finite element basis fi_{i} $\varphi_{j}, i=0, \ldots, N_{n}$, we have to avoid using φ_{j} functions that do not v_{t} $x_{0}=0$ and $x_{N_{n}}=L$. However, all φ_{j} vanish at these two nodes for $j=1$, Only basis functions associated with the end nodes, φ_{0} and $\varphi_{N_{n}}$, vio boundary conditions of our differential equation. Therefore, we select t functions φ_{i} to be the set of finite element basis functions associated the interior nodes in the mesh:

$$
\psi_{i}=\varphi_{i+1}, \quad i=0, \ldots, N
$$

Here, $N=N_{n}-2$.
In the general case, the nodes are not necessarily numbered from left so we introduce a mapping from the node numbering, or more preci: degree of freedom numbering, to the numbering of the unknowns in t equation system. These unknowns take on the numbers $0, \ldots, N$. U number j in the linear system corresponds to degree of freedom numk $j \in \mathcal{I}_{s}$. We can then write

$$
\psi_{i}=\varphi_{\nu(i)}, \quad i=0, \ldots, N
$$

With a regular numbering as in the present example, $\nu(j)=j+1, j=1$. $N_{n}-2$.

13.2 Computation in the global physical domain

We shall first perform a computation in the x coordinate system bece integrals can be easily computed here by simple, visual, geometric consid
his is called a global approach since we work in the x coordinate system and mmpute integrals on the global domain $[0, L]$.
The entries in the coefficient matrix and right-hand side are

$$
A_{i, j}=\int_{0}^{L} \psi_{i}^{\prime}(x) \psi_{j}^{\prime}(x) \mathrm{d} x, \quad b_{i}=\int_{0}^{L} 2 \psi_{i}(x) \mathrm{d} x, \quad i, j \in \mathcal{I}_{s}
$$

xpressed in terms of finite element basis functions φ_{i} we get the alternative xpressions

$$
A_{i, j}=\int_{0}^{L} \varphi_{i+1}^{\prime}(x) \varphi_{j+1}^{\prime}(x) \mathrm{d} x, \quad b_{i}=\int_{0}^{L} 2 \varphi_{i+1}(x) \mathrm{d} x, \quad i, j \in \mathcal{I}_{s}
$$

or the following calculations the subscripts on the finite element basis functions re more conveniently written as i and j instead of $i+1$ and $j+1$, so our otation becomes

$$
A_{i-1, j-1}=\int_{0}^{L} \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) \mathrm{d} x, \quad b_{i-1}=\int_{0}^{L} 2 \varphi_{i}(x) \mathrm{d} x
$$

here the i and j indices run as $i, j=1, \ldots, N_{n}-1=N+1$.
The $\varphi_{i}(x)$ function is a hat function with peak at $x=x_{i}$ and a linear variation । $\left[x_{i-1}, x_{i}\right]$ and $\left[x_{i}, x_{i+1}\right]$. The derivative is $1 / h$ to the left of x_{i} and $-1 / h$ to 1e right, or more formally,

$$
\varphi_{i}^{\prime}(x)= \begin{cases}0, & x<x_{i-1} \tag{171}\\ h^{-1}, & x_{i-1} \leq x<x_{i} \\ -h^{-1}, & x_{i} \leq x<x_{i+1} \\ 0, & x \geq x_{i+1}\end{cases}
$$

igure 47 shows $\varphi_{1}^{\prime}(x)$ and $\varphi_{2}^{\prime}(x)$.

igure 47: Illustration of the derivative of piecewise linear basis functions ssociated with nodes in cell 2.

We realize that φ_{i}^{\prime} and φ_{j}^{\prime} has no overlap, and hence their prodı ishes, unless i and j are nodes belonging to the same cell. The only contributions to the coefficient matrix are therefore

$$
\begin{aligned}
A_{i-1, i-2} & =\int_{0}^{L} \varphi_{i}^{\prime}(x) \varphi_{i-1}^{\prime}(x) \mathrm{d} x \\
A_{i-1, i-1} & =\int_{0}^{L} \varphi_{i}^{\prime}(x)^{2} \mathrm{~d} x \\
A_{i-1, i} & =\int_{0}^{L} \varphi_{i}^{\prime}(x) \varphi_{i+1}^{\prime}(x) \mathrm{d} x
\end{aligned}
$$

for $i=1, \ldots, N_{n}-1$, but for $i=1, A_{i-1, i-2}$ is not defined, and for $i=$ $A_{i-1, i}$ is not defined.

We see that $\varphi_{i-1}^{\prime}(x)$ and $\varphi_{i}^{\prime}(x)$ have overlap of one cell $\Omega^{(i-1)}=[$: and that their product then is $-1 / h^{2}$. The integrand is constant and t. $A_{i-1, i-2}=-h^{-2} h=-h^{-1}$. A similar reasoning can be applied to A_{i-1}, also becomes $-h^{-1}$. The integral of $\varphi_{i}^{\prime}(x)^{2}$ gets contributions from tr $\Omega^{(i-1)}=\left[x_{i-1}, x_{i}\right]$ and $\Omega^{(i)}=\left[x_{i}, x_{i+1}\right]$, but $\varphi_{i}^{\prime}(x)^{2}=h^{-2}$ in both cells, length of the integration interval is $2 h$ so we get $A_{i-1, i-1}=2 h^{-1}$.

The right-hand side involves an integral of $2 \varphi_{i}(x), i=1, \ldots, N_{n}-1$ is just the area under a hat function of height 1 and width $2 h$, i.e., eqr Hence, $b_{i-1}=2 h$.

To summarize the linear system, we switch from i to $i+1$ such that write

$$
A_{i, i-1}=A_{i, i-1}=-h^{-1}, \quad A_{i, i}=2 h^{-1}, \quad b_{i}=2 h
$$

The equation system to be solved only involves the unknowns c_{i} fo With our numbering of unknowns and nodes, we have that c_{i} equals The complete matrix system that takes the following form:

$$
\frac{1}{h}\left(\begin{array}{ccccccccc}
2 & -1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
-1 & 2 & -1 & \ddots & & & & & \vdots \\
0 & -1 & 2 & -1 & \ddots & & & & \vdots \\
\vdots & \ddots & & \ddots & \ddots & 0 & & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots \\
\vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & \ddots & \ddots & -1 \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & -1 & 2
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
\vdots \\
\vdots \\
\vdots \\
c_{N}
\end{array}\right)\left(\begin{array}{c}
: \\
\vdots \\
\vdots
\end{array}\right)=(
$$

3.3 Comparison with a finite difference discretization

typical row in the matrix system can be written as

$$
\begin{equation*}
-\frac{1}{h} c_{i-1}+\frac{2}{h} c_{i}-\frac{1}{h} c_{i+1}=2 h \tag{173}
\end{equation*}
$$

et us introduce the notation u_{j} for the value of u at node $j: u_{j}=u\left(x_{j}\right)$ since e have the interpretation $u\left(x_{j}\right)=\sum_{j} c_{j} \varphi\left(x_{j}\right)=\sum_{j} c_{j} \delta_{i j}=c_{j}$. The unknowns), \ldots, c_{N} are $u_{1}, \ldots, u_{N_{n}}$. Shifting i with $i+1$ in (173) and inserting $u_{i}=c_{i-1}$, e get

$$
\begin{equation*}
-\frac{1}{h} u_{i-1}+\frac{2}{h} u_{i}-\frac{1}{h} u_{i+1}=2 h \tag{174}
\end{equation*}
$$

A finite difference discretization of $-u^{\prime \prime}(x)=2$ by a centered, second-order nite difference approximation $u^{\prime \prime}\left(x_{i}\right) \approx\left[D_{x} D_{x} u\right]_{i}$ with $\Delta x=h$ yields

$$
\begin{equation*}
-\frac{u_{i-1}-2 u_{i}+u_{i+1}}{h^{2}}=2, \tag{175}
\end{equation*}
$$

hich is, in fact, equivalent to (174) if (174) is divided by h. Therefore, the nite difference and the finite element method are equivalent in this simple test roblem.
Sometimes a finite element method generates the finite difference equations n a uniform mesh, and sometimes the finite element method generates equations lat are different. The differences are modest, but may influence the numerical uality of the solution significantly, especially in time-dependent problems.

3.4 Cellwise computations

le now employ the cell by cell computational procedure where an element matrix nd vector are calculated for each cell and assembled in the global linear system. 11 integrals are mapped to the local reference coordinate system $X \in[-1,1]$. 1 the present case, the matrix entries contain derivatives with respect to x,

$$
A_{i-1, j-1}^{(e)}=\int_{\Omega^{(e)}} \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) \mathrm{d} x=\int_{-1}^{1} \frac{d}{d x} \tilde{\varphi}_{r}(X) \frac{d}{d x} \tilde{\varphi}_{s}(X) \frac{h}{2} \mathrm{~d} X,
$$

here the global degree of freedom i is related to the local degree of freedom r mrough $i=q(e, r)$. Similarly, $j=q(e, s)$. The local degrees of freedom run as $s=0,1$ for a P1 element.
'he integral for the element matrix. There are simple formulas for the asis functions $\tilde{\varphi}_{r}(X)$ as functions of X. However, we now need to find the erivative of $\tilde{\varphi}_{r}(X)$ with respect to x. Given

$$
\tilde{\varphi}_{0}(X)=\frac{1}{2}(1-X), \quad \tilde{\varphi}_{1}(X)=\frac{1}{2}(1+X),
$$

e can easily compute $d \tilde{\varphi}_{r} / d X$:

$$
\frac{d \tilde{\varphi}_{0}}{d X}=-\frac{1}{2}, \quad \frac{d \tilde{\varphi}_{1}}{d X}=\frac{1}{2} .
$$

From the chain rule,

$$
\frac{d \tilde{\varphi}_{r}}{d x}=\frac{d \tilde{\varphi}_{r}}{d X} \frac{d X}{d x}=\frac{2}{h} \frac{d \tilde{\varphi}_{r}}{d X}
$$

The transformed integral is then

$$
A_{i-1, j-1}^{(e)}=\int_{\Omega^{(e)}} \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) \mathrm{d} x=\int_{-1}^{1} \frac{2}{h} \frac{d \tilde{\varphi}_{r}}{d X} \frac{2}{h} \frac{d \tilde{\varphi}_{s}}{d X} \frac{h}{2} \mathrm{~d} X .
$$

The integral for the element vector. The right-hand side is tran according to

$$
b_{i-1}^{(e)}=\int_{\Omega^{(e)}} 2 \varphi_{i}(x) \mathrm{d} x=\int_{-1}^{1} 2 \tilde{\varphi}_{r}(X) \frac{h}{2} \mathrm{~d} X, \quad i=q(e, r), r=0,1
$$

Detailed calculations of the element matrix and vector. Spe for P1 elements we arrive at the following calculations for the element entries:

$$
\begin{aligned}
& \tilde{A}_{0,0}^{(e)}=\int_{-1}^{1} \frac{2}{h}\left(-\frac{1}{2}\right) \frac{2}{h}\left(-\frac{1}{2}\right) \frac{2}{h} \mathrm{~d} X=\frac{1}{h} \\
& \tilde{A}_{0,1}^{(e)}=\int_{-1}^{1} \frac{2}{h}\left(-\frac{1}{2}\right) \frac{2}{h}\left(\frac{1}{2}\right) \frac{2}{h} \mathrm{~d} X=-\frac{1}{h} \\
& \tilde{A}_{1,0}^{(e)}=\int_{-1}^{1} \frac{2}{h}\left(\frac{1}{2}\right) \frac{2}{h}\left(-\frac{1}{2}\right) \frac{2}{h} \mathrm{~d} X=-\frac{1}{h} \\
& \tilde{A}_{1,1}^{(e)}=\int_{-1}^{1} \frac{2}{h}\left(\frac{1}{2}\right) \frac{2}{h}\left(\frac{1}{2}\right) \frac{2}{h} \mathrm{~d} X=\frac{1}{h}
\end{aligned}
$$

The element vector entries become

$$
\begin{aligned}
& \tilde{b}_{0}^{(e)}=\int_{-1}^{1} 2 \frac{1}{2}(1-X) \frac{h}{2} \mathrm{~d} X=h \\
& \tilde{b}_{1}^{(e)}=\int_{-1}^{1} 2 \frac{1}{2}(1+X) \frac{h}{2} \mathrm{~d} X=h .
\end{aligned}
$$

Expressing these entries in matrix and vector notation, we have

$$
\tilde{A}^{(e)}=\frac{1}{h}\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right), \quad \tilde{b}^{(e)}=h\binom{1}{1} .
$$

;ontributions from the first and last cell. The first and last cell involve nly one unknown and one basis function because of the Dirichlet boundary onditions at the first and last node. The element matrix therefore becomes a $\times 1$ matrix and there is only one entry in the element vector. On cell 0 , only $0=\varphi_{1}$ is involved, corresponding to integration with $\tilde{\varphi}_{1}$. On cell N_{e}, only ${ }_{N}=\varphi_{N_{n}-1}$ is involved, corresponding to integration with $\tilde{\varphi}_{0}$. We then get the jecial end-cell contributions

$$
\begin{equation*}
\tilde{A}^{(e)}=\frac{1}{h}(1), \quad \tilde{b}^{(e)}=h(1), \tag{178}
\end{equation*}
$$

rr $e=0$ and $e=N_{e}$. In these cells, we have only one degree of freedom, not vo as in the interior cells.
ssembly. The next step is to assemble the contributions from the various ells. The assembly of an element matrix and vector into the global matrix and ght-hand side can be expressed as

$$
A_{q(e, r), q(e, s)}=A_{q(e, r), q(e, s)}+\tilde{A}_{r, s}^{(e)}, \quad b_{q(e, r)}=b_{q(e, r)}+\tilde{b}_{r}^{(e)}
$$

rr r and s running over all local degrees of freedom in cell e.
To make the assembly algorithm more precise, it is convenient to set up ython data structures and a code snippet for carrying out all details of the lgorithm. For a mesh of four equal-sized P1 elements and $L=2$ we have

```
Tertices = [0, 0.5, 1, 1.5, 2]
zells = [[0, 1], [1, 2], [2, 3], [3, 4]]
lof_map = [[0],'[0,1], [1, 2], [2]]
```

he total number of degrees of freedom is 3 , being the function values at the iternal 3 nodes where u is unknown. In cell 0 we have global degree of freedom the next cell has u unknown at its two nodes, which become global degrees of eedom 0 and 1 , and so forth according to the dof_map list. The mathematical (e, r) quantity is nothing but the dof_map list.
Assume all element matrices are stored in a list Ae such that $\mathrm{Ae}[\mathrm{e}][\mathrm{i}, \mathrm{j}]$ is ${ }_{i, j}^{(e)}$. A corresponding list for the element vectors is named be, where be [e] [r] $\tilde{b}_{r}^{(e)}$. A Python code snippet illustrates all details of the assembly algorithm:

```
# A[i,j]: coefficient matrix, b[i]: right-hand side
:or e in range(len(Ae)):
    for r in range(Ae[e].shape[0]):
        for s in range(Ae[e].shape[1]):
        for s in range(Ae[e].shape[1],\mp@code{Map += Ae[e][i,j]}
        b[dof_map[e,r]] += be[e][i,j]
```

The general case with N_e P1 elements of length h has

```
N_n = N_e + 1
vertices = [i*h for i in range(N_n)]
cells = [[e, e+1] for e in range(N_e)]
dof_map = [[0]] + [[e-1, e] for i in range(1, N_e)] + [[N_n-2]]
```

Carrying out the assembly results in a linear system that is identical 1 which is not surprising since the procedures is mathematically equivalen calculations in the physical domain.

A fundamental problem with the matrix system we have assemblec the boundary conditions are not incorporated if $u(0)$ or $u(L)$ are differt zero. The next sections deals with this issue.

14 Boundary conditions: specified nonzero

We have to take special actions to incorporate Dirichlet conditions, $u(L)=D$, into the computational procedures. The present section alternative, yet mathematically equivalent, methods.

14.1 General construction of a boundary function

In Section 11.11 we introduce a boundary function $B(x)$ to deal with Dirichlet boundary conditions for u. The construction of such a functio always trivial, especially not in multiple dimensions. However, a sim general construction idea exists when the basis functions have the prop

$$
\varphi_{i}\left(x_{j}\right)=\delta_{i j}, \quad \delta_{i j}= \begin{cases}1, & i=j, \\ 0, & i \neq j,\end{cases}
$$

where x_{j} is a boundary point. Examples on such functions are the L interpolating polynomials and finite element functions.

Suppose now that u has Dirichlet boundary conditions at nodes with 1 $i \in I_{b}$. For example, $I_{b}=\left\{0, N_{n}\right\}$ in a 1D mesh with node numbering f to right. Let U_{i} be the corresponding prescribed values of $u\left(x_{i}\right)$. We c: in general, use

$$
B(x)=\sum_{j \in I_{b}} U_{j} \varphi_{j}(x)
$$

It is easy to verify that $B\left(x_{i}\right)=\sum_{j \in I_{b}} U_{j} \varphi_{j}\left(x_{i}\right)=U_{i}$.
The unknown function can then be written as

$$
u(x)=\sum_{j \in I_{b}} U_{j} \varphi_{j}(x)+\sum_{j \in \mathcal{I}_{s}} c_{j} \varphi_{\nu(j)},
$$

where $\nu(j)$ maps unknown number j in the equation system to node ν can easily show that with this u, a Dirichlet condition $u\left(x_{k}\right)=U_{k}$ is fu

$$
u\left(x_{k}\right)=\sum_{j \in I_{b}} U_{j} \underbrace{\varphi_{j}(x)}_{\neq 0 \text { only for } j=k}+\sum_{j \in \mathcal{I}_{s}} c_{j} \underbrace{\varphi_{\nu(j)}\left(x_{k}\right)}_{=0, k \notin \mathcal{I}_{s}}=U_{k}
$$

Some examples will further clarify the notation. With a regular left-to-right umbering of nodes in a mesh with P1 elements, and Dirichlet conditions at $=0$, we use finite element basis functions associated with the nodes $1,2, \ldots, N_{n}$, nplying that $\nu(j)=j+1, j=0, \ldots, N$, where $N=N_{n}-1$. For the particular resh below the expansion becomes

Here is a mesh with an irregular cell and node numbering:

Say we in this latter mesh have Dirichlet conditions on the left-most and ght-most node, with numbers 3 and 1 , respectively. Then we can number the nknowns at the interior nodes from left to right, giving $\nu(0)=0, \nu(1)=4$, $(2)=5, \nu(3)=2$. This gives

$$
B(x)=U_{3} \varphi_{3}(x)+U_{1} \varphi_{1}(x)
$$

$$
u(x)=B(x)+\sum_{j=0}^{3} c_{j} \varphi_{\nu(j)}=U_{3} \varphi_{3}+U_{1} \varphi_{1}+c_{0} \varphi_{0}+c_{1} \varphi_{4}+c_{2} \varphi_{5}+c
$$

Switching to the more standard case of left-to-right numbering and b^{\prime} conditions $u(0)=C, u(L)=D$, we have $N=N_{n}-2$ and

$$
\begin{aligned}
u(x) & =C \varphi_{0}+D \varphi_{N_{n}}+\sum_{j \in \mathcal{I}_{s}} c_{j} \varphi_{j+1} \\
& =C \varphi_{0}+D \varphi_{N_{n}}+c_{0} \varphi_{1}+c_{1} \varphi_{2}+\cdots+c_{N} \varphi_{N_{n}-1}
\end{aligned}
$$

The idea of constructing B described here generalizes almost triviall and 3D problems: $B=\sum_{j \in I_{b}} U_{j} \varphi_{j}$, where I_{b} is the index set contair numbers of all the nodes on the boundaries where Dirichlet values are pr,

14.2 Example on computing with finite element-be boundary function

Let us see how the model problem $-u^{\prime \prime}=2, u(0)=C, u(L)=D$, is aff a $B(x)$ to incorporate boundary values. Inserting the expression

$$
u(x)=B(x)+\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}(x)
$$

in $-\left(u^{\prime \prime}, \psi_{i}\right)=\left(f, \psi_{i}\right)$ and integrating by parts results in a linear syster

$$
A_{i, j}=\int_{0}^{L} \psi_{i}^{\prime}(x) \psi_{j}^{\prime}(x) \mathrm{d} x, \quad b_{i}=\int_{0}^{L}\left(f(x)-B^{\prime}(x)\right) \psi_{i}(x) \mathrm{d} x
$$

We choose $\psi_{i}=\varphi_{i+1}, i=0, \ldots, N=N_{n}-2$ if the node numbering is f to right. (Later we also need the assumption that the cells too are nu from left to right.) The boundary function becomes

$$
B(x)=C \varphi_{0}(x)+D \varphi_{N_{n}}(x) .
$$

The expansion for $u(x)$ is

$$
u(x)=B(x)+\sum_{j \in \mathcal{I}_{s}} c_{j} \varphi_{j+1}(x)
$$

We can write the matrix and right-hand side entries as
$A_{i-1, j-1}=\int_{0}^{L} \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) \mathrm{d} x, \quad b_{i-1}=\int_{0}^{L}\left(f(x)-C \varphi_{0}^{\prime}(x)-D \varphi_{N_{n}}^{\prime}(x)\right)_{\psi}$ for $i, j=1, \ldots, N+1=N_{n}-1$. Note that we have here used $B^{\prime}=C \varphi_{0}^{\prime}-$
'omputations in physical coordinates. Most of the terms in the linear istem have already been computed so we concentrate on the new contribution om the boundary function. The integral $\left.C \int_{0}^{L} \varphi_{0}^{\prime}(x)\right) \varphi_{i}(x) \mathrm{d} x$ can only get a onzero contribution from the first cell, $\Omega^{(0)}=\left[x_{0}, x_{1}\right]$ since $\varphi_{0}^{\prime}(x)=0$ on all ther cells. Moreover, $\varphi_{0}^{\prime}(x) \varphi_{i}(x) \mathrm{d} x \neq 0$ only for $i=0$ and $i=1$ (but $i=0$ is xcluded), since $\varphi_{i}=0$ on the first cell if $i>1$. With a similar reasoning we salize that $\left.D \int_{0}^{L} \varphi_{N_{n}}^{\prime}(x)\right) \varphi_{i}(x) \mathrm{d} x$ can only get a nonzero contribution from the ist cell. From the explanations of the calculations in Section 3.6 we then find rat

$$
\int_{0}^{L} \varphi_{0}^{\prime}(x) \varphi_{1}(x) \mathrm{d} x=\frac{1}{h} \cdot \frac{1}{h}=-\frac{1}{2}, \quad \int_{0}^{L} \varphi_{N_{n}}^{\prime}(x) \varphi_{N_{n}-1}(x) \mathrm{d} x=\frac{1}{h} \cdot \frac{1}{h}=\frac{1}{2}
$$

he extra boundary term because of $B(x)$ boils down to adding $C / 2$ to b_{0} and $D / 2$ to b_{N}.

Cellwise computations on the reference element. As an equivalent alsrnative, we now turn to cellwise computations. The element matrices and actors are calculated as Section 13.4, so we concentrate on the impact of the ew term involving $B(x)$. We observe that $C \varphi_{0}^{\prime}=0$ on all cells except $e=0$, nd $D \varphi_{N_{n}}^{\prime}=0$ on all cells except $e=N_{e}$. In this case there is only one unknown I these cells since $u(0)$ and $u(L)$ are prescribed, so the element vector has only ne entry. The entry for the last cell, $e=N_{e}$, becomes
$\tilde{b}_{0}^{(e)}=\int_{-1}^{1}\left(f-D \frac{2}{h} \frac{d \tilde{\varphi}_{1}}{d X}\right) \tilde{\varphi}_{0} \frac{h}{2} \mathrm{~d} X=\left(\frac{h}{2}\left(2-D \frac{2}{h} \frac{1}{2}\right) \int_{-1}^{1} \tilde{\varphi}_{0} \mathrm{~d} X=h-D / 2\right.$.
imilar computations on the first cell yield

$$
\tilde{b}_{0}^{(0)}=\int_{-1}^{1}\left(f-C \frac{2}{h} \frac{d \tilde{\varphi}_{0}}{d X}\right) \tilde{\varphi}_{1} \frac{h}{2} \mathrm{~d} X=\left(\frac{h}{2}\left(2+C \frac{2}{h} \frac{1}{2}\right) \int_{-1}^{1} \tilde{\varphi}_{1} \mathrm{~d} X=h+C / 2\right.
$$

Then assembling these contributions, we see that b_{0} gets right-hand side of the near system gets an extra term $C / 2$ and b_{N} gets $-D / 2$, as in the computations 1 the physical domain.

4.3 Modification of the linear system

rom an implementational point of view, there is a convenient alternative to dding the $B(x)$ function and using only the basis functions associated with odes where u is truly unknown. Instead of seeking

$$
\begin{equation*}
u(x)=\sum_{j \in I_{b}} U_{j} \varphi_{j}(x)+\sum_{j \in \mathcal{I}_{s}} c_{j} \varphi_{\nu(j)}(x) \tag{181}
\end{equation*}
$$

we use the sum over all degrees of freedom, including the known boundar:

$$
u(x)=\sum_{j \in \mathcal{I}_{s}} c_{j} \varphi_{j}(x)
$$

Note that the collections of unknowns $\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}$ in (181) and (182) are \bar{c} in (181) N counts the number of nodes where u is not known, while in counts all the nodes $\left(N=N_{n}\right)$.

The idea is to compute the entries in the linear system as if no I values are prescribed. Afterwards, we modify the linear system to ensı the known c_{j} values are incorporated.

A potential problem arises for the boundary term $\left[u^{\prime} v\right]_{0}^{L}$ from the int by parts: imagining no Dirichlet conditions means that we no longer $v=0$ at Dirichlet points, and the boundary term is then nonzero t points. However, when we modify the linear system, we will erase what contribution from $\left[u^{\prime} v\right]_{0}^{L}$ should be at the Dirichlet points in the right-h: of the linear system. We can therefore safely forget $\left[u^{\prime} v\right]_{0}^{L}$ at any point Dirichlet condition applies.

Computations in the physical system. Let us redo the computa the example in Section 14.1. We solve $-u^{\prime \prime}=2$ with $u(0)=0$ and $u($ The expressions for $A_{i, j}$ and b_{i} are the same, but the numbering is diff the numbering of unknowns and nodes now coincide:

$$
A_{i, j}=\int_{0}^{L} \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) \mathrm{d} x, \quad b_{i}=\int_{0}^{L} f(x) \varphi_{i}(x) \mathrm{d} x
$$

for $i, j=0, \ldots, N=N_{n}$. The integrals involving basis functions corres] to interior mesh nodes, $i, j=1, \ldots, N_{n}-1$, are obviously the same as We concentrate on the contributions from φ_{0} and $\varphi_{N_{n}}$:

$$
\begin{aligned}
A_{0,0} & =\int_{0}^{L}\left(\varphi_{0}^{\prime}\right)^{2} \mathrm{~d} x=\int_{0}^{x_{1}}=\left(\varphi_{0}^{\prime}\right)^{2} \mathrm{~d} x \frac{1}{h}, \\
A_{0,1} & =\int_{0}^{L} \varphi_{0}^{\prime} \varphi_{1}^{\prime} \mathrm{d} x=\int_{0}^{x_{1}} \varphi_{0}^{\prime} \varphi_{1}^{\prime} \mathrm{d} x=-\frac{1}{h}, \\
A_{N, N} & =\int_{0}^{L}\left(\varphi_{0}^{\prime}\right)^{2} \mathrm{~d} x=\int_{x_{N_{n}-1}}^{x_{N_{n}}}\left(\varphi_{0}^{\prime}\right)^{2} \mathrm{~d} x=\frac{1}{h}, \\
A_{N, N-1} & =\int_{0}^{L}\left(\varphi_{0}^{\prime}\right)^{2} \mathrm{~d} x=\int_{x_{N_{n}-1}}^{x_{N_{n}}}\left(\varphi_{0}^{\prime}\right)^{2} \mathrm{~d} x=-\frac{1}{h} .
\end{aligned}
$$

The new terms on the right-hand side are also those involving φ_{0} a]

$$
\begin{aligned}
b_{0} & =\int_{0}^{L} 2 \varphi_{0}(x) \mathrm{d} x=\int_{0}^{x_{1}} 2 \varphi_{0}(x) \mathrm{d} x=h \\
b_{N} & =\int_{0}^{L} 2 \varphi_{N_{n}} \mathrm{~d} x=\int_{x_{N_{n}-1}}^{x_{N_{n}}} 2 \varphi_{N_{n}} \mathrm{~d} x=h
\end{aligned}
$$

The complete matrix system, involving all degrees of freedom, takes the form

(183)

Incorporation of Dirichlet values can now be done by replacing the first and ist equation by $c_{0}=0$ and $c_{N}=D$. This action changes the system to

$$
\frac{1}{h}\left(\begin{array}{ccccccccc}
h & 0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
-1 & 2 & -1 & \ddots & & & & & \vdots \\
0 & -1 & 2 & -1 & \ddots & & & & \vdots \\
\vdots & \ddots & & \ddots & \ddots & 0 & & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots \\
\vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & \ddots & \ddots & -1 \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 0 & h
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
\vdots \\
\vdots \\
\vdots \\
c_{N}
\end{array}\right)\left(\begin{array}{c}
0 \\
2 h \\
\vdots \\
2 h \\
D
\end{array}\right)
$$

Note that because we do not require $\varphi_{i}(0)=0$ and $\varphi_{i}(L), i \in \mathcal{I}_{s}$, the boundary rrm $\left[u^{\prime} v\right]_{0}^{L}$ gives in principle contributions $u^{\prime}(0) \varphi_{0}(0)$ to b_{0} and $u^{\prime}(L) \varphi_{N}(L)$ to $\mathrm{v}\left(u^{\prime} \varphi_{i}\right.$ vanishes for $x=0$ or $x=L$ for $\left.i=1, \ldots, N-1\right)$. Nevertheless, we ase these contributions in b_{0} and b_{N} and insert boundary values instead. This rgument shows why we can drop computing $\left[u^{\prime} v\right]_{0}^{L}$ at Dirichlet nodes when we nplement the Dirichlet values by modifying the linear system.

14.4 Symmetric modification of the linear system

The original matrix system (172) is symmetric, but the modifications destroy the symmetry. Our described modification will in general des initial symmetry in the matrix system. This is not a particular compu disadvantage for tridiagonal systems arising in 1D problems, but may 1 serious in 2D and 3D problems when the systems are large and ex symmetry can be important for halving the storage demands, spee computations, and/or making the solution algorithm more robust. Tr an alternative modification which preserves symmetry is frequently apf

Let c_{k} be a coefficient corresponding to a known value $u\left(x_{k}\right)=1$ want to replace equation k in the system by $c_{k}=U_{k}$, i.e., insert zeroe: number k in the coefficient matrix, set 1 on the diagonal, and replace b A symmetry-preserving modification consists in first subtracting column k in the coefficient matrix, i.e., $A_{i, k}$ for $i \in \mathcal{I}_{s}$, times the boundary v: from the right-hand side: $b_{i} \leftarrow b_{i}-A_{i, k} U_{k}$. Then we put zeroes in row k and column number k in the coefficient matrix, and finally set $b_{k}=l$ steps in algorithmic form becomes

$$
\text { 1. } b_{i} \leftarrow b_{i}-A_{i, k} U_{k} \text { for } i \in \mathcal{I}_{s}
$$

2. $A_{i, k}=A_{k, i}=0$ for $i \in \mathcal{I}_{s}$
3. $A_{k, k}=1$
4. $b_{i}=U_{k}$

This modification goes as follows for the specific linear system writtel (183) in Section 14.3. First we subtract the first column in the coefficient times the boundary value, from the right-hand side. Because $c_{0}=$ subtraction has no effect. Then we subtract the last column, times the b value D, from the right-hand side. This action results in $b_{N-1}=2 h$ and $b_{N}=h-2 D / h$. Thereafter, we place zeros in the first and last 1 column in the coefficient matrix and 1 on the two corresponding diagona Finally, we set $b_{0}=0$ and $b_{N}=D$. The result becomes

4.5 Modification of the element matrix and vector
he modifications of the global linear system can alternatively be done for the ement matrix and vector. (The assembled system will get the value n on the aian diagonal if n elements contribute to the same unknown, but the factor n ill also appear on the right-hand side and hence cancel out.)
We have, in the present computational example, the element matrix and 3ctor (177). The modifications are needed in cells where one of the degrees f freedom is known. Here, this means the first and last cell. We compute the ement matrix and vector as there are no Dirichlet conditions. The boundary rrm $\left[u^{\prime} v\right]_{0}^{L}$ is simply forgotten at nodes that have Dirichlet conditions because re modification of the element vector will anyway erase the contribution from 1e boundary term. In the first cell, local degree of freedom number 0 is known nd the modification becomes

$$
\tilde{A}^{(0)}=A=\frac{1}{h}\left(\begin{array}{rr}
h & 0 \\
-1 & 1
\end{array}\right), \quad \tilde{b}^{(0)}=\binom{0}{h} .
$$

1 the last cell we set

$$
\tilde{A}^{\left(N_{e}\right)}=A=\frac{1}{h}\left(\begin{array}{rr}
1 & -1 \tag{187}\\
0 & h
\end{array}\right), \quad \tilde{b}^{\left(N_{e}\right)}=\binom{h}{D} .
$$

We can also perform the symmetric modification. This operation affects only re last cell with a nonzero Dirichlet condition. The algorithm is the same as or the global linear system, resulting in

$$
\tilde{A}^{(N-1)}=A=\frac{1}{h}\left(\begin{array}{cc}
h & 0 \tag{188}\\
0 & 1
\end{array}\right), \quad \tilde{b}^{(N-1)}=\binom{h+D / h}{D} .
$$

he reader is encouraged to assemble the element matrices and vectors and check rat the result coincides with the system (185).

15 Boundary conditions: specified derivati

Suppose our model problem $-u^{\prime \prime}(x)=f(x)$ features the boundary col $u^{\prime}(0)=C$ and $u(L)=D$. As already indicated in Section 12, the condition can be incorporated through the boundary term that aris integration by parts. This details of this method will now be illustrate context of finite element basis functions.

15.1 The variational formulation

Starting with the Galerkin method,

$$
\int_{0}^{L}\left(u^{\prime \prime}(x)+f(x)\right) \psi_{i}(x) \mathrm{d} x=0, \quad i \in \mathcal{I}_{s},
$$

integrating $u^{\prime \prime} \psi_{i}$ by parts results in

$$
\int_{0}^{L} u^{\prime}(x)^{\prime} \psi_{i}^{\prime}(x) \mathrm{d} x-\left(u^{\prime}(L) \psi_{i}(L)-u^{\prime}(0) \psi_{i}(0)\right)=\int_{0}^{L} f(x) \psi_{i}(x) \mathrm{d} x
$$

The first boundary term, $u^{\prime}(L) \psi_{i}(L)$, vanishes because $u(L)=D$. T two arguments for this result, explained in detail below. The second b_{c} term, $u^{\prime}(0) \psi_{i}(0)$, can be used to implement the condition $u^{\prime}(0)=C, \mathrm{~F}$ $\psi_{i}(0) \neq 0$ for some i (but with finite elements we fortunately have ψ_{0} (The variational form of the differential equation then becomes

$$
\int_{0}^{L} u^{\prime}(x) \varphi_{i}^{\prime}(x) \mathrm{d} x+C \varphi_{i}(0)=\int_{0}^{L} f(x) \varphi_{i}(x) \mathrm{d} x, \quad i \in \mathcal{I}_{s} .
$$

15.2 Boundary term vanishes because of the test fun

At points where u is known we may require ψ_{i} to vanish. Here, $u(L)=$ then $\psi_{i}(L)=0, i \in \mathcal{I}_{s}$. Obviously, the boundary term $u^{\prime}(L) \psi_{i}(L)$ then ${ }^{\prime}$

The set of basis functions $\left\{\psi_{i}\right\}_{i \in \mathcal{I}_{s}}$ contains in this case all the finite basis functions on the mesh, expect the one that is 1 at $x=L$. Tl function that is left out is used in a boundary function $B(x)$ instead. left-to-right numbering, $\psi_{i}=\varphi_{i}, i=0, \ldots, N_{n}-1$, and $B(x)=D \varphi_{N_{n}}$:

$$
u(x)=D \varphi_{N_{n}}(x)+\sum_{j=0}^{N=N_{n}-1} c_{j} \varphi_{j}(x) .
$$

Inserting this expansion for u in the variational form (15.1) leads to tl system

$$
\sum_{j=0}^{N}\left(\int_{0}^{L} \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) \mathrm{d} x\right) c_{j}=\int_{0}^{L}\left(f(x) \varphi_{i}(x)-D \varphi_{N_{n}}^{\prime}(x) \varphi_{i}(x)\right) \mathrm{d} x-1
$$

ri $i=0, \ldots, N=N_{n}-1$.

5.3 Boundary term vanishes because of linear system modifications

Je may, as an alternative to the approach in the previous section, use a basis $\left.\psi_{i}\right\}_{i \in \mathcal{I}_{s}}$ which contains all the finite element functions on the mesh: $\psi_{i}=\varphi_{i}$, $=0, \ldots, N_{n}=N$. In this case, $u^{\prime}(L) \psi_{i}(L)=u^{\prime}(L) \varphi_{i}(L) \neq 0$ for the i orresponding to the boundary node at $x=L$ (where $\varphi_{i}=1$). The number of ais node is $i=N_{n}=N$ if a left-to-right numbering of nodes is utilized.
However, even though $u^{\prime}(L) \varphi_{N}(L) \neq 0$, we do not need to compute this term. or $i<N$ we realize that $\varphi_{i}(L)=0$. The only nonzero contribution to the ght-hand side from the affects $b_{N}(i=N)$. Without a boundary function we ust implement the condition $u(L)=D$ by the equivalent statement $c_{N}=D$ nd modify the linear system accordingly. This modification will earse the last Jw and replace b_{N} by another value. Any attempt to compute the boundary mrm $u^{\prime}(L) \varphi_{N}(L)$ and store it in b_{N} will be lost. Therefore, we can safely forget bout boundary terms corresponding to Dirichlet boundary conditions also when e use the methods from Section 14.3 or Section 14.4.
The expansion for u reads

$$
u(x)=\sum_{j \in \mathcal{I}_{s}} c_{j} \varphi_{j}(x), \quad B(x)=D \varphi_{N}(x)
$$

ith $N=N_{n}$. Insertion in the variational form (15.1) leads to the linear system
$\sum_{j \in \mathcal{I}_{s}}\left(\int_{0}^{L} \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) \mathrm{d} x\right) c_{j}=\int_{0}^{L}\left(f(x) \varphi_{i}(x)\right) \mathrm{d} x-C \varphi_{i}(0), \quad i \in \mathcal{I}_{s} . \quad$ (190)
fter having computed the system, we replace the last row by $c_{N}=D$, either raightforwardly as in Section refreffem:deq:1D:fem:essBC:Bfunc:modsys or in a rmmetric fashion as in Section refreffem:deq:1D:fem:essBC:Bfunc:modsys:symm. hese modifications can also be performed in the element matrix and vector for ne right-most cell.

5.4 Direct computation of the global linear system

Je now turn to actual computations with P1 finite elements. The focus is on ow the linear system and the element matrices and vectors are modified by the mndition $u^{\prime}(0)=C$.
Consider first the approach where Dirichlet conditions are incorporated by a $i(x)$ function and the known degree of freedom $C_{N_{n}}$ is left out from the linear rstem (see Section 15.2). The relevant formula for the linear system is given y (189). There are three differences compared to the extensively computed ase where $u(0)=0$ in Sections 13.2 and 13.4. First, because we do not have a

Dirichlet condition at the left boundary, we need to extend the linear syst with an equation associated with the node $x_{0}=0$. According to Section 1 extension consists of including $A_{0,0}=1 / h, A_{0,1}=-1 / h$, and $b_{0}=h . \mathrm{F}$ we have $A_{i, i}=2 / h, A_{i-1, i}=A_{i, i+1}=-1 / h$. Second, we need to incl extra term $-C \varphi_{i}(0)$ on the right-hand side. Since all $\varphi_{i}(0)=0$ for $i=1$ this term reduces to $-C \varphi_{0}(0)=-C$ and affects only the first equation We simply add $-C$ to b_{0} such that $b_{0}=h-C$. Third, the bounda $-\int_{0}^{L} D \varphi_{N_{n}}(x) \varphi_{i} \mathrm{~d} x$ must be computed. Since $i=0, \ldots, N=N_{n}-$ integral can only get a nonzero contribution with $i=N_{n}-1$ over the The result becomes $-D h / 6$. The resulting linear system can be summa the form

Next we consider the technique where we modify the linear system 1 porate Dirichlet conditions (see Section 15.3). Now $N=N_{n}$. The two dif from the case above is that the $-\int_{0}^{L} D \varphi_{N_{n}} \varphi_{i} \mathrm{~d} x$ term is left out of the rig side and an extra last row associated with the node $x_{N_{n}}=L$ where the I condition applies is appended to the system. This last row is anyway r by the condition $C_{N}=D$ or this condition can be incorporated in a syı fashion. Using the simplest, former approach gives

5.5 Cellwise computations

ow we compute with one element at a time, working in the reference coordinate rstem $X \in[-1,1]$. We need to see how the $u^{\prime}(0)=C$ condition affects re element matrix and vector. The extra term $-C \varphi_{i}(0)$ in the variational rmulation only affects the element vector in the first cell. On the reference cell, $C \varphi_{i}(0)$ is transformed to $-C \tilde{\varphi}_{r}(-1)$, where r counts local degrees of freedom le have $\tilde{\varphi}_{0}(-1)=1$ and $\tilde{\varphi}_{1}(-1)=0$ so we are left with the contribution $C \tilde{\varphi}_{0}(-1)=-C$ to $\tilde{b}_{0}^{(0)}$:

$$
\tilde{A}^{(0)}=A=\frac{1}{h}\left(\begin{array}{rr}
1 & 1 \tag{193}\\
-1 & 1
\end{array}\right), \quad \tilde{b}^{(0)}=\binom{h-C}{h} .
$$

o other element matrices or vectors are affected by the $-C \varphi_{i}(0)$ boundary sm.

There are two alternative ways of incorporating the Dirichlet condition. ollowing Section 15.2 , we get a 1×1 element matrix in the last cell and an ement vector with an extra term containing D :

$$
\begin{equation*}
\tilde{A}^{(e)}=\frac{1}{h}(1), \quad \tilde{b}^{(e)}=h(1-D / 6), \tag{194}
\end{equation*}
$$

Alternatively, we include the degree of freedom at the node with u specified. he element matrix and vector must then be modified to constrain the $\tilde{c}_{1}=c_{N}$ alue at local node $r=1$:

$$
\tilde{A}^{\left(N_{e}\right)}=A=\frac{1}{h}\left(\begin{array}{ll}
1 & 1 \tag{195}\\
0 & 1
\end{array}\right), \quad \tilde{b}^{\left(N_{e}\right)}=\binom{h}{D} .
$$

16 Implementation

It is tempting to create a program with symbolic calculations to perforn steps in the computational machinery, both for automating the work documenting the complete algorithms. As we have seen, there are quit details involved with finite element computations and incorporation of bconditions. An implementation will also act as a structured summary of : details.

16.1 Global basis functions

We first consider implementations when ψ_{i} are global functions are hence , from zero on most of $\Omega=[0, L]$ so all integrals need integration over th domain. Since the expressions for the entries in the linear system depens differential equation problem being solved, the user must supply the n r formulas via Python functions. The implementations here attempt to symbolic calculations, but fall back on numerical computations if the s ones fail.

The user must prepare a function integrand_lhs (psi, i, j) for rt the integrand of the integral that contributes to matrix entry (i, j). variable is a Python dictionary holding the basis functions and their det in symbolic form. More precisely, psi [q] is a list of

$$
\left\{\frac{d^{q} \psi_{0}}{d x^{q}}, \ldots, \frac{d^{q} \psi_{N}}{d x^{q}}\right\} .
$$

Similarly, integrand_rhs(psi, i) returns the integrand for entry num the right-hand side vector.

Since we also have contributions to the right-hand side vector, and po also the matrix, from boundary terms without any integral, we introd additional functions, boundary_lhs(psi, i, j) and boundary_rhs(] for returning terms in the variational formulation that are not to be int over the domain Ω. Examples shown later will explain in more detail hc user-supplied function may look like.

The linear system can be computed and solved symbolically by the fi_{i} function:
import sympy as sp
def solve(integrand_lhs, integrand_rhs, psi, Omega,
boundary_1hs=None, boundary_rhs=None)
$\mathrm{N}=\operatorname{len}(\mathrm{psi}[0])-1$
$A=\operatorname{sp} \cdot \operatorname{zeros}((N+1, N+1))$
$\mathrm{b}=\operatorname{sp} \cdot \operatorname{zeros}((\mathrm{N}+1,1))$
$\mathrm{x}=\mathrm{sp}$.Symbol('x')
for i in range $(N+1)$:
for j in range(i, N+1):
integrand = integrand_lhs(psi, i, j)
I = sp.integrate(integrand, (x, Omega[0], Omega[1])) if boundary_lhs is not None:

```
                += boundary_lhs(psi, i, j)
            A[i,j] = A[j,i] = I # assume symmetry
    integrand = integrand_rhs(psi, i)
    I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
    if boundary_rhs is not None:
        I += boundary_rhs(psi, i)
    b[i,0] = I
    c = A.LUsolve(b)
    u = sum(c[i,0]*psi[0][i] for i in range(len(psi[0])))
    return u
```

Not surprisingly, symbolic solution of differential equations, discretized by a talerkin or least squares method with global basis functions, is of limited interest eyond the simplest problems, because symbolic integration might be very time mnsuming or impossible, not only in sympy but also in WolframAlpha ${ }^{21}$ (which pplies the perhaps most powerful symbolic integration software available today: Iathematica). Numerical integration as an option is therefore desirable

The extended solve function below tries to combine symbolic and numerical itegration. The latter can be enforced by the user, or it can be invoked after a on-successful symbolic integration (being detected by an Integral object as ie result of the integration in sympy). Note that for a numerical integration, rmbolic expressions must be converted to Python functions (using lambdify), ad the expressions cannot contain other symbols than x . The real solve routine 1 the varform1D.py ${ }^{22}$ file has error checking and meaningful error messages in ich cases. The solve code below is a condensed version of the real one, with re purpose of showing how to automate the Galerkin or least squares method rr solving differential equations in 1D with global basis functions:
lef solve(integrand_lhs, integrand_rhs, psi, Omega
boundary_lhs=None, boundary_rhs=None, symbolic=True):
$\mathrm{N}=\operatorname{len}(\mathrm{psi}[0])-1$
$A=\operatorname{sp} \cdot \operatorname{zeros}((N+1, N+1))$
b $=s p \cdot \operatorname{zeros}((N+1,1))$
$\mathrm{x}=\mathrm{sp}$.Symbol('x')
for in range $(\mathrm{N}+1)$:
for j in range ($i, N+1$):
integrand = integrand_lhs(psi, i, j)
if symbolic.
$\mathrm{I}=$ sp.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sp.Integral):
symbolic = False \# force num.int. hereafter
if not symbolic
integrand $=$ sp.lambdify ([x], integrand)
$I=$ sp.mpmath.quad(integrand, [Omega[0], Omega[1]])
if boundary_lhs is not None:
$\mathrm{I}+=$ boundary_lhs (psi, i, j)
$A[i, j]=A[j, i]=-I$
integrand = integrand_rhs(psi, i)
if symbolic:
$\mathrm{I}=$ sp.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sp.Integral):
symbolic = False

[^17]if not symbolic:
integrand $=$ sp.lambdify([x], integrand)
I = sp.mpmath.quad(integrand, [Omega[0], Omega[1]])
if boundary_rhs is not None.
I += boundary_rhs(psi, i)
$\mathrm{b}[\mathrm{i}, 0]=\mathrm{I}$
$c=A . L U s o l v e(b)$
$u=\operatorname{sum}(c[i, 0] * p s i[0][i]$ for i in range(len(psi[0])))
return u

16.2 Example: constant right-hand side

To demonstrate the code above, we address

$$
-u^{\prime \prime}(x)=b, \quad x \in \Omega=[0,1], \quad u(0)=1, u(1)=0,
$$

with b as a (symbolic) constant. A possible basis for the space V is $x^{i+1}(1-x), i \in \mathcal{I}_{s}$. Note that $\psi_{i}(0)=\psi_{i}(1)=0$ as required by the I conditions. We need a $B(x)$ function to take care of the known boundar of u. Any function $B(x)=1-x^{p}, p \in \mathbb{R}$, is a candidate, and one a choice from this family is $B(x)=1-x^{3}$. The unknown function is then as

$$
u(x)=B(x)+\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}(x)
$$

Let us use the Galerkin method to derive the variational formulation plying the differential equation by v and integrate by parts yield

$$
\int_{0}^{1} u^{\prime} v^{\prime} \mathrm{d} x=\int_{0}^{1} f v \mathrm{~d} x \quad \forall v \in V
$$

and with $u=B+\sum_{j} c_{j} \psi_{j}$ we get the linear system

$$
\sum_{j \in \mathcal{I}_{s}}\left(\int_{0}^{1} \psi_{i}^{\prime} \psi_{j}^{\prime} \mathrm{d} x\right) c_{j}=\int_{0}^{1}\left(f-B^{\prime}\right) \psi_{i} \mathrm{~d} x, \quad i \in \mathcal{I}_{s}
$$

The application can be coded as follows in sympy:

$$
\begin{aligned}
& x, b=s p . \operatorname{symbols}\left({ }^{\prime} x b^{\prime}\right) \\
& f=b \\
& B=1-x * * 3 \\
& d B d x=\operatorname{sp} \cdot \operatorname{diff}(B, x)
\end{aligned}
$$

\# Compute basis functions and their derivatives $\mathrm{N}=3$
psi $=\{0:[x * *(i+1) *(1-x)$ for i in range $(N+1)]\}$
psi[1] = [sp.diff(psi_i, x) for psi_i in psi[0]]
def integrand_lhs(psi, i, j):
return psi[1][i]*psi[1][j]
lef integrand_rhs(psi, i)
return f*psi[0][i] - dBdx*psi[1][i]
Jmega $=[0,1]$
1_bar = solve(integrand_lhs, integrand_rhs, psi, Omega,
1 = B + u_bar
rint 'solution $u:$ ', sp.simplify(sp.expand(u))
he printout of u reads $-b * x * * 2 / 2+b * x / 2-x+1$. Note that expanding u nd then simplifying is in the present case necessary to get a compact, final xpression with sympy. A non-expanded u might be preferable in other cases iis depends on the problem in question.

The exact solution $u_{\mathrm{e}}(x)$ can be derived by some sympy code that closely ,llows the examples in Section 11.2. The idea is to integrate $-u^{\prime \prime}=b$ twice and etermine the integration constants from the boundary conditions:

```
`1, C2 = sp.symbols('C1 C2')
# integration constants
1 = sp.integrate(f, x) + C1
```

:2 = sp.integrate (f1, x) + C2
\ddagger Find C1 and C2 from the boundary conditions $u(0)=0, u(1)=1$
; = sp. solve([u_e.subs (x,0) - 1, u_e.subs $(x, 1)-0]$, [C1, C2])
\ddagger Form the exact solution
$1_{-} e=-f 2+s[C 1] * x+s[C 2]$
,rint ', analytical solution:', u_e
rrint 'error:', sp.simplify(sp.expand(u-u_e))
he last line prints 0 , which is not surprising when $u_{\mathrm{e}}(x)$ is a parabola and our pproximate u contains polynomials up to degree 4 . It suffices to have $N=1$, e., polynomials of degree 2 , to recover the exact solution.

We can play around with the code and test that with $f \sim x^{p}$, the solution is polynomial of degree $p+2$, and $N=p+1$ guarantees that the approximate slution is exact.

Although the symbolic code is capable of integrating many choices of $f(x)$, 1e symbolic expressions for u quickly become lengthy and non-informative, , numerical integration in the code, and hence numerical answers, have the reatest application potential.

6.3 Finite elements

nplementation of the finite element algorithms for differential equations folıws closely the algorithm for approximation of functions. The new additional lgredients are

1. other types of integrands (as implied by the variational formulation)
2. additional boundary terms in the variational formulation for Neumann boundary conditions
3. modification of element matrices and vectors due to Dirichlet boundary conditions

Point 1 and 2 can be taken care of by letting the user supply functions the integrands and boundary terms on the left- and right-hand side equation system:

```
integrand_lhs(phi, r, s, x)
boundary_lhs(phi, r, s, x)
integrand_rhs(phi, r, x)
boundary_rhs(phi, r, x)
```

Here, phi is a dictionary where phi [q] holds a list of the derivatives q of the basis functions at the an evaluation point; r and s are indices corresponding entries in the element matrix and vector, and x is thr coordinate value corresponding to the current evaluation point.

Given a mesh represented by vertices, cells, and dof_map as expla fore, we can write a pseudo Python code to list all the steps in the compu algorithm for finite element solution of a differential equation.
<Declare global matrix and rhs: A, b>
for e in range(len(cells)):
\# Compute element matrix and vector
$\mathrm{n}=$ len(dof_map[e]) \# no of dofs in this element
h = vertices[cells[e][1]] - vertices[cells[e][1]]
<Declare element matrix and vector: A_e, b_e>
\# Integrate over the reference cell
points, weights = <numerical integration rule>
for X, w in zip(points, weights):
phi = <basis functions and derivatives at X>
$\operatorname{detJ}=h / 2$
$\mathrm{x}=$ <affine mapping from $\mathrm{X}>$
for r in range(n):
for s in range(n).
integrand_lhs(phi, $r, s, x) * \operatorname{det} J *$ w
b_e[r] += integrand_rhs(phi, r, x)*detJ*w
\# Add boundary terms
for r in range(n):
for s in range (n) :
_e[r] $[r, s]$ += boundary_lhs(phi, r, s, x)*detJ*w
b_e[r] += boundary_rhs(phi, r, x)*detJ*w
\# Incorporate essential boundary conditions
for r in range(n):
global_dof = dof_map[e][r]
if global_dof in essbc_dofs:
\# dof r is subject to an essential condition
value = essbc_docs[global_dof]
\# Symmetric modification
b_e -= value*A_e[:,r]
A_e $[\mathrm{r},: \mathrm{l}]=0$
$A_{-}[:, r]=0$
$A_{-} e[r, r]=1$
$\mathrm{b}_{-} \mathrm{e}[\mathrm{r}]=$ value

\# Assemble

for r in range(n):
for s in range (n) :
A[dof_map $[\mathrm{e}][\mathrm{r}]$, dof_map $[\mathrm{e}][\mathrm{r}]]$ += $\mathrm{A}_{-} \mathrm{e}[\mathrm{r}, \mathrm{s}]$ b [dof_map[e][r] += b_e[r]
:solve linear system>

7 Variational formulations in 2D and 3D

'he major difference between deriving variational formulations in 2D and 3D smpared to 1 D is the rule for integrating by parts. A typical second-order term ı a PDE may be written in dimension-independent notation as

$$
\nabla^{2} u \quad \text { or } \quad \nabla \cdot(a(\boldsymbol{x}) \nabla u)
$$

he explicit forms in a 2 D problem become

$$
\nabla^{2} u=\nabla \cdot \nabla u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

nd

$$
\nabla \cdot(a(\boldsymbol{x}) \nabla u)=\frac{\partial}{\partial x}\left(a(x, y) \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(a(x, y) \frac{\partial u}{\partial y}\right)
$$

Ve shall continue with the latter operator as the form arises from just setting $=1$.
The general rule for integrating by parts is often referred to as Green's first lentity ${ }^{23}$:

$$
\begin{equation*}
-\int_{\Omega} \nabla \cdot(a(\boldsymbol{x}) \nabla u) v \mathrm{~d} x=\int_{\Omega} a(\boldsymbol{x}) \nabla u \cdot \nabla v \mathrm{~d} x-\int_{\partial \Omega} a \frac{\partial u}{\partial n} v \mathrm{~d} s \tag{197}
\end{equation*}
$$

here $\partial \Omega$ is the boundary of Ω and $\partial u / \partial n=\boldsymbol{n} \cdot \nabla u$ is the derivative of u in the utward normal direction, \boldsymbol{n} being an outward unit normal to $\partial \Omega$. The integrals ${ }_{2}() \mathrm{d} x$ are area integrals in 2 D and volume integrals in 3 D , while $\int_{\partial \Omega}() \mathrm{d} s$ is a ne integral in 2D and a surface integral in 3D.

Let us divide the boundary into two parts:

- $\partial \Omega_{N}$, where we have Neumann conditions $-a \frac{\partial u}{\partial n}=g$, and
- $\partial \Omega_{D}$, where we have Dirichlet conditions $u=u_{0}$.
he test functions v are required to vanish on $\partial \Omega_{D}$

[^18]Example. Here is a quite general, stationary, linear PDE arising i problems:

$$
\begin{aligned}
\boldsymbol{v} \cdot \nabla u+\alpha u & =\nabla \cdot(a \nabla u)+f, \quad \boldsymbol{x} \in \Omega \\
u & =u_{0}, \quad \boldsymbol{x} \in \partial \Omega_{D}, \\
-a \frac{\partial u}{\partial n} & =g, \quad \boldsymbol{x} \in \partial \Omega_{N} .
\end{aligned}
$$

The vector field \boldsymbol{v} and the scalar functions a, α, f, u_{0}, and g may vary r spatial coordinate \boldsymbol{x} and must be known.

Such a second-order PDE needs exactly one boundary condition at ea of the boundary, so $\partial \Omega_{N} \cup \partial \Omega_{D}$ must be the complete boundary $\partial \Omega$.

Assume that the boundary function $u_{0}(\boldsymbol{x})$ is defined for all $\boldsymbol{x} \in$ unknown function can then be expanded as

$$
u=B+\sum_{j \in \mathcal{I}_{s}} c_{j} \psi_{j}, \quad B=u_{0}
$$

The variational formula is obtained from Galerkin's method, which tec implies multiplying the PDE by a test function v and integrating over

$$
\int_{\Omega}(\boldsymbol{v} \cdot \nabla u+\alpha u) v \mathrm{~d} x=\int_{\Omega} \nabla \cdot(a \nabla u) \mathrm{d} x+\int_{\Omega} f v \mathrm{~d} x
$$

The second-order term is integrated by parts, according to

$$
\int_{\Omega} \nabla \cdot(a \nabla u) v \mathrm{~d} x=-\int_{\Omega} a \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\partial \Omega} a \frac{\partial u}{\partial n} v \mathrm{~d} s
$$

The variational form now reads

$$
\int_{\Omega}(\boldsymbol{v} \cdot \nabla u+\alpha u) v \mathrm{~d} x=-\int_{\Omega} a \nabla u \cdot \nabla v \mathrm{~d} x+\int_{\partial \Omega} a \frac{\partial u}{\partial n} v \mathrm{~d} s+\int_{\Omega} f v \mathrm{~d}
$$

The boundary term can be developed further by noticing that $v \neq 0$ $\partial \Omega_{N}$,

$$
\int_{\partial \Omega} a \frac{\partial u}{\partial n} v \mathrm{~d} s=\int_{\partial \Omega_{N}} a \frac{\partial u}{\partial n} v \mathrm{~d} s
$$

and that on $\partial \Omega_{N}$, we have the condition $a \frac{\partial u}{\partial n}=-g$, so the term becom

$$
-\int_{\partial \Omega_{N}} g v \mathrm{~d} s
$$

The variational form is then

$$
\int_{\Omega}(\boldsymbol{v} \cdot \nabla u+\alpha u) v \mathrm{~d} x=-\int_{\Omega} a \nabla u \cdot \nabla v \mathrm{~d} x-\int_{\partial \Omega_{N}} g v \mathrm{~d} s+\int_{\Omega} f v \mathrm{~d} \bar{\alpha}
$$

Instead of using the integral signs we may use the inner product notation:

$$
(\boldsymbol{v} \cdot \nabla u, v)+(\alpha u, v)=-(a \nabla u, \nabla v)-(g, v)_{N}+(f, v)
$$

he subscript ${ }_{N}$ in $(g, v)_{N}$ is a notation for a line or surface integral over $\partial \Omega_{N}$. Inserting the u expansion results in
$\sum_{\in \mathcal{I}_{s}}\left(\left(\boldsymbol{v} \cdot \nabla \psi_{j}, \psi_{i}\right)+\left(\alpha \psi_{j}, \psi_{i}\right)+\left(a \nabla \psi_{j}, \nabla \psi_{i}\right)\right) c_{j}=$

$$
\left(g, \psi_{i}\right)_{N}+\left(f, \psi_{i}\right)-\left(\boldsymbol{v} \cdot \nabla u_{0}, \psi_{i}\right)+\left(\alpha u_{0}, \psi_{i}\right)+\left(a \nabla u_{0}, \nabla \psi_{i}\right)
$$

his is a linear system with matrix entries

$$
A_{i, j}=\left(\boldsymbol{v} \cdot \nabla \psi_{j}, \psi_{i}\right)+\left(\alpha \psi_{j}, \psi_{i}\right)+\left(a \nabla \psi_{j}, \nabla \psi_{i}\right)
$$

nd right-hand side entries

$$
b_{i}=\left(g, \psi_{i}\right)_{N}+\left(f, \psi_{i}\right)-\left(\boldsymbol{v} \cdot \nabla u_{0}, \psi_{i}\right)+\left(\alpha u_{0}, \psi_{i}\right)+\left(a \nabla u_{0}, \nabla \psi_{i}\right)
$$

ri $i, j \in \mathcal{I}_{s}$.
In the finite element method, we usually express u_{0} in terms of basis functions ad restrict i and j to run over the degrees of freedom that are not prescribed as ririchlet conditions. However, we can also keep all the $c_{j}, j \in \mathcal{I}_{s}$, as unknowns rop the u_{0} in the expansion for u, and incorporate all the known c_{j} values in re linear system. This has been explained in detail in the 1D case.

7.1 Transformation to a reference cell in 2D and 3D

le consider an integral of the type

$$
\begin{equation*}
\int_{\Omega^{(e)}} a(\boldsymbol{x}) \nabla \varphi_{i} \cdot \nabla \varphi_{j} \mathrm{~d} x \tag{201}
\end{equation*}
$$

here the φ_{i} functions are finite element basis functions in 2 D or 3 D , defined in re physical domain. Suppose we want to calculate this integral over a reference sll, denoted by $\tilde{\Omega}^{r}$, in a coordinate system with coordinates $\boldsymbol{X}=\left(X_{0}, X_{1}\right)(2 \mathrm{D})$ r $\boldsymbol{X}=\left(X_{0}, X_{1}, X_{2}\right)(3 \mathrm{D})$. The mapping between a point \boldsymbol{X} in the reference oordinate system and the corresponding point \boldsymbol{x} in the physical coordinate rstem is given by a vector relation $\boldsymbol{x}(\boldsymbol{X})$. The corresponding Jacobian, J, of lis mapping has entries

$$
J_{i, j}=\frac{\partial x_{j}}{\partial X_{i}}
$$

The change of variables requires $\mathrm{d} x$ to be replaced by $\operatorname{det} J \mathrm{~d} X$. The derivaves in the ∇ operator in the variational form are with respect to \boldsymbol{x}, which e may denote by $\nabla_{\boldsymbol{x}}$. The $\varphi_{i}(\boldsymbol{x})$ functions in the integral are replaced by ,cal basis functions $\tilde{\varphi}_{r}(\boldsymbol{X})$ so the integral features $\nabla_{\boldsymbol{x}} \tilde{\varphi}_{r}(\boldsymbol{X})$. We readily have
$\nabla_{\boldsymbol{X}} \tilde{\varphi}_{r}(\boldsymbol{X})$ from formulas for the basis functions in the reference cell, desired quantity $\nabla_{\boldsymbol{x}} \tilde{\varphi}_{r}(\boldsymbol{X})$ requires some efforts to compute. All the de provided below.

Let $i=q(e, r)$ and consider two space dimensions. By the chain rul

$$
\frac{\partial \tilde{\varphi}_{r}}{\partial X}=\frac{\partial \varphi_{i}}{\partial X}=\frac{\partial \varphi_{i}}{\partial x} \frac{\partial x}{\partial X}+\frac{\partial \varphi_{i}}{\partial y} \frac{\partial y}{\partial X}
$$

and

$$
\frac{\partial \tilde{\varphi}_{r}}{\partial Y}=\frac{\partial \varphi_{i}}{\partial Y}=\frac{\partial \varphi_{i}}{\partial x} \frac{\partial x}{\partial Y}+\frac{\partial \varphi_{i}}{\partial y} \frac{\partial y}{\partial Y}
$$

We can write these two equations as a vector equation

Identifying

$$
\nabla_{\boldsymbol{X}} \tilde{\varphi}_{r}=\left[\begin{array}{c}
\frac{\partial \tilde{\varphi}_{r}}{\partial X} \\
\frac{\partial \varphi_{r}}{\partial Y}
\end{array}\right], \quad J=\left[\begin{array}{ll}
\frac{\partial x}{\partial X} & \frac{\partial y}{\partial X} \\
\frac{\partial x}{\partial Y} & \frac{\partial y}{\partial Y}
\end{array}\right], \quad \nabla_{\boldsymbol{x}} \varphi_{r}=\left[\begin{array}{c}
\frac{\partial \varphi_{i}}{\partial x} \\
\frac{\partial \varphi_{i}}{\partial y}
\end{array}\right]
$$

we have the relation

$$
\nabla_{\boldsymbol{X}} \tilde{\varphi}_{r}=J \cdot \nabla_{\boldsymbol{x}} \varphi_{i}
$$

which we can solve with respect to $\nabla_{\boldsymbol{x}} \varphi_{i}$:

$$
\nabla_{\boldsymbol{x}} \varphi_{i}=J^{-1} \cdot \nabla_{\boldsymbol{X}} \tilde{\varphi}_{r}
$$

On the reference cell, $\varphi_{i}(\boldsymbol{x})=\tilde{\varphi}_{r}(\boldsymbol{X})$, so

$$
\nabla_{\boldsymbol{x}} \tilde{\varphi}_{r}(\boldsymbol{X})=J^{-1}(\boldsymbol{X}) \cdot \nabla_{\boldsymbol{X}} \tilde{\varphi}_{r}(\boldsymbol{X})
$$

This means that we have the following transformation of the integre physical domain to its counterpart over the reference cell:

$$
\int_{\Omega}^{(e)} a(\boldsymbol{x}) \nabla_{\boldsymbol{x}} \varphi_{i} \cdot \nabla_{\boldsymbol{x}} \varphi_{j} \mathrm{~d} x \int_{\tilde{\Omega}^{r}} a(\boldsymbol{x}(\boldsymbol{X}))\left(J^{-1} \cdot \nabla_{\boldsymbol{X}} \tilde{\varphi}_{r}\right) \cdot\left(J^{-1} \cdot \nabla^{\varphi_{s}}\right) \operatorname{det} J \mathrm{~d}
$$

17.2 Numerical integration

Integrals are normally computed by numerical integration rules. Fo dimensional cells, various families of rules exist. All of them are sir what is shown in 1D: $\int f \mathrm{~d} x \approx \sum_{j} w_{i} f\left(\boldsymbol{x}_{j}\right)$, where w_{j} are weights anc corresponding points.

The file numint. py^{24} contains the functions quadrature_for_trian and quadrature_for_tetrahedra(n), which returns lists of points and

[^19]orresponding to integration rules with n points over the reference triangle ith vertices $(0,0),(1,0),(0,1)$, and the reference tetrahedron with vertices $1,0,0),(1,0,0),(0,1,0),(0,0,1)$, respectively. For example, the first two rules rr integration over a triangle have 1 and 3 points:
>>> import numint
>> x, w = numint.quadrature_for_triangles(num_points=1)
>> x
[(0.3333333333333333, 0.3333333333333333)]
>> ${ }^{[0.5]}$
[>>
>>> x, w = numint.quadrature_for_triangles(num_points=3)
>> x
[(0.16666666666666666, 0.16666666666666666),
($0.66666666666666666,0.1666666666666666$),
($0.16666666666666666,0.6666666666666666$) 〕
>> w
[0.16666666666666666, $0.16666666666666666,0.16666666666666666]$
ules with 1,3 , 4, and 7 points over the triangle will exactly integrate polynomials f degree $1,2,3$, and 4 , respectively. In 3D, rules with $1,4,5$, and 11 points ver the tetrahedron will exactly integrate polynomials of degree $1,2,3$, and 4 , sspectively.

7.3 Convenient formulas for P1 elements in 2D

le shall now provide some formulas for piecewise linear φ_{i} functions and their itegrals in the physical coordinate system. These formulas make it convenient to ompute with P1 elements without the need to work in the reference coordinate rstem and deal with mappings and Jacobians. A lot of computational and lgorithmic details are hidden by this approach.
Let $\Omega^{(e)}$ be cell number e, and let the three vertices have global vertex umbers I, J, and K. The corresponding coordinates are $\left(x_{I}, y_{I}\right),\left(x_{J}, y_{J}\right)$, and $\left.{ }^{\prime}{ }_{K}, y_{K}\right)$. The basis function φ_{I} over $\Omega^{(e)}$ have the explicit formula

$$
\begin{equation*}
\varphi_{I}(x, y)=\frac{1}{2} \Delta\left(\alpha_{I}+\beta_{I} x+\gamma_{I} y\right) \tag{205}
\end{equation*}
$$

here

$$
\begin{align*}
\alpha_{I} & =x_{J} y_{K}-x_{K} y_{J} \tag{206}\\
\beta_{I} & =y_{J}-y_{K} \tag{207}\\
\gamma_{I} & =x_{K}-x_{J} \tag{208}\\
2 \Delta & =\operatorname{det}\left(\begin{array}{rrr}
1 & x_{I} & y_{I} \\
1 & x_{J} & y_{J} \\
1 & x_{K} & y_{K}
\end{array}\right) . \tag{209}
\end{align*}
$$

he quantity Δ is the area of the cell.

The following formula is often convenient when computing element 1 and vectors:

$$
\int_{\Omega^{(e)}} \varphi_{I}^{p} \varphi_{J}^{q} \varphi_{K}^{r} d x d y=\frac{p!q!r!}{(p+q+r+2)!} 2 \Delta .
$$

(Note that the q in this formula is not to be mixed with the $q(e, r)$ mal degrees of freedom.)

As an example, the element matrix entry $\int_{\Omega^{(e)}} \varphi_{I} \varphi_{J} \mathrm{~d} x$ can be co by setting $p=q=1$ and $r=0$, when $I \neq J$, yielding $\Delta / 12$, and $p=$ $q=r=0$, when $I=J$, resulting in $\Delta / 6$. We collect these numbers in element matrix:

$$
\frac{\Delta}{12}\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

The common element matrix entry $\int_{\Omega^{(e)}} \nabla \varphi_{I} \cdot \nabla \varphi_{J} \mathrm{~d} x$, arising from a term $\nabla^{2} u$, can also easily be computed by the formulas above. We hav

$$
\nabla \varphi_{I} \cdot \nabla \varphi_{J}=\frac{\Delta^{2}}{4}\left(\beta_{I} \beta_{J}+\gamma_{I} \gamma_{J}\right)=\text { const, }
$$

so that the element matrix entry becomes $\frac{1}{4} \Delta^{3}\left(\beta_{I} \beta_{J}+\gamma_{I} \gamma_{J}\right)$.
From an implementational point of view, one will work with loca numbers $r=0,1,2$, parameterize the coefficients in the basis functions b . look up vertex coordinates through $q(e, r)$.

Similar formulas exist for integration of P1 elements in 3D.

18 Summary

- When approximating f by $u=\sum_{j} c_{j} \varphi_{j}$, the least squares method Galerkin/projection method give the same result. The interpolatic cation method is simpler and yields different (mostly inferior) res
- Fourier series expansion can be viewed as a least squares or C approximation procedure with sine and cosine functions.
- Basis functions should optimally be orthogonal or almost ortl because this gives little round-off errors when solving the linear and the coefficient matrix becomes diagonal or sparse.
- Finite element basis functions are piecewise polynomials, norma discontinuous derivatives at the cell boundaries. The basis functions very little, leading to stable numerics and sparse matrices.
- To use the finite element method for differential equations, we Galerkin method or the method of weighted residuals to arrive at tional form. Technically, the differential equation is multiplied b
function and integrated over the domain. Second-order derivatives are integrated by parts to allow for typical finite element basis functions that have discontinuous derivatives.
- The least squares method is not much used for finite element solution of differential equations of second order, because it then involves second-order derivatives which cause trouble for basis functions with discontinuous derivatives.
- We have worked with two common finite element terminologies and associated data structures (both are much used, especially the first one, while the other is more general):

1. elements, nodes, and mapping between local and global node numbers
2. an extended element concept consisting of cell, vertices, degrees of freedom, local basis functions, geometry mapping, and mapping between local and global degrees of freedom

- The meaning of the word "element" is multi-fold: the geometry of a finite element (also known as a cell), the geometry and its basis functions, or all information listed under point 2 above.
- One normally computes integrals in the finite element method element by element (cell by cell), either in a local reference coordinate system or directly in the physical domain.
- The advantage of working in the reference coordinate system is that the mathematical expressions for the basis functions depend on the element type only, not the geometry of that element in the physical domain. The disadvantage is that a mapping must be used, and derivatives must be transformed from reference to physical coordinates.
- Element contributions to the global linear system are collected in an element matrix and vector, which must be assembled into the global system using the degree of freedom mapping (dof_map) or the node numbering mapping (elements), depending on which terminology that is used.
- Dirichlet conditions, involving prescribed values of u at the boundary, are implemented either via a boundary function that take on the right Dirichlet values, while the basis functions vanish at such boundaries. In the finite element method, one has a general expression for the boundary function, but one can also incorporate Dirichlet conditions in the element matrix and vector or in the global matrix system.
- Neumann conditions, involving prescribed values of the derivative (or flux) of u, are incorporated in boundary terms arising from integrating terms with second-order derivatives by part. Forgetting to account for the boundary terms implies the condition $\partial u / \partial n=0$ at parts of the boundary where no Dirichlet condition is set.

19 Time-dependent problems

The finite element method is normally used for discretization in space are two alternative strategies for performing a discretization in time:

- use finite differences for time derivatives to arrive at a recursiv spatial problems that can be discretized by the finite element met
- discretize in space by finite elements first, and then solve the r system of ordinary differential equations (ODEs) by some standard for ODEs.

We shall exemplify these strategies using a simple diffusion problem

$$
\begin{array}{rlrl}
\frac{\partial u}{\partial t} & =\alpha \nabla^{2} u+f(\boldsymbol{x}, t), & & \boldsymbol{x} \in \Omega, t \in(0, T], \\
u(\boldsymbol{x}, 0) & =I(\boldsymbol{x}), & & \boldsymbol{x} \in \Omega, \\
\frac{\partial u}{\partial n} & =0, & \boldsymbol{x} \in \partial \Omega, t \in(0, T] .
\end{array}
$$

Here, $u(\boldsymbol{x}, t)$ is the unknown function, α is a constant, and $f(\boldsymbol{x}, t)$ a are given functions. We have assigned the particular boundary conditis to minimize the details on handling boundary conditions in the finite method.

19.1 Discretization in time by a Forward Euler sch

Time discretization. We can apply a finite difference method in (211). First we need a mesh in time, here taken as uniform with mesl $t_{n}=n \Delta t, n=0,1, \ldots, N_{t}$. A Forward Euler scheme consists of si (211) at t_{n} and approximating the time derivative by a forward di $\left[D_{t}^{+} u\right]^{n} \approx\left(u^{n+1}-u^{n}\right) / \Delta t$. This approximation turns (211) into a diff equation that is discrete in time, but still continuous in space. With difference operator notation we can write the time-discrete problem as

$$
\left[D_{t}^{+} u=\alpha \nabla^{2} u+f\right]^{n},
$$

for $n=1,2, \ldots, N_{t}-1$. Writing this equation out in detail and isola ${ }^{1}$ unknown u^{n+1} on the left-hand side, demonstrates that the time-discrete is a recursive set of problems that are continuous in space:

$$
u^{n+1}=u^{n}+\Delta t\left(\alpha \nabla^{2} u^{n}+f\left(\boldsymbol{x}, t_{n}\right)\right) .
$$

Given $u^{0}=I$, we can use (215) to compute $u^{1}, u^{2}, \ldots, u^{N_{t}}$.
For absolute clarity in the various stages of the discretizations, we ir $u_{\mathrm{e}}(\boldsymbol{x}, t)$ as the exact solution of the space-and time-continuous partial dif equation (211) and $u_{\mathrm{e}}^{n}(\boldsymbol{x})$ as the time-discrete approximation, arising f finite difference method in time (214). More precisely, u_{e} fulfills

$$
\begin{equation*}
\frac{\partial u_{\mathrm{e}}}{\partial t}=\alpha \nabla^{2} u_{\mathrm{e}}+f(\boldsymbol{x}, t) \tag{216}
\end{equation*}
$$

hile u_{e}^{n+1}, with a superscript, is the solution of the time-discrete equations

$$
\begin{equation*}
u_{\mathrm{e}}^{n+1}=u_{\mathrm{e}}^{n}+\Delta t\left(\alpha \nabla^{2} u_{\mathrm{e}}^{n}+f\left(\boldsymbol{x}, t_{n}\right)\right) \tag{217}
\end{equation*}
$$

pace discretization. We now introduce a finite element approximation to ${ }_{\mathrm{e}}^{n}$ and u_{e}^{n+1} in (217), where the coefficients depend on the time level:

$$
\begin{gather*}
u_{\mathrm{e}}^{n} \approx u^{n}=\sum_{j=0}^{N} c_{j}^{n} \psi_{j}(\boldsymbol{x}) \tag{218}\\
u_{\mathrm{e}}^{n+1} \approx u^{n+1}=\sum_{j=0}^{N} c_{j}^{n+1} \psi_{j}(\boldsymbol{x}) . \tag{219}
\end{gather*}
$$

ote that, as before, N denotes the number of degrees of freedom in the spatial omain. The number of time points is denoted by N_{t}. We define a space V Janned by the basis functions $\left\{\psi_{i}\right\}_{i \in \mathcal{I}_{s}}$.

9.2 Variational forms

weighted residual method with weighting functions w_{i} can now be formulated. le insert (218) and (219) in (217) to obtain the residual

$$
R=u^{n+1}-u^{n}-\Delta t\left(\alpha \nabla^{2} u^{n}+f\left(\boldsymbol{x}, t_{n}\right)\right) .
$$

he weighted residual principle,

$$
\int_{\Omega} R w \mathrm{~d} x=0, \quad \forall w \in W
$$

sults in

$$
\int_{\Omega}\left[u^{n+1}-u^{n}-\Delta t\left(\alpha \nabla^{2} u^{n}+f\left(\boldsymbol{x}, t_{n}\right)\right)\right] w \mathrm{~d} x=0, \quad \forall w \in W
$$

rom now on we use the Galerkin method so $W=V$. Isolating the unknown ${ }^{n+1}$ on the left-hand side gives

$$
\int_{\Omega} u^{n+1} \psi_{i} \mathrm{~d} x=\int_{\Omega}\left[u^{n}-\Delta t\left(\alpha \nabla^{2} u^{n}+f\left(\boldsymbol{x}, t_{n}\right)\right)\right] v \mathrm{~d} x, \quad \forall v \in V
$$

As usual in spatial finite element problems involving second-order derivatives, e apply integration by parts on the term $\int\left(\nabla^{2} u^{n}\right) v \mathrm{~d} x$:

$$
\int_{\Omega} \alpha\left(\nabla^{2} u^{n}\right) v \mathrm{~d} x=-\int_{\Omega} \alpha \nabla u^{n} \cdot \nabla v \mathrm{~d} x+\int_{\partial \Omega} \alpha \frac{\partial u^{n}}{\partial n} v \mathrm{~d} x
$$

The last term vanishes because we have the Neumann condition $\partial u^{n} / \partial n$ all n. Our discrete problem in space and time then reads

$$
\int_{\Omega} u^{n+1} v \mathrm{~d} x=\int_{\Omega} u^{n} v d x-\Delta t \int_{\Omega} \alpha \nabla u^{n} \cdot \nabla v \mathrm{~d} x+\Delta t \int_{\Omega} f^{n} v \mathrm{~d} x, \quad \forall v
$$

This is the variational formulation of our recursive set of spatial proble

Nonzero Dirichlet boundary conditions.

As in stationary problems, we can introduce a boundary function E to take care of nonzero Dirichlet conditions:

$$
\begin{gathered}
u_{\mathrm{e}}^{n} \approx u^{n}=B\left(\boldsymbol{x}, t_{n}\right)+\sum_{j=0}^{N} c_{j}^{n} \psi_{j}(\boldsymbol{x}) \\
u_{\mathrm{e}}^{n+1} \approx u^{n+1}=B\left(\boldsymbol{x}, t_{n+1}\right)+\sum_{j=0}^{N} c_{j}^{n+1} \psi_{j}(\boldsymbol{x})
\end{gathered}
$$

19.3 Simplified notation for the solution at recent levels

In a program it is only necessary to store u^{n+1} and u^{n} at the same ti: therefore drop the n index in programs and work with two functions: uf the new unknown, and u_1 for u^{n}, the solution at the previous time lev is also convenient in the mathematics to maximize the corresponden the code. From now on u_{1} means the discrete unknown at the previo level (u^{n}) and u represents the discrete unknown at the new time level Equation (220) with this new naming convention is expressed as

$$
\int_{\Omega} u v d x=\int_{\Omega} u_{1} v d x-\Delta t \int_{\Omega} \alpha \nabla u_{1} \cdot \nabla v \mathrm{~d} x+\Delta t \int_{\Omega} f^{n} v \mathrm{~d} x
$$

This variational form can alternatively be expressed by the inner produ tion:

$$
(u, v)=\left(u_{1}, v\right)-\Delta t\left(\alpha \nabla u_{1}, \nabla v\right)+\left(f^{n}, v\right) .
$$

19.4 Deriving the linear systems

To derive the equations for the new unknown coefficients c_{j}^{n+1}, now jus c_{j}, we insert

$$
u=\sum_{j=0}^{N} c_{j} \psi_{j}(\boldsymbol{x}), \quad u_{1}=\sum_{j=0}^{N} c_{1, j} \psi_{j}(\boldsymbol{x})
$$

I (223) or (224), let the equation hold for all $v=\psi, i=0, \ldots, \mathrm{~N}$, and order the rms as matrix-vector products:
$\underset{=0}{\frac{N}{\sum}}\left(\psi_{i}, \psi_{j}\right) c_{j}=\sum_{j=0}^{N}\left(\psi_{i}, \psi_{j}\right) c_{1, j}-\Delta t \sum_{j=0}^{N}\left(\nabla \psi_{i}, \alpha \nabla \psi_{j}\right) c_{1, j}+\left(f^{n}, \psi_{i}\right), \quad i=0, \ldots, N$.
his is a linear system $\sum_{j} A_{i, j} c_{j}=b_{i}$ with

$$
A_{i, j}=\left(\psi_{i}, \psi_{j}\right)
$$

nd

$$
b_{i}=\sum_{j=0}^{N}\left(\psi_{i}, \psi_{j}\right) c_{1, j}-\Delta t \sum_{j=0}^{N}\left(\nabla \psi_{i}, \alpha \nabla \psi_{j}\right) c_{1, j}+\left(f^{n}, \psi_{i}\right) .
$$

It is instructive and convenient for implementations to write the linear system n the form

$$
\begin{equation*}
M c=M c_{1}-\Delta t K c_{1}+f \tag{226}
\end{equation*}
$$

here

$$
\begin{aligned}
M & =\left\{M_{i, j}\right\}, \quad M_{i, j}=\left(\psi_{i}, \psi_{j}\right), \quad i, j \in \mathcal{I}_{s}, \\
K & =\left\{K_{i, j}\right\}, \quad K_{i, j}=\left(\nabla \psi_{i}, \alpha \nabla \psi_{j}\right), \quad i, j \in \mathcal{I}_{s}, \\
f & =\left\{\left(f\left(\boldsymbol{x}, t_{n}\right), \psi_{i}\right)\right\}_{i \in \mathcal{I}_{s}}, \\
c & =\left\{c_{i}\right\}_{i \in \mathcal{I}_{s}}, \\
c_{1} & =\left\{c_{1, i}\right\}_{i \in \mathcal{I}_{s}} .
\end{aligned}
$$

We realize that M is the matrix arising from a term with the zero-th derivative f u, and called the mass matrix, while K is the matrix arising from a Laplace rrm $\nabla^{2} u$. The K matrix is often known as the stiffness matrix. (The terms lass and stiffness stem from the early days of finite elements when applications , vibrating structures dominated. The mass matrix arises from the mass times sceleration term in Newton's second law, while the stiffness matrix arises from re elastic forces in that law. The mass and stiffness matrix appearing in a iffusion have slightly different mathematical formulas.)
iemark. The mathematical symbol f has two meanings, either the function (\boldsymbol{x}, t) in the PDE or the f vector in the linear system to be solved at each time :vel. The symbol u also has different meanings, basically the unknown in the DE or the finite element function representing the unknown at a time level. he actual meaning should be evident from the context.

19.5 Computational algorithm

We observe that M and K can be precomputed so that we can avoid col the matrix entries at every time level. Instead, some matrix-vector multip] will produce the linear system to be solved. The computational algorit the following steps:

1. Compute M and K.
2. Initialize u^{0} by interpolation or projection
3. For $n=1,2, \ldots, N_{t}$:
(a) compute $b=M c_{1}-\Delta t K c_{1}+f$
(b) solve $M c=b$
(c) set $c_{1}=c$

In case of finite element basis functions, interpolation of the initial cc at the nodes means $c_{1, j}=I\left(\boldsymbol{x}_{j}\right)$. Otherwise one has to solve the linear $\sum_{j} \psi_{j}\left(x_{i}\right) c_{j}=I\left(x_{i}\right)$, where \boldsymbol{x}_{j} denotes an interpolation point. Projec Galerkin's method) implies solving a linear system with M as coefficient $: \sum_{j} M_{i, j} c_{1, j}=\left(I, \psi_{i}\right), i \in \mathcal{I}_{s}$.

19.6 Comparing P1 elements with the finite diffe method

We can compute the M and K matrices using P1 elements in 1D. A mesh on $[0, L]$ is introduced for this purpose. Since the boundary condit solely of Neumann type in this sample problem, we have no restriction: basis functions ψ_{i} and can simply choose $\psi_{i}=\varphi_{i}, i=0, \ldots, N=N_{n}$.

From Section 13.2 or 13.4 we have that the K matrix is the same a: from the finite difference method: $h\left[D_{x} D_{x} u\right]_{i}^{n}$, while from Section 5.2 ป that M can be interpreted as the finite difference approximation $\left[u+\frac{1}{6} h^{2} L\right.$ (times h). The equation system $M c=b$ in the algorithm is therefore eq to the finite difference scheme

$$
\left[D_{t}^{+}\left(u+\frac{1}{6} h^{2} D_{x} D_{x} u\right)=\alpha D_{x} D_{x} u+f\right]_{i}^{n}
$$

(More precisely, $M c=b$ divided by h gives the equation above.)
Lumping the mass matrix. By applying Trapezoidal integration turn M into a diagonal matrix with $(h / 2, h, \ldots, h, h / 2)$ on the diagona there is no need to solve a linear system at each time level, and the finite scheme becomes identical to a standard finite difference method

$$
\left[D_{t}^{+} u=\alpha D_{x} D_{x} u+f\right]_{i}^{n}
$$

The Trapezoidal integration is not as accurate as exact integration and itroduces therefore an error. Whether this error has a good or bad influence a the overall numerical method is not immediately obvious, and is analyzed in etail in Section 19.10. The effect of the error is at least not more severe than hat is produced by the finite difference method.
Making M diagonal is usually referred to as lumping the mass matrix. There an alternative method to using an integration rule based on the node points: ne can sum the entries in each row, place the sum on the diagonal, and set all ther entries in the row equal to zero. For P1 elements the methods of lumping re mass matrix give the same result.

9.7 Discretization in time by a Backward Euler scheme

ime discretization. The Backward Euler scheme in time applied to our iffusion problem can be expressed as follows using the finite difference operator otation:

$$
\left[D_{t}^{-} u=\alpha \nabla^{2} u+f(\boldsymbol{x}, t)\right]^{n} .
$$

Vritten out, and collecting the unknown u^{n} on the left-hand side and all the nown terms on the right-hand side, the time-discrete differential equation ecomes

$$
\begin{equation*}
u_{\mathrm{e}}^{n}-\Delta t\left(\alpha \nabla^{2} u_{\mathrm{e}}^{n}+f\left(\boldsymbol{x}, t_{n}\right)\right)=u_{\mathrm{e}}^{n-1} . \tag{229}
\end{equation*}
$$

quation (229) can compute $u_{\mathrm{e}}^{1}, u_{\mathrm{e}}^{2}, \ldots, u_{\mathrm{e}}^{N_{t}}$, if we have a start $u_{\mathrm{e}}^{0}=I$ from the itial condition. However, (229) is a partial differential equation in space and eeds a solution method based on discretization in space. For this purpose we se an expansion as in (218)-(219).
'ariational forms. Inserting (218)-(219) in (229), multiplying by ψ_{i} (or $\in V)$, and integrating by parts, as we did in the Forward Euler case, results in ıe variational form
$\int_{\Omega}\left(u^{n} v+\Delta t \alpha \nabla u^{n} \cdot \nabla v\right) \mathrm{d} x=\int_{\Omega} u^{n-1} v \mathrm{~d} x-\Delta t \int_{\Omega} f^{n} v \mathrm{~d} x, \quad \forall v \in V$.
xpressed with u as u^{n} and u_{1} as u^{n-1}, this becomes

$$
\begin{equation*}
\int_{\Omega}(u v+\Delta t \alpha \nabla u \cdot \nabla v) \mathrm{d} x=\int_{\Omega} u_{1} v \mathrm{~d} x+\Delta t \int_{\Omega} f^{n} v \mathrm{~d} x \tag{231}
\end{equation*}
$$

r with the more compact inner product notation,

$$
\begin{equation*}
(u, v)+\Delta t(\alpha \nabla u, \nabla v)=\left(u_{1}, v\right)+\Delta t\left(f^{n}, v\right) . \tag{232}
\end{equation*}
$$

Linear systems. Inserting $u=\sum_{j} c_{j} \psi_{i}$ and $u_{1}=\sum_{j} c_{1, j} \psi_{i}$, and chc to be the basis functions $\psi_{i} \in V, i=0, \ldots, N$, together with doing some lead to the following linear system to be solved at each time level:

$$
(M+\Delta t K) c=M c_{1}+f
$$

where M, K, and f are as in the Forward Euler case. This time we rea to solve a linear system at each time level. The computational algorithm follows.

1. Compute M, K, and $A=M+\Delta t K$
2. Initialize u^{0} by interpolation or projection
3. For $n=1,2, \ldots, N_{t}$:
(a) compute $b=M c_{1}+f$
(b) solve $A c=b$
(c) set $c_{1}=c$

In case of finite element basis functions, interpolation of the initial cc at the nodes means $c_{1, j}=I\left(\boldsymbol{x}_{j}\right)$. Otherwise one has to solve the linear $\sum_{j} \psi_{j}\left(x_{i}\right) c_{j}=I\left(x_{i}\right)$, where \boldsymbol{x}_{j} denotes an interpolation point. Projec Galerkin's method) implies solving a linear system with M as coefficient $: \sum_{j} M_{i, j} c_{1, j}=\left(I, \psi_{i}\right), i \in \mathcal{I}_{s}$.

We know what kind of finite difference operators the M and K r correspond to (after dividing by h), so (233) can be interpreted as the fi_{i} finite difference method:

$$
\left[D_{t}^{-}\left(u+\frac{1}{6} h^{2} D_{x} D_{x} u\right)=\alpha D_{x} D_{x} u+f\right]_{i}^{n} .
$$

The mass matrix M can be lumped, as explained in Section 19.6, a the linear system arising from the finite element method with P1 e corresponds to a plain Backward Euler finite difference method for the (equation:

$$
\left[D_{t}^{-} u=\alpha D_{x} D_{x} u+f\right]_{i}^{n} .
$$

19.8 Dirichlet boundary conditions

Suppose now that the boundary condition (213) is replaced by a mixed N and Dirichlet condition,

$$
\begin{aligned}
u(\boldsymbol{x}, t) & =u_{0}(\boldsymbol{x}, t), & & \boldsymbol{x} \in \partial \Omega_{D} \\
-\alpha \frac{\partial}{\partial n} u(\boldsymbol{x}, t) & =g(\boldsymbol{x}, t), & & \boldsymbol{x} \in \partial \Omega_{N}
\end{aligned}
$$

Using a Forward Euler discretization in time, the variational form at a time vel becomes

$$
\begin{equation*}
\int_{\Omega} u^{n+1} v \mathrm{~d} x=\int_{\Omega}\left(u^{n}-\Delta t \alpha \nabla u^{n} \cdot \nabla v\right) \mathrm{d} x-\Delta t \int_{\partial \Omega_{N}} g v \mathrm{~d} s, \quad \forall v \in V . \tag{238}
\end{equation*}
$$

ioundary function. The Dirichlet condition $u=u_{0}$ at $\partial \Omega_{D}$ can be incorpoated through a boundary function $B(\boldsymbol{x})=u_{0}(\boldsymbol{x})$ and demanding that $v=0$ at Ω_{D}. The expansion for u^{n} is written as

$$
u^{n}(\boldsymbol{x})=u_{0}\left(\boldsymbol{x}, t_{n}\right)+\sum_{j \in \mathcal{I}_{s}} c_{j}^{n} \psi_{j}(\boldsymbol{x})
$$

1serting this expansion in the variational formulation and letting it hold for all asis functions ψ_{i} leads to the linear system

$$
\begin{aligned}
\sum_{\equiv \mathcal{I}_{s}}\left(\int_{\Omega} \psi_{i} \psi_{j} \mathrm{~d} x\right) c_{j}^{n+1}= & \sum_{j \in \mathcal{I}_{s}}\left(\int_{\Omega}\left(\psi_{i} \psi_{j}-\Delta t \alpha \nabla \psi_{i} \cdot \nabla \psi_{j}\right) \mathrm{d} x\right) c_{j}^{n}- \\
& \int_{\Omega}\left(u_{0}\left(\boldsymbol{x}, t_{n+1}\right)-u_{0}\left(\boldsymbol{x}, t_{n}\right)+\Delta t \alpha \nabla u_{0}\left(\boldsymbol{x}, t_{n}\right) \cdot \nabla \psi_{i}\right) \mathrm{d} x \\
& +\Delta t \int_{\Omega} f \psi_{i} \mathrm{~d} x-\Delta t \int_{\partial \Omega_{N}} g \psi_{i} \mathrm{~d} s, \quad i \in \mathcal{I}_{s}
\end{aligned}
$$

1 the following, we adopt the convention that the unknowns c_{j}^{n+1} are written ${ }^{j} c_{j}$, while the known c_{j}^{n} from the previous time level are denoted by $c_{1, j}$.
inite element basis functions. When using finite elements, each basis inction φ_{i} is associated with a node x_{i}. We have a collection of nodes $\left\{x_{i}\right\}_{i \in I_{b}}$ n the boundary $\partial \Omega_{D}$. Suppose U_{k}^{n} is the known Dirichlet value at x_{k} at time ${ }_{\iota}\left(U_{k}^{n}=u_{0}\left(x_{k}, t_{n}\right)\right)$. The appropriate boundary function is then

$$
B\left(\boldsymbol{x}, t_{n}\right)=\sum_{j \in I_{b}} U_{j}^{n} \varphi_{j}
$$

he unknown coefficients c_{j} are associated with the rest of the nodes, which ave numbers $\nu(i), i \in \mathcal{I}_{s}=\{0, \ldots, N\}$. The basis functions for V are chosen as ${ }_{i}=\varphi_{\nu(i)}, i \in \mathcal{I}_{s}$, and all of these vanish at the boundary nodes as they should. he expansion for u^{n+1} and u^{n} become

$$
\begin{aligned}
u^{n} & =\sum_{j \in I_{b}} U_{j}^{n} \varphi_{j}+\sum_{j \in \mathcal{I}_{s}} c_{1, j} \varphi_{\nu(j)}, \\
u^{n+1} & =\sum_{j \in I_{b}} U_{j}^{n+1} \varphi_{j}+\sum_{j \in \mathcal{I}_{s}} c_{j} \varphi_{\nu(j)} .
\end{aligned}
$$

The equations for the unknown coefficients c_{i} become

$$
\begin{aligned}
\sum_{j \in \mathcal{I}_{s}}\left(\int_{\Omega} \varphi_{i} \varphi_{j} \mathrm{~d} x\right) c_{j}= & \sum_{j \in \mathcal{I}_{s}}\left(\int_{\Omega}\left(\varphi_{i} \varphi_{j}-\Delta t \alpha \nabla \varphi_{i} \cdot \nabla \varphi_{j}\right) \mathrm{d} x\right) c_{1, j}- \\
& \sum_{j \in I_{b}} \int_{\Omega}\left(\varphi_{i} \varphi_{j}\left(U_{j}^{n+1}-U_{j}^{n}\right)+\Delta t \alpha \nabla \varphi_{i} \cdot \nabla \varphi_{j} U_{j}^{i}\right. \\
& +\Delta t \int_{\Omega} f \varphi_{i} \mathrm{~d} x-\Delta t \int_{\partial \Omega_{N}} g \varphi_{i} \mathrm{~d} s, \quad i \in \mathcal{I}_{s}
\end{aligned}
$$

Modification of the linear system. Instead of introducing a bc function B we can work with basis functions associated with all the no incorporate the Dirichlet conditions by modifying the linear system. L/ the index set that counts all the nodes: $\left\{0,1, \ldots, N=N_{n}\right\}$. The expar u^{n} is then $\sum_{j \in \mathcal{I}_{s}} c_{j}^{n} \varphi_{j}$ and the variational form becomes

$$
\begin{aligned}
\sum_{j \in \mathcal{I}_{s}}\left(\int_{\Omega} \varphi_{i} \varphi_{j} \mathrm{~d} x\right) c_{j}= & \sum_{j \in \mathcal{I}_{s}}\left(\int_{\Omega}\left(\varphi_{i} \varphi_{j}-\Delta t \alpha \nabla \varphi_{i} \cdot \nabla \varphi_{j}\right) \mathrm{d} x\right) c_{1}, \\
& -\Delta t \int_{\Omega} f \varphi_{i} \mathrm{~d} x-\Delta t \int_{\partial \Omega_{N}} g \varphi_{i} \mathrm{~d} s
\end{aligned}
$$

We introduce the matrices M and K with entries $M_{i, j}=\int_{\Omega} \varphi_{i} \varphi_{j} \mathrm{~d} x$ anc $\int_{\Omega} \alpha \nabla \varphi_{i} \cdot \nabla \varphi_{j} \mathrm{~d} x$, respectively. In addition, we define the vectors c, c_{1} with entries $c_{i}, c_{1, i}$, and $\int_{\Omega} f \varphi_{i} \mathrm{~d} x-\int_{\partial \Omega_{N}} g \varphi_{i} \mathrm{~d} s$. The equation system c be written as

$$
M c=M c_{1}-\Delta t K c_{1}+\Delta t f
$$

When M, K, and b are assembled without paying attention to Dirichlet b_{r} conditions, we need to replace equation k by $c_{k}=U_{k}$ for k corres] to all boundary nodes $\left(k \in I_{b}\right)$. The modification of M consists in $M_{k, j}=0, j \in \mathcal{I}_{s}$, and the $M_{k, k}=1$. Alternatively, a modificati preserves the symmetry of M can be applied. At each time level on $b=M c_{1}-\Delta t K c_{1}+\Delta t f$ and sets $b_{k}=U_{k}^{n+1}, k \in I_{b}$, and solves the $M c=b$.

In case of a Backward Euler method, the system becomes (233). write the system as $A c=b$, with $A=M+\Delta t K$ and $b=M c_{1}+f$.] and K needs to be modified because of Dirichlet boundary conditions, diagonal entries in K should be set to zero and those in M to unity. way, $A_{k, k}=1$. The right-hand side must read $b_{k}=U_{k}^{n}$ for $k \in I_{b}$ (assun unknown is sought at time level t_{n}).

19.9 Example: Oscillating Dirichlet boundary cond

We shall address the one-dimensional initial-boundary value problem

$$
\begin{array}{rlrl}
u_{t} & =\left(\alpha u_{x}\right)_{x}+f, & \boldsymbol{x} \in \Omega=[0, L], t \in(0, T], \\
u(x, 0) & =0, & \boldsymbol{x} \in \Omega, \\
u(0, t) & =a \sin \omega t, & & t \in(0, T], \\
u_{x}(L, t) & =0, & & t \in(0, T] . \tag{243}
\end{array}
$$

physical interpretation may be that u is the temperature deviation from constant mean temperature in a body Ω that is subject to an oscillating mperature (e.g., day and night, or seasonal, variations) at $x=0$.
We use a Backward Euler scheme in time and P1 elements of constant length in space. Incorporation of the Dirichlet condition at $x=0$ through modifying re linear system at each time level means that we carry out the computations s explained in Section 19.7 and get a system (233). The M and K matrices omputed without paying attention to Dirichlet boundary conditions become

$$
\begin{align*}
& M=\frac{h}{6}\left(\begin{array}{ccccccccc}
2 & 1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
1 & 4 & 1 & \ddots & & & & & \vdots \\
0 & 1 & 4 & 1 & \ddots & & & & \vdots \\
\vdots & \ddots & & \ddots & \ddots & 0 & & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots \\
\vdots & & & 0 & 1 & 4 & 1 & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & 1 & 4 & 1 \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 1 & 2
\end{array}\right) \tag{244}\\
& K=\frac{\alpha}{h}\left(\begin{array}{ccccccccc}
1 & -1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
-1 & 2 & -1 & \ddots & & & & & \vdots \\
0 & -1 & 2 & -1 & \ddots & & & & \vdots \\
\vdots & \ddots & & \ddots & \ddots & 0 & & & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots \\
\vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & -1 & 2 & -1 \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & -1 & 1
\end{array}\right)
\end{align*}
$$

he right-hand side of the variational form contains $M c_{1}$ since there is no source rm (f) and no boundary term from the integration by parts ($u_{x}=0$ at $x=L$
and we compute as if $u_{x}=0$ at $x=0$ too). We must incorporate the I boundary condition $c_{0}=a \sin \omega t_{n}$ by ensuring that this is the first equ the linear system. To this end, the first row in K and M are set to z_{1} the diagonal entry $M_{0,0}$ is set to 1 . The right-hand side is $b=M c_{1}$, anı $b_{0}=a \sin \omega t_{n}$. Note that in this approach, $N=N_{n}$, and c equals the u u at each node in the mesh. We can write the complete linear system ε

$$
\begin{aligned}
c_{0}= & a \sin \omega t_{n} \\
\frac{h}{6}\left(c_{i-1}+4 c_{i}+c_{i+1}\right)+\Delta t \frac{\alpha}{h}\left(-c_{i-1}+2 c_{i}+c_{i+1}\right) & =\frac{h}{6}\left(c_{1, i-1}+4 c_{1, i}+c_{1}\right. \\
i & =1, \ldots, N_{n}-1 \\
\frac{h}{6}\left(c_{i-1}+2 c_{i}\right)+\Delta t \frac{\alpha}{h}\left(-c_{i-1}+c_{i}\right)= & \frac{h}{6}\left(c_{1, i-1}+2 c_{1, i}\right)
\end{aligned}
$$

The Dirichlet boundary condition can alternatively be implemented a boundary function $B(x, t)=a \sin \omega t \varphi_{0}(x)$:

$$
u^{n}(x)=a \sin \omega t_{n} \varphi_{0}(x)+\sum_{j \in \mathcal{I}_{s}} c_{j} \varphi_{\nu(j)}(x), \quad \nu(j)=j+1
$$

Now, $N=N_{n}-1$ and the c vector contains values of u at nodes 1,2 , The right-hand side gets a contribution

$$
\int_{0}^{L}\left(a\left(\sin \omega t_{n}-\sin \omega t_{n-1}\right) \varphi_{0} \varphi_{i}-\Delta t \alpha a \sin \omega t_{n} \nabla \varphi_{0} \cdot \nabla \varphi_{i}\right) \mathrm{d} x
$$

19.10 Analysis of the discrete equations

The diffusion equation $u_{t}=\alpha u_{x x}$ allows a (Fourier) wave compon€ $\exp (\beta t+i k x)$ as solution if $\beta=-\alpha k^{2}$, which follows from inserting t] component in the equation. The exact wave component can alternat: written as

$$
u=A_{\mathrm{e}}^{n} e^{i k x}, \quad A_{\mathrm{e}}=e^{-\alpha k^{2} \Delta t}
$$

Many numerical schemes for the diffusion equation has a similar wave cor as solution:

$$
u_{q}^{n}=A^{n} e^{i k x}
$$

where is an amplification factor to be calculated by inserting (252) in the We introduce $x=q h$, or $x=q \Delta x$ to align the notation with that fr ϵ used in finite difference methods.

A convenient start of the calculations is to establish some results for various nite difference operators acting on

$$
\begin{equation*}
u_{q}^{n}=A^{n} e^{i k q \Delta x} . \tag{252}
\end{equation*}
$$

$$
\begin{aligned}
{\left[D_{t}^{+} A^{n} e^{i k q \Delta x}\right]^{n} } & =A^{n} e^{i k q \Delta x} \frac{A-1}{\Delta t} \\
{\left[D_{t}^{-} A^{n} e^{i k q \Delta x}\right]^{n} } & =A^{n} e^{i k q \Delta x} \frac{1-A^{-1}}{\Delta t} \\
{\left[D_{t} A^{n} e^{i k q \Delta x}\right]^{n+\frac{1}{2}} } & =A^{n+\frac{1}{2}} e^{i k q \Delta x} \frac{A^{\frac{1}{2}}-A^{-\frac{1}{2}}}{\Delta t}=A^{n} e^{i k q \Delta x} \frac{A-1}{\Delta t} \\
{\left[D_{x} D_{x} A^{n} e^{i k q \Delta x}\right]_{q} } & =-A^{n} \frac{4}{\Delta x^{2}} \sin ^{2}\left(\frac{k \Delta x}{2}\right)
\end{aligned}
$$

orward Euler discretization. We insert (252) in the Forward Euler scheme ith P 1 elements in space and $f=0$ (this type of analysis can only be carried ut if $f=0$),

$$
\begin{equation*}
\left[D_{t}^{+}\left(u+\frac{1}{6} h^{2} D_{x} D_{x} u\right)=\alpha D_{x} D_{x} u\right]_{q}^{n} . \tag{253}
\end{equation*}
$$

le have
$\left.D_{t}^{+} D_{x} D_{x} A e^{i k x}\right]_{q}^{n}=\left[D_{t}^{+} A\right]^{n}\left[D_{x} D_{x} e^{i k x}\right]_{q}=-A^{n} e^{i k p \Delta x} \frac{A-1}{\Delta t} \frac{4}{\Delta x^{2}} \sin ^{2}\left(\frac{k \Delta x}{2}\right)$.
he term $\left[D_{t}^{+} A e^{i k x}+\frac{1}{6} \Delta x^{2} D_{t}^{+} D_{x} D_{x} A e^{i k x}\right]_{q}^{n}$ then reduces to

$$
\begin{gathered}
\frac{A-1}{\Delta t}-\frac{1}{6} \Delta x^{2} \frac{A-1}{\Delta t} \frac{4}{\Delta x^{2}} \sin ^{2}\left(\frac{k \Delta x}{2}\right), \\
\frac{A-1}{\Delta t}\left(1-\frac{2}{3} \sin ^{2}(k \Delta x / 2)\right) .
\end{gathered}
$$

1troducing $p=k \Delta x / 2$ and $C=\alpha \Delta t / \Delta x^{2}$, the complete scheme becomes

$$
(A-1)\left(1-\frac{2}{3} \sin ^{2} p\right)=-4 C \sin ^{2} p
$$

om which we find A to be

$$
A=1-4 C \frac{\sin ^{2} p}{1-\frac{2}{3} \sin ^{2} p} .
$$

How does this A change the stability criterion compared to the Forward uler finite difference scheme and centered differences in space? The stability :iterion is $|A| \leq 1$, which here implies $A \leq 1$ and $A \geq-1$. The former is always ulfilled, while the latter leads to

$$
4 C \frac{\sin ^{2} p}{1+\frac{2}{3} \sin ^{2} p} \leq 2
$$

The factor $\sin ^{2} p /\left(1-\frac{2}{3} \sin ^{2} p\right)$ can be plotted for $p \in[0, \pi / 2]$, and the m value goes to 3 as $p \rightarrow \pi / 2$. The worst case for stability therefore occurs shortest possible wave, $p=\pi / 2$, and the stability criterion becomes

$$
C \leq \frac{1}{6} \quad \Rightarrow \quad \Delta t \leq \frac{\Delta x^{2}}{6 \alpha}
$$

which is a factor $1 / 3$ worse than for the standard Forward Euler finite d: method for the diffusion equation, which demands $C \leq 1 / 2$. Lumping t matrix will, however, recover the finite difference method and therefor $C \leq 1 / 2$ for stability.

Backward Euler discretization. We can use the same approach an (252) in the Backward Euler scheme with P1 elements in space and $f=$

$$
\left[D_{t}^{-}\left(u+\frac{1}{6} h^{2} D_{x} D_{x} u\right)=\alpha D_{x} D_{x} u\right]_{i}^{n}
$$

Similar calculations as in the Forward Euler case lead to

$$
\left(1-A^{-1}\right)\left(1-\frac{2}{3} \sin ^{2} p\right)=-4 C \sin ^{2} p
$$

and hence

$$
A=\left(1+4 C \frac{\sin ^{2} p}{1-\frac{2}{3} \sin ^{2} p}\right)^{-1}
$$

Comparing amplification factors. It is of interest to compare A ar functions of p for some C values. Figure 48 display the amplification for the Backward Euler scheme corresponding a coarse mesh with $C=$ mesh at the stability limit of the Forward Euler scheme in the finite di method, $C=1 / 2$. Figures 49 and 50 shows how the accuracy increas lower C values for both the Forward Euler and Backward schemes, resp The striking fact, however, is that the accuracy of the finite element is significantly less than the finite difference method for the same val Lumping the mass matrix to recover the numerical amplification factor . finite difference method is therefore a good idea in this problem.

Remaining tasks:

- Taylor expansion of the error in the amplification factor $A_{\mathrm{e}}-A$
- Taylor expansion of the error $e=\left(A_{\mathrm{e}}^{n}-A^{n}\right) e^{i k x}$
- L^{2} norm of e

igure 48: Comparison of coarse-mesh amplification factors for Backward Euler iscretization of a 1D diffusion equation.

igure 49: Comparison of fine-mesh amplification factors for Forward Euler iscretization of a 1D diffusion equation.

Figure 50: Comparison of fine-mesh amplification factors for Backwas discretization of a 1D diffusion equation.

:0 Systems of differential equations

Iany mathematical models involve $m+1$ unknown functions governed by a rstem of $m+1$ differential equations. In abstract form we may denote the nknowns by $u^{(0)}, \ldots, u^{(m)}$ and write the governing equations as

$$
\begin{gathered}
\mathcal{L}_{0}\left(u^{(0)}, \ldots, u^{(m)}\right)=0, \\
\vdots \\
\mathcal{L}_{m}\left(u^{(0)}, \ldots, u^{(m)}\right)=0,
\end{gathered}
$$

here \mathcal{L}_{i} is some differential operator defining differential equation number i.

0.1 Variational forms

here are basically two ways of formulating a variational form for a system of ifferential equations. The first method treats each equation independently as scalar equation, while the other method views the total system as a vector quation with a vector function as unknown.
Let us start with the one equation at a time approach. We multiply equation umber i by some test function $v^{(i)} \in V^{(i)}$ and integrate over the domain:

$$
\begin{gather*}
\int_{\Omega} \mathcal{L}^{(0)}\left(u^{(0)}, \ldots, u^{(m)}\right) v^{(0)} \mathrm{d} x=0 \tag{256}\\
\vdots \tag{257}\\
\int_{\Omega} \mathcal{L}^{(m)}\left(u^{(0)}, \ldots, u^{(m)}\right) v^{(m)} \mathrm{d} x=0
\end{gather*}
$$

erms with second-order derivatives may be integrated by parts, with Neumann onditions inserted in boundary integrals. Let

$$
V^{(i)}=\operatorname{span}\left\{\psi_{0}^{(i)}, \ldots, \psi_{N_{i}}^{(i)}\right\},
$$

1ch that

$$
u^{(i)}=B^{(i)}(\boldsymbol{x})+\sum_{j=0}^{N_{i}} c_{j}^{(i)} \psi_{j}^{(i)}(\boldsymbol{x})
$$

here $B^{(i)}$ is a boundary function to handle nonzero Dirichlet conditions. Observe lat different unknowns live in different spaces with different basis functions and umbers of degrees of freedom.
From the m equations in the variational forms we can derive m coupled rstems of algebraic equations for the $\Pi_{i=0}^{m} N_{i}$ unknown coefficients $c_{j}^{(i)}, j=$ $, \ldots, N_{i}, i=0, \ldots, m$.

The alternative method for deriving a variational form for a sy differential equations introduces a vector of unknown functions

$$
\boldsymbol{u}=\left(u^{(0)}, \ldots, u^{(m)}\right)
$$

a vector of test functions

$$
\boldsymbol{v}=\left(u^{(0)}, \ldots, u^{(m)}\right)
$$

with

$$
\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{V}=V^{(0)} \times \cdots \times V^{(m)}
$$

With nonzero Dirichlet conditions, we have a vector $\boldsymbol{B}=\left(B^{(0)}, \ldots, B^{(r}\right.$ boundary functions and then it is $\boldsymbol{u}-\boldsymbol{B}$ that lies in \boldsymbol{V}, not \boldsymbol{u} itself.

The governing system of differential equations is written

$$
\mathcal{L}(\boldsymbol{u})=0
$$

where

$$
\mathcal{L}(\boldsymbol{u})=\left(\mathcal{L}^{(0)}(\boldsymbol{u}), \ldots, \mathcal{L}^{(m)}(\boldsymbol{u})\right)
$$

The variational form is derived by taking the inner product of the v equations and the test function vector:

$$
\int_{\Omega} \mathcal{L}(\boldsymbol{u}) \cdot \boldsymbol{v}=0 \quad \forall \boldsymbol{v} \in \boldsymbol{V}
$$

Observe that (259) is one scalar equation. To derive systems of a equations for the unknown coefficients in the expansions of the unknor tions, one chooses m linearly independent \boldsymbol{v} vectors to generate m inde variational forms from (259). The particular choice $\boldsymbol{v}=\left(v^{(0)}, 0, \ldots, 0\right)$ $(256), \boldsymbol{v}=\left(0, \ldots, 0, v^{(m)}\right.$ recovers (258), and $\boldsymbol{v}=\left(0, \ldots, 0, v^{(i)}, 0, \ldots, 0\right)$ the variational form number $i, \int_{\Omega} \mathcal{L}^{(i)} v^{(i)} \mathrm{d} x=0$, in (256)-(258).

20.2 A worked example

We now consider a specific system of two partial differential equation: space dimensions:

$$
\begin{aligned}
& \mu \nabla^{2} w=-\beta \\
& \kappa \nabla^{2} T=-\mu\|\nabla w\|^{2} .
\end{aligned}
$$

The unknown functions $w(x, y)$ and $T(x, y)$ are defined in a domain ς μ, β, and κ are given constants. The norm in (261) is the standard Er norm:

$$
\|\nabla w\|^{2}=\nabla w \cdot \nabla w=w_{x}^{2}+w_{y}^{2}
$$

The boundary conditions associated with (260)-(261) are $w=0$ on $\partial \Omega$ and $=T_{0}$ on $\partial \Omega$. Each of the equations (260) and (261) need one condition at ach point on the boundary.
The system (260)-(261) arises from fluid flow in a straight pipe, with the z axis 1 the direction of the pipe. The domain Ω is a cross section of the pipe, w is the elocity in the z direction, μ is the viscosity of the fluid, β is the pressure gradient long the pipe, T is the temperature, and κ is the heat conduction coefficient f the fluid. The equation (260) comes from the Navier-Stokes equations, and :61) follows from the energy equation. The term $-\mu\|\nabla w\|^{2}$ models heating of re fluid due to internal friction.
Observe that the system (260)-(261) has only a one-way coupling: T depends n w, but w does not depend on T, because we can solve (260) with respect) w and then (261) with respect to T. Some may argue that this is not a sal system of PDEs, but just two scalar PDEs. Nevertheless, the one-way supling is convenient when comparing different variational forms and different nplementations.

0.3 Identical function spaces for the unknowns

et us first apply the same function space V for w and T (or more precisely, ,$\in V$ and $\left.T-T_{0} \in V\right)$. With

$$
V=\operatorname{span}\left\{\psi_{0}(x, y), \ldots, \psi_{N}(x, y)\right\}
$$

e write

$$
\begin{equation*}
w=\sum_{j=0}^{N} c_{j}^{(w)} \psi_{j}, \quad T=T_{0}+\sum_{j=0}^{N} c_{j}^{(T)} \psi_{j} \tag{262}
\end{equation*}
$$

ote that w and T in (260)-(261) denote the exact solution of the PDEs, while ' and T (262) are the discrete functions that approximate the exact solution. ; should be clear from the context whether a symbol means the exact or pproximate solution, but when we need both at the same time, we use a ibscript e to denote the exact solution.
'ariational form of each individual PDE. Inserting the expansions (262) 1 the governing PDEs, results in a residual in each equation,

$$
\begin{align*}
& R_{w}=\mu \nabla^{2} w+\beta \tag{263}\\
& R_{T}=\kappa \nabla^{2} T+\mu\|\nabla w\|^{2} \tag{264}
\end{align*}
$$

Galerkin method demands R_{w} and R_{T} do be orthogonal to V :

$$
\begin{array}{ll}
\int_{\Omega} R_{w} v \mathrm{~d} x=0 & \forall v \in V \\
\int_{\Omega} R_{T} v \mathrm{~d} x=0 & \forall v \in V
\end{array}
$$

Because of the Dirichlet conditions, $v=0$ on $\partial \Omega$. We integrate the terms by parts and note that the boundary terms vanish since $v=0$ or

$$
\begin{aligned}
& \int_{\Omega} \mu \nabla w \cdot \nabla v \mathrm{~d} x=\int_{\Omega} \beta v \mathrm{~d} x \quad \forall v \in V \\
& \int_{\Omega} \kappa \nabla T \cdot \nabla v \mathrm{~d} x=\int_{\Omega} \mu \nabla w \cdot \nabla w v \mathrm{~d} x \quad \forall v \in V
\end{aligned}
$$

Compound scalar variational form. The alternative way of deris variational from is to introduce a test vector function $\boldsymbol{v} \in \boldsymbol{V}=V \times V$ a the inner product of \boldsymbol{v} and the residuals, integrated over the domain:

$$
\int_{\Omega}\left(R_{w}, R_{T}\right) \cdot \boldsymbol{v} \mathrm{d} x=0 \quad \forall \boldsymbol{v} \in \boldsymbol{V}
$$

With $\boldsymbol{v}=\left(v_{0}, v_{1}\right)$ we get

$$
\int_{\Omega}\left(R_{w} v_{0}+R_{T} v_{1}\right) \mathrm{d} x=0 \quad \forall \boldsymbol{v} \in \boldsymbol{V}
$$

Integrating the Laplace terms by parts results in

$$
\int_{\Omega}\left(\mu \nabla w \cdot \nabla v_{0}+\kappa \nabla T \cdot \nabla v_{1}\right) \mathrm{d} x=\int_{\Omega}\left(\beta v_{0}+\mu \nabla w \cdot \nabla w v_{1}\right) \mathrm{d} x, \quad \forall \boldsymbol{v} \in \boldsymbol{V}
$$

Choosing $v_{0}=v$ and $v_{1}=0$ gives the variational form (265), while v_{0} $v_{1}=v$ gives (266).

With the inner product notation, $(p, q)=\int_{\Omega} p q \mathrm{~d} x$, we can alternative (265) and (266) as

$$
\begin{aligned}
(\mu \nabla w, \nabla v) & =(\beta, v) \quad \forall v \in V \\
(\kappa \nabla T, \nabla v) & =(\mu \nabla w \cdot \nabla w, v) \quad \forall v \in V
\end{aligned}
$$

or since μ and κ are considered constant,

$$
\begin{aligned}
& \mu(\nabla w, \nabla v)=(\beta, v) \quad \forall v \in V \\
& \kappa(\nabla T, \nabla v)=\mu(\nabla w \cdot \nabla w, v) \quad \forall v \in V
\end{aligned}
$$

lecoupled linear systems. The linear systems governing the coefficients ${ }_{i}^{w)}$ and $c_{j}^{(T)}, j=0, \ldots, N$, are derived by inserting the expansions (262) in '65) and (266), and choosing $v=\psi_{i}$ for $i=0, \ldots, N$. The result becomes

$$
\begin{align*}
\sum_{j=0}^{N} A_{i, j}^{(w)} c_{j}^{(w)} & =b_{i}^{(w)}, \quad i=0, \ldots, N, \tag{270}\\
\sum_{j=0}^{N} A_{i, j}^{(T)} c_{j}^{(T)} & =b_{i}^{(T)}, \quad i=0, \ldots, N, \tag{271}\\
A_{i, j}^{(w)} & =\mu\left(\nabla \psi_{j}, \nabla \psi_{i}\right), \tag{272}\\
b_{i}^{(w)} & =\left(\beta, \psi_{i}\right), \tag{273}\\
A_{i, j}^{(T)} & =\kappa\left(\nabla \psi_{j}, \nabla \psi_{i}\right), \tag{274}\\
b_{i}^{(T)} & =\mu\left(\left(\sum_{j} c_{j}^{(w)} \nabla \psi_{j}\right) \cdot\left(\sum_{k} c_{k}^{(w)} \nabla \psi_{k}\right), \psi_{i}\right) . \tag{275}
\end{align*}
$$

It can also be instructive to write the linear systems using matrices and ectors. Define K as the matrix corresponding to the Laplace operator ∇^{2}. That , $K_{i, j}=\left(\nabla \psi_{j}, \nabla \psi_{i}\right)$. Let us introduce the vectors

$$
\begin{aligned}
b^{(w)} & =\left(b_{0}^{(w)}, \ldots, b_{N}^{(w)}\right), \\
b^{(T)} & =\left(b_{0}^{(T)}, \ldots, b_{N}^{(T)}\right), \\
c^{(w)} & =\left(c_{0}^{(w)}, \ldots, c_{N}^{(w)}\right), \\
c^{(T)} & =\left(c_{0}^{(T)}, \ldots, c_{N}^{(T)}\right) .
\end{aligned}
$$

he system (270)-(271) can now be expressed in matrix-vector form as

$$
\begin{align*}
& \mu K c^{(w)}=b^{(w)}, \tag{276}\\
& \kappa K c^{(T)}=b^{(T)} . \tag{277}
\end{align*}
$$

We can solve the first system for $c^{(w)}$, and then the right-hand side $b^{(T)}$ is nown such that we can solve the second system for $c^{(T)}$.
'oupled linear systems. Despite the fact that w can be computed first, ithout knowing T, we shall now pretend that w and T enter a two-way coupling uch that we need to derive the algebraic equations as one system for all the nknowns $c_{j}^{(w)}$ and $c_{j}^{(T)}, j=0, \ldots, N$. This system is nonlinear in $c_{j}^{(w)}$ because f the $\nabla w \cdot \nabla w$ product. To remove this nonlinearity, imagine that we introduce n iteration method where we replace $\nabla w \cdot \nabla w$ by $\nabla w_{-} \cdot \nabla w, w_{-}$being the w omputed in the previous iteration. Then the term $\nabla w_{-} \cdot \nabla w$ is linear in w nce w_{-}is known. The total linear system becomes

$$
\begin{aligned}
\sum_{j=0}^{N} A_{i, j}^{(w, w)} c_{j}^{(w)}+\sum_{j=0}^{N} A_{i, j}^{(w, T)} c_{j}^{(T)} & =b_{i}^{(w)}, \quad i=0, \ldots, N, \\
\sum_{j=0}^{N} A_{i, j}^{(T, w)} c_{j}^{(w)}+\sum_{j=0}^{N} A_{i, j}^{(T, T)} c_{j}^{(T)} & =b_{i}^{(T)}, \quad i=0, \ldots, N, \\
A_{i, j}^{(w, w)} & =\mu\left(\nabla \psi_{j}, \psi_{i}\right), \\
A_{i, j}^{(w, T)} & =0, \\
b_{i}^{(w)} & =\left(\beta, \psi_{i}\right), \\
A_{i, j}^{(w, T)} & \left.=\mu\left(\left(\nabla \psi w_{-}\right) \cdot \nabla \psi_{j}\right), \psi_{i}\right), \\
A_{i, j}^{(T, T)} & =\kappa\left(\nabla \psi_{j}, \psi_{i}\right), \\
b_{i}^{(T)} & =0 .
\end{aligned}
$$

This system can alternatively be written in matrix-vector form as

$$
\begin{aligned}
\mu K c^{(w)} & =0 b^{(w)}, \\
L c^{(w)}+\kappa K c^{(T)} & =0,
\end{aligned}
$$

with L as the matrix from the $\nabla w_{-} \cdot \nabla$ operator: $L_{i, j}=A_{i, j}^{(w, T)}$.
The matrix-vector equations are often conveniently written in block

$$
\left(\begin{array}{cc}
\mu K & 0 \\
L & \kappa K
\end{array}\right)\binom{c^{(w)}}{c^{(T)}}=\binom{b^{(w)}}{0}
$$

Note that in the general case where all unknowns enter all equati have to solve the compound system (297)-(298) since then we cannot ut special property that (270) does not involve T and can be solved first.

When the viscosity depends on the temperature, the $\mu \nabla^{2} w$ term ${ }^{1}$ replaced by $\nabla \cdot(\mu(T) \nabla w)$, and then T enters the equation for w. Now a two-way coupling since both equations contain w and T and therefo be solved simultaneously Th equation $\nabla \cdot(\mu(T) \nabla w)=-\beta$ is nonlineas some iteration procedure is invoked, where we use a previously compute the viscosity $\left(\mu\left(T_{-}\right)\right)$, the coefficient is known, and the equation invol one unknown, w. In that case we are back to the one-way coupled set c

We may also formulate our PDE system as a vector equation. To this introduce the vector of unknowns $\boldsymbol{u}=\left(u^{(0)}, u^{(1)}\right)$, where $u^{(0)}=w$ and \imath We then have

$$
\nabla^{2} \boldsymbol{u}=\binom{-\mu^{-1} \beta}{-\kappa^{-1} \mu \nabla u^{(0)} \cdot \nabla u^{(0)}}
$$

0.4 Different function spaces for the unknowns

is easy to generalize the previous formulation to the case where $w \in V^{(w)}$ and $' \in V^{(T)}$, where $V^{(w)}$ and $V^{(T)}$ can be different spaces with different numbers f degrees of freedom. For example, we may use quadratic basis functions for , and linear for T. Approximation of the unknowns by different finite element jaces is known as mixed finite element methods.
We write

$$
\begin{aligned}
V^{(w)} & =\operatorname{span}\left\{\psi_{0}^{(w)}, \ldots, \psi_{N_{w}}^{(w)}\right\} \\
V^{(T)} & =\operatorname{span}\left\{\psi_{0}^{(T)}, \ldots, \psi_{N_{T}}^{(T)}\right\}
\end{aligned}
$$

he next step is to multiply (260) by a test function $v^{(w)} \in V^{(w)}$ and (261) by a ${ }^{(T)} \in V^{(T)}$, integrate by parts and arrive at

$$
\begin{align*}
& \int_{\Omega} \mu \nabla w \cdot \nabla v^{(w)} \mathrm{d} x=\int_{\Omega} \beta v^{(w)} \mathrm{d} x \quad \forall v^{(w)} \in V^{(w)}, \tag{288}\\
& \int_{\Omega} \kappa \nabla T \cdot \nabla v^{(T)} \mathrm{d} x=\int_{\Omega} \mu \nabla w \cdot \nabla w v^{(T)} \mathrm{d} x \quad \forall v^{(T)} \in V^{(T)} . \tag{289}
\end{align*}
$$

The compound scalar variational formulation applies a test vector function $=\left(v^{(w)}, v^{(T)}\right)$ and reads
$\int_{\Omega}\left(\mu \nabla w \cdot \nabla v^{(w)}+\kappa \nabla T \cdot \nabla v^{(T)}\right) \mathrm{d} x=\int_{\Omega}\left(\beta v^{(w)}+\mu \nabla w \cdot \nabla w v^{(T)}\right) \mathrm{d} x, \quad(290)$ alid $\forall \boldsymbol{v} \in \boldsymbol{V}=V^{(w)} \times V^{(T)}$.

The associated linear system is similar to (270)-(271) or (297)-(298), except lat we need to distinguish between $\psi_{i}^{(w)}$ and $\psi_{i}^{(T)}$, and the range in the sums ver j must match the number of degrees of freedom in the spaces $V^{(w)}$ and ${ }^{-}(T)$. The formulas become

$$
\begin{align*}
\sum_{j=0}^{N_{w}} A_{i, j}^{(w)} c_{j}^{(w)} & =b_{i}^{(w)}, \quad i=0, \ldots, N_{w} \tag{291}\\
\sum_{j=0}^{N_{T}} A_{i, j}^{(T)} c_{j}^{(T)} & =b_{i}^{(T)}, \quad i=0, \ldots, N_{T} \tag{292}\\
A_{i, j}^{(w)} & =\mu\left(\nabla \psi_{j}^{(w)}, \psi_{i}^{(w)}\right) \tag{293}\\
b_{i}^{(w)} & =\left(\beta, \psi_{i}^{(w)}\right) \tag{294}\\
A_{i, j}^{(T)} & =\kappa\left(\nabla \psi_{j}^{(T)}, \psi_{i}^{(T)}\right) \tag{295}\\
b_{i}^{(T)} & =\mu\left(\nabla w_{-}, \psi_{i}^{(T)}\right) \tag{296}
\end{align*}
$$

In the case we formulate one compound linear system involving bc $j=0, \ldots, N_{w}$, and $c_{j}^{(T)}, j=0, \ldots, N_{T},(297)-(298)$ becomes

$$
\begin{aligned}
\sum_{j=0}^{N_{w}} A_{i, j}^{(w, w)} c_{j}^{(w)}+\sum_{j=0}^{N_{T}} A_{i, j}^{(w, T)} c_{j}^{(T)} & =b_{i}^{(w)}, \quad i=0, \ldots, N_{w}, \\
\sum_{j=0}^{N_{w}} A_{i, j}^{(T, w)} c_{j}^{(w)}+\sum_{j=0}^{N_{T}} A_{i, j}^{(T, T)} c_{j}^{(T)} & =b_{i}^{(T)}, \quad i=0, \ldots, N_{T}, \\
A_{i, j}^{(w, w)} & =\mu\left(\nabla \psi_{j}^{(w)}, \psi_{i}^{(w)}\right), \\
A_{i, j}^{(w, T)} & =0, \\
b_{i}^{(w)} & =\left(\beta, \psi_{i}^{(w)}\right), \\
A_{i, j}^{(w, T)} & \left.=\mu\left(\nabla w_{-} \cdot \nabla \psi_{j}^{(w)}\right), \psi_{i}^{(T)}\right), \\
A_{i, j}^{(T, T)} & =\kappa\left(\nabla \psi_{j}^{(T)}, \psi_{i}^{(T)}\right), \\
b_{i}^{(T)} & =0 .
\end{aligned}
$$

The corresponding block form

$$
\left(\begin{array}{cc}
\mu K^{(w)} & 0 \\
L & \kappa K^{(T)}
\end{array}\right)\binom{c^{(w)}}{c^{(T)}}=\binom{b^{(w)}}{0}
$$

has square and rectangular block matrices: $K^{(w)}$ is $N_{w} \times N_{w}, K^{(T)}$ is N while L is $N_{T} \times N_{w}$,

20.5 Computations in 1D

We can reduce the system (260)-(261) to one space dimension, which corr to flow in a channel between two flat plates. Alternatively, one may (flow in a circular pipe, introduce cylindrical coordinates, and utilize th symmetry to reduce the equations to a one-dimensional problem in th coordinate. The former model becomes

$$
\begin{aligned}
\mu w_{x x} & =-\beta \\
\kappa T_{x x} & =-\mu w_{x}^{2}
\end{aligned}
$$

while the model in the radial coordinate r reads

$$
\begin{aligned}
& \mu \frac{1}{r} \frac{d}{d r}\left(r \frac{d w}{d r}\right)=-\beta \\
& \kappa \frac{1}{r} \frac{d}{d r}\left(r \frac{d T}{d r}\right)=-\mu\left(\frac{d w}{d r}\right)^{2}
\end{aligned}
$$

The domain for (305)-(306) is $\Omega=[0, H]$, with boundary conditions $w(0)=$ $'(H)=0$ and $T(0)=T(H)=T_{0}$. For (307)-(308) the domain is $[0, R]$ (R being 1e radius of the pipe) and the boundary conditions are $d u / d r=d T / d r=0$ for $=0, u(R)=0$, and $T(R)=T_{0}$.
Calculations to be continued...

:1 Exercises

\xercise 23: Refactor functions into a more general class

ection 11.2 displays three functions for computing the analytical solution of ome simple model problems. There is quite some repetitive code, suggesting lat the functions can benefit from being refactored into a class where the user an define the $f(x), a(x)$, and the boundary conditions in particular methods 1 subclasses. Demonstrate how the new class can be used to solve the three articular problems in Section 11.2.
In the method that computes the solution, check that the solution found fulfills re differential equation and the boundary conditions. Filename: uxx_f_sympy_class

¡xercise 24: Compute the deflection of a cable with sine unctions

. hanging cable of length L with significant tension has a downward deflection ' (x) governed by
Solve

$$
T w^{\prime \prime}(x)=\ell(x),
$$

here T is the tension in the cable and $\ell(x)$ the load per unit length. The cable fixed at $x=0$ and $x=L$ so the boundary conditions become $T(0)=T(L)=0$. le assume a constant load $\ell(x)=$ const.
The solution is expected to be symmetric around $x=L / 2$. Formulating the roblem for $x \in \Omega=[0, L / 2]$ and then scaling it, results in the scaled problem or the dimensionless vertical deflection u :

$$
u^{\prime \prime}=1, \quad x \in(0,1), \quad u(0)=0, u^{\prime}(1)=0
$$

troduce the function space spanned by $\psi_{i}=\sin ((i+1) \pi x / 2), i=1, \ldots, N$. se a Galerkin and a least squares method to find the coefficients c_{j} in $u(x)=$ $\zeta_{j} c_{j} \psi_{j}$. Find how fast the coefficients decrease in magnitude by looking at ${ }_{i} / c_{j-1}$. Find the error in the maximum deflection at $x=1$ when only one basis unction is used ($N=0$).
What happens if we choose basis functions $\psi_{i}=\sin ((i+1) \pi x)$? These basis unctions are appropriate if we do not utilize symmetry and solve the problem $\mathrm{n}[0, L]$. A scaled version of this problem reads

$$
u^{\prime \prime}=1, \quad x \in(0,1), \quad u(0)=u(1)=0 .
$$

Carry out the computations with $N=0$ and demonstrate that the mi deflection $u(1 / 2)$ is the same in the problem utilizing symmetry and the covering the whole cable. Filename: cable_sin.pdf.

Exercise 25: Check integration by parts

Consider the Galerkin method for the problem involving u in Exercise 2 that the formulas for c_{j} are independent of whether we perform integr: parts or not. Filename: cable_integr_by_parts.pdf.

Exercise 26: Compute the deflection of a cable with elements

Solve the problem for u in Exercise 24 using two P1 linear elements. F cable_2P1.pdf.

Exercise 27: Compute the deflection of a cable with element

Solve the problem for u in Exercise 24 using one P2 element with quadra functions. Filename: cable_1P2.pdf.

Exercise 28: Compute the deflection of a cable with :

 loadWe consider the deflection of a tension cable as described in Exercise ¿ the load is

$$
\ell(x)=\left\{\begin{array}{ll}
\ell_{1}, & x<L / 2, \\
\ell_{2}, & x \geq L / 2
\end{array} \quad x \in[0, L] .\right.
$$

This load is not symmetric with respect to the midpoint $x=L / 2$ so the loses its symmetry and we must solve the scaled problem

$$
u^{\prime \prime}=\left\{\begin{array}{ll}
1, & x<1 / 2, \\
0, & x \geq 1 / 2
\end{array} \quad x \in(0,1), \quad u(0)=0, u(1)=0 .\right.
$$

a) Use $\psi_{i}=\sin ((i+1) \pi x), i=0, \ldots, N$ and the Galerkin method integration by parts. Derive a formula for c_{j} in the solution expansi $\sum_{j} c_{j} \psi_{j}$. Plot how fast the coefficients c_{j} tend to zero (on a \log scale).
b) Solve the problem with P1 finite elements. Plot the solution for N_{e} elements.

Filename: cable_discont_load.pdf.

\xercise 29: Show equivalence between linear systems

1corporation of Dirichlet conditions at $x=0$ and $x=L$ in a finite element lesh on $\Omega=[0, L]$ can either be done by introducing an expansion $u(x)=$ ${ }_{0} \varphi_{0}+U_{N_{n}} \varphi_{N_{n}}+\sum_{j=0}^{N} c_{j} \varphi_{\nu(j)}$, with $N=N_{n}-2$ and considering u values t the inner nodes as unknowns, or one can assemble the matrix system with $(x)=\sum_{j=0}^{N=N_{n}} c_{j} \varphi_{j}$ and afterwards replace the rows corresponding to known c_{j} alues by the boundary conditions. Show that the two approaches are equivalent.

'xercise 30: Compute with a non-uniform mesh

lerive the linear system for the problem $-u^{\prime \prime}=2$ on $[0,1]$, with $u(0)=0$ nd $u(1)=1$, using P1 elements and a non-uniform mesh. The vertices have jordinates $x_{0}=0<x_{1}<\cdots<x_{N}=1$, and the length of cell number e is $e=x_{e+1}-x_{e}$.
It is of interest to compare the discrete equations for the finite element rethod in a non-uniform mesh with the corresponding discrete equations arising om a finite difference method. Go through the derivation of the finite difference rmula $u^{\prime \prime}\left(x_{i}\right) \approx\left[D_{x} D_{x} u\right]_{i}$ and modify it to find a natural discretization of " $\left(x_{i}\right)$ on a non-uniform mesh. Filename: nonuniform_P1.pdf.

'roblem 31: Solve a 1D finite element problem by hand

he following scaled 1D problem is a very simple, yet relevant, model for onvective transport in fluids:

$$
\begin{equation*}
u^{\prime}=\epsilon u^{\prime \prime}, \quad u(0)=0, u(1)=1, x \in[0,1] \tag{309}
\end{equation*}
$$

) Find the analytical solution to this problem. (Introduce $w=u^{\prime}$, solve the rst-order differential equation for $w(x)$, and integrate once more.)
) Derive the variational form of this problem.
) Introduce a finite element mesh with uniform partitioning. Use P1 elements nd compute the element matrix and vector for a general element.
) Incorporate the boundary conditions and assemble the element contribuons.
) Identify the resulting linear system as a finite difference discretization of re differential equation using

$$
\left[D_{2 x} u=\epsilon D_{x} D_{x} u\right]_{i}
$$

f) Compute the numerical solution and plot it together with the exact for a mesh with 20 elements and $\epsilon=10,1,0.1,0.01$.

Filename: convdiff1D_P1.pdf.

Exercise 32: Compare finite elements and differences radially symmetric Poisson equation

We consider the Poisson problem in a disk with radius R with Dirichlet co at the boundary. Given that the solution is radially symmetric an dependent only on the radial coordinate $\left(r=\sqrt{x^{2}+y^{2}}\right)$, we can red problem to a 1D Poisson equation

$$
-\frac{1}{r} \frac{d}{d r}\left(r \frac{d u}{d r}\right)=f(r), \quad r \in(0, R), u^{\prime}(0)=0, u(R)=U_{R}
$$

a) Derive a variational form of (310) by integrating over the whole posed equivalently: use a weighting function $2 \pi r v(r)$ and integrate r fr R.
b) Use a uniform mesh partition with P1 elements and show what the r set of equations becomes. Integrate the matrix entries exact by hand, b Trapezoidal rule to integrate the f term.
c) Explain that an intuitive finite difference method applied to (310)

$$
\frac{1}{r_{i}} \frac{1}{h^{2}}\left(r_{i+\frac{1}{2}}\left(u_{i+1}-u_{i}\right)-r_{i-\frac{1}{2}}\left(u_{i}-u_{i-1}\right)\right)=f_{i}, \quad i=r h .
$$

For $i=0$ the factor $1 / r_{i}$ seemingly becomes problematic. One must have $u^{\prime}(0)=0$, because of the radial symmetry, which implies $u_{-1}=\imath$ allow introduction of a fictitious value u_{-1}. Using this u_{-1} in the di equation for $i=0$ gives

$$
\begin{aligned}
& \frac{1}{r_{0}} \frac{1}{h^{2}}\left(r_{\frac{1}{2}}\left(u_{1}-u_{0}\right)-r_{-\frac{1}{2}}\left(u_{0}-u_{1}\right)\right)= \\
& \quad \frac{1}{r_{0}} \frac{1}{2 h^{2}}\left(\left(r_{0}+r_{1}\right)\left(u_{1}-u_{0}\right)-\left(r_{-1}+r_{0}\right)\left(u_{0}-u_{1}\right)\right) \approx 2\left(u_{1}-u_{\iota}\right.
\end{aligned}
$$

if we use $r_{-1}+r_{1} \approx 2 r_{0}$.
Set up the complete set of equations for the finite difference metl compare to the finite element method in case a Trapezoidal rule is integrate the f term in the latter method.

Filename: radial_Poisson1D_P1.pdf.

jxercise 33: Compute with variable coefficients and P1 el-

 ments by handonsider the problem
$-\frac{d}{d x}\left(a(x) \frac{d u}{d x}\right)+\gamma u=f(x), \quad x \in \Omega=[0, L], \quad u(0)=\alpha, u^{\prime}(L)=\beta$.
Te choose $a(x)=1+x^{2}$. Then

$$
\begin{equation*}
u(x)=\alpha+\beta\left(1+L^{2}\right) \tan ^{-1}(x) \tag{312}
\end{equation*}
$$

an exact solution if $f(x)=\gamma u$.
Derive a variational formulation and compute general expressions for the ement matrix and vector in an arbitrary element, using P1 elements and a niform partitioning of $[0, L]$. The right-hand side integral is challenging and an be computed by a numerical integration rule. The Trapezoidal rule (101) ives particularly simple expressions. Filename: atan1D_P1.pdf.

¿xercise 34: Solve a 2D Poisson equation using polynomials nd sines

he classical problem of applying a torque to the ends of a rod can be modeled y a Poisson equation defined in the cross section Ω :

$$
-\nabla^{2} u=2, \quad(x, y) \in \Omega
$$

ith $u=0$ on $\partial \Omega$. Exactly the same problem arises for the deflection of a lembrane with shape Ω under a constant load.

For a circular cross section one can readily find an analytical solution. For a sctangular cross section the analytical approach ends up with a sine series. The lea in this exercise is to use a single basis function to obtain an approximate nswer.
We assume for simplicity that the cross section is the unit square: $\Omega=$ $\mathrm{I}, 1] \times[0,1]$.
) We consider the basis $\psi_{p, q}(x, y)=\sin ((p+1) \pi x) \sin (q \pi y), p, q=0, \ldots, n$. hese basis functions fulfill the Dirichlet condition. Use a Galerkin method and $=0$.
) The basis function involving sine functions are orthogonal. Use this roperty in the Galerkin method to derive the coefficients $c_{p, q}$ in a formula $=\sum_{p} \sum_{q} c_{p, q} \psi_{p, q}(x, y)$.
c) Another possible basis is $\psi_{i}(x, y)=(x(1-x) y(1-y))^{i+1}, i=0, \ldots$, the Galerkin method to compute the solution for $N=0$. Which cho single basis function is best, $u \sim x(1-x) y(1-y)$ or $u \sim \sin (\pi x) \sin ($. order to answer the question, it is necessary to search the web or the li for an accurate estimate of the maximum u value at $x=y=1 / 2$.

Filename: torsion_sin_xy.pdf.

Exercise 35: Analyze a Crank-Nicolson scheme for t] fusion equation

Perform the analysis in Section 19.10 for a 1D diffusion equation u_{t} discretized by the Crank-Nicolson scheme in time:

$$
\frac{u^{n+1}-u^{n}}{\Delta t}=\alpha \frac{1}{2}\left(\frac{u^{n+1}}{\partial x^{2}} \frac{u^{n}}{\partial x^{2}}\right)
$$

or written compactly with finite difference operators,

$$
\left[D_{t} u=\alpha D_{x} D_{x} \bar{u}^{t}\right]^{n+\frac{1}{2}}
$$

(From a strict mathematical point of view, the u^{n} and u^{n+1} in these ec should be replaced by u_{e}^{n} and u_{e}^{n+1} to indicate that the unknown is tl solution of the PDE discretized in time, but not yet in space, see Sectic Make plots similar to those in Section 19.10. Filename: fe_diffusion

ndex

fine mapping, 46, 82
pproximation
by sines, 20
collocation, 24
interpolation, 25
of functions, 13
of general vectors, 11
of vectors in the plane, 7
ssembly, 45
3ll, 65
ells list, 66
a apeau function, 40
'hebyshev nodes, 29
,llocation method (approximation), 24
egree of freedom, 65
of map, 65
of map list, 66
lges, 80
ement matrix, 44
isential boundary condition, 108
ices, 80
nite element basis function, 40
nite element expansion
reference element, 65
nite element mesh, 34
nite element, definition, 65
ralerkin method
functions, 15
vectors, 10,12
lauss-Legendre quadrature, 71
at function, 40
ermite polynomials, 69
Itegration by parts, 101
iterpolation, 25
oparametric mapping, 83
ronecker delta, 27, 36

Lagrange (interpolating) polynomial, 26
least squreas method vectors, 9
linear elements, 40
lumped mass matrix, 64,147
mapping of reference cells
affine mapping, 46
isoparametric mapping, 83
mass lumping, 64, 147
mass matrix, $64,145,147$ mesh
finite elements, 34
Midpoint rule, 70
mixed finite elements, 163
natural boundary condition, 108
Newton-Cotes rules, 70
numerical integration
Midpoint rule, 70
Newton-Cotes formulas, 70
Simpson's rule, 70
Trapezoidal rule, 70
P1 element, 40
P2 element, 40
projection
functions, 15
vectors, 10,12
quadratic elements, 40
reference cell, 65
residual, 94
Runge's phenomenon, 28
simplex elements, 80
simplices, 80
Simpson's rule, 70
sparse matrices, 58
stiffness matrix, 145
strong form, 102
tensor product, 72
test function, 96
test space, 96
Trapezoidal rule, 70
trial function, 96
trial space, 96
variational formulation, 96
vertex, 65
vertices list, 66
weak form, 102

[^0]: ${ }^{1}$ http://en.wikipedia.org/wiki/Boris_Galerkin

[^1]: ${ }^{2}$ http://tinyurl.com/jvzzcfn/fem/approx1D.py

[^2]: ${ }^{3}$ http://wolframalpha.com

[^3]: ${ }^{4}$ http://en.wikipedia.org/wiki/Runge\%27s_phenomenon

[^4]: ${ }^{5}$ http://fenicsproject.org

[^5]: $\overline{{ }^{6} \text { http://tinyurl.com/k3sdbuv/pub/mov-fem/fe_assembly.html }}$

[^6]: ${ }^{7}$ http://tinyurl.com/jvzzcfn/fem/fe_approx1D.py

[^7]: ${ }^{8}$ http://en.wikipedia.org/wiki/Newton $\%$ E $2 \% 80 \%$ 93Cotes_formulas

[^8]: ${ }^{9}$ http://tinyurl.com/jvzzcfn/fem/numint.py
 ${ }^{10}$ http://en.wikipedia.org/wiki/Gaussian_quadrature

[^9]: $\overline{{ }^{11} \text { http://tinyurl.com/jvzzcfn/fem/fe_approx1D.py }}$

[^10]: ${ }^{13}$ http://en.wikipedia.org/wiki/Tetrahedron

[^11]: 14http://en.wikipedia.org/wiki/Simplex
 ${ }^{15}$ https://launchpad.net/fenics-book

[^12]: ${ }^{16}$ http://goo.gl/lbyVMH

[^13]: ${ }^{17}$ http://tinyurl.com/jvzzcfn/fem/fe_approx2D.py

[^14]: ${ }^{18}$ http://tinyurl.com/jvzzcfn/fem/fe_approx1D.py

[^15]: $\overline{{ }^{19} \text { http://tinyurl.com/jvzzcfn/fem/approx2D.py }}$

[^16]: ${ }^{20}$ http://fenicsproject.org

[^17]: ${ }^{21}$ http://wolframalpha.com
 ${ }^{22}$ http://tinyurl.com/jvzzcfn/fem/varform1D.py

[^18]: $\overline{{ }^{23} \text { http://en.wikipedia.org/wiki/Green's_identities }}$

[^19]: ${ }^{24} \mathrm{http}: / /$ tinyurl.com/jvzzcfn/fem/numint.py

