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1 The 1D diffusion equation

indexdiffusion equation, 1D indexheat equation, 1D

The famous diffusion equation, also known as the heat equation, reads

∂u

∂t
= α

∂2u

∂x2
,

where u(x, t) is the unknown function to be solved for, x is a coordinate in
space, and t is time. The coefficient α is the diffusion coefficient and determines
how fast u changes in time. A quick short form for the diffusion equation is
ut = αuxx.

Compared to the wave equation, utt = c2uxx, which looks very similar, but
the diffusion equation features solutions that are very different from those of the
wave equation. Also, the diffusion equation makes quite different demands to
the numerical methods.

Typical diffusion problems may experience rapid change in the very beginning,
but then the evolution of u becomes slower and slower. The solution is usually
very smooth, and after some time, one cannot recognize the initial shape of u.
This is in sharp contrast to solutions of the wave equation where the initial shape
is preserved - the solution is basically a moving initial condition. The standard
wave equation utt = c2uxx has solutions that propagates with speed c forever,
without changing shape, while the diffusion equation converges to a stationary
solution ū(x) as t→∞. In this limit, ut = 0, and ū is governed by ū′′(x) = 0.
This stationary limit of the diffusion equation is called the Laplace equation and
arises in a very wide range of applications throughout the sciences.

It is possible to solve for u(x, t) using a explicit scheme, but the time step
restrictions soon become much less favorable than for an explicit scheme for the
wave equation. And of more importance, since the solution u of the diffusion
equation is very smooth and changes slowly, small time steps are not convenient
and not required by accuracy as the diffusion process converges to a stationary
state.

1.1 The initial-boundary value problem for 1D diffusion

To obtain a unique solution of the diffusion equation, or equivalently, to apply
numerical methods, we need initial and boundary conditions. The diffusion
equation goes with one initial condition u(x, 0) = I(x), where I is a prescribed
function. One boundary condition is required at each point on the bound-
ary, which in 1D means that u must be known, ux must be known, or some
combination of them.

We shall start with the simplest boundary condition: u = 0. The complete
initial-boundary value diffusion problem in one space dimension can then be
specified as
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∂u

∂t
= α

∂2u

∂x2
, x ∈ (0, L), t ∈ (0, T ] (1)

u(x, 0) = I(x), x ∈ [0, L] (2)

u(0, t) = 0, t > 0, (3)

u(L, t) = 0, t > 0 . (4)

Equation (1) is known as a one-dimensional diffusion equation, also often referred
to as a heat equation. With only a first-order derivative in time, only one initial
condition is needed, while the second-order derivative in space leads to a demand
for two boundary conditions. The parameter α must be given and is referred to
as the diffusion coefficient.

Diffusion equations like (1) have a wide range of applications throughout
physical, biological, and financial sciences. One of the most common applications
is propagation of heat, where u(x, t) represents the temperature of some substance
at point x and time t. Section ?? goes into several widely occurring applications.

1.2 Forward Euler scheme

The first step in the discretization procedure is to replace the domain [0, L]×[0, T ]
by a set of mesh points. Here we apply equally spaced mesh points

xi = i∆x, i = 0, . . . , Nx,

and

tn = n∆t, n = 0, . . . , Nt .

Moreover, uni denotes the mesh function that approximates u(xi, tn) for i =
0, . . . , Nx and n = 0, . . . , Nt. Requiring the PDE (1) to be fulfilled at a mesh
point (xi, tn) leads to the equation

∂

∂t
u(xi, tn) = α

∂2

∂x2
u(xi, tn), (5)

The next step is to replace the derivatives by finite difference approximations.
The computationally simplest method arises from using a forward difference in
time and a central difference in space:

[D+
t u = αDxDxu]ni . (6)

Written out,

un+1
i − uni

∆t
= α

uni+1 − 2uni + uni−1

∆x2
. (7)

We have turned the PDE into algebraic equations, also often called discrete
equations. The key property of the equations is that they are algebraic, which
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makes them easy to solve. As usual, we anticipate that uni is already computed
such that un+1

i is the only unknown in (7). Solving with respect to this unknown
is easy:

un+1
i = uni + α

∆t

∆x2

(
uni+1 − 2uni + uni−1

)
. (8)

The computational algorithm then becomes

1. compute u0
i = I(xi)for i = 0, . . . , Nx

2. for n = 0, 1, . . . , Nt:

(a) apply (8) for all the internal spatial points i = 1, . . . , Nx − 1

(b) set the boundary values un+1
i = 0 for i = 0 and i = Nx

The algorithm is compactly fully specified in Python:

x = linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0]
C = a*dt/dx**2
u = zeros(Nx+1)
u_1 = zeros(Nx+1)

# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_1[i] = I(x[i])

for n in range(0, Nt):
# Compute u at inner mesh points
for i in range(1, Nx):

u[i] = u_1[i] + C*(u_1[i-1] - 2*u_1[i] + u_1[i+1])

# Insert boundary conditions
u[0] = 0; u[Nx] = 0

# Update u_1 before next step
u_1[:]= u

1.3 Backward Euler Scheme

We now apply a backward difference in time in (5), but the same central difference
in space:

[D−t u = DxDxu]ni , (9)

which written out reads

uni − u
n−1
i

∆t
= α

uni+1 − 2uni + uni−1

∆x2
. (10)
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Now we assume un−1
i is computed, but all quantities at the ”new” time level n

are unknown. This time it is not possible to solve with respect to uni because this
value couples to its neighbors in space, uni−1 and uni+1, which are also unknown.
Let us examine this fact for the case when Nx = 3. Equation (10) written for
i = 1, . . . , Nx− 1 = 1, 2 becomes

un1 − un−1
1

∆t
= α

un2 − 2un1 + un0
∆x2

(11)

un2 − un−1
2

∆t
= α

un3 − 2un2 + un1
∆x2

(12)

The boundary values un0 and un3 are known as zero. Collecting the unknown new
values un1 and un2 on the left-hand side gives

(
1 + 2α

∆t

∆x2

)
un1 − α

∆t

∆x2
un2 = un−1

1 , (13)

−α ∆t

∆x2
un1 +

(
1 + 2α

∆t

∆x2

)
un2 = un−1

2 . (14)

This is a coupled 2× 2 system of algebraic equations for the unknowns un1 and
un2 . Discretization methods that lead to a coupled system of equations for the
unknown function at a new time level are said to be implicit methods. The
counterpart, explicit methods, refers to discretization methods where there is a
simple explicit formula for the values of the unknown function at each of the
spatial mesh points at the new time level. From an implementational point of
view, implicit methods are more comprehensive to code since they require the
solution of coupled equations, i.e., a matrix system, at each time level.

In the general case, (10) gives rise to a coupled (Nx− 1)× (Nx− 1) system
of algebraic equations for all the unknown uni at the interior spatial points
i = 1, . . . , Nx−1. Collecting the unknowns on the left-hand side, and introducing
the quantity

C = α
∆t

∆x2
, (15)

(10) can be written

− Cuni−1 + (1 + 2C)uni − Cuni+1 = un−1
i−1 , (16)

for i = 1, . . . , Nx− 1. One can either view these equations as a system for where
the uni values at the internal grid points, i = 1, . . . , Nx − 1, are unknown, or we
may append the boundary values un0 and unNx

to the system. In the latter case,
all uni for i = 0, . . . , Nx are unknown and we must add the boundary equations
to the Nx − 1 equations in (16):

un0 = 0, (17)

unNx
= 0 . (18)
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A coupled system of algebraic equations can be written on matrix form,
and this is important if we want to call up ready-made software for solving the
system. The equations (16) and (17)–(18) correspond to the matrix equation

AU = b

where U = (un0 , . . . , u
n
Nx

), and the matrix A has the following structure:

A =



A0,0 A0,1 0 · · · · · · · · · · · · · · · 0

A1,0 A1,1 0
. . .

...

0 A2,1 A2,2 A2,3
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 Ai,i−1 Ai,i Ai,i+1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . ANx−1,Nx

0 · · · · · · · · · · · · · · · 0 ANx,Nx−1 ANx,Nx


(19)

The nonzero elements are given by

Ai,i−1 = −C (20)

Ai,i = 1 + 2C (21)

Ai,i+1 = −C (22)

for the equations for internal points, i = 1, . . . , Nx − 1. The equations for the
boundary points correspond to

A0,0 = 1, (23)

A0,1 = 0, (24)

ANx,Nx−1 = 0, (25)

ANx,Nx = 1 . (26)

The right-hand side b is written as

b =



b0
b1
...
bi
...
bNx


(27)
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with

b0 = 0, (28)

bi = un−1
i , i = 1, . . . , Nx − 1, (29)

bNx
= 0 . (30)

We observe that the matrix A contains quantities that do not change in
time. Therefore, A can be formed once and for all before we enter the recursive
formulas for the time evolution. The right-hand side b, however, must be updated
at each time step. This leads to the following computational algorithm, here
sketched with Python code:

x = linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = linspace(0, T, N+1) # mesh points in time
u = zeros(Nx+1)
u_1 = zeros(Nx+1)

# Data structures for the linear system
A = zeros((Nx+1, Nx+1))
b = zeros(Nx+1)

for i in range(1, Nx):
A[i,i-1] = -C
A[i,i+1] = -C
A[i,i] = 1 + 2*C

A[0,0] = A[Nx,Nx] = 1

# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_1[i] = I(x[i])

import scipy.linalg

for n in range(0, Nt):
# Compute b and solve linear system
for i in range(1, Nx):

b[i] = -u_1[i]
b[0] = b[Nx] = 0
u[:] = scipy.linalg.solve(A, b)

# Update u_1 before next step
u_1[:] = u

1.4 Sparse matrix implementation

We have seen from (19) that the matrix A is tridiagonal. The code segment
above used a full, dense matrix representation of A, which stores a lot of values
we know are zero beforehand, and worse, the solution algorithm computes with
all these zeros. With Nx + 1 unknowns, the work by the solution algorithm is
1
3 (Nx + 1)3 and the storage requirements (Nx + 1)2. By utilizing the fact that A
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is tridiagonal and employing corresponding software tools, the work and storage
demands can be proportional to Nx only.

The key idea is to apply a data structure for a tridiagonal or sparse matrix.
The scipy.sparse package has relevant utilities. For example, we can store the
nonzero diagonals of a matrix. The package also has linear system solvers that
operate on sparse matrix data structures. The code below illustrates how we
can store only the main diagonal and the upper and lower diagonals.

# Representation of sparse matrix and right-hand side
main = zeros(Nx+1)
lower = zeros(Nx-1)
upper = zeros(Nx-1)
b = zeros(Nx+1)

# Precompute sparse matrix
main[:] = 1 + 2*C
lower[:] = -C #1
upper[:] = -C #1
# Insert boundary conditions
main[0] = 1
main[Nx] = 1

A = scipy.sparse.diags(
diagonals=[main, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format=’csr’)

print A.todense()

# Set initial condition
for i in range(0,Nx+1):

u_1[i] = I(x[i])

for n in range(0, Nt):
b = u_1
b[0] = b[-1] = 0.0 # boundary conditions
u[:] = scipy.sparse.linalg.spsolve(A, b)
u_1[:] = u

The scipy.sparse.linalg.spsolve function utilizes the sparse storage struc-
ture of A and performs in this case a very efficient Gaussian elimination solve.

1.5 The θ rule

The θ rule provides a family of finite difference approximations in time:

• θ = 0 gives the Forward Euler scheme in time

• θ = 1 gives the Backward Euler scheme in time

• θ = 1
2 gives the Crank-Nicolson scheme in time

Applied to the 1D diffusion problem we have

un+1
i − uni

∆t
= α

(
θ
un+1
i+1 − 2un+1

i + un+1
i−1

∆x2
+ (1− θ)

uni+1 − 2uni + uni−1

∆x2

)
.
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This scheme also leads to a matrix system with entries 1 + 2Cθ on the main
diagonal of the matrix, and −Cθ on the super- and sub-diagonal. The right-hand
side entry bi is

bi = uni + C(1− θ)
uni+1 − 2uni + uni−1

∆x2
.

1.6 The Laplace and Poisson equation

The Laplace equation, ∇2u = 0, or the Poisson equation, −∇2u = f , occur
in numerous applications throughout science and engineering. We can solve
1D variants of the Laplace equations with the listed software, because we can
interpret uxx = 0 as the limiting solution of ut = αuxx when u reach a steady
state limit where ut → 0. Similarly, Poisson’s equation −uxx = f arises from
solving ut = uxx + f and letting t→ so ut → 0.

Technically in a program, we can simulate t→∞ by just taking one large
time step, or equivalently, set α to a large value. All we need is to have C large.
As C → ∞, we can from the schemes see that the limiting discrete equation
becomes

un+1
i+1 − 2un+1

i + un+1
i−1

∆x2
= 0,

which is nothing but the discretization [DxDxu]n+1
i = 0 of uxx = 0.

The Backward Euler scheme can solve the limit equation directly and hence
produce a solution of the 1D Laplace equation. With the Forward Euler scheme
we must do the time stepping since C > 1/2 is illegal and leads to instability.
We may interpret this time stepping as solving the equation system from uxx by
iterating on a time pseudo time variable.

1.7 Extensions

These extensions are performed exactly as for a wave equation as they only affect
the spatial derivatives (which are the same as in the wave equation).

• Variable coefficients

• Neumann and Robin conditions

• 2D and 3D

Future versions of this document will for completeness and independence of the
wave equation document feature info on the three points. The Robin condition
is new, but straightforward to handle:

−α∂u
∂n

= hT (u− Us), [−αDxu = hT (u− Us)]ni
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2 Analysis of schemes for the diffusion equation

2.1 Properties of the solution

A particular characteristic of diffusive processes, governed by an equation like

ut = αuxx, (31)

is that the initial shape u(x, 0) = I(x) spreads out in space with time, along
with a decaying amplitude. Three different examples will illustrate the spreading
of u in space and the decay in time.

Similarity solution. The diffusion equation (31) admits solutions that depend
on η = (x− c)/

√
4αt for a given value of c. One particular solution is

u(x, t) = a erf(η) + b, (32)

where

erf(η) =
2√
π

∫ η

0

e−ζ
2

dζ, (33)

is the error function, and a and b are arbitrary constants. The error function
lies in (−1, 1), is odd around η = 0, and goes relatively quickly to ±1:

lim
η→−∞

erf(η) = −1,

lim
η→∞

erf(η) = 1,

erf(η) = −erf(−η),

erf(0) = 0,

erf(2) = 0.99532227,

erf(3) = 0.99997791 .

As t → 0, the error function approaches a step function centered at x = c.
For a diffusion problem posed on the unit interval [0, 1], we may choose the step
at x = 1/2 (meaning c = 1/2), a = −1/2, b = 1/2. Then

u(x, t) =
1

2

(
1− erf

(
x− 1

2√
4αt

))
=

1

2
erfc

(
x− 1

2√
4αt

)
, (34)

where we have introduced the complementary error function erfc(η) = 1− erf(η).
The solution (34) implies the boundary conditions

u(0, t) =
1

2

(
1− erf

(
−1/2√

4αt

))
, (35)

u(1, t) =
1

2

(
1− erf

(
1/2√
4αt

))
. (36)
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For small enough t, u(0, t) ≈ 1 and u(1, t) ≈ 1, but as t→∞, u(x, t)→ 1/2 on
[0, 1].

Solution for a Gaussian pulse. The standard diffusion equation ut = αuxx
admits a Gaussian function as solution:

u(x, t) =
1√

4παt
exp

(
− (x− c)2

4αt

)
. (37)

At t = 0 this is a Dirac delta function, so for computational purposes one must
start to view the solution at some time t = tε > 0. Replacing t by tε + t in
(37) makes it easy to operate with a (new) t that starts at t = 0 with an initial
condition with a finite width. The important feature of (37) is that the standard
deviation σ of a sharp initial Gaussian pulse increases in time according to
σ =
√

2αt, making the pulse diffuse and flatten out.

Solution for a sine component. For example, (31) admits a solution of the
form

u(x, t) = Qe−at sin (kx) . (38)

The parameters Q and k can be freely chosen, while inserting (38) in (31) gives
the constraint

a = −αk2 .

A very important feature is that the initial shape I(x) = Q sin kx undergoes
a damping exp (−αk2t), meaning that rapid oscillations in space, corresponding
to large k, are very much faster dampened than slow oscillations in space,
corresponding to small k. This feature leads to a smoothing of the initial
condition with time.

The following examples illustrates the damping properties of (38). We
consider the specific problem

ut = uxx, x ∈ (0, 1), t ∈ (0, T ],

u(0, t) = u(1, t) = 0, t ∈ (0, T ],

u(x, 0) = sin(πx) + 0.1 sin(100πx) .

The initial condition has been chosen such that adding two solutions like (38)
constructs an analytical solution to the problem:

u(x, t) = e−π
2t sin(πx) + 0.1e−π

2104t sin(100πx) . (39)

Figure 1 illustrates the rapid damping of rapid oscillations sin(100πx) and the
very much slower damping of the slowly varying sin(πx) term. After about
t = 0.5 · 10−4 the rapid oscillations do not have a visible amplitude, while we
have to wait until t ∼ 0.5 before the amplitude of the long wave sin(πx) becomes
very small.
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Figure 1: Evolution of the solution of a diffusion problem: initial condition
(upper left), 1/100 reduction of the small waves (upper right), 1/10 reduction of
the long wave (lower left), and 1/100 reduction of the long wave (lower right).

2.2 Analysis of discrete equations

A counterpart to (38) is the complex representation of the same function:

u(x, t) = Qe−ateikx,

where i =
√
−1 is the imaginary unit. We can add such functions, often referred

to as wave components, to make a Fourier representation of a general solution of
the diffusion equation:

u(x, t) ≈
∑
k∈K

bke
−αk2teikx, (40)

where K is a set of an infinite number of k values needed to construct the
solution. In practice, however, the series is truncated and K is a finite set of k
values need build a good approximate solution. Note that (39) is a special case
of (40) where K = {π, 100π}, bπ = 1, and b100π = 0.1.

The amplitudes bk of the individual Fourier waves must be determined from
the initial condition. At t = 0 we have u ≈

∑
k bk exp (ikx) and find K and bk

such that
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I(x) ≈
∑
k∈K

bke
ikx . (41)

(The relevant formulas for bk come from Fourier analysis, or equivalently, a
least-squares method for approximating I(x) in a function space with basis
exp (ikx).)

Much insight about the behavior of numerical methods can be obtained by
investigating how a wave component exp (−αk2t) exp (ikx) is treated by the
numerical scheme. It appears that such wave components are also solutions of
the schemes, but the damping factor exp (−αk2t) varies among the schemes. To
ease the forthcoming algebra, we write the damping factor as An. The exact
amplification factor corresponding to A is Ae = exp (−αk2∆t).

2.3 Analysis of the finite difference schemes

We have seen that a general solution of the diffusion equation can be built as a
linear combination of basic components

e−αk
2teikx .

A fundamental question is whether such components are also solutions of the
finite difference schemes. This is indeed the case, but the amplitude exp (−αk2t)
might be modified (which also happens when solving the ODE counterpart
u′ = −αu). We therefore look for numerical solutions of the form

unq = Aneikq∆x = Aneikx, (42)

where the amplification factor A must be determined by inserting the component
into an actual scheme.

Stability. The exact amplification factor is Ae = exp (−α2k2∆t). We should
therefore require |A| < 1 to have a decaying numerical solution as well. If
−1 ≤ A < 0, An will change sign from time level to time level, and we get stable,
non-physical oscillations in the numerical solutions that are not present in the
exact solution.

Accuracy. To determine how accurately a finite difference scheme treats one
wave component (42), we see that the basic deviation from the exact solution is
reflected in how well An approximates Ane , or how well A approximates Ae.

2.4 Analysis of the Forward Euler scheme

The Forward Euler finite difference scheme for ut = αuxx can be written as

[D+
t u = αDxDxu]nq .

Inserting a wave component (42) in the scheme demands calculating the terms
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eikq∆x[D+
t A]n = eikq∆xAn

A− 1

∆t
,

and

AnDxDx[eikx]q = An
(
−eikq∆x 4

∆x2
sin2

(
k∆x

2

))
.

Inserting these terms in the discrete equation and dividing by Aneikq∆x leads to

A− 1

∆t
= −α 4

∆x2
sin2

(
k∆x

2

)
,

and consequently

A = 1− 4C sin2

(
k∆x

2

)
, (43)

where

C =
α∆t

∆x2
. (44)

The complete numerical solution is then

unq =

(
1− 4C sin2

(
k∆x

2

))n
eikq∆x . (45)

Stability. We easily see that A ≤ 1. However, the A can be less than −1,
which will lead to growth of a numerical wave component. The criterion A ≥ −1
implies

4C sin2(p/2) ≤ 2 .

The worst case is when sin2(p/2) = 1, so a sufficient criterion for stability is

C ≤ 1

2
, (46)

or expressed as a condition on ∆t:

∆t ≤ ∆x2

2α
. (47)

Note that halving the spatial mesh size, ∆x→ 1
2∆x, requires ∆t to be reduced

by a factor of 1/4. The method hence becomes very expensive for fine spatial
meshes.
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Accuracy. Since A is expressed in terms of C and the parameter we now call
p = k∆x/2, we also express Ae by C and p:

Ae = exp (−αk2∆t) = exp (−4Cp2) .

Computing the Taylor series expansion of A/Ae in terms of C can easily be done
with aid of sympy:

def A_exact(C, p):
return exp(-4*C*p**2)

def A_FE(C, p):
return 1 - 4*C*sin(p)**2

from sympy import *
C, p = symbols(’C p’)
A_err_FE = A_FE(C, p)/A_exact(C, p)
print A_err_FE.series(C, 0, 6)

The result is

A

Ae
= 1− 4C sin2 p+ 2Cp2 − 16C2p2 sin2 p+ 8C2p4 + · · ·

Recalling that C = α∆t/∆x, p = k∆x/2, and that sin2 p ≤ 1, we realize that
the dominating error terms are at most

1− 4α
∆t

∆x2
+ α∆t− 4α2∆t2 + α2∆t2∆x2 + · · · .

2.5 Analysis of the Backward Euler scheme

Discretizing ut = αuxx by a Backward Euler scheme,

[D−t u = αDxDxu]nq ,

and inserting a wave component (42), leads to calculations similar to those
arising from the Forward Euler scheme, but since

eikq∆x[D−t A]n = Aneikq∆x
1−A−1

∆t
,

we get

1−A−1

∆t
= −α 4

∆x2
sin2

(
k∆x

2

)
,

and then

A =
(
1 + 4C sin2 p

)−1
. (48)

The complete numerical solution can be written

unq =
(
1 + 4C sin2 p

)−n
eikq∆x . (49)
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Stability. We see from (48) that 0 < A < 1, which means that all numerical
wave components are stable and non-oscillatory for any ∆t > 0.

2.6 Analysis of the Crank-Nicolson scheme

The Crank-Nicolson scheme can be written as

[Dtu = αDxDxu
x]
n+ 1

2
q ,

or

[Dtu]
n+ 1

2
q =

1

2
α
(
[DxDxu]nq + [DxDxu]n+1

q

)
.

Inserting (42) in the time derivative approximation leads to

[DtA
neikq∆x]n+ 1

2 = An+ 1
2 eikq∆x

A
1
2 −A− 1

2

∆t
= Aneikq∆x

A− 1

∆t
.

Inserting (42) in the other terms and dividing by Aneikq∆x gives the relation

A− 1

∆t
= −1

2
α

4

∆x2
sin2

(
k∆x

2

)
(1 +A),

and after some more algebra,

A =
1− 2C sin2 p

1 + 2C sin2 p
. (50)

The exact numerical solution is hence

unq =

(
1− 2C sin2 p

1 + 2C sin2 p

)n
eikp∆x . (51)

Stability. The criteria A > −1 and A < 1 are fulfilled for any ∆t > 0.

2.7 Summary of accuracy of amplification factors

We can plot the various amplification factors against p = k∆x/2 for different
choices of the C parameter. Figures 2, 3, and 4 show how long and small
waves are damped by the various schemes compared to the exact damping. As
long as all schemes are stable, the amplification factor is positive, except for
Crank-Nicolson when C > 0.5.

The effect of negative amplification factors is that An changes sign from one
time level to the next, thereby giving rise to oscillations in time in an animation
of the solution. We see from Figure 2 that for C = 20, waves with p ≥ π/2
undergo a damping close to −1, which means that the amplitude does not decay
and that the wave component jumps up and down in time. For C = 2 we have a
damping of a factor of 0.5 from one time level to the next, which is very much
smaller than the exact damping. Short waves will therefore fail to be effectively
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Figure 2: Amplification factors for large time steps.
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Figure 3: Amplification factors for time steps around the Forward Euler stability
limit.

dampened. These waves will manifest themselves as high frequency oscillatory
noise in the solution.

A value p = π/4 corresponds to four mesh points per wave length of eikx,
while p = π/2 implies only two points per wave length, which is the smallest
number of points we can have to represent the wave on the mesh.

To demonstrate the oscillatory behavior of the Crank-Nicolson scheme, we
choose an initial condition that leads to short waves with significant amplitude.
A discontinuous I(x) will in particular serve this purpose.

Run C = ......

Exercise 1: Use an analytical solution to formulate a 1D
test

This exercise explores the exact solution (37). We shall formulate a diffusion
problem in half of the domain for half of the Gaussian pulse. Then we shall
investigate the impact of using an incorrect boundary condition, which we in
general cases often are forced due if the solution needs to pass through finite
boundaries undisturbed.
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Figure 4: Amplification factors for small time steps.

a) The solution (37) is seen to be symmetric at x = c, because ∂u/∂x = 0
always vanishes for x = c. Use this property to formulate a complete initial
boundary value problem in 1D involving the diffusion equation ut = αuxx on
[0, L] with ux(0, t) = 0 and u(L, t) known.

b) Use the exact solution to set up a convergence rate test for an implementation
of the problem. Investigate if a one-sided difference for ux(0, t), say u0 = u1,
destroys the second-order accuracy in space.

c) Imagine that we want to solve the problem numerically on [0, L], but we do
not know the exact solution and cannot of that reason assign a correct Dirichlet
condition at x = L. One idea is to simply set u(L, t) = 0 since this will be
an accurate approximation before the diffused pulse reaches x = L and even
thereafter it might be a satisfactory condition. Let ue be the exact solution
and let u be the solution of ut = αuxx with an initial Gaussian pulse and the
boundary conditions ux(0, t) = u(L, t) = 0. Derive a diffusion problem for
the error e = ue − u. Solve this problem numerically using an exact Dirichlet
condition at x = L. Animate the evolution of the error and make a curve plot of
the error measure

E(t) =

√√√√∫ L0 e2dx∫ L
0
udx

.

Is this a suitable error measure for the present problem?

d) Instead of using u(L, t) = 0 as approximate boundary condition for letting
the diffused Gaussian pulse out of our finite domain, one may try ux(L, t) = 0
since the solution for large t is quite flat. Argue that this condition gives a
completely wrong asymptotic solution as t → 0. To do this, integrate the
diffusion equation from 0 to L, integrate uxx by parts (or use Gauss’ divergence
theorem in 1D) to arrive at the important property
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d

dt

∫ L

0

u(x, t)dx = 0,

implying that
∫ L

0
udx must be constant in time, and therefore∫ L

0

u(x, t)dx =

∫ L

0

I(x)dx .

The integral of the initial pulse is 1.

e) Another idea for an artificial boundary condition at x = L is to use a cooling
law

− αux = q(u− uS), (52)

where q is an unknown heat transfer coefficient and uS is the surrounding
temperature in the medium outside of [0, L]. (Note that arguing that uS is
approximately u(L, t) gives the ux = 0 condition from the previous subexercise
that is qualitatively wrong for large t.) Develop a diffusion problem for the error
in the solution using (52) as boundary condition. Assume one can take uS = 0
”outside the domain” as u→ 0 for x→∞. Find a function q = q(t) such that
the exact solution obeys the condition (52). Test some constant values of q
and animate how the corresponding error function behaves. Also compute E(t)
curves as suggested in subexercise b).

Filename: diffu_symmetric_gaussian.py.

Exercise 2: Use an analytical solution to formulate a 2D
test

Generalize (37) to multi dimensions by assuming that one-dimensional solutions
can be multiplied to solve ut = α∇2u. Use this solution to formulate a 2D test
case where the peak of the Gaussian is at the origin and where the domain is a
rectangule in the first quadrant. Use symmetry boundary conditions ∂u/∂n =
0 whereever possible, and use exact Dirichlet conditions on the remaining
boundaries. Filename: diffu_symmetric_gaussian_2D.pdf.
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