Introduction to computing with finite

difference methods

Hans Petter Langtangen!>?
!Center for Biomedical Computing, Simula Research Laboratory

2Department of Informatics, University of Oslo

Dec 14, 2013

Note: PRELIMINARY VERSION

Contents

1 Finite difference methods

1.1 A basic model for exponential decay
1.2 The Forward Euler scheme
1.3 The Backward Euler scheme
1.4 The Crank-Nicolson scheme
1.5 The unifying f-rule oo
1.6 Constant time step
1.7 Compact operator notation for finite differences

Implementation

2.1 Making a solver function oL
2.2 Verifying the implementation
2.3 Computing the numerical error as a mesh function
2.4 Computing the norm of the numerical error
2.5 Plotting solutions L Lo
2.6 Creating command-line interfaces
2.7 Creating a graphical web user interface
2.8 Computing convergence rates
2.9 Memory-saving implementation 00

Software engineering

3.1 Makingamodule L oo
3.2 Prefixing imported functions by the module name
3.3 Doctests
3.4 Unit testing withnose L L.

11
12
13
14
15

17
19
23
26
27
29
34
37
40
43

3.5 Classical class-based unit testing
3.6 Implementing simple problem and solver classes
3.7 Improving the problem and solver classes

Performing scientific experiments

4.1 Software
4.2 Combining plot files
4.3 Interpreting output from other programs
4.4 Making areport
4.5 Publishing a complete projecto

Exercises and Problems

Analysis of finite difference equations

6.1 Experimental investigation of oscillatory solutions
6.2 Exact numerical solution o000
6.3 Stability
6.4 Comparing amplification factors
6.5 Series expansion of amplification factors
6.6 The fraction of numerical and exact amplification factors
6.7 The global error at a pointo
6.8 Integrated errors oo
6.9 Truncation erroro
6.10 Consistency, stability, and convergence

Exercises

Model extensions

8.1 Generalization: including a variable coefficient
8.2 Generalization: including a source term
8.3 Implementation of the generalized model problem
8.4 Verifying a constant solution
8.5 Verification via manufactured solutions
8.6 Extension to systems of ODEs

General first-order ODEs

9.1 Generic form e
9.2 Thef-rule
9.3 An implicit 2-step backward scheme
9.4 Leapfrog schemes oo
9.5 The 2nd-order Runge-Kutta scheme
9.6 A 2nd-order Taylor-series method
9.7 The 2nd- and 3rd-order Adams-Bashforth schemes
9.8 4th-order Runge-Kutta scheme
9.9 The Odespy software
9.10 Example: Runge-Kutta methods

64
64
65
68
69
73

74

78
80
83
84
85
85
88
88
88
90
91

92

9.11 Example: Adaptive Runge-Kutta methods

10 Exercises

11 Applications of exponential decay models

11.1 Scaling
11.2 Evolution of a population
11.3 Compound interest and inflation
11.4 Radioactive Decay
11.5 Newton’s law of cooling
11.6 Decay of atmospheric pressure with altitude
11.7 Compaction of sediments
11.8 Vertical motion of a body in a viscous fluid

11.9 Decay ODEs from solving a PDE by Fourier expansions

12 Exercises and Projects

110

114
114
115
116
117
119
120
121
122
126

127

List of Exercises, Problems, and Projects

Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Problem
Problem
Problem
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Problem
Problem
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Project

Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise

Derive schemes for Newton’s law of cooling
Implement schemes for Newton’s law of cooling
Find time of murder from body temperature
Experiment with integer division

Experiment with wrong computations

Plot the error function

Compare methods for a given time mesh
Change formatting of numbers and debug
Write a doctest

Write a nose test

Make a module

Make use of a class implementation
Generalize a class implementation

Generalize an advanced class implementation
Visualize the accuracy of finite differences ...
Explore the #-rule for exponential ...
Experiment with precision in tests and the ...
Implement the 2-step backward scheme

Implement the 2nd-order Adams-Bashforth scheme ...
Implement the 3rd-order Adams-Bashforth scheme ...

Analyze explicit 2nd-order methods

Implement and investigate the Leapfrog scheme
Make a unified implementation of many schemes
Simulate an oscillating cooling process
Radioactive decay of Carbon-14

Simulate stochastic radioactive decay
Radioactive decay of two substances

Simulate the pressure drop in the atmosphere
Make a program for vertical motion in a fluid
Simulate parachuting

Formulate vertical motion in the atmosphere
Simulate vertical motion in the atmosphere
Compute y = |z| by solving an ODE

Simulate growth of a fortune with random interest ...
Simulate a population in a changing environment ...

Simulate logistic growth
Rederive the equation for continuous compound ...

S S R B B i e e B B S~ B =~ B~ =t = B e = e~ e B 2 2 SR S = = B B B SR = =

74
74
74
75
5
(0]
(6]
76
76
T
T
(s
7
78
92
93
110
111
111
111
111
111
113
127
128
128
128
129
129
130
132
132
132
133
134
134
135

Finite difference methods for partial differential equations (PDEs) employ a
range of concepts and tools that can be introduced and illustrated in the context
of simple ordinary differential equation (ODE) examples. This is what we do in
the present document. By first working with ODEs, we keep the mathematical
problems to be solved as simple as possible (but no simpler), thereby allowing
full focus on understanding the key concepts and tools. The choice of topics
in the forthcoming treatment of ODEs is therefore solely dominated by what
carries over to numerical methods for PDEs.

Theory and practice are primarily illustrated by solving the very simple
ODE «' = —au, u(0) = I, where a > 0 is a constant, but we also address the
generalized problem u' = —a(t)u + b(¢) and the nonlinear problem v = f(u,t).
The following topics are introduced:

e How to think when constructing finite difference methods, with special focus
on the Forward Euler, Backward Euler, and Crank-Nicolson (midpoint)
schemes

e How to formulate a computational algorithm and translate it into Python
code

e How to make curve plots of the solutions
e How to compute numerical errors
e How to compute convergence rates

e How to verify an implementation and automate verification through nose
tests in Python

e How to structure code in terms of functions, classes, and modules

e How to work with Python concepts such as arrays, lists, dictionaries,
lambda functions, functions in functions (closures), doctests, unit tests,
command-line interfaces, graphical user interfaces

e How to perform array computing and understand the difference from scalar
computing

e How to conduct and automate large-scale numerical experiments
e How to generate scientific reports
e How to uncover numerical artifacts in the computed solution

e How to analyze the numerical schemes mathematically to understand why
artifacts occur

e How to derive mathematical expressions for various measures of the error
in numerical methods, frequently by using the sympy software for symbolic
computation

Introduce concepts such as finite difference operators, mesh (grid), mesh
functions, stability, truncation error, consistency, and convergence

Present additional methods for the general nonlinear ODE «' = f(u,t),
which is either a scalar ODE or a system of ODEs

How to access professional packages for solving ODEs

How the model equation v’ = —au arises in a wide range of phenomena in
physics, biology, and finance

The exposition in a nutshell.

Everything we cover is put into a practical, hands-on context. All mathemat-
ics is translated into working computing codes, and all the mathematical
theory of finite difference methods presented here is motivated from a
strong need to understand strange behavior of programs. Two fundamental
questions saturate the text:

e How to we solve a differential equation problem and produce numbers?

e How to we trust the answer?

1 Finite difference methods

Goal.
We explain the basic ideas of finite difference methods using a simple
ordinary differential equation v’ = —au as primary example. Emphasis is

put on the reasoning when discretizing the problem and introduction of
key concepts such as mesh, mesh function, finite difference approximations,
averaging in a mesh, deriation of algorithms, and discrete operator notation.

1.1 A basic model for exponential decay

Our model problem is perhaps the simplest ordinary differential equation (ODE):

u'(t) = —au(t),

Here, a > 0 is a constant and u/(¢) means differentiation with respect to time ¢.
This type of equation arises in a number of widely different phenomena where
some quantity u undergoes exponential reduction. Examples include radioactive
decay, population decay, investment decay, cooling of an object, pressure decay
in the atmosphere, and retarded motion in fluids (for some of these models, a
can be negative as well), see Section 11 for details and motivation. We have
chosen this particular ODE not only because its applications are relevant, but

even more because studying numerical solution methods for this simple ODE
gives important insight that can be reused in much more complicated settings,
in particular when solving diffusion-type partial differential equations.

The analytical solution of the ODE is found by the method of separation of
variables, which results in

u(t) = Ce™ ™,

for any arbitrary constant C. To formulate a mathematical problem for which
there is a unique solution, we need a condition to fix the value of C'. This
condition is known as the initial condition and stated as u(0) = I. That is, we
know the value I of u when the process starts at ¢t = 0. The exact solution is
then u(t) = Ie™ 2.

We seek the solution u(t) of the ODE for ¢ € (0,7]. The point ¢t = 0 is not
included since we know u here and assume that the equation governs u for ¢ > 0.
The complete ODE problem then reads: find u(t) such that

u' = —au, t € (0,T], u(0)=1I. (1)

This is known as a continuous problem because the parameter t varies continuously
from 0 to T. For each ¢ we have a corresponding u(t). There are hence infinitely
many values of ¢ and u(t). The purpose of a numerical method is to formulate
a corresponding discrete problem whose solution is characterized by a finite
number of values, which can be computed in a finite number of steps on a
computer.

1.2 The Forward Euler scheme

Solving an ODE like (1) by a finite difference method consists of the following
four steps:

1. discretizing the domain,
2. fulfilling the equation at discrete time points,
3. replacing derivatives by finite differences,

4. formulating a recursive algorithm.

Step 1: Discretizing the domain. The time domain [0, 7] is represented
by a finite number of N; + 1 points
0:t0<t1<t2<"~<t1\[ﬁ,1<tNt:T. (2)

The collection of points tg,?1,...,tn, constitutes a mesh or grid. Often the
mesh points will be uniformly spaced in the domain [0, 7], which means that

the spacing t,, 11 — t,, is the same for all n. This spacing is often denoted by At,
in this case t,, = nAt.

We seek the solution u at the mesh points: u(t,), n =1,2,..., N;. Note that
u? is already known as I. A notational short-form for u(t,), which will be used
extensively, is u™. More precisely, we let u™ be the numerical approrimation
to the exact solution u(t,) at t = t,,. The numerical approximation is a mesh
function, here defined only at the mesh points. When we need to clearly
distinguish between the numerical and the exact solution, we often place a
subscript e on the exact solution, as in wue(t,). Figure 1 shows the ¢, and u,
points for n =0,1,..., N, = 7 as well as ue(t) as the dashed line. The goal of a
numerical method for ODEs is to compute the mesh function by solving a finite
set of algebraic equations derived from the original ODE problem.

u

Uy
A [“
/’ \ Us
/ \\ p .
/
/ A d
’ ‘ ’
£ %{3 ;f
/ L ’
/ \ Uy,
uL,. A ‘
\ /
“ N
/
’
/
/
/
’
,
COY
| | | | | ~
| | | | | “ ¢
t{] r.1 Il'2 tiS t-l fS

Figure 1: Time mesh with discrete solution values.

Since finite difference methods produce solutions at the mesh points only, it
is an open question what the solution is between the mesh points. One can use
methods for interpolation to compute the value of v between mesh points. The
simplest (and most widely used) interpolation method is to assume that u varies
linearly between the mesh points, see Figure 2. Given u™ and u”**, the value of
u at some t € [ty,t,+1] is by linear interpolation

u7z+1 —un

ut) mut + (1) (3)
tn+1 —tn

Figure 2: Linear interpolation between the discrete solution values (dashed
curve is exact solution).

Step 2: Fulfilling the equation at discrete time points. The ODE is
supposed to hold for all ¢ € (0, 7], i.e., at an infinite number of points. Now we
relax that requirement and require that the ODE is fulfilled at a finite set of
discrete points in time. The mesh points ¢, ¢, ..., ¢y, are a natural choice of
points. The original ODE is then reduced to the following N; equations:

' (ty) = —au(t,), n=1,...,N;. (4)

Step 3: Replacing derivatives by finite differences. The next and most
essential step of the method is to replace the derivative u’ by a finite differ-
ence approximation. Let us first try a one-sided difference approximation (see
Figure 3),

u'rH— 1 _ u™

"(t,) ~ ——— . 5
' (tn) — (5)

Inserting this approximation in (4) results in
un+1 —um

=—au”, n=0,1,...,N,—1. (6)
tn+1_tn

This equation is the discrete counterpart to the original ODE problem (1), and
often referred to as finite difference scheme or more generally as the discrete

equations of the problem. The fundamental feature of these equations is that
they are algebraic and can hence be straightforwardly solved to produce the
mesh function, i.e., the values of u at the mesh points (v, n=1,2,..., N).

u(t)

*< forward

Figure 3: Illustration of a forward difference.

Step 4: Formulating a recursive algorithm. The final step is to identify
the computational algorithm to be implemented in a program. The key obser-
vation here is to realize that (6) can be used to compute u™*! if u™ is known.
Starting with n = 0, u° is known since u® = u(0) = I, and (6) gives an equation
for u'. Knowing u!, u? can be found from (6). In general, " in (6) can be
assumed known, and then we can easily solve for the unknown u"*1:

u" =" — atpy — tp)u”. (7)
We shall refer to (7) as the Forward Euler (FE) scheme for our model problem.
From a mathematical point of view, equations of the form (7) are known as
difference equations since they express how differences in u, like "' —u", evolve
with n. The finite difference method can be viewed as a method for turning a
differential equation into a difference equation.

Computation with (7) is straightforward:

and so on until we reach u™*. Very often, tn+1 — tp is constant for all n, so
we can introduce the common symbol At for the time step: At = t,,41 — ty,

n=20,1,..., N, — 1. Using a constant time step At in the above calculations
gives

up = 1I,

up = I(1 — aAt),

uy = I(1 — alt)?,

u® = I(1 — alt)?,

uMNt = TI(1 — aAt)Ne
This means that we have found a closed formula for u”, and there is no need
to let a computer generate the sequence u', u?,u3,.... However, finding such
a formula for u™ is possible only for a few very simple problems, so in general
finite difference equations must be solved on a computer.

)

As the next sections will show, the scheme (7) is just one out of many
alternative finite difference (and other) methods for the model problem (1).

1.3 The Backward Euler scheme

There are several choices of difference approximations in step 3 of the finite
difference method as presented in the previous section. Another alternative is

u™ — un—l

u'(tn) =

_— 8

tn - tn—l ()

Since this difference is based on going backward in time (¢,,_1) for information,

it is known as the Backward Euler difference. Figure 4 explains the idea.
Inserting (8) in (4) yields the Backward Euler (BE) scheme:

u — un—l
— = —au". 9)
tn - tn—l
We assume, as explained under step 4 in Section 1.2, that we have computed
u®,ul, ..., u" "1 such that (9) can be used to compute u™. For direct similarity

with the Forward Euler scheme (7) we replace n by n+ 1 in (9) and solve for
the unknown value u"*1:

1
n+1 n
U = u . 10
1+ a(tnsr —tn) (10)

11

u(t)

backward

Figure 4: Illustration of a backward difference.

1.4 The Crank-Nicolson scheme

The finite difference approximations used to derive the schemes (7) and (10) are
both one-sided differences, known to be less accurate than central (or midpoint)
differences. We shall now construct a central difference at ¢,,1/2 = %(tn +tnt1),
ortpi1/o = (n+ %)At if the mesh spacing is uniform in time. The approximation
reads

, ~ un+1 —um
Wltrg) ~ g (1)
Note that the fraction on the right-hand side is the same as for the Forward
Euler approximation (5) and the Backward Euler approximation (8) (with n
replaced by n 4+ 1). The accuracy of this fraction as an approximation to the
derivative of u depends on where we seek the derivative: in the center of the
interval [t,,t,+1] or at the end points.
With the formula (11), where u’ is evaluated at t,;/2, it is natural to
demand the ODE to be fulfilled at the time points between the mesh points:

u’(tn+%):—au(tn+%), n=20,...,N;—1. (12)
Using (11) in (12) results in

unJrl _ un

— = —au"t3, (13)
tn+1 - tn
where w2 is a short form for u(t,, +1)- The problem is that we aim to compute

u™ for integer n, implying that u"T? is not a quantity computed by our method.

12

It must therefore be expressed by the quantities that we actually produce, i.e.,

the numerical solution at the mesh points. One possibility is to approximate
1

u™*2 as an arithmetic mean of the u values at the neighboring mesh points:

1
Ut~ " +um). (14)
Using (14) in (13) results in
u™t — " 1, .,
— = —a—(u" +u""). 15
— 5() (15)
Figure 5 sketches the geometric interpretation of such a centered difference.

u(t)

~ ~ . centered

n—1 n tn +1
Figure 5: Illustration of a centered difference.

We assume that u™ is already computed so that 4"+ is the unknown, which
we can solve for:

unJrl _ 1- %a’(t”+1 B tn)un
1+ la(tya —t
+ 20,(n+1 n)

The finite difference scheme (16) is often called the Crank-Nicolson (CN) scheme
or a midpoint or centered scheme.

(16)

1.5 The unifying 6-rule

The Forward Euler, Backward Euler, and Crank-Nicolson schemes can be formu-
lated as one scheme with a varying parameter 6:

unJrl —un

= —a(fu™ + (1 —0)u"). (17)
7(;n-i-l - tn

13

Observe:

e O =0 gives the Forward Euler scheme
e 0 =1 gives the Backward Euler scheme, and
e 0 =1 gives the Crank-Nicolson scheme.

2

e We may alternatively choose any other value of 6 in [0, 1].

As before, u™ is considered known and u™*! unknown, so we solve for the latter:

w1 _ L= (1= 0)altnsr — tn)
1+ 0a(tyr —tn)

This scheme is known as the f-rule, or alternatively written as the ”theta-rule”.

(18)

Derivation.
We start with replacing v’ by the fraction

un+1 —ut

tn-i—l - tn ’
in the Forward Euler, Backward Euler, and Crank-Nicolson schemes. Then
we observe that the difference between the methods concerns which point
this fraction approximates the derivative. Or in other words, at which point
we sample the ODE. So far this has been the end points or the midpoint of
[tn,tns1]. However, we may choose any point £ € [t,,t,,1]. The difficulty is
that evaluating the right-hand side —au at an arbitrary point faces the same
problem as in Section 1.4: the point value must be expressed by the discrete
u quantities that we compute by the scheme, i.e., u™ and v"*!. Following
the averaging idea from Section 1.4, the value of u at an arbitrary point ¢
can be calculated as a weighted average, which generalizes the arithmetic

mean %u” + %u”“. If we express ¢ as a weighted average

tn+9 = 9tn+l + (1 - G)tna
where 0 € [0,1] is the weighting factor, we can write

uw(t) = w1 + (1 —0)t,) =~ Ou™ ™ + (1 — O)u™. (19)

We can now let the ODE hold at the point € [t,,, t,,1], approximate
u’ by the fraction (u"*! —u™)/(t,+1 —tn), and approximate the right-hand
side —au by the weighted average (19). The result is (17).

1.6 Constant time step

All schemes up to now have been formulated for a general non-uniform mesh in
time: to,%1,...,tn,. Non-uniform meshes are highly relevant since one can use

14

many points in regions where u varies rapidly, and save points in regions where
u is slowly varying. This is the key idea of adaptive methods where the spacing
of the mesh points are determined as the computations proceed.

However, a uniformly distributed set of mesh points is very common and
sufficient for many applications. It therefore makes sense to present the finite
difference schemes for a uniform point distribution ¢, = nAt, where At is the
constant spacing between the mesh points, also referred to as the time step. The
resulting formulas look simpler and are perhaps more well known.

Summary of schemes for constant time step.
u™t = (1 — aAt)u" Forward Euler (20)
1

Un+1 = mu" Backward Euler (21)
1— faAt

u™ Tl = %au” Crank-Nicolson (22)
1—(1—-0)aAt

| u"t = %u” The 6 — rule (23))

Not surprisingly, we present these three alternative schemes because they
have different pros and cons, both for the simple ODE in question (which can
easily be solved as accurately as desired), and for more advanced differential
equation problems.

Test the understanding.

At this point it can be good training to apply the explained finite difference
discretization techniques to a slightly different equation. Exercise 1 is there-
fore highly recommended to check that the key concepts are understood.

1.7 Compact operator notation for finite differences

Finite difference formulas can be tedious to write and read, especially for differen-
tial equations with many terms and many derivatives. To save space and help the
reader of the scheme to quickly see the nature of the difference approximations,
we introduce a compact notation. A forward difference approximation is denoted
by the D} operator:

un+1 —un d

e i) (24)
The notation consists of an operator that approximates differentiation with
respect to an independent variable, here ¢. The operator is built of the symbol D,
with the variable as subscript and a superscript denoting the type of difference.
The superscript T indicates a forward difference. We place square brackets
around the operator and the function it operates on and specify the mesh point,
where the operator is acting, by a superscript.

(D" =

15

The corresponding operator notation for a centered difference and a backward
difference reads

ut: —u d
Dt =2 S, p

and
n_ ,n—1 d

u —u
~ —u(ty) . 26
Note that the superscript ~ denotes the backward difference, while no superscript
implies a central difference.
An averaging operator is also convenient to have:

(D u]" =

@] = = (u""2 +u™t2) & u(ty,) (27)

The superscript ¢ indicates that the average is taken along the time coordinate.
The common average (u™ + u™t')/2 can now be expressed as [@']"*2. (When
also spatial coordinates enter the problem, we need the explicit specification of
the coordinate after the bar.)
The Backward Euler finite difference approximation to ' = —au can be
written as follows utilizing the compact notation:
[D; u]" = —au™.

In difference equations we often place the square brackets around the whole
equation, to indicate at which mesh point the equation applies, since each term
is supposed to be approximated at the same point:

[Dy v = —au]™. (28)

The Forward Euler scheme takes the form

Df u = —au]", (20)

while the Crank-Nicolson scheme is written as

[Dyu = —aut]"ts . (30)

Question.

Apply (25) and (27) and write out the expressions to see that (30) is indeed
the Crank-Nicolson scheme.

The 6-rule can be specified by

[Dyu = —aw"?]" Y, (31)

if we define a new time difference and a weighted averaging operator:

16

un+1 —un

Dyl = (32)

tntl _yn ’

[ﬂt,e]n+9 _ (1 _ g)u” + Qun'H ~ u(thrG)? (33>

where 6 € [0,1]. Note that for = 1 we recover the standard centered difference
and the standard arithmetic mean. The idea in (31) is to sample the equation
at t, 19, use a skew difference at that point [Dtu]"""g, and a skew mean value.

An alternative notation is
[Dyu]"*2 = 6]—au]"*! + (1 — 6)[—au]™.

Looking at the various examples above and comparing them with the under-
lying differential equations, we see immediately which difference approximations
that have been used and at which point they apply. Therefore, the compact
notation effectively communicates the reasoning behind turning a differential
equation into a difference equation.

2 Implementation

Goal.
We want make a computer program for solving

o' (t) = —au(t), te(0,T], u(0)=1I,

by finite difference methods. The program should also display the numerical
solution as a curve on the screen, preferably together with the exact solution.
We shall also be concerned with program testing, user interfaces, and

computing convergence rates.
L J

All programs referred to in this section are found in the src/decay directory

(we use the classical Unix term directory for what many others nowadays call
folder).

Mathematical problem. We want to explore the Forward Euler scheme, the
Backward Euler, and the Crank-Nicolson schemes applied to our model problem.
From an implementational point of view, it is advantageous to implement the
f-rule

1+ OaAt ’

since it can generate the three other schemes by various of choices of 0: § = 0 for
Forward Euler, § = 1 for Backward Euler, and § = 1/2 for Crank-Nicolson. Given
a, ud = I, T, and At, our task is to use the #-rule to compute u!, u?, ... u™,
where ty, = N:At, and N; the closest integer to T'/At.

17

http://tinyurl.com/jvzzcfn/decay

Computer Language: Python. Any programming language can be used to

generate the u

"+1 values from the formula above. However, in this document

we shall mainly make use of Python of several reasons:

Python has a very clean, readable syntax (often known as ”executable
pseudo-code”).

Python code is very similar to MATLAB code (and MATLAB has a
particularly widespread use for scientific computing).

Python is a full-fledged, very powerful programming language.

Python is similar to, but much simpler to work with and results in more
reliable code than C++.

Python has a rich set of modules for scientific computing, and its popularity
in scientific computing is rapidly growing.

Python was made for being combined with compiled languages (C, C++,
Fortran) to reuse existing numerical software and to reach high computa-
tional performance of new implementations.

Python has extensive support for administrative task needed when doing
large-scale computational investigations.

Python has extensive support for graphics (visualization, user interfaces,
web applications).

FEniCS, a very powerful tool for solving PDEs by the finite element method,
is most human-efficient to operate from Python.

Learning Python is easy. Many newcomers to the language will probably learn
enough from the forthcoming examples to perform their own computer experi-
ments. The examples start with simple Python code and gradually make use of
more powerful constructs as we proceed. As long as it is not inconvenient for
the problem at hand, our Python code is made as close as possible to MATLAB
code for easy transition between the two languages.

Readers who feel the Python examples are too hard to follow will probably
benefit from read a tutorial, e.g.,

The Official Python Tutorial
Python Tutorial on tutorialspoint.com
Interactive Python tutorial site

A Beginner’s Python Tutorial

The author also has a book [4] that introduces scientific programming with
Python.

18

http://docs.python.org/2/tutorial/
http://www.tutorialspoint.com/python/
http://www.learnpython.org/
http://en.wikibooks.org/wiki/A_Beginner's_Python_Tutorial

2.1 Making a solver function

We choose to have an array u for storing the u™ values, n = 0,1,..., N;. The
algorithmic steps are

1. initialize u°

2. fort=1t,,n=1,2,..., N;: compute u,, using the f-rule formula

Function for computing the numerical solution. The following Python
function takes the input data of the problem (I, a, T, At, #) as arguments and
returns two arrays with the solution ;... ,u™* and the mesh points tg, ..., tx,,
respectively:

from numpy import *

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""

Nt = int(T/dt) # no of time intervals

T = Ntxdt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values

t = linspace(0, T, Nt+1) # time mesh

uf0] =1 # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (i-theta)*a*dt)/(1 + thetaxdt*a)*uln]
return u, t

The numpy library contains a lot of functions for array computing. Most
of the function names are similar to what is found in the alternative scientific
computing language MATLAB. Here we make use of

e zeros(Nt+1) for creating an array of a size Nt+1 and initializing the
elements to zero

e linspace(0, T, Nt+1) for creating an array with Nt+1 coordinates uni-
formly distributed between 0 and T

The for loop deserves a comment, especially for newcomers to Python. The
construction range (0, Nt, s) generates all integers from 0 to Nt in steps of
s, but not including Nt. Omitting s means s=1. For example, range (0, 6, 3)
gives 0 and 3, while range (0, Nt) generates 0, 1, ..., Nt-1. Our loop implies
the following assignments to uln+1]: u[1], ul2], ..., u[Nt], which is what we
want since u has length Nt+1. The first index in Python arrays or lists is always
0 and the last is then len(u)-1. The length of an array u is obtained by len(u)
or u.size.

To compute with the solver function, we need to call it. Here is a sample
call:

19

u, t = solver(I=1, a=2, T=8, dt=0.8, theta=1)

Integer division. The shown implementation of the solver may face problems
and wrong results if T, a, dt, and theta are given as integers, see Exercises 4
and 5. The problem is related to integer division in Python (as well as in Fortran,
C, C++, and many other computer languages): 1/2 becomes 0, while 1.0/2,
1/2.0, or 1.0/2.0 all become 0.5. It is enough that at least the nominator
or the denominator is a real number (i.e., a float object) to ensure correct
mathematical division. Inserting a conversion dt = float(dt) guarantees that
dt is float and avoids problems in Exercise 5.

Another problem with computing N; = T'/At is that we should round N; to
the nearest integer. With Nt = int(T/dt) the int operation picks the largest
integer smaller than T/dt. Correct mathematical rounding as known from school
is obtained by

Nt = int(round(T/dt))
The complete version of our improved, safer solver function then becomes

from numpy import *

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""

dt = float(dt) # avoid integer division

Nt = int(round(T/dt)) # no of time intervals

T = Ntx*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of ul[n] values

t = linspace(0, T, Nt+1) # time mesh

uf0] =1 # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*ax*dt)/(1 + theta*dt*a)x*u[n]
return u, t

Doc strings. Right below the header line in the solver function there is a
Python string enclosed in triple double quotes """. The purpose of this string
object is to document what the function does and what the arguments are. In
this case the necessary documentation do not span more than one line, but with
triple double quoted strings the text may span several lines:

def solver(I, a, T, dt, theta):

nnn
Solve
u’ (t) = -a*xu(t),
with initial condition u(0)=I, for t in the time interval

(0,T]. The time interval is divided into time steps of
length dt.

20

theta=1 corresponds to the Backward Euler scheme, theta=0
to the Forward Euler scheme, and theta=0.5 to the Crank-

Nicolson method.
nnn

Such documentation strings appearing right after the header of a function
are called doc strings. There are tools that can automatically produce nicely
formatted documentation by extracting the definition of functions and the
contents of doc strings.

It is strongly recommended to equip any function whose purpose is not
obvious with a doc string. Nevertheless, the forthcoming text deviates from this
rule if the function is explained in the text.

Formatting of numbers. Having computed the discrete solution u, it is
natural to look at the numbers:

Write out a table of t and u values:
for i in range(len(t)):
print t[i], u[il

This compact print statement gives unfortunately quite ugly output because the
t and u values are not aligned in nicely formatted columns. To fix this problem,
we recommend to use the printf format, supported most programming languages
inherited from C. Another choice is Python’s recent format string syntax.

Writing t[1] and u[i] in two nicely formatted columns is done like this with
the printf format:

print ’t=%6.3f u=kg’ % (t[il, ulil)

The percentage signs signify ”slots” in the text where the variables listed at the
end of the statement are inserted. For each ”slot” one must specify a format for
how the variable is going to appear in the string: s for pure text, d for an integer,
g for a real number written as compactly as possible, 9. 3E for scientific notation
with three decimals in a field of width 9 characters (e.g., -1.351E-2), or .2f for
standard decimal notation with two decimals formatted with minimum width.
The printf syntax provides a quick way of formatting tabular output of numbers
with full control of the layout.
The alternative format string syntazx looks like

print ’t={t:6.3f} u={u:g}’.format(t=t[i], u=ulil)
As seen, this format allows logical names in the ”slots” where t [i] and u[i] are
to be inserted. The ”slots” are surrounded by curly braces, and the logical name

is followed by a colon and then the printf-like specification of how to format real
numbers, integers, or strings.

21

Running the program. The function and main program shown above must
be placed in a file, say with name decay_v1.py (vl stands for ”version 1”7 - we
shall make numerous different versions of this program). Make sure you write the
code with a suitable text editor (Gedit, Emacs, Vim, Notepad++, or similar).
The program is run by executing the file this way:

Terminal> python decay_vl.py

The text Terminal> just indicates a prompt in a Unix/Linux or DOS terminal
window. After this prompt, which will look different in your terminal window,
depending on the terminal application and how it is set up, commands like
python decay_v1.py can be issued. These commands are interpreted by the
operating system.

We strongly recommend to run Python programs within the IPython shell.
First start IPython by typing ipython in the terminal window. Inside the
IPython shell, our program decay_v1.py is run by the command run decay_v1.py:

Terminal> ipython

In [1]: run decay_vl.py

t= 0.000 u=1

t= 0.800 u=0.384615

t= 1.600 u=0.147929

t= 2.400 u=0.0568958
t= 3.200 u=0.021883

t= 4.000 u=0.00841653
t= 4.800 u=0.00323713
t= 5.600 u=0.00124505
t= 6.400 u=0.000478865
t= 7.200 u=0.000184179
t= 8.000 u=7.0838e-05
In [2]:

The advantage of running programs in IPython are many: previous commands
are easily recalled with the up arrow, %pdb turns on debugging so that variables
can be examined if the program aborts due to an exception, output of commands
are stored in variables, programs and statements can be profiled, any operating
system command can be executed, modules can be loaded automatically and
other customizations can be performed when starting [Python — to mention a
few of the most useful features.

Although running programs in IPython is strongly recommended, most
execution examples in the forthcoming text use the standard Python shell with
prompt >>> and run programs through a typesetting like

Terminal> python programname

22

http://tinyurl.com/jvzzcfn/decay/decay_v1.py

The reason is that such typesetting makes the text more compact in the vertical
direction than showing sessions with IPython syntax.

2.2 Verifying the implementation

It is easy to make mistakes while deriving and implementing numerical algo-
rithms, so we should never believe in the printed u values before they have been
thoroughly verified. The most obvious idea is to compare the computed solution
with the exact solution, when that exists, but there will always be a discrepancy
between these two solutions because of the numerical approximations. The
challenging question is whether we have the mathematically correct discrepancy
or if we have another, maybe small, discrepancy due to both an approximation
error and an error in the implementation.

The purpose of verifying a program is to bring evidence for the property
that there are no errors in the implementation. To avoid mixing unavoidable
approximation errors and undesired implementation errors, we should try to
make tests where we have some exact computation of the discrete solution or at
least parts of it. Examples will show how this can be done.

Running a few algorithmic steps by hand. The simplest approach to
produce a correct reference for the discrete solution u of finite difference equations
is to compute a few steps of the algorithm by hand. Then we can compare the
hand calculations with numbers produced by the program.

A straightforward approach is to use a calculator and compute u', u2, and
u?. With 7 = 0.1, # = 0.8, and At = 0.8 we get

1—(1—-0)aAt

A 1+ BaAt

= 0.298245614035

ul = AT = 0.0298245614035,
u? = Aul = 0.00889504462912,
u? = Au? = 0.00265290804728

Comparison of these manual calculations with the result of the solver
function is carried out in the function

def verify_three_steps():
"""Compare three steps with known manual computations."""
theta = 0.8; a =2; I =0.1; dt = 0.8
u_by_hand = array([I,
0.0298245614035,
0.00889504462912,
0.00265290804728])

Nt = 3 # number of time steps
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)

tol = 1E-15 # tolerance for comparing floats

23

difference = abs(u - u_by_hand) .max()
success = difference <= tol
return success

The main program, where we call the solver function and print u, is now
put in a separate function main:

def main():
u, t = solver(I=1, a=2, T=8, dt=0.8, theta=1)
Write out a table of t and u values:
for i in range(len(t)):
print ’t=6.3f u=lg’ % (t[i], ulil)
or print ’t={t:6.3f} u={u:g}’.format(t=t[i], u=ulil])

The main program in the file may now first run the verification test and then
go on with the real simulation (main()) only if the test is passed:

if verify_three_steps():
main()
else:
print ’Bug in the implementation!’

Since the verification test is always done, future errors introduced accidentally
in the program have a good chance of being detected.

Caution: choice of parameter values.

For the choice of values of parameters in verification tests one should stay
away from integers, especially 0 and 1, as these can simplify formulas too
much for test purposes. For example, with # = 1 the nominator in the
formula for u™ will be the same for all @ and At values. One should therefore

choose more ”arbitrary” values, say § = 0.8 and I = 0.1.
\ Y

It is essential that verification tests can be automatically run at any time. For
this purpose, there are test frameworks and corresponding programming rules
that allow us to request running through a suite of test cases (see Section 3.4),
but in this very early stage of program development we just implement and run
the verification in our own code so that every detail is visible and understood.

The complete program including the verify_three_steps* functions is
found in the file decay_verfl.py (verfl is a short name for ”verification,
version 17).

Comparison with an exact discrete solution. Sometimes it is possible to
find a closed-form exact discrete solution that fulfills the discrete finite difference
equations. The implementation can then be verified against the exact discrete
solution. This is usually the best technique for verification.

Define
1—(1-6)aAt

1+ OaAt

24

http://tinyurl.com/jvzzcfn/decay/decay_verf1.py

Manual computations with the #-rule results in
W =1,
ul = Aul = Al
u? = Aul = A?],

u? = A" = AT
We have then established the exact discrete solution as

u" = IA™ (34)

Caution.

One should be conscious about the different meanings of the notation on
the left- and right-hand side of (34): on the left, n in u™ is a superscript
reflecting a counter of mesh points (¢,,), while on the right, n is the power
in the exponentiation A™.

Comparison of the exact discrete solution and the computed solution is done
in the following function:

def verify_exact_discrete_solution():

def exact_discrete_solution(n, I, a, theta, dt):
A = (1 - (1-theta)*a*dt)/(1 + thetaxdt*a)
return I*Ax*n

theta = 0.8; a =2; I =0.1; dt = 0.8

Nt = int(8/dt) # no of steps

u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)

u_de = array([exact_discrete_solution(n, I, a, theta, dt)
for n in range(Nt+1)])

difference = abs(u_de - u).max() # max deviation

tol = 1E-15 # tolerance for comparing floats

success = difference <= tol

return success

The complete program is found in the file decay_verf2.py (verf2 is a short
name for ”verification, version 27”).

Local functions.

One can define a function inside another function, here called a local
function (also known as closure) inside a parent function. A local func-
tion is invisible outside the parent function. A convenient property is
that any local function has access to all variables defined in the parent
function, also if we send the local function to some other function as
argument (!). In the present example, it means that the local function
exact_discrete_solution does not need its five arguments as the values
can alternatively be accessed through the local variables defined in the

25

http://tinyurl.com/jvzzcfn/decay/decay_verf2.py

parent function verify_exact_discrete_solution. We can send such an
exact_discrete_solution without arguments to any other function and
exact_discrete_solution will still have access to n, I, a, and so forth
defined in its parent function.

2.3 Computing the numerical error as a mesh function

Now that we have evidence for a correct implementation, we are in a position to
compare the computed u™ values in the u array with the exact u values at the
mesh points, in order to study the error in the numerical solution.

Let us first make a function for the analytical solution ue(t) = Ie= " of the
model problem:

def exact_solution(t, I, a):
return I*exp(-a*t)

A natural way to compare the exact and discrete solutions is to calculate
their difference as a mesh function:

e’ =ue(ty) —u", n=0,1,...,N;. (35)

We may view u? = ue(t,) as the representation of ue(t) as a mesh function

rather than a continuous function defined for all ¢ € [0, T] (ul is often called the

representative of ue on the mesh). Then, e™ = u? — u" is clearly the difference

of two mesh functions. This interpretation of €™ is natural when programming.
The error mesh function e™ can be computed by

u, t = solver(I, a, T, dt, theta) # Numerical sol.
u_e = exact_solution(t, I, a) # Representative of exact sol.
e=ue-u

Note that the mesh functions u and u_e are represented by arrays and associated
with the points in the array t.

Array arithmetics.
The last statements

u_e = exact_solution(t, I, a)

e = u_,e - u

are primary examples of array arithmetics: t is an array of mesh points
that we pass to exact_solution. This function evaluates —a*t, which is a
scalar times an array, meaning that the scalar is multiplied with each array
element. The result is an array, let us call it tmp1l. Then exp(tmpl) means
applying the exponential function to each element in tmp, resulting an array,
say tmp2. Finally, I*tmp2 is computed (scalar times array) and u_e refers
to this array returned from exact_solution. The expression u_e - uis

26

L the difference between two arrays, resulting in a new array referred to by J
e.

2.4 Computing the norm of the numerical error

Instead of working with the error ™ on the entire mesh, we often want one
number expressing the size of the error. This is obtained by taking the norm of
the error function.

Let us first define norms of a function f(¢) defined for all ¢ € [0,T]. Three
common norms are

T 1/2
Ifllmz(/O f(t)th> ; (36)

T
1]l / | ()dt, (37)
fllee = max |£(2)]. (38)

t€[0,T)

The L? norm (36) ("L-two norm”) has nice mathematical properties and is the
most popular norm. It is a generalization of the well-known Eucledian norm
of vectors to functions. The L* is also called the max norm or the supremum
norm. In fact, there is a whole family of norms,

T 1/p
||f|Lp—</0 f(t)”dt> , (39)

with p real. In particular, p = 1 corresponds to the L' norm above while p = oo
is the L°° norm.

Numerical computations involving mesh functions need corresponding norms.
Given a set of function values, f™, and some associated mesh points, t,, a
numerical integration rule can be used to calculate the L? and L' norms defined
above. Imagining that the mesh function is extended to vary linearly between
the mesh points, the Trapezoidal rule is in fact an exact integration rule. A
possible modification of the L? norm for a mesh function f™ on a uniform mesh
with spacing At is therefore the well-known Trapezoidal integration formula

1 1 ! v
1711 = (At (2(f°)2 DY (f”)2>>

A common approximation of this expression, motivated by the convenience of
having a simpler formula, is

N, 1/2
1™ |l = (AtZU”V) ~
n=0

27

This is called the discrete L? norm and denoted by ¢2. The error in ||f|2
compared with the Trapezoidal integration formula is At((f°)% + (fV)?2)/2,
which means perturbed weights at the end points of the mesh function, and the
error goes to zero as At — 0. As long as we are consistent and stick to one kind
of integration rule for the norm of a mesh function, the details and accuracy of
this rule is not of concern.

The three discrete norms for a mesh function f", corresponding to the L2,
L', and L™ norms of f(t) defined above, are defined by

N, 1/2
™2 (AtZ(f”)2> : (40)
n=0

N,

™l A > [(41)
n=0

I[£"]] oo Ogrg%vtlf | (42)

Note that the L2, L', ¢2, and ¢! norms depend on the length of the interval
of interest (think of f = 1, then the norms are proportional to v/T or T). In
some applications it is convenient to think of a mesh function as just a vector of
function values and neglect the information of the mesh points. Then we can
replace At by T/N; and drop T. Moreover, it is convenient to divide by the
total length of the vector, IV; 4+ 1, instead of NV;. This reasoning gives rise to the

vector norms for a vector f = (fo,..., fn):
Lo 1/2
||f|‘2 = <N+1 Z(fn)2>) (43)
n=0

;X
||f|‘1:N7_HZ|fn| (44)

n=0
Il = o 1] (49

Here we have used the common vector component notation with subscripts (f,)
and N as length. We will mostly work with mesh functions and use the discrete
¢ norm (40) or the max norm £* (42), but the corresponding vector norms
(43)-(45) are also much used in numerical computations, so it is important to
know the different norms and the relations between them.

A single number that expresses the size of the numerical error will be taken
as ||e™]]g2 and called E:

The corresponding Python code, using array arithmetics, reads

28

E = sqrt(dt*sum(e**2))

The sum function comes from numpy and computes the sum of the elements of
an array. Also the sqrt function is from numpy and computes the square root of
each element in the array argument.

Scalar computing. Instead of doing array computing sqrt (dt*sum(e**2))
we can compute with one element at a time:

len(u) # length of u array (alt: u.size)
= zeros(m)
0
i in range(m):
u_el[i] = exact_solution(t, a, I)
t =t + dt
e = zeros(m)
for i in range(m):
e[i]l = u_el[i] - ul[il
s = 0 # summation variable
for i in range(m):
s = s + e[i]**2
error = sqrt(dt*s)

Hhet £ B
o
R o

Such element-wise computing, often called scalar computing, takes more code,
is less readable, and runs much slower than what we can achieve with array
computing.

2.5 Plotting solutions

Having the t and u arrays, the approximate solution u is visualized by the
intuitive command plot(t, u):

from matplotlib.pyplot import *
plot(t, w)
show ()

Plotting multiple curves. It will be illustrative to also plot ue(t) for com-
parison. Doing a plot(t, u_e) is not exactly what we want: the plot function
draws straight lines between the discrete points (t[n], u_e[n]) while wue(t)
varies as an exponential function between the mesh points. The technique for
showing the "exact” variation of ue(t) between the mesh points is to introduce a
very fine mesh for ue(t):

t_e = linspace(0, T, 1001) # fine mesh

u_e = exact_solution(t_e, I, a)

plot(t_e, u_e, ’b-’) # blue line for u_e
plot(t, u, ’r--0’) # red dashes w/circles

29

With more than one curve in the plot we need to associate each curve
with a legend. We also want appropriate names on the axis, a title, and a file
containing the plot as an image for inclusion in reports. The Matplotlib package
(matplotlib.pyplot) contains functions for this purpose. The names of the
functions are similar to the plotting functions known from MATLAB. A complete
plot session then becomes

from matplotlib.pyplot import *

figure() # create new plot

t_e = linspace(0, T, 1001) # fine mesh for u_e

u_e = exact_solution(t_e, I, a)

plot(t, u, ‘r--0’) # red dashes w/circles
plot(t_e, u_e, ’b-’) # blue line for exact sol.
legend([’numerical’, ’exact’])

xlabel(’t’)

ylabel(’u’)

title(’theta=Yg, dt=Y%g’ % (theta, dt))
savefig(’%s_%g.png’ % (theta, dt))
show ()

Note that savefig here creates a PNG file whose name reflects the values of 6
and At so that we can easily distinguish files from different runs with 8 and At.
A bit more sophisticated and easy-to-read filename can be generated by
mapping the 6 value to acronyms for the three common schemes: FE (Forward
Euler, § = 0), BE (Backward Euler, § = 1), CN (Crank-Nicolson, § = 0.5). A
Python dictionary is ideal for such a mapping from numbers to strings:

theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
savefig(’%s_%g.png’ % (theta2name[theta], dt))

Experiments with computing and plotting. Let us wrap up the compu-
tation of the error measure and all the plotting statements in a function explore.
This function can be called for various # and At values to see how the error
varies with the method and the mesh resolution:

def explore(I, a, T, dt, theta=0.5, makeplot=True):
nnn
Run a case with the solver, compute error measure,

and plot the numerical and exact solutions (if makeplot=True).
nmnn

u, t = solver(I, a, T, dt, theta) # Numerical solution
u_e = exact_solution(t, I, a)
e=ue-u
E = sqrt(dt*sum(e**2))
if makeplot:
figure() # create new plot
t_e = linspace(0, T, 1001) # fine mesh for u_e
u_e = exact_solution(t_e, I, a)
plot(t, u, ’r--0’) # red dashes w/circles
plot(t_e, u_e, ’b-’) # blue line for exact sol.

legend([’numerical’, ’exact’])

30

xlabel(’t’)
ylabel(’u’)
title(’theta=Y%g, dt=lig’ % (theta, dt))
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
savefig(’¥%s_%g.png’ % (theta2name[theta], dt))
savefig(’%s_%g.pdf’ % (theta2name[thetal], dt))
savefig(’%s_%g.eps’ 7% (theta2name[thetal, dt))
show ()

return E

The figure() call is key here: without it, a new plot command will draw
the new pair of curves in the same plot window, while we want the different
pairs to appear in separate windows and files. Calling figure() ensures this.

The explore function stores the plot in three different image file formats:
PNG, PDF, and EPS (Encapsulated PostScript). The PNG format is aimed at
being included in HTML files, the PDF format in PDFIATEX documents, and the
EPS format in BTEX documents. Frequently used viewers for these image files
on Unix systems are gv (comes with Ghostscript) for the PDF and EPS formats
and display (from the ImageMagick) suite for PNG files:

Terminal> gv BE_0.5.pdf
Terminal> gv BE_0.5.eps
Terminal> display BE_0.5.png

The complete code containing the functions above resides in the file decay_
plot_mpl.py. Running this program results in

Terminal> python decay_plot_mpl.py
0.0 0.40: 2.105E-01
0.0 0.04: 1.449E-02
0.5 0.40: 3.362E-02
0.5 0.04: 1.887E-04
1.0 0.40: 1.030E-01
1.0 0.04: 1.382E-02

We observe that reducing At by a factor of 10 increases the accuracy for all
three methods (6 values). We also see that the combination of # = 0.5 and a
small time step At = 0.04 gives a much more accurate solution, and that § = 0
and 0 = 1 with At = 0.4 result in the least accurate solutions.

Figure 6 demonstrates that the numerical solution for At = 0.4 clearly lies
below the exact curve, but that the accuracy improves considerably by reducing
the time step by a factor of 10.

Combining plot files. Mounting two PNG files, as done in the figure, is easily
done by the montage program from the ImageMagick suite:

31

http://tinyurl.com/jvzzcfn/decay/decay_plot_mpl.py
http://tinyurl.com/jvzzcfn/decay/decay_plot_mpl.py
http://www.imagemagick.org/script/montage.php

1.0

0.8

0.6

0.4

0.2

0'00

theta=0, dt=0.4

e - numerical
— exact

0.8

0.6

0.4

0.2

0.0

theta=0, dt=0.04

® - numerical
— exact

Figure 6: The Forward Euler scheme for two values of the time step.

Terminal> montage -background white -geometry 100% -tile 2x1 \
FE_0.4.png FE_0.04.png FEl.png
Terminal> convert -trim FEl.png FEl.png

The -geometry argument is used to specify the size of the image, and here we
preserve the individual sizes of the images. The -tile HxV option specifies H
images in the horizontal direction and V images in the vertical direction. A series
of image files to be combined are then listed, with the name of the resulting
combined image, here FE1.png at the end. The convert -trim command
removes surrounding white areas in the figure (an operation usually known as
cropping in image manipulation programs).

For BTEX reports it is not recommended to use montage and PNG files as the
result has too low resolution. Instead, plots should be made in the PDF format
and combined using the pdftk, pdfnup, and pdfcrop tools (on Linux/Unix):

Terminal> pdftk FE_0.4.png FE_0.04.png output tmp.pdf
Terminal> pdfnup --nup 2x1 tmp.pdf # output in tmp-nup.pdf
Terminal> pdfcrop tmp-nup.pdf FEl.png # output in FEl.png

Here, pdftk combines images into a multi-page PDF file, pdfnup combines the
images in individual pages to a table of images (pages), and pdfcrop removes
white margins in the resulting combined image file.

The behavior of the two other schemes is shown in Figures 7 and 8. Crank-
Nicolson is obviously the most accurate scheme from this visual point of view.

Plotting with SciTools. The SciTools package provides a unified plotting
interface, called Easyviz, to many different plotting packages, including Mat-
plotlib, Gnuplot, Grace, MATLAB, VTK, OpenDX, and Vislt. The syntax is
very similar to that of Matplotlib and MATLAB. In fact, the plotting commands

32

http://code.google.com/p/scitools

10

theta=1, dt=0.4 10 theta=1, dt=0.04
1 ® - numerical ® o numerical
\ — exact — exact
o8t 0.8
\
\
\v
06F |\ 0.6
e
£l ' E]
\
\
0.4 \ 0.4
\
Y
\
0.2 \ 0.2
.
..
_e - S —o
0.0 1 2 3 4 5 6 009 1 2 3 5
t t
Figure 7: The Backward Euler scheme for two values of the time step.
theta=0.5, dt=0.4 theta=0.5, dt=0.04
1.0 1.0
e - numerical e -e numerical
— exact — exact
o8t 0.8
\
\
\v
06} | 0.6
> B
0.4 0.4
0.2 0.2
0.0, T > % n = 0.0,
t

Figure 8: The Crank-Nicolson scheme for two values of the time step.

shown above look the same in SciTool’s Easyviz interface, apart from the import
statement, which reads

from scitools.std import *

some additional numerical functionality.

This statement performs a from numpy import * as well as an import of the
most common pieces of the Easyviz (scitools.easyviz) package, along with

With Easyviz one can merge several plotting commands into a single one

using keyword arguments:

plot(t, u, ‘r--o’, # red dashes w/circles
t_e, u_e, ’b-’, # blue line for exact sol.
legend=[’numerical’, ’exact’],

xlabel="t’,

ylabel="u’,

title=’theta=}g, dt=/g’ % (theta, dt),

33

savefig="Ys_kg.png’ % (theta2name[theta], dt),
show=True)

The decay_plot_st.py file contains such a demo.
By default, Easyviz employs Matplotlib for plotting, but Gnuplot and Grace
are viable alternatives:

Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend gnuplot
Terminal> python decay_plot_st.py —-—-SCITOOLS_easyviz_backend grace

The backend used for creating plots (and numerous other options) can be
permanently set in SciTool’s configuration file.

All the Gnuplot windows are launched without any need to kill one before
the next one pops up (as is the case with Matplotlib) and one can press the key
’q’ anywhere in a plot window to kill it. Another advantage of Gnuplot is the
automatic choice of sensible and distinguishable line types in black-and-white
PDF and PostScript files.

Regarding functionality for annotating plots with title, labels on the axis,
legends, etc., we refer to the documentation of Matplotlib and SciTools for more
detailed information on the syntax. The hope is that the programming syntax
explained so far suffices for understanding the code and learning more from a
combination of the forthcoming examples and other resources such as books and
web pages.

Test the understanding.

Exercise 2 asks you to implement a solver for a problem that is slightly
different from the one above. You may use the solver and explore
functions explained above as a starting point. Apply the new solver to
Exercise 3.

2.6 Creating command-line interfaces

It is good programming practice to let programs read input from the user rather
than require the user to edit the source code when trying out new values of input
parameters. Reading input from the command line is a simple and flexible way
of interacting with the user. Python stores all the command-line arguments in
the list sys.argv, and there are, in principle, two ways of programming with
command-line arguments in Python:

e Decide upon a sequence of parameters on the command line and read
their values directly from the sys.argv[1:] list (sys.argv[0] is the just
program name).

o Use option-value pairs (-—option value) on the command line to override
default values of input parameters, and utilize the argparse . ArgumentParser
tool to interact with the command line.

Both strategies will be illustrated next.

34

http://tinyurl.com/jvzzcfn/decay/decay_plot_st.py
http://www.gnuplot.info/
http://plasma-gate.weizmann.ac.il/Grace/

Reading a sequence of command-line arguments. The decay_plot_mpl.
py program needs the following input data: I, a, T, an option to turn the plot
on or off (makeplot), and a list of At values.

The simplest way of reading this input from the command line is to say that
the first four command-line arguments correspond to the first four points in the
list above, in that order, and that the rest of the command-line arguments are
the At values. The input given for makeplot can be a string among *on’, >off’,
’True’, and *False’. The code for reading this input is most conveniently put
in a function:

import sys

def read_command_line():
if len(sys.argv) < 6:
print ’Usage: %s I a T on/off dtl dt2 dt3 ...’ % \
sys.argv[0]; sys.exit(1l) # abort

float(sys.argv[1])

float(sys.argv[2])

float(sys.argv[3])

makeplot = sys.argv[4] in (on’, ’True’)
dt_values = [float(arg) for arg in sys.argv[5:]]

He H
nwonn

return I, a, T, makeplot, dt_values

One should note the following about the constructions in the program above:

e Everything on the command line ends up in a string in the list sys.argv.
Explicit conversion to, e.g., a float object is required if the string as a
number we want to compute with.

e The value of makeplot is determined from a boolean expression, which
becomes True if the command-line argument is either >on’ or ’True’, and
False otherwise.

e It is easy to build the list of At values: we simply run through the rest
of the list, sys.argv[5:], convert each command-line argument to float,
and collect these f1loat objects in a list, using the compact and convenient
list comprehension syntax in Python.

The loops over 8 and At values can be coded in a main function:

def main():
I, a, T, makeplot, dt_values = read_command_line()
for theta in 0, 0.5, 1:
for dt in dt_values:
E = explore(I, a, T, dt, theta, makeplot)
print ’%3.1f %6.2f: %12.3E’ % (theta, dt, E)

The complete program can be found in decay_cml.py.

35

http://tinyurl.com/jvzzcfn/decay/decay_plot_mpl.py
http://tinyurl.com/jvzzcfn/decay/decay_plot_mpl.py
http://tinyurl.com/jvzzcfn/decay/decay_cml.py

Working with an argument parser. Python’s ArgumentParser tool in the
argparse module makes it easy to create a professional command-line interface
to any program. The documentation of ArgumentParser demonstrates its
versatile applications, so we shall here just list an example containing basic
features. On the command line we want to specify option-value pairs for I, a,
and T, e.g., -—a 3.5 —--I 2 --T 2. Including --makeplot turns the plot on
and excluding this option turns the plot off. The At values can be given as
--dt 1 0.5 0.25 0.1 0.01. Each parameter must have a sensible default value
so that we specify the option on the command line only when the default value
is not suitable.
We introduce a function for defining the mentioned command-line options:

def define_command_line_options():

import argparse

parser = argparse.ArgumentParser ()

parser.add_argument (’--I’, ’--initial_condition’, type=float,
default=1.0, help=’initial condition, u(0)’,
metavar=’I’)

parser.add_argument (’--a’, type=float,
default=1.0, help=’coefficient in ODE’,
metavar=’a’)

parser.add_argument (’--T’, ’--stop_time’, type=float,
default=1.0, help=’end time of simulation’,
metavar=>T’)

parser.add_argument(’——makeplot’, action=’store_true’,
help=’display plot or not’)

parser.add_argument (’--dt’, ’--time_step_values’, type=float,
default=[1.0], help=’time step values’,
metavar=’dt’, nargs=’+’, dest=’dt_values’)

return parser

Each command-line option is defined through the parser.add_argument
method. Alternative options, like the short --I and the more explaining version
--initial_condition can be defi