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The finite element method is a powerful tool for solving differential ec
The method can easily deal with complex geometries and higher-order apj
tions of the solution. Figure 1 shows a two-dimensional domain with a no
geometry. The idea is to divide the domain into triangles (elements) a
a polynomial approximations to the unknown functions on each triang
method glues these piecewise approximations together to find a global
Linear and quadratic polynomials over the triangles are particularly pc

Figure 1: Domain for flow around a dolphin.

Many successful numerical methods for differential equations, incluc
finite element method, aim at approximating the unknown function by

N
u(z) = Z cithi(x),
=0

where 1;(x) are prescribed functions and ¢y, ..., cy are unknown coeffic
be determined. Solution methods for differential equations utilizing (
have a principle for constructing N + 1 equations to determine cg, ..., ¢;
there is a machinery regarding the actual constructions of the equat
cp,--.,CN, in a particular problem. Finally, there is a solve phase for co
the solution cg, ..., cy of the N + 1 equations.



Especially in the finite element method, the machinery for constructing the
iscrete equations to be implemented on a computer is quite comprehensive, with
1any mathematical and implementational details entering the scene at the same
me. From an ease-of-learning perspective it can therefore be wise to introduce
1e computational machinery for a trivial equation: v = f. Solving this equation
ith f given and u on the form (1) means that we seek an approximation
to f. This approximation problem has the advantage of introducing most
f the finite element toolbox, but with postponing demanding topics related
» differential equations (e.g., integration by parts, boundary conditions, and
»ordinate mappings). This is the reason why we shall first become familiar
ith finite element approximation before addressing finite element methods for
ifferential equations.

First, we refresh some linear algebra concepts about approximating vectors
1 vector spaces. Second, we extend these concepts to approximating functions
1 function spaces, using the same principles and the same notation. We present
xamples on approximating functions by global basis functions with support
wroughout the entire domain. Third, we introduce the finite element type of
wcal basis functions and explain the computational algorithms for working with
1ch functions. Three types of approximation principles are covered: 1) the least
juares method, 2) the Lo projection or Galerkin method, and 3) interpolation
¢ collocation.

Approximation of vectors

/e shall start with introducing two fundamental methods for determining the
sefficients ¢; in (1) and illustrate the methods on approximation of vectors,
ecause vectors in vector spaces give a more intuitive understanding than starting
irectly with approximation of functions in function spaces. The extension
'om vectors to functions will be trivial as soon as the fundamental ideas are
nderstood.

The first method of approximation is called the least squares method and
sists in finding ¢; such that the difference u — f, measured in some norm, is
iinimized. That is, we aim at finding the best approximation u to f (in some
orm). The second method is not as intuitive: we find u such that the error
— f is orthogonal to the space where we seek u. This is known as projection,
r we may also call it a Galerkin method. When approximating vectors and
inctions, the two methods are equivalent, but this is no longer the case when
pplying the principles to differential equations.

.1 Approximation of planar vectors

uppose we have given a vector f = (3,5) in the xy plane and that we want to
pproximate this vector by a vector aligned in the direction of the vector (a,b).
igure 2 depicts the situation.

We introduce the vector space V spanned by the vector ¥ = (a, b):

s | (3.5)

(ab)

Figure 2: Approximation of a two-dimensional vector by a one-dimq
vector.

V' = span {to} .

We say that 1y is a basis vector in the space V. Our aim is to {
vector u = cotpp € V which best approximates the given vector f = (
reasonable criterion for a best approximation could be to minimize the I
the difference between the approximate u and the given f. The differ
error e = f — wu, has its length given by the norm

1
HeH = (6,8)2,

where (e, e) is the inner product of e and itself. The inner product, als
scalar product or dot product, of two vectors u = (ug,u1) and v = (1
defined as

(u,v) = upvy + uyvy .



temark 1. We should point out that we use the notation (-, -) for two different
1ngs: (a,b) for scalar quantities a and b means the vector starting in the origin
ad ending in the point (a, ), while (u, v) with vectors u and v means the inner
roduct of these vectors. Since vectors are here written in boldface font there
10uld be no confusion. We may add that the norm associated with this inner
roduct is the usual Eucledian length of a vector.

temark 2. It might be wise to refresh some basic linear algebra by consulting
textbook. Exercises 1 and 2 suggest specific tasks to regain familiarity with
indamental operations on inner product vector spaces.

'he least squares method. We now want to find ¢y such that it minimizes
e||. The algebra is simplified if we minimize the square of the norm, ||e||? =
;,e), instead of the norm itself. Define the function

E(co) = (e, e) = (f — covpo, £ — cobo) - (4)

/e can rewrite the expressions of the right-hand side in a more convenient form
v further work:

E(co) = (£, F) — 2co(f,%0) + 5 (o, b0) - (5)

he rewrite results from using the following fundamental rules for inner product
races:

(au,v) = a(u,v), «a€R, (6)
(u+v,w) = (u,w) + (v,w), (7)
(u,v) = (v,u). (8)

Minimizing E(cg) implies finding ¢q such that
OF
R
800
ifferentiating (5) with respect to ¢q gives

oF

e = —2(f,%0) + 2co (0, %o) - (9)
Co
etting the above expression equal to zero and solving for ¢y gives
(fa 'lbo)
cp = 2 10
™ (1o, o) (19)

hich in the present case with ¢y = (a,b) results in

_ 3a+5b
Co = a2 T b2 .
For later, it is worth mentioning that setting the key equation (9)
can be rewritten as

(.f - CO¢07¢0) = 07

or
(67 ¢0) =0.

The projection method. We shall now show that minimizing ||e||?
that e is orthogonal to any vector v in the space V. This result is visua.
clear from Figure 2 (think of other vectors along the line (a, b): all of tl
lead to a larger distance between the approximation and f). To see th
mathematically, we express any v € V as v = sy for any scalar para
recall that two vectors are orthogonal when their inner product vanist
calculate the inner product

(e,5%0) = (f — covo, s70)
= (f, s%0) — (cotpo, s10)
= s(f,0) — sco(o, o)
_ _ o)
= s(f, o) 3(1[)0’1%) (%0, %0)

=s((f,¢0) = (f,%0))

Therefore, instead of minimizing the square of the norm, we could dems
e is orthogonal to any vector in V. This method is known as projection,
it is the same as projecting the vector onto the subspace. (The appro
also be referred to as a Galerkin method as explained at the end of Sect
Mathematically the projection method is stated by the equation

(e,v) =0, YveV.
An arbitrary v € V can be expressed as stb, s € R, and therefore (13)
(67 51[)0) = S(ea 1[]0) = Oa

which means that the error must be orthogonal to the basis vector in tl

V.

(e,9%0) =0 or (f—coo,v0)=0.

The latter equation gives (10) and it also arose from least squares comp
in (12).

10



.2 Approximation of general vectors

et us generalize the vector approximation from the previous section to vectors
1 spaces with arbitrary dimension. Given some vector f, we want to find the
est approximation to this vector in the space

V =span{vg,...,¥n}.
/e assume that the basis vectors 1, ..., 1N are linearly independent so that
one of them are redundant and the space has dimension N + 1. Any vector
€ V can be written as a linear combination of the basis vectors,

N
u = Z ¢,
i=0
here ¢; € R are scalar coeflicients to be determined.

'he least squares method. Now we want to find cg, ..., cn, such that u is
1e best approximation to f in the sense that the distance (error) e = f — u
minimized. Again, we define the squared distance as a function of the free
arameters cgp,...,cn,

E(Co,...,c ) (e e ,f ch’l/)jmf ZC]¢]

N
ff —QZCgf% +chpcq ¢p7¢q (14)
p=0q=0
[inimizing this E with respect to the independent variables cg, . . ., ¢y is obtained

y requiring
oE
801' o

he second term in (14) is differentiated as follows:

9 N
50 2 Ci(Faby) = (£, (15)
i im0

nce the expression to be differentiated is a sum and only one term, ¢;(f, ¥;),
ontains ¢; and this term is linear in ¢;. To understand this differentiation in
etail, write out the sum specifically for, e.g, N =3 and i = 1.

The last term in (14) is more tedious to differentiate. We start with

0, if p#£1iand q # 1,
9o ) if p=14 and q # 1,
Oc; P71 ) ¢, ifp#iandqg=i,
2¢c;, ifp=q=i,

11

Then
P N N N N
37 Z Z cq(Pp, q) = Z cp(Pp, i) + Z cq(Pq, i) + 2¢i(
=0 ¢=0 p=0,p#i q=0,q#1

The last term can be included in the other two sums, resulting in

N
8 chpcq (Yp,Pq) = 2261 Y, ;).
7=0

' p=0q=0

It then follows that setting

oF
9 =0, i=0,...,N,
1
leads to a linear system for cg,...,cn:

N
ZAi,jcj:bi7 iZO,...,N,

where

Azj = (d’wd’]),
bz == (wzv f) .

We have changed the order of the two vectors in the inner product acco

(1.1):
AZJ = (¢Ja¢2) = ("[’i»’lpj)v

simply because the sequence i-j looks more aesthetic.

The Galerkin or projection method. In analogy with the ”one-dime
example in Section 1.1, it holds also here in the general case that minimi
distance (error) e is equivalent to demanding that e is orthogonal to all

(e,v) =0, YveV.

Since any v € V can be written as v = Zilio c;;, the statement
equivalent to saying that

N
€, Z Cl’l/Jl) = 07
=0

for any choice of coefficients cg, ..., cn. The latter equation can be rew:

12



N
Ci(e, wl) = O .
i=0
"this is to hold for arbitrary values of c¢g,...,cny we must require that each
rm in the sum vanishes,
(e,¥;) =0, i=0,...,N. (22)

hese N + 1 equations result in the same linear system as (18):

N
(F =D ejwpyahi) = (F,90) — > (i, 4by)e; =0,
j=0

JELs

nd hence

N

Z(’lphqp])c?:(f?,lbl): Z:O,,N

j=0
0, instead of differentiating the E(cy,...,cyn) function, we could simply use
'1) as the principle for determining ¢y, ..., cy, resulting in the N + 1 equations
12).

The names least squares method or least squares approrimation are natural
nce the calculations consists of minimizing ||e||?, and ||e]|? is a sum of squares
f differences between the components in f and u. We find u such that this
1m of squares is minimized.

The principle (21), or the equivalent form (22), is known as projection.

Imost the same mathematical idea was used by the Russian mathematician
oris Galerkin® to solve differential equations, resulting in what is widely known
5 Galerkin’s method.

Approximation of functions

et V be a function space spanned by a set of basis functions ¥, ..., ¥N,

V:Span{¢0a---7¢N}a

1ch that any function v € V' can be written as a linear combination of the basis
mctions:

=y . (23)

J€Ts

he index set Z is defined as Z, = {0,..., N} and is used both for compact
otation and for flexibility in the numbering of elements in sequences.

lhttp://en.wikipedia.org/wiki/Boris_Galerkin
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For now, in this introduction, we shall look at functions of a single
x: u = u(zx), ¥; = Y;(x), i € T,. Later, we will almost trivially ext
mathematical details to functions of two- or three-dimensional physica
The approximation (23) is typically used to discretize a problem in space
methods, most notably finite differences, are common for time discre
although the form (23) can be used in time as well.

2.1 The least squares method

Given a function f(z), how can we determine its best approximation u(
A natural starting point is to apply the same reasoning as we did for
in Section 1.2. That is, we minimize the distance between u and f. E
this requires a norm for measuring distances, and a norm is most conv
defined through an inner product. Viewing a function as a vector of i1
many point values, one for each value of x, the inner product could int
be defined as the usual summation of pairwise components, with sun
replaced by integration:

(f.9) = / H)g(a) de.

To fix the integration domain, we let f(z) and ¢;(x) be defined for a
2 C R. The inner product of two functions f(z) and g(x) is then

(f,9) :/Qf(w)g(x) dx.

The distance between f and any function v € V is simply f — u,
squared norm of this distance is

E=(fx) =Y cjbj(@), f(z) = > c5(x)).
JET, JETs
Note the analogy with (14): the given function f plays the role of tl
vector f, and the basis function 1; plays the role of the basis vector ;.
rewrite (25), through similar steps as used for the result (14), leading t

E(Ciw“vCN): (f?f)_QZCj(f:"/)i)'i' Z Zcpcq(d)pawq)'

JELs pELs q€L,

Minimizing this function of N+ 1 scalar variables {c; }, 7. requires differe
with respect to ¢;, for all ¢ € Z;. The resulting equations are very sii
those we had in the vector case, and we hence end up with a linear sy
the form (18), with basically the same expressions:

A ;= (Y, 5),
14



.2 The projection (or Galerkin) method

s in Section 1.2, the minimization of (e, e) is equivalent to

(e,v) =0, YveV. (29)

his is known as a projection of a function f onto the subspace V. We may also
ill it a Galerkin method for approximating functions. Using the same reasoning
5 in (21)-(22), it follows that (29) is equivalent to

(e,:) =0, ieT,. (30)

1serting e = f — u in this equation and ordering terms, as in the multi-
imensional vector case, we end up with a linear system with a coefficient matrix
'7) and right-hand side vector (28).

Whether we work with vectors in the plane, general vectors, or functions
1 function spaces, the least squares principle and the projection or Galerkin
iethod are equivalent.

.3 Example: linear approximation

et us apply the theory in the previous section to a simple problem: given a
arabola f(z) = 10(z — 1)? — 1 for € Q = [1, 2], find the best approximation
(z) in the space of all linear functions:

V =span{l,z}.

/ith our notation, vo(x) =1, ¢1(z) = z, and N = 1. We seek

u = cotho(x) + c191(x) = o + a1z,

here ¢y and ¢; are found by solving a 2 x 2 the linear system. The coefficient
1atrix has elements

2
Apo = (Yo, %0) = / 1 ldr=1, (31)
12
Ag1 = (tho,91) = / 1.2 dx =3/2, (32)
1
A1 = Ao =3/2, (33)
2
Ay = (b1, 41) :/ reoxde="1/3. (34)
1

he corresponding right-hand side is

15

2
b= (o) = [ (10 = 1P~ 1)1 de =773,
1
2
by = (f,¢1) :/ (10(z — 1)> = 1) - o doz = 13/3.
1
Solving the linear system results in

Co = —38/3, C1 = 10,
and consequently

u(x) =10z — %

Figure 3 displays the parabola and its best approximation in the spa
linear functions.

10

— approximation

- - exact

Figure 3: Best approximation of a parabola by a straight line.

2.4 Implementation of the least squares method

The linear system can be computed either symbolically or numerically (&
ical integration rule is needed in the latter case). Here is a function for s
computation of the linear system, where f(x) is given as a sympy expr

16



wolving the symbol x, psi is a list of expressions for {¢;},.; , and Omega is a
-tuple/list holding the limits of the domain €:

import sympy as sp

lef least_squares(f, psi, Omega):

N = len(psi) - 1
A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))

x = sp.Symbol(’x’)
for i in range(N+1):
for j in range(i, N+1):
Ali,j] = sp.integrate(psilil*psiljl,
(x, Omegal[0], Omegal1]))
Alj,i] = Ali,j]
b[i,0] = sp.integrate(psil[il*f, (x, Omegal[0], Omegal1l))
¢ = A.LUsolve(b)
u=20
for i in range(len(psi)):
u += c[i,0]*psi[i]
return u, c

bserve that we exploit the symmetry of the coefficient matrix: only the
pper triangular part is computed. Symbolic integration in sympy is often
me consuming, and (roughly) halving the work has noticeable effect on the
aiting time for the function to finish execution.

Comparing the given f(z) and the approximate u(z) visually is done by
1e following function, which with the aid of sympy’s lambdify tool converts a
ympy expression to a Python function for numerical computations:

lef comparison_plot(f, u, Omega, filename=’tmp.pdf’):

x = sp.Symbol(’x’)
f = sp.lambdify([x], f, modules="numpy")
u = sp.lambdify([x], u, modules="numpy")

resolution = 401 # no of points in plot

xcoor = linspace(Omegal[0], Omegal[1], resolution)
exact f (xcoor)

approx = u(xcoor)

plot(xcoor, approx)

hold(’on’)

plot(xcoor, exact)

legend([’approximation’, ’exact’])
savefig(filename)

he modules=’"numpy’ argument to lambdify is important if there are mathe-
1atical functions, such as sin or exp in the symbolic expressions in f or u, and
1ese mathematical functions are to be used with vector arguments, like xcoor
bove.

Both the least_squares and comparison_plot are found and coded in
1e file approxiD.py?. The forthcoming examples on their use appear in
x_approx1D.py.

2http://tinyurl.com/jvzzcfn/fem/approx1iD.py

17

2.5 Perfect approximation

Let us use the code above to recompute the problem from Section 2.3 w
want to approximate a parabola. What happens if we add an element z
basis and test what the best approximation is if V is the space of all p
functions? The answer is quickly found by running

>>> from approxlD import *

>>> x = sp.Symbol(’x’)

>>> f = 10*(x-1)**2-1

>>> u, c = least_squares(f=f, psi=[1, x, x*x2], Omega=[1, 2])
>>> print u

10*x**2 - 20%x + 9

>>> print sp.expand(f)

10*x**2 - 20%x + 9

Now, what if we use 1;(x) = 2% for i =0,1,..., N = 40? The outp
least_squares gives ¢; = 0 for ¢ > 2, which means that the method fi
perfect approximation.

In fact, we have a general result that if f € V, the least squa
projection/Galerkin methods compute the exact solution u = f. The
straightforward: if f € V, f can be expanded in terms of the basis fu
f=2>" ez, djib;, for some coefficients {d;}, 7 , and the right-hand side 1
entries

bi=(fvi) = > di(v, ) = Y djAi.

J€ELs J€TLs

The linear system Zj A, jc; = by, i €T, is then

Z cjA; ;= Z d;A; 5, i€,

JELs JELs

which implies that ¢; = d; for i € Z,.

2.6 Ill-conditioning

The computational example in Section 2.5 applies the least_squares i
which invokes symbolic methods to calculate and solve the linear syste
correct solution ¢y = 9,¢1 = —20, ¢ = 10, ¢; = 0 for i > 3 is perfectly re

Suppose we convert the matrix and right-hand side to floating-poin
and then solve the system using finite-precision arithmetics, which is w
will (almost) always do in real life. This time we get astonishing rest
to about N = 7 we get a solution that is reasonably close to the ex
Increasing N shows that seriously wrong coefficients are computed. I
a table showing the solution of the linear system arising from approx
a parabola by functions on the form u(z) = co + c1o + cox® + -+ 4
Analytically, we know that ¢; = 0 for j > 2, but numerically we may ge
for j > 2.
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exact sympy numpy32 numpy64

9 9.62 5.57 8.98
-20  -23.39 -7.65 -19.93
10 17.74 -4.50 9.96
0 -9.19 4.13 -0.26
0 5.25 2.99 0.72
0 0.18 -1.21 -0.93
0 -2.48 -0.41 0.73
0 1.81 -0.013 -0.36
0 -0.66 0.08 0.11
0 0.12 0.04 -0.02
0 -0.001 -0.02 0.002
he exact value of ¢;, j = 0,1,...,10, appears in the first column while the

ther columns correspond to results obtained by three different methods:

e Column 2: The matrix and vector are converted to the data structure
sympy .mpmath.fp.matrix and the sympy.mpmath.fp.lu_solve function
is used to solve the system.

e Column 3: The matrix and vector are converted to numpy arrays with data
type numpy.float32 (single precision floating-point number) and solved
by the numpy.linalg.solve function.

e Column 4: As column 3, but the data type is numpy.float64 (double
precision floating-point number).

/e see from the numbers in the table that double precision performs much better
1an single precision. Nevertheless, when plotting all these solutions the curves
annot be visually distinguished (!). This means that the approximations look
erfect, despite the partially very wrong values of the coefficients.

Increasing N to 12 makes the numerical solver in numpy abort with the
lessage: "matrix is numerically singular”. A matrix has to be non-singular to
e invertible, which is a requirement when solving a linear system. Already when
1e matrix is close to singular, it is ill-conditioned, which here implies that the
umerical solution algorithms are sensitive to round-off errors and may produce
rery) inaccurate results.

The reason why the coefficient matrix is nearly singular and ill-conditioned

that our basis functions 1);(z) = x' are nearly linearly dependent for large 1.

hat is, #* and z'*! are very close for i not very small. This phenomenon is
lustrated in Figure 4. There are 15 lines in this figure, but only half of them
re visually distinguishable. Almost linearly dependent basis functions give rise
» an ill-conditioned and almost singular matrix. This fact can be illustrated by
>mputing the determinant, which is indeed very close to zero (recall that a zero
eterminant implies a singular and non-invertible matrix): 107%% for N = 10 and
1792 for N = 12. Already for N = 28 the numerical determinant computation
sturns a plain zero.
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Figure 4: The 15 first basis functions z?, i = 0,...,14.

On the other hand, the double precision numpy solver do run for
resulting in answers that are not significantly worse than those in tl
above, and large powers are associated with small coefficients (e.g., ¢;
for 10 < j <20 and ¢ < 107° for j > 20). Even for N = 100 the approx
still lies on top of the exact curve in a plot (!).

The conclusion is that visual inspection of the quality of the approx
may not uncover fundamental numerical problems with the computatior
ever, numerical analysts have studied approximations and ill-conditio
decades, and it is well known that the basis {1,z,22,2%,...,} is a be
The best basis from a matrix conditioning point of view is to have ort
functions such that (¢;,%;) = 0 for ¢ # j. There are many known sets o
onal polynomials and other functions. The functions used in the finite
methods are almost orthogonal, and this property helps to avoid proble
solving matrix systems. Almost orthogonal is helpful, but not enoug
it comes to partial differential equations, and ill-conditioning of the co
matrix is a theme when solving large-scale matrix systems arising fro
element discretizations.

2.7 Fourier series

A set of sine functions is widely used for approximating functions (the s
also orthogonal as explained more in Section 2.6). Let us take
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V = span {sinwz, sin 27z, ...,sin(N + 1)z} .

hat is,

Yi(z) =sin((i + V)7mzx), @€ Zs.

n approximation to the f(x) function from Section 2.3 can then be computed
y the least_squares function from Section 2.4:

I =3

rom sympy import sin, pi

t = sp.Symbol(’x’)

>si = [sin(pi*(i+1)#*x) for i in range(N+1)]
= 10%(x-1)**x2 - 1

mega = [0, 1]

1, ¢ = least_squares(f, psi, Omega)
somparison_plot (f, u, Omega)

igure 5 (left) shows the oscillatory approximation of Z;-V:O ¢jsin((j + 1)7z)
hen N = 3. Changing N to 11 improves the approximation considerably, see
igure 5 (right).

—— approximation —— approximation|
- - exact . - - exact

b0 0.2 0.4 0.6 0.8 1.0 b0 0.2 0.4 0.6 0.8 1.0
x x

igure 5: Best approximation of a parabola by a sum of 3 (left) and 11 (right)
ne functions.

There is an error f(0) —u(0) =9 at z = 0 in Figure 5 regardless of how large
T is, because all 1;(0) = 0 and hence «(0) = 0. We may help the approximation
> be correct at = 0 by seeking

u(@) = F0) + Y ejv(a). (39)
J€Ls
owever, this adjustment introduces a new problem at x = 1 since we now get
aerror f(1) —wu(l) = f(1) — 0 = —1 at this point. A more clever adjustment is
> replace the f(0) term by a term that is f(0) at z =0 and f(1) at z =1. A
mple linear combination f(0)(1 — x) + zf(1) does the job:

u(@) = FO)1—2) +2f(1)+ 3 cjuy(a). (40)

J€Ls
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This adjustment of u alters the linear system slightly as we get an ext
—(f(0)(1 —z) + xf(1),4;) on the right-hand side. Figure 6 shows the 1
this technique for ensuring right boundary values: even 3 sines can nov
the f(0)(1 — x) + = f(1) term such that u approximates the parabola re:
at least visually.

— approximation — approxim
-~ exact N - - exact

Figure 6: Best approximation of a parabola by a sum of 3 (left) and 1
sine functions with a boundary term.

2.8 Orthogonal basis functions

The choice of sine functions ¥;(x) = sin((i + 1)7z) has a great compu
advantage: on = [0,1] these basis functions are orthogonal, implyi
A; j = 0if ¢ # j. This result is realized by trying

integrate(sin(j*pix*x)*sin(k*pi*x), x, 0, 1)

in WolframAlpha? (avoid i in the integrand as this symbol means the in
unit v/—1). Also by asking WolframAlpha about fol sin?(jmz) dz, we fi
equal 1/2. With a diagonal matrix we can easily solve for the coeffic
hand:

1
¢ :2/ f(x)sin((i + 1)wz)dz, € L,
0

which is nothing but the classical formula for the coefficients of the Fou
series of f(z) on [0,1]. In fact, when V contains the basic functions u
Fourier series expansion, the approximation method derived in Section :
in the classical Fourier series for f(x) (see Exercise 8 for details).

With orthogonal basis functions we can make the least_squares |
(much) more efficient since we know that the matrix is diagonal and «
diagonal elements need to be computed:

3http://wolframalpha.com

22



lef least_squares_orth(f, psi, Omega):

N = len(psi) - 1

A = [0]*(N+1)

b = [0]*(N+1)

x = sp.Symbol(’x’)
for i in range(N+1):

A[i] = sp.integrate(psil[il#**2, (x, Omegal[0], Omegal[1]))
b[i] = sp.integrate(psi[il*f, (x, Omega[0], Omegal[1]))
c = [b[il/A[i] for i in range(len(b))]
u=20
for i in range(len(psi)):
u += c[i]*psilil
return u, c

his function is found in the file approx1D.py.

.9 Numerical computations

ometimes the basis functions ¢; and/or the function f have a nature that
1akes symbolic integration CPU-time consuming or impossible. Even though we
nplemented a fallback on numerical integration of [ f¢;dx considerable time
light be required by sympy in the attempt to integrate symbolically. Therefore,
will be handy to have function for fast numerical integration and numerical
lution of the linear system. Below is such a method. It requires Python
inctions f (x) and psi(x,i) for f(z) and ¢;(x) as input. The output is a mesh
mction with values u on the mesh with points in the array x. Three numerical
itegration methods are offered: scipy.integrate.quad (precision set to 1078),
ympy .mpmath . quad (high precision), and a Trapezoidal rule based on the points
1 X.

lef least_squares_numerical(f, psi, N, x,
integration_method=’scipy’,
orthogonal_basis=False):

import scipy.integrate
A = np.zeros((N+1, N+1))
b = np.zeros(N+1)

Omega = [x[0], x[-1]]

dx = x[1] - x[0]

for i in range(N+1):
j_limit = i+1 if orthogonal_basis else N+1
for j in range(i, j_limit):
print ’ (%d,%d)°’ % (i, j)
if integration_method == ’scipy’:
A_ij = scipy.integrate.quad(
lambda x: psi(x,i)*psi(x,j),
Omega[0], Omegal[1], epsabs=1E-9, epsrel=1E-9) [0]
elif integration_method == ’sympy’:
A_ij = sp.mpmath.quad(
lambda x: psi(x,i)*psi(x,j),
[Omega[0], Omegal1l])
else:
values = psi(x,i)*psi(x,j)
A_ij = trapezoidal(values, dx)
Ali,j] = A[j,i] = A_ij
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if integration_method == ’scipy’:
b_i = scipy.integrate.quad(
lambda x: f(x)*psi(x,i), Omegal[O], Omegal1],
epsabs=1E-9, epsrel=1E-9) [0]
elif integration_method == ’sympy’:
b_i = sp.mpmath.quad(
lambda x: f(x)*psi(x,i), [OmegalO], Omegal1]])
else:
values = f(x)*psi(x,i)
b_i = trapezoidal(values, dx)
bli] = b_i

c = b/np.diag(A) if orthogonal_basis else np.linalg.solve(A,
u = sum(c[il*psi(x, i) for i in range(N+1))
return u, ¢

def trapezoidal(values, dx):
"""Integrate values by the Trapezoidal rule (mesh size dx).""
return dx*(np.sum(values) - 0.5%values[0] - 0.5*values[-1])

Here is an example on calling the function:

from numpy import linspace, tanh, pi

def psi(x, 1i):
return sin((i+1)*x)

linspace (0, 2*pi, 501)

20

, ¢ = least_squares_numerical(lambda x: tanh(x-pi), psi, N, x,
orthogonal_basis=True)

X
N
u

2.10 The interpolation (or collocation) method

The principle of minimizing the distance between u and f is an intuit
of computing a best approximation u € V to f. However, there ai
approaches as well. One is to demand that u(z;) = f(x;) at some selecte
T, 1 € Lg:

ulws) =Y ci(w) = f(a), i€,

JELs

This criterion also gives a linear system with N 4+ 1 unknown coefficients -

Z Amcj =b;, 1€,

JETLs
with
Aij = (),
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his time the coefficient matrix is not symmetric because v;(x;) # ¥;(x;) in
aneral. The method is often referred to as an interpolation method since some
oint values of f are given (f(x;)) and we fit a continuous function u that goes
wrough the f(x;) points. In this case the x; points are called interpolation
oints. When the same approach is used to approximate differential equations,
ae usually applies the name collocation method and x; are known as collocation
0ints.

Given f as a sympy symbolic expression £, {;},.; as a list psi, and a set
fpoints {z;},.7 as a list or array points, the following Python function sets
p and solves the matrix system for the coefficients {c;};7 :

lef interpolation(f, psi, points):
N = len(psi) - 1
A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))
x = sp.Symbol(’x’)
# Turn psi and f into Python functions
psi = [sp.lambdify([x], psi[i]) for i in range(N+1)]
£
fo

= sp.lambdify([x], £)
r i in range(N+1):
for j in range(N+1):
Ali,j] = psilj](points[il)
b[i,0] = f(points[il)
A .LUsolve(b)
0
or i in range(len(psi)):
u += c[i,0]*psil[i] (x)
return u

he interpolation function is a part of the approx1D module.
We found it convenient in the above function to turn the expressions f
nd psi into ordinary Python functions of x, which can be called with float

alues in the list points when building the matrix and the right-hand side.

he alternative is to use the subs method to substitute the x variable in an
xpression by an element from the points list. The following session illustrates
oth approaches in a simple setting:

>>> from sympy import *

»>> x = Symbol(’x’)

»>> e = x¥%2 # symbolic expression involving x
»>>p = 0.5 # a value of x

»>> v = e.subs(x, p) # evaluate e for x=p

>

v
).250000000000000

>>> type (v)

sympy . core.numbers.Float

»>> e = lambdify([x], e) # make Python function of e
>>> type(e)

>>> function

»>> v = e(p) # evaluate e(x) for x=p
»>> v

).25

»>> type(v)

loat
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A nice feature of the interpolation or collocation method is that i
computing integrals. However, one has to decide on the location of the x
A simple, yet common choice, is to distribute them uniformly throughc

Example. Let us illustrate the interpolation or collocation method by
imating our parabola f(z) = 10(z — 1)2 — 1 by a linear function on Q
using two collocation points g =1+ 1/3 and z; = 1+ 2/3:

f = 10%(x-1)*%2 - 1

psi = [1, x]

Omega = [1, 2]

points = [1 + sp.Rational(1,3), 1 + sp.Rational(2,3)]
u = interpolation(f, psi, points)

comparison_plot(f, u, Omega)

The resulting linear system becomes

(1 3s)(@)=(5)

with solution ¢y = —119/9 and ¢; = 10. Figure 7 (left) shows the r
approximation u = —119/9 + 10x. We can easily test other interpolation

say g = 1 and 7 = 2. This changes the line quite significantly, see 1
(right).

s == ex/act

— approxim
- - exact

Figure 7: Approximation of a parabola by linear functions computed
interpolation points: 4/3 and 5/3 (left) versus 1 and 2 (right).

2.11 Lagrange polynomials

In Section 2.7 we explain the advantage with having a diagonal matrix: {
for the coefficients {c;};.; can then be derived by hand. For an interpc
collocation method a diagonal matrix implies that v;(z;) = 0 if ¢ #
set of basis functions ;(z) with this property is the Lagrange inter
polynomials, or just Lagrange polynomials. (Although the functions are
after Lagrange, they were first discovered by Waring in 1779, rediscov
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uler in 1783, and published by Lagrange in 1795.) The Lagrange polynomials
ave the form

N
T —x; T — T T — Ti_1 T — Tig1l T — TN
Yi(z) = II J_ . : il . (46)

=0 i T — Ty Ti — To Tj — Tj—1 Tj — Tj41 T; — TN

v i € Zs. We see from (46) that all the 1; functions are polynomials of degree
T which have the property

1, 1=s,

1/}1'(7/'5) = 52’37 dis = { 0, 27& s, (47)

hen x4 is an interpolation/collocation point. Here we have used the Kronecker
elta symbol d;5. This property implies that A; ; = 0 for i # j and A4;; =1
hen i = j. The solution of the linear system is them simply

ci = f(xi), 1€, (48)
nd
u(@) =Y flx)i(). (49)
JELs
The following function computes the Lagrange interpolating polynomial v;(z),

iven the interpolation points zg, ...,z in the list or array points:

lef Lagrange_polynomial(x, i, points):

P 1
for k in range(len(points)):
if k !'= 1i:
p *= (x - points[k])/(points[i] - points[k])
return p

he next function computes a complete basis using equidistant points throughout

lef Lagrange_polynomials_01(x, N):
if isinstance(x, sp.Symbol):
h = sp.Rational(l, N-1)
else:
h = 1.0/(N-1)
points = [ixh for i in range(N)]
psi = [Lagrange_polynomial(x, i, points) for i in range(N)]
return psi, points

/hen x is an sp.Symbol object, we let the spacing between the interpolation
oints, h, be a sympy rational number for nice end results in the formulas
v ;. The other case, when x is a plain Python float, signifies numerical
>mputing, and then we let h be a floating-point number. Observe that the
agrange_polynomial function works equally well in the symbolic and numerical
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case - just think of x being an sp.Symbol object or a Python float.
interactive session illustrates the difference between symbolic and nt
computing of the basis functions and points:

>>> import sympy as sp

>>> x = sp.Symbol(’x’)

>>> psi, points = Lagrange_polynomials_01(x, N=3)
>>> points

[0, 1/2, 1]

>>> psi

[(1 - x)x(1 - 2%x), 2kx*k(2 - 2%x), -x*k(1 - 2%x)]

>>> x = 0.5 # numerical computing

>>> psi, points = Lagrange_polynomials_01(x, N=3)
>>> points

[0.0, 0.5, 1.0]

>>> psi

[-0.0, 1.0, 0.0]

The Lagrange polynomials are very much used in finite element methods
of their property (47).

Approximation of a polynomial. The Galerkin or least squares met]
to an exact approximation if f lies in the space spanned by the basis func
could be interest to see how the interpolation method with Lagrange poly
as basis is able to approximate a polynomial, e.g., a parabola. Running

for N in 2, 4, 5, 6, 8, 10, 12:
f = x*x2
psi, points = Lagrange_polynomials_01(x, N)
u = interpolation(f, psi, points)

shows the result that up to N=4 we achieve an exact approximation, a
round-off errors start to grow, such that N=15 leads to a 15-degree pol
for v where the coefficients in front of 2" for r > 2 are of size 1075 and

Successful example. Trying out the Lagrange polynomial basis for
mating f(z) = sin 2wz on = [0, 1] with the least squares and the inter
techniques can be done by

x = sp.Symbol(’x’)

f = sp.sin(2*sp.pi*x)

psi, points = Lagrange_polynomials_01(x, N)
Omega=[0, 1]

u = least_squares(f, psi, Omega)
comparison_plot(f, u, Omega)

u = interpolation(f, psi, points)
comparison_plot(f, u, Omega)

Figure 8 shows the results. There is little difference between the least squ
the interpolation technique. Increasing N gives visually better approxi
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Least squares ap| i by Lagrange p ials of degree 3 Interpolation by Lagrange polynomials of degree 3

— approximation — approximation
-~ exact -~ exact

0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X x

igure 8: Approximation via least squares (left) and interpolation (right) of a
ne function by Lagrange interpolating polynomials of degree 3.

ess successful example. The next example concerns interpolating f(z) =
.—2z| on © = [0, 1] using Lagrange polynomials. Figure 9 shows a peculiar
Tect: the approximation starts to oscillate more and more as N grows. This
umerical artifact is not surprising when looking at the individual Lagrange
olynomials. Figure 10 shows two such polynomials, 12(x) and ¢7(x), both of
egree 11 and computed from uniformly spaced points z,, =i/11,7i=0,...,11,
iarked with circles. We clearly see the property of Lagrange polynomials:
o(z;) = 0 and ¥7(z;) = 0 for all 4, except ¥a(z2) = 1 and ¢7(x7) = 1. The
10st striking feature, however, is the significant oscillation near the boundary.
he reason is easy to understand: since we force the functions to zero at so many
oints, a polynomial of high degree is forced to oscillate between the points. The
henomenon is named Runge’s phenomenon and you can read a more detailed
<planation on Wikipedia®.

temedy for strong oscillations. The oscillations can be reduced by a more
ever choice of interpolation points, called the Chebyshev nodes:

1 1 2i+1 N\ .
xi—a(a+b)+§(b—a)cos(mpl)7 i=0...,N, (50)

a the interval Q = [a, b]. Here is a flexible version of the Lagrange_polynomials_01
mction above, valid for any interval Q = [a, b] and with the possibility to gener-
te both uniformly distributed points and Chebyshev nodes:

lef Lagrange_polynomials(x, N, Omega, point_distribution=’uniform’):
if point_distribution == ’uniform’:
if isinstance(x, sp.Symbol):
h = sp.Rational(Omega[1] - Omegal[O], N)
else:
h = (Omegal[1] - Omegal[0])/float(N)
points = [Omega[0] + i*h for i in range(N+1)]
elif point_distribution == ’Chebyshev’:
points = Chebyshev_nodes(Omegal[0], Omega[1], N)

4http://en.wikipedia.org/wiki/Runge%27s_phenomenon
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psi = [Lagrange_polynomial(x, i, points) for i in range(N+1)]
return psi, points

def Chebyshev_nodes(a, b, N):
from math import cos, pi
return [0.5%(a+b) + 0.5%(b-a)*cos(float(2*i+1)/(2*N+1))*pi) \
for i in range(N+1)]

All the functions computing Lagrange polynomials listed above are foun
module file Lagrange . py. Figure 11 shows the improvement of using Ch
nodes (compared with Figure 9). The reason is that the corresponding L
polynomials have much smaller oscillations as seen in Figure 12 (comp:
Figure 10).

Another cure for undesired oscillation of higher-degree interpolati:
nomials is to use lower-degree Lagrange polynomials on many small pa
the domain, which is the idea pursued in the finite element method.
stance, linear Lagrange polynomials on [0,1/2] and [1/2, 1] would yield &
approximation to f(z) = |1 — 2z| on Q = [0, 1] since f is piecewise line:

N Interpolation by Lagrange of degree 7 Interpolation by Lagrange polynomials of degree 1

— approximation — approxim
- exact - - exact

0.6/

0.4

°%o 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8
x x

Figure 9: Interpolation of an absolute value function by Lagrange poly
and uniformly distributed interpolation points: degree 7 (left) and 14 (

How does the least squares or projection methods work with L
polynomials? Unfortunately, sympy has problems integrating the f(x) =
function times a polynomial. Other choices of f(z) can also make the s
integration fail. Therefore, we should extend the least_squares f
such that it falls back on numerical integration if the symbolic integy
unsuccessful. In the latter case, the returned value from sympy’s int
function is an object of type Integral. We can test on this type anc
the mpmath module in sympy to perform numerical integration of high p
Here is the code:

def least_squares(f, psi, Omega):

N = len(psi) - 1

A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))

x = sp.Symbol(’x’)

for i in range(N+1):
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igure 10: Tllustration of the oscillatory behavior of two Lagrange polynomials
ased on 12 uniformly spaced points (marked by circles).

Interpolation by Lagrange polynomials of degree 7 1 Interpolation by Lagrange polynomials of degree 14

—— approximation —— approximation:
- - exact 10 - - exact

%5 0.2 0.4 06 0.8 1.0 0435 0.2 0.4 0.6 0.8 1.0

igure 11: Interpolation of an absolute value function by Lagrange polynomials
nd Chebyshev nodes as interpolation points: degree 7 (left) and 14 (right).

for j in range(i, N+1):
integrand = psil[il*psil[j]
I = sp.integrate(integrand, (x, Omega[0], Omegal1]))
if isinstance(I, sp.Integral):
# Could not integrate symbolically, fallback
# on numerical integration with mpmath.quad
integrand = sp.lambdify([x], integrand)
I = sp.mpmath.quad(integrand, [Omegal[0], Omegal[1]])
Afi,j] = A[j,i] = I
integrand = psil[i]*f
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)

8% 0.2 0.4 0.6 0.8 1.0

Figure 12: TIllustration of the less oscillatory behavior of two Lagrange
mials based on 12 Chebyshev points (marked by circles).

I = sp.integrate(integrand, (x, Omega[O], Omegal[1]))
if isinstance(I, sp.Integral):
integrand = sp.lambdify([x], integrand)
I = sp.mpmath.quad(integrand, [Omegal[0], Omegal1]])

b[i,0] = I
c = A.LUsolve(b)
u=0

for i in range(len(psi)):
u += c[i,0]*psil[i]
return u

3 Finite element basis functions

The specific basis functions exemplified in Section 2 are in general nonzer
entire domain €, see Figure 13 for an example where we plot ¢ (z) =
and () = sin 27z together with a possible sum u(z) = 4vg(x) —
We shall now turn the attention to basis functions that have compact
meaning that they are nonzero on only a small portion of 2. Morec
shall restrict the functions to be piecewise polynomials. This means t
domain is split into subdomains and the function is a polynomial on one
subdomains, see Figure 14 for a sketch involving locally defined hat fu
that make u =5 ; ¢j¥; piecewise linear. At the boundaries between subx
one normally forces continuity of the function only so that when connec
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olynomials from two subdomains, the derivative becomes discontinuous. These
rpe of basis functions are fundamental in the finite element method.

N 7/"0
—
— u=4y, _%1/11

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 13: A function resulting from adding two sine basis functions.

We first introduce the concepts of elements and nodes in a simplistic fashion
3 often met in the literature. Later, we shall generalize the concept of an
ement, which is a necessary step to treat a wider class of approximations within
1e family of finite element methods. The generalization is also compatible with
1e concepts used in the FEniCS® finite element software.

.1 Elements and nodes

et us divide the interval  on which f and u are defined into non-overlapping
1bintervals Q(¢), e = 0,..., N,:

Q=00 y...uQWe) (51)

Je shall for now refer to Q(¢) as an element, having number e. On each element
e introduce a set of points called nodes. For now we assume that the nodes
re uniformly spaced throughout the element and that the boundary points
f the elements are also nodes. The nodes are given numbers both within an
ement and in the global domain. These are referred to as local and global node
umbers, respectively. Figure 15 shows element boundaries with small vertical

Shttp://fenicsproject.org
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o 1 P2

Figure 14: A function resulting from adding three local piecewise line
functions.

lines, nodes as small disks, element numbers in circles, and global node 1
under the nodes.

2.5F
2.0f
1.5¢
1.0}
0.5F |
0.0} + + + + + > 2
—os| 0 1 2 3 4 5 ]
_10l 1) QW 0® Q®) QW

-13 0 2 4 6

Figure 15: Finite element mesh with 5 elements and 6 nodes.

Nodes and elements uniquely define a finite element mesh, whicl
discrete representation of the domain in the computations. A common
case is that of a uniformly partitioned mesh where each element has t]
length and the distance between nodes is constant.
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xample. On Q = [0, 1] we may introduce two elements, Q) = [0,0.4] and
() = [0.4,1]. Furthermore, let us introduce three nodes per element, equally
»aced within each element. Figure 16 shows the mesh. The three nodes in
ement number 0 are o = 0, 21 = 0.2, and x5 = 0.4. The local and global node
umbers are here equal. In element number 1, we have the local nodes xg = 0.4,
1 = 0.7, and zo = 1 and the corresponding global nodes zo = 0.4, z3 = 0.7,
ad z4 = 1. Note that the global node x5 = 0.4 is shared by the two elements.

0.5¢

0.4f

0.3F

0.2}

0.1} 1

0.0 o + ® + >,
-0.1f 0 1 2 3 4 1
_0al 0 QW

-0.2 Ob dZ d4 dﬁ d8 iO iZ

Figure 16: Finite element mesh with 2 elements and 5 nodes.

For the purpose of implementation, we introduce two lists or arrays: nodes
ir storing the coordinates of the nodes, with the global node numbers as indices,
nd elements for holding the global node numbers in each element, with the
rcal node numbers as indices. The nodes and elements lists for the sample
1esh above take the form

1odes = [0, 0.2, 0.4, 0.7, 1]
slements = [[0, 1, 2], [2, 3, 4]1]

ooking up the coordinate of local node number 2 in element 1 is here done by
odes [elements[1] [2]] (recall that nodes and elements start their numbering
b 0).

The numbering of elements and nodes does not need to be regular. Figure 17
10ws and example corresponding to

1odes = [1.5, 5.5, 4.2, 0.3, 2.2, 3.1]
slements = [[2, 1], [4, 51, [0, 41, [3, 0], [5, 211

.2 The basis functions

jonstruction principles. Finite element basis functions are in this text rec-
snized by the notation ¢;(x), where the index now in the beginning corresponds
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Figure 17: Example on irregular numbering of elements and node

to a global node number. In the current approximation problem we shal
take ¥; = p;.

Let i be the global node number corresponding to local node 7 in
number e. The finite element basis functions ¢; are now defined as foll

e If local node number 7 is not on the boundary of the element, ta
to be the Lagrange polynomial that is 1 at the local node numbe
zero at all other nodes in the element. On all other elements, ; :

e If local node number r is on the boundary of the element, let ; 1
up of the Lagrange polynomial over element e that is 1 at node i, cc
with the Lagrange polynomial over element e 4+ 1 that is also 1 at
On all other elements, ¢; = 0.

A visual impression of three such basis functions are given in Figure 18

Properties of ¢;. The construction of basis functions according to th
ples above lead to two important properties of ;(x). First,

pi(x;) = 6ij, by = { (1): 27&;:
when z; is a node in the mesh with global node number j. The result ¢;(a
arises because the Lagrange polynomials are constructed to have exac
property. The property also implies a convenient interpretation of ¢; as t
of u at node 7. To show this, we expand u in the usual way as > ic
choose ¥; = p;:

u(@) = Y ei() = Y cip;(mi) = cipilws) = ;.
JELs JE€Ls
Because of this interpretation, the coefficient ¢; is by many named u; o
Second, ¢;(x) is mostly zero throughout the domain:
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1.0

igure 18: Illustration of the piecewise quadratic basis functions associated
ith nodes in element 1.

e ;(x) # 0 only on those elements that contain global node 4,

o ¢;(x)pj(x) # 0 if and only if 4 and j are global node numbers in the same
element.

ince A;; is the integral of ¢;¢; it means that most of the elements in the
sefficient matriz will be zero. We will come back to these properties and use
1em actively in computations to save memory and CPU time.

We let each element have d+ 1 nodes, resulting in local Lagrange polynomials
f degree d. It is not a requirement to have the same d value in each element,
ut for now we will assume so.

.3 Example on piecewise quadratic finite element func-
tions

igure 18 illustrates how piecewise quadratic basis functions can look like (d = 2).
Te work with the domain Q = [0, 1] divided into four equal-sized elements, each
aving three nodes. The nodes and elements lists in this particular example
ecome

1wodes = [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0]
slements = [[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]]
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Figure 19 sketches the mesh and the numbering. Nodes are marked wit.
on the x axis and element boundaries are marked with vertical dashed
Figure 18.

0.5

0.4}

0.3}

0.2f

0.1} :

0.0t S + © + > 5
-0.1} 0 1 2 3 4 .
-0.2} o o

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 12

Figure 19: Sketch of mesh with 4 elements and 3 nodes per eleme

Let us explain in detail how the basis functions are constructed ac
to the principles. Consider element number 1 in Figure 18, Q) = [0
with local nodes 0, 1, and 2 corresponding to global nodes 2, 3, and
coordinates of these nodes are 0.25, 0.375, and 0.5, respectively. We defi
Lagrange polynomials on this element:

1. The polynomial that is 1 at local node 1 (z = 0.375, global node 3
up the basis function ¢3(z) over this element, with p3(x) = 0 out
element.

2. The Lagrange polynomial that is 1 at local node 0 is the "rig
of the global basis function ¢o(x). The ”left part” of ¢o(x) cor
a Lagrange polynomial associated with local node 2 in the neig
element Q(®) = [0,0.25].

3. Finally, the polynomial that is 1 at local node 2 (global node 4) is
part” of the global basis function ¢4(z). The "right part” comes f
Lagrange polynomial that is 1 at local node 0 in the neighboring
Q2 =10.5,0.75].

As mentioned earlier, any global basis function ¢;(x) is zero on eleme
do not contain the node with global node number 3.

The other global functions associated with internal nodes, ¢1, @5, anc
all of the same shape as the drawn 3, while the global basis functions as
with shared nodes also have the same shape, provided the elements ar
same length.
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1.0

igure 20: Illustration of the piecewise linear basis functions associated with
odes in element 1.

.4 Example on piecewise linear finite element functions

igure 20 shows piecewise linear basis functions (d = 1). Also here we have
ur elements on Q = [0,1]. Consider the element Q) = [0.25,0.5]. Now there
re no internal nodes in the elements so that all basis functions are associated
ith nodes at the element boundaries and hence made up of two Lagrange
olynomials from neighboring elements. For example, ¢1(x) results from the
agrange polynomial in element 0 that is 1 at local node 1 and 0 at local node
, combined with the Lagrange polynomial in element 1 that is 1 at local node 0
nd 0 at local node 1. The other basis functions are constructed similarly.

Explicit mathematical formulas are needed for ¢;(z) in computations. In the
iecewise linear case, one can show that

0, T < Ti-1,
v ) @) /(- wie), i Sa <,
(Pz(x) - 1-— (ZC — x,-)/(aci_H — .’Ei), Z; <z < Tit1, (53)
0, T 2> Tiy1-

ere, xj, j =1 — 1,4,%+ 1, denotes the coordinate of node j. For elements of
qual length A the formulas can be simplified to
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0, T < Ti-1,
() = (x—zi—1)/h, xi1 <<y
i 1—(z—z)/h, = <z<mit,
0, T > Tip1

3.5 Example on piecewise cubic finite element basis
tions

Piecewise cubic basis functions can be defined by introducing four nc
element. Figure 21 shows examples on ¢;(z), i = 3,4,5,6, associat
element number 1. Note that ¢4 and 5 are nonzero on element number
3 and @ are made up of Lagrange polynomials on two neighboring el

Figure 21: Illustration of the piecewise cubic basis functions associat
nodes in element 1.

We see that all the piecewise linear basis functions have the same ”hat
They are naturally referred to as hat functions, also called chapeau fu
The piecewise quadratic functions in Figure 18 are seen to be of tw
”Rounded hats” associated with internal nodes in the elements and sor
”sombrero” shaped hats associated with element boundary nodes. High
basis functions also have hat-like shapes, but the functions have pro1
oscillations in addition, as illustrated in Figure 21.

A common terminology is to speak about linear elements as elements v
local nodes associated with piecewise linear basis functions. Similarly, ¢
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lements and cubic elements refer to piecewise quadratic or cubic functions
ver elements with three or four local nodes, respectively. Alternative names,
equently used later, are P1 elements for linear elements, P2 for quadratic
ements, and so forth: Pd signifies degree d of the polynomial basis functions.

.6 Calculating the linear system

he elements in the coefficient matrix and right-hand side are given by the
rmulas (27) and (28), but now the choice of 9; is ;. Consider P1 elements
here ¢;(z) piecewise linear. Nodes and elements numbered consecutively from
ft to right in a uniformly partitioned mesh imply the nodes

zi=ih, i=0,...,N,

nd the elements

QW = [z;,41] = [ih, (i + 1)h), i=0,...,N,=N—1. (55)

/e have in this case N elements and N + 1 nodes, and Q = [zg,zy]. The
rmula for ¢;(z) is given by (54) and a graphical illustration is provided in
igures 20 and 23. First we clearly see from the figures the very important
roperty @;(x)p;(xz) # 0 if and only if j =i —1, j =14, or j =i+ 1, or

lternatively expressed, if and only if ¢ and j are nodes in the same element.

'therwise, ; and ¢; are too distant to have an overlap and consequently their
roduct vanishes.

2.5¢
2.0f
1.5F
1.0t

_10k 00 QW 0® 0B QW
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igure 22: Illustration of the piecewise linear basis functions corresponding to
lobal node 2 and 3.

‘alculating a specific matrix entry. Let us calculate the specific matrix
atry Ag g = fQ paps dx. Figure 22 shows how ¢ and (3 look like. We realize
om this figure that the product pa¢ps # 0 only over element 2, which contains
ode 2 and 3. The particular formulas for p2(z) and @3(z) on [x2, x3] are found
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from (54). The function @3 has positive slope over [x2, z3] and corresp
the interval [z;_1,z;] in (54). With ¢ = 3 we get

o3(z) = (z — x2)/h,

while @2 (x) has negative slope over [z, z3] and corresponds to setting
(54),

po(x) =1—(z —x2)/h.

We can now easily integrate,

o3 T— 29\ T — Ta h
A_:/gogodac:/ (1— ) dr = —.
2,3 o 203 . h h 6

The diagonal entry in the coefficient matrix becomes

22—\ 3 z—22\’ h
Ag o = ! 1— 2 =_.
2,2 Al ( h ) d]l'-f‘/gc2 ( h ) dx 3

The entry As; has an the integral that is geometrically similar to the s
in Figure 22, so we get As 1 = h/6.

Calculating a general row in the matrix. We can now genera
calculation of matrix entries to a general row number i. The entry
fﬂ wipi—1 dz involves hat functions as depicted in Figure 23. Since the
is geometrically identical to the situation with specific nodes 2 and 3, wi
that A;;—1 = Ai i1 = h/6 and A;; = 2h/3. However, we can comy
integral directly too:

Ai,i—l :/%%—1 dx
Q

Ti_1 z; Tyl
= / Yipi—1dz + / Yipi—1 dx + / Yipi—1dz
x 1 xr

i—2 Tq— i

[ —— | S S——
;=0 pi—1=0
T fx— T — X1 h
= 1-— de = —.
[0 () e
—_—
wi(x) pi—1(x)

The particular formulas for ¢;—1(x) and @;(x) on [z;-1,x;] are fow
(54): ¢; is the linear function with positive slope, corresponding to the
[zi—1,2;] in (54), while ¢;_1 has a negative slope so the definition in
[zi, zit1] in (54) must be used. (The appearance of 7 in (54) and the
might be confusing, as we speak about two different 7 indices.)

The first and last row of the coefficient matrix lead to slightly «
integrals:
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igure 23: Illustration of two neighboring linear (hat) functions with general
ode numbers.

9 o -0\ h
Ao = ngodxz 5 1-— " dac:g.

imilarly, Ay, n involves an integral over only one element and equals hence h/3.
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igure 24: Right-hand side integral with the product of a basis function and
1e given function to approximate.

The general formula for b;, see Figure 24, is now easy to set up

o= [ e@i@ar= [" T @ an [ (1- ’”jﬁ) fw)da.

i1 x;

(56)
Te need a specific f(z) function to compute these integrals. With two equal-sized
ements in Q = [0,1] and f(z) = (1 — z), one gets

h 210 2 2—-3h
A:E 1 4 1], bzﬁ 12 — 14h
01 2 10 — 17h
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The solution becomes

h? 5
COZF, Clzh—gh2, 62:2h—

23
Zh2.
6

The resulting function

u(z) = copo(x) + c1p1(7) + capa(x)

is displayed in Figure 25 (left). Doubling the number of elements to fo
to the improved approximation in the right part of Figure 25.

0% 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6

Figure 25: Least squares approximation of a parabola using 2 (left
(right) P1 elements.

3.7 Assembly of elementwise computations

The integrals above are naturally split into integrals over individual e
since the formulas change with the elements. This idea of splitting the
is fundamental in all practical implementations of the finite element mue

Let us split the integral over 2 into a sum of contributions from each

Aij = /Q%‘%' de =3 A, Af)= /Q( | pigj da.

€

Now, AZ(-Z-) # 0 if and only if ¢ and j are nodes in element e. Introduce i :
as the mapping of local node number r in element e to the global node n
This is just a short mathematical notation for the expression i=elements
in a program. Let r and s be the local node numbers corresponding to th
node numbers i = g(e,r) and j = q(e,s). With d nodes per element,
nonzero elements in Agej) arise from the integrals involving basis functic
indices corresponding to the global node numbers in element number e

/ Pa(e,r)Pq(e,s) dz, 7r,s=0,...,d.
Qe
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hese contributions can be collected in a (d + 1) x (d + 1) matrix known as
1e element matriz. Let I; = {0,...,d} be the valid indices of r and s. We

itroduce the notation

A = {AL]}, rsel
r the element matrix. For the case d = 2 we have
Ay AT AR
Ale) — Agf’«()) Ale) o jle)
ALY AL AL

riven the numbers fl,(fs?, we should according to (57) add the contributions to

1e global coefficient matrix by

Agler)ale.s) = Agler).qles) T Av(":ig’ r,s €lq. (58)
his process of adding in elementwise contributions to the global matrix is called
nite element assembly or simply assembly. Figure 26 illustrates how element
1atrices for elements with two nodes are added into the global matrix. More
secifically, the figure shows how the element matrix associated with elements 1
ad 2 assembled, assuming that global nodes are numbered from left to right in
1e domain. With regularly numbered P3 elements, where the element matrices
ave size 4 x 4, the assembly of elements 1 and 2 are sketched in Figure 27.

After assembly of element matrices corresponding to regularly numbered
ements and nodes are understood, it is wise to study the assembly process for
regularly numbered elements and nodes. Figure 17 shows a mesh where the
lements array, or ¢(e,r) mapping in mathematical notation, is given as

xlements = [[2, 1], [4, 5], [0, 41, [3, 0], [5, 2]]

he associated assembly of element matrices 1 and 2 is sketched in Figure 28.
These three assembly processes can also be animated®.

The right-hand side of the linear system is also computed elementwise:

bi = /Qf(x)%(x)d:r = Zbge)’ b = f@)pi(x) da. (59)

Qe
/e observe that bl(-e) # 0 if and only if global node i is a node in element e.

/ith d nodes per element we can collect the d + 1 nonzero contributions bz(-e),
v i =q(e,r), r € Iy, in an element vector

b = (b}, rely.

hese contributions are added to the global right-hand side by an assembly
rocess similar to that for the element matrices:

by(e,r) = Dg(e,r) + b, rely.

(60)
Shttp://tinyurl.com/k3sdbuv/pub/mov-fem/fe_assembly.html
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/
/

Figure 26: Illustration of matrix assembly: regularly numbered P1 ele

3.8 Mapping to a reference element

Instead of computing the integrals

Asfg = /Q( : (pq(e,r)(x)@q(e,s)(w) dx

over some element Q(¢) = [z, xg], it is convenient to map the element
[xL,zR] to a standardized reference element domain [—1,1]. (We h:
introduced zy and zg as the left and right boundary points of an a
element. With a natural, regular numbering of nodes and elements fror
right through the domain, we have z; = z, and xgp = x.41 for P1 elen

Let X € [—1,1] be the coordinate in the reference element. A linear «
mapping from X to z reads

1 1
x = E(xL +ar)+ §(xR —z0)X.
This relation can alternatively be expressed by

1
T=2Tm+ §hX7

where we have introduced the element midpoint z,, = (z1 + zr)/2
element length h = xg — xp.
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igure 27: Illustration of matrix assembly: regularly numbered P3 elements.

Integrating on the reference element is a matter of just changing the integra-
on variable from z to X. Let

@r(X) = @g(e,r) (#(X)) (63)

e the basis function associated with local node number r in the reference
ement. The integral transformation reads

1 . dx

A= [ ewen@oren@dr= [ p(N@X) X (64

dX

he stretch factor dax/dX between the x and X coordinates becomes the deter-
iinant of the Jacobian matrix of the mapping between the coordinate systems
1 2D and 3D. To obtain a uniform notation for 1D, 2D, and 3D problems we
1erefore replace dx/dX by det J already now. In 1D, det J = dz/dX = h/2.
he integration over the reference element is then written as
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Figure 28: Illustration of matrix assembly: irregularly numbered P1 ele

1
Al) = / Gr(X)@s(X) det J dX .
-1

The corresponding formula for the element vector entries becomes

1
19 = [ F@egen(@ds = [ (X))@ (X) det.Tax.

Since we from now on will work in the reference element, we need
mathematical formulas for the basis functions ¢;(x) in the reference
only, i.e., we only need to specify formulas for @,.(X). This is a very co
simplification compared to specifying piecewise polynomials in the |
domain.

The @, (z) functions are simply the Lagrange polynomials defined
the local nodes in the reference element. For d = 1 and two nodes per
we have the linear Lagrange polynomials

Fo(X) = (1~ X)
i(X) = 51+ X)

Quadratic polynomials, d = 2, have the formulas
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- 1
Bo(X) = S (X ~1)X (69)
Pr(X)=1-X? (70)
- 1
P2(X) = g(X +1)X (71)
1 general,
d
X — X,
H Xy~ X'
here X(gy,...,X(q) are the coordinates of the local nodes in the reference
ement. These are normally uniformly spaced: Xy = —1+ 2r/d, r € Iy.
<

Why reference elements?

The great advantage of using reference elements is that the formulas for
the basis functions, ¢, (X), are the same for all elements and independent
of the element geometry (length and location in the mesh). The geometric
information is ”factored out” in the simple mapping formula and the asso-
ciated det J quantity, but this information is (here taken as) the same for
element types. Also, the integration domain is the same for all elements.

.9 Example: Integration over a reference element

o illustrate the concepts from the previous section in a specific example, we
ow consider calculation of the element matrix and vector for a specific choice
fdand f(z). A simple choice is d = 1 (P1 elements) and f(z) = z(1 — x)

n Q = [0,1]. We have the general expressions (65) and (66) for Aﬁi and b'°.

/riting these out for the choices (67) and (68), and using that det J = h/2, we
an do the following calculations of the element matrix entries:

49

A= [ a@agix

:/_11;(1_)() (l—X)dX:/_ll(l—X)QdX—
= [ a0z gax

:/_11;(14—)() ( X)dX:/_ll(l—X2)dX 3

1 1
1 1 h h h
“1+X)-(1+X)-dX = - 1+ X)%dX = -
,12( + )2( + )2 8/,1( +X) 3

The corresponding entries in the element vector becomes

. h
B = / F@(X)@0(X) 2dX
1 1 h
=/ (Tm + hX)(l—(xm+2hX))§(1—X)§dX
= ——hg—l— fhza: — —h2 — 1har:2 + 1hgc
24 6 " 12 2 T T

(e) ' h
b = B fa(X)g1(X)5dX

:/_I(Im_‘_%hX)(l_(Im‘Fth))%(l—kX)ng

2

1. 1 1 1 1
=——h3— _n? —h? — Zha? + Zhi,, .
91 T Mt g g W 5 m

In the last two expressions we have used the element midpoint ..

Integration of lower-degree polynomials above is tedious, and highe:
polynomials involve very much more algebra, but sympy may help. For ¢
we can easily calculate (73), (73), and (77) by

>>> import sympy as sp

>>> x, x_m, h, X = sp.symbols(’x x_m h X’)
>>> sp.integrate(h/8*(1-X)**2, (X, -1, 1))
h/3

>>> sp.integrate(h/8*(1+X)*(1-X), (X, -1, 1))
h/6

>>> x = x_m + h/2xX
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»>> b_0 = sp.integrate(h/4*x*(1-x)*(1-X), (X, -1, 1))
>>> print b_0
-h**3/24 + h**2*x_m/6 - h*x2/12 - h*x_m**2/2 + h*x_m/2

or inclusion of formulas in documents (like the present one), sympy can print
xpressions in KTEX format:

>>> print sp.latex(b_0, mode=’plain’)

- \frac{1}{24} h~{3} + \frac{1}{6} h~{2} x_{m}
- \frac{1}{12} h~{2} - \half h x_{m}~{2}

¢ \half h x_{m}

Implementation

ased on the experience from the previous example, it makes sense to write
»me code to automate the analytical integration process for any choice of finite
ement basis functions. In addition, we can automate the assembly process
nd linear system solution. Appropriate functions for this purpose document
[l details of all steps in the finite element computations and can found in the
10dule file fe_approxiD.py’. The key steps in the computational machinery
re now explained in detail in terms of code and text.

.1 Integration

irst we need a Python function for defining ¢, (X) in terms of a Lagrange
olynomial of degree d:

import sympy as sp
import numpy as np

lef phi_r(r, X, d):

if isinstance(X, sp.Symbol):
h = sp.Rational(1l, d) # node spacing
nodes = [2*i*h - 1 for i in range(d+1)]

el'sel
# assume X is numeric: use floats for nodes
nodes = np.linspace(-1, 1, d+1)

return Lagrange_polynomial(X, r, nodes)

lef Lagrange_polynomial(x, i, points):

p =
for k in range(len(points)):
if k !'= i:
p *= (x - points[k])/(points[i] - points[k])
return p

'bserve how we construct the phi_r function to be a symbolic expression for
~(X) if X is a Symbol object from sympy. Otherwise, we assume that X is a float
bject and compute the corresponding floating-point value of @,.(X). Recall that

"http://tinyurl.com/jvzzcfn/fem/fe_approxiD.py
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the Lagrange_polynomial function, here simply copied from Section 2.’
with both symbolic and numeric variables.

The complete basis @o(X),...,Pq4(X) on the reference element, rep:
as a list of symbolic expressions, is constructed by

def basis(d=1):
X = sp.Symbol(’X’)
phi = [phi_r(r, X, d) for r in range(d+1)]
return phi

Now we are in a position to write the function for computing the element

def element_matrix(phi, Omega_e, symbolic=True):
= len(phi)
= sp.zeros((n, n))
sp.Symbol (’X*)
if symbolic:
h = sp.Symbol(’h’)
else:
h = Omega_e[1] - Omega_e[0]
detJ = h/2 # dx/dX
for r in range(n):
for s in range(r, n):
A_e[r,s] = sp.integrate(phi[r]*phi[s]*detJ, (X, -1, 1
A_els,r] A_elr,s]
return A_e

n
A_
X

oI

In the symbolic case (symbolic is True), we introduce the element le
a symbol h in the computations. Otherwise, the real numerical valu
element interval Omega_e is used and the final matrix elements are numt
symbols. This functionality can be demonstrated:

>>> from fe_approxlD import *

>>> phi = basis(d=1)

>>> phi

[1/2 - X/2, 1/2 + X/2]

>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=True)
[h/3, h/6]

[h/6, h/3]

>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=False)
[0.0333333333333333, 0.0166666666666667]
[0.0166666666666667, 0.0333333333333333]

The computation of the element vector is done by a similar procedt

def element_vector(f, phi, Omega_e, symbolic=True):
n = len(phi)
= sp.zeros((n, 1))
ake f a function of X
sp.Symbol(°X?)
if symbolic:
h = sp.Symbol(’h’)
else:
h = Omega_e[1] - Omega_e[0]
x = (Omega_e[0] + Omega_e[1])/2 + h/2*X # mapping

=0l

b_
#
X
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f = f.subs(’x’, x) # substitute mapping formula for x
detJ = h/2 # dx/dX
for r in range(n):

b_e[r] = sp.integrate(f*phil[r]l*detJ, (X, -1, 1))
return b_e

‘ere we need to replace the symbol x in the expression for £ by the mapping
rrmula such that £ can be integrated in terms of X, cf. the formula b =
L FE(X)@n(X) BdX.

The integration in the element matrix function involves only products of
olynomials, which sympy can easily deal with, but for the right-hand side sympy
1ay face difficulties with certain types of expressions f£. The result of the integral

then an Integral object and not a number or expression as when symbolic

itegration is successful. It may therefore be wise to introduce a fallback on
umerical integration. The symbolic integration can also take much time before
n unsuccessful conclusion so we may also introduce a parameter symbolic and
't it to False to avoid symbolic integration:

lef element_vector(f, phi, Omega_e, symbolic=True):

if symbolic:
I = sp.integrate(f*phil[r]*detJ, (X, -1, 1))
if not symbolic or isinstance(I, sp.Integral):
h = Omega_e[1] - Omega_e[0] # Ensure h is numerical
detJ = h/2
integrand = sp.lambdify([X], f*phil[r]*detJ)
I = sp.mpmath.quad(integrand, [-1, 1])
b_elr] =TI

umerical integration requires that the symbolic integrand is converted to a plain
ython function (integrand) and that the element length h is a real number.

.2 Linear system assembly and solution

he complete algorithm for computing and assembling the elementwise contribu-
ons takes the following form

lef assemble(nodes, elements, phi, f, symbolic=True):
N_n, N_e = len(nodes), len(elements)
if symbolic:

A = sp.zeros((N_n, N_n))
b = sp.zeros((N_n, 1)) # note: (N_n, 1) matrix
else:
A = np.zeros((N_n, N_n))
b = np.zeros(N_n)
for e in range(N_e):
Omega_e = [nodes[elements[e] [0]], nodes[elements[e] [-1]11]
A_e = element_matrix(phi, Omega_e, symbolic)
b_e = element_vector(f, phi, Omega_e, symbolic)

for r in range(len(elements[e])):
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for s in range(len(elements[e])):
Alelements[e] [r],elements[e] [s]] += A_elr,s]
blelements[e] [r]] += b_el[r]
return A, b

The nodes and elements variables represent the finite element mesh as e:
earlier.

Given the coefficient matrix A and the right-hand side b, we can c
the coefficients {c;},.7 in the expansion u(z) =}, c;jp; as the solutio
c of the linear system:

if symbolic:
¢ = A.LUsolve(b)
else:
¢ = np.linalg.solve(A, b)

When A and b are sympy arrays, the solution procedure implied by A.LUs
symbolic. Otherwise, A and b are numpy arrays and a standard numeric:
is called. The symbolic version is suited for small problems only (small N
since the calculation time becomes prohibitively large otherwise. Norm
symbolic integration will be more time consuming in small problems t
symbolic solution of the linear system.

4.3 Example on computing symbolic approximatior

We can exemplify the use of assemble on the computational case from Se«
with two P1 elements (linear basis functions) on the domain 2 = [0, 1]
first work with a symbolic element length:

>>> h, x = sp.symbols(’h x’)

>>> nodes = [0, h, 2xh]

>>> elements = [[0, 1], [1, 2]]

>>> phi = basis(d=1)

>>> f = x*x(1-x)

>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A

[h/3, h/6, 0]

[h/6, 2%h/3, h/6]

[ 0, h/6, h/3]

>>> b
[ h**2/6 - h**3/12]
L h*x*x2 — T7xh*x*x3/6]

[5%h**2/6 - 17*h*x3/12]

>>> ¢ = A.LUsolve(b)

>>> ¢

[ h**2/6]
[12% (7*h**2/12 - 35xh*%3/72)/(7*h)]
[ 7x(4%h*x*2/7 - 23*%h**3/21)/(2*h)]
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.4 Comparison with finite elements and interpolation/-
collocation

/e may, for comparison, compute the ¢ vector corresponding to an interpola-
on/collocation method with finite element basis functions. Choosing the nodes
5 points, the principle is

u(xl) = Z Cj@j(xi) = f(xz)a S Zs .

JETLs

he coefficient matrix A; ; = ¢;(x;) becomes the identity matrix because basis
mnction number j vanishes at all nodes, except node j: ¢;(z; = d;;. Therefore,

The associated sympy calculations are

>>> fn = sp.lambdify([x], f)

>>> ¢ = [fn(xc) for xc in nodes]
»>> ¢

[0, hx(1 - h), 2xh*x(1 - 2xh)]

hese expressions are much simpler than those based on least squares or projec-
on in combination with finite element basis functions.

.5 Example on computing numerical approximations

he numerical computations corresponding to the symbolic ones in Section 4.3,
nd still done by sympy and the assemble function, go as follows:

>>> nodes = [0, 0.5, 1]

»>> elements = [[0, 1], [1, 2]]

»>> phi = basis(d=1)

»>> x = sp.Symbol(’x’)

»>> f = x*x(1-x)

»>> A, b = assemble(nodes, elements, phi, f, symbolic=False)
>> A

[ 0.166666666666667, 0.0833333333333333, 0]
[0.0833333333333333, 0.333333333333333, 0.0833333333333333]
[ 0, 0.0833333333333333, 0.166666666666667]

»>> b
[ 0.03125]
[0.104166666666667]
[ 0.03125]
»>>> ¢ = A.LUsolve(b)
»>> ¢

[0.0416666666666666]
[ 0.291666666666667]
[0.0416666666666666]

The fe_approx1D module contains functions for generating the nodes and
lements lists for equal-sized elements with any number of nodes per element.
he coordinates in nodes can be expressed either through the element length
/mbol h (symbolic=True) or by real numbers (symbolic=False):
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nodes, elements = mesh_uniform(N_e=10, d=3, Omega=[0,1],
symbolic=True)

There is also a function

def approximate(f, symbolic=False, d=1, N_e=4, filename=’tmp.pdf’

which computes a mesh with N_e elements, basis functions of degree
approximates a given symbolic expression f by a finite element expansior
>_jcjpj(z). When symbolic is False, u(x) = >, ¢jp;(x) can be comy
a (large) number of points and plotted together with f(z). The construct
points from the solution vector ¢ is done elementwise by evaluating .
at a (large) number of points in each element in the local coordinate
and the discrete (x,u) values on each element are stored in separate arr
are finally concatenated to form a global array for « and for u. The de
found in the u_glob function in fe_approxiD.py.

4.6 The structure of the coefficient matrix

Let us first see how the global matrix looks like if we assemble symbolic
matrices, expressed in terms of h, from several elements:

>>> d=1; N_e=8; Omega=[0,1] # 8 linear elements on [0,1]
>>> phi = basis(d)

>>> f = x*(1-x)

>>> nodes, elements = mesh_symbolic(N_e, d, Omega)

>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A

[h/3, h/6, 0, 0, 0, 0, 0, 0, 0]
[h/6, 2%h/3, h/6, 0, 0, 0, 0, 0, 0]

0, h/6, 2¢¥h/3, h/6, 0, 0, 0, 0, 0]
[ o, 0, h/6, 2¥h/3, h/s, 0, 0, 0, 0]
[ o, 0, 0, h/6, 2%¥h/3, /6, 0, 0, 0]
[ o, 0, 0, 0, h/6, 2%*h/3, h/6, 0, 0]
[ o, 0, 0, 0, 0, h/6, 2%h/3, h/6, O]
[ o, 0, 0, 0, 0, 0, h/6, 2*%h/3, h/6]
Lo, 0, 0, 0, 0, 0, 0, h/6, h/3]

The reader is encouraged to assemble the element matrices by hand an
this result, as this exercise will give a hands-on understanding of w
assembly is about. In general we have a coefficient matrix that is tridie

56



2 1 0 0

1 4 1

0 1 4 1

) 0
A=¢ (79)
0 1 4 1

0

: -1 4 1

O -vv ver e e o012

The structure of the right-hand side is more difficult to reveal since it involves
n assembly of elementwise integrals of f(z(X))@,(X)h/2, which obviously
epend on the particular choice of f(z). Numerical integration can give some
1sight into the nature of the right-hand side. For this purpose it is easier to

ok at the integration in x coordinates, which gives the general formula (56).

or equal-sized elements of length h, we can apply the Trapezoidal rule at the
lobal node points to arrive at

N—-1

b= | geilm) fleo) + gerlan) fen) + 3 @ile) ) | (50

Jj=1

:{ shf(z;), i=0o0ri=N, (81)

hf(z;), 1<i<N-1

he reason for this simple formula is simply that ¢; is either 0 or 1 at the nodes
ad 0 at all but one of them.
Going to P2 elements (d=2) leads to the element matrix

L[ 4 2 -1
Al®) = ol 2 1602 (82)
-1 2 4

nd the following global assembled matrix from four elements:

4 2 -1.0 0 0 0 0 0

2 16 2 0 0 0 0 0 0

1 2 8 2 1.0 0 0 0

o0 2 162 0 0 0 o0
A="1 0 0 -1 2 8 2 -1 0 0 (83)

301 9 0 0 0 2 16 2 0 0

O 0 0 0 -1 2 8 2 —1

O 0 0 0 0 0 2 16 2

O 0 0 0 0 0 -1 2 4
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In general, for ¢ odd we have the nonzeroes

Aiico=—-1, Ai1,=2, A;=8, Aiy1,=2, Aijo;,=—
multiplied by h/30, and for ¢ even we have the nonzeros

Aifl,i = 27 Ai,i = 16, Ai+1,i = 2,

multiplied by h/30. The rows with odd numbers correspond to node
element boundaries and get contributions from two neighboring element
assembly process, while the even numbered rows correspond to internal 1
the elements where the only one element contributes to the values in th
matrix.

4.7 Applications

With the aid of the approximate function in the fe_approx1D module
easily investigate the quality of various finite element approximations
given functions. Figure 29 shows how linear and quadratic elements apprc
the polynomial f(z) = z(1 — )8 on Q = [0, 1], using equal-sized elemer
results arise from the program

import sympy as sp
from fe_approxlD import approximate
x = sp.Symbol(’x’)

approximate (f=x*(1-x)**8, symbolic=False, d=1, N_e=4)
approximate (f=x*(1-x)**8, symbolic=False, d=2, N_e=2)
approximate (f=x*(1-x)**8, symbolic=False, d=1, N_e=8)
approximate (f=x*(1-x)*x8, symbolic=False, d=2, N_e=4)

The quadratic functions are seen to be better than the linear ones for t
value of N, as we increase N. This observation has some generality:
degree is not necessarily better on a coarse mesh, but it is as we refi
mesh.

4.8 Sparse matrix storage and solution

Some of the examples in the preceding section took several minutes to c
even on small meshes consisting of up to eight elements. The main exp.
for slow computations is unsuccessful symbolic integration: sympy ms
lot of energy on integrals like [ f(x(X))@,(X)h/2dx before giving up,
program then resorts to numerical integration. Codes that can deal witk
number of basis functions and accept flexible choices of f(z) should com
integrals numerically and replace the matrix objects from sympy by the 1
efficient array objects from numpy.

Another reason for slow code is related to the fact that most of the
entries A; ; are zero, because (¢;,¢;) = 0 unless ¢ and j are nodes in t
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igure 29: Comparison of the finite element approximations: 4 P1 elements with
nodes (upper left), 2 P2 elements with 5 nodes (upper right), 8 P1 elements
ith 9 nodes (lower left), and 4 P2 elements with 9 nodes (lower right).

ement. A matrix whose majority of entries are zeros, is known as a sparse
atrix. The sparsity should be utilized in software as it dramatically decreases
1e storage demands and the CPU-time needed to compute the solution of the
near system. This optimization is not critical in 1D problems where modern
»mputers can afford computing with all the zeros in the complete square matrix,
ut in 2D and especially in 3D, sparse matrices are fundamental for feasible
nite element computations.

In 1D problems, using a numbering of nodes and elements from left to right
ver the domain, the assembled coefficient matrix has only a few diagonals
ifferent from zero. More precisely, 2d + 1 diagonals are different from zero.
7ith a different numbering of global nodes, say a random ordering, the diagonal
sructure is lost, but the number of nonzero elements is unaltered. Figures 30
nd 31 exemplify sparsity patterns.

The scipy.sparse library supports creation of sparse matrices and linear
rstem solution.

e scipy.sparse.diags for matrix defined via diagonals

e scipy.sparse.lil_matrix for creation via setting matrix entries
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Figure 30: Matrix sparsity pattern for left-to-right numbering (left) and
numbering (right) of nodes in P1 elements.
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Figure 31: Matrix sparsity pattern for left-to-right numbering (left) and
numbering (right) of nodes in P3 elements.

e scipy.sparse.dok_matrix for creation via setting matrix entries

5 Comparison of finite element and finite c
ence approximation

The previous sections on approximating f by a finite element function ¢
the projection/Galerkin or least squares approaches to minimize the :
mation error. We may, alternatively, use the collocation/interpolation
as described in Section 4.4. Here we shall compare these three approacl
what one does in the finite difference method when representing a given :
on a mesh.

5.1 Finite difference approximation of given functic

Approximating a given function f(x) on a mesh in a finite difference cons
typically just sample f at the mesh points. If u; is the value of the approx
at the mesh point z;, we have u; = f(z;). The collocation/interpolation
using finite element basis functions gives exactly the same representa
shown Section 4.4,
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u(z;) = ¢ = fa;).

How does a finite element Galerkin or least squares approximation differ from
1is straightforward interpolation of f? This is the question to be addressed
ext. We now limit the scope to P1 elements since this is the element type that
ives formulas closest to those arising in the finite difference method.

.2 Finite difference interpretation of a finite element ap-
proximation

he linear system arising from a Galerkin or least squares approximation reads
1 general

> (i) = (foihi), i€,

J€ETLs

1 the finite element approximation we choose ¥; = ;. With ¢; corresponding
> P1 elements and a uniform mesh of element length h we have in Section 3.6
alculated the matrix with entries (¢;, ¢;). Equation number 4 reads

B i+ i+ i) = (0. (34)
he first and last equation, corresponding to ¢ = 0 and ¢ = N are slightly
ifferent, see Section 4.6.

The finite difference counterpart to (84) is just w; = f; as explained in
ection 5.1. To easier compare this result to the finite element approach to
pproximating functions, we can rewrite the left-hand side of (84) as

1
h(ui + g(ui_l — 2u; + Ui+1)) . (85)

hinking in terms of finite differences, we can write this expression using finite
ifference operator notation:

2

h

hich is nothing but the standard discretization of

2
—u').
gv)

Before interpreting the approximation procedure as solving a differential
juation, we need to work out what the right-hand side is in the context of P1
ements. Since ¢; is the linear function that is 1 at x; and zero at all other
odes, only the interval [z;_1,%;11] contribute to the integral on the right-hand
de. This integral is naturally split into two parts according to (54):

h(u+
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(o) = [ s@p—mte+ [ f@50 - - )

i

However, if f is not known we cannot do much else with this expressic
clear that many values of f around z; contributes to the right-hand s
just the single point value f(x;) as in the finite difference method.

To proceed with the right-hand side, we can turn to numerical inte
schemes. The Trapezoidal method for (f,¢;), based on sampling the in
fi at the node points x; = ih gives

N-1

(o) = [ Fode = hg(fao)eitan) + fan)aitan)) +h 3 Fla)s

Jj=1

Since ¢; is zero at all these points, except at x;, the Trapezoidal rule c
to one term:

(fy i) = hf(xi),

fori=1,...,N — 1, which is the same result as with collocation/intery
and of course the same result as in the finite difference method. For 4
i = N we get contribution from only one element so

Simpson’s rule with sample points also in the middle of the elem
Tiys = (x; + zi4+1)/2, can be written as

hf(z;), i=0,i=N.

[NCR

N-1 N-1

[ at@de =5 { gten)+2 3 o) +4 3 aay) + fan)

j=1 =0
where h = h /2 is the spacing between the sample points. Our integran
f;. For all the node points, ¢;(z;) = d;;, and therefore Z;V:_ll flzy)y

f(x;). At the midpoints, goi(xii%) = 1/2 and gpi(a:j+%) =0 for j >
j <i—1. Consequently,

=

1
f(frj+%)%‘(1’j+%) = 5(]095]'7% +37j+%)‘

I
o

J
When 1 <7 < N — 1 we then get

(F, 00~ B Uiy + Fi ¥ Finy).
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his result shows that, with Simpson’s rule, the finite element method operates
ith the average of f over three points, while the finite difference method just
pplies f at one point. We may interpret this as a ”smearing” or smoothing of
by the finite element method.

We can now summarize our findings. With the approximation of (f, ;) by
1e Trapezoidal rule, P1 elements give rise to equations that can be expressed
5 a finite difference discretization of

h2
u+ FUH =f, (0)=4d'(L)=0, (89)

xpressed with operator notation as

[u+ %QDIDIu = f]. (90)

s h — 0, the extra term proportional to u” goes to zero, and the two methods
re then equal.
With the Simpson’s rule, we may say that we solve

h? -
[u+ FDxDxu = fli, (91)
here f; means the average %(fi_l/g + fi+ fiv1/2)-
The extra term %Qu” represents a smoothing effect: with just this term,

e would find u by integrating f twice and thereby smooth f considerably.

1 addition, the finite element representation of f involves an average, or a
noothing, of f on the right-hand side of the equation system. If f is a noisy
inction, direct interpolation w; = f; may result in a noisy u too, but with a
-alerkin or least squares formulation and P1 elements, we should expect that u
smoother than f unless h is very small.
The interpretation that finite elements tend to smooth the solution is valid
1 applications far beyond approximation of 1D functions.

.3 Making finite elements behave as finite differences

/ith a simple trick, using numerical integration, we can easily produce the result
; = fi with the Galerkin or least square formulation with P1 elements. This is
seful in many occasions when we deal with more difficult differential equations
nd want the finite element method to have properties like the finite difference
1ethod (solving standard linear wave equations is one primary example).

‘omputations in physical space. We have already seen that applying the

rapezoidal rule to the right-hand side (f, ;) simply gives f sampled at z;.

sing the Trapezoidal rule on the matrix entries A; ; = (¢;, ;) involves a sum

> eilar)ps (),
p
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but ¢;(xr) = dir and p;(zr) = d;5. The product ¢;p; is then differe
zero only when sampled at x; and ¢ = j. The Trapezoidal approximatio
integral is then

(pirpj) = h, i=j,

and zero if ¢ # j. This means that we have obtained a diagonal matrix! "
and last diagonal elements, (¢, vo) and (¢, @nN) get contribution or
the first and last element, respectively, resulting in the approximate
value h/2. The corresponding right-hand side also has a factor 1/2 for ¢
i = N. Therefore, the least squares or Galerkin approach with P1 elemc
Trapezoidal integration results in

Ci:fi, 1€ L.

Simpsons’s rule can be used to achieve a similar result for P2 elemen
diagonal coefficient matrix, but with the previously derived average of |
right-hand side.

Elementwise computations. Identical results to those above will
we perform elementwise computations. The idea is to use the Trapezoi
on the reference element for computing the element matrix and vector
assembled, the same equations ¢; = f(x;) arise. Exercise 19 encourage:
carry out the details.

Terminology. The matrix with entries (¢;, ;) typically arises fror
proportional to u in a differential equation where u is the unknown f
This matrix is often called the mass matriz, because in the early day
finite element method, the matrix arose from the mass times accelerati
in Newton’s second law of motion. Making the mass matrix diagonal
numerical integration, as demonstrated above, is a widely used techniqu
called mass lumping. In time-dependent problems it can sometimes enh:
numerical accuracy and computational efficiency of the finite element
However, there are also examples where mass lumping destroys accurac

6 A generalized element concept

So far, finite element computing has employed the nodes and eleme
together with the definition of the basis functions in the reference
Suppose we want to introduce a piecewise constant approximation with o
function @o(x) = 1 in the reference element, corresponding to a @;(x) 1
that is 1 on element number 7 and zero on all other elements. Although 1
associate the function value with a node in the middle of the elements, t
no nodes at the ends, and the previous code snippets will not work bec
cannot find the element boundaries from the nodes list.

64



.1 Cells, vertices, and degrees of freedom

/e now introduce cells as the subdomains Q(¢) previously referred as elements.

he cell boundaries are denoted as vertices. The reason for this name is that
slls are recognized by their vertices in 2D and 3D. We also define a set of degrees
f freedom, which are the quantities we aim to compute. The most common type
f degree of freedom is the value of the unknown function u at some point. (For
cample, we can introduce nodes as before and say the degrees of freedom are the
alues of u at the nodes.) The basis functions are constructed so that they equal
nity for one particular degree of freedom and zero for the rest. This property
1sures that when we evaluate u =Y ; ¢jpj for degree of freedom number 4, we
st u = ¢;. Integrals are performed over cells, usually by mapping the cell of
iterest to a reference cell.

With the concepts of cells, vertices, and degrees of freedom we increase the

ecoupling of the geometry (cell, vertices) from the space of basis functions.

/e will associate different sets of basis functions with a cell. In 1D, all cells
re intervals, while in 2D we can have cells that are triangles with straight
des, or any polygon, or in fact any two-dimensional geometry. Triangles and
uadrilaterals are most common, though. The popular cell types in 3D are
strahedra and hexahedra.

.2 Extended finite element concept

he concept of a finite element is now
e a reference cell in a local reference coordinate system;
e a set of basis functions @; defined on the cell;

e a set of degrees of freedom that uniquely determines the basis functions
such that ¢; = 1 for degree of freedom number ¢ and @; = 0 for all other
degrees of freedom;

e a mapping between local and global degree of freedom numbers, here called
the dof map;

e a geometric mapping of the reference cell onto to cell in the physical
domain.

here must be a geometric description of a cell. This is trivial in 1D since the
3l is an interval and is described by the interval limits, here called vertices. If
1e cell is Q) = [zL,zRr], vertex 0 is z, and vertex 1 is xr. The reference cell
1 1D is [—1,1] in the reference coordinate system X.

The expansion of u over one cell is often used:

u(z) =i(X) = @ (X), Q@ Xe[-1,1], (92)
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where the sum is taken over the numbers of the degrees of freedom and
value of u for degree of freedom number r.

Our previous P1, P2, etc., elements are defined by introducing d + 1
spaced nodes in the reference cell and saying that the degrees of freedom
d + 1 function values at these nodes. The basis functions must be 1 at o
and 0 at the others, and the Lagrange polynomials have exactly this ¢
The nodes can be numbered from left to right with associated degrees of
that are numbered in the same way. The degree of freedom mapping 1
what was previously represented by the elements lists. The cell mappir
same affine mapping (61) as before.

6.3 Implementation

Implementationwise,

e we replace nodes by vertices;

e we introduce cells such that cell[e] [r] gives the mapping frc
vertex r in cell e to the global vertex number in vertices;

e we replace elements by dof_map (the contents are the same for
ments).

Consider the example from Section 3.1 where Q = [0, 1] is divided into t
QO = [0,0.4] and QM) = [0.4,1], as depicted in Figure 16. The vert
[0,0.4,1]. Local vertex 0 and 1 are 0 and 0.4 in cell 0 and 0.4 and 1 in ¢
P2 element means that the degrees of freedom are the value of u at three
spaced points (nodes) in each cell. The data structures become

vertices = [0, 0.4, 1]
cells = [[0, 1], [1, 211
dof_map = [[0, 1, 2], [2, 3, 4]]

If we would approximate f by piecewise constants, known as PO elem
simply introduce one point or node in an element, preferably X = 0, an
one degree of freedom, which is the function value at this node. More«
set @o(X) = 1. The cells and vertices arrays remain the same, but ¢
is altered:

dof_map = [[0], [1]1]

We use the cells and vertices lists to retrieve information on the g
of a cell, while dof _map is the g(e, ) mapping introduced earlier in the a
of element matrices and vectors. For example, the Omega_e variable (repr
the cell interval) in previous code snippets must now be computed as
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Jmega_e = [vertices[cells[e] [0], vertices[cells[e] [1]]

he assembly is done by

\[dof_map[e] [r], dof_maple] [s]] += A_e[r,s]
>[dof_map[e] [r]] += b_elr]

We will hereafter drop the nodes and elements arrays and work exculsively
ith cells, vertices, and dof_map. The module fe_approxi1D_numint.py
ow replaces the module fe_approx1D and offers similar functions that work
ith the new concepts:

‘rom fe_approx1D_numint import x*

¢ = sp.Symbol(’x’)

P=xx(1 - x)

i_e = 10

rertices, cells, dof_map = mesh_uniform(N_e, d=3, Omega=[0,1])

>hi = [basis(len(dof_map[e]l)-1) for e in range(N_e)]

\, b = assemble(vertices, cells, dof_map, phi, f)

> = np.linalg.solve(A, b)

t Make very fine mesh and sample u(x) on this mesh for plotting

t_u, u = u_glob(c, vertices, cells, dof_map,
resolution_per_element=51)

»lot(x_u, u)

hese steps are offered in the approximate function, which we here apply to see
ow well four PO elements (piecewise constants) can approximate a parabola:

‘rom fe_approxlD_numint import x*
t=sp.Symbol("x")
‘or N_e in 4, 8:
approximate (x*(1-x), d=0, N_e=N_e, Omega=[0,1])

igure 32 shows the result.

PO, Ng=4, exact integration PO, N,=8, exact integration
0.25 — —

igure 32: Approximation of a parabola by 4 (left) and 8 (right) PO elements.
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6.4 Computing the error of the approximation

So far we have focused on computing the coefficients ¢; in the approx
u(z) =3, ;¢jp; as well as on plotting u and f for visual comparison.
quantitative comparison needs to investigate the error e(x) = f(z) — u
mostly want a single number to reflect the error and use a norm for this

usually the L? norm
1/2
lelles = ([ ae)
Q

Since the finite element approximation is defined for all x € €, and
interested in how u(z) deviates from f(z) through all the elements, we ce
integrate analytically or use an accurate numerical approximation. The
more convenient as it is a generally feasible and simple approach. The ic
sample e(z) at a large number of points in each element. The function
in the fe_approx1D_numint module does this for u(z) and returns an
with coordinates and an array u with the u values:

x, u = u_glob(c, vertices, cells, dof_map,
resolution_per_element=101)
e =f(x) - u

Let us use the Trapezoidal method to approximate the integral. Because «
elements may have different lengths, the x array has a non-uniformly dis
set of coordinates. Also, the u_glob function works in an element by
fashion such that coordinates at the boundaries between elements appe:
We therefore need to use a "raw” version of the Trapezoidal rule where
add up all the trapezoids:

n—1
1
| st@xte = 3 5 0t) + gty — ),
j=0
if zg,...,x, are all the coordinates in x. In vectorized Python code,
g-x = gx)

integral = 0.5*np.sum((g_x[:-1] + g_x[1:1)*(x[1:] - x[:-11))
Computing the L? norm of the error, here named E, is now achieved by

e2 = exx*x2
E = np.sqrt(0.5*np.sum((e2[:-1] + e2[1:]1)*(x[1:] - x[:-11))

How does the error depend on h and d?

Theory and experiments show that the least squares or projection/Ga
method in combination with Pd elements of equal length h has an ex

lle||z2 = ChTL,
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where C' is a constant depending on f, but not on A or d. J

.5 Example: Cubic Hermite polynomials

he finite elements considered so far represent u as piecewise polynomials with
iscontinuous derivatives at the cell boundaries. Sometimes it is desirable to
ave continuous derivatives. A primary examples is the solution of differential
quations with fourth-order derivatives where standard finite element formula-
ons lead to a need for basis functions with continuous first-order derivatives.
he most common type of such basis functions in 1D is the so-called cubic
‘ermite polynomials. The construction of such polynomials, as explained next,
ill further exemplify the concepts of a cell, vertex, degree of freedom, and dof

1ap.
Given a reference cell [—1, 1], we seek cubic polynomials with the values of
1e function and its first-order derivative at X = —1 and X = 1 as the four

egrees of freedom. Let us number the degrees of freedom as

e 0: value of function at X = —1
e 1: value of first derivative at X = —1
e 2: value of function at X =1

e 3: value of first derivative at X =1

v having the derivatives as unknowns, we ensure that the derivative of a basis
iction in two neighboring elements is the same at the node points.
The four basis functions can be written in a general form

3
Gi(X) = Ci X7,
=0

ith four coefficients C; ;, j = 0,1,2,3, to be determined for each i. The
mstraints that basis function number ¢ must be 1 for degree of freedom number
and zero for the other three degrees of freedom, gives four equations to determine
% for each 7. In mathematical detail,

Go(=1) =1, @o(1) = p(—1) = (1) =0,

(=) =1, &u(-1) =@ (1) =¢(1) =0,
Ga(1) =1, @a(=1) = @y(—1) = @5(1) =0,
Ga(1) =1, @3(=1) =@4(—1) = @3(1) = 0.

hese four 4 x 4 linear equations can be solved, yielding the following formulas
r the cubic basis functions:
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Po(X)=1- Z(X+1)2 + i(X+1)3
P1(X) = —(X+ 1)1 - %(X +1))2
G2(X) = Z(X-i- 1)% - %(XJF 1)?

(X4 DX+ 12— (X +1))

@3(X) = —%

The construction of the dof map needs a scheme for numbering th
degrees of freedom. A natural left-to-right numbering has the function
vertex x; as degree of freedom number 2i and the value of the derivati
as degree of freedom number 2+ 1,7 =0,..., N + 1.

7 Numerical integration

Finite element codes usually apply numerical approximations to integral

the integrands in the coefficient matrix often are (lower-order) poly:

integration rules that can integrate polynomials exactly are popular.
The numerical integration rules can be expressed in a common forn

1 M
/ g(X)dX ~ 3 wig(X;),
-1 =0

where X are integration points and w; are integration weights, j = 0
Different rules correspond to different choices of points and weights.
The very simplest method is the Midpoint rule,

1
[ 90dx =260, %o =0, wo =2,
-1
which integrates linear functions exactly.

7.1 Newton-Cotes rules

The Newton-Cotes® rules are based on a fixed uniform distributior
integration points. The first two formulas in this family are the wel
Trapezoidal rule,

1
/ g(X)dX ~ g(—1)+g(1), Xo=-1, X1 =1, wo=w; =1,
1

8http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas
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ad Simpson’s rule,

1
1
[ 90 = 5 (91 + 49(0) + (1), (102
-1
here
_ _ _ 1 4
onfl, X1:0, )(2:17 wO:w2:§, ’LU1:§. (103)

ewton-Cotes rules up to five points is supported in the module file numint . py®.

For higher accuracy one can divide the reference cell into a set of subintervals
nd use the rules above on each subinterval. This approach results in composite

iles, well-known from basic introductions to numerical integration of f; f(z)dx.

.2 Gauss-Legendre rules with optimized points

[ore accurate rules, for a given M, arise if the location of the integration points
re optimized for polynomial integrands. The Gauss-Legendre rules'® (also
nown as Gauss-Legendre quadrature or Gaussian quadrature) constitute one
1ch class of integration methods. Two widely applied Gauss-Legendre rules in
1is family have the choice

_ 1 _ 1
_ )(:77
V]

\/g?
- 3 5 - 3 ) 8
M=2: X():—\/g, X():O, XQZ\/;7 wO:w2:§, w1:§. (105)

hese rules integrate 3rd and 5th degree polynomials exactly. In general, an

Wy = w1 = 1 (104)

{-point Gauss-Legendre rule integrates a polynomial of degree 2M + 1 exactly.

he code numint.py contains a large collection of Gauss-Legendre rules.

Approximation of functions in 2D

1l the concepts and algorithms developed for approximation of 1D functions

(x) can readily be extended to 2D functions f(z,y) and 3D functions f(z,y, z).

asically, the extensions consists of defining basis functions ;(x, y) or ¥;(z,y, 2)
ver some domain €2, and for the least squares and Galerkin methods, the
itegration is done over §2.

As in 1D, the least squares and projection/Galerkin methods two lead to
near systems

9mttp://tinyurl.com/jvzzcfn/fem/numint . py
Ohttp://en.wikipedia.org/wiki/Gaussian_quadrature
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Z Ai’jCj =b;, 1€l

JELs
Aij = (i y),
bi = (f7wl)a

where the inner product of two functions f(z,y) and g(z,y) is defined cor
analogously to the 1D case (24):

(f,g):/Qf(x,y)g(:my)dwdy

8.1 2D basis functions as tensor products of 1D fun

One straightforward way to construct a basis in 2D is to combine 1
functions. Say we have the 1D vector space

Va: = span{zﬁg(x), s 712)N;.; (w)} .

A similar space for variation in y can be defined,

V, = span{to(y), ., ¥n, ()} -

We can then form 2D basis functions as tensor products of 1D basis fu

-
Tensor products.

Given two vectors a = (ag,...,ap) and b = (by, ..., bn), their outer
product, also called the dyadic product, is p = a ® b, defined through

pm:aib]—, Z:0,7M,j:0,7N

In the tensor terminology, a and b are first-order tensors (vectors wit
index, also termed rank-1 tensors), and then their outer tensor produc
second-order tensor (matrix with two indices, also termed rank-2 te
The corresponding inner tensor product is the well-known scalar c
product of two vectors: p=a-b= Z;V:O ajb;. Now, p is a rank-0 tex

Tensors are typically represented by arrays in computer code. 1
above example, a and b are represented by one-dimensional arrays of 1
M and N, respectively, while p = a ® b must be represented by ¢
dimensional array of size M x N.

Tensor products® can be used in a variety of context.

“http://en.wikipedia.org/wiki/Tensor_product

Given the vector spaces V,, and Vj, as defined in (107) and (108), th
product space V =V, ® V,, has a basis formed as the tensor produc
basis for V, and V,. That is, if {¢i(x)};c7, and {pi(y)},c7, are basi
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nd Vj, respectively, the elements in the basis for V' arise from the tensor
roduct:  {p;(2);(¥)}iez, jez,- The index sets are I, = {0,...,N,} and

,= (0.,

The notation for a basis function in 2D can employ a double index as in

@Z)p,q(xay) = 12)1,(37)12),1(1/), pe€l,qel,.

he expansion for u is then written as a double sum

U= Z Z p.q¥p.a(T,Y) -

pELy qELy

lternatively, we may employ a single index,

Vi@, y) = by(@)dy(y),

nd use the standard form for u,

U= Z cjvi(z,y).

J€Ls

he single index is related to the double index through i = pN,+q or ¢ = ¢ N, +p.

.2 Example: Polynomial basis in 2D

uppose we choose 1/},,(35) = zP, and try an approximation with N, = N, =1

Yoo=1, o=z, Yo1=vy, Vi1=2xY.

'sing a mapping to one index like i = gV, + p, we get

1/’0:17 7,[)1:% 1/)2::];7 ’(/13:.Ty

With the specific choice f(z,y) = (1 + 22)(1 + 2y?) on Q = [0, L,] x [0, L,],
e can perform actual calculations:

L, L.
Ao,o = (Yo, %0) = / / Yo(z,y)*dedy = / / dxdy = Ly Ly,
0
Ao = (Y1,%0) = / ‘ / ’ xdrdy = 7LiLy,
o Jo 2
L, L. 1
Aoy = (o) = [ [ ydndy = SI3L
o Jo 2
L L, L L.
! ! [
Aox = (Yo, ¢1) = zydxdy = ydy wde = ~L7L2 .
o Jo 0 0 4

he right-hand side vector has the entries
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bo— 1/)0, / / 1- (1+$ (1+2y )dl'dy

:/"<1+m/wg/ (1 +a%)dw = (L, + SE)(Le + 3 12)

— (¢, 1) // o1+ 2%) (1 + 29%)dady

1 1

:/ (14 2y? )dy/ z(1+ 2?)dz = (L, +§L3)( Lx+1Li)

by = (¢, f / / (1 + 22)(1 + 2y?)dady

:/O y(1+4 2y )dy/ (1+2%)dx = (2L +2L§)(L +3Li)

by = (4o, f) / / 2y(1+ 22)(1 + 2¢)dwdy

Ly 2 Le 2 o 141 o5 1
:/0 y(1+2y )dy/o z(1+2%)de = (iLy—FiLy)(iLx—i- Zl

There is a general pattern in these calculations that we can expl
arbitrary matrix entry has the formula

5= (i, ) = /OLy /OLI Yipddy

_/OLy /OLE q/;p,qd}r,sdacdy:/ / Do (@)Dq () ()95 () d:

Ly . . L, . .
:/ %@%@@/ By (@) (2)de
0

= A(‘)Aé‘lg7
where
A Lo . A Ly, . .
g = [Ty AR = [ b,y
0 0

are matrix entries for one-dimensional approximations. Moreover, i =
and j = sN, +r.
; 7 — P
With ¢, (z) = 2P we have

and
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R — ptrtl 1 [atst+l
7 p,r*7q,s p‘+*T +1 T q +s +1 Yy ’

r p,r €I, and ¢,s € Z,.
Corresponding reasoning for the right-hand side leads to

Ly L
bi = iy = i dxd
(i, f) /0 /0 U f dedx
Ly L. _ X
=[] @b deds
Ly R Ly .
=/ ¢q(y)(1+2y2)dy/ Yp(x)aP (1 + 22)dx
0 0
L, L,
:/ yq(1+2y2)dy/ 2P (1 + 2?)dx
0 0

1 2 1 2
= (——Lit! Lat3 Lt — Pt
(q-i-l v st >(p+1 GO )

Choosing L, = L, = 2, we have

4 4 4 4 308 -1

4 B 4 16 @ Z

A=l 3 s a6 b= o= 3
3 g 3

4 B B & 60 8

igure 33 illustrates the result.

fix.y) fix.y)

[N AT

S Sastisyeal

igure 33: Approximation of a 2D quadratic function (left) by a 2D bilinear
inction (right) using the Galerkin or least squares method.

.3 Implementation

he least_squares function from Section 2.8 and/or the file approx1D.py!!
an with very small modifications solve 2D approximation problems. First,

Hhttp://tinyurl.com/jvzzcfn/fem/fe_approxiD.py
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let Omega now be a list of the intervals in x and y direction. For e
Q=10,L,] x [0, Ly] can be represented by Omega = [[0, L_x], [0, !
Second, the symbolic integration must be extended to 2D:

import sympy as sp

integrand = psil[i]*psil[j]

I = sp.integrate(integrand,
(x, Omega[0][0], Omegal0][11),
(y, Omega[1][0], Omegal1][1]))

provided integrand is an expression involving the sympy symbols x anc
2D version of numerical integration becomes

if isinstance(I, sp.Integral):
integrand = sp.lambdify([x,y], integrand)
I = sp.mpmath.quad(integrand,
[Omega[0] [0], Omegal[0][1]],
[Omega[1] [0], Omegal1][111)

The right-hand side integrals are modified in a similar way.

Third, we must construct a list of 2D basis functions. Here are two e
based on tensor products of 1D ”Taylor-style” polynomials z* and
functions sin((i + 1)mx):

def taylor(x, y, Nx, Ny):
return [xx*i*y**xj for i in range(Nx+1) for j in range(Ny+1)]

def sines(x, y, Nx, Ny):
return [sp.sin(sp.pi*(i+1)*x)*sp.sin(sp.pi*(j+1)x*y)
for i in range(Nx+1) for j in range(Ny+1)]

The complete code appears in approx2D.py'2.
The previous hand calculation where a quadratic f was approximat
bilinear function can be computed symbolically by

>>> from approx2D import *

>>> £ = (L4x%¥2) * (1+2%y**2)

>>> psi = taylor(x, y, 1, 1)

>>> Omega = [[0, 2], [0, 2]]

>>> u = least_squares(f, psi, Omega)
>>> print u

8xx*xy - 2%x/3 + 4*xy/3 - 1/9

>>> print sp.expand(f)

2HXHHRRYRKD + XkKD + kykkD + 1

We may continue with adding higher powers to the basis:

>>> psi = taylor(x, y, 2, 2)

>>> u = least_squares(f, psi, Omega)
>>> print u

2RXKKKYHKD + XKKD + 2kyrk2 + 1

>>> print u-f

0

2http://tinyurl.com/jvzzcfn/fem/fe_approx2D.py
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or N, > 2 and N, > 2 we recover the exact function f, as expected, since in
1at case f € V (see Section 2.5).

.4 Extension to 3D

xtension to 3D is in principle straightforward once the 2D extension is un-
erstood. The only major difference is that we need the repeated outer tensor
roduct,

V=V, 2V,aV,.

1 general, given vectors (first-order tensors) a(?) = (aéq), ey aggz, q=0,...,m,

1e tensor product p = a(® @ - - - ® a™ has elements

_ 0,0 )

DPigiv,eosim = Qg Ay Gm

he basis functions in 3D are then

wp,q,r($7 Y, Z) = wp(ﬂi)%(y)% (Z)v
ithpeZ,, geZy, r €I, The expansion of u becomes
u(z,y,z) = Z Z Z par¥par(T,Y,2) -
pEL, q€EL, rE€L,

single index can be introduced also here, e.g., ¢ = N;Nyr + gnz +p, u =
:1‘ ciwi(x7 Y, Z)

Use of tensor product spaces.

Constructing a multi-dimensional space and basis from tensor products of
1D spaces is a standard technique when working with global basis functions.
In the world of finite elements, constructing basis functions by tensor
products is much used on quadrilateral and hexahedra cell shapes, but not
on triangles and tetrahedra. Also, the global finite element basis functions
are almost exclusively denoted by a single index and not by the natural
tuple of indices that arises from tensor products.

) Finite elements in 2D and 3D

inite element approximation is particularly powerful in 2D and 3D because
1e method can handle a geometrically complex domain €2 with ease. The
rincipal idea is, as in 1D, to divide the domain into cells and use polynomials
r approximating a function over a cell. Two popular cell shapes are triangles
nd the quadrilaterals. Figures 34, 35, and 36 provide examples. P1 elements
1eans linear functions (ag + a1x + agy) over triangles, while Q1 elements have
ilinear functions (ag + a1x + a2y + asxy) over rectangular cells. Higher-order
ements can easily be defined.

7

1. 1

0.8 0.8,

0.6} 0.6
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°%s 05 10 15 2.0 25 3.0 °%5 0.5 1.0 15 2.0 25

Figure 34: Examples on 2D P1 elements.

2.0

15

1.0

0.5f

0.0

0.5 1.0 1.5 2.0

Figure 35: Examples on 2D P1 elements in a deformed geometrsy

9.1 Basis functions over triangles in the physical dc

Cells with triangular shape will be in main focus here. With the P1 tri
element, v is a linear function over each cell, as depicted in Figure ¢
discontinuous derivatives at the cell boundaries.

We give the vertices of the cells global and local numbers as in 1
degrees of freedom in the P1 element are the function values at a set ¢
which are the three vertices. The basis function ¢;(x,y) is then 1 at th
with global vertex number ¢ and zero at all other vertices. On an elem
three degrees of freedom uniquely determine the linear basis functions
element, as usual. The global ¢;(z,y) function is then a combination of t]
functions (planar surfaces) over all the neighboring cells that have vertex
7 in common. Figure 38 tries to illustrate the shape of such a ”pyran
function.
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Figure 36: Examples on 2D Q1 elements.

lement matrices and vectors. As in 1D, we split the integral over € into
sum of integrals over cells. Also as in 1D, ¢; overlaps ¢; (i.e., @;; # 0) if
nd only if ¢ and j are vertices in the same cell. Therefore, the integral of ¢;¢;
ver an element is nonzero only when ¢ and j run over the vertex numbers in
1e element. These nonzero contributions to the coefficient matrix are, as in 1D,
sllected in an element matrix. The size of the element matrix becomes 3 x 3
nce there are three degrees of freedom that i and j run over. Again, as in 1D,
e number the local vertices in a cell, starting at 0, and add the entries in the
ement matrix into the global system matrix, exactly as in 1D. All details and
xde appear below.

.2 Basis functions over triangles in the reference cell

s in 1D, we can define the basis functions and the degrees of freedom in a
»ference cell and then use a mapping from the reference coordinate system to
1e physical coordinate system. We also have a mapping of local degrees of
eedom numbers to global degrees of freedom numbers.

The reference cell in an (X,Y) coordinate system has vertices (0,0), (1,0),
ad (0, 1), corresponding to local vertex numbers 0, 1, and 2, respectively. The
1 element has linear functions ¢,(X,Y") as basis functions, » = 0,1, 2. Since a
near function ¢,(X,Y’) in 2D is on the form C, o + C,1X + C, oY, and hence

as three parameters C, o, C,1, and C; 2, we need three degrees of freedom.

hese are in general taken as the function values at a set of nodes. For the P1
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Figure 37: Example on piecewise linear 2D functions defined on triai

element the set of nodes is the three vertices. Figure 39 displays the g
of the element and the location of the nodes.

Requiring ¢, = 1 at node number r and ¢, = 0 at the two other nod
three linear equations to determine C; o, Cr 1, and Cy 2. The result is

(X, Y)=1-X-Y,
@1(X7 ):Xv
$2(X,Y) =Y

Higher-order approximations are obtained by increasing the polynomi
adding additional nodes, and letting the degrees of freedom be functios
at the nodes. Figure 40 shows the location of the six nodes in the P2 e

A polynomial of degree p in X and Y has n, = (p+ 1)(p+ 2)/2 te
hence needs n, nodes. The values at the nodes constitute n,, degrees of
The location of the nodes for ¢, up to degree 6 is displayed in Figure ¢

The generalization to 3D is straightforward: the reference elem
tetrahedron'® with vertices (0,0,0), (1,0,0), (0,1,0), and (0,0,1) in a
reference coordinate system. The P1 element has its degrees of freedom
nodes, which are the four vertices, see Figure 42. The P2 element adds ac
nodes along the edges of the cell, yielding a total of 10 nodes and de
freedom, see Figure 43.

Bhttp://en.wikipedia.org/wiki/Tetrahedron
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Figure 40: 2D P2 element.

igure 38: Example on a piecewise linear 2D basis function over a patch of
‘jangles.

Figure 39: 2D P1 element. Figure 41: 2D P1, P2, P3, P4, P5, and P6 elements.

The interval in 1D, the triangle in 2D, the tetrahedron in 3D, and its Finite Element Meth(;(g, edited by A. Logg, K.-A. Mardal, and G. N
sneralizations to higher space dimensions are known as simplez cells (the published by Springer™®, 2012.
sometry) or simplex elements (the geometry, basis functions, degrees of freedom,
ic.). The plural forms simplices!* and simplexes are also a much used shorter 9.3 Affine mapping of the reference cell
;rms when referring to this type of cells or elements. The side of a simplex is
alled a face, while the tetrahedron also has edges. Let @51) denote the basis functions associated with the P1 element in 1T
3D, and let x4,y be the physical coordinates of local vertex number r
.cknowledgment. Figures 39 to 43 are created by Anders Logg and taken Furthermore, let X be a point in the reference coordinate system corres

om the FEniCS book!®: Automated Solution of Differential Equations by the to the ppint x in the physical coordinate system. The affine mapping o
onto x is then defined by

Mhttp://en.wikipedia.org/wiki/Simplex
15https://launchpad.net/fenics-book 16nttp://goo.gl/1byVMH
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Figure 42: P1 elements in 1D, 2D, and 3D.
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Figure 43: P2 elements in 1D, 2D, and 3D.

T = Z@gl)(X)wq(e,r)v (112)

here r runs over the local vertex numbers in the cell. The affine mapping
ssentially stretches, translates, and rotates the triangle. Straight or planar
wces of the reference cell are therefore mapped onto straight or planar faces
1 the physical coordinate system. The mapping can be used for both P1 and
igher-order elements, but note that the mapping itself always applies the P1
asis functions.

.4 Isoparametric mapping of the reference cell

1stead of using the P1 basis functions in the mapping (112), we may use the
asis functions of the actual Pd element:

= 3 (X)@g(er), (113)

here r runs over all nodes, i.e., all points associated with the degrees of freedom.

his is called an isoparametric mapping. For P1 elements it is identical to
1e affine mapping (112), but for higher-order elements the mapping of the
sraight or planar faces of the reference cell will result in a curved face in the
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local global

Figure 44: Affine mapping of a P1 element.

physical coordinate system. For example, when we use the basis functior
triangular P2 element in 2D in (113), the straight faces of the reference
are mapped onto curved faces of parabolic shape in the physical coc
system, see Figure 45.

)

VAR

X1

local global

Figure 45: Isoparametric mapping of a P2 element.

From (112) or (113) it is easy to realize that the vertices are correctly
Consider a vertex with local number s. Then ¢, = 1 at this vertex and
the others. This means that only one term in the sum is nonzero and x =
which is the coordinate of this vertex in the global coordinate system.
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.5 Computing integrals

et Q" denote the reference cell and Q(¢) the cell in the physical coordinate
sstem. The transformation of the integral from the physical to the reference
yordinate system reads

/ oi(@)p; () do = / 31(X)3;(X) det J dX, (114)
Qle) T

| e@r@de= [ 500X det ] X, (115)
Qle)

Qr

here dz means the infinitesimal area element dzdy in 2D and dzdydz in 3D,
ith a similar definition of dX. The quantity det J is the determinant of the
acobian of the mapping (X). In 2D,

Dz Oz ox 0y  Ox Oy
=| 3 9 detJ = — 2 2229 11
/ [g;g g;] I =oxay T avax (116)

Jith the affine mapping (112), det J = 2A, where A is the area or volume of
1e cell in the physical coordinate system.

temark. Observe that finite elements in 2D and 3D builds on the same ideas
nd concepts as in 1D, but there is simply much more to compute because the
secific mathematical formulas in 2D and 3D are more complicated and the book
seping with dof maps also gets more complicated. The manual work is tedious,
mgthy, and error-prone so automation by the computer is a must.

0 Exercises

xercise 1: Linear algebra refresher 1

ook up the topic of vector space in your favorite linear algebra book or search
r the term at Wikipedia. Prove that vectors in the plane (a,b) form a vector
>ace by showing that all the axioms of a vector space are satisfied. Similarly,
rove that all linear functions of the form ax + b constitute a vector space,
,beR.

On the contrary, show that all quadratic functions of the form 1 + ax? + bx
o not constitute a vector space. Filename: linalgl.pdf.

xercise 2: Linear algebra refresher I1

s an extension of Exercise 1, check out the topic of inner product spaces. Suggest
possible inner product for the space of all linear functions of the form az + b,
,b € R. Show that this inner product satisfies the general requirements of an
mmer product in a vector space. Filename: 1inalg2.pdf.
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Exercise 3: Approximate a three-dimensional vecto
plane

Given f = (1,1,1) in R?, find the best approximation vector w in tt
spanned by the unit vectors (1,0) and (0,1). Repeat the calculations u
vectors (2,1) and (1,2). Filename: vec111_approx.pdf.

Exercise 4: Approximate the exponential function by
functions

Let V be a function space with basis functions z%, i = 0,1,..., N. Find
approximation to f(z) = exp(—z) on 2 = [0,4] among all functions i
N = 2,4,6. Illustrate the three approximations in three separate plo
the corresponding Taylor polynomial approximation of degree N in et
Filename: exp_powers.py.

Exercise 5: Approximate the sine function by power
tions

Let V be a function space with basis functions %+, i =0,1,...,N. I
best approximation to f(x) = sin(x) among all functions in V, using
for a domain that includes more and more half-periods of the sine f
N =1[0,kn/2], k=2,3,...,12. How does a Taylor series of sin(z) arou
to degree 9 behave for the largest domain?

Hint. One can make a loop over k£ and call the functions least_squa
comparison_plot from the approx1D module.
Filename: sin_powers.py.

Exercise 6: Approximate a steep function by sines

Find the best approximation of f(z) = tanh(s(z — 7)) on [0, 27] in the
with basis ¥;(z) = sin((2i + 1)z), i € Z, = {0,..., N}. Make a movie
how u= 3,7 ¢;9;(z) approximates f(x) as N grows. Choose s such t
steep (s = 20 may be appropriate).

Hint. One may naively call the least_squares_orth and comparisc

from the approx1D module in a loop and extend the basis with one new

in each pass. This approach implies a lot of recomputations. A more

strategy is to let least_squares_orth compute with only one basis fun

a time and accumulate the corresponding u in the total solution.
Filename: tanh_sines_approxl.py.
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xercise 7: Animate the approximation of a steep function
iy sines
[ake a movie where the steepness (s) of the tanh function in Exercise 6 grows

1 "time”, and for each value of the steepness, the movie shows how the approxi-
1ation improves with increasing N. Filename: tanh_sines_approx2.py.

xercise 8: Fourier series as a least squares approximation

iven a function f(z) on an interval [0, L], look up the formula for the coefficients
j and b; in the Fourier series of f:

flx) =ag +§aj cos (j%) +§bj sin (3%) .

Let an infinite-dimensional vector space V' have the basis functions cos j %~
v j=0,1,...,00 and sin jZ* for j = 1,...,00. Show that the least squares
pproximation method from Section 2 leads to a linear system whose solution
sincides with the standard formulas for the coefficients in a Fourier series of
(x) (see also Section 2.7). You may choose

1P9; = COS (z%x) , 241 =sin (z%x) ,
ri=0,1,...,N = oo.

Choose f(x) = tanh(s(z — 3)) on € = [0, 1], which is a smooth function, but
ith considerable steepness around z = 1/2 as s grows in size. Calculate the
sefficients in the Fourier expansion by solving the linear system, arising from
1e least squares or Galerkin methods, by hand. Plot some truncated versions
f the series together with f(x) to show how the series expansion converges for
=10 and s = 100. Filename: Fourier_approx.py.

xercise 9: Approximate a steep function by Lagrange poly-
omials

‘se interpolation/collocation with uniformly distributed points and Chebychev
odes to approximate
1
f(z) = —tanh(s(z - 5)), @ €[0,1],

y Lagrange polynomials for s = 10 and s = 100, and N = 3,6,9,11. Make
sparate plots of the approximation for each combination of s, point type
“hebyshev or uniform), and N. Filename: tanh_Lagrange.py.

xercise 10: Define nodes and elements

'onsider a domain © = [0, 2] divided into the three P2 elements [0, 1], [1,1.2],
ad [1.2,2].

87

For P1 and P2 elements, set up the list of coordinates and nodes
and the numbers of the nodes that belong to each element (elements
cases: 1) nodes and elements numbered from left to right, and 2) no
elements numbered from right to left. Filename: fe_numberingsi.py.

Exercise 11: Define vertices, cells, and dof maps

Repeat Exercise 10, but define the data structures vertices, cells, and ¢
instead of nodes and elements. Filename: fe_numberings2.py.

Exercise 12: Construct matrix sparsity patterns

Exercise 10 describes a element mesh with a total of five elements, but v
different element and node orderings. For each of the two orderings,
5 x 5 matrix and fill in the entries that will be nonzero.

Hint. A matrix entry (4, 7) is nonzero if ¢ and j are nodes in the same
Filename: fe_sparsity_pattern.pdf.

Exercise 13: Perform symbolic finite element comput.

Perform hand calculations to find formulas for the coefficient matrix ar

hand side when approximating f(x) = sin(x) on 2 = [0, 7] by two P1 €

of size m/2. Solve the system and compare u(7/2) with the exact value
Filename: sin_approx_P1.py.

Exercise 14: Approximate a steep function by P1 a:
elements

Given

1
f(z) = tanh(s(z — 7))
use the Galerkin or least squares method with finite elements to
approximate function u(z). Choose s = 40 and try N. = 4,8,16
ments and N, = 2,4,8 P2 elements. Integrate f¢; numerically. F:
tanh_fe_P1P2_approx.py.

Exercise 15: Approximate a steep function by P3 a:
elements

Solve Exercise 14 using N, = 1,2,4 P3 and P4 elements. How will a
tion/interpolation method work in this case with the same number of
Filename: tanh_fe_P3P4_approx.py.
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xercise 16: Investigate the approximation error in finite
lements

he theory (93) from Section ?7? predicts that the error in the Pd approximation
f a function should behave as h?*t!. Use experiments to verify this asymptotic
ehavior (i.e., for small enough h). Choose two examples: f(z) = Ae™“* on
),3/w] and f(x) = Asin(wz) on Q = [0,27/w] for constants A and w. What

appens if you try f(z) = +/x on [0,1]?

[int. Run a series of experiments: (h;, F), i = 0,...,m, where E; is the L?
orm of the error corresponding to element length h;. Assume an error model
'=Ch" and compute r from two successive experiments:

ri = In(Ei1/E;)/In(hiy1/hs), i=0,...,m—1.

opefully, the sequence rq, ..., r,_1 converges to the true r, and r,,_1 can be
Wken as an approximation to r.
Filename: Asinwt_interpolation_error.py.

xercise 17: Approximate a step function by finite elements

pproximate the step function

1 oz <1/2,
f(x):{ 2 ©>1/2

y 2,4, and 8 P1 and P2 elements. Compare approximations visually.

[int. This f can also be expressed in terms of the Heaviside function H (z):

() = H(x — 1/2). Therefore, f can be defined by
! = sp.Heaviside(x - sp.Rational(1,2))

1aking the approximate function in the fe_approx1D.py module an obvious
andidate to solve the problem. However, sympy does not handle symbolic
itegration with this particular integrand, and the approximate function faces a
roblem when converting f to a Python function (for plotting) since Heaviside
not an available function in numpy. It is better to make special-purpose code
r this case or perform all calculations by hand.

Filename: Heaviside_approx_P1P2.py..

xercise 18: 2D approximation with orthogonal functions

ssume we have basis functions p;(x,y) in 2D that are orthogonal such that
%,¢;j) = 0 when i # j. The function least_squares in the file approx2D.py'”
ill then spend much time on computing off-diagonal terms in the coefficient

http://tinyurl.com/jvzzcfn/fem/fe_approx2D.py
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matrix that we know are zero. To speed up the computations, make a
least_squares_orth that utilizes the orthogonality among the basis fu
Apply the function to approximate

f(%y) = 1'(1 — Jj)y(]_ _ y)efxfy

on 2 = [0,1] x [0, 1] via basis functions
pi(z,y) = sin(pra) sin(qry), i =qNa +p.

Hint. Get ideas from the function least_squares_orth in Section
file approx1D.py'&.
Filename: approx2D_lsorth_sin.py.

Exercise 19: Use the Trapezoidal rule and P1 elemer

Consider approximation of some f(z) on an interval Q using the least sq
Galerkin methods with P1 elements. Derive the element matrix and vect
the Trapezoidal rule (101) for calculating integrals on the reference
Assemble the contributions, assuming a uniform cell partitioning, ar
that the resulting linear system has the form ¢; = f(x;) for i € Zs. F
fe_Pl1_trapez.pdf.

Problem 20: Compare P1 elements and interpolatior

We shall approximate the function

f(z) =1+ esin(2rnz), xe€Q=][0,1],

where n € Z and € > 0.
a) Sketch f(z) and find the wave length of the function.

b) We want to use Np elements per wave length. Show that the nu
elements is then nNp.

¢) The critical quantity for accuracy is the number of elements per wawi
not the element size in itself. It therefore suffices to study an f with :
wave length in Q = [0,1]. Set e = 0.5.

Run the least squares or projection/Galerkin method for Np = 2,4,
Compute the error E = ||u — f]|e.

Hint. Use the fe_approx1D_numint module to compute v and use t
nique from Section 6.4 to compute the norm of the error.

Bhttp://tinyurl.com/jvzzcfn/fem/fe_approxiD.py
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) Repeat the set of experiments in the above point, but use interpolation/col-
ication based on the node points to compute u(z) (recall that ¢; is now simply
(z;)). Compute the error E = ||u — f||r2. Which method seems to be most
ccurate?

Filename: P1_vs_interp.py.

xercise 21: Implement 3D computations with global basis
unctions

xtend the approx2D.py'? code to 3D applying ideas from Section 8.4. Use a
D generalization of the test problem in Section 8.3 to test the implementation.
ilename: approx3D.py.

xercise 22: Use Simpson’s rule and P2 elements

edo Exercise 19, but use P2 elements and Simpson’s rule based on sampling
1e integrands at the nodes in the reference cell.
Filename: fe_P2_simpson.pdf.

1 Basic principles for approximating differen-
tial equations

he finite element method is a very flexible approach for solving partial differential
juations. Its two most attractive features are the ease of handling domains of
»mplex shape in two and three dimensions and the ease of constructing higher-
rder discretization methods. The finite element method is usually applied for
iscretization in space, and therefore spatial problems will be our focus in the
»ming sections. Extensions to time-dependent problems may, for instance, use
nite difference approximations in time.

Before studying how finite element methods are used to tackle differential
juation, we first look at how global basis functions and the least squares,
ralerkin, and collocation principles can be used to solve differential equations.

1.1 Differential equation models

et us consider an abstract differential equation for a function u(z) of one
ariable, written as

L(u)=0, ze€. (117)

ere are a few examples on possible choices of £(u), of increasing complexity:

Yhttp://tinyurl.com/jvzzcfn/fem/approx2D.py
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L(u) =

p
£ = 1 (o) - aut f(o),
L(u) = %

(o) + fu.o).

Both a(x) and f(x) are considered as specified functions, while a is a pr
parameter. Differential equations corresponding to (118)-(119) arise in «
phenomena, such as steady transport of heat in solids and flow of viscon
between flat plates. The form (120) arises when transient diffusion
phenomenon are discretized in time by finite differences. The equatic
appear in chemical models when diffusion of a substance is combin
chemical reactions. Also in biology, (121) plays an important role, 1
spreading of species and in models involving generation and propag;
electrical signals.

Let ©Q = [0, L] be the domain in one space dimension. In additior
differential equation, v must fulfill boundary conditions at the boundarie
domain, x =0 and x = L. When £ contains up to second-order deriva
in the examples above, m = 1, we need one boundary condition at eac
(two) boundary points, here abstractly specified as

Bo(u) =0, =0, Bi(u)=0, z=1L

There are three common choices of boundary conditions:

Bi(u) =u-—g, Dirichlet condition
d
Bi(u) = —ad—u -9, Neumann condition
x
du . -,
Bi(u) = oo - h(u—g), Robin condition
x

Here, g and a are specified quantities.
From now on we shall use ue(x) as symbol for the ezact solution, fu

L(ue) =0, x€Q,

while u(z) is our notation for an approzimate solution of the differential e

Remark on notation.

In the literature about the finite element method, is common to
as the exact solution and uj as the approximate solution, where |
discretization parameter. However, the vast part of the present ti
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about the approximate solutions, and having a subscript h attached all
the time is cumbersome. Of equal importance is the close correspondence
between implementation and mathematics that we strive to achieve in
this text: when it is natural to use u and not u_h in code, we let the
mathematical notation be dictated by the code’s preferred notation. After
all, it is the powerful computer implementations of the finite element method
that justifies studying the mathematical formulation and aspects of the
method.

J
1.2 Simple model problems
common model problem used much in the forthcoming examples is

—u'(z) = f(z), z€Q=10,L], u(0)=0, uw(L)=D. (127)

closely related problem with a different boundary condition at z = 0 reads

—u'(x)=f(z), z€Q=[0,L], v (0)=C, w(L)=D. (128)

third variant has a variable coefficient,

— (a(z2)v'(z)) = f(z), z€Q=][0,L], v'(0)=C, w(L)=D. (129)
We can easily solve these using sympy. For (127) we can write the function

ief modeli(f, L, D):

"rigolve —u’’ = f(x), u(0)=0, u(L)=D."""

u_x = - sp.integrate(f, (x, 0, x)) + c_0

u = sp.integrate(u_x, (x, 0, x)) + c_1

r = sp.solve([u.subs(x, 0)-0, u.subs(x,L)-D], [c_0, c_1]1)
u = u.subs(c_0, r[c_0]).subs(c_1, rlc_1]1)

u = sp.simplify(sp.expand(u))

return u

‘alling model1(2, L, D) results in the solution
1 2
u(zx) = A (D + L* — Lx) (130)
[odel (128) can be solved by

ief model2(f, L, C, D):

"rigolve —u’’ = f(x), u’(0)=C, u(L)=D."""

u_x = - sp.integrate(f, (x, 0, x)) + c_0

u = sp.integrate(u_x, (x, 0, x)) + c_1

r = sp.solve([sp.diff (u,x).subs(x, 0)-C, u.subs(x,L)-D], [c_0, c_11)
u = u.subs(c_0, rl[c_0]).subs(c_1, rlc_1])

u = sp.simplify(sp.expand(u))

return u

93

to yield

u(r) = —2? + Cx — CL+ D + L?,
if f(x) =2. Model (129) requires a bit more involved code,
def model3(f, a, L, C, D):

""solve -(a*u’)’ = f£(x), u(0)=C, u(L)=D."""
au_x = - sp.integrate(f, (x, 0, x)) + c_0

u = sp.integrate(au_x/a, (x, 0, x)) + c_1

r = sp.solve([u.subs(x, 0)-C, u.subs(x,L)-D], [c_0, c_1])
u = u.subs(c_0, rl[c_0]).subs(c_1, rlc_1]1)

u = sp.simplify(sp.expand(u))

return u

With f(z) =0 and a(z) = 1 + 2% we get

_ Catan (L) — Catan (z) + D atan ()
N atan (L)

u(z)

11.3 Forming the residual

The fundamental idea is to seek an approximate solution u in some spe

V = span{¢o(z),...,¥n(x)},

which means that u can always be expressed as a linear combination of t
functions {p;};c7 , with Z as the index set {0,..., N}:

u(x) =Y ejih().

JETLs

The coefficients {c;};c; are unknowns to be computed.

(Later, in Section 14, we will see that if we specify boundary vali
different from zero, we must look for an approximate solution u(z) =
>_j¢jtbj(w), where 37, c;9; € V and B(z) is some function for incory
the right boundary values. Because of B(x), u will not necessarily lie in
modification does not imply any difficulties.)

We need principles for deriving N + 1 equations to determine thi
unknowns {¢;};. . When approximating a given function f by u=3_.
key idea is to minimize the square norm of the approximation error e =-
(equvalently) demand that e is orthogonal to V. Working with e is not s
here since the approximation error in our case is e = ue — u and ue is u
The only general indicator we have on the quality of the approximate so
to what degree w fulfills the differential equation. Inserting u =3, ;C
L(u) reveals that the result is not zero, because u is only likely to equal
nonzero result,

R=L(u) = £} ejt),
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called the residual and measures the error in fulfilling the governing equation.

Various principles for determining {c;};. try to minimize R in some sense.
ote that R varies with = and the {c;};c; parameters. We may write this
ependence explicitly as

R=R(z;co,-..,cN)- (133)
elow, we present three principles for making R small: a least squares method,

projection or Galerkin method, and a collocation or interpolation method.

1.4 The least squares method

he least-squares method aims to find {c;};c_ such that the square norm of the
ssidual

I|IR|| = (R, R) = /QR2 dz (134)

minimized. By introducing an inner product of two functions f and g on 2 as

(f.9) = / f(@)g(x) da, (135)

1e least-squares method can be defined as
min F=(R,R). (136)
COy.-+sCN

iifferentiating with respect to the free parameters {Ci}z‘eIS gives the N + 1
Juations

OR OR ‘
/Qmacidmw & (R5)=0, i€L. (137)

1.5 The Galerkin method

he least-squares principle is equivalent to demanding the error to be orthogonal
> the space V' when approximating a function f by v € V. With a differential
juation we do not know the true error so we must instead require the residual
' to be orthogonal to V. This idea implies seeking {c;}; ez, such that

(R,v) =0, YveV. (138)
his is the Galerkin method for differential equations.
This statement is equivalent to R being orthogonal to the N+1 basis functions
aly:
(Ra ¢2) =0, i€l (139)

ssulting in NV + 1 equations for determining {c;};c7 -
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11.6 The Method of Weighted Residuals

A generalization of the Galerkin method is to demand that R is ort
to some space W, but not necessarily the same space as V' where we ¢
unknown function. This generalization is naturally called the method of -
residuals:

(R,v) =0, YveW.

If {wo,...,wy} is a basis for W, we can equivalently express the me
weighted residuals as

(Ryw;) =0, ied,.

The result is N + 1 equations for {c;}; 7 .
The least-squares method can also be viewed as a weighted residual
with w; = 8R/80L

Ve

Variational formulation of the continuous problem.
Formulations like (140) (or (141)) and (138) (or (139)) are known as
tional formulations. These equations are in this text primarily used
numerical approximation u € V', where V' is a finite-dimensional space
dimension N + 1. However, we may also let V' be an infinite-dimen:
space containing the exact solution we(z) such that also we fulfill
same variational formulation. The variational formulation is in that
mathematical way of stating the problem and acts as an alternative t
usual formulation of a differential equation with initial and/or bow
conditions.

11.7 Test and Trial Functions

In the context of the Galerkin method and the method of weighted resid
common to use the name trial function for the approximate v = > 5 G
space containing the trial function is known as the trial space. The fu
entering the orthogonality requirement in the Galerkin method and the
of weighted residuals is called test function, and so are the ; or w; fu
that are used as weights in the inner products with the residual. Tt
where the test functions comes from is naturally called the test space.

We see that in the method of weighted residuals the test and trial sp
different and so are the test and trial functions. In the Galerkin method
and trial spaces are the same (so far).

Remark.

It may be subject to debate whether it is only the form of (140) or
after integration by parts, as explained in Section 11.10, that qualifies fi
term variational formulation. The result after integration by parts is
is obtained after taking the first variation of an optimization probler
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Section 11.13. However, here we use variational formulation as a common
term for formulations which, in contrast to the differential equation R = 0,
instead demand that an average of R is zero: (R,v) = 0 for all v in some
space.

1.8 The collocation method

he idea of the collocation method is to demand that R vanishes at N + 1
slected points xg, ..., xn in €

R(zi5¢0,...,en) =0, i€Zs. (142)

he collocation method can also be viewed as a method of weighted residuals
ith Dirac delta functions as weighting functions. Let §(z — z;) be the Dirac
elta function centered around x = x; with the properties that §(z — z;) = 0 for

# x; and

/Qf(x)é(m — e dr = (@), @€ Q. (143)

wuitively, we may think of §(z — z;) as a very peak-shaped function around
= x; with integral 1, roughly visualized in Figure 46. Because of (143), we can
t w; = 0(x — x;) be weighting functions in the method of weighted residuals,
nd (141) becomes equivalent to (142).

'he subdomain collocation method. The idea of this approach is to de-
1and the integral of R to vanish over N + 1 subdomains ; of Q:

/Rdsz, 1€Zs. (144)
Q;
his statement can also be expressed as a weighted residual method

/ Rw; dz =0, i€, (145)
Q

here w; = 1 for x € Q; and w; = 0 otherwise.

1.9 Examples on using the principles

et us now apply global basis functions to illustrate the principles for minimizing

)

'he model problem. We consider the differential equation problem

—u"(z) = f(x), z€Q=10,L], u(0)=0, uw(L)=0. (146)
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Figure 46: Approximation of delta functions by narrow Gaussian fun

Basis functions. Our choice of basis functions 1); for V' is

P;(x) = sin ((z + 1)7r%) , 1e€l,.

An important property of these functions is that ;(0) = ¢;(L) = (
means that the boundary conditions on u are fulfilled:

u(0) = ¢;uh;(0) =0, u(L) =) ej(L) =0.
J J
Another nice property is that the chosen sine functions are orthogonal

L
/sin ((i—l—l)w%) sin ((j+1)7r%) dz:{ (%,L z;;

0

provided i and j are integers.

The residual. We can readily calculate the following explicit expres
the residual:
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R(z;co,...,cn) =u"(z) + f(x),

d2
= > () | + flx),

jET,

= > () + f(x). (149)

JE€Ls

'he least squares method. The equations (137) in the least squares method
:quire an expression for OR/dc;. We have

B = o | S W@ i@ ) = X G =ww. 0%

JELs JETLs

he governing equations for {c;};.; are then

Q) + f4) =0, ieL, (151)
J
hich can be rearranged as
oW )e = —(f,0)), i€, (152)
JE€Ls

his is nothing but a linear system
Z Aiijj =b;, 1€,

JELs
ith

Aij = @7, ¢5)

L
:W4(i+1)2(j+1)2L—4/0 sin ((z’+1)7r%) sin ((j+1)7r%) dz
ARG+t =
a { 0, i (153)

bi=—(f,¢f) = (i+1)*rL? /OL f(x)sin ((i + 1)7%) da (154)

ince the coefficient matrix is diagonal we can easily solve for

¢ = ﬁ /OL (@) sin ((i + 1)7%) d. (155)

/ith the special choice of f(x) =2 can be calculated in sympy by
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from sympy import *
import sys

i, j = symbols(’i j’, integer=True)

x, L = symbols(’x L’)

f =2

a = 2%L/(pi**2% (i+1)*%2)

c_i = axintegrate(f*sin((i+1)#*pix*x/L), (x, 0, L))
c_i = simplify(c_i)

print c_i

The answer becomes

L2 ((—1)1' + 1)
(2 +3i2+3i+1)

Ci:4

Now, 1+ (—1)% = 0 for i odd, so only the coefficients with even index are
Introducing ¢ = 2k for k = 0,..., N/2 to count the relevant indices (for
k goes to (N —1)/2), we get the solution

2 8L? x
= ———— Si 2k +1 7) .
u(z) §W3(2k+1)3 sin (( + )7TL
The coeflicients decay very fast: co = ¢9/27, ¢4 = ¢9/125. The solut
therefore be dominated by the first term,

The Galerkin method. The Galerkin principle (138) applied to (146)
of inserting our special residual (149) in (138)

(W' + f,v)=0, YveV,

or

(W’ v) = —(f,v), YweV.

This is the variational formulation, based on the Galerkin principle
differential equation. The Vv € V requirement is equivalent to demanc
equation (u”,v) = —(f,v) to be fulfilled for all basis functions v = ;
see (138) and (139). We therefore have

(Y e, i) = =(fi4s), i€Ts.
JE€Ls
This equation can be rearranged to a form that explicitly shows that 1

linear system for the unknowns {c;},cz :

Z(%,d)ﬁ')cj = (f,¢), €.

JE€Ls
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or the particular choice of the basis functions (147) we get in fact the same
near system as in the least squares method because ¢ = —(i + 1)272 L~ 2.

'he collocation method. For the collocation method (142) we need to decide
pon a set of N + 1 collocation points in 2. A simple choice is to use uniformly
»aced points: z; = iAx, where Az = L/N in our case (N > 1). However, these
oints lead to at least two rows in the matrix consisting of zeros (since t;(zg) = 0
nd ¢;(xy) = 0), thereby making the matrix singular and non-invertible. This
rees us to choose some other collocation points, e.g., random points or points
niformly distributed in the interior of 2. Demanding the residual to vanish at
1ese points leads, in our model problem (146), to the equations

= (@) = flw), i€, (160)

J€Ts

hich is seen to be a linear system with entries

iy = = (@) = (G + DL 2sin (G + D),

1 the coefficient matrix and entries b; = 2 for the right-hand side (when
(x) = 2).

The special case of N = 0 can sometimes be of interest. A natural choice is
1en the midpoint zg = L/2 of the domain, resulting in Ag o = —f (z¢) = m2L~2,
(29) = 2, and hence ¢y = 2L?/72.

‘omparison. In the present model problem, with f(x) = 2, the exact solution

u(z) = (L — ), while for N = 0 the Galerkin and least squares method
ssult in u(x) = 8L27 3 sin(rz/L) and the collocation method leads to u(z) =
L2r~2sin(nz/L). Since all methods fulfill the boundary conditions u(0) =
(L) = 0, we expect the largest discrepancy to occur at the midpoint of the
omain: x = L/2. The error at the midpoint becomes —0.008L? for the Galerkin
nd least squares method, and 0.047L? for the collocation method.

1.10 Integration by parts

problem arises if we want to apply popular finite element functions to solve
ur model problem (146) by the standard least squares, Galerkin, or collocation
1ethods: the piecewise polynomials 1;(z) have discontinuous derivatives at
1e cell boundaries which makes it problematic to compute the second-order
erivative. This fact actually makes the least squares and collocation methods less
1itable for finite element approximation of the unknown function. (By rewriting
1e equation —u” = f as a system of two first-order equations, v’ = v and —v’ =
, the least squares method can be applied. Also, differentiating discontinuous
inctions can actually be handled by distribution theory in mathematics.) The
-alerkin method and the method of weighted residuals can, however, be applied
»gether with finite element basis functions if we use integration by parts as a
1ieans for transforming a second-order derivative to a first-order one.
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Consider the model problem (146) and its Galerkin formulation

(", v) = (f,v) YweV.

Using integration by parts in the Galerkin method, we can move a deris
u onto v:

L L
u’(z)v(z)de = — ' (2)v (z) dz + [vu']E
| @t e = = [T @ de -+ o

L
_ /0 o (@) () dz + o (L)o(L) — ' (0)0(0) .

Usually, one integrates the problem at the stage where the u and v fu
enter the formulation. Alternatively, but less common, we can integrate -
in the expressions for the matrix entries:

L L
/ i) (@) dz = — / B ()W (@)de + [pap!]E
0 0

_ / Wi () dz + (L) (L) — i(0))(0)

Integration by parts serves to reduce the order of the derivatives and to n
coefficient matrix symmetric since (¢}, ;) = (¢;,%). The symmetry
depends on the type of terms that enter the differential equation. As will
later in Section 15, integration by parts also provides a method for imple
boundary conditions involving u’.

With the choice (147) of basis functions we see that the ”boundar;
(L)} (L) and v;(0)u(0) vamish since v;(0) = vi(L) = 0.

Weak form. Since the variational formulation after integration by par
weaker demands on the differentiability of u and the basis functions 1);, tk
ing integral formulation is referred to as a weak form of the differential e
problem. The original variational formulation with second-order deriva
the differential equation problem with second-order derivative, is then th
form, with stronger requirements on the differentiability of the functior

For differential equations with second-order derivatives, expressed :
tional formulations and solved by finite element methods, we will always
integration by parts to arrive at expressions involving only first-order der

11.11 Boundary function

So far we have assumed zero Dirichlet boundary conditions, typically
u(L) = 0, and we have demanded that v;(0) = ¥;(L) = 0 for i € I
about a boundary condition like u(L) = D # 07 This condition imm
faces a problem: u =} ¢;p;(L) = 0 since all ;(L) = 0.
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A boundary condition of the form w(L) = D can be implemented by demand-
1g that all ¥;(L) = 0, but adding a boundary function B(x) with the right
oundary value, B(L) = D, to the expansion for u:

u(z) = Bx) + Y cjui(a).

J€ELs

his u gets the right value at x = L:

u(L) = B(L)+ Y ¢jvh;(L) = B(L) = D.

JE€Ls

he idea is that for any boundary where u is known we demand 1; to vanish
nd construct a function B(z) to attain the boundary value of u. There are
o restrictions how B(xz) varies with z in the interior of the domain, so this
ariation needs to be constructed in some way.

For example, with (0) = 0 and u(L) = D, we can choose B(z) = zD/L,
nce this form ensures that B(xz) fulfills the boundary conditions: B(0) = 0 and
(L) = D. The unknown function is then sought on the form

u(z) = %D + 3 ewy(a), (163)

JELs

ith ;(0) = (L) = 0.

The B(x) function can be chosen in many ways as long as its boundary values
ce correct. For example, B(x) = D(xz/L)P for any power p will work fine in the
bove example.

As another example, consider a domain Q = [a,b] where the boundary
»nditions are u(a) = U, and u(b) = Up. A class of possible B(xz) functions is

_ Up —Ua P
cal applications will most likely use the simplest version, p = 1, but here such
p parameter was included to demonstrate the ambiguity in the construction of

(z).

<
Summary.
The general procedure of incorporating Dirichlet boundary conditions goes
as follows. Let 0Qg be the part(s) of the boundary 9 of the domain
where u is specified. Set ¢; = 0 at the points in 9Qg and seek u as

u(z) = B(x) + Y ¢j1h;(@), (165)

JELs
where B(z) equals the boundary conditions on u at 9.
Y
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Remark. With the B(z) term, u does not in general lie in V' = span {tq
anymore. Moreover, when a prescribed value of u at the boundary, say u(
is different from zero, it does not make sense to say that u lies in a vectc
because this space does not obey the requirements of addition and sca
tiplication. For example, 2u does not lie in the space since its bounda:
is 2U,, which is incorrect. It only makes sense to split u in two parts,
above, and have the unknown part > ; Cjth; in a proper function space.

11.12 Abstract notation for variational formulation

We have seen that variational formulations end up with a formula involvir
v, such as (u/,v") and a formula involving v and known functions, such :
A widely used notation is to introduce an abstract variational statement
as a(u,v) = L(v), where a(u,v) is a so-called bilinear form involving
terms that contain both the test and trial function, while L(v) is a line
containing all the terms without the trial function. For example, the st

/u'v/dx:/fvdx or (v,v)=(fv) YweV
Q Q

can be written in abstract form: find v such that

a(u,v) = L(v) Yo eV,

where we have the definitions

a(u,v) = (u',v"), L(v)=(f,v).

The term linear means that L(ajvy + agve) = agL(vi) + asL(vg)
test functions v; and wve, and scalar parameters o and as. Similarly, t
bilinear means that a(u,v) is linear in both its arguments:

aloquy + asuz,v) = analug, v) + aza(usz, v),
a(u, a1v1 + agve) = aja(u,v1) + agalu, vs) .
In nonlinear problems these linearity properties do not hold in general
abstract notation is then F'(u;v) = 0.
The matrix system associated with a(u,v) = L(v) can also be writt:
abstract form by inserting v = ¢; and u =, ¢;4; in a(u,v) = L(v). U
linear properties, we get

> aly vi)e; = L(vy), i€,
JELs
which is a linear system

Z Ai,jcj =b;, 1€l

J€Ls
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here

Aij = a(¥j,hi), by = L(ts).

1 many problems, a(u,v) is symmetric such that a(v;, ;) = a(;, ;). In those
ases the coeflicient matrix becomes symmetric, A; ; = A, ;, a property that can
mplify solution algorithms for linear systems and make them more stable in
ddition to saving memory and computations.

The abstract notation a(u,v) = L(v) for linear differential equation problems

much used in the literature and in description of finite element software
n particular the FEniCS?° documentation). We shall frequently summarize
ariational forms using this notation.

1.13 Variational problems and optimization of function-
als

"a(u,v) = a(v,u), it can be shown that the variational statement

a(u,v) = L(v) Vv eV,

equivalent to minimizing the functional

1
F(v) = ia(v,v) — L(v)
ver all functions v € V. That is,
F(u) < Flv) YveV.

serting a v = > ¢;1h; turns minimization of F'(v) into minimization of a
uadratic function

F(co,...,en) = Z Z a(vi, j)cic; — Z L(t)e;

JET, €T, JET,
f N + 1 parameters.
Minimization of F' implies
oF
Gci -

0, 1€Zs.

fter some algebra one finds

Y i€ Loa(ivy)e; = L), €T,

hich is the same system as that arising from a(u,v) = L(v).

Many traditional applications of the finite element method, especially in solid
1echanics and structural analysis, start with formulating F'(v) from physical
rinciples, such as minimization of energy, and then proceeds with deriving
(u,v) = L(v), which is the equation usually desired in implementations.

2Onttp://fenicsproject.org
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12 Examples on variational formulations

The following sections derive variational formulations for some prototyy
ential equations in 1D, and demonstrate how we with ease can handle
coefficients, mixed Dirichlet and Neumann boundary conditions, fir
derivatives, and nonlinearities.

12.1 Variable coefficient
Consider the problem

- % (O‘(x);h;) = f(z), z€Q=10,L], u(0)=C, u(L)=D.

There are two new features of this problem compared with previous es
a variable coeflicient a(x) and nonzero Dirichlet conditions at both be
points.

Let us first deal with the boundary conditions. We seek

u(z) = B(z)+ Y ¢ti(x),
JELs

with 9;(0) = +;(L) = 0 for ¢ € Z,. The function B(z) must then fulfill B
and B(L) = D. How B varies in between = 0 and « = L is not of img
One possible choice is

B(z)=C+ %(D - ),

which follows from (164) with p = 1.
We seek (u — B) € V. As usual,

V= span{1/10, LR} wN}a
but the two Dirichlet boundary conditions demand that

Note that any v € V' has the property v(0) = v(L) = 0.
The residual arises by inserting our u in the differential equation:

d du

(R,v) =0, YveV,

Galerkin’s method is

or written with explicit integrals,
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/ (% (a%)—f)vdmzo, YoeV.
Q

/e proceed with integration by parts to lower the derivative from second to first

rder:
d du du dv du 1"

The boundary term vanishes since v(0) = v(L) = 0. The variational formula-
on is then

du dv
/Qoz(x)%%dac—/Qf(x)vd:zc7 YveV.

he variational formulation can alternatively be written in a more compact form:

(au',v") = (f,v), YweV.

he corresponding abstract notation reads

a(u,v) = L(v) Yv eV,
ith
a(u,v) = (a/,v"), L(v) = (f,v).

‘ote that the a in the notation a(:,-) is not to be mixed with the variable
sefficient a(z) in the differential equation.
We may insert u =B+ € and v = 1); to derive the linear system:

(@B'+a ) e, v) = (f,4:), i€,
J€ELs

jolating everything with the c; coefficients on the left-hand side and all known
rms on the right-hand side gives

Z(aw;awi)cj = (f7 1/’1) + (a(D - C)L717w2)7 i1 €ZLs.

JE€Ls

his is nothing but a linear system > ; Aijej = b; with

D-C

b= () + (@D = L) = [ (f@:)wi(w) T afa) wzu)) de.
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12.2 First-order derivative in the equation and bou
condition

The next problem to formulate in variational form reads

—u(2) + b (z) = f(z), 2€Q=10,L], u(0)=C, v'(L)=E.

The new features are a first-order derivative v’ in the equation and the b
condition involving the derivative: u/(L) = E. Since we have a Dirichlet c
at © = 0, we must force 1;(0) = 0 and use a boundary function to take
the condition u(0) = C. Because there is no Dirichlet condition on z =
not make any requirements to 1;(L). The simplest possible choice of
B(x) =C.

The expansion for u becomes
u=C+ Z civi(z) .
JE€Ls

The variational formulation arises from multiplying the equation k

function v € V' and integrating over €2
(—u" + b/ — fv)=0, YoeV
We apply integration by parts to the v”v term only. Although we co
integrate u'v by parts, this is not common. The result becomes
(u' +bu',v') = (f,0) + [u'v]§, YveV.

Now, v(0) =0 so

[w'v]§ =/ (L)v(L) = Ev(L),

because u/(L) = E. Integration by parts allows us to take care of the N
condition in the boundary term.

Natural and essential boundary conditions.

Omitting a boundary term like [u/v]§ implies that we actually impos
condition u’ = 0 unless there is a Dirichlet condition (i.e., v = 0) af
point! This result has great practical consequences, because it is es
forget the boundary term, and this mistake may implicitly set a bou
condition! Since homogeneous Neumann conditions can be incorpo
without doing anything, and non-homogeneous Neumann condition
just be inserted in the boundary term, such conditions are known as n
boundary conditions. Dirichlet conditions requires more essential ste
the mathematical formulation, such as forcing all ¢; = 0 on the bou
and constructing a B(z), and are therefore known as essential bow
conditions.
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The final variational form reads

(', v") + (bu',v) = (f,v) + Ev(L), YveV.
1 the abstract notation we have
a(u,v) = L(v) Vv eV,
ith the particular formulas
a(u,v) = (u',v') + (bu',v), L(v) = (f,v)+ Ev(L).

The associated linear system is derived by inserting u = B+ Y ; ¢y and
»placing v by v; for i € Z;. Some algebra results in

D0 (@500 + (0, 90)) ¢5 = (f, ) + Exsy(L)
~—_—

JELs

A b;

'bserve that in this problem, the coefficient matrix is not symmetric, because
f the term

(b 5) = /Q baps dz # /ﬂ b, da = (6, )

2.3 Nonlinear coefficient

inally, we show that the techniques used above to derive variational forms
l[so apply to nonlinear differential equation problems as well. Here is a model
roblem with a nonlinear coefficient and right-hand side:

— (a(u)u') = f(u), z€l0,L], u(0)=0, v(L)=EF. (168)

r space V' has basis {t;};c7 , and because of the condition u(0) = 0, we must
:quire 9;(0) = 0, 7 € Z.

Galerkin’s method is about inserting the approximate u, multiplying the
ifferential equation by v € V, and integrate,

_/OLch<a(u);l )vdx_/ fwvde YveV.

he integration by parts does not differ from the case where we have «(z) instead

£ a(u):

L L
/0 a(u)z—zj—; dx :/0 fwvdz + [a(u)vd]f YweV.

he term a(u(0))v(0)u’(0) = 0 since v(0). The other term, a(u(L))v(L)u (L), is
sed to impose the other boundary condition u'(L) = E, resulting in
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L
/ a(u) @@ vdz / fwvdr + a(u(L))v(L)E Yv eV,
0

or alternatively written more compactly as

(a(u)u',v") = (f(u),v) + a(L)w(L)E YveV.
Since the problem is nonlinear, we cannot identify a bilinear form a(u,1
linear form L(v). An abstract notation is typically find u such that

Flu;v) =0 YveV,
with
F(u;v) = (a(u)u',v") = (f(uw),v) —a(L)v(L)E .
By inserting u = Zj c;¥; we get a nonlinear system of algebraic e
for the unknowns ¢;, i € Zs. Such systems must be solved by constrt
sequence of linear systems whose solutions hopefully converge to the :

of the nonlinear system. Frequently applied methods are Picard iterat
Newton’s method.

12.4 Computing with Dirichlet and Neumann cond

Let us perform the necessary calculations to solve

- () =2, z€Q=][0,1], «(0)=C, u(l)=D,
using a global polynomial basis 1); ~ x*. The requirements on 1); is that .

because u is specified at x = 1, so a proper set of polynomial basis funct
be

Yi(x) = (1— m)“‘l, 1€Zy.
A suitable B(z) function to handle the boundary condition u(1) = D is
Dx. The variational formulation becomes

(W', v") = (2,v) — Cv(0) YoeV.

The entries in the linear system are then

1
i : _ it =
Aiy = (5, 00) /w >dx—/0<+1>(g+1><1 ) da
b = (2,4) — (D szcwi()
1
- / (204(x) — Di}(x)) dz — C55(0)

= | (=" =D+ )1 —a)) dz = Cvi(0)

2-(2+49)(D+0)
B i+2 ‘
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With N =1 the global matrix system is

11 w) ([ -C+D+1
1 4/3 aa )\ 2/3-C+D
he solution becomes ¢o = —C' 4+ D + 2 and ¢; = —1, resulting in

u(z) =1—2*+ D+ Cx — 1), (169)

The exact solution is found by. integrating twice and applying the boundary
»nditions, either by hand or using sympy as shown in Section 11.2. It appears
1at the numerical solution coincides with the exact one. This result is to be
spected because if (ue — B) € V, u = ue, as proved next.

2.5 When the numerical method is exact

/e have some variational formulation: find (v — B) € V such that a(u,v) =
(u) YV. The exact solution also fulfills a(ue,v) = L(v), but normally (ue — B)
es in a much larger (infinite-dimensional) space. Suppose, nevertheless, that
e = B+ E, where E € V. That is, apart from Dirichlet conditions, ue lines in
ur finite-dimensional space V we use to compute u. Writing also v on the same
rm u = B+ F, we have

a(B+ E,v)=L(v) YveV,
a(B+ F,v)=L(v) YveV.

ubtracting the equations show that a(E — F,v) = 0 for all v € V| and therefore

N

'— F=0and u = ue.

The case treated in Section 12.4 is of the type where ue — B is a quadratic
inction that is 0 at = 1, and therefore (ue — B) € V, and the method finds
1e exact solution.

3 Computing with finite elements

he purpose of this section is to demonstrate in detail how the finite element
iethod can the be applied to the model problem

—u"(x) =2, z€(0,L), u(0)=u(L)=0,

ith variational formulation

(', v')=(2,v) YveV.

he variational formulation is derived in Section 11.10.
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13.1 Finite element mesh and basis functions

We introduce a finite element mesh with N, cells, all with length A, and
the cells from left to right. global nodes. Choosing P1 elements, there
nodes per cell, and the coordinates of the nodes become

’L'z:Zh7 h:L/Nev ian"'7Nn:NE+1’

provided we number the nodes from left to right.

Each of the nodes, i, is associated a finite element basis function ¢;(x
approximating a given function f by a finite element function u, we
u using finite element basis functions associated with all nodes in th
i.e., N = N,. However, when solving differential equations we will oft
N < N, because of Dirichlet boundary conditions. Why this is the c
now be explained in detail.

In our case with homogeneous Dirichlet boundary conditions we do 1
any boundary function B(z) and can work with the expansion

u(@) =Y cjihi(x).
JE€Ls

Because of the boundary conditions, we must demand );(0) = 1;(L) = (
When ¢;,7=0,...,N, is to be selected among the finite element basis fi
@i, = 0,..., Ny, we have to avoid using ¢; functions that do not w:
xzo = 0 and xy, = L. However, all ; vanish at these two nodes for j = 1,
Only basis functions associated with the end nodes, ¢y and ¢y, vio
boundary conditions of our differential equation. Therefore, we select t
functions ¢; to be the set of finite element basis functions associated
the interior nodes in the mesh:

¢i:§Di+1» ZZO,,N
Here, N = N, — 2.

In the general case, the nodes are not necessarily numbered from left
so we introduce a mapping from the node numbering, or more preci
degree of freedom numbering, to the numbering of the unknowns in t
equation system. These unknowns take on the numbers 0,..., N. U
number j in the linear system corresponds to degree of freedom numt
j € Zs. We can then write

¢i:(pu(7})7 1=0,...,N.

With a regular numbering as in the present example, v(j) = j+1,j =1,.
N, —2.

13.2 Computation in the global physical domain

We shall first perform a computation in the x coordinate system bece
integrals can be easily computed here by simple, visual, geometric consid
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his is called a global approach since we work in the x coordinate system and
»mpute integrals on the global domain [0, L].
The entries in the coefficient matrix and right-hand side are

L L
Ay = / B (@) dz, b= / 2s(x)dz, i) €T
0 0
xpressed in terms of finite element basis functions ¢; we get the alternative
Kpressions

L L
Aij= / cpgﬂ(a:)cpgﬂ(x) dz, b= / 20;11(x)dz, i,j €.
0 0
or the following calculations the subscripts on the finite element basis functions
re more conveniently written as ¢ and j instead of ¢ + 1 and j 4+ 1, so our
otation becomes

L L
Ay = / Ay () de, b= [ 2ae)d,
0 0

here the 7 and j indices run as 7,5 =1,...,N, —1 =N + 1.

The ¢;(z) function is a hat function with peak at © = z; and a linear variation
| [zi—1, ;] and [z;,2;41]. The derivative is 1/h to the left of z; and —1/h to
1e right, or more formally,

0, T < i1,
A1 T <zr<uz
/ ) i—1 = (2
(x) = 171
#i®) b7l oz <z < wig, (171)
0, T > Tiql

igure 47 shows ¢/ (x) and ().

T T T T

2.5} 1
2.0t 1
1.5 b, s 1

0.5} : § .

S8 s o v aid

—-0.5} 0 1 Z : "
_10l 0 oW 2 0®) 0@ |

-1.5 ! ! ! !

igure 47: Illustration of the derivative of piecewise linear basis functions
ssociated with nodes in cell 2.
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We realize that ¢; and ¢ has no overlap, and hence their prod
ishes, unless ¢ and j are nodes belonging to the same cell. The only
contributions to the coefficient matrix are therefore

L
Ai71,¢72:/ @i(x) @iy () dz,
0
L
A1 =/ @;($)2d9€,
0

L
Ai—l,i:/ @i (@) iy () dz,
0

fori=1,...,N, —1, but for i =1, A;_1 ;_2 is not defined, and for ¢ =
A;_1,; is not defined.

We see that ¢, (z) and ¢/ (x) have overlap of one cell Q0~1 = [;
and that their product then is —1/h2. The integrand is constant and t
Ai1i—2 = —h72h = —h~L. A similar reasoning can be applied to Aiq
also becomes —h~!. The integral of ©/(z)? gets contributions from t
QU= = [2; 1, 2;] and QW = [z, 2441], but ¢}(2)? = h=2 in both cells,
length of the integration interval is 2k so we get A;_1 ;1 = 2h~L.

The right-hand side involves an integral of 2¢;(z), i =1,..., N, —
is just the area under a hat function of height 1 and width 2h, i.e., eq
Hence, b;_1 = 2h.

To summarize the linear system, we switch from ¢ to i 4+ 1 such that
write

Ajjo1=Ago1=—h"", Aj;=2n""' b =2h.

The equation system to be solved only involves the unknowns ¢; fo
With our numbering of unknowns and nodes, we have that ¢; equals
The complete matrix system that takes the following form:

Sl
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3.3 Comparison with a finite difference discretization
typical row in the matrix system can be written as

1 2 1
— Ecz;l + ECZ' — ECiJrl =2h. (173)

et us introduce the notation u; for the value of u at node j: u; = u(x;) since

e have the interpretation u(x;) = 3, ¢jp(x;) = >, ¢j0;; = ¢;. The unknowns

)y« -y CN Are Uy, ..., up, . Shifting ¢ with ¢+ 1 in (173) and inserting u; = ¢;_1,
e get
1 2 1
= yui-1+ U = iy = 2h, (174)

A finite difference discretization of —u”(z) = 2 by a centered, second-order
nite difference approximation u”(z;) = [DyD,u]; with Az = h yields

Ui = 22U+ Ui
B2
hich is, in fact, equivalent to (174) if (174) is divided by h. Therefore, the
nite difference and the finite element method are equivalent in this simple test
roblem.
Sometimes a finite element method generates the finite difference equations
n a uniform mesh, and sometimes the finite element method generates equations
1at are different. The differences are modest, but may influence the numerical
uality of the solution significantly, especially in time-dependent problems.

=2, (175)

3.4 Cellwise computations

/e now employ the cell by cell computational procedure where an element matrix
ad vector are calculated for each cell and assembled in the global linear system.
11 integrals are mapped to the local reference coordinate system X € [—1,1].
1 the present case, the matrix entries contain derivatives with respect to x,

L a d h

() = ") - — G (X)—5 =
A= [ @@= [ a0 L 0gdx,

here the global degree of freedom 7 is related to the local degree of freedom r
wrough ¢ = g(e,r). Similarly, j = ¢(e, s). The local degrees of freedom run as
s =0,1 for a P1 element.

'he integral for the element matrix. There are simple formulas for the

asis functions ¢,(X) as functions of X. However, we now need to find the
erivative of ¢, (X) with respect to z. Given

Po(X)= LX), @1(X) = J(1+X),

e can easily compute dp,/dX:
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From the chain rule,

dr _ dp.dX _ 2 dp.

de ~ dX dr  hdX '’

The transformed integral is then

1 ~ ~
. 2dp,2dps h
Agf)l,jfl = /Q(E) goi(x)ga;(:r) dz :/ T v T v 54X

The integral for the element vector. The right-hand side is tran
according to

1
e ~ h )
1= [ 2etar= [ 25.(054x, i=glen). =01
(e) 1

Detailed calculations of the element matrix and vector. Spe
for P1 elements we arrive at the following calculations for the element
entries:

—

- [ 3(4)2 () dor-

- [ 3 (4)30) 2o
1

- [ 2 (3)3(4) ox -
1

N OO

The element vector entries become
1
~(e 1 h
bl :/ 25(1-X)5dX =h

-1

~(¢) b h
e :/ 2001+ X)g dX = h.
—1

Expressing these entries in matrix and vector notation, we have

e 1 1 -1 = 1
(e) — = (e) —
A _h<*1 1>,b _h<1)'
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jontributions from the first and last cell. The first and last cell involve
nly one unknown and one basis function because of the Dirichlet boundary
»nditions at the first and last node. The element matrix therefore becomes a
x 1 matrix and there is only one entry in the element vector. On cell 0, only
0 = 1 is involved, corresponding to integration with ¢;. On cell V., only
N = ¢N,, —1 is involved, corresponding to integration with ¢g. We then get the
secial end-cell contributions

A(e):%(1)7 B =h(1), (178)

r e =0 and e = N,. In these cells, we have only one degree of freedom, not
vo as in the interior cells.

.ssembly. The next step is to assemble the contributions from the various
2lls. The assembly of an element matrix and vector into the global matrix and
ght-hand side can be expressed as

Agem)ales) = Agteryalens) + AL byier) = by(er) + 0L,

r 7 and s running over all local degrees of freedom in cell e.

To make the assembly algorithm more precise, it is convenient to set up
ython data structures and a code snippet for carrying out all details of the
lgorithm. For a mesh of four equal-sized P1 elements and L = 2 we have

rertices = [0, 0.5, 1, 1.5, 2]
tells = [[0, 11, [1, 2], [2, 3], [3, 411
lof_map = [[0], [0, 1], [1, 2], [2]]

he total number of degrees of freedom is 3, being the function values at the
iternal 3 nodes where u is unknown. In cell 0 we have global degree of freedom
, the next cell has v unknown at its two nodes, which become global degrees of
eedom 0 and 1, and so forth according to the dof_map list. The mathematical
(e, ) quantity is nothing but the dof_map list.

Assume all element matrices are stored in a list Ae such that Aele] [i,j] is

EPJ) A corresponding list for the element vectors is named be, where be [e] [r]

5&5). A Python code snippet illustrates all details of the assembly algorithm:

t A[i,jl: coefficient matrix, b[il: right-hand side
‘or e in range(len(Ae)):
for r in range(Ae[e].shape[0]):
for s in range(Ae[e].shape[1]):
Aldof_maple,r],dof_map[e,s]] += Aele][i,]]
bldof_map([e,r]] += belel[i,j]

The general case with N_e P1 elements of length h has
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Nn=DNe+1

vertices = [i*h for i in range(N_n)]
cells = [[e, e+1l] for e in range(N_e)]
dof_map = [[0]] + [[e-1, e] for i in range(1, N_e)] + [[N_n-2]]

Carrying out the assembly results in a linear system that is identical -
which is not surprising since the procedures is mathematically equivaler
calculations in the physical domain.

A fundamental problem with the matrix system we have assemblec
the boundary conditions are not incorporated if u(0) or u(L) are differe
zero. The next sections deals with this issue.

14 Boundary conditions: specified nonzero

We have to take special actions to incorporate Dirichlet conditions,
u(L) = D, into the computational procedures. The present section
alternative, yet mathematically equivalent, methods.

14.1 General construction of a boundary function

In Section 11.11 we introduce a boundary function B(z) to deal with
Dirichlet boundary conditions for u. The construction of such a functic
always trivial, especially not in multiple dimensions. However, a sim
general construction idea exists when the basis functions have the prop

1, 1=y,
pi(zj) = 0ij, b5 = { 0, i j,
where z; is a boundary point. Examples on such functions are the L
interpolating polynomials and finite element functions.
Suppose now that u has Dirichlet boundary conditions at nodes with 1
i € Ij. For example, I, = {0, N} in a 1D mesh with node numbering f
to right. Let U; be the corresponding prescribed values of u(x;). We ¢
in general, use

B(x) =Y Ujp;i(z).
jel,

It is easy to verify that B(z;) = 3., Ujpj(z:) = Us.
The unknown function can then be written as

u(w) = Ujpi(@)+ Y citu),

S JELs

where v(j) maps unknown number j in the equation system to node v
can easily show that with this u, a Dirichlet condition u(zy) = Uy, is fu
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w(wy) =D Ui pi(x)  + Y ¢ioug(an) = Uk
jel, e jET, ~—
#0 only for j=k =0, k¢Z,

Some examples will further clarify the notation. With a regular left-to-right
umbering of nodes in a mesh with P1 elements, and Dirichlet conditions at
= 0, we use finite element basis functions associated with the nodes 1,2, ..., Ny,
nplying that v(j) =j+1,j=0,...,N, where N = N,, — 1. For the particular
1esh below the expansion becomes

u(@) = Uopo(x) + copr(2) + crpa(w) + -+ + caps(x) -

2.5f
2.0r
1.5f
1.0
0.5f 1
I S D S S
—-0.5¢ 0 1 2 3 4 5 1
_10k Q0 b @ B oW

-15 . . . .

Here is a mesh with an irregular cell and node numbering;:

2.5
2.0
1.5F
1.0}
0.5f 1
S
—-0.5¢ 3 0 4 5 2 1 1
_10l Q¥ 0@ B @ QO

-15

Say we in this latter mesh have Dirichlet conditions on the left-most and
ght-most node, with numbers 3 and 1, respectively. Then we can number the
nknowns at the interior nodes from left to right, giving v(0) = 0, v(1) = 4,
(2) =5, v(3) = 2. This gives

B(x) = Usps(z) + Urp1(w),
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and

3
u(@) = B(x) + Y ¢jpu(j) = Usips + Urpr + copo + 1604 + Cas + ¢
7=0

Switching to the more standard case of left-to-right numbering and b
conditions u(0) = C, u(L) = D, we have N = N,, — 2 and

u(@) = Co + Don, + D ¢jpj41
JeT.

=Cypo+ Don, +cop1 +crp2+ - +eNpn,—1-

The idea of constructing B described here generalizes almost triviall
and 3D problems: B = ngb U;p;, where I is the index set contair
numbers of all the nodes on the boundaries where Dirichlet values are pr

14.2 Example on computing with finite element-b:
boundary function
Let us see how the model problem —u” =2, u(0) = C, (L) = D, is aff

a B(z) to incorporate boundary values. Inserting the expression

u(w) = B(x) + Y ¢jih;()

J€TLs

in —(u”, ;) = (f,;) and integrating by parts results in a linear syster
L L
Ay = [ vl de b= [ (1) - B dr.
0 0
We choose ¥; = ¢;4+1,1=0,...,N = N,, — 2 if the node numbering is f

to right. (Later we also need the assumption that the cells too are nu
from left to right.) The boundary function becomes

B(x) = Cpo(z) + Do, (z) -

The expansion for u(x) is

u(xz) = B(x) + Z cipit1(x).

JE€Ls

We can write the matrix and right-hand side entries as

L L
Airjs = / L(0)g (x) dz, by = / (F(2)—Cigh ()~ Dy, (2))¢

fori,j=1,...,N+1= N, —1. Note that we have here used B' = Cy} -
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'jomputations in physical coordinates. Most of the terms in the linear
rstem have already been computed so we concentrate on the new contribution
om the boundary function. The integral C’fOL ©p(z))pi(x) do can only get a
onzero contribution from the first cell, Q) = [z, z] since ¢}(x) = 0 on all
ther cells. Moreover, ¢p(z)p;(x)dz # 0 only for i =0 and i =1 (but i =0 is
xcluded), since ¢; = 0 on the first cell if 7+ > 1. With a similar reasoning we
salize that D fOL @y, ())pi(w) dz can only get a nonzero contribution from the
st cell. From the explanations of the calculations in Section 3.6 we then find
1at

Lo L [ @ena@)a
L= T _1(z)dx =
h 9 o PN, \L)PN, -1

1
5"

==
S| =
S| =

[ e =

he extra boundary term because of B(z) boils down to adding C/2 to by and
D/2 to bN.

ellwise computations on the reference element. As an equivalent al-
;rnative, we now turn to cellwise computations. The element matrices and
actors are calculated as Section 13.4, so we concentrate on the impact of the
ew term involving B(z). We observe that Cyf, = 0 on all cells except e = 0,
ad Dyly = 0 on all cells except e = N. In this case there is only one unknown
1 these cells since u(0) and u(L) are prescribed, so the element vector has only
ne entry. The entry for the last cell, e = N,, becomes

1 ~ 1
7(e) 2d301 _h h 21 / -
b = - pz2rt ZdX = (=2(2—-DZ= dX =h-D/2.
0 / (f th)‘p% (2( h2) e /

-1
imilar computations on the first cell yield

! D 1
0= [ (-2 o hax - bl [ pax -
g */_1<f hdx)%ng*(g(?JrCm) | X =hCp2.

’hen assembling these contributions, we see that by gets right-hand side of the
near system gets an extra term C'/2 and by gets —D/2, as in the computations
1 the physical domain.

4.3 Modification of the linear system

rom an implementational point of view, there is a convenient alternative to
dding the B(z) function and using only the basis functions associated with
odes where u is truly unknown. Instead of seeking

u(z) = Z Ujpj(x) + Z cieui) (@), (181)

j€ly JELs
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we use the sum over all degrees of freedom, including the known boundar:

u(x) = Z cipi(z).

JETLs

Note that the collections of unknowns {c;},., in (181) and (182) are c
in (181) N counts the number of nodes where u is not known, while in
counts all the nodes (N = N,,).

The idea is to compute the entries in the linear system as if no I
values are prescribed. Afterwards, we modify the linear system to ens
the known c¢; values are incorporated.

A potential problem arises for the boundary term [u'v]§ from the int
by parts: imagining no Dirichlet conditions means that we no longer
v = 0 at Dirichlet points, and the boundary term is then nonzero :
points. However, when we modify the linear system, we will erase what
contribution from [u/v]¥ should be at the Dirichlet points in the right-h:
of the linear system. We can therefore safely forget [u/v]% at any point
Dirichlet condition applies.

Computations in the physical system. Let us redo the computa
the example in Section 14.1. We solve —u” = 2 with u(0) = 0 and u(
The expressions for A; ; and b; are the same, but the numbering is diff
the numbering of unknowns and nodes now coincide:

L L
A = / (@) () dz, by = / f(@)pila) dr,

for i, =0,..., N = N,,. The integrals involving basis functions corres
to interior mesh nodes, i,j = 1,..., N,, — 1, are obviously the same as
We concentrate on the contributions from g and ¢, :

The new terms on the right-hand side are also those involving ¢ a;
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L xq
o= [ 2eoa)do = [ 2o do = b,
0 0

L TN,
bN:/ Q@Nndx:/ 20N, dz =h.
0 x

Np—1

The complete matrix system, involving all degrees of freedom, takes the form

1 -1
0 0 C.o h
-1 2 -1 2h
0 -1 2 -1
0
1 _
; =
0 -1 2 -1
0 :
2h
: . . A— | : h
0 v cer cie e o0 =1 1 CN
(183)

Incorporation of Dirichlet values can now be done by replacing the first and
st equation by c¢p = 0 and ¢y = D. This action changes the system to

0 0 0 C.() 0
-1 2 -1 2h
o -1 2 -1
0
1 _
o -1 2 -1
0 :
2h
: . . o —=1 . D
0 0 0 h cN
(184)

Note that because we do not require ¢;(0) = 0 and ;(L), i € Zs, the boundary
srm [u'v]§ gives in principle contributions u/(0)p0(0) to by and u/(L)en (L) to
v (u/¢; vanishes for x = 0or z = L for i = 1,...,N — 1). Nevertheless, we
-ase these contributions in by and by and insert boundary values instead. This
rgument shows why we can drop computing [u'v]§ at Dirichlet nodes when we
nplement the Dirichlet values by modifying the linear system.
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14.4 Symmetric modification of the linear system

The original matrix system (172) is symmetric, but the modifications
destroy the symmetry. Our described modification will in general des
initial symmetry in the matrix system. This is not a particular compu
disadvantage for tridiagonal systems arising in 1D problems, but may
serious in 2D and 3D problems when the systems are large and ex
symmetry can be important for halving the storage demands, spee:
computations, and/or making the solution algorithm more robust. Tl
an alternative modification which preserves symmetry is frequently apg

Let ¢i be a coefficient corresponding to a known value u(zg) = i
want to replace equation k in the system by ¢, = Uy, i.e., insert zeroe:
number k in the coefficient matrix, set 1 on the diagonal, and replace b
A symmetry-preserving modification consists in first subtracting column
k in the coefficient matrix, i.e., A; for i € Z, times the boundary v
from the right-hand side: b; < b; — A; yUi. Then we put zeroes in row
k and column number k in the coefficient matrix, and finally set by =1
steps in algorithmic form becomes

1. b; < b; — Ai,kUk for i € 7

2. Ai,k = Ak,i =0 forieZ,

This modification goes as follows for the specific linear system writte:
(183) in Section 14.3. First we subtract the first column in the coefficient
times the boundary value, from the right-hand side. Because ¢y =
subtraction has no effect. Then we subtract the last column, times the b
value D, from the right-hand side. This action results in by_1 = 2k
and by = h — 2D/h. Thereafter, we place zeros in the first and last 1
column in the coefficient matrix and 1 on the two corresponding diagona
Finally, we set by = 0 and by = D. The result becomes
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h 0 0 0 co 0

0o 2 -1 2h

0o -1 2 -1

0
E _
. =
0o -1 2 -1
0 :
. 2h+ D/h
0 0 0 h cN

(185)

4.5 Modification of the element matrix and vector

he modifications of the global linear system can alternatively be done for the
ement matrix and vector. (The assembled system will get the value n on the
1ain diagonal if n elements contribute to the same unknown, but the factor n
ill also appear on the right-hand side and hence cancel out.)

We have, in the present computational example, the element matrix and
actor (177). The modifications are needed in cells where one of the degrees
f freedom is known. Here, this means the first and last cell. We compute the
ement matrix and vector as there are no Dirichlet conditions. The boundary
srm [u/v]§ is simply forgotten at nodes that have Dirichlet conditions because
1e modification of the element vector will anyway erase the contribution from
1e boundary term. In the first cell, local degree of freedom number 0 is known
nd the modification becomes

~ 1 h O ~ 0
0) — 4 — = 0) —
A —A_h<—1 1), b _(h) (186)

1 the last cell we set

g(Ne):A:%<(1) ‘i) E(Ne>=<g>. (187)

We can also perform the symmetric modification. This operation affects only
1e last cell with a nonzero Dirichlet condition. The algorithm is the same as
r the global linear system, resulting in

- 1 ~
A(N_1)2A2g<}é ?) b(N—1>:<h+§/h>, (188)

he reader is encouraged to assemble the element matrices and vectors and check
1at the result coincides with the system (185).
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15 Boundary conditions: specified derivati

Suppose our model problem —u”(z) = f(x) features the boundary co
' (0) = C and u(L) = D. As already indicated in Section 12, the
condition can be incorporated through the boundary term that aris
integration by parts. This details of this method will now be illustrate
context of finite element basis functions.

15.1 The variational formulation

Starting with the Galerkin method,

L
/0 (W"(2) + f(@))u(x) de =0, i€,

integrating u”+); by parts results in

L L
/ W () (e) da — (uf (L) (L) — o (0)85,(0)) = / Fla)s(a) da,
JO 0

The first boundary term, u’(L);(L), vanishes because u(L) = D. T
two arguments for this result, explained in detail below. The second b«
term, u'(0)1;(0), can be used to implement the condition «/(0) = C, ¢
1;(0) # 0 for some ¢ (but with finite elements we fortunately have 1|
The variational form of the differential equation then becomes

L L
[ w@e@art e = [ s@eta, e,
0 0

15.2 Boundary term vanishes because of the test fun

At points where u is known we may require v; to vanish. Here, u(L) =
then 1;(L) =0, i € Z;. Obviously, the boundary term u/(L);(L) then -

The set of basis functions {1); };c;_contains in this case all the finite
basis functions on the mesh, expect the one that is 1 at x = L. TI
function that is left out is used in a boundary function B(z) instead.
left-to-right numbering, ¥; = ¢;, 1 =0,..., N, — 1, and B(x) = Dpp, :

N=N,—1
u(@) = Don, (@) + > cp(@).

3=0
Inserting this expansion for u in the variational form (15.1) leads to tl
system

Z( / wi(w)w}(:v)deE) ¢ = / (F@)pi(x) — Dy, (@)gi(x)) da—

J=0

126



ri=0,...,N=N, —1.

5.3 Boundary term vanishes because of linear system
modifications

/e may, as an alternative to the approach in the previous section, use a basis
i} icz. Which contains all the finite element functions on the mesh: ¢; = ¢,
=0,...,N, = N. In this case, v'(L)¢;(L) = vu'(L)p;(L) # 0 for the i
srresponding to the boundary node at x = L (where ¢; = 1). The number of
1is node is i = NV,, = N if a left-to-right numbering of nodes is utilized.

However, even though «'(L)pn (L) # 0, we do not need to compute this term.

or i < N we realize that ¢;(L) = 0. The only nonzero contribution to the
ght-hand side from the affects by (i = N). Without a boundary function we
wist implement the condition u(L) = D by the equivalent statement cy = D
nd modify the linear system accordingly. This modification will earse the last
»w and replace by by another value. Any attempt to compute the boundary
rm w'(L)pn (L) and store it in by will be lost. Therefore, we can safely forget
obout boundary terms corresponding to Dirichlet boundary conditions also when
e use the methods from Section 14.3 or Section 14.4.
The expansion for u reads

u(@) =Y ¢jpi(x), Blx) = Doy (x),
J€TLs

ith N = N,,. Insertion in the variational form (15.1) leads to the linear system

Z (/0 ©i ()¢ () dx) ¢ = /0 (f(x)pi(x)) dz — Cp;(0), i€ Z,. (190)

JELs

fter having computed the system, we replace the last row by ¢y = D, either
raightforwardly as in Section refreffem:deq:1D:fem:essBC:Bfunc:modsys or in a

/mmetric fashion as in Section refreffem:deq:1D:fem:essBC:Bfunc:modsys:symm.

hese modifications can also be performed in the element matrix and vector for
1e right-most cell.

5.4 Direct computation of the global linear system

/e now turn to actual computations with P1 finite elements. The focus is on
ow the linear system and the element matrices and vectors are modified by the
»ndition u'(0) = C.

Consider first the approach where Dirichlet conditions are incorporated by a
!(z) function and the known degree of freedom Cl, is left out from the linear
sstem (see Section 15.2). The relevant formula for the linear system is given
y (189). There are three differences compared to the extensively computed
ase where u(0) = 0 in Sections 13.2 and 13.4. First, because we do not have a
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Dirichlet condition at the left boundary, we need to extend the linear syste
with an equation associated with the node zy = 0. According to Section 1
extension consists of including Ay = 1/h, Ap,1 = —1/h, and by = h. F
we have A;; = 2/h, A;_1,; = A; ;41 = —1/h. Second, we need to incl
extra term —C'p;(0) on the right-hand side. Since all ¢;(0) =0 for i =1
this term reduces to —C'¢(0) = —C and affects only the first equation
We simply add —C to by such that by = h — C. Third, the bounda
—fUL Dyp, (z)p; dz must be computed. Since i = 0,...,N = N,, -
integral can only get a nonzero contribution with ¢ = IV,, — 1 over the
The result becomes —Dh/6. The resulting linear system can be summs
the form

S

Next we consider the technique where we modify the linear system -
porate Dirichlet conditions (see Section 15.3). Now N = N,,. The two dif
from the case above is that the — fOL Dyn, p; dz term is left out of the rig
side and an extra last row associated with the node z, = L where the ]
condition applies is appended to the system. This last row is anyway 1
by the condition Cy = D or this condition can be incorporated in a sy
fashion. Using the simplest, former approach gives
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1 -1 0 0 C.o h_C
-1 2 -1 " : : 2h
o -1 2 -1
0
o -1 2 -1
0 :
-1 2 -1 21?
0 0 0 1 CN
(192)

5.5 Cellwise computations

ow we compute with one element at a time, working in the reference coordinate
sstem X € [—1,1]. We need to see how the u/(0) = C condition affects
1e element matrix and vector. The extra term —Cy;(0) in the variational
rmulation only affects the element vector in the first cell. On the reference cell,
-C;(0) is transformed to —C'@,(—1), where r counts local degrees of freedom.
/e have @o(—1) = 1 and ¢1(—1) = 0 so we are left with the contribution

C@o(—1) = —C to by

~ 1 1 1 > h—C
(0) = (0)

‘o other element matrices or vectors are affected by the —Cy;(0) boundary
rm.

There are two alternative ways of incorporating the Dirichlet condition.

ollowing Section 15.2, we get a 1 x 1 element matrix in the last cell and an
ement vector with an extra term containing D:

A(e):%u), b =h(1-DJ6), (194)

Alternatively, we include the degree of freedom at the node with u specified.

he element matrix and vector must then be modified to constrain the ¢; = cn

alue at local node r = 1:
11 ~ h
(No) _
(O l)’b (D) (195)
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16 Implementation

It is tempting to create a program with symbolic calculations to perforn
steps in the computational machinery, both for automating the work
documenting the complete algorithms. As we have seen, there are qui
details involved with finite element computations and incorporation of b
conditions. An implementation will also act as a structured summary of .
details.

16.1 Global basis functions

We first consider implementations when 1); are global functions are hence «
from zero on most of © = [0, L] so all integrals need integration over tk
domain. Since the expressions for the entries in the linear system depenc
differential equation problem being solved, the user must supply the n
formulas via Python functions. The implementations here attempt to
symbolic calculations, but fall back on numerical computations if the s
ones fail.

The user must prepare a function integrand_lhs(psi, i, j) for re
the integrand of the integral that contributes to matrix entry (i,j). "
variable is a Python dictionary holding the basis functions and their de
in symbolic form. More precisely, psilq] is a list of

di1po din
{ Jed "t }.

Similarly, integrand_rhs(psi, i) returns the integrand for entry num

the right-hand side vector.

Since we also have contributions to the right-hand side vector, and po
also the matrix, from boundary terms without any integral, we introd
additional functions, boundary_lhs(psi, i, j) and boundary_rhs(]
for returning terms in the variational formulation that are not to be inf
over the domain . Examples shown later will explain in more detail hc
user-supplied function may look like.

The linear system can be computed and solved symbolically by the fi
function:

import sympy as sp

def solve(integrand_lhs, integrand_rhs, psi, Omega,
boundary_lhs=None, boundary_rhs=None) :
len(psi[0]) - 1
sp.zeros ((N+1, N+1))
sp.zeros ((N+1, 1))
sp.Symbol (°x’
i in range(N+1):
for j in range(i, N+1):
integrand = integrand_lhs(psi, i, j)
I = sp.integrate(integrand, (x, Omega[0], Omegal[1]))
if boundary_lhs is not None:

Hh X o=
o nn

o
R
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I += boundary_lhs(psi, i, j)
Afi,j]l = A[j,i] = I # assume symmetry
integrand = integrand_rhs(psi, i)
I = sp.integrate(integrand, (x, Omegal[0], Omegal[1]))
if boundary_rhs is not None:
I += boundary_rhs(psi, i)
b[i,0] =
= A. LUsolve(b)
u = sum(c[i,0]*psi[0] [i] for i in range(len(psi[0])))
return u

Not surprisingly, symbolic solution of differential equations, discretized by a
-alerkin or least squares method with global basis functions, is of limited interest
eyond the simplest problems, because symbolic integration might be very time
»nsuming or impossible, not only in sympy but also in WolframAlpha?! (which
pplies the perhaps most powerful symbolic integration software available today:
[athematica). Numerical integration as an option is therefore desirable.

The extended solve function below tries to combine symbolic and numerical
itegration. The latter can be enforced by the user, or it can be invoked after a
on-successful symbolic integration (being detected by an Integral object as
1e result of the integration in sympy). Note that for a numerical integration,
/mbolic expressions must be converted to Python functions (using lambdify),
ad the expressions cannot contain other symbols than x. The real solve routine
| the varform1D.py?? file has error checking and meaningful error messages in
1ch cases. The solve code below is a condensed version of the real one, with
1e purpose of showing how to automate the Galerkin or least squares method
r solving differential equations in 1D with global basis functions:

lef solve(integrand_lhs, integrand_rhs, psi, Omega,
boundary_lhs=None, boundary_rhs=None, symbolic=True):
len(psi[0]) - 1
sp.zeros ((N+1, N+1))
sp.zeros((N+1, 1))
sp.Symbol (’x’)
i in range(N+1):
for j in range(i, N+1):
integrand = integrand_lhs(psi, i, j)
if symbolic:
I = sp.integrate(integrand, (x, Omegal[0], Omegal[1]))
if isinstance(I, sp.Integral):
symbolic = False # force num.int. hereafter
if not symbolic:
integrand = sp.lambdify([x], integrand)
I = sp.mpmath.quad(integrand, [Omegal[O0], Omegal1]])
if boundary_lhs is not None:
I += boundary_lhs(psi, i, j)
Ali,j] = A[j,i] = I
integrand = integrand_rhs(psi, i)
if symbolic:
I = sp.integrate(integrand, (x, Omegal[0], Omegal[1]))
if isinstance(I, sp.Integral):
symbolic = False

Hhd o=

o
o}

2Inttp://wolframalpha.com
22http://tinyurl.com/jvzzcin/fem/varformiD.py
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if not symbolic:

integrand = sp.lambdify([x], integrand)

I = sp.mpmath.quad(integrand, [Omegal[0], Omegal1]])
if boundary_rhs is not Nome:

I += boundary_rhs(psi, i)
b[i,0] =

c = A.LUsolve(b)
u = sum(c[i,0]*psi[0][i] for i in range(len(psil[01)))
return u

16.2 Example: constant right-hand side

To demonstrate the code above, we address

—u(z)=b, z€Q=[0,1, u(0)=1, u(l)=0,

with b as a (symbolic) constant. A possible basis for the space V is -
(1 — ), i € Z,. Note that ¥,;(0) = 1;(1) = 0 as required by the I
conditions. We need a B(z) function to take care of the known boundar
of u. Any function B(z) = 1 — 2P, p € R, is a candidate, and one a
choice from this family is B(x) = 1 — 23. The unknown function is then
as

u(z) = B(x) + ) cjii(@)

JELs
Let us use the Galerkin method to derive the variational formulatior
plying the differential equation by v and integrate by parts yield

1 1
/ u’v'd:L‘:/ fodz Yv eV,
0 0

and with u = B + Zj cj¥; we get the linear system

1
(/ s dm)cj—/o(f—B’mdx, iet,.

The application can be coded as follows in sympy:

JELs

, b = sp.symbols(’x b’)
b
1

- X*%*3
Bdx = sp.diff (B, x)

Q.00 Hh M

# Compute basis functions and their derivatives
N =3

psi = {0: [x**(i+1)*(1-x) for i in range(N+1)]}
psil1l] = [sp.diff(psi_i, x) for psi_i in psi[0]]

def integrand_lhs(psi, i, j):
return p51[1][1]*p31[1][3]
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lef integrand_rhs(psi, i):
return f*psi[0][i] - dBdx*psil[1] [i]

Jmega = [0, 1]

1_bar = solve(integrand_lhs, integrand_rhs, psi, Omega,
verbose=True, symbolic=True)

1 =B + u_bar

»rint ’solution u:’, sp.simplify(sp.expand(u))

he printout of u reads -b*x**2/2 + b*x/2 - x + 1. Note that expanding u
nd then simplifying is in the present case necessary to get a compact, final
xpression with sympy. A non-expanded u might be preferable in other cases -
1is depends on the problem in question.

The exact solution wue(x) can be derived by some sympy code that closely
llows the examples in Section 11.2. The idea is to integrate —u” = b twice and
etermine the integration constants from the boundary conditions:

31, C2 = sp.symbols(’Cl C2’) # integration constants

i1 = sp.integrate(f, x) + C1

2 = sp.integrate(f1, x) + C2

t Find C1 and C2 from the boundary conditions u(0)=0, u(1)=1

5 = sp.solve([u_e.subs(x,0) - 1, u_e.subs(x,1) - 0], [C1, C2])
t Form the exact solution

1.e = -f2 + s[C1]l*x + s[C2]

»rint ’analytical solution:’, u_e

»rint ’error:’, sp.simplify(sp.expand(u - u_e))

he last line prints 0, which is not surprising when ue(z) is a parabola and our
pproximate u contains polynomials up to degree 4. It suffices to have N =1,
e., polynomials of degree 2, to recover the exact solution.

We can play around with the code and test that with f ~ xP, the solution is
polynomial of degree p + 2, and N = p + 1 guarantees that the approximate
>lution is exact.

Although the symbolic code is capable of integrating many choices of f(z),
1e symbolic expressions for u quickly become lengthy and non-informative,
» numerical integration in the code, and hence numerical answers, have the
reatest application potential.

6.3 Finite elements

nplementation of the finite element algorithms for differential equations fol-
ws closely the algorithm for approximation of functions. The new additional
igredients are

1. other types of integrands (as implied by the variational formulation)

2. additional boundary terms in the variational formulation for Neumann
boundary conditions

3. modification of element matrices and vectors due to Dirichlet boundary
conditions
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Point 1 and 2 can be taken care of by letting the user supply functions
the integrands and boundary terms on the left- and right-hand side
equation system:

integrand_lhs(phi, r, s, x)
boundary_lhs(phi, r, s, x)
integrand_rhs(phi, r, x)
boundary_rhs(phi, r, x)

Here, phi is a dictionary where phi[q] holds a list of the derivatives
q of the basis functions at the an evaluation point; r and s are indices
corresponding entries in the element matrix and vector, and x is th
coordinate value corresponding to the current evaluation point.

Given a mesh represented by vertices, cells, and dof_map as exple

fore, we can write a pseudo Python code to list all the steps in the compu
algorithm for finite element solution of a differential equation.

<Declare global matrix and rhs: A, b>

for e in range(len(cells)):

len(dof_mapl[e]) # no of dofs in this element
vertices[cells[e] [1]] - vertices([cells[e] [1]]
<Declare element matrix and vector: A_e, b_e>

# Compute element matrix and vector
n =
h =

# Integrate over the reference cell
points, weights = <numerical integration rule>
for X, w in zip(points, weights):
phi = <basis functions and derivatives at X>
detJ = h/2
x = <affine mapping from X>
for r in range(n):
for s in range(n):
A_e[r,s] += integrand_lhs(phi, r, s, x)*detJxw
b_e[r] += integrand_rhs(phi, r, x)*detJ*w

# Add boundary terms
for r in range(n):
for s in range(n):
A_e[r,s] += boundary_lhs(phi, r, s, x)*detJ*w
b_e[r] += boundary_rhs(phi, r, x)*detJ*w

# Incorporate essential boundary conditions
for r in range(n):
global_dof = dof_map[e] [r]
if global_dof in essbc_dofs:
# dof r is subject to an essential condition
value = essbc_docs[global_dof]
# Symmetric modification

b_e -= valuexA_e[:,r]
A_elr,:] =0
A_el:,r] =0
A_elr,r] =1

b_e[r] = value

# Assemble
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for r in range(n):
for s in range(n):
A[dof_mapl[e] [r], dof_maplel [r]] += A_elr,s]
b[dof_map[e] [r] += b_el[r]

{solve linear system>

7 Variational formulations in 2D and 3D

he major difference between deriving variational formulations in 2D and 3D
»mpared to 1D is the rule for integrating by parts. A typical second-order term
1 a PDE may be written in dimension-independent notation as

Viu or V- (a(z)Vu) .
he explicit forms in a 2D problem become

0%u  0%u
2 —_— . —_——— —_
Vu =V - -Vu = 2 + "E

V- (a(z)Vu) = a% (a(:v,y)%) + a% (a(x,y)%) .

/e shall continue with the latter operator as the form arises from just setting
=1.

The general rule for integrating by parts is often referred to as Green’s first
lentity??:

0
- / V- (a(x)Vu)vde = / a(x)Vu - Vodz — / a2ty ds, (197)
Q Q aa On
here 99 is the boundary of Q and du/dn = n - Vu is the derivative of w in the
utward normal direction, 7 being an outward unit normal to 2. The integrals
,() dz are area integrals in 2D and volume integrals in 3D, while [, ()ds is a
ne integral in 2D and a surface integral in 3D.
Let us divide the boundary into two parts:
du

e 00y, where we have Neumann conditions —ag = g, and

e 00 p, where we have Dirichlet conditions u = uy.

he test functions v are required to vanish on 9Qp.

23nttp://en.wikipedia.org/wiki/Green’s_identities
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Example. Here is a quite general, stationary, linear PDE arising i
problems:

v-Vut+au=V-(aVu)+ f, x€Q,
u=ug, x€Ip,
ou
—a— =g, x€Iy.
on
The vector field v and the scalar functions a, «, f, ug, and g may vary »
spatial coordinate  and must be known.
Such a second-order PDE needs exactly one boundary condition at ea
of the boundary, so 9y U 0Qp must be the complete boundary 0.
Assume that the boundary function ug(x) is defined for all x €
unknown function can then be expanded as

u=B+ Y cjhj, B=ug.
JELs

The variational formula is obtained from Galerkin’s method, which tec
implies multiplying the PDE by a test function v and integrating over

/Q('U~Vu+au)vdx:/ﬂv-(aVu) dx+/ﬂfvda:.

The second-order term is integrated by parts, according to

/V~(aVu)vdx:f/aVu-Vde+/ a@vds.
Q Q aq On

The variational form now reads

[0S anmir= [[avuvutss [ auies [ o
Q 9] a0 5n Q

The boundary term can be developed further by noticing that v # 0

aSl]\“
/ a@vds :/ aa—uvds,
aq On oay On

and that on 9Qy, we have the condition a% = —g, so the term becom

—/ guds.
2N

The variational form is then

/(U-Vquoeu)vdx:f/aVu-Vvdxf/ gvds+/fvd:
Q Q 00N Q
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Instead of using the integral signs we may use the inner product notation:

(v - Vu,v) + (qu,v) = —(aVu, Vv) — (g,v)n + (f,v) .

he subscript n in (g,v)n is a notation for a line or surface integral over 99y .
Inserting the u expansion results in

> (- Vs, i) + (o, i) + (aVey, Vibi))e; =

(SN

(9,%)N + (f,20i) — (v - Vug, ) + (aug, ;) + (aVug, Vi) .

his is a linear system with matrix entries

nd right-hand side entries

bi = (g, %) N + (f,105) — (v - Vug,¥;) + (aug, ;) + (aVug, Vi),

w1, j € I,

In the finite element method, we usually express ug in terms of basis functions
ad restrict ¢ and j to run over the degrees of freedom that are not prescribed as
irichlet conditions. However, we can also keep all the ¢;, j € Z, as unknowns
rop the ug in the expansion for u, and incorporate all the known ¢; values in
1e linear system. This has been explained in detail in the 1D case.

7.1 Transformation to a reference cell in 2D and 3D

/e consider an integral of the type

/ a(x)Ve; - Vo; da, (201)
Qe

here the ¢; functions are finite element basis functions in 2D or 3D, defined in
1e physical domain. Suppose we want to calculate this integral over a reference
11, denoted by Q7 in a coordinate system with coordinates X = (Xo, X1) (2D)
t X = (Xo,X1,X2) (3D). The mapping between a point X in the reference
>ordinate system and the corresponding point @ in the physical coordinate
/stem is given by a vector relation x(X). The corresponding Jacobian, J, of
1is mapping has entries
_ Oz
J T 5XZ :

The change of variables requires dz to be replaced by det JdX. The deriva-
ves in the V operator in the variational form are with respect to x, which
e may denote by V. The ¢;(x) functions in the integral are replaced by
ical basis functions ¢, (X)) so the integral features V,p,(X). We readily have

Ji
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Vx @, (X) from formulas for the basis functions in the reference cell,
desired quantity V@, (X) requires some efforts to compute. All the de
provided below.

Let ¢ = g(e,r) and consider two space dimensions. By the chain rul

Opr _ 0pi _ Opi Ox Do Oy
90X 09X 0z 0X | Oy 90X’

and
Opr _ Opi _ Opi 9z Op;i Iy

Y Y 9z oY Oy oy’

We can write these two equations as a vector equation

Identifying
0%r Oz Oy 9
VXSOT = |: é(r :| 3 J = |: %)z( %?g( :| ) v:l:(p’r’ iavl 5
2% 9y  aYy Oy

we have the relation

Vx@r =J Vg,

which we can solve with respect to Vgp;:

Vw@i = J_l : VX()ZT
On the reference cell, ¢;(x) = ¢,(X), so

This means that we have the following transformation of the integr:
physical domain to its counterpart over the reference cell:

(e)
/ a(w)Vw¢i~Vw@jdw/ a(x(X)(J ' Vx@,)-(JHV,)det J d.
Q Qr

17.2 Numerical integration

Integrals are normally computed by numerical integration rules. Fo
dimensional cells, various families of rules exist. All of them are si
what is shown in 1D: [ fda ~ 37, w;f(x;), where w; are weights anc
corresponding points.

The file numint . py?* contains the functions quadrature_for_trian
and quadrature_for_tetrahedra(n), which returns lists of points and

24pttp://tinyurl.com/jvzzctn/fem/numint . py
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srresponding to integration rules with n points over the reference triangle
ith vertices (0,0), (1,0), (0,1), and the reference tetrahedron with vertices
1,0,0), (1,0,0), (0,1,0), (0,0, 1), respectively. For example, the first two rules
r integration over a triangle have 1 and 3 points:

>>> import numint

»>> x, W = numint.quadrature_for_triangles(num_points=1)
»>> x

[(0.3333333333333333, 0.3333333333333333)1]

D> W

[0.5]

»>> x, w = numint.quadrature_for_triangles(num_points=3)
»>> x

[(0.16666666666666666, 0.16666666666666666) ,
(0.66666666666666666, 0.16666666666666666) ,
(0.16666666666666666, 0.66666666666666666) ]

>> W

[0.16666666666666666, 0.16666666666666666, 0.16666666666666666]

ules with 1, 3, 4, and 7 points over the triangle will exactly integrate polynomials
f degree 1, 2, 3, and 4, respectively. In 3D, rules with 1, 4, 5, and 11 points
ver the tetrahedron will exactly integrate polynomials of degree 1, 2, 3, and 4,
sspectively.

7.3 Convenient formulas for P1 elements in 2D

/e shall now provide some formulas for piecewise linear ¢; functions and their
itegrals in the physical coordinate system. These formulas make it convenient to
ympute with P1 elements without the need to work in the reference coordinate
sstem and deal with mappings and Jacobians. A lot of computational and
lgorithmic details are hidden by this approach.

Let Q(¢) be cell number e, and let the three vertices have global vertex
uambers I, J, and K. The corresponding coordinates are (zr,yr), (xs,ys), and
'k, Yk ). The basis function ¢ over Q9 have the explicit formula

1
er(z,y) = §A (ar + Brz +r1y) (205)
here

oy = TjYKk — TKYJ, (206)
Br=ys— YK, (207)
V1 =2TK — T, (208)

1 Ty Yyr
2A=det | 1 x5 ys |- (209)

1 rx Yk

he quantity A is the area of the cell.

139

The following formula is often convenient when computing element 1
and vectors:

plg!r!
(p+qg+r+2)!

(Note that the ¢ in this formula is not to be mixed with the g(e,r) maj
degrees of freedom.)

As an example, the element matrix entry fme) pregdz can be co
by setting p = ¢ = 1 and r = 0, when I # J, yielding A/12, and p -
q=r =0, when I = J, resulting in A/6. We collect these numbers ir
element matrix:

/S o Ol pcdrdy =

2 11
A
D) 1 21
1 1 2
The common element matrix entry fQ(e) Vi -V dz, arising from a
term V2w, can also easily be computed by the formulas above. We hav

AP
Vor-Veoy= T(BDBJ + vrvs) = const,

so that the element matrix entry becomes iA3 (B1Bs +v177)-

From an implementational point of view, one will work with loca
numbers r = 0, 1, 2, parameterize the coefficients in the basis functions b
look up vertex coordinates through ¢(e, ).

Similar formulas exist for integration of P1 elements in 3D.

18 Summary

e When approximating f by u =3 ; Cj¥j, the least squares method
Galerkin/projection method give the same result. The interpolatic
cation method is simpler and yields different (mostly inferior) res

e Fourier series expansion can be viewed as a least squares or (
approximation procedure with sine and cosine functions.

e Basis functions should optimally be orthogonal or almost ortl
because this gives little round-off errors when solving the linear
and the coeflicient matrix becomes diagonal or sparse.

e Finite element basis functions are piecewise polynomials, norma
discontinuous derivatives at the cell boundaries. The basis functions
very little, leading to stable numerics and sparse matrices.

e To use the finite element method for differential equations, we
Galerkin method or the method of weighted residuals to arrive at
tional form. Technically, the differential equation is multiplied b
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function and integrated over the domain. Second-order derivatives are
integrated by parts to allow for typical finite element basis functions that
have discontinuous derivatives.

The least squares method is not much used for finite element solution of
differential equations of second order, because it then involves second-order
derivatives which cause trouble for basis functions with discontinuous
derivatives.

We have worked with two common finite element terminologies and associ-
ated data structures (both are much used, especially the first one, while
the other is more general):

1. elements, nodes, and mapping between local and global node numbers

2. an extended element concept consisting of cell, vertices, degrees of
freedom, local basis functions, geometry mapping, and mapping between
local and global degrees of freedom

The meaning of the word ”element” is multi-fold: the geometry of a finite
element (also known as a cell), the geometry and its basis functions, or all
information listed under point 2 above.

One normally computes integrals in the finite element method element
by element (cell by cell), either in a local reference coordinate system or
directly in the physical domain.

The advantage of working in the reference coordinate system is that the
mathematical expressions for the basis functions depend on the element
type only, not the geometry of that element in the physical domain. The
disadvantage is that a mapping must be used, and derivatives must be
transformed from reference to physical coordinates.

Element contributions to the global linear system are collected in an element
matrix and vector, which must be assembled into the global system using
the degree of freedom mapping (dof _map) or the node numbering mapping
(elements), depending on which terminology that is used.

Dirichlet conditions, involving prescribed values of u at the boundary, are
implemented either via a boundary function that take on the right Dirichlet
values, while the basis functions vanish at such boundaries. In the finite
element method, one has a general expression for the boundary function,
but one can also incorporate Dirichlet conditions in the element matrix
and vector or in the global matrix system.

Neumann conditions, involving prescribed values of the derivative (or
flux) of u, are incorporated in boundary terms arising from integrating
terms with second-order derivatives by part. Forgetting to account for the
boundary terms implies the condition du/dn = 0 at parts of the boundary
where no Dirichlet condition is set.

141

19 Time-dependent problems

The finite element method is normally used for discretization in space
are two alternative strategies for performing a discretization in time:

e use finite differences for time derivatives to arrive at a recursiv
spatial problems that can be discretized by the finite element me

e discretize in space by finite elements first, and then solve the r
system of ordinary differential equations (ODEs) by some standard
for ODEs.

We shall exemplify these strategies using a simple diffusion problem

% =aViu + f(z,1), x e Qte(0,T]
u(zx,0) = I(x), x €,

ou

Z7 Q T].

o 0, x eI, te(0,T]

Here, u(x,t) is the unknown function, « is a constant, and f(x,t) a
are given functions. We have assigned the particular boundary conditic
to minimize the details on handling boundary conditions in the finite
method.

19.1 Discretization in time by a Forward Euler sche

Time discretization. We can apply a finite difference method in
(211). First we need a mesh in time, here taken as uniform with mesl
t, = nAt, n = 0,1,...,N;. A Forward Euler scheme consists of s:
(211) at t, and approximating the time derivative by a forward di
[Dju]™ &~ (u"*+* — u™)/At. This approximation turns (211) into a difl
equation that is discrete in time, but still continuous in space. With
difference operator notation we can write the time-discrete problem as

[Dffu = aViu + 7,

forn=1,2,..., N; — 1. Writing this equation out in detail and isola
unknown "t on the left-hand side, demonstrates that the time-discrete
is a recursive set of problems that are continuous in space:

vt = " + At (OZVQUn + f(w7tn>) .

Given u® = I, we can use (215) to compute u!,u?, ... uVt.

For absolute clarity in the various stages of the discretizations, we ir
ue(x,t) as the exact solution of the space-and time-continuous partial dif
equation (211) and uZ(x) as the time-discrete approximation, arising f
finite difference method in time (214). More precisely, ue fulfills
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Oue
ot
hile 42 +!, with a superscript, is the solution of the time-discrete equations

= av2ue + f(:l:,t), (216)

upt = ul + At (aVPul + f(z,t,)) - (217)

pace discretization. We now introduce a finite element approximation to

" and uZ ! in (217), where the coefficients depend on the time level:

N
ug mu =Y (), (218)
j=0
N
ugt m =)t y(@) . (219)
Jj=0

‘ote that, as before, N denotes the number of degrees of freedom in the spatial
omain. The number of time points is denoted by N;. We define a space V'

>anned by the basis functions {t;};c7 .

9.2 Variational forms

weighted residual method with weighting functions w; can now be formulated.
/e insert (218) and (219) in (217) to obtain the residual

R=u"t" —u" — At (aV?u" + f(z,t,)) .

he weighted residual principle,

/Rwdac:(), Yw e W,
Q

sults in

/ [w" ! —u — At (aV2u" + f(x,t,))] wde =0, VweW.
Q

rom now on we use the Galerkin method so W = V. Isolating the unknown
"+1 on the left-hand side gives

/ u ey da = / [u" — At (aVPu™ + f(z,t,))] vdz, YweEV.
Q Q

As usual in spatial finite element problems involving second-order derivatives,
e apply integration by parts on the term [(V2u™)v da:

* n

/a(VQu")vdx:f/aVu”-Vvder/ ozalvdx.
Q Q a0 On
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The last term vanishes because we have the Neumann condition du™/9n
all n. Our discrete problem in space and time then reads

/u”+1vdx:/u”vd:rfAt/aVu"-Vvdw+At/f"vdw, Yov
Q Q Q Q

This is the variational formulation of our recursive set of spatial proble

Nonzero Dirichlet boundary conditions.

As in stationary problems, we can introduce a boundary function E
to take care of nonzero Dirichlet conditions:

N
ug = u" = B(x,t,) + chwj(w)’
=0
N
ug+1 ~ oyt — B(ﬂ?, tn+1) + Zc;“rle(m) .
=0

19.3 Simplified notation for the solution at recent
levels

In a program it is only necessary to store u"*! and u™ at the same ti
therefore drop the n index in programs and work with two functions: u f
the new unknown, and u_1 for u™, the solution at the previous time lev
is also convenient in the mathematics to maximize the corresponden
the code. From now on u; means the discrete unknown at the previc
level (u™) and u represents the discrete unknown at the new time level
Equation (220) with this new naming convention is expressed as

/uvdx:/ulvdm—At/aVu1~Vvdx+At/f"Udm.
Q Q Q Q

This variational form can alternatively be expressed by the inner produ
tion:

(u,v) = (u1,v) — At(aVuy, Vo) + (f*,v).

19.4 Deriving the linear systems
To derive the equations for the new unknown coefficients c;”rl

¢j, we insert

, NOW jus

N N
u = ZCj¢j($), Uy = ZCLJ"L/JJ'(JZ)
7=0 J=0
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1 (223) or (224), let the equation hold for all v =, i = 0,...,N, and order the
rms as matrix-vector products:

N

N N
S(%%%’)Cj = Z(wia¢j)cl,j_AtZ(v¢ivaij)cl,j+(fna¢i)a i=0,...,N.

=0 §=0 j=0
(225)
his is a linear system Zj A; jej = b; with

Aij = (¥i, ;)
nd
N N
bi =Y (i, )er; — At (Viby, aViy)er; + (f", i) .
J=0 j=0

It is instructive and convenient for implementations to write the linear system
n the form

Me= Mecy — AtKey + f, (226)

here

M= {Mi,j}ﬂ MiJ = (¢ia¢j): i,j € I,
K ={K,;}, Ki;=(V¢i,aVyy), i,je€T,
f=A{(f(,tn), i) tiex.

c= {Ci}iGIsa

c1 = {Cl,i}iezs .

We realize that M is the matrix arising from a term with the zero-th derivative
f u, and called the mass matrix, while K is the matrix arising from a Laplace
srm V2u. The K matrix is often known as the stiffness matriz. (The terms
1ass and stiffness stem from the early days of finite elements when applications
» vibrating structures dominated. The mass matrix arises from the mass times
cceleration term in Newton’s second law, while the stiffness matrix arises from
1e elastic forces in that law. The mass and stiffness matrix appearing in a
iffusion have slightly different mathematical formulas.)

temark. The mathematical symbol f has two meanings, either the function
(z,t) in the PDE or the f vector in the linear system to be solved at each time
wvel. The symbol v also has different meanings, basically the unknown in the
DE or the finite element function representing the unknown at a time level.
he actual meaning should be evident from the context.
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19.5 Computational algorithm

We observe that M and K can be precomputed so that we can avoid cor
the matrix entries at every time level. Instead, some matrix-vector multip
will produce the linear system to be solved. The computational algorit
the following steps:

1. Compute M and K.
2. Initialize u° by interpolation or projection
3. Forn=1,2,..., Ny

(a) compute b= Mc; — AtKey + f
(b) solve Mc="b

(c) set g =¢

In case of finite element basis functions, interpolation of the initial cc
at the nodes means ¢; ; = I(x;). Otherwise one has to solve the linear
> ¥j(zi)e; = I(xi), where x; denotes an interpolation point. Projec
Galerkin’s method) implies solving a linear system with M as coefficiens

: Zj M, jc1; = (I, ), 1 € ZLs.

19.6 Comparing P1 elements with the finite diffe
method

We can compute the M and K matrices using P1 elements in 1D. A
mesh on [0, L] is introduced for this purpose. Since the boundary condit
solely of Neumann type in this sample problem, we have no restriction:
basis functions v; and can simply choose ¥; = ¢;, 1 =0,..., N = N,,.

From Section 13.2 or 13.4 we have that the K matrix is the same a
from the finite difference method: h[D, D u|?, while from Section 5.2 v
that M can be interpreted as the finite difference approximation [u+ %hQL
(times h). The equation system Mc = b in the algorithm is therefore eq
to the finite difference scheme

1
[Df (u+ Gh?* Do Do) = aDyp Dyu+ fI7

(More precisely, Mc¢ = b divided by h gives the equation above.)

Lumping the mass matrix. By applying Trapezoidal integration
turn M into a diagonal matrix with (h/2,h, ..., h,h/2) on the diagona
there is no need to solve a linear system at each time level, and the finite
scheme becomes identical to a standard finite difference method

[Dffu = aD,Dyu+ f]i.
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The Trapezoidal integration is not as accurate as exact integration and
itroduces therefore an error. Whether this error has a good or bad influence
a the overall numerical method is not immediately obvious, and is analyzed in
etail in Section 19.10. The effect of the error is at least not more severe than
hat is produced by the finite difference method.

Making M diagonal is usually referred to as lumping the mass matrixz. There

an alternative method to using an integration rule based on the node points:

ne can sum the entries in each row, place the sum on the diagonal, and set all
ther entries in the row equal to zero. For P1 elements the methods of lumping
1e mass matrix give the same result.

9.7 Discretization in time by a Backward Euler scheme

'‘ime discretization. The Backward Euler scheme in time applied to our
iffusion problem can be expressed as follows using the finite difference operator
otation:

[D; u=aVu+ f(x,t)]".

/ritten out, and collecting the unknown ™ on the left-hand side and all the
nown terms on the right-hand side, the time-discrete differential equation
ecomes

uy — At (av%g + f,tn)) = ul =t (229)
quation (229) can compute ul,u2, ..., ult, if we have a start uQ = T from the
iitial condition. However, (229) is a partial differential equation in space and
eeds a solution method based on discretization in space. For this purpose we
se an expansion as in (218)-(219).

ariational forms. Inserting (218)-(219) in (229), multiplying by ; (or
€ V), and integrating by parts, as we did in the Forward Euler case, results in
1e variational form

/ (u"v 4+ AtaVu™ - Vo) dz = / u"todr — At [ frfude, Yo e V. (230)
Q Q Q
xpressed with u as u™ and u; as ™', this becomes

/ (wv 4+ AtaVu - Vo) dz = /
Q

uivde + At/ ffvde, (231)
Q Q

¢ with the more compact inner product notation,

(u,v) + At(aVu, Vo) = (ug,v) + At(f",v). (232)
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Linear systems. Inserting u = Zj ¢ and uy = Zj 1%, and che
to be the basis functions ¢; € V, i =0,..., N, together with doing some
lead to the following linear system to be solved at each time level:

(M + AtK)e = Mcy + f,

where M, K, and f are as in the Forward Euler case. This time we rea
to solve a linear system at each time level. The computational algorithm
follows.

1. Compute M, K, and A = M + AtK
2. Initialize u® by interpolation or projection
3. Forn=1,2,..., Ny

(a) compute b= Mc; + f

(b) solve Ac=1b

(c) set g =¢

In case of finite element basis functions, interpolation of the initial cc
at the nodes means ¢; ; = I(x;). Otherwise one has to solve the linear
> ¥j(zi)e; = I(x;), where x; denotes an interpolation point. Projec
Galerkin’s method) implies solving a linear system with M as coefficien
: Zj Mi,jcl,j = (I, ’l[)z), i€ L.

We know what kind of finite difference operators the M and K 1
correspond to (after dividing by h), so (233) can be interpreted as the fi
finite difference method:

1
[D; (u+ 6h2DzDzu) =aD,D,u+ f]7.

The mass matrix M can be lumped, as explained in Section 19.6, a
the linear system arising from the finite element method with P1 e
corresponds to a plain Backward Euler finite difference method for the ¢
equation:

[D; u=aD,Dyu+ f]I'.

19.8 Dirichlet boundary conditions

Suppose now that the boundary condition (213) is replaced by a mixed N
and Dirichlet condition,

u(x, t) = ug(x,t), x € 0Qp,

0
—a%u(w,t) = g(z,t), x €0y
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Using a Forward Euler discretization in time, the variational form at a time
wvel becomes

/ unJrlvdx — / (Un _ Atavu" . VU) do — At/ gu dS, Yov S V. (238)
Q Q 0N

soundary function. The Dirichlet condition u = ug at Qp can be incorpo-
ited through a boundary function B(x) = ug(x) and demanding that v = 0 at
Qp. The expansion for u™ is written as

u"(@) = uo(@, tn) + Y ().
JE€Ls
1serting this expansion in the variational formulation and letting it hold for all
asis functions 1); leads to the linear system

J€Ts

/ (uo(z, tnt1) — uo(x, tn) + AtaVug(x, ty,) - Vi) dz
Q

+At/f¢idx—At/ gy;ds, i€Z,.
Q N

1 the following, we adopt the convention that the unknowns c;”'l are written

5 ¢j, while the known cf from the previous time level are denoted by c; ;.

inite element basis functions. When using finite elements, each basis
inction ¢; is associated with a node x;. We have a collection of nodes {z;}ier,
n the boundary 0€2p. Suppose U} is the known Dirichlet value at x) at time
(U = uo(zk,tn)). The appropriate boundary function is then

B(z,t,) = Z Ul'pj .
JELy
he unknown coefficients ¢; are associated with the rest of the nodes, which
ave numbers v(i), i € Zy = {0,..., N}. The basis functions for V' are chosen as
i = Pu(i), © € Ls, and all of these vanish at the boundary nodes as they should.
he expansion for 4"*! and ™ become

ut =" Urei+ D et

jGIb jeIs
n+l __ n+l . )
u = E:Uj wj+ E:CJ‘PV(J)'
JEIy JETLs
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The equations for the unknown coefficients ¢; become

> (/Q Qi dx) = (/ﬂ (pip; — AtaVp; - Vi;) dx) eri—

JEZL, JELs

Z /Q (<p,-<pj(U;L+l = Uj") + AtaVy; - VU,

JE€Iy

+At/f%dx—At/ gpids, 1€y
Q 00N

Modification of the linear system. Instead of introducing a b
function B we can work with basis functions associated with all the no
incorporate the Dirichlet conditions by modifying the linear system. L
the index set that counts all the nodes: {0,1,...,N = N, }. The expar
u™ is then ZjGIS c}p; and the variational form becomes

Z (/Q Pip; dﬂﬁ) ¢ = Z (/Q (pip; — AtaV; - V;) dm> e,

JELs JELs

fAt/fgoid:rfAt/ gp;ds.
Q 0N

We introduce the matrices M and K with entries M; ; = fQ pip;j dx anc
fQ aVy; - V; dz, respectively. In addition, we define the vectors ¢, ¢
with entries ¢;, ¢14, and [, foidz — [, gpids. The equation system ¢
be written as

Mc= Mcy — AtKey + Atf .

When M, K, and b are assembled without paying attention to Dirichlet b
conditions, we need to replace equation k by ¢, = Uy for k corres)
to all boundary nodes (k € I). The modification of M consists in
My; =0, j € Z,, and the My, = 1. Alternatively, a modificati
preserves the symmetry of M can be applied. At each time level on
b= Mcy — AtKcy + Atf and sets by = U,:L+17 k € I, and solves the
Mc=hb.

In case of a Backward Euler method, the system becomes (233).
write the system as Ac = b, with A = M + AtK and b = Mcy + f. ]
and K needs to be modified because of Dirichlet boundary conditions,
diagonal entries in K should be set to zero and those in M to unity.
way, Ak = 1. The right-hand side must read by = U} for k € I, (assun
unknown is sought at time level ¢,).

19.9 Example: Oscillating Dirichlet boundary cond

We shall address the one-dimensional initial-boundary value problem
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up = (aug)z + f, xeQ=[0,L], t €(0,T], (240)
u(z,0) =0, x € Q, (241)
u(0,t) = asinwt, te (0,7, (242)

ua(L,t) = 0, te (0,7]. (243)

physical interpretation may be that u is the temperature deviation from
constant mean temperature in a body €2 that is subject to an oscillating
smperature (e.g., day and night, or seasonal, variations) at z = 0.

We use a Backward Euler scheme in time and P1 elements of constant length
in space. Incorporation of the Dirichlet condition at = 0 through modifying
1e linear system at each time level means that we carry out the computations
5 explained in Section 19.7 and get a system (233). The M and K matrices
ymputed without paying attention to Dirichlet boundary conditions become

2 1 0 0
1 4 1
0 1 4 1
. 0
M= (244)
0 1 4 1
0
1 1
0 0 1 2
1 -1 0 0
-1 2 -1
0 -1 2 -1
0
K:% (245)
0 -1 2 -1
0
: -1 2 -1
0 ++r cer eee eee o0 =1 1

he right-hand side of the variational form contains M¢; since there is no source
srm (f) and no boundary term from the integration by parts (u, =0 at x = L
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and we compute as if u, = 0 at x = 0 too). We must incorporate the I
boundary condition ¢y = asinwt,, by ensuring that this is the first equ
the linear system. To this end, the first row in K and M are set to z
the diagonal entry Mj o is set to 1. The right-hand side is b = M¢;, an
by = asinwt,. Note that in this approach, N = N,,, and ¢ equals the u
u at each node in the mesh. We can write the complete linear system ¢

co = asinwty,,

h « h
E(Cifl +4c; +ciqr) + Atﬁ(—ciﬂ +2¢; +ciy1) = g(cl,ifl +4ci;+c

i=1,... N, 1,
h o h
E(Ci—l +2¢) + Atﬁ(_ci—l +¢) = 5(01,1‘—1 +2c¢14),

The Dirichlet boundary condition can alternatively be implemented
a boundary function B(z,t) = asinwtyg(z):

u(x) = asinwtypo(r) + Y e (), V(i) =j+1.
JELs

Now, N = N, — 1 and the ¢ vector contains values of u at nodes 1,2,
The right-hand side gets a contribution

L
/ (a(sinwty, — sinwt,,—1)pop; — Ataasinwt, Vg - Vo;) dx.
0

19.10 Analysis of the discrete equations

The diffusion equation u; = aug, allows a (Fourier) wave compone
exp (Bt + ikz) as solution if 8 = —ak?, which follows from inserting t
component in the equation. The exact wave component can alternat
written as

__ An ikx _ —ak?At
u=Age"™", Ac=ce .

Many numerical schemes for the diffusion equation has a similar wave cor
as solution:

n __ An ikx
ug = A"e"™,

where is an amplification factor to be calculated by inserting (252) in the
We introduce x = ¢h, or x = ¢Ax to align the notation with that fre
used in finite difference methods.
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A convenient start of the calculations is to establish some results for various
nite difference operators acting on

up = Anetkatr, (252)
. , A-1
[DjAnelkqu}n — AnequAa: ,
At
. o1— A
[D;Anezlchw}n — AnequAac ,
At
_ ong AR — A2 e A — 1
D, A" ikqAx n+% — An+% ikqAzx — A" ikqAx
(DA ‘ At ¢ At
, 4 kAx
n ikqAz] _ _ An i 02
[D,D,A"e lq A A7 Sin ( 5 ) .

orward Euler discretization. We insert (252) in the Forward Euler scheme
ith P1 elements in space and f = 0 (this type of analysis can only be carried
ut if f =0),
1
D} (u + 6h2Dmeu) =aD,Dyuly . (253)

/e have

A-1 4 (kA:r)
At A2V
he term [D; Ae’™ + $ Az?D}f Dy D, Ae' ] then reduces to

A-1
At

D;’_DIDZAGH“C}Z — [D;—A]n[DzDzeikz]q _ _Aneikpr

A—-1 4
At Az?

kAx
2

- %AxQ sin?( ),

A-1 2

itroducing p = kAx/2 and C = aAt/Az?, the complete scheme becomes

(A-1) (1 — %sim2 p) = —4C'sin? p,
om which we find A to be

.2
A=1-40—2L
1—5sinp

How does this A change the stability criterion compared to the Forward
uler finite difference scheme and centered differences in space? The stability
siterion is |A| < 1, which here implies A <1 and A > —1. The former is always
ifilled, while the latter leads to
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. 2
a0 P 9

1+ % sin?p ~
The factor sin® p/(1 — 2 sin® p) can be plotted for p € [0,7/2], and the m
value goes to 3 as p — 7/2. The worst case for stability therefore occurs
shortest possible wave, p = 7/2, and the stability criterion becomes

2
NP
6a
which is a factor 1/3 worse than for the standard Forward Euler finite d
method for the diffusion equation, which demands C' < 1/2. Lumping t
matrix will, however, recover the finite difference method and therefor
C < 1/2 for stability.

<

| =

Backward Euler discretization. We can use the same approach an
(252) in the Backward Euler scheme with P1 elements in space and f =

1
[D; (u+ ghQDwau) = aD,Dyul?.

Similar calculations as in the Forward Euler case lead to

(1—-A7YH <1 - %sin2 p> = —4C'sin’ p,

and hence

.2 -1
A= (me) |
1—%sin“p

3

Comparing amplification factors. It is of interest to compare A ar
functions of p for some C' values. Figure 48 display the amplification
for the Backward Euler scheme corresponding a coarse mesh with C' =
mesh at the stability limit of the Forward Euler scheme in the finite di
method, C' = 1/2. Figures 49 and 50 shows how the accuracy increas
lower C' values for both the Forward Euler and Backward schemes, rest
The striking fact, however, is that the accuracy of the finite element
is significantly less than the finite difference method for the same val
Lumping the mass matrix to recover the numerical amplification factor .
finite difference method is therefore a good idea in this problem.
Remaining tasks:

e Taylor expansion of the error in the amplification factor A — A
e Taylor expansion of the error e = (AZ — A™)eth®

e L2 norm of e
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Method: BE

1.0 - -
0.8} 1
0.6 1
0.4+ 1

e—e (C=2,FEM
oal|™™® C=2,FDM |
“l|v~¥ C=1/2, FEM

&4 C=1/2, FDM

+——+ exact
og : 0 . . . . .

.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

igure 48: Comparison of coarse-mesh amplification factors for Backward Euler
iscretization of a 1D diffusion equation.

Method: FE

0.5f i

1.0

0.0} 4

C=1/6, FEM
C=1/6, FDM

_O'SV
C=1/12, FEM
C=1/12, FDM
exact

_1'8.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6

igure 49: Comparison of fine-mesh amplification factors for Forward Euler
iscretization of a 1D diffusion equation.
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C=1/6, FEM
C=1/6, FDM
C=1/12, FEM
C=1/12, FDM
exact

3 I
O'UO 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Figure 50: Comparison of fine-mesh amplification factors for Backwai
discretization of a 1D diffusion equation.
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)0 Systems of differential equations

[any mathematical models involve m + 1 unknown functions governed by a
sstem of m + 1 differential equations. In abstract form we may denote the
nknowns by «(®, ..., «™ and write the governing equations as

Low®, ... ,u(m)) =0,

L@, u™) =0,

here £; is some differential operator defining differential equation number 1.

0.1 Variational forms

here are basically two ways of formulating a variational form for a system of
ifferential equations. The first method treats each equation independently as
scalar equation, while the other method views the total system as a vector
juation with a vector function as unknown.

Let us start with the one equation at a time approach. We multiply equation
umber i by some test function v(¥ € V() and integrate over the domain:

/ £(0) (u(o)’ o u(m))U(O) dz =0, (256)
Q
(257)
/ L(m)(u(o), .. 7u(m))v(m) dz=0. (258)
Q

erms with second-order derivatives may be integrated by parts, with Neumann
»nditions inserted in boundary integrals. Let

v = span{wéi), o ’Qp%i}’
1ch that

N;
u = BO(@) + Y v (@),
=0

here B is a boundary function to handle nonzero Dirichlet conditions. Observe
1at different unknowns live in different spaces with different basis functions and
umbers of degrees of freedom.

From the m equations in the variational forms we can derive m coupled
sstems of algebraic equations for the ITI™ ,V; unknown coefficients cy), j=
,...,Ni,i:O,...,m.
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The alternative method for deriving a variational form for a sy
differential equations introduces a vector of unknown functions

w= @, .. . u™),

a vector of test functions

v=(u®, . um™),

with

u,vGVzV(O) X e x VM)
With nonzero Dirichlet conditions, we have a vector B = (B(O), ...,BCU
boundary functions and then it is u — B that lies in V', not u itself.
The governing system of differential equations is written
L(u) =0,

where

L) = (LO),..., L0 (w)).

The variational form is derived by taking the inner product of the v
equations and the test function vector:

/L(u)-v:() YveV.
Q

Observe that (259) is one scalar equation. To derive systems of a
equations for the unknown coefficients in the expansions of the unknos
tions, one chooses m linearly independent v vectors to generate m inde
variational forms from (259). The particular choice v = (v(?),0,...,0)
(256), v = (0,...,0,v(™ recovers (258), and v = (0,...,0,v(,0,...,0)
the variational form number 4, [, LPv() dz = 0, in (256)-(258).

20.2 A worked example

We now consider a specific system of two partial differential equation:
space dimensions:

,MVQT,U = _ﬂa

KV2T = —p||Vu|?.
The unknown functions w(z,y) and T'(z,y) are defined in a domain §
u, B, and k are given constants. The norm in (261) is the standard Eu

norm:

|[Vw|]* = Vw - Vw = w} + w .
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The boundary conditions associated with (260)-(261) are w = 0 on 9 and
"= T, on 90. Each of the equations (260) and (261) need one condition at
ach point on the boundary.

The system (260)-(261) arises from fluid flow in a straight pipe, with the z axis
1 the direction of the pipe. The domain €2 is a cross section of the pipe, w is the
slocity in the z direction, p is the viscosity of the fluid, 3 is the pressure gradient
long the pipe, T is the temperature, and x is the heat conduction coefficient
f the fluid. The equation (260) comes from the Navier-Stokes equations, and
'61) follows from the energy equation. The term —pu||Vw||? models heating of
1e fluid due to internal friction.

Observe that the system (260)-(261) has only a one-way coupling: 7' depends
n w, but w does not depend on T, because we can solve (260) with respect
> w and then (261) with respect to 7. Some may argue that this is not a
sal system of PDEs, but just two scalar PDEs. Nevertheless, the one-way
yupling is convenient when comparing different variational forms and different
nplementations.

0.3 Identical function spaces for the unknowns

et us first apply the same function space V for w and T' (or more precisely,
reVand T —T, € V). With

V= Span{wo(l"»y)v s ,sz(x,y)L

e write

N N
w=3 ", T=To+3 v (262)

=0 =0

‘ote that w and T in (260)-(261) denote the exact solution of the PDEs, while

rand T (262) are the discrete functions that approximate the exact solution.

; should be clear from the context whether a symbol means the exact or
pproximate solution, but when we need both at the same time, we use a
1bscript e to denote the exact solution.

"ariational form of each individual PDE. Inserting the expansions (262)
1 the governing PDEs, results in a residual in each equation,

Ry = uVw + B, (263)
Ry = kV2T 4 p||Vw||?. (264)

Galerkin method demands R,, and Ry do be orthogonal to V:
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/vadm:O Yv eV,
Q
/RTde:O YveV.
Q

Because of the Dirichlet conditions, v = 0 on 92. We integrate the
terms by parts and note that the boundary terms vanish since v = 0 or

/,qu'Vvdx:/ﬂvdx Yo eV,
Q Q

//{VT~Vvdx:/qu-vadx YoeV.
Q Q

Compound scalar variational form. The alternative way of derix
variational from is to introduce a test vector function v € V=V x V ¢
the inner product of v and the residuals, integrated over the domain:

/(RWRT)mdx:O Yo eV.
Q
With v = (vg,v1) we get

/(vao + Rrvy)dz =0 YveV.
Q

Integrating the Laplace terms by parts results in

/(,qu-VvoJrnVT~Vvl)dx:/(Bvo+qu~va1)dx7 Vv eV
Q Q

Choosing vy = v and v; = 0 gives the variational form (265), while v
vy = v gives (266).

With the inner product notation, (p,q) = fQ pgdx, we can alternative
(265) and (266) as

(WVw, Vo) = (B,v) YveV,
(kVT,Vv) = (uWVw - Vw,v) Yv eV,

or since i and k are considered constant,

W(Vw, Vo) = (B,v) YueV,
Kk(VT,Vv) = p(Vw - Vw,v) Yo eV.
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Jecoupled linear systems. The linear systems governing the coefficients

;w) and ct¥ ), j=0,...,N, are derived by inserting the expansions (262) in

'65) and (266), and choosing v = v; for ¢ = 0,..., N. The result becomes

Z A =5 =0, N, (270)
Z ADLD g, N, (271)
A = (v, Vi), (272)
b(w) (8, %), (273)
AT = k(Y Vi), (274)
b7 = u((3 V) - (30 e V). ). (275)

i k

It can also be instructive to write the linear systems using matrices and
sctors. Define K as the matrix corresponding to the Laplace operator V2. That
, Kij = (V;, Vip;). Let us introduce the vectors

b = (b5, ... by,

p(T) — b(T) N

T —

(b
(

= (")),
= (e

he system (270)-(271) can now be expressed in matrix-vector form as

pkK W) = pw) (276)
kKT = pT) (277)

We can solve the first system for ¢(*), and then the right-hand side b is
nown such that we can solve the second system for ¢(™).

soupled linear systems. Despite the fact that w can be computed first,
ithout knowing 7', we shall now pretend that w and T enter a two-way coupling
1ch that we need to derive the algebraic equations as one system for all the
nknowns ¢\ and c§T), j=0,...,N. This system is nonlinear in ") because
f the Vw - Vw product. To remove this nonlinearity, imagine that we introduce
n iteration method where we replace Vw - Vw by Vw_ - Vw, w_ being the w
>mputed in the previous iteration. Then the term Vw_ - Vw is linear in w
nce w_ is known. The total linear system becomes
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Z A(w w) (w) + ZA(w 1) (T) (w)7 i=0,...,N,

ZA(Tw) (LU)+ZA(TT) (T) b(T) Z:0a7N

Agf;’w) = u(Vp;, 1),
A
b = (B, 1),
AE?“]”.’T) = u((Vow-) - Vab;), y),
AE?’T) = k(VY;, i),
" =0.

This system can alternatively be written in matrix-vector form as

pkK ™ = 0p),

L™ + kK™ =0,
with L as the matrix from the Vw_ - V operator: L; ; = A(w D,
The matrix-vector equations are often conveniently ertten in block

pK 0 W\ pw)
L kK AT ) 0o )’

Note that in the general case where all unknowns enter all equati
have to solve the compound system (297)-(298) since then we cannot ut
special property that (270) does not involve T and can be solved first.

When the viscosity depends on the temperature, the 4V2w term 1
replaced by V - (u(T)Vw), and then T enters the equation for w. Now
a two-way coupling since both equations contain w and T and therefo
be solved simultaneously Th equation V - (u(T)Vw) = —f is nonlinea
some iteration procedure is invoked, where we use a previously compute
the viscosity (u(T-)), the coefficient is known, and the equation invol
one unknown, w. In that case we are back to the one-way coupled set ¢

We may also formulate our PDE system as a vector equation. To this
introduce the vector of unknowns u = (u(?), u™), where u(®) = w and «
We then have

-1
2, —pu B
v u= < 7/4/_1/,LV’U/(0) . VU(O) ) :
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0.4 Different function spaces for the unknowns

|is easy to generalize the previous formulation to the case where w € V(*) and
"e VD where V® and V@ can be different spaces with different numbers
f degrees of freedom. For example, we may use quadratic basis functions for
rand linear for T. Approximation of the unknowns by different finite element
»aces is known as mized finite element methods.

We write

v = span{l/)éw), o (w)}
v = span{z/)(()T), . (T)}
he next step is to multiply (260) by a test function v(*) € V(*) and (261) by a

1) ¢ V(1) integrate by parts and arrive at

/ puVw - Vo) dz = / B dz Yo e V) (288)

Q Q

/ KVT - VoD dz = / puVw - Vwo™ de v e v, (289)
Q Q

The compound scalar variational formulation applies a test vector function
= (v, v(M)) and reads

/(,qu Vo) 4 xVT - Vo)) de = / (Bv™) + uVw - Vwo ™) dz, (290)
Q Q

alid Vo € V =V x V(1)

The associated linear system is similar to (270)-(271) or (297)-(298), except
1at we need to distinguish between wi(w) and w,ET), and the range in the sums
ver j must match the number of degrees of freedom in the spaces V(*) and
“(T). The formulas become

ZA(M) (w) (w)7 z:O,,va (291)
ZAEIJ‘) ET) _ b(T) 1=0,...,Nrp, (292)
A = (T ), (293)
B = (8,0, (294
AT = w(w" ™), (295)
b = (v, p{"). (296)

163

In the case we formulate one compound linear system involving bc
j=0,...,Ny, and c , j =0,...,Nr, (297)-(298) becomes

ZA(“’ w) (w) +ZA(“’ 1) (T) (w)’ ;= 07‘”7wa

ZA(Tw) (w>+ZA(TT> (D) _ G0, Ny,

AL = (vl ),
A(‘”_’T) =0,
b = (89",
AY; D = u(Vw_ - Vi), g "),
S AT SERTIS
") =

The corresponding block form

K (@) 0 c(w) p(w)
L kK M )= 0 ’

has square and rectangular block matrices: K is Ny, X Ny, KT is N
while L is Ny X Ny,

20.5 Computations in 1D

We can reduce the system (260)-(261) to one space dimension, which corr
to flow in a channel between two flat plates. Alternatively, one may «
flow in a circular pipe, introduce cylindrical coordinates, and utilize th
symmetry to reduce the equations to a one-dimensional problem in th
coordinate. The former model becomes

HWgxy = 7ﬁ7

2
KLy = —H Wy,

while the model in the radial coordinate r reads

1d rd7w _ 5
e \"ar ) =7

Ld (dT\ _  (dw 2
Kr dr dr s dr
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The domain for (305)-(306) is Q = [0, H], with boundary conditions w(0) =
(H) =0and T(0) = T(H) = Tp. For (307)-(308) the domain is [0, R] (R being
1e radius of the pipe) and the boundary conditions are du/dr = dT'/dr = 0 for
=0, u(R) =0, and T(R) = Tp.

Calculations to be continued...

"1 Exercises

xercise 23: Refactor functions into a more general class

ection 11.2 displays three functions for computing the analytical solution of
»me simple model problems. There is quite some repetitive code, suggesting
1at the functions can benefit from being refactored into a class where the user
an define the f(z), a(x), and the boundary conditions in particular methods
1 subclasses. Demonstrate how the new class can be used to solve the three
articular problems in Section 11.2.
In the method that computes the solution, check that the solution found fulfills
1e differential equation and the boundary conditions. Filename: uxx_f_sympy_class

xercise 24: Compute the deflection of a cable with sine
unctions

hanging cable of length L with significant tension has a downward deflection
'(z) governed by
Solve
Tw"(z) = U(z),

here T is the tension in the cable and ¢(z) the load per unit length. The cable
fixed at = 0 and 2 = L so the boundary conditions become T'(0) = T'(L) = 0.
/e assume a constant load ¢(x) = const.

The solution is expected to be symmetric around 2 = L/2. Formulating the
roblem for € Q = [0, L/2] and then scaling it, results in the scaled problem
r the dimensionless vertical deflection u:

v =1, z€(0,1), wu(0)=0, u'(1)=0.

itroduce the function space spanned by ¢; = sin((i + 1)7x/2), i = 1,..., N.
‘se a Galerkin and a least squares method to find the coefficients ¢; in u(z) =
_; ¢¥;. Find how fast the coefficients decrease in magnitude by looking at
i/¢j—1. Find the error in the maximum deflection at = 1 when only one basis
inction is used (N = 0).

What happens if we choose basis functions ; = sin((i + 1)7x)? These basis
inctions are appropriate if we do not utilize symmetry and solve the problem
n [0, L]. A scaled version of this problem reads

u'=1, z€(0,1), u0)=u(l)=0.
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Carry out the computations with N = 0 and demonstrate that the m:
deflection u(1/2) is the same in the problem utilizing symmetry and the
covering the whole cable. Filename: cable_sin.pdf.

Exercise 25: Check integration by parts

Consider the Galerkin method for the problem involving u in Exercise 2
that the formulas for c; are independent of whether we perform integr:
parts or not. Filename: cable_integr_by_parts.pdf.

Exercise 26: Compute the deflection of a cable witk
elements

Solve the problem for u in Exercise 24 using two P1 linear elements. F
cable_2P1.pdf.

Exercise 27: Compute the deflection of a cable with
element

Solve the problem for u in Exercise 24 using one P2 element with quadra
functions. Filename: cable_1P2.pdf.

Exercise 28: Compute the deflection of a cable with .
load

We consider the deflection of a tension cable as described in Exercise ¢
the load is

o ly, .’L'<L/2,
E(x)_{ﬁg, v> L2 xz €10,L].

This load is not symmetric with respect to the midpoint © = L/2 so the
loses its symmetry and we must solve the scaled problem

v [ 1, z<1/2, . - _
u —{07 2> 12 z€(0,1), wu(0)=0, u(l)=0.

a) Use v; = sin((i + 1)mz), i = 0,..., N and the Galerkin method
integration by parts. Derive a formula for ¢; in the solution expans:
> ¢j¥;. Plot how fast the coefficients c¢; tend to zero (on a log scale).

b) Solve the problem with P1 finite elements. Plot the solution for N,
elements.
Filename: cable_discont_load.pdf.
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xercise 29: Show equivalence between linear systems

1corporation of Dirichlet conditions at x = 0 and « = L in a finite element
1esh on Q = [0, L] can either be done by introducing an expansion u(x) =
oo +Un, N, + Z;-V:o Cipu(y), with N = N, — 2 and considering u values
t the inner nodes as unknowns, or one can assemble the matrix system with
(z) = Z;VZZON" ¢;p; and afterwards replace the rows corresponding to known ¢;
ilues by the boundary conditions. Show that the two approaches are equivalent.

xercise 30: Compute with a non-uniform mesh

lerive the linear system for the problem —u” = 2 on [0, 1], with »(0) = 0
nd u(1) = 1, using P1 elements and a non-uniform mesh. The vertices have
dordinates zop = 0 < 1 < --- < xny = 1, and the length of cell number e is
e = Tet1l — Te.

It is of interest to compare the discrete equations for the finite element
iethod in a non-uniform mesh with the corresponding discrete equations arising
om a finite difference method. Go through the derivation of the finite difference
rmula v (z;) ~ [D,Du]; and modify it to find a natural discretization of
"(x;) on a non-uniform mesh. Filename: nonuniform_P1.pdf.

'roblem 31: Solve a 1D finite element problem by hand

he following scaled 1D problem is a very simple, yet relevant, model for
mvective transport in fluids:

o =eu”, w(0)=0, u(l)=1, z€]0,1]. (309)

) Find the analytical solution to this problem. (Introduce w = u’, solve the
rst-order differential equation for w(z), and integrate once more.)

) Derive the variational form of this problem.

) Introduce a finite element mesh with uniform partitioning. Use P1 elements
nd compute the element matrix and vector for a general element.

) Incorporate the boundary conditions and assemble the element contribu-
ons.

) Identify the resulting linear system as a finite difference discretization of
1e differential equation using

[Dazu = €Dy Dyul; .
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f) Compute the numerical solution and plot it together with the exact
for a mesh with 20 elements and € = 10,1,0.1,0.01.
Filename: convdiff1D_P1.pdf.

Exercise 32: Compare finite elements and differences
radially symmetric Poisson equation

We consider the Poisson problem in a disk with radius R with Dirichlet co
at the boundary. Given that the solution is radially symmetric an
dependent only on the radial coordinate (r = /a2 + y?), we can red
problem to a 1D Poisson equation

_ld (r%> = f(r), r€(0,R), v (0)=0, u(R)=Ug.

rdr

a) Derive a variational form of (310) by integrating over the whole
posed equivalently: use a weighting function 27rv(r) and integrate r fr

R.

b) Use a uniform mesh partition with P1 elements and show what the 1
set of equations becomes. Integrate the matrix entries exact by hand, b
Trapezoidal rule to integrate the f term.

c) Explain that an intuitive finite difference method applied to (310)

11

ri h? (T”%(ui"'l —ui) = Ti—%(ui - Ui_l)) =fi, it=rh.
K3

For ¢ = 0 the factor 1/r; seemingly becomes problematic. One must
have u/(0) = 0, because of the radial symmetry, which implies u_; =1
allow introduction of a fictitious value u_;. Using this w_; in the di
equation for i = 0 gives

ii( (w1 — o) —
7‘0h2 r%ul Ug T_

1
To 2h2

(uo — Ul)) =

1
2

((ro +7r1)(u1r —uo) — (r—1 + ro)(uo — u1)) =~ 2(ug —

if we use r_1 + r1 = 2rq.

Set up the complete set of equations for the finite difference metl
compare to the finite element method in case a Trapezoidal rule is
integrate the f term in the latter method.

Filename: radial_PoissonlD_P1.pdf.
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xercise 33: Compute with variable coefficients and P1 el-
ments by hand

‘onsider the problem

- % <a(l’)$) +yu=f(z), z€Q=1[0,L], u0)=q, u'(L)=7. (311)

/e choose a(x) = 1+ 2. Then
u(z) = a+ B(1+ L*) tan" ' (x), (312)

an exact solution if f(z) = vyu.

Derive a variational formulation and compute general expressions for the
ement matrix and vector in an arbitrary element, using P1 elements and a
niform partitioning of [0, L]. The right-hand side integral is challenging and
an be computed by a numerical integration rule. The Trapezoidal rule (101)
ives particularly simple expressions. Filename: atan1D_P1.pdf.

xercise 34: Solve a 2D Poisson equation using polynomials
nd sines

he classical problem of applying a torque to the ends of a rod can be modeled
y a Poisson equation defined in the cross section Q:

*V2U = 2a (Ivy) € Q7

ith u = 0 on 0f). Exactly the same problem arises for the deflection of a
iembrane with shape €2 under a constant load.

For a circular cross section one can readily find an analytical solution. For a
sctangular cross section the analytical approach ends up with a sine series. The
lea in this exercise is to use a single basis function to obtain an approximate
nswer.

We assume for simplicity that the cross section is the unit square: Q =
), 1] x [0,1].

) We consider the basis 9, 4(x,y) = sin((p + 1)mz) sin(¢ry), p,¢g =0, ...,n.
hese basis functions fulfill the Dirichlet condition. Use a Galerkin method and
=0.

) The basis function involving sine functions are orthogonal. Use this
roperty in the Galerkin method to derive the coefficients ¢, , in a formula

= Zp Zq cp,qu,q(xv y)
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c) Another possible basis is ;(x,y) = (z(1 —z)y(1—y))*,i=0,...,

the Galerkin method to compute the solution for N = 0. Which chc

single basis function is best, u ~ (1 — 2)y(1 — y) or u ~ sin(mwz) sin(

order to answer the question, it is necessary to search the web or the li

for an accurate estimate of the maximum v value at x =y = 1/2.
Filename: torsion_sin_xy.pdf.

Exercise 35: Analyze a Crank-Nicolson scheme for t!
fusion equation

Perform the analysis in Section 19.10 for a 1D diffusion equation u,
discretized by the Crank-Nicolson scheme in time:

unJrl —um 1 un+1 u™
0x? 022 )’

= —
At 2
or written compactly with finite difference operators,

[Dyu = aD,Dut]"ts .

(From a strict mathematical point of view, the u™ and u™*! in these ec
should be replaced by u? and u2*! to indicate that the unknown is tl
solution of the PDE discretized in time, but not yet in space, see Sectic
Make plots similar to those in Section 19.10. Filename: fe_diffusion
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