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Finite difference methods for partial differential equations (PDEs) employ a
range of concepts and tools that can be introduced and illustrated in the context
of simple ordinary differential equation (ODE) examples. This is what we do in
the present document. By first working with ODEs, we keep the mathematical
problems to be solved as simple as possible (but no simpler), thereby allowing
full focus on understanding the key concepts and tools. The choice of topics
in the forthcoming treatment of ODEs is therefore solely dominated by what
carries over to numerical methods for PDEs.

Theory and practice are primarily illustrated by solving the very simple
ODE u′ = −au, u(0) = I, where a > 0 is a constant, but we also address the
generalized problem u′ = −a(t)u+ b(t) and the nonlinear problem u′ = f(u, t).
The following topics are introduced:

• How to think when constructing finite difference methods, with special focus
on the Forward Euler, Backward Euler, and Crank-Nicolson (midpoint)
schemes

• How to formulate a computational algorithm and translate it into Python
code

• How to make curve plots of the solutions

• How to compute numerical errors

• How to compute convergence rates

• How to verify an implementation and automate verification through nose
tests in Python

• How to structure code in terms of functions, classes, and modules

• How to work with Python concepts such as arrays, lists, dictionaries,
lambda functions, functions in functions (closures), doctests, unit tests,
command-line interfaces, graphical user interfaces

• How to perform array computing and understand the difference from scalar
computing

• How to conduct and automate large-scale numerical experiments

• How to generate scientific reports

• How to uncover numerical artifacts in the computed solution

• How to analyze the numerical schemes mathematically to understand why
artifacts occur

• How to derive mathematical expressions for various measures of the error
in numerical methods, frequently by using the sympy software for symbolic
computation
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• Introduce concepts such as finite difference operators, mesh (grid), mesh
functions, stability, truncation error, consistency, and convergence

• Present additional methods for the general nonlinear ODE u′ = f(u, t),
which is either a scalar ODE or a system of ODEs

• How to access professional packages for solving ODEs

• How the model equation u′ = −au arises in a wide range of phenomena in
physics, biology, and finance

The exposition in a nutshell.

Everything we cover is put into a practical, hands-on context. All mathemat-
ics is translated into working computing codes, and all the mathematical
theory of finite difference methods presented here is motivated from a
strong need to understand strange behavior of programs. Two fundamental
questions saturate the text:

• How to we solve a differential equation problem and produce numbers?

• How to we trust the answer?

1 Finite difference methods

Goal.
We explain the basic ideas of finite difference methods using a simple
ordinary differential equation u′ = −au as primary example. Emphasis is
put on the reasoning when discretizing the problem and introduction of
key concepts such as mesh, mesh function, finite difference approximations,
averaging in a mesh, deriation of algorithms, and discrete operator notation.

1.1 A basic model for exponential decay

Our model problem is perhaps the simplest ordinary differential equation (ODE):

u′(t) = −au(t),

Here, a > 0 is a constant and u′(t) means differentiation with respect to time t.
This type of equation arises in a number of widely different phenomena where
some quantity u undergoes exponential reduction. Examples include radioactive
decay, population decay, investment decay, cooling of an object, pressure decay
in the atmosphere, and retarded motion in fluids (for some of these models, a
can be negative as well), see Section 11 for details and motivation. We have
chosen this particular ODE not only because its applications are relevant, but
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even more because studying numerical solution methods for this simple ODE
gives important insight that can be reused in much more complicated settings,
in particular when solving diffusion-type partial differential equations.

The analytical solution of the ODE is found by the method of separation of
variables, which results in

u(t) = Ce−at,

for any arbitrary constant C. To formulate a mathematical problem for which
there is a unique solution, we need a condition to fix the value of C. This
condition is known as the initial condition and stated as u(0) = I. That is, we
know the value I of u when the process starts at t = 0. The exact solution is
then u(t) = Ie−at.

We seek the solution u(t) of the ODE for t ∈ (0, T ]. The point t = 0 is not
included since we know u here and assume that the equation governs u for t > 0.
The complete ODE problem then reads: find u(t) such that

u′ = −au, t ∈ (0, T ], u(0) = I . (1)

This is known as a continuous problem because the parameter t varies continuously
from 0 to T . For each t we have a corresponding u(t). There are hence infinitely
many values of t and u(t). The purpose of a numerical method is to formulate
a corresponding discrete problem whose solution is characterized by a finite
number of values, which can be computed in a finite number of steps on a
computer.

1.2 The Forward Euler scheme

Solving an ODE like (1) by a finite difference method consists of the following
four steps:

1. discretizing the domain,

2. fulfilling the equation at discrete time points,

3. replacing derivatives by finite differences,

4. formulating a recursive algorithm.

Step 1: Discretizing the domain. The time domain [0, T ] is represented
by a finite number of Nt + 1 points

0 = t0 < t1 < t2 < · · · < tNt−1 < tNt
= T . (2)

The collection of points t0, t1, . . . , tNt
constitutes a mesh or grid. Often the

mesh points will be uniformly spaced in the domain [0, T ], which means that
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the spacing tn+1 − tn is the same for all n. This spacing is often denoted by ∆t,
in this case tn = n∆t.

We seek the solution u at the mesh points: u(tn), n = 1, 2, . . . , Nt. Note that
u0 is already known as I. A notational short-form for u(tn), which will be used
extensively, is un. More precisely, we let un be the numerical approximation
to the exact solution u(tn) at t = tn. The numerical approximation is a mesh
function, here defined only at the mesh points. When we need to clearly
distinguish between the numerical and the exact solution, we often place a
subscript e on the exact solution, as in ue(tn). Figure 1 shows the tn and un
points for n = 0, 1, . . . , Nt = 7 as well as ue(t) as the dashed line. The goal of a
numerical method for ODEs is to compute the mesh function by solving a finite
set of algebraic equations derived from the original ODE problem.

Figure 1: Time mesh with discrete solution values.

Since finite difference methods produce solutions at the mesh points only, it
is an open question what the solution is between the mesh points. One can use
methods for interpolation to compute the value of u between mesh points. The
simplest (and most widely used) interpolation method is to assume that u varies
linearly between the mesh points, see Figure 2. Given un and un+1, the value of
u at some t ∈ [tn, tn+1] is by linear interpolation

u(t) ≈ un +
un+1 − un

tn+1 − tn
(t− tn) . (3)
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Figure 2: Linear interpolation between the discrete solution values (dashed
curve is exact solution).

Step 2: Fulfilling the equation at discrete time points. The ODE is
supposed to hold for all t ∈ (0, T ], i.e., at an infinite number of points. Now we
relax that requirement and require that the ODE is fulfilled at a finite set of
discrete points in time. The mesh points t1, t2, . . . , tNt

are a natural choice of
points. The original ODE is then reduced to the following Nt equations:

u′(tn) = −au(tn), n = 1, . . . , Nt . (4)

Step 3: Replacing derivatives by finite differences. The next and most
essential step of the method is to replace the derivative u′ by a finite differ-
ence approximation. Let us first try a one-sided difference approximation (see
Figure 3),

u′(tn) ≈ un+1 − un

tn+1 − tn
. (5)

Inserting this approximation in (4) results in

un+1 − un

tn+1 − tn
= −aun, n = 0, 1, . . . , Nt − 1 . (6)

This equation is the discrete counterpart to the original ODE problem (1), and
often referred to as finite difference scheme or more generally as the discrete
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equations of the problem. The fundamental feature of these equations is that
they are algebraic and can hence be straightforwardly solved to produce the
mesh function, i.e., the values of u at the mesh points (un, n = 1, 2, . . . , Nt).

forward

u(t)

tntn−1 tn+1

Figure 3: Illustration of a forward difference.

Step 4: Formulating a recursive algorithm. The final step is to identify
the computational algorithm to be implemented in a program. The key obser-
vation here is to realize that (6) can be used to compute un+1 if un is known.
Starting with n = 0, u0 is known since u0 = u(0) = I, and (6) gives an equation
for u1. Knowing u1, u2 can be found from (6). In general, un in (6) can be
assumed known, and then we can easily solve for the unknown un+1:

un+1 = un − a(tn+1 − tn)un . (7)

We shall refer to (7) as the Forward Euler (FE) scheme for our model problem.
From a mathematical point of view, equations of the form (7) are known as
difference equations since they express how differences in u, like un+1−un, evolve
with n. The finite difference method can be viewed as a method for turning a
differential equation into a difference equation.

Computation with (7) is straightforward:

u0 = I,

u1 = u0 − a(t1 − t0)u0 = I(1− a(t1 − t0)),

u2 = u1 − a(t2 − t1)u1 = I(1− a(t1 − t0))(1− a(t2 − t1)),

u3 = u2 − a(t3 − t2)u2 = I(1− a(t1 − t0))(1− a(t2 − t1))(1− a(t3 − t2)),
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and so on until we reach uNt . Very often, tn+1 − tn is constant for all n, so
we can introduce the common symbol ∆t for the time step: ∆t = tn+1 − tn,
n = 0, 1, . . . , Nt − 1. Using a constant time step ∆t in the above calculations
gives

u0 = I,

u1 = I(1− a∆t),

u2 = I(1− a∆t)2,

u3 = I(1− a∆t)3,

...

uNt = I(1− a∆t)Nt .

This means that we have found a closed formula for un, and there is no need
to let a computer generate the sequence u1, u2, u3, . . .. However, finding such
a formula for un is possible only for a few very simple problems, so in general
finite difference equations must be solved on a computer.

As the next sections will show, the scheme (7) is just one out of many
alternative finite difference (and other) methods for the model problem (1).

1.3 The Backward Euler scheme

There are several choices of difference approximations in step 3 of the finite
difference method as presented in the previous section. Another alternative is

u′(tn) ≈ un − un−1

tn − tn−1
. (8)

Since this difference is based on going backward in time (tn−1) for information,
it is known as the Backward Euler difference. Figure 4 explains the idea.

Inserting (8) in (4) yields the Backward Euler (BE) scheme:

un − un−1

tn − tn−1
= −aun . (9)

We assume, as explained under step 4 in Section 1.2, that we have computed
u0, u1, . . . , un−1 such that (9) can be used to compute un. For direct similarity
with the Forward Euler scheme (7) we replace n by n+ 1 in (9) and solve for
the unknown value un+1:

un+1 =
1

1 + a(tn+1 − tn)
un . (10)
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backward

u(t)

tntn−1 tn+1

Figure 4: Illustration of a backward difference.

1.4 The Crank-Nicolson scheme

The finite difference approximations used to derive the schemes (7) and (10) are
both one-sided differences, known to be less accurate than central (or midpoint)
differences. We shall now construct a central difference at tn+1/2 = 1

2 (tn + tn+1),

or tn+1/2 = (n+ 1
2 )∆t if the mesh spacing is uniform in time. The approximation

reads

u′(tn+ 1
2
) ≈ un+1 − un

tn+1 − tn
. (11)

Note that the fraction on the right-hand side is the same as for the Forward
Euler approximation (5) and the Backward Euler approximation (8) (with n
replaced by n + 1). The accuracy of this fraction as an approximation to the
derivative of u depends on where we seek the derivative: in the center of the
interval [tn, tn+1] or at the end points.

With the formula (11), where u′ is evaluated at tn+1/2, it is natural to
demand the ODE to be fulfilled at the time points between the mesh points:

u′(tn+ 1
2
) = −au(tn+ 1

2
), n = 0, . . . , Nt − 1 . (12)

Using (11) in (12) results in

un+1 − un

tn+1 − tn
= −aun+ 1

2 , (13)

where un+ 1
2 is a short form for u(tn+ 1

2
). The problem is that we aim to compute

un for integer n, implying that un+ 1
2 is not a quantity computed by our method.
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It must therefore be expressed by the quantities that we actually produce, i.e.,
the numerical solution at the mesh points. One possibility is to approximate
un+ 1

2 as an arithmetic mean of the u values at the neighboring mesh points:

un+ 1
2 ≈ 1

2
(un + un+1) . (14)

Using (14) in (13) results in

un+1 − un

tn+1 − tn
= −a1

2
(un + un+1) . (15)

Figure 5 sketches the geometric interpretation of such a centered difference.

centered

u(t)

tntn−1 tn+1

Figure 5: Illustration of a centered difference.

We assume that un is already computed so that un+1 is the unknown, which
we can solve for:

un+1 =
1− 1

2a(tn+1 − tn)

1 + 1
2a(tn+1 − tn)

un . (16)

The finite difference scheme (16) is often called the Crank-Nicolson (CN) scheme
or a midpoint or centered scheme.

1.5 The unifying θ-rule

The Forward Euler, Backward Euler, and Crank-Nicolson schemes can be formu-
lated as one scheme with a varying parameter θ:

un+1 − un

tn+1 − tn
= −a(θun+1 + (1− θ)un) . (17)
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Observe:

• θ = 0 gives the Forward Euler scheme

• θ = 1 gives the Backward Euler scheme, and

• θ = 1
2 gives the Crank-Nicolson scheme.

• We may alternatively choose any other value of θ in [0, 1].

As before, un is considered known and un+1 unknown, so we solve for the latter:

un+1 =
1− (1− θ)a(tn+1 − tn)

1 + θa(tn+1 − tn)
. (18)

This scheme is known as the θ-rule, or alternatively written as the ”theta-rule”.

Derivation.
We start with replacing u′ by the fraction

un+1 − un

tn+1 − tn
,

in the Forward Euler, Backward Euler, and Crank-Nicolson schemes. Then
we observe that the difference between the methods concerns which point
this fraction approximates the derivative. Or in other words, at which point
we sample the ODE. So far this has been the end points or the midpoint of
[tn, tn+1]. However, we may choose any point t̃ ∈ [tn, tn+1]. The difficulty is
that evaluating the right-hand side −au at an arbitrary point faces the same
problem as in Section 1.4: the point value must be expressed by the discrete
u quantities that we compute by the scheme, i.e., un and un+1. Following
the averaging idea from Section 1.4, the value of u at an arbitrary point t̃
can be calculated as a weighted average, which generalizes the arithmetic
mean 1

2u
n + 1

2u
n+1. If we express t̃ as a weighted average

tn+θ = θtn+1 + (1− θ)tn,

where θ ∈ [0, 1] is the weighting factor, we can write

u(t̃) = u(θtn+1 + (1− θ)tn) ≈ θun+1 + (1− θ)un . (19)

We can now let the ODE hold at the point t̃ ∈ [tn, tn+1], approximate
u′ by the fraction (un+1− un)/(tn+1− tn), and approximate the right-hand
side −au by the weighted average (19). The result is (17).

1.6 Constant time step

All schemes up to now have been formulated for a general non-uniform mesh in
time: t0, t1, . . . , tNt

. Non-uniform meshes are highly relevant since one can use
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many points in regions where u varies rapidly, and save points in regions where
u is slowly varying. This is the key idea of adaptive methods where the spacing
of the mesh points are determined as the computations proceed.

However, a uniformly distributed set of mesh points is very common and
sufficient for many applications. It therefore makes sense to present the finite
difference schemes for a uniform point distribution tn = n∆t, where ∆t is the
constant spacing between the mesh points, also referred to as the time step. The
resulting formulas look simpler and are perhaps more well known.

Summary of schemes for constant time step.

un+1 = (1− a∆t)un Forward Euler (20)

un+1 =
1

1 + a∆t
un Backward Euler (21)

un+1 =
1− 1

2a∆t

1 + 1
2a∆t

un Crank-Nicolson (22)

un+1 =
1− (1− θ)a∆t

1 + θa∆t
un The θ − rule (23)

Not surprisingly, we present these three alternative schemes because they
have different pros and cons, both for the simple ODE in question (which can
easily be solved as accurately as desired), and for more advanced differential
equation problems.

Test the understanding.

At this point it can be good training to apply the explained finite difference
discretization techniques to a slightly different equation. Exercise 1 is there-
fore highly recommended to check that the key concepts are understood.

1.7 Compact operator notation for finite differences

Finite difference formulas can be tedious to write and read, especially for differen-
tial equations with many terms and many derivatives. To save space and help the
reader of the scheme to quickly see the nature of the difference approximations,
we introduce a compact notation. A forward difference approximation is denoted
by the D+

t operator:

[D+
t u]n =

un+1 − un

∆t
≈ d

dt
u(tn) . (24)

The notation consists of an operator that approximates differentiation with
respect to an independent variable, here t. The operator is built of the symbol D,
with the variable as subscript and a superscript denoting the type of difference.
The superscript + indicates a forward difference. We place square brackets
around the operator and the function it operates on and specify the mesh point,
where the operator is acting, by a superscript.
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The corresponding operator notation for a centered difference and a backward
difference reads

[Dtu]n =
un+ 1

2 − un− 1
2

∆t
≈ d

dt
u(tn), (25)

and

[D−t u]n =
un − un−1

∆t
≈ d

dt
u(tn) . (26)

Note that the superscript − denotes the backward difference, while no superscript
implies a central difference.

An averaging operator is also convenient to have:

[ut]n =
1

2
(un−

1
2 + un+ 1

2 ) ≈ u(tn) (27)

The superscript t indicates that the average is taken along the time coordinate.
The common average (un + un+1)/2 can now be expressed as [ut]n+ 1

2 . (When
also spatial coordinates enter the problem, we need the explicit specification of
the coordinate after the bar.)

The Backward Euler finite difference approximation to u′ = −au can be
written as follows utilizing the compact notation:

[D−t u]n = −aun .

In difference equations we often place the square brackets around the whole
equation, to indicate at which mesh point the equation applies, since each term
is supposed to be approximated at the same point:

[D−t u = −au]n . (28)

The Forward Euler scheme takes the form

[D+
t u = −au]n, (29)

while the Crank-Nicolson scheme is written as

[Dtu = −aut]n+ 1
2 . (30)

Question.

Apply (25) and (27) and write out the expressions to see that (30) is indeed
the Crank-Nicolson scheme.

The θ-rule can be specified by

[D̄tu = −aut,θ]n+θ, (31)

if we define a new time difference and a weighted averaging operator :
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[D̄tu]n+θ =
un+1 − un

tn+1 − tn
, (32)

[ut,θ]n+θ = (1− θ)un + θun+1 ≈ u(tn+θ), (33)

where θ ∈ [0, 1]. Note that for θ = 1
2 we recover the standard centered difference

and the standard arithmetic mean. The idea in (31) is to sample the equation
at tn+θ, use a skew difference at that point [D̄tu]n+θ, and a skew mean value.
An alternative notation is

[Dtu]n+ 1
2 = θ[−au]n+1 + (1− θ)[−au]n .

Looking at the various examples above and comparing them with the under-
lying differential equations, we see immediately which difference approximations
that have been used and at which point they apply. Therefore, the compact
notation effectively communicates the reasoning behind turning a differential
equation into a difference equation.

2 Implementation

Goal.
We want make a computer program for solving

u′(t) = −au(t), t ∈ (0, T ], u(0) = I,

by finite difference methods. The program should also display the numerical
solution as a curve on the screen, preferably together with the exact solution.
We shall also be concerned with program testing, user interfaces, and
computing convergence rates.

All programs referred to in this section are found in the src/decay directory
(we use the classical Unix term directory for what many others nowadays call
folder).

Mathematical problem. We want to explore the Forward Euler scheme, the
Backward Euler, and the Crank-Nicolson schemes applied to our model problem.
From an implementational point of view, it is advantageous to implement the
θ-rule

un+1 =
1− (1− θ)a∆t

1 + θa∆t
un,

since it can generate the three other schemes by various of choices of θ: θ = 0 for
Forward Euler, θ = 1 for Backward Euler, and θ = 1/2 for Crank-Nicolson. Given
a, u0 = I, T , and ∆t, our task is to use the θ-rule to compute u1, u2, . . . , uNt ,
where tNt

= Nt∆t, and Nt the closest integer to T/∆t.
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Computer Language: Python. Any programming language can be used to
generate the un+1 values from the formula above. However, in this document
we shall mainly make use of Python of several reasons:

• Python has a very clean, readable syntax (often known as ”executable
pseudo-code”).

• Python code is very similar to MATLAB code (and MATLAB has a
particularly widespread use for scientific computing).

• Python is a full-fledged, very powerful programming language.

• Python is similar to, but much simpler to work with and results in more
reliable code than C++.

• Python has a rich set of modules for scientific computing, and its popularity
in scientific computing is rapidly growing.

• Python was made for being combined with compiled languages (C, C++,
Fortran) to reuse existing numerical software and to reach high computa-
tional performance of new implementations.

• Python has extensive support for administrative task needed when doing
large-scale computational investigations.

• Python has extensive support for graphics (visualization, user interfaces,
web applications).

• FEniCS, a very powerful tool for solving PDEs by the finite element method,
is most human-efficient to operate from Python.

Learning Python is easy. Many newcomers to the language will probably learn
enough from the forthcoming examples to perform their own computer experi-
ments. The examples start with simple Python code and gradually make use of
more powerful constructs as we proceed. As long as it is not inconvenient for
the problem at hand, our Python code is made as close as possible to MATLAB
code for easy transition between the two languages.

Readers who feel the Python examples are too hard to follow will probably
benefit from read a tutorial, e.g.,

• The Official Python Tutorial

• Python Tutorial on tutorialspoint.com

• Interactive Python tutorial site

• A Beginner’s Python Tutorial

The author also has a book [4] that introduces scientific programming with
Python.
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2.1 Making a solver function

We choose to have an array u for storing the un values, n = 0, 1, . . . , Nt. The
algorithmic steps are

1. initialize u0

2. for t = tn, n = 1, 2, . . . , Nt: compute un using the θ-rule formula

Function for computing the numerical solution. The following Python
function takes the input data of the problem (I, a, T , ∆t, θ) as arguments and
returns two arrays with the solution u0, . . . , uNt and the mesh points t0, . . . , tNt

,
respectively:

from numpy import *

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
Nt = int(T/dt) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

The numpy library contains a lot of functions for array computing. Most
of the function names are similar to what is found in the alternative scientific
computing language MATLAB. Here we make use of

• zeros(Nt+1) for creating an array of a size Nt+1 and initializing the
elements to zero

• linspace(0, T, Nt+1) for creating an array with Nt+1 coordinates uni-
formly distributed between 0 and T

The for loop deserves a comment, especially for newcomers to Python. The
construction range(0, Nt, s) generates all integers from 0 to Nt in steps of
s, but not including Nt. Omitting s means s=1. For example, range(0, 6, 3)

gives 0 and 3, while range(0, Nt) generates 0, 1, ..., Nt-1. Our loop implies
the following assignments to u[n+1]: u[1], u[2], ..., u[Nt], which is what we
want since u has length Nt+1. The first index in Python arrays or lists is always
0 and the last is then len(u)-1. The length of an array u is obtained by len(u)

or u.size.
To compute with the solver function, we need to call it. Here is a sample

call:
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u, t = solver(I=1, a=2, T=8, dt=0.8, theta=1)

Integer division. The shown implementation of the solver may face problems
and wrong results if T, a, dt, and theta are given as integers, see Exercises 4
and 5. The problem is related to integer division in Python (as well as in Fortran,
C, C++, and many other computer languages): 1/2 becomes 0, while 1.0/2,
1/2.0, or 1.0/2.0 all become 0.5. It is enough that at least the nominator
or the denominator is a real number (i.e., a float object) to ensure correct
mathematical division. Inserting a conversion dt = float(dt) guarantees that
dt is float and avoids problems in Exercise 5.

Another problem with computing Nt = T/∆t is that we should round Nt to
the nearest integer. With Nt = int(T/dt) the int operation picks the largest
integer smaller than T/dt. Correct mathematical rounding as known from school
is obtained by

Nt = int(round(T/dt))

The complete version of our improved, safer solver function then becomes

from numpy import *

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

Doc strings. Right below the header line in the solver function there is a
Python string enclosed in triple double quotes """. The purpose of this string
object is to document what the function does and what the arguments are. In
this case the necessary documentation do not span more than one line, but with
triple double quoted strings the text may span several lines:

def solver(I, a, T, dt, theta):
"""
Solve

u’(t) = -a*u(t),

with initial condition u(0)=I, for t in the time interval
(0,T]. The time interval is divided into time steps of
length dt.
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theta=1 corresponds to the Backward Euler scheme, theta=0
to the Forward Euler scheme, and theta=0.5 to the Crank-
Nicolson method.
"""
...

Such documentation strings appearing right after the header of a function
are called doc strings. There are tools that can automatically produce nicely
formatted documentation by extracting the definition of functions and the
contents of doc strings.

It is strongly recommended to equip any function whose purpose is not
obvious with a doc string. Nevertheless, the forthcoming text deviates from this
rule if the function is explained in the text.

Formatting of numbers. Having computed the discrete solution u, it is
natural to look at the numbers:

# Write out a table of t and u values:
for i in range(len(t)):

print t[i], u[i]

This compact print statement gives unfortunately quite ugly output because the
t and u values are not aligned in nicely formatted columns. To fix this problem,
we recommend to use the printf format, supported most programming languages
inherited from C. Another choice is Python’s recent format string syntax.

Writing t[i] and u[i] in two nicely formatted columns is done like this with
the printf format:

print ’t=%6.3f u=%g’ % (t[i], u[i])

The percentage signs signify ”slots” in the text where the variables listed at the
end of the statement are inserted. For each ”slot” one must specify a format for
how the variable is going to appear in the string: s for pure text, d for an integer,
g for a real number written as compactly as possible, 9.3E for scientific notation
with three decimals in a field of width 9 characters (e.g., -1.351E-2), or .2f for
standard decimal notation with two decimals formatted with minimum width.
The printf syntax provides a quick way of formatting tabular output of numbers
with full control of the layout.

The alternative format string syntax looks like

print ’t={t:6.3f} u={u:g}’.format(t=t[i], u=u[i])

As seen, this format allows logical names in the ”slots” where t[i] and u[i] are
to be inserted. The ”slots” are surrounded by curly braces, and the logical name
is followed by a colon and then the printf-like specification of how to format real
numbers, integers, or strings.
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Running the program. The function and main program shown above must
be placed in a file, say with name decay_v1.py (v1 stands for ”version 1” - we
shall make numerous different versions of this program). Make sure you write the
code with a suitable text editor (Gedit, Emacs, Vim, Notepad++, or similar).
The program is run by executing the file this way:

Terminal> python decay_v1.py

The text Terminal> just indicates a prompt in a Unix/Linux or DOS terminal
window. After this prompt, which will look different in your terminal window,
depending on the terminal application and how it is set up, commands like
python decay_v1.py can be issued. These commands are interpreted by the
operating system.

We strongly recommend to run Python programs within the IPython shell.
First start IPython by typing ipython in the terminal window. Inside the
IPython shell, our program decay_v1.py is run by the command run decay_v1.py:

Terminal> ipython

In [1]: run decay_v1.py
t= 0.000 u=1
t= 0.800 u=0.384615
t= 1.600 u=0.147929
t= 2.400 u=0.0568958
t= 3.200 u=0.021883
t= 4.000 u=0.00841653
t= 4.800 u=0.00323713
t= 5.600 u=0.00124505
t= 6.400 u=0.000478865
t= 7.200 u=0.000184179
t= 8.000 u=7.0838e-05

In [2]:

The advantage of running programs in IPython are many: previous commands
are easily recalled with the up arrow, %pdb turns on debugging so that variables
can be examined if the program aborts due to an exception, output of commands
are stored in variables, programs and statements can be profiled, any operating
system command can be executed, modules can be loaded automatically and
other customizations can be performed when starting IPython – to mention a
few of the most useful features.

Although running programs in IPython is strongly recommended, most
execution examples in the forthcoming text use the standard Python shell with
prompt >>> and run programs through a typesetting like

Terminal> python programname
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The reason is that such typesetting makes the text more compact in the vertical
direction than showing sessions with IPython syntax.

2.2 Verifying the implementation

It is easy to make mistakes while deriving and implementing numerical algo-
rithms, so we should never believe in the printed u values before they have been
thoroughly verified. The most obvious idea is to compare the computed solution
with the exact solution, when that exists, but there will always be a discrepancy
between these two solutions because of the numerical approximations. The
challenging question is whether we have the mathematically correct discrepancy
or if we have another, maybe small, discrepancy due to both an approximation
error and an error in the implementation.

The purpose of verifying a program is to bring evidence for the property
that there are no errors in the implementation. To avoid mixing unavoidable
approximation errors and undesired implementation errors, we should try to
make tests where we have some exact computation of the discrete solution or at
least parts of it. Examples will show how this can be done.

Running a few algorithmic steps by hand. The simplest approach to
produce a correct reference for the discrete solution u of finite difference equations
is to compute a few steps of the algorithm by hand. Then we can compare the
hand calculations with numbers produced by the program.

A straightforward approach is to use a calculator and compute u1, u2, and
u3. With I = 0.1, θ = 0.8, and ∆t = 0.8 we get

A ≡ 1− (1− θ)a∆t

1 + θa∆t
= 0.298245614035

u1 = AI = 0.0298245614035,

u2 = Au1 = 0.00889504462912,

u3 = Au2 = 0.00265290804728

Comparison of these manual calculations with the result of the solver

function is carried out in the function

def verify_three_steps():
"""Compare three steps with known manual computations."""
theta = 0.8; a = 2; I = 0.1; dt = 0.8
u_by_hand = array([I,

0.0298245614035,
0.00889504462912,
0.00265290804728])

Nt = 3 # number of time steps
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)

tol = 1E-15 # tolerance for comparing floats
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difference = abs(u - u_by_hand).max()
success = difference <= tol
return success

The main program, where we call the solver function and print u, is now
put in a separate function main:

def main():
u, t = solver(I=1, a=2, T=8, dt=0.8, theta=1)
# Write out a table of t and u values:
for i in range(len(t)):

print ’t=%6.3f u=%g’ % (t[i], u[i])
# or print ’t={t:6.3f} u={u:g}’.format(t=t[i], u=u[i])

The main program in the file may now first run the verification test and then
go on with the real simulation (main()) only if the test is passed:

if verify_three_steps():
main()

else:
print ’Bug in the implementation!’

Since the verification test is always done, future errors introduced accidentally
in the program have a good chance of being detected.

Caution: choice of parameter values.

For the choice of values of parameters in verification tests one should stay
away from integers, especially 0 and 1, as these can simplify formulas too
much for test purposes. For example, with θ = 1 the nominator in the
formula for un will be the same for all a and ∆t values. One should therefore
choose more ”arbitrary” values, say θ = 0.8 and I = 0.1.

It is essential that verification tests can be automatically run at any time. For
this purpose, there are test frameworks and corresponding programming rules
that allow us to request running through a suite of test cases (see Section 3.4),
but in this very early stage of program development we just implement and run
the verification in our own code so that every detail is visible and understood.

The complete program including the verify_three_steps* functions is
found in the file decay_verf1.py (verf1 is a short name for ”verification,
version 1”).

Comparison with an exact discrete solution. Sometimes it is possible to
find a closed-form exact discrete solution that fulfills the discrete finite difference
equations. The implementation can then be verified against the exact discrete
solution. This is usually the best technique for verification.

Define

A =
1− (1− θ)a∆t

1 + θa∆t
.
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Manual computations with the θ-rule results in

u0 = I,

u1 = Au0 = AI,

u2 = Au1 = A2I,

...

un = Anun−1 = AnI .

We have then established the exact discrete solution as

un = IAn . (34)

Caution.
One should be conscious about the different meanings of the notation on
the left- and right-hand side of (34): on the left, n in un is a superscript
reflecting a counter of mesh points (tn), while on the right, n is the power
in the exponentiation An.

Comparison of the exact discrete solution and the computed solution is done
in the following function:

def verify_exact_discrete_solution():

def exact_discrete_solution(n, I, a, theta, dt):
A = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
return I*A**n

theta = 0.8; a = 2; I = 0.1; dt = 0.8
Nt = int(8/dt) # no of steps
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)
u_de = array([exact_discrete_solution(n, I, a, theta, dt)

for n in range(Nt+1)])
difference = abs(u_de - u).max() # max deviation
tol = 1E-15 # tolerance for comparing floats
success = difference <= tol
return success

The complete program is found in the file decay_verf2.py (verf2 is a short
name for ”verification, version 2”).

Local functions.
One can define a function inside another function, here called a local
function (also known as closure) inside a parent function. A local func-
tion is invisible outside the parent function. A convenient property is
that any local function has access to all variables defined in the parent
function, also if we send the local function to some other function as
argument (!). In the present example, it means that the local function
exact_discrete_solution does not need its five arguments as the values
can alternatively be accessed through the local variables defined in the
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parent function verify_exact_discrete_solution. We can send such an
exact_discrete_solution without arguments to any other function and
exact_discrete_solution will still have access to n, I, a, and so forth
defined in its parent function.

2.3 Computing the numerical error as a mesh function

Now that we have evidence for a correct implementation, we are in a position to
compare the computed un values in the u array with the exact u values at the
mesh points, in order to study the error in the numerical solution.

Let us first make a function for the analytical solution ue(t) = Ie−at of the
model problem:

def exact_solution(t, I, a):
return I*exp(-a*t)

A natural way to compare the exact and discrete solutions is to calculate
their difference as a mesh function:

en = ue(tn)− un, n = 0, 1, . . . , Nt . (35)

We may view une = ue(tn) as the representation of ue(t) as a mesh function
rather than a continuous function defined for all t ∈ [0, T ] (une is often called the
representative of ue on the mesh). Then, en = une − un is clearly the difference
of two mesh functions. This interpretation of en is natural when programming.

The error mesh function en can be computed by

u, t = solver(I, a, T, dt, theta) # Numerical sol.
u_e = exact_solution(t, I, a) # Representative of exact sol.
e = u_e - u

Note that the mesh functions u and u_e are represented by arrays and associated
with the points in the array t.

Array arithmetics.

The last statements

u_e = exact_solution(t, I, a)
e = u_e - u

are primary examples of array arithmetics: t is an array of mesh points
that we pass to exact_solution. This function evaluates -a*t, which is a
scalar times an array, meaning that the scalar is multiplied with each array
element. The result is an array, let us call it tmp1. Then exp(tmp1) means
applying the exponential function to each element in tmp, resulting an array,
say tmp2. Finally, I*tmp2 is computed (scalar times array) and u_e refers
to this array returned from exact_solution. The expression u_e - u is
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the difference between two arrays, resulting in a new array referred to by
e.

2.4 Computing the norm of the numerical error

Instead of working with the error en on the entire mesh, we often want one
number expressing the size of the error. This is obtained by taking the norm of
the error function.

Let us first define norms of a function f(t) defined for all t ∈ [0, T ]. Three
common norms are

||f ||L2 =

(∫ T

0

f(t)2dt

)1/2

, (36)

||f ||L1 =

∫ T

0

|f(t)|dt, (37)

||f ||L∞ = max
t∈[0,T ]

|f(t)| . (38)

The L2 norm (36) (”L-two norm”) has nice mathematical properties and is the
most popular norm. It is a generalization of the well-known Eucledian norm
of vectors to functions. The L∞ is also called the max norm or the supremum
norm. In fact, there is a whole family of norms,

||f ||Lp =

(∫ T

0

f(t)pdt

)1/p

, (39)

with p real. In particular, p = 1 corresponds to the L1 norm above while p =∞
is the L∞ norm.

Numerical computations involving mesh functions need corresponding norms.
Given a set of function values, fn, and some associated mesh points, tn, a
numerical integration rule can be used to calculate the L2 and L1 norms defined
above. Imagining that the mesh function is extended to vary linearly between
the mesh points, the Trapezoidal rule is in fact an exact integration rule. A
possible modification of the L2 norm for a mesh function fn on a uniform mesh
with spacing ∆t is therefore the well-known Trapezoidal integration formula

||fn|| =

(
∆t

(
1

2
(f0)2 +

1

2
(fNt)2 +

Nt−1∑
n=1

(fn)2

))1/2

A common approximation of this expression, motivated by the convenience of
having a simpler formula, is

||fn||`2 =

(
∆t

Nt∑
n=0

(fn)2

)1/2

.
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This is called the discrete L2 norm and denoted by `2. The error in ||f ||2`2
compared with the Trapezoidal integration formula is ∆t((f0)2 + (fNt)2)/2,
which means perturbed weights at the end points of the mesh function, and the
error goes to zero as ∆t→ 0. As long as we are consistent and stick to one kind
of integration rule for the norm of a mesh function, the details and accuracy of
this rule is not of concern.

The three discrete norms for a mesh function fn, corresponding to the L2,
L1, and L∞ norms of f(t) defined above, are defined by

||fn||`2
(

∆t

Nt∑
n=0

(fn)2

)1/2

, (40)

||fn||`1∆t

Nt∑
n=0

|fn| (41)

||fn||`∞ max
0≤n≤Nt

|fn| . (42)

Note that the L2, L1, `2, and `1 norms depend on the length of the interval
of interest (think of f = 1, then the norms are proportional to

√
T or T ). In

some applications it is convenient to think of a mesh function as just a vector of
function values and neglect the information of the mesh points. Then we can
replace ∆t by T/Nt and drop T . Moreover, it is convenient to divide by the
total length of the vector, Nt + 1, instead of Nt. This reasoning gives rise to the
vector norms for a vector f = (f0, . . . , fN ):

||f ||2 =

(
1

N + 1

N∑
n=0

(fn)2

)1/2

, (43)

||f ||1 =
1

N + 1

N∑
n=0

|fn| (44)

||f ||`∞ = max
0≤n≤N

|fn| . (45)

Here we have used the common vector component notation with subscripts (fn)
and N as length. We will mostly work with mesh functions and use the discrete
`2 norm (40) or the max norm `∞ (42), but the corresponding vector norms
(43)-(45) are also much used in numerical computations, so it is important to
know the different norms and the relations between them.

A single number that expresses the size of the numerical error will be taken
as ||en||`2 and called E:

E =

√√√√∆t

Nt∑
n=0

(en)2 (46)

The corresponding Python code, using array arithmetics, reads
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E = sqrt(dt*sum(e**2))

The sum function comes from numpy and computes the sum of the elements of
an array. Also the sqrt function is from numpy and computes the square root of
each element in the array argument.

Scalar computing. Instead of doing array computing sqrt(dt*sum(e**2))

we can compute with one element at a time:

m = len(u) # length of u array (alt: u.size)
u_e = zeros(m)
t = 0
for i in range(m):

u_e[i] = exact_solution(t, a, I)
t = t + dt

e = zeros(m)
for i in range(m):

e[i] = u_e[i] - u[i]
s = 0 # summation variable
for i in range(m):

s = s + e[i]**2
error = sqrt(dt*s)

Such element-wise computing, often called scalar computing, takes more code,
is less readable, and runs much slower than what we can achieve with array
computing.

2.5 Plotting solutions

Having the t and u arrays, the approximate solution u is visualized by the
intuitive command plot(t, u):

from matplotlib.pyplot import *
plot(t, u)
show()

Plotting multiple curves. It will be illustrative to also plot ue(t) for com-
parison. Doing a plot(t, u_e) is not exactly what we want: the plot function
draws straight lines between the discrete points (t[n], u_e[n]) while ue(t)
varies as an exponential function between the mesh points. The technique for
showing the ”exact” variation of ue(t) between the mesh points is to introduce a
very fine mesh for ue(t):

t_e = linspace(0, T, 1001) # fine mesh
u_e = exact_solution(t_e, I, a)
plot(t_e, u_e, ’b-’) # blue line for u_e
plot(t, u, ’r--o’) # red dashes w/circles
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With more than one curve in the plot we need to associate each curve
with a legend. We also want appropriate names on the axis, a title, and a file
containing the plot as an image for inclusion in reports. The Matplotlib package
(matplotlib.pyplot) contains functions for this purpose. The names of the
functions are similar to the plotting functions known from MATLAB. A complete
plot session then becomes

from matplotlib.pyplot import *

figure() # create new plot
t_e = linspace(0, T, 1001) # fine mesh for u_e
u_e = exact_solution(t_e, I, a)
plot(t, u, ’r--o’) # red dashes w/circles
plot(t_e, u_e, ’b-’) # blue line for exact sol.
legend([’numerical’, ’exact’])
xlabel(’t’)
ylabel(’u’)
title(’theta=%g, dt=%g’ % (theta, dt))
savefig(’%s_%g.png’ % (theta, dt))
show()

Note that savefig here creates a PNG file whose name reflects the values of θ
and ∆t so that we can easily distinguish files from different runs with θ and ∆t.

A bit more sophisticated and easy-to-read filename can be generated by
mapping the θ value to acronyms for the three common schemes: FE (Forward
Euler, θ = 0), BE (Backward Euler, θ = 1), CN (Crank-Nicolson, θ = 0.5). A
Python dictionary is ideal for such a mapping from numbers to strings:

theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
savefig(’%s_%g.png’ % (theta2name[theta], dt))

Experiments with computing and plotting. Let us wrap up the compu-
tation of the error measure and all the plotting statements in a function explore.
This function can be called for various θ and ∆t values to see how the error
varies with the method and the mesh resolution:

def explore(I, a, T, dt, theta=0.5, makeplot=True):
"""
Run a case with the solver, compute error measure,
and plot the numerical and exact solutions (if makeplot=True).
"""
u, t = solver(I, a, T, dt, theta) # Numerical solution
u_e = exact_solution(t, I, a)
e = u_e - u
E = sqrt(dt*sum(e**2))
if makeplot:

figure() # create new plot
t_e = linspace(0, T, 1001) # fine mesh for u_e
u_e = exact_solution(t_e, I, a)
plot(t, u, ’r--o’) # red dashes w/circles
plot(t_e, u_e, ’b-’) # blue line for exact sol.
legend([’numerical’, ’exact’])
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xlabel(’t’)
ylabel(’u’)
title(’theta=%g, dt=%g’ % (theta, dt))
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
savefig(’%s_%g.png’ % (theta2name[theta], dt))
savefig(’%s_%g.pdf’ % (theta2name[theta], dt))
savefig(’%s_%g.eps’ % (theta2name[theta], dt))
show()

return E

The figure() call is key here: without it, a new plot command will draw
the new pair of curves in the same plot window, while we want the different
pairs to appear in separate windows and files. Calling figure() ensures this.

The explore function stores the plot in three different image file formats:
PNG, PDF, and EPS (Encapsulated PostScript). The PNG format is aimed at
being included in HTML files, the PDF format in pdfLATEX documents, and the
EPS format in LATEX documents. Frequently used viewers for these image files
on Unix systems are gv (comes with Ghostscript) for the PDF and EPS formats
and display (from the ImageMagick) suite for PNG files:

Terminal> gv BE_0.5.pdf
Terminal> gv BE_0.5.eps
Terminal> display BE_0.5.png

The complete code containing the functions above resides in the file decay_

plot_mpl.py. Running this program results in

Terminal> python decay_plot_mpl.py
0.0 0.40: 2.105E-01
0.0 0.04: 1.449E-02
0.5 0.40: 3.362E-02
0.5 0.04: 1.887E-04
1.0 0.40: 1.030E-01
1.0 0.04: 1.382E-02

We observe that reducing ∆t by a factor of 10 increases the accuracy for all
three methods (θ values). We also see that the combination of θ = 0.5 and a
small time step ∆t = 0.04 gives a much more accurate solution, and that θ = 0
and θ = 1 with ∆t = 0.4 result in the least accurate solutions.

Figure 6 demonstrates that the numerical solution for ∆t = 0.4 clearly lies
below the exact curve, but that the accuracy improves considerably by reducing
the time step by a factor of 10.

Combining plot files. Mounting two PNG files, as done in the figure, is easily
done by the montage program from the ImageMagick suite:
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Figure 6: The Forward Euler scheme for two values of the time step.

Terminal> montage -background white -geometry 100% -tile 2x1 \
FE_0.4.png FE_0.04.png FE1.png

Terminal> convert -trim FE1.png FE1.png

The -geometry argument is used to specify the size of the image, and here we
preserve the individual sizes of the images. The -tile HxV option specifies H

images in the horizontal direction and V images in the vertical direction. A series
of image files to be combined are then listed, with the name of the resulting
combined image, here FE1.png at the end. The convert -trim command
removes surrounding white areas in the figure (an operation usually known as
cropping in image manipulation programs).

For LATEX reports it is not recommended to use montage and PNG files as the
result has too low resolution. Instead, plots should be made in the PDF format
and combined using the pdftk, pdfnup, and pdfcrop tools (on Linux/Unix):

Terminal> pdftk FE_0.4.png FE_0.04.png output tmp.pdf
Terminal> pdfnup --nup 2x1 tmp.pdf # output in tmp-nup.pdf
Terminal> pdfcrop tmp-nup.pdf FE1.png # output in FE1.png

Here, pdftk combines images into a multi-page PDF file, pdfnup combines the
images in individual pages to a table of images (pages), and pdfcrop removes
white margins in the resulting combined image file.

The behavior of the two other schemes is shown in Figures 7 and 8. Crank-
Nicolson is obviously the most accurate scheme from this visual point of view.

Plotting with SciTools. The SciTools package provides a unified plotting
interface, called Easyviz, to many different plotting packages, including Mat-
plotlib, Gnuplot, Grace, MATLAB, VTK, OpenDX, and VisIt. The syntax is
very similar to that of Matplotlib and MATLAB. In fact, the plotting commands
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Figure 7: The Backward Euler scheme for two values of the time step.

Figure 8: The Crank-Nicolson scheme for two values of the time step.

shown above look the same in SciTool’s Easyviz interface, apart from the import
statement, which reads

from scitools.std import *

This statement performs a from numpy import * as well as an import of the
most common pieces of the Easyviz (scitools.easyviz) package, along with
some additional numerical functionality.

With Easyviz one can merge several plotting commands into a single one
using keyword arguments:

plot(t, u, ’r--o’, # red dashes w/circles
t_e, u_e, ’b-’, # blue line for exact sol.
legend=[’numerical’, ’exact’],
xlabel=’t’,
ylabel=’u’,
title=’theta=%g, dt=%g’ % (theta, dt),
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savefig=’%s_%g.png’ % (theta2name[theta], dt),
show=True)

The decay_plot_st.py file contains such a demo.
By default, Easyviz employs Matplotlib for plotting, but Gnuplot and Grace

are viable alternatives:

Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend gnuplot
Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend grace

The backend used for creating plots (and numerous other options) can be
permanently set in SciTool’s configuration file.

All the Gnuplot windows are launched without any need to kill one before
the next one pops up (as is the case with Matplotlib) and one can press the key
’q’ anywhere in a plot window to kill it. Another advantage of Gnuplot is the
automatic choice of sensible and distinguishable line types in black-and-white
PDF and PostScript files.

Regarding functionality for annotating plots with title, labels on the axis,
legends, etc., we refer to the documentation of Matplotlib and SciTools for more
detailed information on the syntax. The hope is that the programming syntax
explained so far suffices for understanding the code and learning more from a
combination of the forthcoming examples and other resources such as books and
web pages.

Test the understanding.

Exercise 2 asks you to implement a solver for a problem that is slightly
different from the one above. You may use the solver and explore

functions explained above as a starting point. Apply the new solver to
Exercise 3.

2.6 Creating command-line interfaces

It is good programming practice to let programs read input from the user rather
than require the user to edit the source code when trying out new values of input
parameters. Reading input from the command line is a simple and flexible way
of interacting with the user. Python stores all the command-line arguments in
the list sys.argv, and there are, in principle, two ways of programming with
command-line arguments in Python:

• Decide upon a sequence of parameters on the command line and read
their values directly from the sys.argv[1:] list (sys.argv[0] is the just
program name).

• Use option-value pairs (--option value) on the command line to override
default values of input parameters, and utilize the argparse.ArgumentParser
tool to interact with the command line.

Both strategies will be illustrated next.
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Reading a sequence of command-line arguments. The decay_plot_mpl.
py program needs the following input data: I, a, T , an option to turn the plot
on or off (makeplot), and a list of ∆t values.

The simplest way of reading this input from the command line is to say that
the first four command-line arguments correspond to the first four points in the
list above, in that order, and that the rest of the command-line arguments are
the ∆t values. The input given for makeplot can be a string among ’on’, ’off’,
’True’, and ’False’. The code for reading this input is most conveniently put
in a function:

import sys

def read_command_line():
if len(sys.argv) < 6:

print ’Usage: %s I a T on/off dt1 dt2 dt3 ...’ % \
sys.argv[0]; sys.exit(1) # abort

I = float(sys.argv[1])
a = float(sys.argv[2])
T = float(sys.argv[3])
makeplot = sys.argv[4] in (’on’, ’True’)
dt_values = [float(arg) for arg in sys.argv[5:]]

return I, a, T, makeplot, dt_values

One should note the following about the constructions in the program above:

• Everything on the command line ends up in a string in the list sys.argv.
Explicit conversion to, e.g., a float object is required if the string as a
number we want to compute with.

• The value of makeplot is determined from a boolean expression, which
becomes True if the command-line argument is either ’on’ or ’True’, and
False otherwise.

• It is easy to build the list of ∆t values: we simply run through the rest
of the list, sys.argv[5:], convert each command-line argument to float,
and collect these float objects in a list, using the compact and convenient
list comprehension syntax in Python.

The loops over θ and ∆t values can be coded in a main function:

def main():
I, a, T, makeplot, dt_values = read_command_line()
for theta in 0, 0.5, 1:

for dt in dt_values:
E = explore(I, a, T, dt, theta, makeplot)
print ’%3.1f %6.2f: %12.3E’ % (theta, dt, E)

The complete program can be found in decay_cml.py.

35

http://tinyurl.com/jvzzcfn/decay/decay_plot_mpl.py
http://tinyurl.com/jvzzcfn/decay/decay_plot_mpl.py
http://tinyurl.com/jvzzcfn/decay/decay_cml.py


Working with an argument parser. Python’s ArgumentParser tool in the
argparse module makes it easy to create a professional command-line interface
to any program. The documentation of ArgumentParser demonstrates its
versatile applications, so we shall here just list an example containing basic
features. On the command line we want to specify option-value pairs for I, a,
and T , e.g., --a 3.5 --I 2 --T 2. Including --makeplot turns the plot on
and excluding this option turns the plot off. The ∆t values can be given as
--dt 1 0.5 0.25 0.1 0.01. Each parameter must have a sensible default value
so that we specify the option on the command line only when the default value
is not suitable.

We introduce a function for defining the mentioned command-line options:

def define_command_line_options():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--I’, ’--initial_condition’, type=float,

default=1.0, help=’initial condition, u(0)’,
metavar=’I’)

parser.add_argument(’--a’, type=float,
default=1.0, help=’coefficient in ODE’,
metavar=’a’)

parser.add_argument(’--T’, ’--stop_time’, type=float,
default=1.0, help=’end time of simulation’,
metavar=’T’)

parser.add_argument(’--makeplot’, action=’store_true’,
help=’display plot or not’)

parser.add_argument(’--dt’, ’--time_step_values’, type=float,
default=[1.0], help=’time step values’,
metavar=’dt’, nargs=’+’, dest=’dt_values’)

return parser

Each command-line option is defined through the parser.add_argument

method. Alternative options, like the short --I and the more explaining version
--initial_condition can be defined. Other arguments are type for the Python
object type, a default value, and a help string, which gets printed if the command-
line argument -h or --help is included. The metavar argument specifies the
value associated with the option when the help string is printed. For example,
the option for I has this help output:

Terminal> python decay_argparse.py -h
...
--I I, --initial_condition I

initial condition, u(0)
...

The structure of this output is

--I metavar, --initial_condition metavar
help-string

The --makeplot option is a pure flag without any value, implying a true
value if the flag is present and otherwise a false value. The action=’store_true’
makes an option for such a flag.
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Finally, the --dt option demonstrates how to allow for more than one value
(separated by blanks) through the nargs=’+’ keyword argument. After the
command line is parsed, we get an object where the values of the options are
stored as attributes. The attribute name is specified by the dist keyword
argument, which for the --dt option is dt_values. Without the dest argument,
the value of an option --opt is stored as the attribute opt.

The code below demonstrates how to read the command line and extract the
values for each option:

def read_command_line():
parser = define_command_line_options()
args = parser.parse_args()
print ’I={}, a={}, T={}, makeplot={}, dt_values={}’.format(

args.I, args.a, args.T, args.makeplot, args.dt_values)
return args.I, args.a, args.T, args.makeplot, args.dt_values

The main function remains the same as in the decay_cml.py code based on
reading from sys.argv directly. A complete program featuring the demo above
of ArgumentParser appears in the file decay_argparse.py.

2.7 Creating a graphical web user interface

The Python package Parampool can be used to automatically generate a web-
based graphical user interface (GUI) for our simulation program. Although
the programming technique dramatically simplifies the efforts to create a GUI,
the forthcoming material on equipping our decay_mod module with a GUI is
quite technical and of significantly less importance than knowing how to make a
command-line interface (Section 2.6). There is no danger in jumping right to
Section 2.8.

Making a compute function. The first step is to identify a function that
performs the computations and that takes the necessary input variables as
arguments. This is called the compute function in Parampool terminology. We
may start with a copy of the basic file decay_plot_mpl.py, which has a main

function displayed in Section 2.5 for carrying out simulations and plotting for
a series of ∆t values. Now we want to control and view the same experiments
from a web GUI.

To tell Parampool what type of input data we have, we assign default values
of the right type to all arguments in the main function and call it main_GUI:

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):

The compute function must return the HTML code we want for displaying
the result in a web page. Here we want to show plots of the numerical and exact
solution for different methods and ∆t values. The plots can be organized in a
table with θ (methods) varying through the columns and ∆t varying through the
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rows. Assume now that a new version of the explore function not only returns
the error E but also HTML code containing the plot. Then we can write the
main_GUI function as

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):

# Build HTML code for web page. Arrange plots in columns
# corresponding to the theta values, with dt down the rows
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
html_text = ’<table>\n’
for dt in dt_values:

html_text += ’<tr>\n’
for theta in theta_values:

E, html = explore(I, a, T, dt, theta, makeplot=True)
html_text += """

<td>
<center><b>%s, dt=%g, error: %s</b></center><br>
%s
</td>
""" % (theta2name[theta], dt, E, html)

html_text += ’</tr>\n’
html_text += ’</table>\n’
return html_text

Rather than creating plot files and showing the plot on the screen, the new
version of the explore function makes a string with the PNG code of the plot
and embeds that string in HTML code. This action is conveniently performed
by Parampool’s save_png_to_str function:

import matplotlib.pyplot as plt
...
# plot
plt.plot(t, u, r-’)
plt.xlabel(’t’)
plt.ylabel(’u’)
...
from parampool.utils import save_png_to_str
html_text = save_png_to_str(plt, plotwidth=400)

Note that we now write plt.plot, plt.xlabel, etc. The html_text string is
long and contains all the characters that build up the PNG file of the current
plot. The new explore function can make use of the above code snippet and
return html_text along with E.

Generating the user interface. The web GUI is automatically generated
by the following code, placed in a file decay_GUI_generate.py

from parampool.generator.flask import generate
from decay_GUI import main
generate(main,

output_controller=’decay_GUI_controller.py’,
output_template=’decay_GUI_view.py’,
output_model=’decay_GUI_model.py’)
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Running the decay_GUI_generate.py program results in three new files whose
names are specified in the call to generate:

1. decay_GUI_model.py defines HTML widgets to be used to set input data
in the web interface,

2. templates/decay_GUI_views.py defines the layout of the web page,

3. decay_GUI_controller.py runs the web application.

We only need to run the last program, and there is no need to look into these
files.

Running the web application. The web GUI is started by

Terminal> python decay_GUI_controller.py

Open a web browser at the location 127.0.0.1:5000. Input fields for I, a,
T, dt_values, and theta_values are presented. Setting the latter two to
[1.25, 0.5] and [1, 0.5], respectively, and pressing Compute results in four
plots, see Figure 9. With the techniques demonstrated here, one can easily create
a tailored web GUI for a particular type of application and use it to interactively
explore physical and numerical effects.

Figure 9: Automatically generated graphical web interface.
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2.8 Computing convergence rates

We expect that the error E in the numerical solution is reduced if the mesh size
∆t is decreased. More specifically, many numerical methods obey a power-law
relation between E and ∆t:

E = C∆tr, (47)

where C and r are (usually unknown) constants independent of ∆t. The formula
(47) is viewed as an asymptotic model valid for sufficiently small ∆t. How small
is normally hard to estimate without doing numerical estimations of r.

The parameter r is known as the convergence rate. For example, if the
convergence rate is 2, halving ∆t reduces the error by a factor of 4. Diminishing
∆t then has a greater impact on the error compared with methods that have
r = 1. For a given value of r, we refer to the method as of r-th order. First- and
second-order methods are most common in scientific computing.

Estimating r. There are two alternative ways of estimating C and r based
on a set of m simulations with corresponding pairs (∆ti, Ei), i = 0, . . . ,m− 1,
and ∆ti < ∆ti−1 (i.e., decreasing cell size).

1. Take the logarithm of (47), lnE = r ln ∆t+ lnC, and fit a straight line to
the data points (∆ti, Ei), i = 0, . . . ,m− 1.

2. Consider two consecutive experiments, (∆ti, Ei) and (∆ti−1, Ei−1). Di-
viding the equation Ei−1 = C∆tri−1 by Ei = C∆tri and solving for r
yields

ri−1 =
ln(Ei−1/Ei)

ln(∆ti−1/∆ti)
(48)

for i = 1, . . . ,m− 1.

The disadvantage of method 1 is that (47) might not be valid for the coarsest
meshes (largest ∆t values). Fitting a line to all the data points is then misleading.
Method 2 computes convergence rates for pairs of experiments and allows us to
see if the sequence ri converges to some value as i→ m− 2. The final rm−2 can
then be taken as the convergence rate. If the coarsest meshes have a differing
rate, the corresponding time steps are probably too large for (47) to be valid.
That is, those time steps lie outside the asymptotic range of ∆t values where
the error behaves like (47).

Implementation. It is straightforward to extend the main function in the
program decay_argparse.py with statements for computing r0, r1, . . . , rm−2

from (47):
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from math import log

def main():
I, a, T, makeplot, dt_values = read_command_line()
r = {} # estimated convergence rates
for theta in 0, 0.5, 1:

E_values = []
for dt in dt_values:

E = explore(I, a, T, dt, theta, makeplot=False)
E_values.append(E)

# Compute convergence rates
m = len(dt_values)
r[theta] = [log(E_values[i-1]/E_values[i])/

log(dt_values[i-1]/dt_values[i])
for i in range(1, m, 1)]

for theta in r:
print ’\nPairwise convergence rates for theta=%g:’ % theta
print ’ ’.join([’%.2f’ % r_ for r_ in r[theta]])

return r

The program containing this main function is called decay_convrate.py.
The r object is a dictionary of lists. The keys in this dictionary are the θ

values. For example, r[1] holds the list of the ri values corresponding to θ = 1.
In the loop for theta in r, the loop variable theta takes on the values of the
keys in the dictionary r (in an undetermined ordering). We could simply do a
print r[theta] inside the loop, but this would typically yield output of the
convergence rates with 16 decimals:

[1.331919482274763, 1.1488178494691532, ...]

Instead, we format each number with 2 decimals, using a list comprehension
to turn the list of numbers, r[theta], into a list of formatted strings. Then we
join these strings with a space in between to get a sequence of rates on one line
in the terminal window. More generally, d.join(list) joins the strings in the
list list to one string, with d as delimiter between list[0], list[1], etc.

Here is an example on the outcome of the convergence rate computations:

Terminal> python decay_convrate.py --dt 0.5 0.25 0.1 0.05 0.025 0.01
...
Pairwise convergence rates for theta=0:
1.33 1.15 1.07 1.03 1.02

Pairwise convergence rates for theta=0.5:
2.14 2.07 2.03 2.01 2.01

Pairwise convergence rates for theta=1:
0.98 0.99 0.99 1.00 1.00

The Forward and Backward Euler methods seem to have an r value which
stabilizes at 1, while the Crank-Nicolson seems to be a second-order method
with r = 2.
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Very often, we have some theory that predicts what r is for a numerical
method. Various theoretical error measures for the θ-rule point to r = 2 for
θ = 0.5 and r = 1 otherwise. The computed estimates of r are in very good
agreement with these theoretical values.

Why convergence rates are important.

The strong practical application of computing convergence rates is for veri-
fication: wrong convergence rates point to errors in the code, and correct
convergence rates brings evidence that the implementation is correct. Expe-
rience shows that bugs in the code easily destroy the expected convergence
rate.

Debugging via convergence rates. Let us experiment with bugs and see
the implication on the convergence rate. We may, for instance, forget to multiply
by a in the denominator in the updating formula for u[n+1]:

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt)*u[n]

Running the same decay_convrate.py command as above gives the expected
convergence rates (!). Why? The reason is that we just specified the ∆t values
are relied on default values for other parameters. The default value of a is 1.
Forgetting the factor a has then no effect. This example shows how important it
is to avoid parameters that are 1 or 0 when verifying implementations. Running
the code decay_v0.py with a = 2.1 and I = 0.1 yields

Terminal> python decay_convrate.py --a 2.1 --I 0.1 \
--dt 0.5 0.25 0.1 0.05 0.025 0.01

...
Pairwise convergence rates for theta=0:
1.49 1.18 1.07 1.04 1.02

Pairwise convergence rates for theta=0.5:
-1.42 -0.22 -0.07 -0.03 -0.01

Pairwise convergence rates for theta=1:
0.21 0.12 0.06 0.03 0.01

This time we see that the expected convergence rates for the Crank-Nicolson
and Backward Euler methods are not obtained, while r = 1 for the Forward
Euler method. The reason for correct rate in the latter case is that θ = 0 and
the wrong theta*dt term in the denominator vanishes anyway.

The error

u[n+1] = ((1-theta)*a*dt)/(1 + theta*dt*a)*u[n]

manifests itself through wrong rates r ≈ 0 for all three methods. About the
same results arise from an erroneous initial condition, u[0] = 1, or wrong loop
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limits, range(1,Nt). It seems that in this simple problem, most bugs we can
think of are detected by the convergence rate test, provided the values of the
input data do not hide the bug.

A verify_convergence_rate function could compute the dictionary of list
via main and check if the final rate estimates (rm−2) are sufficiently close to the
expected ones. A tolerance of 0.1 seems appropriate, given the uncertainty in
estimating r:

def verify_convergence_rate():
r = main()
tol = 0.1
expected_rates = {0: 1, 1: 1, 0.5: 2}
for theta in r:

r_final = r[theta][-1]
diff = abs(expected_rates[theta] - r_final)
if diff > tol:

return False
return True # all tests passed

We remark that r[theta] is a list and the last element in any list can be
extracted by the index -1.

2.9 Memory-saving implementation

The computer memory requirements of our implementations so far consists
mainly of the u and t arrays, both of length Nt + 1, plus some other temporary
arrays that Python needs for intermediate results if we do array arithmetics
in our program (e.g., I*exp(-a*t) needs to store a*t before - can be applied
to it and then exp). The extremely modest storage requirements of simple
ODE problems put no restrictions on the formulations of the algorithm and
implementation. Nevertheless, when the methods for ODEs used here are applied
to three-dimensional partial differential equation (PDE) problems, memory
storage requirements suddenly become an issue.

The PDE counterpart to our model problem u′ = −a is a diffusion equation
ut = a∇2u posed on a space-time domain. The discrete representation of this
domain may in 3D be a spatial mesh of M3 points and a time mesh of Nt
points. A typical desired value for M is 100 in many applications, or even 1000.
Storing all the computed u values, like we have done in the programs so far,
demands storage of some arrays of size M3Nt, giving a factor of M3 larger
storage demands compared to our ODE programs. Each real number in the
array for u requires 8 bytes (b) of storage. With M = 100 and Nt = 1000,
there is a storage demand of (103)3 · 1000 · 8 = 8 Gb for the solution array.
Fortunately, we can usually get rid of the Nt factor, resulting in 8 Mb of storage.
Below we explain how this is done, and the technique is almost always applied
in implementations of PDE problems.

Let us critically evaluate how much we really need to store in the computer’s
memory in our implementation of the θ method. To compute a new un+1, all we
need is un. This implies that the previous un−1, un−2, . . . , u0 values do not need

43



to be stored in an array, although this is convenient for plotting and data analysis
in the program. Instead of the u array we can work with two variables for real
numbers, u and u_1, representing un+1 and un in the algorithm, respectively.
At each time level, we update u from u_1 and then set u_1 = u so that the
computed un+1 value becomes the ”previous” value un at the next time level.
The downside is that we cannot plot the solution after the simulation is done
since only the last two numbers are available. The remedy is to store computed
values in a file and use the file for visualizing the solution later.

We have implemented this memory saving idea in the file decay_memsave.py,
which is a merge of the decay_plot_mpl.py and decay_argparse.py programs,
using module prefixes np for numpy and plt for matplotlib.pyplot.

The following function demonstrates how we work with the two most recent
values of the unknown:

def solver_memsave(I, a, T, dt, theta, filename=’sol.dat’):
"""
Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt.
Minimum use of memory. The solution is stored in a file
(with name filename) for later plotting.
"""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of intervals

outfile = open(filename, ’w’)
# u: time level n+1, u_1: time level n
t = 0
u_1 = I
outfile.write(’%.16E %.16E\n’ % (t, u_1))
for n in range(1, Nt+1):

u = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u_1
u_1 = u
t += dt
outfile.write(’%.16E %.16E\n’ % (t, u))

outfile.close()
return u, t

This code snippet serves as a quick introduction to file writing in Python. Reading
the data in the file into arrays t and u are done by the function

def read_file(filename=’sol.dat’):
infile = open(filename, ’r’)
u = []; t = []
for line in infile:

words = line.split()
if len(words) != 2:

print ’Found more than two numbers on a line!’, words
sys.exit(1) # abort

t.append(float(words[0]))
u.append(float(words[1]))

return np.array(t), np.array(u)

This type of file with numbers in rows and columns is very common, and numpy

has a function loadtxt which loads such tabular data into a two-dimensional
array, say with name data. The number in row i and column j is then data[i,j].

44

http://tinyurl.com/jvzzcfn/decay/decay_memsave.py
http://tinyurl.com/jvzzcfn/decay/decay_plot_mpl.py
http://tinyurl.com/jvzzcfn/decay/decay_argparse.py


The whole column number j can be extracted by data[:,j]. A version of
read_file using np.loadtxt reads

def read_file_numpy(filename=’sol.dat’):
data = np.loadtxt(filename)
t = data[:,0]
u = data[:,1]
return t, u

The present counterpart to the explore function from decay_plot_mpl.py

must run solver_memsave and then load data from file before we can compute
the error measure and make the plot:

def explore(I, a, T, dt, theta=0.5, makeplot=True):
filename = ’u.dat’
u, t = solver_memsave(I, a, T, dt, theta, filename)

t, u = read_file(filename)
u_e = exact_solution(t, I, a)
e = u_e - u
E = np.sqrt(dt*np.sum(e**2))
if makeplot:

plt.figure()
...

The decay_memsave.py file also includes command-line options --I, --a, --T,
--dt, --theta, and --makeplot for controlling input parameters and making a
single run. For example,

Terminal> python decay_memsave.py --T 10 --theta 1 --dt 2

results in the output

I=1.0, a=1.0, T=10.0, makeplot=True, theta=1.0, dt=2.0
theta=1.0 dt=2 Error=3.136E-01

3 Software engineering

Goal.
Efficient use of differential equation models requires software that is easy
to test and flexible for setting up extensive numerical experiments. This
section introduces three important concepts:

• Modules

• Testing frameworks

• Implementation with classes
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The concepts are introduced using the differential equation problem u′ =
−au, u(0) = I, as example.

3.1 Making a module

The DRY principle.

The previous sections have outlined numerous different programs, all of
them having their own copy of the solver function. Such copies of the
same piece of code is against the important Don’t Repeat Yourself (DRY)
principle in programming. If we want to change the solver function there
should be one and only one place where the change needs to be performed.

To clean up the repetitive code snippets scattered among the decay_*.py

files, we start by collecting the various functions we want to keep for the future
in one file, now called decay_mod.py (mod stands for ”module”). The following
functions are copied to this file:

• solver for computing the numerical solution

• verify_three_steps for verifying the first three solution points against
hand calculations

• verify_discrete_solution for verifying the entire computed solution
against an exact formula for the numerical solution

• explore for computing and plotting the solution

• define_command_line_options for defining option-value pairs on the
command line

• read_command_line for reading input from the command line, now ex-
tended to work both with sys.argv directly and with an ArgumentParser

object

• main for running experiments with θ = 0, 0.5, 1 and a series of ∆t values,
and computing convergence rates

• main_GUI for doing the same as the main function, but modified for auto-
matic GUI generation

• verify_convergence_rate for verifying the computed convergence rates
against the theoretically expected values

We use Matplotlib for plotting. A sketch of the decay_mod.py file, with complete
versions of the modified functions, looks as follows:
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from numpy import *
from matplotlib.pyplot import *
import sys

def solver(I, a, T, dt, theta):
...

def verify_three_steps():
...

def verify_exact_discrete_solution():
...

def exact_solution(t, I, a):
...

def explore(I, a, T, dt, theta=0.5, makeplot=True):
...

def define_command_line_options():
...

def read_command_line(use_argparse=True):
if use_argparse:

parser = define_command_line_options()
args = parser.parse_args()
print ’I={}, a={}, makeplot={}, dt_values={}’.format(

args.I, args.a, args.makeplot, args.dt_values)
return args.I, args.a, args.makeplot, args.dt_values

else:
if len(sys.argv) < 6:

print ’Usage: %s I a on/off dt1 dt2 dt3 ...’ % \
sys.argv[0]; sys.exit(1)

I = float(sys.argv[1])
a = float(sys.argv[2])
T = float(sys.argv[3])
makeplot = sys.argv[4] in (’on’, ’True’)
dt_values = [float(arg) for arg in sys.argv[5:]]

return I, a, makeplot, dt_values

def main():
...

This decay_mod.py file is already a module such that we can import desired
functions in other programs. For example, we can in a file do

from decay_mod import solver
u, t = solver(I=1.0, a=3.0, T=3, dt=0.01, theta=0.5)

However, it should also be possible to both use decay_mod.py as a module
and execute the file as a program that runs main(). This is accomplished by
ending the file with a test block :

if __name__ == ’__main__’:
main()
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When decay_mod.py is used as a module, __name__ equals the module name
decay_mod, while __name__ equals ’__main__’ when the file is run as a pro-
gram. Optionally, we could run the verification tests if the word verify is
present on the command line and verify_convergence_rate could be tested if
verify_rates is found on the command line. The verify_rates argument must
be removed before we read parameter values from the command line, otherwise
the read_command_line function (called by main) will not work properly.

if __name__ == ’__main__’:
if ’verify’ in sys.argv:

if verify_three_steps() and verify_discrete_solution():
pass # ok

else:
print ’Bug in the implementation!’

elif ’verify_rates’ in sys.argv:
sys.argv.remove(’verify_rates’)
if not ’--dt’ in sys.argv:

print ’Must assign several dt values’
sys.exit(1) # abort

if verify_convergence_rate():
pass

else:
print ’Bug in the implementation!’

else:
# Perform simulations
main()

3.2 Prefixing imported functions by the module name

Import statements of the form from module import * import functions and
variables in module.py into the current file. For example, when doing

from numpy import *
from matplotlib.pyplot import *

we get mathematical functions like sin and exp as well as MATLAB-style
functions like linspace and plot, which can be called by these well-known names.
Unfortunately, it sometimes becomes confusing to know where a particular
function comes from. Is it from numpy? Or matplotlib.pyplot? Or is it our
own function?

An alternative import is

import numpy
import matplotlib.pyplot

and such imports require functions to be prefixed by the module name, e.g.,

t = numpy.linspace(0, T, Nt+1)
u_e = I*numpy.exp(-a*t)
matplotlib.pyplot.plot(t, u_e)
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This is normally regarded as a better habit because it is explicitly stated from
which module a function comes from.

The modules numpy and matplotlib.pyplot are so frequently used, and
their full names quite tedious to write, so two standard abbreviations have
evolved in the Python scientific computing community:

import numpy as np
import matplotlib.pyplot as plt

t = np.linspace(0, T, Nt+1)
u_e = I*np.exp(-a*t)
plt.plot(t, u_e)

A version of the decay_mod module where we use the np and plt prefixes is
found in the file decay_mod_prefix.py.

The downside of prefixing functions by the module name is that mathematical
expressions like e−at sin(2πt) get cluttered with module names,

numpy.exp(-a*t)*numpy.sin(2(numpy.pi*t)
# or
np.exp(-a*t)*np.sin(2*np.pi*t)

Such an expression looks like exp(-a*t)*sin(2*pi*t) in most other program-
ming languages. Similarly, np.linspace and plt.plot look less familiar to peo-
ple who are used to MATLAB and who have not adopted Python’s prefix style.
Whether to do from module import * or import module depends on personal
taste and the problem at hand. In these writings we use from module import

in shorter programs where similarity with MATLAB could be an advantage, and
where a one-to-one correspondence between mathematical formulas and Python
expressions is important. The style import module is preferred inside Python
modules (see Exercise 11 for a demonstration).

3.3 Doctests

We have emphasized how important it is to be able to run tests in the program at
any time. This was solved by calling various verify* functions in the previous
examples. However, there exists well-established procedures and corresponding
tools for automating the execution of tests. We shall briefly demonstrate two
important techniques: doctest and unit testing. The corresponding files are the
modules decay_mod_doctest.py and decay_mod_nosetest.py.

A doc string (the first string after the function header) is used to document
the purpose of functions and their arguments. Very often it is instructive to
include an example on how to use the function. Interactive examples in the
Python shell are most illustrative as we can see the output resulting from function
calls. For example, we can in the solver function include an example on calling
this function and printing the computed u and t arrays:
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def solver(I, a, T, dt, theta):
"""
Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt.

>>> u, t = solver(I=0.8, a=1.2, T=4, dt=0.5, theta=0.5)
>>> for t_n, u_n in zip(t, u):
... print ’t=%.1f, u=%.14f’ % (t_n, u_n)
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
t=2.0, u=0.06725254717972
t=2.5, u=0.03621291001985
t=3.0, u=0.01949925924146
t=3.5, u=0.01049960113002
t=4.0, u=0.00565363137770
"""
...

When such interactive demonstrations are inserted in doc strings, Python’s
doctest module can be used to automate running all commands in interactive
sessions and compare new output with the output appearing in the doc string.
All we have to do in the current example is to write

Terminal> python -m doctest decay_mod_doctest.py

This command imports the doctest module, which runs all tests. No additional
command-line argument is allowed when running doctests. If any test fails, the
problem is reported, e.g.,

Terminal> python -m doctest decay_mod_doctest.py
********************************************************
File "decay_mod_doctest.py", line 12, in decay_mod_doctest....
Failed example:

for t_n, u_n in zip(t, u):
print ’t=%.1f, u=%.14f’ % (t_n, u_n)

Expected:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
t=2.0, u=0.06725254717972

Got:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
t=2.0, u=0.06725254718756

********************************************************
1 items had failures:

1 of 2 in decay_mod_doctest.solver
***Test Failed*** 1 failures.

Note that in the output of t and u we write u with 14 digits. Writing all 16
digits is not a good idea: if the tests are run on different hardware, round-off
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errors might be different, and the doctest module detects that the numbers are
not precisely the same and reports failures. In the present application, where
0 < u(t) ≤ 0.8, we expect round-off errors to be of size 10−16, so comparing 15
digits would probably be reliable, but we compare 14 to be on the safe side.

Doctests are highly encouraged as they do two things: 1) demonstrate how a
function is used and 2) test that the function works.

Here is an example on a doctest in the explore function:

def explore(I, a, T, dt, theta=0.5, makeplot=True):
"""
Run a case with the solver, compute error measure,
and plot the numerical and exact solutions (if makeplot=True).

>>> for theta in 0, 0.5, 1:
... E = explore(I=1.9, a=2.1, T=5, dt=0.1, theta=theta,
... makeplot=False)
... print ’%.10E’ % E
...
7.3565079236E-02
2.4183893110E-03
6.5013039886E-02
"""
...

This time we limit the output to 10 digits.

Caution.
Doctests requires careful coding if they use command-line input or print
results to the terminal window. Command-line input must be simulated
by filling sys.argv correctly, e.g., sys.argv = ’--I 1.0 --a 5’.split.
The output lines of print statements must be copied exactly as they appear
when running the statements in an interactive Python shell.

3.4 Unit testing with nose

The unit testing technique consists of identifying small units of code, usually
functions (or classes), and write one or more tests for each unit. One test should,
ideally, not depend on the outcome of other tests. For example, the doctest
in function solver is a unit test, and the doctest in function explore as well,
but the latter depends on a working solver. Putting the error computation
and plotting in explore in two separate functions would allow independent unit
tests. In this way, the design of unit tests impacts the design of functions. The
recommended practice is actually to design and write the unit tests first and
then implement the functions!

In scientific computing it is not always obvious how to best perform unit
testing. The units is naturally larger than in non-scientific software. Very often
the solution procedure of a mathematical problem identifies a unit.

Basic use of nose. The nose package is a versatile tool for implementing unit
tests in Python. Here is a short explanation of the usage of nose:
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1. Implement tests in functions with names starting with test_. Such func-
tions cannot have any arguments.

2. The test functions perform assertions on computed results using assert

functions from the nose.tools module.

3. The test functions can be in the source code files or be collected in separate
files with names test*.py.

Here comes a very simple illustration of the three points. Assume that we have
this function in a module mymod:

def double(n):
return 2*n

Either in this file, or in a separate file test_mymod.py, we implement a test
function whose purpose is to test that the function double works as intended:

import nose.tools as nt

def test_double():
result = double(4)
nt.assert_equal(result, 8)

Notice that test_double has no arguments. We need to do an import mymod

or from mymod import double if this test resides in a separate file. Running

Terminal> nosetests -s mymod

makes the nose tool run all functions with names matching test_*() in
mymod.py. Alternatively, if the test functions are in some test_mymod.py file,
we can just write nosetests -s. The nose tool will then look for all files with
names mathching test*.py and run all functions test_*() in these files.

When you have nose tests in separate test files with names test*.py it is
common to collect these files in a subdirectory tests, or *_tests if you have
several test subdirectories. Running nosetests -s will then recursively look for
all tests and *_tests subdirectories and run all functions test_*() in all files
test_*.py in these directories. Just one command can then launch a series of
tests in a directory tree!

An example of a tests directory with different types of test*.py files are
found in src/decay/tests. Note that these perform imports of modules in the
parent directory. These imports works well because the tests are supposed to be
run by nosetests -s executed in the parent directory (decay).

Tip.

The -s option to nosetests assures that any print statement in the test_*

functions appears in the output. Without this option, nosetests suppressed
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whatever the tests writes to the terminal window (standard output). Such
behavior is annoying, especially when developing and testing tests.

The number of failed tests and their details are reported, or an OK is printed
if all tests passed.

The advantage with the nose package is two-fold:

1. tests are written and collected in a structured way, and

2. large collections of tests, scattered throughout a tree of directories, can be
executed with one command nosetests -s.

Alternative assert statements. In case the nt.assert_equal function finds
that the two arguments are equal, the test is a success, otherwise it is a failure
and an exception of type AssertionError is raised. The particular exception is
the indicator that a test has failed.

Instead of calling the convenience function nt.assert_equal, we can use
Python’s plain assert statement, which tests if a boolean expression is true and
raises an AssertionError otherwise. Here, the statement is assert result == 8.

A completely manual alternative is to explicitly raise an AssertionError

exception if the computed result is wrong:

if result != 8:
raise AssertionError()

Applying nose. Let us illustrate how to use the nose tool for testing key
functions in the decay_mod module. Or more precisely, the module is called
decay_mod_unittest with all the verify* functions removed as these now are
outdated by the unit tests.

We design three unit tests:

1. A comparison between the computed un values and the exact discrete
solution.

2. A comparison between the computed un values and precomputed, verified
reference values.

3. A comparison between observed and expected convergence rates.

These tests follow very closely the code in the previously shown verify* functions.
We start with comparing un, as computed by the function solver, to the formula
for the exact discrete solution:
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import nose.tools as nt
import decay_mod_unittest as decay_mod
import numpy as np

def exact_discrete_solution(n, I, a, theta, dt):
"""Return exact discrete solution of the theta scheme."""
dt = float(dt) # avoid integer division
factor = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
return I*factor**n

def test_exact_discrete_solution():
"""
Compare result from solver against
formula for the discrete solution.
"""
theta = 0.8; a = 2; I = 0.1; dt = 0.8
N = int(8/dt) # no of steps
u, t = decay_mod.solver(I=I, a=a, T=N*dt, dt=dt, theta=theta)
u_de = np.array([exact_discrete_solution(n, I, a, theta, dt)

for n in range(N+1)])
diff = np.abs(u_de - u).max()
nt.assert_almost_equal(diff, 0, delta=1E-14)

The nt.assert_almost_equal is the relevant function for comparing two
real numbers. The delta argument specifies a tolerance for the comparison.
Alternatively, one can specify a places argument for the number of decimal
places to be used in the comparison.

After having carefully verified the implementation, we may store correctly
computed numbers in the test program or in files for use in future tests. Here is
an example on how the outcome from the solver function can be compared to
what is considered to be correct results:

def test_solver():
"""
Compare result from solver against
precomputed arrays for theta=0, 0.5, 1.
"""
I=0.8; a=1.2; T=4; dt=0.5 # fixed parameters
precomputed = {

’t’: np.array([ 0. , 0.5, 1. , 1.5, 2. , 2.5,
3. , 3.5, 4. ]),

0.5: np.array(
[ 0.8 , 0.43076923, 0.23195266, 0.12489759,
0.06725255, 0.03621291, 0.01949926, 0.0104996 ,
0.00565363]),

0: np.array(
[ 8.00000000e-01, 3.20000000e-01,

1.28000000e-01, 5.12000000e-02,
2.04800000e-02, 8.19200000e-03,
3.27680000e-03, 1.31072000e-03,
5.24288000e-04]),

1: np.array(
[ 0.8 , 0.5 , 0.3125 , 0.1953125 ,
0.12207031, 0.07629395, 0.04768372, 0.02980232,
0.01862645]),

}
for theta in 0, 0.5, 1:
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u, t = decay_mod.solver(I, a, T, dt, theta=theta)
diff = np.abs(u - precomputed[theta]).max()
# Precomputed numbers are known to 8 decimal places
nt.assert_almost_equal(diff, 0, places=8,

msg=’theta=%s’ % theta)

The precomputed object is a dictionary with four keys: ’t’ for the time mesh,
and three θ values for un solutions corresponding to θ = 0, 0.5, 1.

Testing for special type of input data that may cause trouble constitutes
a common way of constructing unit tests. For example, the updating formula
for un+1 may be incorrectly evaluated because of unintended integer divisions.
With

theta = 1; a = 1; I = 1; dt = 2

the nominator and denominator in the updating expression,

(1 - (1-theta)*a*dt)
(1 + theta*dt*a)

evaluate to 1 and 3, respectively, and the fraction 1/3 will call up integer division
and consequently lead to u[n+1]=0. We construct a unit test to make sure
solver is smart enough to avoid this problem:

def test_potential_integer_division():
"""Choose variables that can trigger integer division."""
theta = 1; a = 1; I = 1; dt = 2
N = 4
u, t = decay_mod.solver(I=I, a=a, T=N*dt, dt=dt, theta=theta)
u_de = np.array([exact_discrete_solution(n, I, a, theta, dt)

for n in range(N+1)])
diff = np.abs(u_de - u).max()
nt.assert_almost_equal(diff, 0, delta=1E-14)

The final test is to see that the convergence rates corresponding to θ = 0, 0.5, 1
are 1, 2, and 1, respectively:

def test_convergence_rates():
"""Compare empirical convergence rates to exact ones."""
# Set command-line arguments directly in sys.argv
import sys
sys.argv[1:] = ’--I 0.8 --a 2.1 --T 5 ’\

’--dt 0.4 0.2 0.1 0.05 0.025’.split()
r = decay_mod.main()
for theta in r:

nt.assert_true(r[theta]) # check for non-empty list

expected_rates = {0: 1, 1: 1, 0.5: 2}
for theta in r:

r_final = r[theta][-1]
# Compare to 1 decimal place
nt.assert_almost_equal(expected_rates[theta], r_final,

places=1, msg=’theta=%s’ % theta)
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Nothing more is needed in the test_decay_nose.py file where the tests
reside. Running nosetests -s will report Ran 3 tests and an OK for success.
Everytime we modify the decay_mod_unittest module we can run nosetests

to quickly see if the edits have any impact on the verification tests.

Installation of nose. The nose package does not come with a standard
Python distribution and must therefore be installed separately. The procedure
is standard and described on Nose’s web pages. On Debian-based Linux systems
the command is sudo apt-get install python-nose, and with MacPorts you
run sudo port install py27-nose.

Using nose to test modules with doctests. Assume that mod is the name
of some module that contains doctests. We may let nose run these doctests and
report errors in the standard way using the code set-up

import doctest
import mod

def test_mod():
failure_count, test_count = doctest.testmod(m=mod)
nt.assert_equal(failure_count, 0,

msg=’%d tests out of %d failed’ %
(failure_count, test_count))

The call to doctest.testmod runs all doctests in the module file mod.py and
returns the number of failures (failure_count) and the total number of tests
(test_count). A real example is found in the file test_decay_doctest.py.

3.5 Classical class-based unit testing

The classical way of implementing unit tests derives from the JUnit tool in Java
where all tests are methods in a class for testing. Python comes with a module
unittest for doing this type of unit tests. While nose allows simple functions for
unit tests, unittest requires deriving a class Test* from unittest.TestCase

and implementing each test as methods with names test_* in that class. I
strongly recommend to use nose over unittest, because it is much simpler and
more convenient, but class-based unit testing is a very classical subject that
computational scientists should have some knowledge about. That is why a short
introduction to unittest is included below.

Basic use of unittest. We apply the double function in the mymod module
introduced in the previous section as example. Unit testing with the aid of the
unittest module consists of writing a file test_mymod.py with the content

import unittest
import mymod

class TestMyCode(unittest.TestCase):
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def test_double(self):
result = mymod.double(4)
self.assertEqual(result, 8)

if __name__ == ’__main__’:
unittest.main()

The test is run by executing the test file test_mymod.py as a standard Python
program. There is no support in unittest for automatically locating and
running all tests in all test files in a directory tree.

Those who have experience with object-oriented programming will see that
the difference between using unittest and nose is minor.

Demonstration of unittest. The same tests as shown for the nose framework
are reimplemented with the TestCase classes in the file test_decay_unittest.

py. The tests are identical, the only difference being that with unittest we
must write the tests as methods in a class and the assert functions have slightly
different names.

import unittest
import decay_mod_unittest as decay
import numpy as np

def exact_discrete_solution(n, I, a, theta, dt):
factor = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
return I*factor**n

class TestDecay(unittest.TestCase):

def test_exact_discrete_solution(self):
...
diff = np.abs(u_de - u).max()
self.assertAlmostEqual(diff, 0, delta=1E-14)

def test_solver(self):
...
for theta in 0, 0.5, 1:

...
self.assertAlmostEqual(diff, 0, places=8,

msg=’theta=%s’ % theta)

def test_potential_integer_division():
...
self.assertAlmostEqual(diff, 0, delta=1E-14)

def test_convergence_rates(self):
...
for theta in r:

...
self.assertAlmostEqual(...)

if __name__ == ’__main__’:
unittest.main()
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3.6 Implementing simple problem and solver classes

The θ-rule was compactly and conveniently implemented in a function solver

in Section 2.1. In more complicated problems it might be beneficial to use
classes and introduce a class Problem to hold the definition of the physical
problem, a class Solver to hold the data and methods needed to numerically
solve the problem, and a class Visualizer to make plots. This idea will now be
illustrated, resulting in code that represents an alternative to the solver and
explore functions found in the decay_mod module.

Explaining the details of class programming in Python is considered beyond
the scope of this text. Readers who are unfamiliar with Python class programming
should first consult one of the many electronic Python tutorials or textbooks
to come up to speed with concepts and syntax of Python classes before reading
on. The author has a gentle introduction to class programming for scientific
applications in [4], see Chapter 7 and 9 and Appendix E. Other useful resources
are

• The Python Tutorial: http://docs.python.org/2/tutorial/classes.

html

• Wiki book on Python Programming: http://en.wikibooks.org/wiki/

Python_Programming/Classes

• tutorialspoint.com: http://www.tutorialspoint.com/python/python_

classes_objects.htm

The problem class. The purpose of the problem class is to store all infor-
mation about the mathematical model. This usually means all the physical
parameters in the problem. In the current example with exponential decay we
may also add the exact solution of the ODE to the problem class. The simplest
form of a problem class is therefore

from numpy import exp

class Problem:
def __init__(self, I=1, a=1, T=10):

self.T, self.I, self.a = I, float(a), T

def exact_solution(self, t):
I, a = self.I, self.a
return I*exp(-a*t)

We could in the exact_solution method have written self.I*exp(-self.a*t),
but using local variables I and a allows the formula I*exp(-a*t) which looks
closer to the mathematical expression Ie−at. This is not an important issue with
the current compact formula, but is beneficial in more complicated problems
with longer formulas to obtain the closest possible relationship between code
and mathematics. My coding style is to strip off the self prefix when the code
expresses mathematical formulas.
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The class data can be set either as arguments in the constructor or at any
time later, e.g.,

problem = Problem(T=5)
problem.T = 8
problem.dt = 1.5

(Some programmers prefer set and get functions for setting and getting data in
classes, often implemented via properties in Python, but I consider that overkill
when we just have a few data items in a class.)

It would be convenient if class Problem could also initialize the data from the
command line. To this end, we add a method for defining a set of command-line
options and a method that sets the local attributes equal to what was found on
the command line. The default values associated with the command-line options
are taken as the values provided to the constructor. Class Problem now becomes

class Problem:
def __init__(self, I=1, a=1, T=10):

self.T, self.I, self.a = I, float(a), T

def define_command_line_options(self, parser=None):
if parser is None:

import argparse
parser = argparse.ArgumentParser()

parser.add_argument(
’--I’, ’--initial_condition’, type=float,
default=self.I, help=’initial condition, u(0)’,
metavar=’I’)

parser.add_argument(
’--a’, type=float, default=self.a,
help=’coefficient in ODE’, metavar=’a’)

parser.add_argument(
’--T’, ’--stop_time’, type=float, default=self.T,
help=’end time of simulation’, metavar=’T’)

return parser

def init_from_command_line(self, args):
self.I, self.a, self.T = args.I, args.a, args.T

def exact_solution(self, t):
I, a = self.I, self.a
return I*exp(-a*t)

Observe that if the user already has an ArgumentParser object it can be supplied,
but if she does not have any, class Problem makes one. Python’s None object is
used to indicate that a variable is not initialized with a proper value.

The solver class. The solver class stores data related to the numerical solution
method and provides a function solve for solving the problem. A problem object
must be given to the constructor so that the solver can easily look up physical
data. In the present example, the data related to the numerical solution method
consists of ∆t and θ. We add, as in the problem class, functionality for reading
∆t and θ from the command line:
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class Solver:
def __init__(self, problem, dt=0.1, theta=0.5):

self.problem = problem
self.dt, self.theta = float(dt), theta

def define_command_line_options(self, parser):
parser.add_argument(

’--dt’, ’--time_step_value’, type=float,
default=0.5, help=’time step value’, metavar=’dt’)

parser.add_argument(
’--theta’, type=float, default=0.5,
help=’time discretization parameter’, metavar=’dt’)

return parser

def init_from_command_line(self, args):
self.dt, self.theta = args.dt, args.theta

def solve(self):
from decay_mod import solver
self.u, self.t = solver(

self.problem.I, self.problem.a, self.problem.T,
self.dt, self.theta)

def error(self):
u_e = self.problem.exact_solution(self.t)
e = u_e - self.u
E = sqrt(self.dt*sum(e**2))
return E

Note that we here simply reuse the implementation of the numerical method from
the decay_mod module. The solve function is just a wrapper of the previously
developed stand-alone solver function.

The visualizer class. The purpose of the visualizer class is to plot the numer-
ical solution stored in class Solver. We also add the possibility to plot the exact
solution. Access to the problem and solver objects is required when making
plots so the constructor must hold references to these objects:

class Visualizer:
def __init__(self, problem, solver):

self.problem, self.solver = problem, solver

def plot(self, include_exact=True, plt=None):
"""
Add solver.u curve to the plotting object plt,
and include the exact solution if include_exact is True.
This plot function can be called several times (if
the solver object has computed new solutions).
"""
if plt is None:

import scitools.std as plt # can use matplotlib as well

plt.plot(self.solver.t, self.solver.u, ’--o’)
plt.hold(’on’)
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
name = theta2name.get(self.solver.theta, ’’)
legends = [’numerical %s’ % name]
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if include_exact:
t_e = linspace(0, self.problem.T, 1001)
u_e = self.problem.exact_solution(t_e)
plt.plot(t_e, u_e, ’b-’)
legends.append(’exact’)

plt.legend(legends)
plt.xlabel(’t’)
plt.ylabel(’u’)
plt.title(’theta=%g, dt=%g’ %

(self.solver.theta, self.solver.dt))
plt.savefig(’%s_%g.png’ % (name, self.solver.dt))
return plt

The plt object in the plot method is worth a comment. The idea is that
plot can add a numerical solution curve to an existing plot. Calling plot with
a plt object (which has to be a matplotlib.pyplot or scitools.std object
in this implementation), will just add the curve self.solver.u as a dashed
line with circles at the mesh points (leaving the color of the curve up to the
plotting tool). This functionality allows plots with several solutions: just make
a loop where new data is set in the problem and/or solver classes, the solver’s
solve() method is called, and the most recent numerical solution is plotted by
the plot(plt) method in the visualizer object Exercise 12 describes a problem
setting where this functionality is explored.

Combining the objects. Eventually we need to show how the classes Problem,
Solver, and Visualizer play together:

def main():
problem = Problem()
solver = Solver(problem)
viz = Visualizer(problem, solver)

# Read input from the command line
parser = problem.define_command_line_options()
parser = solver. define_command_line_options(parser)
args = parser.parse_args()
problem.init_from_command_line(args)
solver. init_from_command_line(args)

# Solve and plot
solver.solve()
import matplotlib.pyplot as plt
#import scitools.std as plt
plt = viz.plot(plt=plt)
E = solver.error()
if E is not None:

print ’Error: %.4E’ % E
plt.show()

The file decay_class.py constitutes a module with the three classes and
the main function.
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Test the understanding.

Implement the problem in Exercise 29 in terms of problem, solver, and
visualizer classes. Equip the classes and their methods with doc strings
with tests. Also include nose tests.

3.7 Improving the problem and solver classes

The previous Problem and Solver classes containing parameters soon get much
repetitive code when the number of parameters increases. Much of this code can
be parameterized and be made more compact. For this purpose, we decide to
collect all parameters in a dictionary, self.prms, with two associated dictionaries
self.types and self.help for holding associated object types and help strings.
Provided a problem, solver, or visualizer class defines these three dictionaries in
the constructor, using default or user-supplied values of the parameters, we can
create a super class Parameters with general code for defining command-line
options and reading them as well as methods for setting and getting a parameter.
A Problem or Solver class will then inherit command-line functionality and the
set/get methods from the Parameters class.

A generic class for parameters. A simplified version of the parameter class
looks as follows:

class Parameters:
def set(self, **parameters):

for name in parameters:
self.prms[name] = parameters[name]

def get(self, name):
return self.prms[name]

def define_command_line_options(self, parser=None):
if parser is None:

import argparse
parser = argparse.ArgumentParser()

for name in self.prms:
tp = self.types[name] if name in self.types else str
help = self.help[name] if name in self.help else None
parser.add_argument(

’--’ + name, default=self.get(name), metavar=name,
type=tp, help=help)

return parser

def init_from_command_line(self, args):
for name in self.prms:

self.prms[name] = getattr(args, name)

The file class_decay_oo.py contains a slightly more advanced version of class
Parameters where we in the set and get functions test for valid parameter names
and raise exceptions with informative messages if any name is not registered.
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The problem class. A class Problem for the problem u′ = −au, u(0) = I,
t ∈ (0, T ], with parameters input a, I, and T can now be coded as

class Problem(Parameters):
"""
Physical parameters for the problem u’=-a*u, u(0)=I,
with t in [0,T].
"""
def __init__(self):

self.prms = dict(I=1, a=1, T=10)
self.types = dict(I=float, a=float, T=float)
self.help = dict(I=’initial condition, u(0)’,

a=’coefficient in ODE’,
T=’end time of simulation’)

def exact_solution(self, t):
I, a = self.get(’I’), self.get(’a’)
return I*np.exp(-a*t)

The solver class. Also the solver class is derived from class Parameters

and works with the prms, types, and help dictionaries in the same way as
class Problem. Otherwise, the code is very similar to class Solver in the
decay_class.py file:

class Solver(Parameters):
def __init__(self, problem):

self.problem = problem
self.prms = dict(dt=0.5, theta=0.5)
self.types = dict(dt=float, theta=float)
self.help = dict(dt=’time step value’,

theta=’time discretization parameter’)

def solve(self):
from decay_mod import solver
self.u, self.t = solver(

self.problem.get(’I’),
self.problem.get(’a’),
self.problem.get(’T’),
self.get(’dt’),
self.get(’theta’))

def error(self):
try:

u_e = self.problem.exact_solution(self.t)
e = u_e - self.u
E = np.sqrt(self.get(’dt’)*np.sum(e**2))

except AttributeError:
E = None

return E

The visualizer class. Class Visualizer can be identical to the one in the
decay_class.py file since the class does not need any parameters. However, a
few adjustments in the plot method is necessary since parameters are accessed
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as, e.g., problem.get(’T’) rather than problem.T. The details are found in
the file class_decay_oo.py.

Finally, we need a function that solves a real problem using the classes
Problem, Solver, and Visualizer. This function can be just like main in the
decay_class.py file.

The advantage with the Parameters class is that it scales to problems with
a large number of physical and numerical parameters: as long as the parameters
are defined once via a dictionary, the compact code in class Parameters can
handle any collection of parameters of any size.

4 Performing scientific experiments

Goal.
This section explores the behavior of a numerical method for a differential
equation through computer experiments. In particular, it is shown how
scientific experiments can be set up and reported. We address the ODE
problem

u′(t) = −au(t), u(0) = I, t ∈ (0, T ], (49)

numerically discretized by the θ-rule:

un+1 =
1− (1− θ)a∆t

1 + θa∆t
un, u0 = I .

Our aim is to plot u0, u1, . . . , uN together with the exact solution ue = Ie−at

for various choices of the parameters in this numerical problem: I, a, ∆t,
and θ. We are especially interested in how the discrete solution compares
with the exact solution when the ∆t parameter is varied and θ takes on
the three values corresponding to the Forward Euler, Backward Euler, and
Crank-Nicolson schemes (θ = 0, 1, 0.5, respectively).

4.1 Software

A verified implementation for computing the numerical solution un and plotting
it together with the exact solution ue is found in the file decay_mod.py. This
program admits command-line arguments to specify a series of ∆t values and
will run a loop over these values and θ = 0, 0.5, 1. We make a slight edit of how
the plots are designed: the numerical solution is specified with line type ’r--o’

(dashed red lines with dots at the mesh points), and the show() command is
removed to avoid a lot of plot windows popping up on the computer screen (but
hardcopies of the plot are still stored in files via savefig). The slightly modified
program has the name experiments/decay_mod.py. All files associated with
the scientific investigation are collected in a subdirectory experiments.
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Running the experiments is easy since the decay_mod.py program already
has the loops over θ and ∆t implemented. An experiment with I = 1, a = 2,
T = 5, and dt = 0.5, 0.25, 0.1, 0.05 is run by

Terminal> python decay_mod.py --I 1 --a 2 --makeplot \
--T 5 --dt 0.5 0.25 0.1 0.05

4.2 Combining plot files

The decay_mod.py program generates a lot of image files, e.g., FE_*.png,
BE_*.png, and CN_*.png. We want to combine all the FE_*.png files in a
table fashion in one file, with two images in each row, starting with the largest
∆t in the upper left corner and decreasing the value as we go to the right and
down. This can be done using the montage program. The often occurring white
areas around the plots can be cropped away by the convert -trim command.
The remaining white can be made transparent for HTML pages with a non-white
background by the command convert -transparent white.

Also plot files in the PDF format with names FE_*.pdf, BE_*.pdf, and
CN_*.pdf are generated and these should be combined using other tools: pdftk
to combine individual plots into one file with one plot per page, and pdfnup

to combine the pages into a table with multiple plots per page. The resulting
image often has some extra surrounding white space that can be removed by the
pdfcrop program. The code snippets below contain all details about the usage
of montage, convert, pdftk, pdfnup, and pdfcrop.

Running manual commands is boring, and errors may easily sneak in. Both
for automating manual work and documenting the operating system commands
we actually issued in the experiment, we should write a script (little program).
An alternative is to write the commands into an IPython notebook and use
the notebook as the script. A plain script as a standard Python program in a
separate text file will be used here.

Reproducible science.

A script that automates running our computer experiments will ensure that
the experiments can easily be rerun by ourselves or others in the future,
either to check the results or redo the experiments with other input data.
Also, whatever we did to produce the results is documented in every detail
in the script. Automating scripts are therefore essential to making our
research reproducible, which is a fundamental principle in science.

The script takes a list of ∆t values on the command line as input and
makes three combined images, one for each θ value, displaying the quality of the
numerical solution as ∆t varies. For example,

Terminal> python decay_exper0.py 0.5 0.25 0.1 0.05
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results in images FE.png, CN.png, BE.png, FE.pdf, CN.pdf, and BE.pdf, each
with four plots corresponding to the four ∆t values. Each plot compares the
numerical solution with the exact one. The latter image is shown in Figure 10.

Figure 10: Illustration of the Backward Euler method for four time step values.

Ideally, the script should be scalable in the sense that it works for any number
of ∆t values, which is the case for this particular implementation:

import os, sys

def run_experiments(I=1, a=2, T=5):
# The command line must contain dt values
if len(sys.argv) > 1:

dt_values = [float(arg) for arg in sys.argv[1:]]
else:

print ’Usage: %s dt1 dt2 dt3 ...’ % sys.argv[0]
sys.exit(1) # abort

# Run module file as a stand-alone application
cmd = ’python decay_mod.py --I %g --a %g --makeplot --T %g’ % \

(I, a, T)
dt_values_str = ’ ’.join([str(v) for v in dt_values])
cmd += ’ --dt %s’ % dt_values_str
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print cmd
failure = os.system(cmd)
if failure:

print ’Command failed:’, cmd; sys.exit(1)

# Combine images into rows with 2 plots in each row
image_commands = []
for method in ’BE’, ’CN’, ’FE’:

pdf_files = ’ ’.join([’%s_%g.pdf’ % (method, dt)
for dt in dt_values])

png_files = ’ ’.join([’%s_%g.png’ % (method, dt)
for dt in dt_values])

image_commands.append(
’montage -background white -geometry 100%’ +
’ -tile 2x %s %s.png’ % (png_files, method))

image_commands.append(
’convert -trim %s.png %s.png’ % (method, method))

image_commands.append(
’convert %s.png -transparent white %s.png’ %
(method, method))

image_commands.append(
’pdftk %s output tmp.pdf’ % pdf_files)

num_rows = int(round(len(dt_values)/2.0))
image_commands.append(

’pdfnup --nup 2x%d tmp.pdf’ % num_rows)
image_commands.append(

’pdfcrop tmp-nup.pdf %s.pdf’ % method)

for cmd in image_commands:
print cmd
failure = os.system(cmd)
if failure:

print ’Command failed:’, cmd; sys.exit(1)

# Remove the files generated above and by decay_mod.py
from glob import glob
filenames = glob(’*_*.png’) + glob(’*_*.pdf’) + \

glob(’*_*.eps’) + glob(’tmp*.pdf’)
for filename in filenames:

os.remove(filename)

if __name__ == ’__main__’:
run_experiments()

This file is available as experiments/decay_exper0.py.
We may comment upon many useful constructs in this script:

• [float(arg) for arg in sys.argv[1:]] builds a list of real numbers
from all the command-line arguments.

• failure = os.system(cmd) runs an operating system command, e.g.,
another program. The execution is successful only if failure is zero.

• Unsuccessful execution usually makes it meaningless to continue the pro-
gram, and therefore we abort the program with sys.exit(1). Any argu-
ment different from 0 signifies to the computer’s operating system that our
program stopped with a failure.
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• [’%s_%s.png’ % (method, dt) for dt in dt_values] builds a list of
filenames from a list of numbers (dt_values).

• All montage, convert, pdftk, pdfnup, and pdfcrop commands for creating
composite figures are stored in a list and later executed in a loop.

• glob(’*_*.png’) returns a list of the names of all files in the current
directory where the filename matches the Unix wildcard notation *_*.png

(meaning any text, underscore, any text, and then .png).

• os.remove(filename) removes the file with name filename.

4.3 Interpreting output from other programs

Programs that run other programs, like decay_exper0.py does, will often need
to interpret output from those programs. Let us demonstrate how this is done
in Python by extracting the relations between θ, ∆t, and the error E as written
to the terminal window by the decay_mod.py program, when being executed by
decay_exper0.py. We will

• read the output from the decay_mod.py program

• interpret this output and store the E values in arrays for each θ value

• plot E versus ∆t, for each θ, in a log-log plot

The simple os.system(cmd) call does not allow us to read the output from
running cmd. Instead we need to invoke a bit more involved procedure:

from subprocess import Popen, PIPE, STDOUT
p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT)
output, dummy = p.communicate()
failure = p.returncode
if failure:

print ’Command failed:’, cmd; sys.exit(1)

The command stored in cmd is run and all text that is written to the standard
output and the standard error is available in the string output. Or in other
words, the text in output is what appeared in the terminal window while running
cmd.

Our next task is to run through the output string, line by line, and if the
current line prints θ, ∆t, and E, we split the line into these three pieces and
store the data. The chosen storage structure is a dictionary errors with keys
dt to hold the ∆t values in a list, and three θ keys to hold the corresponding E
values in a list. The relevant code lines are
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errors = {’dt’: dt_values, 1: [], 0: [], 0.5: []}
for line in output.splitlines():

words = line.split()
if words[0] in (’0.0’, ’0.5’, ’1.0’): # line with E?

# typical line: 0.0 1.25: 7.463E+00
theta = float(words[0])
E = float(words[2])
errors[theta].append(E)

Note that we do not bother to store the ∆t values as we read them from output,
because we already have these values in the dt_values list.

We are now ready to plot E versus ∆t for θ = 0, 0.5, 1:

import matplotlib.pyplot as plt
plt.loglog(errors[’dt’], errors[0], ’ro-’)
plt.hold(’on’)
plt.loglog(errors[’dt’], errors[0.5], ’b+-’)
plt.loglog(errors[’dt’], errors[1], ’gx-’)
plt.legend([’FE’, ’CN’, ’BE’], loc=’upper left’)
plt.xlabel(’log(time step)’)
plt.ylabel(’log(error)’)
plt.title(’Error vs time step’)
plt.savefig(’error.png’)
plt.savefig(’error.pdf’)

Plots occasionally need some manual adjustments. Here, the axis of the log-log
plot look nicer if we adapt them strictly to the data, see Figure 11. To this end,
we need to compute minE and maxE, and later specify the extent of the axes:

# Find min/max for the axis
E_min = 1E+20; E_max = -E_min
for theta in 0, 0.5, 1:

E_min = min(E_min, min(errors[theta]))
E_max = max(E_max, max(errors[theta]))

plt.loglog(errors[’dt’], errors[0], ’ro-’)
...
plt.axis([min(dt_values), max(dt_values), E_min, E_max])
...

The complete program, incorporating the code snippets above, is found in
experiments/decay_exper1.py. This example can hopefully act as template
for numerous other occasions where one needs to run experiments, extract data
from the output of programs, make plots, and combine several plots in a figure
file. The decay_exper1.py program is organized as a module, and other files
can then easily extend the functionality, as illustrated in the next section.

4.4 Making a report

The results of running computer experiments are best documented in a little
report containing the problem to be solved, key code segments, and the plots
from a series of experiments. At least the part of the report containing the
plots should be automatically generated by the script that performs the set of
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Figure 11: Default plot (left) and manually adjusted axes (right).

experiments, because in that script we know exactly which input data that were
used to generate a specific plot, thereby ensuring that each figure is connected to
the right data. Take a look at an example at http://tinyurl.com/k3sdbuv/

writing_reports//sphinx-cloud/ to see what we have in mind.

Plain HTML. Scientific reports can be written in a variety of formats. Here
we begin with the HTML format which allows efficient viewing of all the ex-
periments in any web browser. The program decay_exper1_html.py calls
decay_exper1.py to perform the experiments and then runs statements for cre-
ating an HTML file with a summary, a section on the mathematical problem, a
section on the numerical method, a section on the solver function implementing
the method, and a section with subsections containing figures that show the
results of experiments where ∆t is varied for θ = 0, 0.5, 1. The mentioned Python
file contains all the details for writing this HTML report. You can view the re-
port on http://tinyurl.com/k3sdbuv/writing_reports//_static/report_

html.html.

HTML with MathJax. Scientific reports usually need mathematical for-
mulas and hence mathematical typesetting. In plain HTML, as used in the
decay_exper1_html.py file, we have to use just the keyboard characters to
write mathematics. However, there is an extension to HTML, called MathJax,
which allows formulas and equations to be typeset with LATEX syntax and nicely
rendered in web browsers, see Figure 12. A relatively small subset of LATEX
environments is supported, but the syntax for formulas is quite rich. Inline
formulas are look like \( u’=-au \) while equations are surrounded by $$

signs. Inside such signs, one can use \[ u’=-au \] for unnumbered equations,
or \begin{equation} and \end{equation} surrounding u’=-au for numbered
equations, or \begin{align} and \end{align} for multiple aligned equations.
You need to be familiar with mathematical typesetting in LaTeX.
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The file decay_exper1_mathjax.py contains all the details for turning the
previous plain HTML report into web pages with nicely typeset mathematics.
The corresponding HTML code be studied to see all details of the mathematical
typesetting.

Figure 12: Report in HTML format with MathJax.

LATEX. The de facto language for mathematical typesetting and scientific
report writing is LaTeX. A number of very sophisticated packages have been
added to the language over a period of three decades, allowing very fine-tuned
layout and typesetting. For output in the PDF format, see Figure 13 for an
example, LATEX is the definite choice when it comes to quality. The LATEX
language used to write the reports has typically a lot of commands involving
backslashes and braces. For output on the web, using HTML (and not the PDF
directly in the browser window), LATEX struggles with delivering high quality
typesetting. Other tools, especially Sphinx, give better results and can also
produce nice-looking PDFs. The file decay_exper1_latex.py shows how to
generate the LATEX source from a program.

Sphinx. Sphinx is a typesetting language with similarities to HTML and
LATEX, but with much less tagging. It has recently become very popular for
software documentation and mathematical reports. Sphinx can utilize LATEX for
mathematical formulas and equations (via MathJax or PNG images). Unfortu-
nately, the subset of LATEX mathematics supported is less than in full MathJax
(in particular, numbering of multiple equations in an align type environment
is not supported). The Sphinx syntax is an extension of the reStructuredText
language. An attractive feature of Sphinx is its rich support for fancy layout
of web pages. In particular, Sphinx can easily be combined with various layout
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Figure 13: Report in PDF format generated from LATEX source.

themes that give a certain look and feel to the web site and that offers table of
contents, navigation, and search facilities, see Figure 14.

Figure 14: Report in HTML format generated from Sphinx source.

Markdown. A recently popular format for easy writing of web pages is Mark-
down. Text is written very much like one would do in email, using spacing and
special characters to naturally format the code instead of heavily tagging the
text as in LATEX and HTML. With the tool Pandoc one can go from Markdown
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to a variety of formats. HTML is a common output format, but LATEX, epub,
XML, OpenOffice, MediaWiki, and MS Word are some other possibilities.

Wiki formats. A range of wiki formats are popular for creating notes on the
web, especially documents which allow groups of people to edit and add content.
Apart from MediaWiki (the wiki format used for Wikipedia), wiki formats have
no support for mathematical typesetting and also limited tools for displaying
computer code in nice ways. Wiki formats are therefore less suitable for scientific
reports compared to the other formats mentioned here.

Doconce. Since it is difficult to choose the right tool or format for writing a
scientific report, it is advantageous to write the content in a format that easily
translates to LATEX, HTML, Sphinx, Markdown, and various wikis. Doconce is
such a tool. It is similar to Pandoc, but offers some special convenient features for
writing about mathematics and programming. The tagging is modest, somewhere
between LATEX and Markdown. The program decay_exper_do.py demonstrates
how to generate (and write) Doconce code for a report.

Worked example. The HTML, LATEX (PDF), Sphinx, and Doconce formats
for the scientific report whose content is outlined above, are exemplified with
source codes and results at the web pages associated with this teaching material:
http://tinyurl.com/k3sdbuv/writing_reports/.

4.5 Publishing a complete project

A report documenting scientific investigations should be accompanied by all the
software and data used for the investigations so that others have a possibility to
redo the work and assess the qualify of the results. This possibility is important
for reproducible research and hence reaching reliable scientific conclusions.

One way of documenting a complete project is to make a directory tree with
all relevant files. Preferably, the tree is published at some project hosting site
like Bitbucket, GitHub, or Googlecode so that others can download it as a tarfile,
zipfile, or clone the files directly using a version control system like Mercurial
or Git. For the investigations outlined in Section 4.4, we can create a directory
tree with files

setup.py
./src:

decay_mod.py
./doc:

./src:
decay_exper1_mathjax.py
make_report.sh
run.sh

./pub:
report.html

The src directory holds source code (modules) to be reused in other projects,
the setup.py builds and installs such software, the doc directory contains the
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documentation, with src for the source of the documentation and pub for ready-
made, published documentation. The run.sh file is a simple Bash script listing
the python command we used to run decay_exper1_mathjax.py to generate
the experiments and the report.html file.

5 Exercises and Problems

Exercise 1: Derive schemes for Newton’s law of cooling

Show in detail how we can apply the ideas of the Forward Euler, Backward
Euler, Crank-Nicolson, and θ-rule discretizations to derive explicit computational
formulas for new temperature values in Newton’s law of cooling (see Section 11.5):

dT

dt
= −k(T − Ts), T (0) = T0 . (50)

Here, T is the temperature of the body, Ts is the temperature of the surroundings,
t is time, k is the heat transfer coefficient, and T0 is the initial temperature of
the body.

Filename: schemes_cooling.pdf.

Exercise 2: Implement schemes for Newton’s law of cooling

Formulate a θ-rule for the three schemes in Exercise 1 such that you can get
the three schemes from a single formula by varying the θ parameter. Implement
the θ scheme in a function cooling(T0, k, T_s, t_end, dt, theta=0.5),
where T0 is the initial temperature, k is the heat transfer coefficient, T_s is the
temperature of the surroundings, t_end is the end time of the simulation, dt is
the time step, and theta corresponds to θ. The cooling function should return
the temperature as an array T of values at the mesh points and the time mesh t.
Construct verification examples to check that the implementation works.

Hint. For verification, try to find an exact solution of the discrete equations.
A trick is to introduce u = T − Ts, observe that un = (T0 − Ts)An for some
amplification factor A, and then express this formula in terms of Tn.

Filename: cooling.py.

Exercise 3: Find time of murder from body temperature

A detective measures the temperature of a dead body to be 26.7 C at 2 pm. One
hour later the temperature is 25.8 C. The question is when death occurred.

Assume that Newton’s law of cooling (120) is an appropriate mathematical
model for the evolution of the temperature in the body. First, determine k
in (120) by formulating a Forward Euler approximation with one time steep
from time 2 am to time 3 am, where knowing the two temperatures allows for
finding k. Assume the temperature in the air to be 20 C. Thereafter, simulate
the temperature evolution from the time of murder, taken as t = 0, when
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T = 37 C, until the temperature reaches 25.8 C. The corresponding time allows
for answering when death occurred. Filename: detective.py.

Exercise 4: Experiment with integer division

Explain what happens in the following computations, where some are mathe-
matically unexpected:

>>> dt = 3
>>> T = 8
>>> Nt = T/dt
>>> Nt
2
>>> theta = 1; a = 1
>>> (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
0

Filename: pyproblems.txt.

Exercise 5: Experiment with wrong computations

Consider the solver function in the decay_v1.py file and the following call:

u, t = solver(I=1, a=1, T=7, dt=2, theta=1)

The output becomes
t= 0.000 u=1
t= 2.000 u=0
t= 4.000 u=0
t= 6.000 u=0

Print out the result of all intermediate computations and use type(v) to see the
object type of the result stored in v. Examine the intermediate calculations and
explain why u is wrong and why we compute up to t = 6 only even though we
specified T = 7. Filename: decay_v1_err.py.

Exercise 6: Plot the error function

Solve the problem u′ = −au, u(0) = I, using the Forward Euler, Backward Euler,
and Crank-Nicolson schemes. For each scheme, plot the error function en =
ue(tn)−un for ∆t, 1

4∆t, and 1
8∆t, where ue is the exact solution of the ODE and

un is the numerical solution at mesh point tn. Filename: decay_plot_error.py.

Exercise 7: Compare methods for a given time mesh

Make a program that imports the solver function from the decay_mod module
and offers a function compare(dt, I, a) for comparing, in a plot, the methods
corresponding to θ = 0, 0.5, 1 and the exact solution. This plot shows the accuracy
of the methods for a given time mesh. Read input data for the problem from
the command line using appropriate functions in the decay_mod module (the
--dt option for giving several time step values can be reused: just use the first
time step value for the computations). Filename: decay_compare_theta.py.
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Exercise 8: Change formatting of numbers and debug

The decay_memsave.py program writes the time values and solution values to a
file which looks like

0.0000000000000000E+00 1.0000000000000000E+00
2.0000000000000001E-01 8.3333333333333337E-01
4.0000000000000002E-01 6.9444444444444453E-01
6.0000000000000009E-01 5.7870370370370383E-01
8.0000000000000004E-01 4.8225308641975323E-01
1.0000000000000000E+00 4.0187757201646102E-01
1.2000000000000000E+00 3.3489797668038418E-01
1.3999999999999999E+00 2.7908164723365347E-01

Modify the file output such that it looks like

0.000 1.00000
0.200 0.83333
0.400 0.69444
0.600 0.57870
0.800 0.48225
1.000 0.40188
1.200 0.33490
1.400 0.27908

Run the modified program

Terminal> python decay_memsave_v2.py --T 10 --theta 1 \
--dt 0.2 --makeplot

The program just prints Bug in the implementation! and does not show the
plot. What went wrong? Filename: decay_memsave_v2.py.

Problem 9: Write a doctest

Type in the following program and equip the roots function with a doctest:

import sys
# This sqrt(x) returns real if x>0 and complex if x<0
from numpy.lib.scimath import sqrt

def roots(a, b, c):
"""
Return the roots of the quadratic polynomial
p(x) = a*x**2 + b*x + c.

The roots are real or complex objects.
"""
q = b**2 - 4*a*c
r1 = (-b + sqrt(q))/(2*a)
r2 = (-b - sqrt(q))/(2*a)
return r1, r2

a, b, c = [float(arg) for arg in sys.argv[1:]]
print roots(a, b, c)

Make sure to test both real and complex roots. Write out numbers with 14 digits
or less. Filename: doctest_roots.py.
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Problem 10: Write a nose test

Make a nose test for the roots function in Problem 9. Filename: test_roots.py.

Problem 11: Make a module

Let

q(t) =
RAeat

R+A(eat − 1)
.

Make a Python module q_module containing two functions q(t) and dqdt(t) for
computing q(t) and q′(t), respectively. Perform a from numpy import * in this
module. Import q and dqdt in another file using the ”star import” construction
from q_module import *. All objects available in this file is given by dir().
Print dir() and len(dir()). Then change the import of numpy in q_module.py

to import numpy as np. What is the effect of this import on the number of
objects in dir() in a file that does from q_module import *?

Filename: q_module.py.

Exercise 12: Make use of a class implementation

We want to solve the exponential decay problem u′ = −au, u(0) = I, for several
∆t values and θ = 0, 0.5, 1. For each ∆t value, we want to make a plot where the
three solutions corresponding to θ = 0, 0.5, 1 appear along with the exact solution.
Write a function experiment to accomplish this. The function should import the
classes Problem, Solver, and Visualizer from the decay_class module and
make use of these. A new command-line option --dt_values must be added to
allow the user to specify the ∆t values on the command line (the options --dt

and --theta implemented by the decay_class module have then no effect when
running the experiment function). Note that the classes in the decay_class

module should not be modified. Filename: decay_class_exper.py.

Exercise 13: Generalize a class implementation

Consider the file decay_class.py where the exponential decay problem u′ =
−au, u(0) = I, is implemented via the classes Problem, Solver, and Visualizer.
Extend the classes to handle the more general problem

u′(t) = −a(t)u(t) + b(t), u(0) = I, t ∈ (0, T ],

using the θ-rule for discretization.
In the case with arbitrary functions a(t) and b(t) the problem class is no

longer guaranteed to provide an exact solution. Let the exact_solution in
class Problem return None if the exact solution for the particular problem is not
available. Modify classes Solver and Visualizer accordingly.

Add test functions test_*() for the nose testing tool in the module. Also
add a demo example where the environment suddenly changes (modeled as an
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abrupt change in the decay rate a):

a(t) =

{
1, 0 ≤ t ≤ tp,
k, t > tp,

where tp is the point of time the environment changes. Take tp = 1 and
make plots that illustrate the effect of having k � 1 and k � 1. Filename:
decay_class2.py.

Exercise 14: Generalize an advanced class implementation

Solve Exercise 13 by utilizing the class implementations in decay_class_oo.py.
Filename: decay_class3.py.

6 Analysis of finite difference equations

We address the ODE for exponential decay,

u′(t) = −au(t), u(0) = I, (51)

where a and I are given constants. This problem is solved by the θ-rule finite
difference scheme, resulting in the recursive equations

un+1 =
1− (1− θ)a∆t

1 + θa∆t
un (52)

for the numerical solution un+1, which approximates the exact solution ue at time
point tn+1. For constant mesh spacing, which we assume here, tn+1 = (n+ 1)∆t.

Discouraging numerical solutions. Choosing I = 1, a = 2, and running
experiments with θ = 1, 0.5, 0 for ∆t = 1.25, 0.75, 0.5, 0.1, gives the results in
Figures 15, 16, and 17.

The characteristics of the displayed curves can be summarized as follows:

• The Backward Euler scheme always gives a monotone solution, lying above
the exact curve.

• The Crank-Nicolson scheme gives the most accurate results, but for ∆t =
1.25 the solution oscillates.

• The Forward Euler scheme gives a growing, oscillating solution for ∆t =
1.25; a decaying, oscillating solution for ∆t = 0.75; a strange solution
un = 0 for n ≥ 1 when ∆t = 0.5; and a solution seemingly as accurate as
the one by the Backward Euler scheme for ∆t = 0.1, but the curve lies
below the exact solution.

Since the exact solution of our model problem is a monotone function, u(t) =
Ie−at, some of these qualitatively wrong results are indeed alarming!
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Figure 15: Backward Euler.

Goal.
We ask the question

• Under what circumstances, i.e., values of the input data I, a, and ∆t
will the Forward Euler and Crank-Nicolson schemes result in undesired
oscillatory solutions?

The question will be investigated both by numerical experiments and by
precise mathematical theory. The latter will help establish general critera
on ∆t for avoiding non-physical oscillatory or growing solutions.

Another question to be raised is

• How does ∆t impact the error in the numerical solution?

For our simple model problem we can answer this question very precisely,
but we will also look at simplified formulas for small ∆t and touch upon
important concepts such as convergence rate and the order of a scheme.
Other fundamental concepts mentioned are stability, consistency, and con-
vergence.
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Figure 16: Crank-Nicolson.

6.1 Experimental investigation of oscillatory solutions

To address the first question above, we may set up an experiment where we
loop over values of I, a, and ∆t. For each experiment, we flag the solution as
oscillatory if

un > un−1,

for some value of n, since we expect un to decay with n, but oscillations make u
increase over a time step. We will quickly see that oscillations are independent
of I, but do depend on a and ∆t. Therefore, we introduce a two-dimensional
function B(a,∆t) which is 1 if oscillations occur and 0 otherwise. We can
visualize B as a contour plot (lines for which B = const). The contour B = 0.5
corresponds to the borderline between oscillatory regions with B = 1 and
monotone regions with B = 0 in the a,∆t plane.

The B function is defined at discrete a and ∆t values. Say we have given P a
values, a0, . . . , aP−1, and Q ∆t values, ∆t0, . . . ,∆tQ−1. These ai and ∆tj values,
i = 0, . . . , P −1, j = 0, . . . , Q−1, form a rectangular mesh of P ×Q points in the
plane. At each point (ai,∆tj), we associate the corresponding value of B(ai,∆tj),
denoted Bij . The Bij values are naturally stored in a two-dimensional array. We
can thereafter create a plot of the contour line Bij = 0.5 dividing the oscillatory
and monotone regions. The file decay_osc_regions.py osc_regions stands
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Figure 17: Forward Euler.

for ”oscillatory regions”) contains all nuts and bolts to produce the B = 0.5 line
in Figures 18 and 19. The oscillatory region is above this line.

from decay_mod import solver
import numpy as np
import scitools.std as st

def non_physical_behavior(I, a, T, dt, theta):
"""
Given lists/arrays a and dt, and numbers I, dt, and theta,
make a two-dimensional contour line B=0.5, where B=1>0.5
means oscillatory (unstable) solution, and B=0<0.5 means
monotone solution of u’=-au.
"""
a = np.asarray(a); dt = np.asarray(dt) # must be arrays
B = np.zeros((len(a), len(dt))) # results
for i in range(len(a)):

for j in range(len(dt)):
u, t = solver(I, a[i], T, dt[j], theta)
# Does u have the right monotone decay properties?
correct_qualitative_behavior = True
for n in range(1, len(u)):

if u[n] > u[n-1]: # Not decaying?
correct_qualitative_behavior = False
break # Jump out of loop
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B[i,j] = float(correct_qualitative_behavior)
a_, dt_ = st.ndgrid(a, dt) # make mesh of a and dt values
st.contour(a_, dt_, B, 1)
st.grid(’on’)
st.title(’theta=%g’ % theta)
st.xlabel(’a’); st.ylabel(’dt’)
st.savefig(’osc_region_theta_%s.png’ % theta)
st.savefig(’osc_region_theta_%s.pdf’ % theta)

non_physical_behavior(
I=1,
a=np.linspace(0.01, 4, 22),
dt=np.linspace(0.01, 4, 22),
T=6,
theta=0.5)

Figure 18: Forward Euler scheme: oscillatory solutions occur for points above
the curve.

By looking at the curves in the figures one may guess that a∆t must be less
than a critical limit to avoid the undesired oscillations. This limit seems to be
about 2 for Crank-Nicolson and 1 for Forward Euler. We shall now establish
a precise mathematical analysis of the discrete model that can explain the
observations in our numerical experiments.
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Figure 19: Crank-Nicolson scheme: oscillatory solutions occur for points above
the curve.

6.2 Exact numerical solution

Starting with u0 = I, the simple recursion (52) can be applied repeatedly n
times, with the result that

un = IAn, A =
1− (1− θ)a∆t

1 + θa∆t
. (53)

Solving difference equations.

Difference equations where all terms are linear in un+1, un, and maybe
un−1, un−2, etc., are called homogeneous, linear difference equations, and
their solutions are generally of the form un = An. Inserting this expression
and dividing by An+1 gives a polynomial equation in A. In the present case
we get

A =
1− (1− θ)a∆t

1 + θa∆t
.

This is a solution technique of wider applicability than repeated use of the
recursion (52).

Regardless of the solution approach, we have obtained a formula for un. This
formula can explain everything what we see in the figures above, but it also
gives us a more general insight into accuracy and stability properties of the three
schemes.
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6.3 Stability

Since un is a factor A raised to an integer power n, we realize that A < 0 will
for odd powers imply un < 0 and for even power result in un > 0. That is, the
solution oscillates between the mesh points. We have oscillations due to A < 0
when

(1− θ)a∆t > 1 . (54)

Since A > 0 is a requirement for having a numerical solution with the same
basic property (monotonicity) as the exact solution, we may say that A > 0 is a
stability criterion. Expressed in terms of ∆t the stability criterion reads

∆t <
1

(1− θ)a
. (55)

The Backward Euler scheme is always stable since A < 0 is impossible for
θ = 1, while non-oscillating solutions for Forward Euler and Crank-Nicolson
demand ∆t ≤ 1/a and ∆t ≤ 2/a, respectively. The relation between ∆t and a
look reasonable: a larger a means faster decay and hence a need for smaller time
steps.

Looking at Figure 17, we see that with a∆t = 2 · 1.25 = 2.5, A = −1.5, and
the solution un = (−1.5)n oscillates and grows. With a∆t = 2 · 0.75 = 1.5,
A = −0.5, un = (−0.5)n decays but oscillates. The peculiar case ∆t = 0.5,
where the Forward Euler scheme produces a solution that is stuck on the t axis,
corresponds to A = 0 and therefore u0 = I = 1 and un = 0 for n ≥ 1. The
decaying oscillations in the Crank-Nicolson scheme for ∆t = 1.25 are easily
explained by the fact that A ≈ −0.11 < 0.

The factor A is called the amplification factor since the solution at a new time
level is A times the solution at the previous time level. For a decay process, we
must obviously have |A| ≤ 1, which is fulfilled for all ∆t if θ ≥ 1/2. Arbitrarily
large values of u can be generated when |A| > 1 and n is large enough. The
numerical solution is in such cases totally irrelevant to an ODE modeling decay
processes! To avoid this situation, we must for θ < 1/2 have

∆t ≤ 2

(1− 2θ)a
, (56)

which means ∆t < 2/a for the Forward Euler scheme.

Stability properties.

We may summarize the stability investigations as follows:

1. The Forward Euler method is a conditionally stable scheme because
it requires ∆t < 2/a for avoiding growing solutions and ∆t < 1/a for
avoiding oscillatory solutions.
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2. The Crank-Nicolson is unconditionally stable with respect to growing
solutions, while it is conditionally stable with the criterion ∆t < 2/a
for avoiding oscillatory solutions.

3. The Backward Euler method is unconditionally stable with respect to
growing and oscillatory solutions - any ∆t will work.

Much literature on ODEs speaks about L-stable and A-stable methods. In
our case A-stable methods ensures non-growing solutions, while L-stable
methods also avoids oscillatory solutions.

6.4 Comparing amplification factors

After establishing how A impacts the qualitative features of the solution, we shall
now look more into how well the numerical amplification factor approximates
the exact one. The exact solution reads u(t) = Ie−at, which can be rewritten as

ue(tn) = Ie−an∆t = I(e−a∆t)n . (57)

From this formula we see that the exact amplification factor is

Ae = e−a∆t . (58)

We realize that the exact and numerical amplification factors depend on a and
∆t through the product a∆t. Therefore, it is convenient to introduce a symbol
for this product, p = a∆t, and view A and Ae as functions of p. Figure 20 shows
these functions. Crank-Nicolson is clearly closest to the exact amplification
factor, but that method has the unfortunate oscillatory behavior when p > 2.

6.5 Series expansion of amplification factors

As an alternative to the visual understanding inherent in Figure 20, there is a
strong tradition in numerical analysis to establish formulas for the approximation
errors when the discretization parameter, here ∆t, becomes small. In the present
case we let p be our small discretization parameter, and it makes sense to simplify
the expressions for A and Ae by using Taylor polynomials around p = 0. The
Taylor polynomials are accurate for small p and greatly simplifies the comparison
of the analytical expressions since we then can compare polynomials, term by
term.

Calculating the Taylor series for Ae is easily done by hand, but the three
versions of A for θ = 0, 1, 1

2 lead to more cumbersome calculations. Nowadays,
analytical computations can benefit greatly by symbolic computer algebra soft-
ware. The Python package sympy represents a powerful computer algebra system,
not yet as sophisticated as the famous Maple and Mathematica systems, but
free and very easy to integrate with our numerical computations in Python.

When using sympy, it is convenient to enter the interactive Python mode
where we can write expressions and statements and immediately see the results.
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Figure 20: Comparison of amplification factors.

Here is a simple example. We strongly recommend to use isympy (or ipython)
for such interactive sessions.

Let us illustrate sympy with a standard Python shell syntax (>>> prompt) to
compute a Taylor polynomial approximation to e−p:

>>> from sympy import *
>>> # Create p as a mathematical symbol with name ’p’
>>> p = Symbol(’p’)
>>> # Create a mathematical expression with p
>>> A_e = exp(-p)
>>>
>>> # Find the first 6 terms of the Taylor series of A_e
>>> A_e.series(p, 0, 6)
1 + (1/2)*p**2 - p - 1/6*p**3 - 1/120*p**5 + (1/24)*p**4 + O(p**6)

Lines with >>> represent input lines and lines without this prompt represents
the result of computations (note that isympy and ipython apply other prompts,
but in this text we always apply >>> for interactive Python computing). Apart
from the order of the powers, the computed formula is easily recognized as the
beginning of the Taylor series for e−p.

Let us define the numerical amplification factor where p and θ enter the
formula as symbols:

>>> theta = Symbol(’theta’)
>>> A = (1-(1-theta)*p)/(1+theta*p)

To work with the factor for the Backward Euler scheme we can substitute the
value 1 for theta:
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>>> A.subs(theta, 1)
1/(1 + p)

Similarly, we can replace theta by 1/2 for Crank-Nicolson, preferably using an
exact rational representation of 1/2 in sympy:

>>> half = Rational(1,2)
>>> A.subs(theta, half)
1/(1 + (1/2)*p)*(1 - 1/2*p)

The Taylor series of the amplification factor for the Crank-Nicolson scheme
can be computed as

>>> A.subs(theta, half).series(p, 0, 4)
1 + (1/2)*p**2 - p - 1/4*p**3 + O(p**4)

We are now in a position to compare Taylor series:

>>> FE = A_e.series(p, 0, 4) - A.subs(theta, 0).series(p, 0, 4)
>>> BE = A_e.series(p, 0, 4) - A.subs(theta, 1).series(p, 0, 4)
>>> CN = A_e.series(p, 0, 4) - A.subs(theta, half).series(p, 0, 4 )
>>> FE
(1/2)*p**2 - 1/6*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (5/6)*p**3 + O(p**4)
>>> CN
(1/12)*p**3 + O(p**4)

From these expressions we see that the error A−Ae ∼ O(p2) for the Forward
and Backward Euler schemes, while A − Ae ∼ O(p3) for the Crank-Nicolson
scheme. It is the leading order term, i.e., the term of the lowest order (polynomial
degree), that is of interest, because as p→ 0, this term is (much) bigger than
the higher-order terms (think of p = 0.01: p is a hundred times larger than p2).

Now, a is a given parameter in the problem, while ∆t is what we can vary.
One therefore usually writes the error expressions in terms ∆t. When then have

A−Ae =

{
O(∆t2), Forward and Backward Euler,
O(∆t3), Crank-Nicolson

(59)

We say that the Crank-Nicolson scheme has an error in the amplification
factor of order ∆t3, while the two other schemes are of order ∆t2 in the same
quantity. What is the significance of the order expression? If we halve ∆t,
the error in amplification factor at a time level will be reduced by a factor of
4 in the Forward and Backward Euler schemes, and by a factor of 8 in the
Crank-Nicolson scheme. That is, as we reduce ∆t to obtain more accurate
results, the Crank-Nicolson scheme reduces the error more efficiently than the
other schemes.
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6.6 The fraction of numerical and exact amplification fac-
tors

An alternative comparison of the schemes is to look at the ratio A/Ae, or the
error 1−A/Ae in this ratio:

>>> FE = 1 - (A.subs(theta, 0)/A_e).series(p, 0, 4)
>>> BE = 1 - (A.subs(theta, 1)/A_e).series(p, 0, 4)
>>> CN = 1 - (A.subs(theta, half)/A_e).series(p, 0, 4)
>>> FE
(1/2)*p**2 + (1/3)*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (1/3)*p**3 + O(p**4)
>>> CN
(1/12)*p**3 + O(p**4)

The leading-order terms have the same powers as in the analysis of A−Ae.

6.7 The global error at a point

The error in the amplification factor reflects the error when progressing from
time level tn to tn−1. To investigate the real error at a point, known as the
global error, we look at en = un − ue(tn) for some n and Taylor expand the
mathematical expressions as functions of p = a∆t:

>>> n = Symbol(’n’)
>>> u_e = exp(-p*n)
>>> u_n = A**n
>>> FE = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
>>> BE = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)
>>> CN = u_e.series(p, 0, 4) - u_n.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*n*p**2 - 1/2*n**2*p**3 + (1/3)*n*p**3 + O(p**4)
>>> BE
(1/2)*n**2*p**3 - 1/2*n*p**2 + (1/3)*n*p**3 + O(p**4)
>>> CN
(1/12)*n*p**3 + O(p**4)

For a fixed time t, the parameter n in these expressions increases as p→ 0 since
t = n∆t = const and hence n must increase like ∆t−1. With n substituted
by t/∆t in the leading-order error terms, these become 1

2na
2∆t2 = 1

2 ta
2∆t for

the Forward and Backward Euler scheme, and 1
12na

3∆t3 = 1
12 ta

3∆t2 for the
Crank-Nicolson scheme. The global error is therefore of second order (in ∆t) for
the latter scheme and of first order for the former schemes.

When the global error en → 0 as ∆t→ 0, we say that the scheme is convergent.
It means that the numerical solution approaches the exact solution as the mesh
is refined, and this is a much desired property of a numerical method.

6.8 Integrated errors

It is common to study the norm of the numerical error, as explained in detail in
Section 2.4. The L2 norm can be computed by treating en as a function of t in
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sympy and performing symbolic integration. For the Forward Euler scheme we
have

p, n, a, dt, t, T, theta = symbols(’p n a dt t T ’theta’)
A = (1-(1-theta)*p)/(1+theta*p)
u_e = exp(-p*n)
u_n = A**n
error = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
# Introduce t and dt instead of n and p
error = error.subs(’n’, ’t/dt’).subs(p, ’a*dt’)
error = error.as_leading_term(dt) # study only the first term
print error
error_L2 = sqrt(integrate(error**2, (t, 0, T)))
print error_L2

The output reads

sqrt(30)*sqrt(T**3*a**4*dt**2*(6*T**2*a**2 - 15*T*a + 10))/60

which means that the L2 error behaves like a2∆t.
Strictly speaking, the numerical error is only defined at the mesh points so it

makes most sense to compute the `2 error

||en||`2 =

√√√√∆t

Nt∑
n=0

(ue(tn)− un)2 .

We have obtained an exact analytical expressions for the error at t = tn, but
here we use the leading-order error term only since we are mostly interested in
how the error behaves as a polynomial in ∆t, and then the leading order term
will dominate. For the Forward Euler scheme, ue(tn)− un ≈ 1

2np
2, and we have

||en||2`2 = ∆t

Nt∑
n=0

1

4
n2p4 = ∆t

1

4
p4

Nt∑
n=0

n2 .

Now,
∑Nt

n=0 n
2 ≈ 1

3N
3
t . Using this approximation, setting Nt = T/∆t, and

taking the square root gives the expression

||en||`2 =
1

2

√
T 3

3
a2∆t .

Calculations for the Backward Euler scheme are very similar and provide the
same result, while the Crank-Nicolson scheme leads to

||en||`2 =
1

12

√
T 3

3
a3∆t2 .

Summary of errors.
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Both the point-wise and the time-integrated true errors are of second order
in ∆t for the Crank-Nicolson scheme and of first order in ∆t for the Forward
Euler and Backward Euler schemes.

6.9 Truncation error

The truncation error is a very frequently used error measure for finite difference
methods. It is defined as the error in the difference equation that arises when
inserting the exact solution. Contrary to many other error measures, e.g., the
true error en = ue(tn) − un, the truncation error is a quantity that is easily
computable.

Let us illustrate the calculation of the truncation error for the Forward Euler
scheme. We start with the difference equation on operator form,

[Dtu = −au]n,

i.e.,

un+1 − un

∆t
= −aun .

The idea is to see how well the exact solution ue(t) fulfills this equation. Since
ue(t) in general will not obey the discrete equation, error in the discrete equation,
called a residual, denoted here by Rn:

Rn =
ue(tn+1)− ue(tn)

∆t
+ aue(tn) . (60)

The residual is defined at each mesh point and is therefore a mesh function with
a superscript n.

The interesting feature of Rn is to see how it depends on the discretization
parameter ∆t. The tool for reaching this goal is to Taylor expand ue around the
point where the difference equation is supposed to hold, here t = tn. We have
that

ue(tn+1) = ue(tn) + u′e(tn)∆t+
1

2
u′′e (tn)∆t2 + · · ·

Inserting this Taylor series in (60) gives

Rn = u′e(tn) +
1

2
u′′e (tn)∆t+ . . .+ aue(tn) .

Now, ue fulfills the ODE u′e = −aue such that the first and last term cancels
and we have

Rn ≈ 1

2
u′′e (tn)∆t .

This Rn is the truncation error, which for the Forward Euler is seen to be of
first order in ∆t.
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The above procedure can be repeated for the Backward Euler and the Crank-
Nicolson schemes. We start with the scheme in operator notation, write it out in
detail, Taylor expand ue around the point t̃ at which the difference equation is
defined, collect terms that correspond to the ODE (here u′e + aue), and identify
the remaining terms as the residual R, which is the truncation error. The
Backward Euler scheme leads to

Rn ≈ −1

2
u′′e (tn)∆t,

while the Crank-Nicolson scheme gives

Rn+ 1
2 ≈ 1

24
u′′′e (tn+ 1

2
)∆t2 .

The order r of a finite difference scheme is often defined through the leading
term ∆tr in the truncation error. The above expressions point out that the
Forward and Backward Euler schemes are of first order, while Crank-Nicolson
is of second order. We have looked at other error measures in other sections,
like the error in amplification factor and the error en = ue(tn) − un, and
expressed these error measures in terms of ∆t to see the order of the method.
Normally, calculating the truncation error is more straightforward than deriving
the expressions for other error measures and therefore the easiest way to establish
the order of a scheme.

6.10 Consistency, stability, and convergence

Three fundamental concepts when solving differential equations by numerical
methods are consistency, stability, and convergence. We shall briefly touch these
concepts below in the context of the present model problem.

Consistency means that the error in the difference equation, measured through
the truncation error, goes to zero as ∆t → 0. Since the truncation error
tells how well the exact solution fulfills the difference equation, and the exact
solution fulfills the differential equation, consistency ensures that the difference
equation approaches the differential equation in the limit. The expressions for the
truncation errors in the previous section are all proportional to ∆t or ∆t2, hence
they vanish as ∆t→ 0, and all the schemes are consistent. Lack of consistency
implies that we actually solve a different differential equation in the limit ∆t→ 0
than we aim at.

Stability means that the numerical solution exhibits the same qualitative
properties as the exact solution. This is obviously a feature we want the numerical
solution to have. In the present exponential decay model, the exact solution is
monotone and decaying. An increasing numerical solution is not in accordance
with the decaying nature of the exact solution and hence unstable. We can also
say that an oscillating numerical solution lacks the property of monotonicity
of the exact solution and is also unstable. We have seen that the Backward
Euler scheme always leads to monotone and decaying solutions, regardless of ∆t,
and is hence stable. The Forward Euler scheme can lead to increasing solutions
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and oscillating solutions if ∆t is too large and is therefore unstable unless ∆t is
sufficiently small. The Crank-Nicolson can never lead to increasing solutions and
has no problem to fulfill that stability property, but it can produce oscillating
solutions and is unstable in that sense, unless ∆t is sufficiently small.

Convergence implies that the global (true) error mesh function en = ue(tn)−
un → 0 as ∆t→ 0. This is really what we want: the numerical solution gets as
close to the exact solution as we request by having a sufficiently fine mesh.

Convergence is hard to establish theoretically, except in quite simple problems
like the present one. Stability and consistency are much easier to calculate. A
major breakthrough in the understanding of numerical methods for differential
equations came in 1956 when Lax and Richtmeyer established equivalence
between convergence on one hand and consistency and stability on the other (the
Lax equivalence theorem). In practice it meant that one can first establish that a
method is stable and consistent, and then it is automatically convergent (which
is much harder to establish). The result holds for linear problems only, and in
the world of nonlinear differential equations the relations between consistency,
stability, and convergence are much more complicated.

We have seen in the previous analysis that the Forward Euler, Backward
Euler, and Crank-Nicolson schemes are convergent (en → 0), that they are
consistent (Rn → 0, and that they are stable under certain conditions on the
size of ∆t. We have also derived explicit mathematical expressions for en, the
truncation error, and the stability criteria.

7 Exercises

Exercise 15: Visualize the accuracy of finite differences u =
e−at

The purpose of this exercise is to visualize the accuracy of finite difference
approximations of the derivative of a given function. For any finite difference
approximation, take the Forward Euler difference as an example, and any specific
function, take u = e−at, we may introduce an error fraction specific

E =
[D+

t u]n

u′(tn)
=

exp (−a(tn + ∆t))− exp (−atn)

−a exp (−atn)
= − 1

a∆t
(exp (−a∆t)− 1) ,

and view E as a function of ∆t. We expect that lim∆t→0E = 1, while E may
deviate significantly from unit for large ∆t. How the error depends on ∆t is best
visualized in a graph where we use a logarithmic scale on for ∆t, so we can cover
many orders of magnitude of that quantity. Here is a code segment creating an
array of 100 intervals, on the logarithmic scale, ranging from 10−6 to 1 and then
plotting E versus p = a∆t with logarithmic scale on the ∆t axis:

from numpy import logspace, exp
from matplotlib.pyplot import plot
p = logspace(-6, 1, 101)
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y = -(exp(-p)-1)/p
semilog(p, y)

Illustrate such errors for the finite difference operators [D+
t u]n (forward), [D−t u]n

(backward), and [Dtu]n (centered).

Perform a Taylor series expansions of the error fractions and find the leading
order r in the expressions of type 1+C∆tr+O(∆tr+1), where C is some constant.
Filename: decay_plot_fd_exp_error.py.

Exercise 16: Explore the θ-rule for exponential growth

This exercise asks you to solve the ODE u′ = −au with a < 0 such that the
ODE models exponential growth instead of exponential decay. A central theme
is to investigate numerical artifacts and non-physical solution behavior.

a) Run experiments with θ and ∆t to uncover numerical artifacts (the exact
solution is a monotone, growing function). Use the insight to design a set of
experiments that aims to demonstrate all types of numerical artifacts for different
choices of ∆t while a is fixed.

Hint. Modify the decay_exper1.py code to suit your needs.

Filename: growth_exper.py.

b) Write a scientific report about the findings.

Hint. Use examples from Section 4.4 to see how scientific reports can be
written.

Filenames: growth_exper.pdf, growth_exper.html.

c) Plot the amplification factors for the various schemes together with the
exact one for a < 0 and use the plot to explain the observations made in the
experiments.

Hint. Modify the decay_ampf_plot.py code.

Filename: growth_ampf.py.

8 Model extensions

It is time to consider generalizations of the simple decay model u = −au and
also to look at additional numerical solution methods.
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8.1 Generalization: including a variable coefficient

In the ODE for decay, u′ = −au, we now consider the case where a depends on
time:

u′(t) = −a(t)u(t), t ∈ (0, T ], u(0) = I . (61)

A Forward Euler scheme consist of evaluating (61) at t = tn and approximat-
ing the derivative with a forward difference [D+

t u]n:

un+1 − un

∆t
= −a(tn)un . (62)

The Backward Euler scheme becomes

un − un−1

∆t
= −a(tn)un . (63)

The Crank-Nicolson method builds on sampling the ODE at tn+ 1
2
. We can

evaluate a at tn+ 1
2

and use an average for u at times tn and tn+1:

un+1 − un

∆t
= −a(tn+ 1

2
)
1

2
(un + un+1) . (64)

Alternatively, we can use an average for the product au:

un+1 − un

∆t
= −1

2
(a(tn)un + a(tn+1)un+1) . (65)

The θ-rule unifies the three mentioned schemes. One version is to have a
evaluated at tn+θ,

un+1 − un

∆t
= −a((1− θ)tn + θtn+1)((1− θ)un + θun+1) . (66)

Another possibility is to apply a weighted average for the product au,

un+1 − un

∆t
= −(1− θ)a(tn)un − θa(tn+1)un+1 . (67)

With the finite difference operator notation the Forward Euler and Backward
Euler schemes can be summarized as

[D+
t u = −au]n, (68)

[D−t u = −au]n . (69)

The Crank-Nicolson and θ schemes depend on whether we evaluate a at the
sample point for the ODE or if we use an average. The various versions are
written as
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[Dtu = −aut]n+ 1
2 , (70)

[Dtu = −aut]n+ 1
2 , (71)

[Dtu = −aut,θ]n+θ, (72)

[Dtu = −aut,θ]n+θ . (73)

8.2 Generalization: including a source term

A further extension of the model ODE is to include a source term b(t):

u′(t) = −a(t)u(t) + b(t), t ∈ (0, T ], u(0) = I . (74)

Schemes. The time point where we sample the ODE determines where b(t) is
evaluated. For the Crank-Nicolson scheme and the θ-rule we have a choice of
whether to evaluate a(t) and b(t) at the correct point or use an average. The
chosen strategy becomes particularly clear if we write up the schemes in the
operator notation:

[D+
t u = −au+ b]n, (75)

[D−t u = −au+ b]n, (76)

[Dtu = −aut + b]n+ 1
2 , (77)

[Dtu = −au+ b
t
]n+ 1

2 , (78)

[Dtu = −aut,θ + b]n+θ, (79)

[Dtu = −au+ b
t,θ

]n+θ . (80)

8.3 Implementation of the generalized model problem

Deriving the θ-rule formula. Writing out the θ-rule in (80), using (32) and
(33), we get

un+1 − un

∆t
= θ(−an+1un+1 + bn+1)) + (1− θ)(−anun + bn)), (81)

where an means evaluating a at t = tn and similar for an+1, bn, and bn+1. We
solve for un+1:

un+1 = ((1−∆t(1− θ)an)un + ∆t(θbn+1 + (1− θ)bn))(1 + ∆tθan+1)−1 . (82)

The Python code. Here is a suitable implementation of (81) where a(t) and
b(t) are given as Python functions:
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def solver(I, a, b, T, dt, theta):
"""
Solve u’=-a(t)*u + b(t), u(0)=I,
for t in (0,T] with steps of dt.
a and b are Python functions of t.
"""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = ((1 - dt*(1-theta)*a(t[n]))*u[n] + \
dt*(theta*b(t[n+1]) + (1-theta)*b(t[n])))/\
(1 + dt*theta*a(t[n+1]))

return u, t

This function is found in the file decay_vc.py (vc stands for ”variable coeffi-
cients”).

Coding of variable coefficients. The solver function shown above demands
the arguments a and b to be Python functions of time t, say

def a(t):
return a_0 if t < tp else k*a_0

def b(t):
return 1

Here, a(t) has three parameters a0, tp, and k, which must be global variables.
A better implementation is to represent a by a class where the parameters are
attributes and a special method __call__ evaluates a(t):

class A:
def __init__(self, a0=1, k=2):

self.a0, self.k = a0, k

def __call__(self, t):
return self.a0 if t < self.tp else self.k*self.a0

a = A(a0=2, k=1) # a behaves as a function a(t)

For quick tests it is cumbersome to write a complete function or a class. The
lambda function construction in Python is then convenient. For example,

a = lambda t: a_0 if t < tp else k*a_0

is equivalent to the def a(t): definition above. In general,

f = lambda arg1, arg2, ...: expressin

is equivalent to
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def f(arg1, arg2, ...):
return expression

One can use lambda functions directly in calls. Say we want to solve u′ = −u+1,
u(0) = 2:

u, t = solver(2, lambda t: 1, lambda t: 1, T, dt, theta)

A lambda function can appear anywhere where a variable can appear.

8.4 Verifying a constant solution

A very useful partial verification method is to construct a test problem with
a very simple solution, usually u = const. Especially the initial debugging of
a program code can benefit greatly from such tests, because 1) all relevant
numerical methods will exactly reproduce a constant solution, 2) many of the
intermediate calculations are easy to control for a constant u, and 3) even a
constant u can uncover many bugs in an implementation.

The only constant solution for the problem u′ = −au is u = 0, but too many
bugs can escape from that trivial solution. It is much better to search for a
problem where u = C = const 6= 0. Then u′ = −a(t)u+ b(t) is more appropriate:
with u = C we can choose any a(t) and set b = a(t)C and I = C. An appropriate
nose test is

import nose.tools as nt

def test_constant_solution():
"""
Test problem where u=u_const is the exact solution, to be
reproduced (to machine precision) by any relevant method.
"""
def exact_solution(t):

return u_const

def a(t):
return 2.5*(1+t**3) # can be arbitrary

def b(t):
return a(t)*u_const

u_const = 2.15
theta = 0.4; I = u_const; dt = 4
Nt = 4 # enough with a few steps
u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
print u
u_e = exact_solution(t)
difference = abs(u_e - u).max() # max deviation
nt.assert_almost_equal(difference, 0, places=14)

An interesting question is what type of bugs that will make the computed un

deviate from the exact solution C. Fortunately, the updating formula and the
initial condition must be absolutely correct for the test to pass! Any attempt to
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make a wrong indexing in terms like a(t[n]) or any attempt to introduce an
erroneous factor in the formula creates a solution that is different from C.

8.5 Verification via manufactured solutions

Following the idea of the previous section, we can choose any formula as the
exact solution, insert the formula in the ODE problem and fit the data a(t), b(t),
and I to make the chosen formula fulfill the equation. This powerful technique
for generating exact solutions is very useful for verification purposes and known
as the method of manufactured solutions, often abbreviated MMS.

One common choice of solution is a linear function in the independent
variable(s). The rationale behind such a simple variation is that almost any
relevant numerical solution method for differential equation problems is able to
reproduce the linear function exactly to machine precision (if u is about unity
in size; precision is lost if u take on large values, see Exercise 17). The linear
solution also makes some stronger demands to the numerical method and the
implementation than the constant solution used in Section 8.4, at least in more
complicated applications. However, the constant solution is often ideal for initial
debugging before proceeding with a linear solution.

We choose a linear solution u(t) = ct+d. From the initial condition it follows
that d = I. Inserting this u in the ODE results in

c = −a(t)u+ b(t) .

Any function u = ct+ I is then a correct solution if we choose

b(t) = c+ a(t)(ct+ I) .

With this b(t) there are no restrictions on a(t) and c.
Let prove that such a linear solution obeys the numerical schemes. To this

end, we must check that un = ca(tn)(ctn + I) fulfills the discrete equations. For
these calculations, and later calculations involving linear solutions inserted in
finite difference schemes, it is convenient to compute the action of a difference
operator on a linear function t:

[D+
t t]

n =
tn+1 − tn

∆t
= 1, (83)

[D−t t]
n =

tn − tn−1

∆t
= 1, (84)

[Dtt]
n =

tn+ 1
2
− tn− 1

2

∆t
=

(n+ 1
2 )∆t− (n− 1

2 )∆t

∆t
= 1 . (85)

Clearly, all three finite difference approximations to the derivative are exact for
u(t) = t or its mesh function counterpart un = tn.

The difference equation for the Forward Euler scheme

[D+
t u = −au+ b]n,
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with an = a(tn), bn = c+ a(tn)(ctn + I), and un = ctn + I then results in

c = −a(tn)(ctn + I) + c+ a(tn)(ctn + I) = c

which is always fulfilled. Similar calculations can be done for the Backward
Euler and Crank-Nicolson schemes, or the θ-rule for that matter. In all cases,
un = ctn + I is an exact solution of the discrete equations. That is why we
should expect that un − ue(tn) = 0 mathematically and |un − ue(tn)| less than
a small number about the machine precision for n = 0, . . . , Nt.

The following function offers an implementation of this verification test based
on a linear exact solution:

def test_linear_solution():
"""
Test problem where u=c*t+I is the exact solution, to be
reproduced (to machine precision) by any relevant method.
"""
def exact_solution(t):

return c*t + I

def a(t):
return t**0.5 # can be arbitrary

def b(t):
return c + a(t)*exact_solution(t)

theta = 0.4; I = 0.1; dt = 0.1; c = -0.5
T = 4
Nt = int(T/dt) # no of steps
u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
u_e = exact_solution(t)
difference = abs(u_e - u).max() # max deviation
print difference
# No of decimal places for comparison depend on size of c
nt.assert_almost_equal(difference, 0, places=14)

Any error in the updating formula makes this test fail!
Choosing more complicated formulas as the exact solution, say cos(t), will not

make the numerical and exact solution coincide to machine precision, because
finite differencing of cos(t) does not exactly yield the exact derivative − sin(t). In
such cases, the verification procedure must be based on measuring the convergence
rates as exemplified in Section 2.8. Convergence rates can be computed as long
as one has an exact solution of a problem that the solver can be tested on, but
this can always be obtained by the method of manufactured solutions.

8.6 Extension to systems of ODEs

Many ODE models involves more than one unknown function and more than
one equation. Here is an example of two unknown functions u(t) and v(t):

u′ = au+ bv, (86)

v′ = cu+ dv, (87)
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for constants a, b, c, d. Applying the Forward Euler method to each equation
results in simple updating formula

un+1 = un + ∆t(aun + bvn), (88)

vn+1 = un + ∆t(cun + dvn) . (89)

On the other hand, the Crank-Nicolson or Backward Euler schemes result in a
2× 2 linear system for the new unknowns. The latter schemes gives

un+1 = un + ∆t(aun+1 + bvn+1), (90)

vn+1 = vn + ∆t(cun+1 + dvn+1) . (91)

Collecting un+1 as well as vn+1 on the left-hand side results in

(1−∆ta)un+1 + bvn+1 = un, (92)

cun+1 + (1−∆td)vn+1 = vn, (93)

which is a system of two coupled, linear, algebraic equations in two unknowns.

9 General first-order ODEs

We now turn the attention to general, nonlinear ODEs and systems of such
ODEs. Our focus is on numerical methods that can be readily reused for time-
discretization PDEs, and diffusion PDEs in particular. The methods are just
briefly listed, and we refer to the rich literature for more detailed descriptions
and analysis - the books [6, 1, 2, 3] are all excellent resources on numerical
methods for ODEs. We also demonstrate the Odespy Python interface to a
range of different software for general first-order ODE systems.

9.1 Generic form

ODEs are commonly written in the generic form

u′ = f(u, t), u(0) = I, (94)

where f(u, t) is some prescribed function. As an example, our most general
exponential decay model (74) has f(u, t) = −a(t)u(t) + b(t).

The unknown u in (94) may either be a scalar function of time t, or a vector
valued function of t in case of a system of ODEs with m unknown components:

u(t) = (u(0)(t), u(1)(t), . . . , u(m−1)(t)) .
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In that case, the right-hand side is vector-valued function with m components,

f(u, t) = (f (0)(u(0)(t), . . . , u(m−1)(t)),

f (1)(u(0)(t), . . . , u(m−1)(t)),

...,

f (m−1)(u(0)(t), . . . , u(m−1)(t))) .

Actually, any system of ODEs can be written in the form (94), but higher-
order ODEs then need auxiliary unknown functions to enable conversion to a
first-order system.

Next we list some well-known methods for u′ = f(u, t), valid both for a
single ODE (scalar u) and systems of ODEs (vector u). The choice of methods
is inspired by the kind of schemes that are popular also for partial differential
equations.

9.2 The θ-rule

The θ-rule scheme applied to u′ = f(u, t) becomes

un+1 − un

∆t
= θf(un+1, tn+1) + (1− θ)f(un, tn) . (95)

Bringing the unknown un+1 to the left-hand side and the known terms on the
right-hand side gives

un+1 −∆tθf(un+1, tn+1) = un + ∆t(1− θ)f(un, tn) . (96)

For a general f (not linear in u), this equation is nonlinear in the unknown un+1

unless θ = 0. For a scalar ODE (m = 1), we have to solve a single nonlinear
algebraic equation for un+1, while for a system of ODEs, we get a system of
coupled, nonlinear algebraic equations. Newton’s method is a popular solution
approach in both cases. Note that with the Forward Euler scheme (θ = 0) we
do not have to deal with nonlinear equations, because in that case we have an
explicit updating formula for un+1. This is known as an explicit scheme. With
θ 6= 1 we have to solve systems of algebraic equations, and the scheme is said to
be implicit.

9.3 An implicit 2-step backward scheme

The implicit backward method with 2 steps applies a three-level backward
difference as approximation to u′(t),

u′(tn+1) ≈ 3un+1 − 4un + un−1

2∆t
,
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which is an approximation of order ∆t2 to the first derivative. The resulting
scheme for u′ = f(u, t) reads

un+1 =
4

3
un − 1

3
un−1 +

2

3
∆tf(un+1, tn+1) . (97)

Higher-order versions of the scheme (97) can be constructed by including more
time levels. These schemes are known as the Backward Differentiation Formulas
(BDF), and the particular version (97) is often referred to as BDF2.

Note that the scheme (97) is implicit and requires solution of nonlinear
equations when f is nonlinear in u. The standard 1st-order Backward Euler
method or the Crank-Nicolson scheme can be used for the first step.

9.4 Leapfrog schemes

The ordinary Leapfrog scheme. The derivative of u at some point tn can
be approximated by a central difference over two time steps,

u′(tn) ≈ un+1 − un−1

2∆t
= [D2tu]n (98)

which is an approximation of second order in ∆t. The scheme can then be
written as

[D2tu = f(u, t)]n,

in operator notation. Solving for un+1 gives

un+1 = un−1 + ∆tf(un, tn) . (99)

Observe that (99) is an explicit scheme, and that a nonlinear f (in u) is trivial
to handle since it only involves the known un value. Some other scheme must
be used as starter to compute u1, preferably the Forward Euler scheme since it
is also explicit.

The filtered Leapfrog scheme. Unfortunately, the Leapfrog scheme (99)
will develop growing oscillations with time (see Problem 22)[[[. A remedy for
such undesired oscillations is to introduce a filtering technique. First, a standard
Leapfrog step is taken, according to (99), and then the previous un value is
adjusted according to

un ← un + γ(un−1 − 2un + un+1) . (100)

The γ-terms will effectively damp oscillations in the solution, especially those
with short wavelength (like point-to-point oscillations). A common choice of γ is
0.6 (a value used in the famous NCAR Climate Model).
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9.5 The 2nd-order Runge-Kutta scheme

The two-step scheme

u∗ = un + ∆tf(un, tn), (101)

un+1 = un + ∆t
1

2
(f(un, tn) + f(u∗, tn+1)) , (102)

essentially applies a Crank-Nicolson method (102) to the ODE, but replaces
the term f(un+1, tn+1) by a prediction f(u∗, tn+1) based on a Forward Euler
step (101). The scheme (101)-(102) is known as Huen’s method, but is also
a 2nd-order Runge-Kutta method. The scheme is explicit, and the error is
expected to behave as ∆t2.

9.6 A 2nd-order Taylor-series method

One way to compute un+1 given un is to use a Taylor polynomial. We may write
up a polynomial of 2nd degree:

un+1 = un + u′(tn)∆t+
1

2
u′′(tn)∆t2 .

From the equation u′ = f(u, t) it follows that the derivatives of u can be expressed
in terms of f and its derivatives:

u′(tn) = f(un, tn),

u′′(tn) =
∂f

∂u
(un, tn)u′(tn) +

∂f

∂t

= f(un, tn)
∂f

∂u
(un, tn) +

∂f

∂t
,

resulting in the scheme

un+1 = un + f(un, tn)∆t+
1

2

(
f(un, tn)

∂f

∂u
(un, tn) +

∂f

∂t

)
∆t2 . (103)

More terms in the series could be included in the Taylor polynomial to obtain
methods of higher order than 2.

9.7 The 2nd- and 3rd-order Adams-Bashforth schemes

The following method is known as the 2nd-order Adams-Bashforth scheme:

un+1 = un +
1

2
∆t
(
3f(un, tn)− f(un−1, tn−1)

)
. (104)

The scheme is explicit and requires another one-step scheme to compute u1 (the
Forward Euler scheme or Heun’s method, for instance). As the name implies,
the scheme is of order ∆t2.
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Another explicit scheme, involving four time levels, is the 3rd-order Adams-
Bashforth scheme

un+1 = un +
1

12

(
23f(un, tn)− 16f(un−1, tn−1) + 5f(un−2, tn−2)

)
. (105)

The numerical error is of order ∆t3, and the scheme needs some method for
computing u1 and u2.

More general, higher-order Adams-Bashforth schemes (also called explicit
Adams methods) compute un+1 as a linear combination of f at k previous time
steps:

un+1 = un +

k∑
j=0

βjf(un−j , tn−j),

where βj are known coefficients.

9.8 4th-order Runge-Kutta scheme

The perhaps most widely used method to solve ODEs is the 4th-order Runge-
Kutta method, often called RK4. Its derivation is a nice illustration of common
numerical approximation strategies, so let us go through the steps in detail.

The starting point is to integrate the ODE u′ = f(u, t) from tn to tn+1:

u(tn+1)− u(tn) =

tn+1∫
tn

f(u(t), t)dt .

We want to compute u(tn+1) and regard u(tn) as known. The task is to find
good approximations for the integral, since the integrand involves the unknown
u between tn and tn+1.

The integral can be approximated by the famous Simpson’s rule:

tn+1∫
tn

f(u(t), t)dt ≈ ∆t

6

(
fn + 4fn+ 1

2 + fn+1
)
.

The problem now is that we do not know fn+ 1
2 = f(un+ 1

2 , tn+1/2) and fn+1 =
(un+1, tn+1) as we know only un and hence fn. The idea is to use various approx-

imations for fn+ 1
2 and fn+1 based on using well-known schemes for the ODE in

the intervals [tn, tn+1/2] and [tn, tn+1]. We split the integral approximation into
four terms:

tn+1∫
tn

f(u(t), t)dt ≈ ∆t

6

(
fn + 2f̂n+ 1

2 + 2f̃n+ 1
2 + f̄n+1

)
,
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where f̂n+ 1
2 , f̃n+ 1

2 , and f̄n+1 are approximations to fn+ 1
2 and fn+1 that can be

based on already computed quantities. For f̂n+ 1
2 we can apply an approximation

to un+ 1
2 using the Forward Euler method with step 1

2∆t:

f̂n+ 1
2 = f(un +

1

2
∆tfn, tn+1/2) (106)

Since this gives us a prediction of fn+ 1
2 , we can for f̃n+ 1

2 try a Backward Euler
method to approximate un+ 1

2 :

f̃n+ 1
2 = f(un +

1

2
∆tf̂n+ 1

2 , tn+1/2) . (107)

With f̃n+ 1
2 as a hopefully good approximation to fn+ 1

2 , we can for the final
term f̄n+1 use a Crank-Nicolson method to approximate un+1:

f̄n+1 = f(un + ∆tf̂n+ 1
2 , tn+1) . (108)

We have now used the Forward and Backward Euler methods as well as the
Crank-Nicolson method in the context of Simpson’s rule. The hope is that the
combination of these methods yields an overall time-stepping scheme from tn to
tn+1 that is much more accurate than the O(∆t) and O(∆t2) of the individual
steps. This is indeed true: the overall accuracy is O(∆t4)!

To summarize, the 4th-order Runge-Kutta method becomes

un+1 = un +
∆t

6

(
fn + 2f̂n+ 1

2 + 2f̃n+ 1
2 + f̄n+1

)
, (109)

where the quantities on the right-hand side are computed from (106)-(108).
Note that the scheme is fully explicit so there is never any need to solve linear
or nonlinear algebraic equations. However, the stability is conditional and
depends on f . There is a whole range of implicit Runge-Kutta methods that are
unconditionally stable, but require solution of algebraic equations involving f at
each time step.

The simplest way to explore more sophisticated methods for ODEs is to
apply one of the many high-quality software packages that exist, as the next
section explains.

9.9 The Odespy software

A wide range of the methods and software exist for solving (94). Many of methods
are accessible through a unified Python interface offered by the Odespy package.
Odespy features simple Python implementations of the most fundamental schemes
as well as Python interfaces to several famous packages for solving ODEs:
ODEPACK, Vode, rkc.f, rkf45.f, Radau5, as well as the ODE solvers in SciPy,
SymPy, and odelab.

The usage of Odespy follows this setup for the ODE u′ = −au, u(0) = I,
t ∈ (0, T ], here solved by the famous 4th-order Runge-Kutta method, using
∆t = 1 and Nt = 6 steps:
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def f(u, t):
return -a*u

import odespy
import numpy as np

I = 1; a = 0.5; Nt = 6; dt = 1
solver = odespy.RK4(f)
solver.set_initial_condition(I)
t_mesh = np.linspace(0, Nt*dt, Nt+1)
u, t = solver.solve(t_mesh)

The previously listed methods for ODEs are all accessible in Odespy:

• the θ-rule: ThetaRule

• special cases of the θ-rule: ForwardEuler, BackwardEuler, CrankNicolson

• the 2nd- and 4th-order Runge-Kutta methods: RK2 and RK4

• The BDF methods and the Adam-Bashforth methods: Vode, Lsode, Lsoda,
lsoda_scipy

• The Leapfrog scheme: Leapfrog and LeapfrogFiltered

9.10 Example: Runge-Kutta methods

Since all solvers have the same interface in Odespy, modulo different set of
parameters to the solvers’ constructors, one can easily make a list of solver
objects and run a loop for comparing (a lot of) solvers. The code below, found in
complete form in decay_odespy.py, compares the famous Runge-Kutta methods
of orders 2, 3, and 4 with the exact solution of the decay equation u′ = −au.
Since we have quite long time steps, we have included the only relevant θ-rule for
large time steps, the Backward Euler scheme (θ = 1), as well. Figure 21 shows
the results.

import numpy as np
import scitools.std as plt
import sys

def f(u, t):
return -a*u

I = 1; a = 2; T = 6
dt = float(sys.argv[1]) if len(sys.argv) >= 2 else 0.75
Nt = int(round(T/dt))
t = np.linspace(0, Nt*dt, Nt+1)

solvers = [odespy.RK2(f),
odespy.RK3(f),
odespy.RK4(f),
odespy.BackwardEuler(f, nonlinear_solver=’Newton’)]

legends = []
for solver in solvers:
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solver.set_initial_condition(I)
u, t = solver.solve(t)

plt.plot(t, u)
plt.hold(’on’)
legends.append(solver.__class__.__name__)

# Compare with exact solution plotted on a very fine mesh
t_fine = np.linspace(0, T, 10001)
u_e = I*np.exp(-a*t_fine)
plt.plot(t_fine, u_e, ’-’) # avoid markers by specifying line type
legends.append(’exact’)

plt.legend(legends)
plt.title(’Time step: %g’ % dt)
plt.show()

Visualization tip.

We use SciTools for plotting here, but importing matplotlib.pyplot as
plt instead also works. However, plain use of Matplotlib as done here
results in curves with different colors, which may be hard to distinguish
on black-and-white paper. Using SciTools, curves are automatically given
colors and markers, thus making curves easy to distinguish on screen with
colors and on black-and-white paper. The automatic adding of markers is
normally a bad idea for a very fine mesh since all the markers get cluttered,
but SciTools limits the number of markers in such cases. For the exact
solution we use a very fine mesh, but in the code above we specify the
line type as a solid line (-), which means no markers and just a color to
be automatically determined by the backend used for plotting (Matplotlib
by default, but SciTools gives the opportunity to use other backends to
produce the plot, e.g., Gnuplot or Grace).

Also note the that the legends are based on the class names of the solvers,
and in Python the name of a the class type (as a string) of an object obj is
obtained by obj.__class__.__name__.

The runs in Figure 21 and other experiments reveal that the 2nd-order
Runge-Kutta method (RK2) is unstable for ∆t > 1 and decays slower than
the Backward Euler scheme for large and moderate ∆t (see Exercise 21 for
an analysis). However, for fine ∆t = 0.25 the 2nd-order Runge-Kutta method
approaches the exact solution faster than the Backward Euler scheme. That is,
the latter scheme does a better job for larger ∆t, while the higher order scheme
is superior for smaller ∆t. This is a typical trend also for most schemes for
ordinary and partial differential equations.

The 3rd-order Runge-Kutta method (RK3) has also artifacts in form of
oscillatory behavior for the larger ∆t values, much like that of the Crank-
Nicolson scheme. For finer ∆t, the 3rd-order Runge-Kutta method converges
quickly to the exact solution.

The 4th-order Runge-Kutta method (RK4) is slightly inferior to the Backward
Euler scheme on the coarsest mesh, but is then clearly superior to all the other
schemes. It is definitely the method of choice for all the tested schemes.
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Figure 21: Behavior of different schemes for the decay equation.

Remark about using the θ-rule in Odespy. The Odespy package assumes
that the ODE is written as u′ = f(u, t) with an f that is possibly nonlinear in u.
The θ-rule for u′ = f(u, t) leads to

un+1 = un + ∆t
(
θf(un+1, tn+1) + (1− θ)f(un, tn)

)
,

which is a nonlinear equation in un+1. Odespy’s implementation of the θ-rule
(ThetaRule) and the specialized Backward Euler (BackwardEuler) and Crank-
Nicolson (CrankNicolson) schemes must invoke iterative methods for solving
the nonlinear equation in un+1. This is done even when f is linear in u, as
in the model problem u′ = −au, where we can easily solve for un+1 by hand.
Therefore, we need to specify use of Newton’s method to the equations. (Odespy
allows other methods than Newton’s to be used, for instance Picard iteration,
but that method is not suitable. The reason is that it applies the Forward Euler
scheme to generate a start value for the iterations. Forward Euler may give very
wrong solutions for large ∆t values. Newton’s method, on the other hand, is
insensitive to the start value in linear problems.)

9.11 Example: Adaptive Runge-Kutta methods

Odespy offers solution methods that can adapt the size of ∆t with time to match
a desired accuracy in the solution. Intuitively, small time steps will be chosen in
areas where the solution is changing rapidly, while larger time steps can be used
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where the solution is slowly varying. Some kind of error estimator is used to
adjust the next time step at each time level.

A very popular adaptive method for solving ODEs is the Dormand-Prince
Runge-Kutta method of order 4 and 5. The 5th-order method is used as a
reference solution and the difference between the 4th- and 5th-order methods is
used as an indicator of the error in the numerical solution. The Dormand-Prince
method is the default choice in MATLAB’s widely used ode45 routine.

We can easily set up Odespy to use the Dormand-Prince method and see
how it selects the optimal time steps. To this end, we request only one time step
from t = 0 to t = T and ask the method to compute the necessary non-uniform
time mesh to meet a certain error tolerance. The code goes like

import odespy
import numpy as np
import decay_mod
import sys
#import matplotlib.pyplot as plt
import scitools.std as plt

def f(u, t):
return -a*u

def exact_solution(t):
return I*np.exp(-a*t)

I = 1; a = 2; T = 5
tol = float(sys.argv[1])
solver = odespy.DormandPrince(f, atol=tol, rtol=0.1*tol)

Nt = 1 # just one step - let the scheme find its intermediate points
t_mesh = np.linspace(0, T, Nt+1)
t_fine = np.linspace(0, T, 10001)

solver.set_initial_condition(I)
u, t = solver.solve(t_mesh)

# u and t will only consist of [I, u^Nt] and [0,T]
# solver.u_all and solver.t_all contains all computed points
plt.plot(solver.t_all, solver.u_all, ’ko’)
plt.hold(’on’)
plt.plot(t_fine, exact_solution(t_fine), ’b-’)
plt.legend([’tol=%.0E’ % tol, ’exact’])
plt.savefig(’tmp_odespy_adaptive.png’)
plt.show()

Running four cases with tolerances 10−1, 10−3, 10−5, and 10−7, gives the
results in Figure 22. Intuitively, one would expect denser points in the beginning
of the decay and larger time steps when the solution flattens out.
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Figure 22: Choice of adaptive time mesh by the Dormand-Prince method for
different tolerances.

10 Exercises

Exercise 17: Experiment with precision in tests and the
size of u

It is claimed in Section 8.5 that most numerical methods will reproduce a linear ex-
act solution to machine precision. Test this assertion using the nose test function
test_linear_solution in the decay_vc.py program. Vary the parameter c

from very small, via c=1 to many larger values, and print out the maximum differ-
ence between the numerical solution and the exact solution. What is the relevant
value of the places (or delta) argument to nose.tools.assert_almost_equal

in each case? Filename: test_precision.py.
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Exercise 18: Implement the 2-step backward scheme

Implement the 2-step backward method (97) for the model u′(t) = −a(t)u(t) +
b(t), u(0) = I. Allow the first step to be computed by either the Backward
Euler scheme or the Crank-Nicolson scheme. Verify the implementation by
choosing a(t) and b(t) such that the exact solution is linear in t (see Section 8.5).
Show mathematically that a linear solution is indeed a solution of the discrete
equations.

Compute convergence rates (see Section 2.8) in a test case a = const and
b = 0, where we easily have an exact solution, and determine if the choice of
a first-order scheme (Backward Euler) for the first step has any impact on the
overall accuracy of this scheme. The expected error goes like O(∆t2). Filename:
decay_backward2step.py.

Exercise 19: Implement the 2nd-order Adams-Bashforth
scheme

Implement the 2nd-order Adams-Bashforth method (104) for the decay problem
u′ = −a(t)u+ b(t), u(0) = I, t ∈ (0, T ]. Use the Forward Euler method for the
first step such that the overall scheme is explicit. Verify the implementation
using an exact solution that is linear in time. Analyze the scheme by searching
for solutions un = An when a = const and b = 0. Compare this second-order
secheme to the Crank-Nicolson scheme. Filename: decay_AdamsBashforth2.py.

Exercise 20: Implement the 3rd-order Adams-Bashforth
scheme

Implement the 3rd-order Adams-Bashforth method (105) for the decay problem
u′ = −a(t)u+b(t), u(0) = I, t ∈ (0, T ]. Since the scheme is explicit, allow it to be
started by two steps with the Forward Euler method. Investigate experimentally
the case where b = 0 and a is a constant: Can we have oscillatory solutions for
large ∆t? Filename: decay_AdamsBashforth3.py.

Exercise 21: Analyze explicit 2nd-order methods

Show that the schemes (102) and (103) are identical in the case f(u, t) =
−a, where a > 0 is a constant. Assume that the numerical solution reads
un = An for some unknown amplification factor A to be determined. Find
A and derive stability criteria. Can the scheme produce oscillatory solutions
of u′ = −au? Plot the numerical and exact amplification factor. Filename:
decay_RK2_Taylor2.py.

Problem 22: Implement and investigate the Leapfrog scheme

A Leapfrog scheme for the ODE u′(t) = −a(t)u(t) + b(t) is defined by
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[D2tu = −au+ b]n .

A separate method is needed to compute u1. The Forward Euler scheme is a
possible candidate.

a) Implement the Leapfrog scheme for the model equation. Plot the solution
in the case a = 1, b = 0, I = 1, ∆t = 0.01, t ∈ [0, 4]. Compare with the exact
solution ue(t) = e−t.

b) Show mathematically that a linear solution in t fulfills the Forward Euler
scheme for the first step and the Leapfrog scheme for the subsequent steps. Use
this linear solution to verify the implementation, and automate the verification
through a nose test.

Hint. It can be wise to automate the calculations such that it is easy to redo
the calculations for other types of solutions. Here is a possible sympy function
that takes a symbolic expression u (implemented as a Python function of t), fits
the b term, and checks if u fulfills the discrete equations:

import sympy as sp

def analyze(u):
t, dt, a = sp.symbols(’t dt a’)

print ’Analyzing u_e(t)=%s’ % u(t)
print ’u(0)=%s’ % u(t).subs(t, 0)

# Fit source term to the given u(t)
b = sp.diff(u(t), t) + a*u(t)
b = sp.simplify(b)
print ’Source term b:’, b

# Residual in discrete equations; Forward Euler step
R_step1 = (u(t+dt) - u(t))/dt + a*u(t) - b
R_step1 = sp.simplify(R_step1)
print ’Residual Forward Euler step:’, R_step1

# Residual in discrete equations; Leapfrog steps
R = (u(t+dt) - u(t-dt))/(2*dt) + a*u(t) - b
R = sp.simplify(R)
print ’Residual Leapfrog steps:’, R

def u_e(t):
return c*t + I

analyze(u_e)
# or short form: analyze(lambda t: c*t + I)

c) Show that a second-order polynomial in t cannot be a solution of the discrete
equations. However, if a Crank-Nicolson scheme is used for the first step, a
second-order polynomial solves the equations exactly.
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d) Create a manufactured solution u(t) = sin(t) for the ODE u′ = −au + b.
Compute the convergence rate of the Leapfrog scheme using this manufactured
solution. The expected convergence rate of the Leapfrog scheme is O(∆t2). Does
the use of a 1st-order method for the first step impact the convergence rate?

e) Set up a set of experiments to demonstrate that the Leapfrog scheme (99)
is associated with numerical artifacts (instabilities). Document the main results
from this investigation.

f) Analyze and explain the instabilities of the Leapfrog scheme (99):

1. Choose a = const and b = 0. Assume that an exact solution of the discrete
equations has the form un = An, where A is an amplification factor to
be determined. Derive an equation for A by inserting un = An in the
Leapfrog scheme.

2. Compute A either by hand and/or with the aid of sympy. The polynomial
for A has two roots, A1 and A2. Let un be a linear combination un =
C1A

n
1 + C2A

n
2 .

3. Show that one of the roots is the explanation of the instability.

4. Compare A with the exact expression, using a Taylor series approximation.

5. How can C1 and C2 be determined?

g) Since the original Leapfrog scheme is unconditionally unstable as time
grows, it demands some stabilization. This can be done by filtering, where
we first find un+1 from the original Leapfrog scheme and then replace un by
un + γ(un−1− 2un + un+1), where γ can be taken as 0.6. Implement the filtered
Leapfrog scheme and check that it can handle tests where the original Leapfrog
scheme is unstable.

Filenames: decay_leapfrog.py, decay_leapfrog.pdf.

Problem 23: Make a unified implementation of many schemes

Consider the linear ODE problem u′(t) = −a(t)u(t) + b(t), u(0) = I. Explicit
schemes for this problem can be written in the general form

un+1 =

m∑
j=0

cju
n−j , (110)

for some choice of c0, . . . , cm. Find expressions for the cj coefficients in case of
the θ-rule, the three-level backward scheme, the Leapfrog scheme, the 2nd-order
Runge-Kutta method, and the 3rd-order Adams-Bashforth scheme.
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Make a class ExpDecay that implements the general updating formula (110).
The formula cannot be applied for n < m, and for those n values, other schemes
must be used. Assume for simplicity that we just repeat Crank-Nicolson steps
until (110) can be used. Use a subclass to specify the list c0, . . . , cm for a
particular method, and implement subclasses for all the mentioned schemes.
Verify the implementation by testing with a linear solution, which should be
exactly reproduced by all methods. Filename: decay_schemes_oo.py.

11 Applications of exponential decay models

This section presents many mathematical models that all end up with ODEs of
the type u′ = −au+ b. The applications are taken from biology, finance, and
physics, and cover population growth or decay, compound interest and inflation,
radioactive decay, cooling of objects, compaction of geological media, pressure
variations in the atmosphere, and air resistance on falling or rising bodies.

11.1 Scaling

Real applications of a model u′ = −au+ b will often involve a lot of parameters
in the expressions for a and b. It can be quite a challenge to find relevant values
of all parameters. In simple problems, however, it turns out that it is not always
necessary to estimate all parameters because we can lump them into one or a few
dimensionless numbers by using a very attractive technique called scaling. It
simply means to stretch the u and t axis is the present problem - and suddenly all
parameters in the problem are lumped one parameter if b 6= 0 and no parameter
when b = 0!

Scaling means that we introduce a new function ū(t̄), with

ū =
u− um
uc

, t̄ =
t

tc
,

where um is a characteristic value of u, uc is a characteristic size of the range of u
values, and tc is a characteristic size of the range of tc where u varies significantly.
Choosing um, uc, and tc is not always easy and often an art in complicated
problems. We just state one choice first:

uc = I, um = b/a, tc = 1/a .

Inserting u = um + ucū and t = tct̄ in the problem u′ = −au + b, assuming a
and b are constants, results after some algebra in the scaled problem

dū

dt̄
= −ū, ū(0) = 1− β,

where β is a dimensionless number

β =
b

Ia
.
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That is, only the special combination of b/(Ia) matters, not what the individual
values of b, a, and I are. Moreover, if b = 0, the scaled problem is independent
of a and I! In practice this means that we can perform one numerical simulation
of the scaled problem and recover the solution of any problem for a given a and
I by stretching the axis in the plot: u = Iū and t = t̄/a. For b 6= 0, we simulate
the scaled problem for a few β values and recover the physical solution u by
translating and stretching the u axis and stretching the t axis.

The scaling breaks down if I = 0. In that case we may choose um = 0,
uc = b/a, and tc = 1/b, resulting in a slightly different scaled problem:

dū

dt̄
= 1− ū, ū(0) = 0 .

As with b = 0, the case I = 0 has a scaled problem with no physical parameters!
It is common to drop the bars after scaling and write the scaled problem

as u′ = −u, u(0) = 1− β, or u′ = 1− u, u(0) = 0. Any implementation of the
problem u′ = −au+ b, u(0) = I, can be reused for the scaled problem by setting
a = 1, b = 0, and I = 1 − β in the code, if I 6= 0, or one sets a = 1, b = 1,
and I = 0 when the physical I is zero. Falling bodies in fluids, as described in
Section 11.8, involves u′ = −au+ b with seven physical parameters. All these
vanish in the scaled version of the problem if we start the motion from rest!

11.2 Evolution of a population

Let N be the number of individuals in a population occupying some spatial
domain. Despite N being an integer in this problem, we shall compute with N
as a real number and view N(t) as a continuous function of time. The basic
model assumption is that in a time interval ∆t the number of newcomers to the
populations (newborns) is proportional to N , with proportionality constant b̄.
The amount of newcomers will increase the population and result in to

N(t+ ∆t) = N(t) + b̄N(t) .

It is obvious that a long time interval ∆t will result in more newcomers and
hence a larger b̄. Therefore, we introduce b = b̄/∆t: the number of newcomers
per unit time and per individual. We must then multiply b by the length of the
time interval considered and by the population size to get the total number of
new individuals, b∆tN .

If the number of removals from the population (deaths) is also proportional
to N , with proportionality constant d∆t, the population evolves according to

N(t+ ∆t) = N(t) + b∆tN(t)− d∆tN(t) .

Dividing by ∆t and letting ∆t→ 0, we get the ODE

N ′ = (b− d)N, N(0) = N0 . (111)

In a population where the death rate (d) is larger than then newborn rate (b),
a > 0, and the population experiences exponential decay rather than exponential
growth.
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In some populations there is an immigration of individuals into the spatial
domain. With I individuals coming in per time unit, the equation for the
population change becomes

N(t+ ∆t) = N(t) + b∆tN(t)− d∆tN(t) + ∆tI .

The corresponding ODE reads

N ′ = (b− d)N + I, N(0) = N0 . (112)

Some simplification arises if we introduce a fractional measure of the popula-
tion: u = N/N0 and set r = b− d. The ODE problem now becomes

u′ = ru+ f, u(0) = 1, (113)

where f = I/N0 measures the net immigration per time unit as the fraction of
the initial population. Very often, r is approximately constant, but f is usually
a function of time.

The growth rate r of a population decreases if the environment has limited
resources. Suppose the environment can sustain at most Nmax individuals. We
may then assume that the growth rate approaches zero as N approaches Nmax,
i.e., as u approaches M = Nmax/N0. The simplest possible evolution of r is
then a linear function: r(t) = r0(1− u(t)/M), where r0 is the initial growth rate
when the population is small relative to the maximum size and there is enough
resources. Using this r(t) in (113) results in the logistic model for the evolution
of a population (assuming for the moment that f = 0):

u′ = r0(1− u/M)u, u(0) = 1 . (114)

Initially, u will grow at rate r0, but the growth will decay as u approaches M ,
and then there is no more change in u, causing u → M as t → ∞. Note that
the logistic equation u′ = r0(1− u/M)u is nonlinear because of the quadratic
term −u2r0/M .

11.3 Compound interest and inflation

Say the annual interest rate is r percent and that the bank adds the interest
once a year to your investment. If un is the investment in year n, the investment
in year un+1 grows to

un+1 = un +
r

100
un .

In reality, the interest rate is added every day. We therefore introduce a parameter
m for the number of periods per year when the interest is added. If n counts
the periods, we have the fundamental model for compound interest:

un+1 = un +
r

100m
un . (115)
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This model is a difference equation, but it can be transformed to a continuous
differential equation through a limit process. The first step is to derive a formula
for the growth of the investment over a time t. Starting with an investment u0,
and assuming that r is constant in time, we get

un+1 =
(

1 +
r

100m

)
un

=
(

1 +
r

100m

)2

un−1

...

=
(

1 +
r

100m

)n+1

u0

Introducing time t, which here is a real-numbered counter for years, we have
that n = mt, so we can write

umt =
(

1 +
r

100m

)mt
u0 .

The second step is to assume continuous compounding, meaning that the interest
is added continuously. This implies m → ∞, and in the limit one gets the
formula

u(t) = u0e
rt/100, (116)

which is nothing but the solution of the ODE problem

u′ =
r

100
u, u(0) = u0 . (117)

This is then taken as the ODE model for compound interest if r > 0. However,
the reasoning applies equally well to inflation, which is just the case r < 0.
One may also take the r in (117) as the net growth of an investemt, where r
takes both compound interest and inflation into account. Note that for real
applications we must use a time-dependent r in (117).

Introducing a = r
100 , continuous inflation of an initial fortune I is then a

process exhibiting exponential decay according to

u′ = −au, u(0) = I .

11.4 Radioactive Decay

An atomic nucleus of an unstable atom may lose energy by emitting ionizing
particles and thereby be transformed to a nucleus with a different number of
protons and neutrons. This process is known as radioactive decay. Actually,
the process is stochastic when viewed for a single atom, because it is impossible
to predict exactly when a particular atom emits a particle. Nevertheless, with
a large number of atoms, N , one may view the process as deterministic and
compute the mean behavior of the decay. Below we reason intuitively about
an ODE for the mean behavior. Thereafter, we show mathematically that a
detailed stochastic model for single atoms leads the same mean behavior.
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Deterministic model. Suppose at time t, the number of the original atom
type is N(t). A basic model assumption is that the transformation of the atoms
of the original type in a small time interval ∆t is proportional to N , so that

N(t+ ∆t) = N(t)− a∆tN(t),

where a > 0 is a constant. Introducing u = N(t)/N(0), dividing by ∆t and
letting ∆t→ 0 gives the following ODE:

u′ = −au, u(0) = 1 . (118)

The parameter a can for a given nucleus be expressed through the half-life t1/2,
which is the time taken for the decay to reduce the initial amount by one half,
i.e., u(t1/2) = 0.5. With u(t) = e−at, we get t1/2 = a−1 ln 2 or a = ln 2/t1/2.

Stochastic model. We have originally N0 atoms. Each atom may have
decayed or survived at a particular time t. We want to count how many
original atoms that are left, i.e., how many atoms that have survived. The
survival of a single atom at time t is a random event. Since there are only two
outcomes, survival or decay, we have a Bernoulli trial. Let p be the probability of
survival (implying that the probability of decay is 1− p). If each atom survives
independently of the others, and the probability of survival is the same for every
atom, we have N0 statistically Bernoulli trials, known as a binomial experiment
from probability theory. The probability P (N) that N out of the N0 atoms have
survived at time t is then given by the famous binomial distribution

P (N) =
N0!

N !(N0 −N)!
pN (1− p)N0−N .

The mean (or expected) value E[P ] of P (N) is known to be N0p.
It remains to estimate p. Let the interval [0, t] be divided into m small

subintervals of length ∆t. We make the assumption that the probability of
decay of a single atom in an interval of length ∆t is p̃, and that this probability
is proportional to ∆t: p̃ = λ∆t (it sounds natural that the probability of
decay increases with ∆t). The corresponding probability of survival is 1− λ∆t.
Believing that λ is independent of time, we have, for each interval of length ∆t,
a Bernoulli trial: the atom either survives or decays in that interval. Now, p
should be the probability that the atom survives in all the intervals, i.e., that
we have m successful Bernoulli trials in a row and therefore

p = (1− λ∆t)m .

The expected number of atoms of the original type at time t is

E[P ] = N0p = N0(1− λ∆t)m, m = t/∆t . (119)

To see the relation between the two types of Bernoulli trials and the ODE
above, we go to the limit ∆t→ t, m→∞. One can show that
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p = lim
m→∞

(1− λ∆t)m = lim
m→∞

(
1− λ t

m

)m
= e−λt

This is the famous exponential waiting time (or arrival time) distribution for
a Poisson process in probability theory (obtained here, as often done, as the
limit of a binomial experiment). The probability of decay, 1− e−λt, follows an
exponential distribution. The limit means that m is very large, hence ∆t is very
small, and p̃ = λ∆t is very small since the intensity of the events, λ, is assumed
finite. This situation corresponds to a very small probability that an atom will
decay in a very short time interval, which is a reasonable model. The same
model occurs in lots of different applications, e.g., when waiting for a taxi, or
when finding defects along a rope.

Relation between stochastic and deterministic models. With p = e−λt

we get the expected number of original atoms at t as N0p = N0e
−λt, which

is exactly the solution of the ODE model N ′ = −λN . This gives also an
interpretation of a via λ or vice versa. Our important finding here is that the
ODE model captures the mean behavior of the underlying stochastic model.
This is, however, not always the common relation between microscopic stochastic
models and macroscopic ”averaged” models.

Also of interest is to see that a Forward Euler discretization of N ′ = −λN ,
N(0) = N0, gives Nm = N0(1 − λ∆t)m at time tm = m∆t, which is exactly
the expected value of the stochastic experiment with N0 atoms and m small
intervals of length ∆t, where each atom can decay with probability λ∆t in an
interval.

A fundamental question is how accurate the ODE model is. The underlying
stochastic model fluctuates around its expected value. A measure of the fluc-
tuations is the standard deviation of the binomial experiment with N0 atoms,
which can be shown to be Std[P ] =

√
N0p(1− p). Compared to the size of the

expectation, we get the normalized standard deviation

√
Var[P ]

E[P ]
= N

−1/2
0

√
p−1 − 1 = N

−1/2
0

√
(1− e−λt)−1 − 1 ≈ (N0λt)

−1/2,

showing that the normalized fluctuations are very small if N0 is very large, which
is usually the case.

11.5 Newton’s law of cooling

When a body at some temperature is placed in a cooling environment, experi-
ence shows that the temperature falls rapidly in the beginning, and then the
changes in temperature levels off until the body’s temperature equals that of
the surroundings. Newton carried out some experiments on cooling hot iron
and found that the temperature evolved as a ”geometric progression at times in
arithmetic progression”, meaning that the temperature decayed exponentially.
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Later, this result was formulated as a differential equation: the rate of change of
the temperature in a body is proportional to the temperature difference between
the body and its surroundings. This statement is known as Newton’s law of
cooling, which can be mathematically expressed as

dT

dt
= −k(T − Ts), (120)

where T is the temperature of the body, Ts is the temperature of the surroundings,
t is time, and k is a positive constant. Equation (120) is primarily viewed as
an empirical law, valid when heat is efficiently convected away from the surface
of the body by a flowing fluid such as air at constant temperature Ts. The
heat transfer coefficient k reflects the transfer of heat from the body to the
surroundings and must be determined from physical experiments.

We must obviously have an initial condition T (0) = T0 in addition to the
cooling law (120).

11.6 Decay of atmospheric pressure with altitude

Vertical equilibrium of air in the atmosphere is governed by the equation

dp

dz
= −%g . (121)

Here, p(z) is the air pressure, % is the density of air, and g = 9.807 m/s
2

is a
standard value of the acceleration of gravity. (Equation (121) follows directly
from the general Navier-Stokes equations for fluid motion, with the assumption
that the air does not move.)

The pressure is related to density and temperature through the ideal gas law

% =
Mp

R∗T
, (122)

where M is the molar mass of the Earth’s air (0.029 kg/mol), R∗ is the universal
gas constant (8.314 Nm/(mol K)), and T is the temperature. All variables p, %,
and T vary with the height z. Inserting (122) in (121) results in an ODE with a
variable coefficient:

dp

dz
= − Mg

R∗T (z)
p . (123)

Multiple atmospheric layers. The atmosphere can be approximately mod-
eled by seven layers. In each layer, (123) is applied with a linear temperature of
the form

T (z) = T̄i + Li(z − hi),
where z = hi denotes the bottom of layer number i, having temperature T̄i, and
Li is a constant in layer number i. The table below lists hi (m), T̄i (K), and Li
(K/m) for the layers i = 0, . . . , 6.
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i hi T̄i Li
0 0 288 -0.0065
1 11,000 216 0.0
2 20,000 216 0.001
3 32,000 228 0.0028
4 47,000 270 0.0
5 51,000 270 -0.0028
6 71,000 214 -0.002

For implementation it might be convenient to write (123) on the form

dp

dz
= − Mg

R∗(T̄ (z) + L(z)(z − h(z)))
p, (124)

where T̄ (z), L(z), and h(z) are piecewise constant functions with values given in
the table. The value of the pressure at the sea level z = 0, p0 = p(0), is 101325
Pa.

Simplification: L = 0. One commonly used simplification is to assume that
the temperature is constant within each layer. This means that L = 0.

Simplification: one-layer model. Another commonly used approximation
is to work with one layer instead of seven. This one-layer model is based on
T (z) = T0−Lz, with sea level standard temperature T0 = 288 K and temperature
lapse rate L = 0.0065 K/m.

11.7 Compaction of sediments

Sediments, originally made from materials like sand and mud, get compacted
through geological time by the weight of new material that is deposited on the
sea bottom. The porosity φ of the sediments tells how much void (fluid) space
there is between the sand and mud grains. The porosity reduces with depth
because the weight of the sediments above and causes the void space to shrink
and thereby increase the compaction.

A typical assumption is that the change in φ at some depth z is negatively
proportional to φ. This assumption leads to the differential equation problem

dφ

dz
= −cφ, φ(0) = φ0, (125)

where the z axis points downwards, z = 0 is the surface with known porosity,
and c > 0 is a constant.

The upper part of the Earth’s crust consists of many geological layers stacked
on top of each other, as indicated in Figure 23. The model (125) can be applied
for each layer. In layer number i, we have the unknown porosity function φi(z)
fulfilling φ′i(z) = −ciz, since the constant c in the model (125) depends on
the type of sediment in the layer. From the figure we see that new layers of
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sediments are deposited on top of older ones as time progresses. The compaction,
as measured by φ, is rapid in the beginning and then decreases (exponentially)
with depth in each layer.

Figure 23: Illustration of the compaction of geological layers (with different
colors) through time.

When we drill a well at present time through the right-most column of
sediments in Figure 23, we can measure the thickness of the sediment in (say) the
bottom layer. Let L1 be this thickness. Assuming that the volume of sediment

remains constant through time, we have that the initial volume,
∫ L1,0

0
φ1dz, must

equal the volume seen today,
∫ `
`−L1

φ1dz, where ` is the depth of the bottom of
the sediment in the present day configuration. After having solved for φ1 as a
function of z, we can then find the original thickness L1,0 of the sediment from
the equation

∫ L1,0

0

φ1dz =

∫ `

`−L1

φ1dz .

In hydrocarbon exploration it is important to know L1,0 and the compaction
history of the various layers of sediments.

11.8 Vertical motion of a body in a viscous fluid

A body moving vertically through a fluid (liquid or gas) is subject to three
different types of forces: the gravity force, the drag force, and the buoyancy
force.
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Overview of forces. The gravity force is Fg = −mg, where m is the mass
of the body and g is the acceleration of gravity. The uplift or buoyancy force
(”Archimedes force”) is Fb = %gV , where % is the density of the fluid and V is
the volume of the body. Forces and other quantities are taken as positive in the
upward direction.

The drag force is of two types, depending on the Reynolds number

Re =
%d|v|
µ

, (126)

where d is the diameter of the body in the direction perpendicular to the flow, v
is the velocity of the body, and µ is the dynamic viscosity of the fluid. When
Re < 1, the drag force is fairly well modeled by the so-called Stokes’ drag, which
for a spherical body of diameter d reads

F
(S)
d = −3πdµv . (127)

For large Re, typically Re > 103, the drag force is quadratic in the velocity:

F
(q)
d = −1

2
CD%A|v|v, (128)

where CD is a dimensionless drag coefficient depending on the body’s shape,
and A is the cross-sectional area as produced by a cut plane, perpendicular to
the motion, through the thickest part of the body. The superscripts q and S in

F
(S)
d and F

(q)
d indicate Stokes drag and quadratic drag, respectively.

Equation of motion. All the mentioned forces act in the vertical direction.
Newton’s second law of motion applied to the body says that the sum of these
forces must equal the mass of the body times its acceleration a in the vertical
direction.

ma = Fg + F
(S)
d + Fb .

Here we have chosen to model the fluid resistance by the Stokes drag. Inserting
the expressions for the forces yields

ma = −mg − 3πdµv + %gV .

The unknowns here are v and a, i.e., we have two unknowns but only one
equation. From kinematics in physics we know that the acceleration is the time
derivative of the velocity: a = dv/dt. This is our second equation. We can easily
eliminate a and get a single differential equation for v:

m
dv

dt
= −mg − 3πdµv + %gV .

A small rewrite of this equation is handy: We express m as %bV , where %b is the
density of the body, and we divide by the mass to get
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v′(t) = −3πdµ

%bV
v + g

(
%

%b
− 1

)
. (129)

We may introduce the constants

a =
3πdµ

%bV
, b = g

(
%

%b
− 1

)
, (130)

so that the structure of the differential equation becomes obvious:

v′(t) = −av(t) + b . (131)

The corresponding initial condition is v(0) = v0 for some prescribed starting
velocity v0.

This derivation can be repeated with the quadratic drag force F
(q)
d , leading

to the result

v′(t) = −1

2
CD

%A

%bV
|v|v + g

(
%

%b
− 1

)
. (132)

Defining

a =
1

2
CD

%A

%bV
, (133)

and b as above, we can write (132) as

v′(t) = −a|v|v + b . (134)

Terminal velocity. An interesting aspect of (131) and (134) is whether v will
approach a final constant value, the so-called terminal velocity vT , as t→∞. A
constant v means that v′(t)→ 0 as t→∞ and therefore the terminal velocity
vT solves

0 = −avT + b

and

0 = −a|vT |vT + b .

The former equation implies vT = b/a, while the latter has solutions vT =
−
√
|b|/a for a falling body (vT < 0) and vT =

√
b/a for a rising body (vT > 0).

A Crank-Nicolson scheme. Both governing equations, the Stokes’ drag
model (131) and the quadratic drag model (134), can be readily solved by the
Forward Euler scheme. For higher accuracy one can use the Crank-Nicolson
method, but a straightforward application this method results a nonlinear
equation in the new unknown value vn+1 when applied to (134):
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vn+1 − vn

∆t
= −a1

2
(|vn+1|vn+1 + |vn|vn) + b . (135)

However, instead of approximating the term −|v|v by an arithmetic average, we
can use a geometric mean:

(|v|v)n+ 1
2 ≈ |vn|vn+1 . (136)

The error is of second order in ∆t, just as for the arithmetic average and the
centered finite difference approximation in (135). With this approximation trick,
the discrete equation

vn+1 − vn

∆t
= −a|vn|vn+1 + b

becomes a linear equation in vn+1, and we can therefore easily solve for vn+1:

vn+1 =
vn + ∆tbn+ 1

2

1 + ∆tan+ 1
2 |vn|

. (137)

Physical data. Suitable values of µ are 1.8·10−5 Pa s for air and 8.9·10−4 Pa s
for water. Densities can be taken as 1.2 kg/m

3
for air and as 1.0 · 103 kg/m

3
for

water. For considerable vertical displacement in the atmosphere one should take
into account that the density of air varies with the altitude, see Section 11.6.
One possible density variation arises from the one-layer model in the mentioned
section.

Any density variation makes b time dependent and we need bn+ 1
2 in (137).

To compute the density that enters bn+ 1
2 we must also compute the vertical

position z(t) of the body. Since v = dz/dt, we can use a centered difference
approximation:

zn+ 1
2 − zn− 1

2

∆t
= vn ⇒ zn+ 1

2 = zn−
1
2 + ∆t vn .

This zn+ 1
2 is used in the expression for b to compute %(zn+ 1

2 ) and then bn+ 1
2 .

The drag coefficient CD depends heavily on the shape of the body. Some
values are: 0.45 for a sphere, 0.42 for a semi-sphere, 1.05 for a cube, 0.82 for a
long cylinder (when the center axis is in the vertical direction), 0.75 for a rocket,
1.0-1.3 for a man in upright position, 1.3 for a flat plate perpendicular to the
flow, and 0.04 for a streamlined, droplet-like body.

Verification. To verify the program, one may assume a heavy body in air
such that the Fb force can be neglected, and further assume a small velocity
such that the air resistance Fd can also be neglected. This can be obtained by
setting µ and % to zero. The motion then leads to the velocity v(t) = v0 − gt,
which is linear in t and therefore should be reproduced to machine precision
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(say tolerance 10−15) by any implementation based on the Crank-Nicolson or
Forward Euler schemes.

Another verification, but not as powerful as the one above, can be based on
computing the terminal velocity and comparing with the exact expressions. The
advantage of this verification is that we can also the test situation % 6= 0.

As always, the method of manufactured solutions can be applied to test the
implementation of all terms in the governing equation, but the solution then has
no physical relevance in general.

Scaling. Applying scaling, as described in Section 11.1, will for the linear case
reduce the need to estimate values for seven parameters down to choosing one
value of a single dimensionless parameter

β =
%bgV

(
%
%b
− 1
)

3πdµI
,

provided I 6= 0. If the motion starts from rest, I = 0, the scaled problem
ū′ = 1− ū, ū(0) = 0, has no need for estimating physical parameters. This means
that there is a single universal solution to the problem of a falling body starting
from rest: ū(t) = 1− e−t̄. All real physical cases correspond to stretching the t̄
axis and the ū axis in this dimensionless solution. More precisely, the physical
velocity u(t) is related to the dimensionless velocity ū(t̄) through

u =
%bgV

(
%
%b
− 1
)

3πdµ
ū(t/(g(%/%b − 1))) .

11.9 Decay ODEs from solving a PDE by Fourier expan-
sions

Suppose we have a partial differential equation

∂u

∂t
= α

∂2u

∂x2
+ f(x, t),

with boundary conditions u(0, t) = u(L, t) = 0 and initial condition u(x, 0) =
I(x). One may express the solution as

u(x, t) =

m∑
k=1

Ak(t)eikxπ/L,

for appropriate unknown functions Ak, k = 1, . . . ,m. We use the complex
exponential eikxπ/L for easy algebra, but the physical u is taken as the real
part of any complex expression. Note that the expansion in terms of eikxπ/L is
compatible with the boundary conditions: all functions eikxπ/L vanish for x = 0
and x = L. Suppose we can express I(x) as
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I(x) =

m∑
k=1

Ike
ikxπ/L .

Such an expansion can be computed by well-known Fourier expansion techniques,
but the details are not important here. Also, suppose we can express the given
f(x, t) as

f(x, t) =

m∑
k=1

bk(t)eikxπ/L .

Inserting the expansions for u and f in the differential equations demands that
all terms corresponding to a given k must be equal. The calculations results in
the follow system of ODEs:

A′k(t) = −αk
2π2

L2
+ bk(t), k = 1, . . . ,m .

From the initial condition

u(x, 0) =
∑
k

Ak(0)eikxπ/L = I(x) =
∑
k

Ike
(ikxπ/L),

it follows that Ak(0) = Ik, k = 1, . . . ,m. We then have m equations of the form
A′k = −aAk + b, Ak(0) = Ik, for appropriate definitions of a and b. These ODE
problems independent each other such that we can solve one problem at a time.
The outline technique is a quite common approach for solving partial differential
equations.

Remark. Since ak depends on k and the stability of the Forward Euler scheme
demands ak∆t ≤ 1, we get that ∆t ≤ α−1L2π−2k−2. Usually, quite large k
values are needed to accurately represent the given functions I and f and then ∆t
needs to be very small for these large values of k. Therefore, the Crank-Nicolson
and Backward Euler schemes, which allow larger ∆t without any growth in the
solutions, are more popular choices when creating time-stepping algorithms for
partial differential equations of the type considered in this example.

12 Exercises and Projects

Exercise 24: Simulate an oscillating cooling process

The surrounding temperature Ts in Newton’s law of cooling (120) may vary in
time. Assume that the variations are periodic with period P and amplitude a
around a constant mean temperature Tm:

Ts(t) = Tm + a sin

(
2π

P
t

)
. (138)

Simulate a process with the following data: k = 20 min−1, T (0) = 5 C, Tm = 25
C, a = 2.5 C, and P = 1 h. Also experiment with P = 10 min and P = 3 h.
Plot T and Ts in the same plot. Filename: osc_cooling.py.
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Exercise 25: Radioactive decay of Carbon-14

The Carbon-14 isotope, whose radioactive decay is used extensively in dating
organic material that is tens of thousands of years old, has a half-life of 5, 730
years. Determine the age of an organic material that contains 8.4 percent of its
initial amount of Carbon-14. Use a time unit of 1 year in the computations. The
uncertainty in the half time of Carbon-14 is ±40 years. What is the corresponding
uncertainty in the estimate of the age?

Hint. Use simulations with 5, 730± 40 y as input and find the corresponding
interval for the result.

Filename: carbon14.py.

Exercise 26: Simulate stochastic radioactive decay

The purpose of this exercise is to implement the stochastic model described in
Section 11.4 and show that its mean behavior approximates the solution of the
corresponding ODE model.

The simulation goes on for a time interval [0, T ] divided into Nt intervals of
length ∆t. We start with N0 atoms. In some time interval, we have N atoms
that have survived. Simulate N Bernoulli trials with probability λ∆t in this
interval by drawing N random numbers, each being 0 (survival) or 1 (decay),
where the probability of getting 1 is λ∆t. We are interested in the number
of decays, d, and the number of survived atoms in the next interval is then
N − d. The Bernoulli trials are simulated by drawing N uniformly distributed
real numbers on [0, 1] and saying that 1 corresponds to a value less than λ∆t:

# Given lambda_, dt, N
import numpy as np
uniform = np.random.uniform(N)
Bernoulli_trials = np.asarray(uniform < lambda_*dt, dtype=np.int)
d = Bernoulli_trials.size

Observe that uniform < lambda_*dt is a boolean array whose true and false
values become 1 and 0, respectively, when converted to an integer array.

Repeat the simulation over [0, T ] a large number of times, compute the
average value of N in each interval, and compare with the solution of the
corresponding ODE model. Filename: stochastic_decay.py.

Exercise 27: Radioactive decay of two substances

Consider two radioactive substances A and B. The nuclei in substance A decay
to form nuclei of type B with a half-life A1/2, while substance B decay to form
type A nuclei with a half-life B1/2. Letting uA and uB be the fractions of the
initial amount of material in substance A and B, respectively, the following
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system of ODEs governs the evolution of uA(t) and uB(t):

1

ln 2
u′A = uB/B1/2 − uA/A1/2, (139)

1

ln 2
u′B = uA/A1/2 − uB/B1/2, (140)

with uA(0) = uB(0) = 1.
Make a simulation program that solves for uA(t) and uB(t). Verify the

implementation by computing analytically the limiting values of uA and uB
as t → ∞ (assume u′A, u

′
B → 0) and comparing these with those obtained

numerically.
Run the program for the case of A1/2 = 10 minutes and B1/2 = 50 minutes.

Use a time unit of 1 minute. Plot uA and uB versus time in the same plot.
Filename: radioactive_decay_2subst.py.

Exercise 28: Simulate the pressure drop in the atmosphere

We consider the models for atmospheric pressure in Section 11.6. Make a program
with three functions,

• one computing the pressure p(z) using a seven-layer model and varying L,

• one computing p(z) using a seven-layer model, but with constant tempera-
ture in each layer, and

• one computing p(z) based on the one-layer model.

How can these implementations be verified? Should ease of verification impact
how you code the functions? Compare the three models in a plot. Filename:
atmospheric_pressure.py.

Exercise 29: Make a program for vertical motion in a fluid

Implement the Stokes’ drag model (129) and the quadratic drag model (132)
from Section 11.8, using the Crank-Nicolson scheme and a geometric mean for
|v|v as explained, and assume constant fluid density. At each time level, compute
the Reynolds number Re and choose the Stokes’ drag model if Re < 1 and the
quadratic drag model otherwise.

The computation of the numerical solution should take place either in a stand-
alone function (as in Section 2.1) or in a solver class that looks up a problem
class for physical data (as in Section 3.6). Create a module (see Section 3.1) and
equip it with nose tests (see Section 3.4) for automatically verifying the code.

Verification tests can be based on

• the terminal velocity (see Section 11.8),

• the exact solution when the drag force is neglected (see Section 11.8),
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• the method of manufactured solutions (see Section 8.5) combined with
computing convergence rates (see Section 2.8).

Use, e.g., a quadratic polynomial for the velocity in the method of manufactured
solutions. The expected error is O(∆t2) from the centered finite difference
approximation and the geometric mean approximation for |v|v.

A solution that is linear in t will also be an exact solution of the discrete
equations in many problems. Show that this is true for linear drag (by adding
a source term that depends on t), but not for quadratic drag because of the
geometric mean approximation. Use the method of manufactured solutions to
add a source term in the discrete equations for quadratic drag such that a linear
function of t is a solution. Add a nose test for checking that the linear function
is reproduced to machine precision in the case of both linear and quadratic drag.

Apply the software to a case where a ball rises in water. The buoyancy force
is here the driving force, but the drag will be significant and balance the other
forces after a short time. A soccer ball has radius 11 cm and mass 0.43 kg. Start
the motion from rest, set the density of water, %, to 1000 kg/m

3
, set the dynamic

viscosity, µ, to 10−3 Pa s, and use a drag coefficient for a sphere: 0.45. Plot the
velocity of the rising ball. Filename: vertical_motion.py.

Project 30: Simulate parachuting

The aim of this project is to develop a general solver for the vertical motion of a
body with quadratic air drag, verify the solver, apply the solver to a skydiver in
free fall, and finally apply the solver to a complete parachute jump.

All the pieces of software implemented in this project should be realized as
Python functions and/or classes and collected in one module.

a) Set up the differential equation problem that governs the velocity of the
motion. The parachute jumper is subject to the gravity force and a quadratic
drag force. Assume constant density. Add an extra source term be used for
program verification. Identify the input data to the problem.

b) Make a Python module for computing the velocity of the motion. Also
equip the module with functionality for plotting the velocity.

Hint 1. Use the Crank-Nicolson scheme with a geometric mean of |v|v in time
to linearize the equation of motion with quadratic drag.

Hint 2. You can either use functions or classes for implementation. If you
choose functions, make a function solver that takes all the input data in the
problem as arguments and that returns the velocity (as a mesh function) and
the time mesh. In case of a class-based implementation, introduce a problem
class with the physical data and a solver class with the numerical data and a
solve method that stores the velocity and the mesh in the class.
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Allow for a time-dependent area and drag coefficient in the formula for the
drag force.

c) Show that a linear function of t does not fulfill the discrete equations because
of the geometric mean approximation used for the quadratic drag term. Fit
a source term, as in the method of manufactured solutions, such that a linear
function of t is a solution of the discrete equations. Make a nose test to check
that this solution is reproduced to machine precision.

d) The expected error in this problem goes like ∆t2 because we use a cen-
tered finite difference approximation with error O(∆t2) and a geometric mean
approximation with error O(∆t2). Use the method of manufactured solutions
combined with computing convergence rate to verify the code. Make a nose test
for checking that the convergence rate is correct.

e) Compute the drag force, the gravity force, and the buoyancy force as a
function of time. Create a plot with these three forces.

Hint. You can either make a function forces(v, t, plot=None) that returns
the forces (as mesh functions) and t and shows a plot on the screen and also
saves the plot to a file with name plot if plot is not None, or you can extend
the solver class with computation of forces and include plotting of forces in the
visualization class.

f) Compute the velocity of a skydiver in free fall before the parachute opens.

Hint. Meade and Struthers [5] provide some data relevant to skydiving. The
mass of the human body and equipment can be set to 100 kg. A skydiver in
spread-eagle formation has a cross-section of 0.5 m2 in the horizontal plane. The
density of air decreases varies altitude, but can be taken as constant, 1 kg/m

3
,

for altitudes relevant to skydiving (0-4000 m). The drag coefficient for a man in
upright position can be set to 1.2. Start with a zero velocity. A free fall typically
has a terminating velocity of 45 m/s. (This value can be used to tune other
parameters.)

g) The next task is to simulate a parachute jumper during free fall and after
the parachute opens. At time tp, the parachute opens and the drag coefficient
and the cross-sectional area change dramatically. Use the program to simulate a
jump from z = 3000 m to the ground z = 0. What is the maximum acceleration,
measured in units of g, experienced by the jumper?

Hint. Following Meade and Struthers [5], one can set the cross-section area
perpendicular to the motion to 44 m2 when the parachute is open. Assume
that it takes 8 s to increase the area linearly from the original to the final value.
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The drag coefficient for an open parachute can be taken as 1.8, but tuned using
the known value of the typical terminating velocity reached before landing: 5.3
m/s. One can take the drag coefficient as a piecewise constant function with
an abrupt change at tp. The parachute is typically released after tp = 60 s, but
larger values of tp can be used to make plots more illustrative.

Filename: skydiving.py.

Exercise 31: Formulate vertical motion in the atmosphere

Vertical motion of a body in the atmosphere needs to take into account a varying
air density if the range of altitudes is many kilometers. In this case, % varies with
the altitude z. The equation of motion for the body is given in Section 11.8. Let
us assume quadratic drag force (otherwise the body has to be very, very small).
A differential equation problem for the air density, based on the information for
the one-layer atmospheric model in Section 11.6, can be set up as

p′(z) = − Mg

R∗(T0 + Lz)
p, (141)

% = p
M

R∗T
. (142)

To evaluate p(z) we need the altitude z. From the principle that the velocity is
the derivative of the position we have that

z′(t) = v(t), (143)

where v is the velocity of the body.
Explain in detail how the governing equations can be discretized by the For-

ward Euler and the Crank-Nicolson methods. Filename: falling_in_variable_density.pdf.

Exercise 32: Simulate vertical motion in the atmosphere

Implement the Forward Euler or the Crank-Nicolson scheme derived in Exer-
cise 31. Demonstrate the effect of air density variation on a falling human, e.g.,
the famous fall of Felix Baumgartner. The drag coefficient can be set to 1.2.

Remark. In the Crank-Nicolson scheme one must solve a 3 × 3 system of
equations at each time level, since p, %, and v are coupled, while each equation
can be stepped forward at a time with the Forward Euler scheme. Filename:
falling_in_variable_density.py.

Exercise 33: Compute y = |x| by solving an ODE

Consider the ODE problem

y′(x) =

{
−1, x < 0,
1, x ≥ 0

x ∈ (−1, 1], y(1−) = 1,

132

http://en.wikipedia.org/wiki/Felix_Baumgartner


which has the solution y(x) = |x|. Using a mesh x0 = −1, x1 = 0, and
x2 = 1, calculate by hand y1 and y2 from the Forward Euler, Backward Euler,
Crank-Nicolson, and Leapfrog methods. Use all of the former three methods for
computing the y1 value to be used in the Leapfrog calculation of y2. Thereafter,
visualize how these schemes perform for a uniformly partitioned mesh with
N = 10 and N = 11 points. Filename: signum.py.

Exercise 34: Simulate growth of a fortune with random
interest rate

The goal of this exercise is to compute the value of a fortune subject to inflation
and a random interest rate. Suppose that the inflation is constant at i percent
per year and that the annual interest rate, p, changes randomly at each time
step, starting at some value p0 at t = 0. The random change is from a value pn

at t = tn to pn + ∆p with probability 0.25 and pn −∆p with probability 0.25.
No change occurs with probability 0.5. There is also no change if pn+1 exceeds
15 or becomes below 1. Use a time step of one month, p0 = i, initial fortune
scaled to 1, and simulate 1000 scenarios of length 20 years. Compute the mean
evolution of one unit of money and the corresponding standard deviation. Plot
the mean curve along with the mean plus one standard deviation and the mean
minus one standard deviation. This will illustrate the uncertainty in the mean
curve.

Hint 1. The following code snippet computes pn+1:

import random

def new_interest_rate(p_n, dp=0.5):
r = random.random() # uniformly distr. random number in [0,1)
if 0 <= r < 0.25:

p_np1 = p_n + dp
elif 0.25 <= r < 0.5:

p_np1 = p_n - dp
else:

p_np1 = p_n
return (p_np1 if 1 <= p_np1 <= 15 else p_n)

Hint 2. If ui(t) is the value of the fortune in experiment number i, i =
0, . . . , N − 1, the mean evolution of the fortune is

ū(t) =
1

N

N−1∑
i=0

ui(t),

and the standard deviation is

s(t) =

√√√√ 1

N − 1

(
−(ū(t))2 +

N−1∑
i=0

(ui(t))2

)
.
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Suppose ui(t) is stored in an array u. The mean and the standard deviation
of the fortune is most efficiently computed by using two accumulation arrays,
sum_u and sum_u2, and performing sum_u += u and sum_u2 += u**2 after every
experiment. This technique avoids storing all the ui(t) time series for computing
the statistics.

Filename: random_interest.py.

Exercise 35: Simulate a population in a changing environ-
ment

We shall study a population modeled by (113) where the environment, represented
by r and f , undergoes changes with time.

a) Assume that there is a sudden drop (increase) in the birth (death) rate at
time t = tr, because of limited nutrition or food supply:

a(t) =

{
r0, t < tr,
r0 −A, t ≥ tr,

This drop in population growth is compensated by a sudden net immigration at
time tf > tr:

f(t) =

{
0, t < tf ,
f0, t ≥ ta,

Start with r0 and make A > r0. Experiment with these and other parameters
to illustrate the interplay of growth and decay in such a problem. Filename:
population_drop.py.

b) Now we assume that the environmental conditions changes periodically with
time so that we may take

r(t) = r0 +A sin

(
2π

P
t

)
.

That is, the combined birth and death rate oscillates around r0 with a maximum
change of ±A repeating over a period of length P in time. Set f = 0 and
experiment with the other parameters to illustrate typical features of the solution.
Filename: population_osc.py.

Exercise 36: Simulate logistic growth

Solve the logistic ODE (114) using a Crank-Nicolson scheme where (un+ 1
2 )2 is

approximated by a geometric mean:

(un+ 1
2 )2 ≈ un+1un .

This trick makes the discrete equation linear in un+1. Filename: logistic_CN.py.
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Exercise 37: Rederive the equation for continuous com-
pound interest

The ODE model (117) was derived under the assumption that r was constant.
Perform an alternative derivation without this assumption: 1) start with (115);
2) introduce a time step ∆t instead of m: ∆t = 1/m if t is measured in
years; 3) divide by ∆t and take the limit ∆t → 0. Simulate a case where the
inflation is at a constant level I percent per year and the interest rate oscillates:
r = −I/2 + r0 sin(2πt). Compare solutions for r0 = I, 3I/2, 2I. Filename:
interest_modeling.py.
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L-stable methods, 84
lambda functions, 96
Leapfrog scheme, 102
Leapfrog scheme, filtered, 102
list comprehension, 35
logistic model, 116

mesh, 7
mesh function, 8
mesh function norms, 27
method of manufactured solutions, 98
MMS (method of manufactured solu-

tions), 98
modules, 46
montage program, 31

norm
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continuous, 27
discrete (mesh function), 27

nose testing of doctests, 56
nose tests, 51
numerical experiments, 64

ode45, 109
operator notation, finite differences, 15
option-value pairs (command line), 36
os.system, 67

PDF plot, 31
pdfcrop program, 32
pdfnup program, 32
pdftk program, 32
plotting curves, 29
PNG plot, 31
Popen (in subprocess module), 68
population dynamics, 115
printf format, 21
problem class, 58, 63

radioactive decay, 117
reading the command line, 35, 36
representative (mesh function), 26
RK4, 104
Runge-Kutta, 2nd-order scheme, 103
Runge-Kutta, 4th-order scheme, 104

scalar computing, 29
scaling, 126
scientific experiments, 64
script, 65
software testing

doctests, 49
nose, 51
nose w/doctests, 56
unit testing (class-based), 56

solver class, 59, 63
stability, 84, 91
subprocess (Python module), 68
sys.argv, 35

Taylor-series methods (for ODEs), 103
terminal velocity, 124
test block (in Python modules), 47
TestCase (class in unittest), 56

theta-rule, 13, 101

unit testing, 51, 56
unittest, 56
Unix wildcard notation, 67
user interfaces to programs, 34

verification, 41
viewing graphics files, 31
visualizer class, 60, 63
visualizing curves, 29

weighted average, 13
wildcard notation (Unix), 67
wrapper (code), 59
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