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Finite difference methods for partial differential equations (PDEs) employ a
wge of concepts and tools that can be introduced and illustrated in the context
f simple ordinary differential equation (ODE) examples. This is what we do in
1e present document. By first working with ODEs, we keep the mathematical
roblems to be solved as simple as possible (but no simpler), thereby allowing
1l focus on understanding the key concepts and tools. The choice of topics
1 the forthcoming treatment of ODEs is therefore solely dominated by what
arries over to numerical methods for PDEs.

Theory and practice are primarily illustrated by solving the very simple
DE v’ = —au, u(0) = I, where a > 0 is a constant, but we also address the

sneralized problem v’ = —a(t)u 4 b(¢t) and the nonlinear problem u' = f(u,t).

he following topics are introduced:

e How to think when constructing finite difference methods, with special focus
on the Forward Euler, Backward Euler, and Crank-Nicolson (midpoint)
schemes

e How to formulate a computational algorithm and translate it into Python
code

e How to make curve plots of the solutions
e How to compute numerical errors
e How to compute convergence rates

e How to verify an implementation and automate verification through nose
tests in Python

e How to structure code in terms of functions, classes, and modules

e How to work with Python concepts such as arrays, lists, dictionaries,
lambda functions, functions in functions (closures), doctests, unit tests,
command-line interfaces, graphical user interfaces

e How to perform array computing and understand the difference from scalar
computing

e How to conduct and automate large-scale numerical experiments
e How to generate scientific reports
e How to uncover numerical artifacts in the computed solution

e How to analyze the numerical schemes mathematically to understand why
artifacts occur

e How to derive mathematical expressions for various measures of the error
in numerical methods, frequently by using the sympy software for symbolic
computation

Introduce concepts such as finite difference operators, mesh (gric
functions, stability, truncation error, consistency, and convergenc

Present additional methods for the general nonlinear ODE v’ =
which is either a scalar ODE or a system of ODEs

How to access professional packages for solving ODEs

How the model equation u’ = —au arises in a wide range of pheno
physics, biology, and finance

The exposition in a nutshell.

Everything we cover is put into a practical, hands-on context. All math
ics is translated into working computing codes, and all the mathem
theory of finite difference methods presented here is motivated fr
strong need to understand strange behavior of programs. Two fundan
questions saturate the text:

e How to we solve a differential equation problem and produce nun

e How to we trust the answer?

1 Finite difference methods

Goal.
We explain the basic ideas of finite difference methods using a s
ordinary differential equation v’ = —au as primary example. Emph:

put on the reasoning when discretizing the problem and introducti
key concepts such as mesh, mesh function, finite difference approxime
averaging in a mesh, deriation of algorithms, and discrete operator nota

1.1 A basic model for exponential decay

Our model problem is perhaps the simplest ordinary differential equation

u'(t) = —au(t),

Here, a > 0 is a constant and u/(t) means differentiation with respect t
This type of equation arises in a number of widely different phenomen
some quantity u undergoes exponential reduction. Examples include rad
decay, population decay, investment decay, cooling of an object, pressw
in the atmosphere, and retarded motion in fluids (for some of these m
can be negative as well), see Section 11 for details and motivation. \
chosen this particular ODE not only because its applications are relev:



ven more because studying numerical solution methods for this simple ODE
ives important insight that can be reused in much more complicated settings,
1 particular when solving diffusion-type partial differential equations.

The analytical solution of the ODE is found by the method of separation of
ariables, which results in

u(t) = Ce™*,

r any arbitrary constant C'. To formulate a mathematical problem for which
1ere is a unique solution, we need a condition to fix the value of C. This
»dition is known as the initial condition and stated as u(0) = I. That is, we
now the value I of u when the process starts at ¢ = 0. The exact solution is
1en u(t) = Te 9t

We seek the solution u(t) of the ODE for ¢ € (0,T]. The point ¢t = 0 is not
icluded since we know u here and assume that the equation governs u for ¢t > 0.
he complete ODE problem then reads: find u(t) such that

u = —au, t € (0,T], u(0)=1I. (1)

his is known as a continuous problem because the parameter ¢ varies continuously
om 0 to T'. For each t we have a corresponding u(t). There are hence infinitely
1any values of ¢ and u(t). The purpose of a numerical method is to formulate
corresponding discrete problem whose solution is characterized by a finite
umber of values, which can be computed in a finite number of steps on a
mputer.

.2 The Forward Euler scheme

olving an ODE like (1) by a finite difference method consists of the following
ur steps:

1. discretizing the domain,

2. fulfilling the equation at discrete time points,

w

. replacing derivatives by finite differences,

4. formulating a recursive algorithm.

tep 1: Discretizing the domain. The time domain [0, 7] is represented
y a finite number of N; 4+ 1 points
O=ty<ti <t < - <In-_1<tn, =T. (2)

he collection of points tg,?1,...,tN, constitutes a mesh or grid. Often the
1esh points will be uniformly spaced in the domain [0, 7], which means that

the spacing t,,+1 — t,, is the same for all n. This spacing is often denote
in this case t,, = nAt.

We seek the solution u at the mesh points: u(t,), n =1,2,...,N;. N
u? is already known as I. A notational short-form for u(t,), which will
extensively, is u™. More precisely, we let u™ be the numerical approx
to the exact solution wu(t,) at ¢t = t,,. The numerical approximation is
function, here defined only at the mesh points. When we need to
distinguish between the numerical and the exact solution, we often
subscript e on the exact solution, as in ue(t,). Figure 1 shows the ¢,
points for n =0,1,..., Ny = 7 as well as ue(t) as the dashed line. The ¢
numerical method for ODEs is to compute the mesh function by solving
set of algebraic equations derived from the original ODE problem.
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Figure 1: Time mesh with discrete solution values.

Since finite difference methods produce solutions at the mesh points
is an open question what the solution is between the mesh points. One
methods for interpolation to compute the value of u between mesh poir
simplest (and most widely used) interpolation method is to assume that
linearly between the mesh points, see Figure 2. Given u™ and u"*!, the
u at some t € [tn,tnt1] is by linear interpolation

n+l _ ,n
u(t) mut + (1)
tn+1 - tn,



igure 2: Linear interpolation between the discrete solution values (dashed
1rve is exact solution).

tep 2: Fulfilling the equation at discrete time points. The ODE is
1pposed to hold for all t € (0,77, i.e., at an infinite number of points. Now we
slax that requirement and require that the ODE is fulfilled at a finite set of
iscrete points in time. The mesh points t1,%2,...,ty, are a natural choice of
oints. The original ODE is then reduced to the following N; equations:

u(ty) = —au(t,), n=1,...,N;. (4)

tep 3: Replacing derivatives by finite differences. The next and most
ssential step of the method is to replace the derivative v’ by a finite differ-
ace approximation. Let us first try a one-sided difference approximation (see
igure 3),

un+l —un
/
u(t,) 8 —— . 5
()~ )
1serting this approximation in (4) results in
un+1 —un
LT, n=0,1,...,N,—1. (6)
tn+1 —tn

his equation is the discrete counterpart to the original ODE problem (1), and
ften referred to as finite difference scheme or more generally as the discrete

equations of the problem. The fundamental feature of these equations
they are algebraic and can hence be straightforwardly solved to prod
mesh function, i.e., the values of u at the mesh points (v, n =1,2,...

*< forward

n tn, +1

Figure 3: Illustration of a forward difference.

Step 4: Formulating a recursive algorithm. The final step is to
the computational algorithm to be implemented in a program. The ke
vation here is to realize that (6) can be used to compute u"+! if u™ is
Starting with n = 0, u° is known since u® = u(0) = I, and (6) gives an «
for u'. Knowing u', u? can be found from (6). In general, u™ in (6)
assumed known, and then we can easily solve for the unknown u"*1:
u" T =" — a(tyyr —ty)u™.
We shall refer to (7) as the Forward Euler (FE) scheme for our model |
From a mathematical point of view, equations of the form (7) are ki
difference equations since they express how differences in u, like u" 1 —u’
with n. The finite difference method can be viewed as a method for t1
differential equation into a difference equation.
Computation with (7) is straightforward:

UO:I,

I(l — (L(tl — to)),
1(1 — a(t1 — t()))(l — a(tg — tl)),
I(1—a(t1 —10))(1 — a(tz — t1))(1 — a(ts —

up = u® — a(t; — to)u®

us = ul — a(ty — 151)u1

ud = u? — a(ts — to)u?

10



nd so on until we reach u™*. Very often, t,,1 — t, is constant for all n, so
e can introduce the common symbol At for the time step: At = t, 11 — t,,

=0,1,...,N; — 1. Using a constant time step At in the above calculations
ives

Ug = I,

up = I(1 — aAt),

ug = I(1 — aAt)?,
u® = I(1 — aAt)?,

ulNt = I(1 — aAt)Nr .

his means that we have found a closed formula for u", and there is no need
» let a computer generate the sequence u',u?,u3,.... However, finding such
formula for u™ is possible only for a few very simple problems, so in general
nite difference equations must be solved on a computer.

As the next sections will show, the scheme (7) is just one out of many

lternative finite difference (and other) methods for the model problem (1).

.3 The Backward Euler scheme

here are several choices of difference approximations in step 3 of the finite
ifference method as presented in the previous section. Another alternative is

n _ ,n—1
Wiy~ U

®)

tn - tnfl .

ince this difference is based on going backward in time (¢,—1) for information,
is known as the Backward Euler difference. Figure 4 explains the idea.
Inserting (8) in (4) yields the Backward Euler (BE) scheme:

u® — un—l

— = —au”. (9)
tn - tnfl

/e assume, as explained under step 4 in Section 1.2, that we have computed

0 ul,...,u""! such that (9) can be used to compute u™. For direct similarity

ith the Forward Euler scheme (7) we replace n by n+ 1 in (9) and solve for

1e unknown value u"t1:

1

n+l _
1+ a(tn+1 — tn)

u u”. (10)

11

backward

-

! ! !
T T T

n tn, +1

Figure 4: Illustration of a backward difference.

1.4 The Crank-Nicolson scheme

The finite difference approximations used to derive the schemes (7) and
both one-sided differences, known to be less accurate than central (or m
differences. We shall now construct a central difference at ¢,,11/2 = %(tn
or tpy1/0 = (n+ %)At if the mesh spacing is uniform in time. The approx
reads

un+l _ un

/ ~
" (tn+%) - tn+1 - tn .
Note that the fraction on the right-hand side is the same as for the 1
Euler approximation (5) and the Backward Euler approximation (8)
replaced by n + 1). The accuracy of this fraction as an approximatios
derivative of u depends on where we seek the derivative: in the cente
interval [ty,t,+1] or at the end points.
With the formula (11), where u’ is evaluated at t,,1/2, it is na
demand the ODE to be fulfilled at the time points between the mesh p

u'(t,H_%) =—au(tpy1), n=0,...,N,—1.
Using (11) in (12) results in

un+1 —un 1
— = —au"tz,
tn+1 —ln
1., . .
where u™ "2 is a short form for u(tn+%). The problem is that we aim to ¢

u™ for integer n, implying that u"t2 is not a quantity computed by our

12



; must therefore be expressed by the quantities that we actually produce, i.e.,

1e numerical solution at the mesh points. One possibility is to approximate
1 . o o . .

"+3 as an arithmetic mean of the u values at the neighboring mesh points:

1
"t x §(u” +u™th). (14)
sing (14) in (13) results in

n+l _ ,n 1
v v —ai(u" + "y, (15)

tn+1 - tn
igure 5 sketches the geometric interpretation of such a centered difference.

u(t)

~ ~ . centered

tn—l tn tn+1
Figure 5: Illustration of a centered difference.

n+1

We assume that u” is already computed so that u is the unknown, which

e can solve for:

1—La(tys —t
ut = fa( ntt=tn) o (16)
1 + §a(tn+1 - tn)

he finite difference scheme (16) is often called the Crank-Nicolson (CN) scheme
¢ a midpoint or centered scheme.

.5 The unifying 6-rule

he Forward Euler, Backward Euler, and Crank-Nicolson schemes can be formu-
ited as one scheme with a varying parameter 6:

n

n+1

u —Uu

= —a(fu" + (1 - O)u"). (17)
tn+1 —1n

13

As before, u™ is considered known and u

Observe:

e O =0 gives the Forward Euler scheme

e O =1 gives the Backward Euler scheme, and

o 0= % gives the Crank-Nicolson scheme.

e We may alternatively choose any other value of  in [0, 1].

n+1 ynknown, so we solve for tl

um = L= (1 =0a(tns1 —tn) ‘
1+ 9a(tn+1 — tn)

This scheme is known as the #-rule, or alternatively written as the ”the

-

Derivation.
We start with replacing v’ by the fraction

un+1 —

tn+1 - tn ’
in the Forward Euler, Backward Euler, and Crank-Nicolson schemes.
we observe that the difference between the methods concerns which
this fraction approximates the derivative. Or in other words, at which
we sample the ODE. So far this has been the end points or the midpc
[tn,tn+1]. However, we may choose any point ¢ € [t;,, tp41]. The diffict
that evaluating the right-hand side —au at an arbitrary point faces the
problem as in Section 1.4: the point value must be expressed by the di
u quantities that we compute by the scheme, i.e., ™ and u™+!. Foll
the averaging idea from Section 1.4, the value of u at an arbitrary p

can be calculated as a weighted average, which generalizes the arith
mean %u" + %u”“. If we express t as a weighted average

thto = 9tn+1 + (1 - e)tna
where 6 € [0,1] is the weighting factor, we can write

u(t) = w(@t, 11+ (1 —0)t,) ~ u" ™ 4+ (1 — 9)u™.

We can now let the ODE hold at the point £ € [t,,t, 1], approx
u' by the fraction (u™*! —u™)/(t,11 —t,), and approximate the right
side —au by the weighted average (19). The result is (17).

1.6 Constant time step

All schemes up to now have been formulated for a general non-uniform
time: tg,%1,...,ty,. Non-uniform meshes are highly relevant since one

14



lany points in regions where u varies rapidly, and save points in regions where
is slowly varying. This is the key idea of adaptive methods where the spacing
f the mesh points are determined as the computations proceed.

However, a uniformly distributed set of mesh points is very common and
1fficient for many applications. It therefore makes sense to present the finite
ifference schemes for a uniform point distribution ¢,, = nAt, where At is the
mstant spacing between the mesh points, also referred to as the time step. The
ssulting formulas look simpler and are perhaps more well known.

<
Summary of schemes for constant time step.
w1 = (1 — aAt)u™ Forward Euler (20)
1
utl = — " Backward Euler (21)
1+ aAt
1— LaAt
™t = +a i Crank-Nicolson (22)
1 + §aAt
1—(1-6)aAt
S %u" The 6 — rule (23) )

Not surprisingly, we present these three alternative schemes because they
ave different pros and cons, both for the simple ODE in question (which can
asily be solved as accurately as desired), and for more advanced differential
juation problems.

Test the understanding.

At this point it can be good training to apply the explained finite difference
discretization techniques to a slightly different equation. Exercise 1 is there-
fore highly recommended to check that the key concepts are understood.

.7 Compact operator notation for finite differences

inite difference formulas can be tedious to write and read, especially for differen-
al equations with many terms and many derivatives. To save space and help the
sader of the scheme to quickly see the nature of the difference approximations,
e introduce a compact notation. A forward difference approximation is denoted
y the D} operator:
n+1 n

=~ S, (24)
he notation consists of an operator that approximates differentiation with
spect to an independent variable, here t. The operator is built of the symbol D,
ith the variable as subscript and a superscript denoting the type of difference.
he superscript * indicates a forward difference. We place square brackets
cound the operator and the function it operates on and specify the mesh point,
here the operator is acting, by a superscript.

15

The corresponding operator notation for a centered difference and a b.
difference reads

n uts —yn—3 d

and
u™ — 1 d

~ tn) -
At gt
Note that the superscript ~ denotes the backward difference, while no sug

implies a central difference.
An averaging operator is also convenient to have:

Dy u]"™ =

1
[]" = (" um ) R ut)

The superscript ¢ indicates that the average is taken along the time coc
The common average (u™ + u™*1)/2 can now be expressed as [@]""2.
also spatial coordinates enter the problem, we need the explicit specific
the coordinate after the bar.)

The Backward Euler finite difference approximation to ' = —au
written as follows utilizing the compact notation:

[D; u]™ = —au™.

In difference equations we often place the square brackets around th
equation, to indicate at which mesh point the equation applies, since ea
is supposed to be approximated at the same point:

[Df u=—au]™.

The Forward Euler scheme takes the form

[Dfu = —au]™,

while the Crank-Nicolson scheme is written as

[Dyu = —aﬂt]’”% .

Question.

Apply (25) and (27) and write out the expressions to see that (30) is i
the Crank-Nicolson scheme.

The 6-rule can be specified by

[Dtu = —aﬂt’g]”J“g7

if we define a new time difference and a weighted averaging operator:

16



_ untl —
[Dtu]n—HQ = ——, (32)
tn+1 —{n
@070 = (1 — 0)u™ + 0u™ = ultng), (33)

here 6 € [0,1]. Note that for 6 = § we recover the standard centered difference
nd the standard arithmetic mean. The idea in (31) is to sample the equation
t tnte, use a skew difference at that point [Dtu]"+9, and a skew mean value.
n alternative notation is

[Deu]™t? = 0]—au)" ™ + (1 — 0)[—au]" .

Looking at the various examples above and comparing them with the under-
ring differential equations, we see immediately which difference approximations
1at have been used and at which point they apply. Therefore, the compact
otation effectively communicates the reasoning behind turning a differential
juation into a difference equation.

Implementation
N
Goal.
We want make a computer program for solving
' (t) = —au(t), te(0,T], u(0)=1I,
by finite difference methods. The program should also display the numerical
solution as a curve on the screen, preferably together with the exact solution.
We shall also be concerned with program testing, user interfaces, and
computing convergence rates. )

All programs referred to in this section are found in the src/decay! directory

ve use the classical Unix term directory for what many others nowadays call
lder).

Tathematical problem. We want to explore the Forward Euler scheme, the
ackward Euler, and the Crank-Nicolson schemes applied to our model problem.
rom an implementational point of view, it is advantageous to implement the
-rule
w1 1—(1— H)CLAL‘U”

1+ 0aAt ’

nce it can generate the three other schemes by various of choices of 8: 8 = 0 for
orward Euler, § = 1 for Backward Euler, and 6 = 1/2 for Crank-Nicolson. Given
,u’ =1, T, and At, our task is to use the #-rule to compute u!,u?, ..., u™,
here tn, = N:At, and Ny the closest integer to T'/At.

u

Ihttp://tinyurl.com/jvzzcfn/decay
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Computer Language: Python. Any programming language can be
generate the u"*! values from the formula above. However, in this dc
we shall mainly make use of Python of several reasons:

e Python has a very clean, readable syntax (often known as ”exe
pseudo-code”).

e Python code is very similar to MATLAB code (and MATLA]I
particularly widespread use for scientific computing).

e Python is a full-fledged, very powerful programming language.

e Python is similar to, but much simpler to work with and results
reliable code than C++.

e Python has a rich set of modules for scientific computing, and its po
in scientific computing is rapidly growing.

e Python was made for being combined with compiled languages ((
Fortran) to reuse existing numerical software and to reach high ¢
tional performance of new implementations.

e Python has extensive support for administrative task needed whe
large-scale computational investigations.

e Python has extensive support for graphics (visualization, user in
web applications).

e FEniCS, a very powerful tool for solving PDEs by the finite element
is most human-efficient to operate from Python.

Learning Python is easy. Many newcomers to the language will probak
enough from the forthcoming examples to perform their own compute:
ments. The examples start with simple Python code and gradually mak
more powerful constructs as we proceed. As long as it is not inconver
the problem at hand, our Python code is made as close as possible to M
code for easy transition between the two languages.

Readers who feel the Python examples are too hard to follow will
benefit from read a tutorial, e.g.,

e The Official Python Tutorial?

e Python Tutorial on tutorialspoint.com?
e Interactive Python tutorial site?

e A Beginner’s Python Tutorial®

The author also has a book [4] that introduces scientific programmi
Python.

?http://docs.python.org/2/tutorial/
Shttp://www.tutorialspoint.com/python/
4http://www.learnpython.org/
Shttp://en.wikibooks.org/wiki/A Beginner’s Python Tutorial
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.1 Making a solver function

/e choose to have an array u for storing the u™ values, n = 0,1,..., N;. The
lgorithmic steps are

1. initialize u°

2. fort=1t,,n=1,2,..., N;: compute u,, using the f-rule formula

unction for computing the numerical solution. The following Python
mction takes the input data of the problem (I, a, T, At, 6) as arguments and
sturns two arrays with the solution 4, ..., ™Vt and the mesh points t, ..., tn,,
sspectively:

rom numpy import *

ief solver(I, a, T, dt, theta):
"nnSolve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""

Nt = int(T/dt) # no of time intervals

T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values

t = linspace(0, T, Nt+1) # time mesh

uf0] =TI # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*axdt)/(1 + thetaxdt*a)*ul[n]
return u, t

The numpy library contains a lot of functions for array computing. Most
f the function names are similar to what is found in the alternative scientific
mputing language MATLAB. Here we make use of

e zeros(Nt+1) for creating an array of a size Nt+1 and initializing the
elements to zero

e linspace(0, T, Nt+1) for creating an array with Nt+1 coordinates uni-
formly distributed between 0 and T

he for loop deserves a comment, especially for newcomers to Python. The
Jnstruction range (0, Nt, s) generates all integers from 0 to Nt in steps of
, but not including Nt. Omitting s means s=1. For example, range(0, 6, 3)
ives 0 and 3, while range (0, Nt) generates 0, 1, ..., Nt-1. Our loop implies
1e following assignments to u[n+1]: u[1], u[2], ..., u[Nt], which is what we
ant since u has length Nt+1. The first index in Python arrays or lists is always
and the last is then len(u)-1. The length of an array u is obtained by len(u)
ru.size.

To compute with the solver function, we need to call it. Here is a sample
all:
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u, t = solver(I=1, a=2, T=8, dt=0.8, theta=1)

Integer division. The shown implementation of the solver may face p
and wrong results if T, a, dt, and theta are given as integers, see Exe
and 5. The problem is related to integer division in Python (as well as in
C, C++, and many other computer languages): 1/2 becomes 0, whil
1/2.0, or 1.0/2.0 all become 0.5. It is enough that at least the no
or the denominator is a real number (i.e., a float object) to ensure
mathematical division. Inserting a conversion dt = float(dt) guarant
dt is float and avoids problems in Exercise 5.

Another problem with computing N; = T/ At is that we should rour
the nearest integer. With Nt = int(T/dt) the int operation picks the
integer smaller than T/dt. Correct mathematical rounding as known fror
is obtained by

Nt = int(round(T/dt))
The complete version of our improved, safer solver function then becc

from numpy import *

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""

dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) no of time intervals
T = Nt*dt adjust T to fit time step dt

#

= #

u = zeros(Nt+1) # array of u[n] values
= #

t linspace(0, T, Nt+1) time mesh
ufo] =1I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*ul[n]
return u, t

Doc strings. Right below the header line in the solver function tt
Python string enclosed in triple double quotes """. The purpose of th’
object is to document what the function does and what the arguments
this case the necessary documentation do not span more than one line, 1
triple double quoted strings the text may span several lines:

def solver(I, a, T, dt, theta):

nnn
Solve
u’ (t) = -a*u(t),
with initial condition u(0)=I, for t in the time interval

(0,T]. The time interval is divided into time steps of
length dt.
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theta=1 corresponds to the Backward Euler scheme, theta=0
to the Forward Euler scheme, and theta=0.5 to the Crank-

Nicolson method.
nnn

uch documentation strings appearing right after the header of a function
re called doc strings. There are tools that can automatically produce nicely
rmatted documentation by extracting the definition of functions and the
mtents of doc strings.

It is strongly recommended to equip any function whose purpose is not
ovious with a doc string. Nevertheless, the forthcoming text deviates from this
1le if the function is explained in the text.

ormatting of numbers. Having computed the discrete solution u, it is
atural to look at the numbers:

t Write out a table of t and u values:
‘or i in range(len(t)):
print t[i], ulil

his compact print statement gives unfortunately quite ugly output because the
and u values are not aligned in nicely formatted columns. To fix this problem,
e recommend to use the printf format, supported most programming languages
therited from C. Another choice is Python’s recent format string syntazx.

Writing t[1] and u[i] in two nicely formatted columns is done like this with
1e printf format:

srint ’t=%6.3f u=lg’ % (t[il, ulil)

he percentage signs signify ”slots” in the text where the variables listed at the
1d of the statement are inserted. For each ”slot” one must specify a format for
ow the variable is going to appear in the string: s for pure text, d for an integer,
for a real number written as compactly as possible, 9.3E for scientific notation
ith three decimals in a field of width 9 characters (e.g., -1.351E-2), or .2f for
;andard decimal notation with two decimals formatted with minimum width.
he printf syntax provides a quick way of formatting tabular output of numbers
ith full control of the layout.
The alternative format string syntax looks like

rint ’t={t:6.3f} u={u:g}’.format(t=t[i], u=ulil)
s seen, this format allows logical names in the ”slots” where t[1] and u[i] are
» be inserted. The ”slots” are surrounded by curly braces, and the logical name

followed by a colon and then the printf-like specification of how to format real
umbers, integers, or strings.
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Running the program. The function and main program shown abo
be placed in a file, say with name decay_v1.py® (v1 stands for ”version
shall make numerous different versions of this program). Make sure you v
code with a suitable text editor (Gedit, Emacs, Vim, Notepad-++, or |
The program is run by executing the file this way:

Terminal> python decay_vl.py

The text Terminal> just indicates a prompt in a Unix/Linux or DOS t
window. After this prompt, which will look different in your terminal
depending on the terminal application and how it is set up, comma
python decay_v1l.py can be issued. These commands are interpretec
operating system.

We strongly recommend to run Python programs within the IPyth
First start IPython by typing ipython in the terminal window. Ins
IPython shell, our program decay_v1.py is run by the command run dec

Terminal> ipython

In [1]: run decay_vl.py

t= 0.000 u=1

t= 0.800 u=0.384615

t= 1.600 u=0.147929

t= 2.400 u=0.0568958
t= 3.200 u=0.021883

t= 4.000 u=0.00841653
t= 4.800 u=0.00323713
t= 5.600 u=0.00124505
t= 6.400 u=0.000478865
t= 7.200 u=0.000184179
t= 8.000 u=7.0838e-05

In [2]:

The advantage of running programs in IPython are many: previous cor
are easily recalled with the up arrow, %pdb turns on debugging so that 1
can be examined if the program aborts due to an exception, output of co
are stored in variables, programs and statements can be profiled, any o]
system command can be executed, modules can be loaded automatic:
other customizations can be performed when starting IPython — to m«
few of the most useful features.

Although running programs in IPython is strongly recommende
execution examples in the forthcoming text use the standard Python st
prompt >>> and run programs through a typesetting like

Shttp://tinyurl.com/jvzzcfn/decay/decay v1.py
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arminal> python programname

he reason is that such typesetting makes the text more compact in the vertical
irection than showing sessions with IPython syntax.

.2 Verifying the implementation

; is easy to make mistakes while deriving and implementing numerical algo-
thms, so we should never believe in the printed u values before they have been
10roughly verified. The most obvious idea is to compare the computed solution
ith the exact solution, when that exists, but there will always be a discrepancy
etween these two solutions because of the numerical approximations. The
1allenging question is whether we have the mathematically correct discrepancy
¢ if we have another, maybe small, discrepancy due to both an approximation
ror and an error in the implementation.

The purpose of verifying a program is to bring evidence for the property
1at there are no errors in the implementation. To avoid mixing unavoidable
pproximation errors and undesired implementation errors, we should try to
1ake tests where we have some exact computation of the discrete solution or at
:ast parts of it. Examples will show how this can be done.

tunning a few algorithmic steps by hand. The simplest approach to
roduce a correct reference for the discrete solution w of finite difference equations
to compute a few steps of the algorithm by hand. Then we can compare the
and calculations with numbers produced by the program.

A straightforward approach is to use a calculator and compute u', u?, and
3. With I = 0.1, 8 = 0.8, and At = 0.8 we get

1—(1—0)aAt

A
1+ faAt

= 0.298245614035

ul = AT = 0.0298245614035,
u? = Au' = 0.00889504462912,
u? = Au? = 0.00265290804728

Comparison of these manual calculations with the result of the solver
inction is carried out in the function

lef verify_three_steps():
"""Compare three steps with known manual computations."""
theta = 0.8; a=2; I =0.1; dt = 0.8
u_by_hand = array([I,
0.0298245614035,
0.00889504462912,
0.00265290804728])
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Nt

= 3 # number of time steps
W, & =

solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)

tol = 1E-15 # tolerance for comparing floats
difference = abs(u - u_by_hand) .max()

success = difference <= tol

return success

The main program, where we call the solver function and print u
put in a separate function main:

def main():
u, t = solver(I=1, a=2, T=8, dt=0.8, theta=1)
# Write out a table of t and u values:
for i in range(len(t)):
print ’t=%6.3f u=%g’ % (t[il, ulil)
# or print ’t={t:6.3f} u={u:g}’.format(t=t[i], u=ulil)

The main program in the file may now first run the verification test a
go on with the real simulation (main()) only if the test is passed:

if verify_three_steps():
main()
else:
print ’Bug in the implementation!’

Since the verification test is always done, future errors introduced acci
in the program have a good chance of being detected.

Caution: choice of parameter values.

For the choice of values of parameters in verification tests one shoulc
away from integers, especially 0 and 1, as these can simplify formule
much for test purposes. For example, with § = 1 the nominator i
formula for ™ will be the same for all @ and At values. One should the
choose more ”arbitrary” values, say § = 0.8 and I = 0.1.

It is essential that verification tests can be automatically run at any ti
this purpose, there are test frameworks and corresponding programmi
that allow us to request running through a suite of test cases (see Sect
but in this very early stage of program development we just implement
the verification in our own code so that every detail is visible and unde

The complete program including the verify_three_steps* func
found in the file decay_verf1.py’ (verfl is a short name for ”veri
version 17).

Comparison with an exact discrete solution. Sometimes it is po
find a closed-form ezxact discrete solution that fulfills the discrete finite d
equations. The implementation can then be verified against the exact
solution. This is usually the best technique for verification.

"http://tinyurl.com/jvzzcfn/decay/decay verfi.py
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Define

11— (1-0)aAt
1+ 6aAt
[anual computations with the #-rule results in
w =1,
ul = Au® = AI,
u? = Aut = A?],

u™ ::14n1ﬂ171 — A™J.

/e have then established the exact discrete solution as

u" =TA" (34)

Caution.

One should be conscious about the different meanings of the notation on
the left- and right-hand side of (34): on the left, n in u™ is a superscript
reflecting a counter of mesh points (¢,), while on the right, n is the power
in the exponentiation A™.

Comparison of the exact discrete solution and the computed solution is done

1 the following function:

lef verify_exact_discrete_solution():

def exact_discrete_solution(n, I, a, theta, dt):
A = (1 - (1-theta)*axdt)/(1 + thetaxdt*a)
return IxA*x*n

theta = 0.8; a=2; I =0.1; dt = 0.8

Nt = int(8/dt) # no of steps

u, t = solver(I=I, a=a, T=Ntxdt, dt=dt, theta=theta)

u_de = array([exact_discrete_solution(n, I, a, theta, dt)
for n in range(Nt+1)])

difference = abs(u_de - u).max() # max deviation

tol = 1E-15 # tolerance for comparing floats

success = difference <= tol

return success

he complete program is found in the file decay_verf2.py® (verf2 is a short

ame for ”verification, version 2”).

Local functions.

One can define a function inside another function, here called a local
function (also known as closure) inside a parent function. A local func-
tion is invisible outside the parent function. A convenient property is
that any local function has access to all variables defined in the parent

8http://tinyurl.com/jvzzcfn/decay/decay_verf2.py
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function, also if we send the local function to some other functi
argument (!). In the present example, it means that the local fur
exact_discrete_solution does not need its five arguments as the v
can alternatively be accessed through the local variables defined i
parent function verify_exact_discrete_solution. We can send su
exact_discrete_solution without arguments to any other functio:
exact_discrete_solution will still have access to n, I, a, and so
defined in its parent function.

2.3 Computing the numerical error as a mesh funci

Now that we have evidence for a correct implementation, we are in a po
compare the computed u™ values in the u array with the exact u value
mesh points, in order to study the error in the numerical solution.

Let us first make a function for the analytical solution ue(t) = Ie™¢
model problem:

def exact_solution(t, I, a):
return I*exp(-axt)

A natural way to compare the exact and discrete solutions is to ¢
their difference as a mesh function:

e =ue(ty) —u", n=0,1,...,N;.

We may view ul = ue(t,) as the representation of ue(t) as a mesh f
rather than a continuous function defined for all ¢ € [0, 7] (u® is often c¢
representative of ue on the mesh). Then, e” = ul — u™ is clearly the di
of two mesh functions. This interpretation of €™ is natural when progr:

The error mesh function ™ can be computed by

u, t = solver(I, a, T, dt, theta) # Numerical sol.
u_e = exact_solution(t, I, a) # Representative of exact sol.
e=1u.e-u

Note that the mesh functions u and u_e are represented by arrays and as
with the points in the array t.
-

Array arithmetics.
The last statements

u_e = exact_solution(t, I, a)
€ = u.e - u

are primary examples of array arithmetics: t is an array of mesh
that we pass to exact_solution. This function evaluates -a*t, whic
scalar times an array, meaning that the scalar is multiplied with each
element. The result is an array, let us call it tmpl. Then exp(tmpl) 1
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applying the exponential function to each element in tmp, resulting an array,
say tmp2. Finally, I*tmp2 is computed (scalar times array) and u_e refers
to this array returned from exact_solution. The expression u_e - uis
the difference between two arrays, resulting in a new array referred to by
e.

.4 Computing the norm of the numerical error

1stead of working with the error e™ on the entire mesh, we often want one
umber expressing the size of the error. This is obtained by taking the norm of
1e error function.

Let us first define norms of a function f(¢) defined for all ¢ € [0,7]. Three
)Immon norms are

T 1/2
1f]lz2 = ( / f(t)th) 7 (36)

T
[ / (), (37)
£l = max |£(2)]. (35)

te[0,T]

he L2 norm (36) ("L-two norm”) has nice mathematical properties and is the
10st popular norm. It is a generalization of the well-known Eucledian norm
f vectors to functions. The L™ is also called the max norm or the supremum
orm. In fact, there is a whole family of norms,

T 1/p
£l = < / f(t)”dt> , (39)

ith p real. In particular, p = 1 corresponds to the L' norm above while p = co
the L*° norm.

Numerical computations involving mesh functions need corresponding norms.
riven a set of function values, f", and some associated mesh points, t,, a
umerical integration rule can be used to calculate the L? and L' norms defined
bove. Imagining that the mesh function is extended to vary linearly between
1e mesh points, the Trapezoidal rule is in fact an exact integration rule. A
ossible modification of the L? norm for a mesh function f™ on a uniform mesh
ith spacing At is therefore the well-known Trapezoidal integration formula

1 1 R i
171 = (At (2(f°)2+2(fN‘)2+ > (f”)2>)
n=1

common approximation of this expression, motivated by the convenience of
aving a simpler formula, is
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N, 1/2
1™l = (At Z(f")2> :

n=0
This is called the discrete L? norm and denoted by ¢2. The error i
compared with the Trapezoidal integration formula is At((f°)2 + (f
which means perturbed weights at the end points of the mesh function,
error goes to zero as At — 0. As long as we are consistent and stick to ¢
of integration rule for the norm of a mesh function, the details and acc
this rule is not of concern.

The three discrete norms for a mesh function f™, corresponding to

L', and L™ norms of f(t) defined above, are defined by

N, 1/2
1™ le2 (AtZ(f")2> )
n=0

N,
1"l ALY | f"]

n=0
n n
1" e max £

Note that the L2, L', #2, and ¢! norms depend on the length of the
of interest (think of f = 1, then the norms are proportional to v/T' o1
some applications it is convenient to think of a mesh function as just a s
function values and neglect the information of the mesh points. Then
replace At by T/N; and drop T. Moreover, it is convenient to divide
total length of the vector, Ny + 1, instead of N;. This reasoning gives ris
vector norms for a vector f = (fo,..., fn):

) N 1/2
112 = (NH Z(fn)2> ,

n=0

1 N
11l = 5 o1

fllew = a1
Here we have used the common vector component notation with subscri
and N as length. We will mostly work with mesh functions and use the
£2 norm (40) or the max norm ¢*° (42), but the corresponding vecto
(43)-(45) are also much used in numerical computations, so it is impo
know the different norms and the relations between them.

A single number that expresses the size of the numerical error will
as ||e™]|e2 and called E:
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he corresponding Python code, using array arithmetics, reads
I = sqrt(dt*sum(e**2))

he sum function comes from numpy and computes the sum of the elements of
a array. Also the sqrt function is from numpy and computes the square root of
ach element in the array argument.

calar computing. Instead of doing array computing sqrt (dt*sum(e**2))
e can compute with one element at a time:

= len(u) # length of u array (alt: u.size)
e = zeros(m)
=0
‘or i in range(m):
u_e[i] = exact_solution(t, a, I)
t =1t +dt
» = zeros(m)
‘or i in range(m):
e[i] = u_e[i] - ulil
5 = 0 # summation variable
‘or i in range(m):
s = s + e[i]l*=*2
srror = sqrt(dt*s)

uch element-wise computing, often called scalar computing, takes more code,
less readable, and runs much slower than what we can achieve with array
mputing.

.5 Plotting solutions

aving the t and u arrays, the approximate solution u is visualized by the
ituitive command plot(t, w):

‘rom matplotlib.pyplot import *
»lot(t, u)
show )

'lotting multiple curves. It will be illustrative to also plot ue(t) for com-
arison. Doing a plot(t, u_e) is not exactly what we want: the plot function
raws straight lines between the discrete points (t[n], u_e[n]) while ue(t)
aries as an exponential function between the mesh points. The technique for
10wing the ”exact” variation of ue(t) between the mesh points is to introduce a
ary fine mesh for ue(t):
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t_e = linspace(0, T, 1001) # fine mesh
u_e = exact_solution(t_e, I, a)

plot(t_e, u_e, ’b-’) # blue line for u_e
plot(t, u, Uie=—)")) # red dashes w/circles

With more than one curve in the plot we need to associate eac
with a legend. We also want appropriate names on the axis, a title, ai
containing the plot as an image for inclusion in reports. The Matplotlib
(matplotlib.pyplot) contains functions for this purpose. The name
functions are similar to the plotting functions known from MATLAB. A ¢
plot session then becomes

from matplotlib.pyplot import x*

figure() # create new plot

t_e = linspace(0, T, 1001) # fine mesh for u_e

u_e = exact_solution(t_e, I, a)

plot(t, u, ’r--0’) # red dashes w/circles
plot(t_e, u_e, ’b-’) # blue line for exact sol.
legend([’numerical’, ’exact’])

xlabel(’t’)

ylabel(’u’)

title(’theta=lg, dt=Vg’ % (theta, dt))
savefig(’%s_%g.png’ % (theta, dt))
show ()

Note that savefig here creates a PNG file whose name reflects the val
and At so that we can easily distinguish files from different runs with 6

A bit more sophisticated and easy-to-read filename can be gener
mapping the 6 value to acronyms for the three common schemes: FE (]
Euler, 8 = 0), BE (Backward Euler, § = 1), CN (Crank-Nicolson, § =
Python dictionary is ideal for such a mapping from numbers to strings:

theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
savefig(’%s_%g.png’ % (theta2name[thetal, dt))

Experiments with computing and plotting. Let us wrap up the
tation of the error measure and all the plotting statements in a function e
This function can be called for various 8 and At values to see how t.
varies with the method and the mesh resolution:

def explore(I, a, T, dt, theta=0.5, makeplot=True):
Run a case with the solver, compute error measure,

and plot the numerical and exact solutions (if makeplot=True)
nnn

u, t = solver(I, a, T, dt, theta) # Numerical solution
u_e = exact_solution(t, I, a)
e=ue-u
E = sqrt(dt*sum(ex*2))
if makeplot:
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figure() # create new plot

t_e = linspace(0, T, 1001) # fine mesh for u_e

u_e = exact_solution(t_e, I, a)

plot(t, u, ’r--0’) # red dashes w/circles
plot(t_e, u_e, ’b-’) # blue line for exact sol.
legend([’numerical’, ’exact’])

xlabel(’t’)

ylabel(’u’)

title(’theta=lg, dt=%g’ % (theta, dt))
theta2name = {0: ’FE’, 1: ’BE’, 0.5: °CN’}
savefig(’%s_%g.png’ % (theta2name[theta], dt))
savefig(’%s_%g.pdf’ % (theta2name[thetal, dt))
savefig(’%s_%g.eps’ % (theta2name[thetal, dt))
show ()

return E

The figure() call is key here: without it, a new plot command will draw
1e new pair of curves in the same plot window, while we want the different
airs to appear in separate windows and files. Calling figure() ensures this.

The explore function stores the plot in three different image file formats:
NG, PDF, and EPS (Encapsulated PostScript). The PNG format is aimed at
eing included in HTML files, the PDF format in PDFIATEX documents, and the
PS format in BTEX documents. Frequently used viewers for these image files
n Unix systems are gv (comes with Ghostscript) for the PDF and EPS formats
nd display (from the ImageMagick) suite for PNG files:

srminal> gv BE_0.5.pdf
srminal> gv BE_0.5.eps
arminal> display BE_0.5.png

The complete code containing the functions above resides in the file decay_
lot_mpl.py”. Running this program results in

srminal> python decay_plot_mpl.py
0 0.40: 2.105E-01
0 0.04: 1.449E-02
.5 0.40: 3.362E-02
5 0.04: 1.887E-04
0 0.40: 1.030E-01
0 0.04: 1.382E-02

/e observe that reducing At by a factor of 10 increases the accuracy for all
wree methods (6 values). We also see that the combination of # = 0.5 and a
nall time step At = 0.04 gives a much more accurate solution, and that § =0
nd 0 = 1 with A¢ = 0.4 result in the least accurate solutions.

Figure 6 demonstrates that the numerical solution for At = 0.4 clearly lies
elow the exact curve, but that the accuracy improves considerably by reducing
1e time step by a factor of 10.

9mttp://tinyurl.com/jvzzcfn/decay/decay_plot_mpl.py
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Figure 6: The Forward Euler scheme for two values of the time st

Combining plot files. Mounting two PNG files, as done in the figure,
done by the montage!? program from the ImageMagick suite:

Terminal> montage -background white -geometry 100% -tile 2x1 \
FE_0.4.png FE_0.04.png FEl.png
Terminal> convert -trim FEl.png FEl.png

The -geometry argument is used to specify the size of the image, and
preserve the individual sizes of the images. The -tile HxV option sp
images in the horizontal direction and V images in the vertical direction.
of image files to be combined are then listed, with the name of the r
combined image, here FE1.png at the end. The convert -trim co
removes surrounding white areas in the figure (an operation usually ki
cropping in image manipulation programs).

For IXTEX reports it is not recommended to use montage and PNG file
result has too low resolution. Instead, plots should be made in the PDF
and combined using the pdftk, pdfnup, and pdfcrop tools (on Linux/’

Terminal> pdftk FE_0.4.png FE_0.04.png output tmp.pdf
Terminal> pdfnup --nup 2x1 tmp.pdf # output in tmp-nup.pdf
Terminal> pdfcrop tmp-nup.pdf FEl.png # output in FEl.png

Here, pdftk combines images into a multi-page PDF file, pdfnup comb
images in individual pages to a table of images (pages), and pdfcrop :
white margins in the resulting combined image file.

The behavior of the two other schemes is shown in Figures 7 and 8.
Nicolson is obviously the most accurate scheme from this visual point ¢

Onttp://www.imagemagick.org/script/montage . php
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theta=1, dt=0.4 theta=1, dt=0.04

® e numerical e - numerical
— exact — exact

Figure 7: The Backward Euler scheme for two values of the time step.

theta=0.5, dt=0.4 theta=0.5, dt=0.04

e -o numerical e e numerical
— exact — exact

Figure 8: The Crank-Nicolson scheme for two values of the time step.

'lotting with SciTools. The SciTools package!! provides a unified plotting
iterface, called Easyviz, to many different plotting packages, including Mat-
lotlib, Gnuplot, Grace, MATLAB, VTK, OpenDX, and Vislt. The syntax is
ary similar to that of Matplotlib and MATLAB. In fact, the plotting commands
1own above look the same in SciTool’s Easyviz interface, apart from the import
;atement, which reads

rom scitools.std import *

his statement performs a from numpy import * as well as an import of the
108t common pieces of the Easyviz (scitools.easyviz) package, along with
»me additional numerical functionality.

With Easyviz one can merge several plotting commands into a single one
sing keyword arguments:

Hhttp://code.google.com/p/scitools
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plot(t, u, Vp==@? # red dashes w/circles

t_e, u_e, ’b-’, # blue line for exact sol.
legend=[’numerical’, ’exact’],

xlabel="t’,

ylabel=’u’,

title=’theta=l,g, dt=%g’ % (theta, dt),
savefig=’%s_%g.png’ % (theta2name[theta], dt),
show=True)

The decay_plot_st.py'? file contains such a demo.
By default, Easyviz employs Matplotlib for plotting, but Gnuplc
Grace'# are viable alternatives:

Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend gnupl
Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend grace

The backend used for creating plots (and numerous other options)
permanently set in SciTool’s configuration file.

All the Gnuplot windows are launched without any need to kill on
the next one pops up (as is the case with Matplotlib) and one can press
'q’ anywhere in a plot window to kill it. Another advantage of Gnuplc
automatic choice of sensible and distinguishable line types in black-an
PDF and PostScript files.

Regarding functionality for annotating plots with title, labels on t
legends, etc., we refer to the documentation of Matplotlib and SciTools f
detailed information on the syntax. The hope is that the programming
explained so far suffices for understanding the code and learning more
combination of the forthcoming examples and other resources such as bc
web pages.

Test the understanding.

Exercise 2 asks you to implement a solver for a problem that is sl
different from the one above. You may use the solver and exj
functions explained above as a starting point. Apply the new soly
Exercise 3.

2.6 Creating command-line interfaces

It is good programming practice to let programs read input from the use
than require the user to edit the source code when trying out new values
parameters. Reading input from the command line is a simple and flex
of interacting with the user. Python stores all the command-line argur
the list sys.argv, and there are, in principle, two ways of programmi
command-line arguments in Python:

2http://tinyurl.com/jvzzcfn/decay/decay_plot_st.py
Bhttp://www.gnuplot.info/
4nhttp://plasma-gate.weizmann.ac.il/Grace/
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e Decide upon a sequence of parameters on the command line and read
their values directly from the sys.argv[1:] list (sys.argv[0] is the just
program name).

e Use option-value pairs (-—option value) on the command line to override

default values of input parameters, and utilize the argparse . ArgumentParser

tool to interact with the command line.

oth strategies will be illustrated next.

leading a sequence of command-line arguments. The decay_plot_mpl.
15 program needs the following input data: I, a, T, an option to turn the plot
n or off (makeplot), and a list of At values.

The simplest way of reading this input from the command line is to say that
1e first four command-line arguments correspond to the first four points in the
st above, in that order, and that the rest of the command-line arguments are
1e At values. The input given for makeplot can be a string among *on’, ’off’,
[rue’, and *False’. The code for reading this input is most conveniently put
1 a function:

import sys

lef read_command_line():
if len(sys.argv) < 6:
print ’Usage: %s I a T on/off dtl dt2 dt3 ...’ % \
sys.argv[0]; sys.exit(1) # abort

float(sys.argv[1])

float(sys.argv[2])

float(sys.argv[3])

makeplot = sys.argv([4] in (’on’, ’True’)
dt_values = [float(arg) for arg in sys.argv[5:1]

HEH
o

return I, a, T, makeplot, dt_values

One should note the following about the constructions in the program above:

e Everything on the command line ends up in a string in the list sys.argv.
Explicit conversion to, e.g., a float object is required if the string as a
number we want to compute with.

e The value of makeplot is determined from a boolean expression, which
becomes True if the command-line argument is either >on’ or ’True’, and
False otherwise.

e It is easy to build the list of At values: we simply run through the rest
of the list, sys.argv[5:], convert each command-line argument to float,
and collect these float objects in a list, using the compact and convenient
list comprehension syntax in Python.

5http://tinyurl.com/jvzzcfn/decay/decay_plot_mpl.py
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The loops over § and At values can be coded in a main function:

def main():
I, a, T, makeplot, dt_values = read_command_line()
for theta in 0, 0.5, 1:
for dt in dt_values:
E = explore(I, a, T, dt, theta, makeplot)
print °%3.1f %6.2f: %12.3E’ % (theta, dt, E)

The complete program can be found in decay_cml.py!.

Working with an argument parser. Python’s ArgumentParser to
argparse module makes it easy to create a professional command-line i
to any program. The documentation of ArgumentParser!” demonst
versatile applications, so we shall here just list an example containir
features. On the command line we want to specify option-value pairs
and T, e.g., —=—a 3.5 --I 2 --T 2. Including --makeplot turns the
and excluding this option turns the plot off. The At values can be
--dt 1 0.5 0.25 0.1 0.01. Each parameter must have a sensible defat
so that we specify the option on the command line only when the defat
is not suitable.

We introduce a function for defining the mentioned command-line ¢

def define_command_line_options():

import argparse

parser = argparse.ArgumentParser()

parser.add_argument (’--I’, ’--initial_condition’, type=float,
default=1.0, help=’initial condition, u(O
metavar="1’)

parser.add_argument(’--a’, type=float,
default=1.0, help=’coefficient in ODE’,
metavar=’a’)

parser.add_argument (’--T’, ’--stop_time’, type=float,
default=1.0, help=’end time of simulation
metavar="T’)

parser.add_argument (’--makeplot’, action=’store_true’,
help=’display plot or not’)

parser.add_argument (’--dt’, ’--time_step_values’, type=float,
default=[1.0], help=’time step values’,
metavar=’dt’, nargs=’+’, dest=’dt_values’

return parser

Each command-line option is defined through the parser.add_an
method. Alternative options, like the short ——I and the more explaining
--initial_condition can be defined. Other arguments are type for the
object type, a default value, and a help string, which gets printed if the co
line argument -h or --help is included. The metavar argument spec
value associated with the option when the help string is printed. For e
the option for I has this help output:

6http://tinyurl.com/jvzzcfn/decay/decay_cml.py
1Thttp://docs.python.org/library/argparse.html
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earminal> python decay_argparse.py -h

--I1 I, --initial_condition I
initial condition, u(0)

he structure of this output is

--1 metavar, --initial_condition metavar
help-string

The --makeplot option is a pure flag without any value, implying a true
alue if the flag is present and otherwise a false value. The action=’store_true’
1akes an option for such a flag.

Finally, the --dt option demonstrates how to allow for more than one value
eparated by blanks) through the nargs=’+’ keyword argument. After the
>mmand line is parsed, we get an object where the values of the options are
ored as attributes. The attribute name is specified by the dist keyword
cgument, which for the --dt option is dt_values. Without the dest argument,
1e value of an option --opt is stored as the attribute opt.

The code below demonstrates how to read the command line and extract the
alues for each option:

lef read_command_line():
parser = define_command_line_options()
args = parser.parse_args()
print ’I={}, a={}, T={}, makeplot={}, dt_values={}’.format(
args.I, args.a, args.T, args.makeplot, args.dt_values)
return args.I, args.a, args.T, args.makeplot, args.dt_values

The main function remains the same as in the decay_cml.py code based on
sading from sys.argv directly. A complete program featuring the demo above

f ArgumentParser appears in the file decay_argparse.py'®.

.7 Creating a graphical web user interface

he Python package Parampool'® can be used to automatically generate a
eb-based graphical user interface (GUI) for our simulation program. Although
1e programming technique dramatically simplifies the efforts to create a GUI,
1e forthcoming material on equipping our decay_mod module with a GUI is
uite technical and of significantly less importance than knowing how to make a
»mmand-line interface (Section 2.6). There is no danger in jumping right to
ection 2.8.

8http://tinyurl.com/jvzzcfn/decay/decay_argparse.py
Yhttps://github.com/hplgit/parampool
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Making a compute function. The first step is to identify a funct;
performs the computations and that takes the necessary input vari:
arguments. This is called the compute function in Parampool terminols
may start with a copy of the basic file decay_plot_mpl.py??, which has
function displayed in Section 2.5 for carrying out simulations and plot
a series of At values. Now we want to control and view the same expe
from a web GUL

To tell Parampool what type of input data we have, we assign defaul
of the right type to all arguments in the main function and call it main

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):

The compute function must return the HTML code we want for dis
the result in a web page. Here we want to show plots of the numerical a1
solution for different methods and At values. The plots can be organi
table with 6 (methods) varying through the columns and At varying thrc
rows. Assume now that a new version of the explore function not only
the error E but also HTML code containing the plot. Then we can w
main_GUI function as

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):
# Build HTML code for web page. Arrange plots in columns
# corresponding to the theta values, with dt down the rows
theta2name = {0: ’FE’, 1: ’BE’, 0.5: °CN’}
html_text = ’<table>\n’
for dt in dt_values:
html_text += ’<tr>\n’
for theta in theta_values:
E, html = explore(I, a, T, dt, theta, makeplot=True)
html_text += """
<td>
<center><b>%s, dt=lg, error: %s</b></center><br>
%s
</td>
nun 9 (theta2name[theta], dt, E, html)
html_text += ’</tr>\n’
html_text += ’</table>\n’
return html_text

Rather than creating plot files and showing the plot on the screen,
version of the explore function makes a string with the PNG code of
and embeds that string in HTML code. This action is conveniently pe
by Parampool’s save_png_to_str function:

20nttp://tinyurl.com/jvzzctn/decay/decay_plot mpl.py
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import matplotlib.pyplot as plt
t plot
>1t.plot(t, u, r-’)

»1t.xlabel(’t?)
>1t.ylabel(’u’)

‘rom parampool.utils import save_png_to_str
1tml_text = save_png_to_str(plt, plotwidth=400)

‘ote that we now write plt.plot, plt.xlabel, etc. The html_text string is
mg and contains all the characters that build up the PNG file of the current
lot. The new explore function can make use of the above code snippet and
sturn html_text along with E.

renerating the user interface. The web GUI is automatically generated
y the following code, placed in a file decay_GUI_generate.py?!

from parampool.generator.flask import generate

from decay_GUI import main

generate(main,
output_controller=’decay_GUI_controller.py’,
output_template=’decay_GUI_view.py’,
output_model=’decay_GUI_model.py’)

unning the decay_GUI_generate.py program results in three new files whose
ames are specified in the call to generate:

1. decay_GUI_model.py defines HTML widgets to be used to set input data
in the web interface,

2. templates/decay_GUI_views.py defines the layout of the web page,
3. decay_GUI_controller.py runs the web application.

/e only need to run the last program, and there is no need to look into these
les.

tunning the web application. The web GUI is started by

arminal> python decay_GUI_controller.py

)pen a web browser at the location 127.0.0.1:5000. Input fields for I, a,
, dt_values, and theta_values are presented. Setting the latter two to
1.25, 0.5] and [1, 0.5], respectively, and pressing Compute results in four
lots, see Figure 9. With the techniques demonstrated here, one can easily create
tailored web GUI for a particular type of application and use it to interactively
xplore physical and numerical effects.

2Inttp: //tinyurl.com/jvzzcfn/decay/decay_GUI_generate.py
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Input: Results:
1 ) Y BE, dt=1.25, error: 0.062653947195 CN, dt=1.25, error: 0.0029660898:
a oz :
theta=1, dt=1.25 theta=0.5, dt=1.25

T 4.0 £
di_values  [[1.25, 0.5 —
theta_values |[1. 0.5]
| Compute |

o8| 0|

o5 ‘\ [

oh e

BE, dt=0.5, error: 0.0261827920148 CN, dt=0.5, error: 0.00045956834!

5 theta=1, dt=0.5 " theta=0.5, dt=0.5
ny’\ ns’\ I:

Figure 9: Automatically generated graphical web interface.

2.8 Computing convergence rates

We expect that the error E in the numerical solution is reduced if the nr
At is decreased. More specifically, many numerical methods obey a pc
relation between E and At:

E = CAt",

where C and r are (usually unknown) constants independent of At. The
(47) is viewed as an asymptotic model valid for sufficiently small At¢. Hc
is normally hard to estimate without doing numerical estimations of r.
The parameter r is known as the convergence rate. For example
convergence rate is 2, halving At reduces the error by a factor of 4. Dim
At then has a greater impact on the error compared with methods th
r = 1. For a given value of r, we refer to the method as of r-th order. Fi
second-order methods are most common in scientific computing.

Estimating r. There are two alternative ways of estimating C' and
on a set of m simulations with corresponding pairs (At;, E;), 1 =0, ...
and At; < At;_1 (i.e., decreasing cell size).

1. Take the logarithm of (47), In E = rln At + In C, and fit a straigh
the data points (At;, E;), i =0,...,m — 1.

2. Consider two consecutive experiments, (At;, E;) and (At;_1, E;
viding the equation E;_; = CAt]_; by E; = CAt] and solvii
yields

_ ln(Ezfl/EZ)
- 1H(Ati_1/Ati>

Ti—1
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ri=1,....,m—1.
The disadvantage of method 1 is that (47) might not be valid for the coarsest

ieshes (largest At values). Fitting a line to all the data points is then misleading.

[ethod 2 computes convergence rates for pairs of experiments and allows us to
se if the sequence r; converges to some value as ¢ — m — 2. The final r,,_5 can
1en be taken as the convergence rate. If the coarsest meshes have a differing

ite, the corresponding time steps are probably too large for (47) to be valid.

hat is, those time steps lie outside the asymptotic range of At values where
1e error behaves like (47).

mplementation. It is straightforward to extend the main function in the
rogram decay_argparse.py with statements for computing rg,r1,...,7m—2
om (47):

rom math import log

ief main():
I, a, T, makeplot, dt_values = read_command_line()
r = {} # estimated convergence rates
for theta in O, 0.5, 1:
E_values = []
for dt in dt_values:
E = explore(I, a, T, dt, theta, makeplot=False)
E_values.append (E)

# Compute convergence rates

m = len(dt_values)

r[thetal] = [log(E_values[i-1]/E_values[i])/
log(dt_values[i-1]/dt_values[i])
for i in range(1l, m, 1)]

for theta in r:
print ’\nPairwise convergence rates for theta=J,g:’ % theta
print °> °.join([’%.2f’ % r_ for r_ in r[thetall)

return r

he program containing this main function is called decay_convrate.py?2.
The r object is a dictionary of lists. The keys in this dictionary are the 6

lues. For example, r[1] holds the list of the r; values corresponding to 6 = 1.

1 the loop for theta in r, the loop variable theta takes on the values of the
2ys in the dictionary r (in an undetermined ordering). We could simply do a
rint r[thetal inside the loop, but this would typically yield output of the
mvergence rates with 16 decimals:

[1.331919482274763, 1.1488178494691532, ...]

Instead, we format each number with 2 decimals, using a list comprehension
> turn the list of numbers, r [theta], into a list of formatted strings. Then we
iin these strings with a space in between to get a sequence of rates on one line
1 the terminal window. More generally, d. join(list) joins the strings in the
st 1ist to one string, with d as delimiter between 1ist [0], 1ist[1], etc.

22nttp://tinyurl.com/jvzzcfn/decay/decay_convrate.py

41

Here is an example on the outcome of the convergence rate comput

Terminal> python decay_convrate.py --dt 0.5 0.25 0.1 0.05 0.025 0.

Pairwise convergence rates for theta=0:
1.33 1.15 1.07 1.03 1.02

Pairwise convergence rates for theta=0.5:
2.14 2.07 2.03 2.01 2.01

Pairwise convergence rates for theta=1:
0.98 0.99 0.99 1.00 1.00

The Forward and Backward Euler methods seem to have an r valu
stabilizes at 1, while the Crank-Nicolson seems to be a second-order
with r = 2.

Very often, we have some theory that predicts what r is for a nu
method. Various theoretical error measures for the #-rule point to r
0 = 0.5 and r = 1 otherwise. The computed estimates of r are in ve
agreement with these theoretical values.

Why convergence rates are important.

The strong practical application of computing convergence rates is fo
fication: wrong convergence rates point to errors in the code, and cc
convergence rates brings evidence that the implementation is correct.
rience shows that bugs in the code easily destroy the expected conver
rate.

Debugging via convergence rates. Let us experiment with bugs
the implication on the convergence rate. We may, for instance, forget to
by a in the denominator in the updating formula for u[n+1]:

u[n+1] = (1 - (1-theta)*ax*dt)/(1 + thetaxdt)x*u[n]

Running the same decay_convrate.py command as above gives the e
convergence rates (!). Why? The reason is that we just specified the A
are relied on default values for other parameters. The default value ¢
Forgetting the factor a has then no effect. This example shows how imp«
is to avoid parameters that are 1 or 0 when verifying implementations. 1
the code decay_v0.py with a = 2.1 and I = 0.1 yields

Terminal> python decay_convrate.py --a 2.1 --I 0.1 \
--dt 0.5 0.25 0.1 0.05 0.025 0.01

Pairwise convergence rates for theta=0:
1.49 1.18 1.07 1.04 1.02
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airwise convergence rates for theta=0.5:
1.42 -0.22 -0.07 -0.03 -0.01

airwise convergence rates for theta=1:
.21 0.12 0.06 0.03 0.01

his time we see that the expected convergence rates for the Crank-Nicolson
nd Backward Euler methods are not obtained, while r = 1 for the Forward
uler method. The reason for correct rate in the latter case is that § = 0 and
1e wrong theta*dt term in the denominator vanishes anyway.

The error

1[n+1] = ((1-theta)*ax*dt)/(1 + thetax*dt*a)*ul[n]

1anifests itself through wrong rates r =~ 0 for all three methods. About the
ume results arise from an erroneous initial condition, u[0] = 1, or wrong loop
mits, range (1,Nt). It seems that in this simple problem, most bugs we can
1ink of are detected by the convergence rate test, provided the values of the
iput data do not hide the bug.

A verify_convergence_rate function could compute the dictionary of list
la main and check if the final rate estimates (r,,,—2) are sufficiently close to the
xpected ones. A tolerance of 0.1 seems appropriate, given the uncertainty in
stimating 7:

lef verify_convergence_rate():
r = main()
tol = 0.1
expected_rates = {0: 1, 1: 1, 0.5: 2}
for theta in r:
r_final = r[theta] [-1]
diff = abs(expected_rates[thetal] - r_final)
if diff > tol:
return False
return True # all tests passed

/e remark that r[thetal] is a list and the last element in any list can be
ctracted by the index -1.

.9 Memory-saving implementation

he computer memory requirements of our implementations so far consists
1ainly of the u and t arrays, both of length Ny 4 1, plus some other temporary
rrays that Python needs for intermediate results if we do array arithmetics
1 our program (e.g., I*xexp(-a*t) needs to store a*t before - can be applied
> it and then exp). The extremely modest storage requirements of simple
'DE problems put no restrictions on the formulations of the algorithm and
nplementation. Nevertheless, when the methods for ODEs used here are applied
> three-dimensional partial differential equation (PDE) problems, memory
orage requirements suddenly become an issue.
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The PDE counterpart to our model problem v’ = —a is a diffusion ¢
u; = aV?u posed on a space-time domain. The discrete representatior
domain may in 3D be a spatial mesh of M? points and a time mes
points. A typical desired value for M is 100 in many applications, or ev
Storing all the computed u values, like we have done in the program
demands storage of some arrays of size M>N;, giving a factor of M
storage demands compared to our ODE programs. Each real numbe
array for u requires 8 bytes (b) of storage. With M = 100 and N,
there is a storage demand of (10%)3 - 1000 - 8 = 8 Gb for the solutic
Fortunately, we can usually get rid of the N; factor, resulting in 8 Mb of
Below we explain how this is done, and the technique is almost always
in implementations of PDE problems.

Let us critically evaluate how much we really need to store in the cor
memory in our implementation of the § method. To compute a new u™"
need is u™. This implies that the previous u"~!,u"~2,..., u" values do 1
to be stored in an array, although this is convenient for plotting and data
in the program. Instead of the u array we can work with two variables
numbers, u and u_1, representing u"*! and u™ in the algorithm, resp
At each time level, we update u from u_1 and then set u_1 = u so t
computed "t value becomes the ”previous” value u™ at the next ti
The downside is that we cannot plot the solution after the simulation
since only the last two numbers are available. The remedy is to store cc
values in a file and use the file for visualizing the solution later.

We have implemented this memory saving idea in the file decay_u
py?%, which is a merge of the decay_plot_mpl.py?** and decay_argpar
programs, using module prefixes np for numpy and plt for matplotlib.

The following function demonstrates how we work with the two mos
values of the unknown:

def solver_memsave(I, a, T, dt, theta, filename=’sol.dat’):
Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt.
Minimum use of memory. The solution is stored in a file
(with name filename) for later plotting.
dt
Nt

float(dt) # avoid integer division
int(round(T/dt)) # no of intervals

outfile = open(filename, ’w’)
# u: time level n+l, u_1: time level n
t=0
ul =1
outfile.write(’%.16E ¥%.16E\n’ % (t, u_1))
for n in range(1l, Nt+1):
u = (1 - (1-theta)*axdt)/(1 + theta*dt*a)*u_1

+ =

u_ u
t += dt

23nttp://tinyurl.com/jvzzcfn/decay/decay memsave.py
24nttp://tinyurl.com/jvzzcfn/decay/decay_plot_mpl.py
25http://tinyurl.com/jvzzcfn/decay/decay argparse.py
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outfile.write(’%.16E %.16E\n’ % (t, u))
outfile.close()
return u, t

his code snippet serves as a quick introduction to file writing in Python. Reading
1e data in the file into arrays t and u are done by the function

lef read_file(filename=’sol.dat’):
infile = open(filename, ’r’)
u=1[0; t=1
for line in infile:
words = line.split()
if len(words) != 2:
print ’Found more than two numbers on a line!’, words
sys.exit(1) # abort
t.append (float (words[0]))
u.append (float(words[1]))
return np.array(t), np.array(u)

This type of file with numbers in rows and columns is very common, and numpy
as a function loadtxt which loads such tabular data into a two-dimensional
cray, say with name data. The number in row i and column j is then datali, j].
he whole column number j can be extracted by datal:,j]. A version of
ead_file using np.loadtxt reads

lef read_file_numpy(filename=’sol.dat’):
data = np.loadtxt(filename)
t = datal:,0]
u = datal:,1]
return t, u

The present counterpart to the explore function from decay_plot_mpl.py>°
st run solver_memsave and then load data from file before we can compute
1e error measure and make the plot:

lef explore(I, a, T, dt, theta=0.5, makeplot=True):
filename = ’u.dat’
u, t = solver_memsave(I, a, T, dt, theta, filename)

, u = read_file(filename)

= exact_solution(t, I, a)
ue -u

np.sqrt (dt*np.sum(ex*2))
if makeplot:

plt.figure()

nuno

t
u
e
15

The decay_memsave.py?’ file also includes command-line options —-I, --a,
‘T, --dt, ——theta, and --makeplot for controlling input parameters and making
single run. For example,

26nttp://tinyurl.com/jvzzcfn/decay/decay_plot_mpl.py
2"http://tinyurl.com/jvzzcfn/decay/decay memsave.py
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Terminal> python decay_memsave.py --T 10 --theta 1 --dt 2

results in the output

I=1.0, a=1.0, T=10.0, makeplot=True, theta=1.0, dt=2.0
theta=1.0 dt=2 Error=3.136E-01

3 Software engineering

Ve

Goal.

Efficient use of differential equation models requires software that is
to test and flexible for setting up extensive numerical experiments.
section introduces three important concepts:

e Modules
o Testing frameworks
e Implementation with classes

The concepts are introduced using the differential equation problem
—au, u(0) = I, as example.

3.1 Making a module

The DRY principle.

The previous sections have outlined numerous different programs,
them having their own copy of the solver function. Such copies ¢
same piece of code is against the important Don’t Repeat Yourself (
principle in programming. If we want to change the solver function
should be one and only one place where the change needs to be perfor:

To clean up the repetitive code snippets scattered among the dec:
files, we start by collecting the various functions we want to keep for th
in one file, now called decay_mod.py?® (mod stands for "module”). The f
functions are copied to this file:

e solver for computing the numerical solution

e verify_three_steps for verifying the first three solution points
hand calculations

e verify_discrete_solution for verifying the entire computed :
against an exact formula for the numerical solution

28nttp://tinyurl.com/jvzzctn/decay/decay mod. py
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explore for computing and plotting the solution

define_command_line_options for defining option-value pairs on the
command line

read_command_line for reading input from the command line, now ex-
tended to work both with sys.argv directly and with an ArgumentParser
object

main for running experiments with # = 0,0.5,1 and a series of At values,
and computing convergence rates

main_GUI for doing the same as the main function, but modified for auto-
matic GUI generation

verify_convergence_rate for verifying the computed convergence rates
against the theoretically expected values

/e use Matplotlib for plotting. A sketch of the decay_mod.py file, with complete
arsions of the modified functions, looks as follows:

irom numpy import *
‘rom matplotlib.pyplot import *
lmport sys

lef

lef

lef

lef

lef

lef

lef

solver(I, a, T, dt, theta):
verify_three_steps():
verify_exact_discrete_solution():
exact_solution(t, I, a):

explore(I, a, T, dt, theta=0.5, makeplot=True):
define_command_line_options():

read_command_line(use_argparse=True) :
if use_argparse:
parser = define_command_line_options()
args = parser.parse_args()
print ’I={}, a={}, makeplot={}, dt_values={}’.format(
args.I, args.a, args.makeplot, args.dt_values)
return args.I, args.a, args.makeplot, args.dt_values
else:
if len(sys.argv) < 6:
print ’Usage: %s I a on/off dtl dt2 dt3 ...’ % \
sys.argv[0]; sys.exit(1)

float(sys.argv([1])
float(sys.argv[2])

[
nou
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T = float(sys.argv[3])
makeplot = sys.argv[4] in (’on’, ’True’)
dt_values = [float(arg) for arg in sys.argv[5:]]

return I, a, makeplot, dt_values

def main():

This decay_mod.py file is already a module such that we can import
functions in other programs. For example, we can in a file do

from decay_mod import solver
u, t = solver(I=1.0, a=3.0, T=3, dt=0.01, theta=0.5)

However, it should also be possible to both use decay_mod.py as a
and execute the file as a program that runs main(). This is accompli
ending the file with a test block:

if __name__ == ’__main__’:
main()

When decay_mod.py is used as a module, __name__ equals the modu
decay_mod, while __name__ equals ’__main__’ when the file is run a
gram. Optionally, we could run the verification tests if the word ve
present on the command line and verify_convergence_rate could be
verify_rates is found on the command line. The verify_rates argume
be removed before we read parameter values from the command line, of
the read_command_line function (called by main) will not work prope

if __name__ == ’__main__’:
if ’verify’ in sys.argv:
if verify_three_steps() and verify_discrete_solution():
pass # ok
else:
print ’Bug in the implementation!’
elif ’verify_rates’ in sys.argv:
sys.argv.remove(’verify_rates’)
if not ’--dt’ in sys.argv:
print ’Must assign several dt values’
sys.exit(1) # abort
if verify_convergence_rate():

pass
else:
print ’Bug in the implementation!’
else:
# Perform simulations
main()

3.2 Prefixing imported functions by the module na

Import statements of the form from module import * import functi
variables in module.py into the current file. For example, when doing
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irom numpy import *
‘rom matplotlib.pyplot import *

e get mathematical functions like sin and exp as well as MATLAB-style
mctions like 1inspace and plot, which can be called by these well-known names.
nfortunately, it sometimes becomes confusing to know where a particular
inction comes from. Is it from numpy? Or matplotlib.pyplot? Or is it our
wn function?

An alternative import is

import numpy
import matplotlib.pyplot

nd such imports require functions to be prefixed by the module name, e.g.,

> = numpy.linspace(0, T, Nt+1)
1_e = I*numpy.exp(-axt)
1atplotlib.pyplot.plot(t, u_e)

his is normally regarded as a better habit because it is explicitly stated from
hich module a function comes from.

The modules numpy and matplotlib.pyplot are so frequently used, and
1eir full names quite tedious to write, so two standard abbreviations have
volved in the Python scientific computing community:

import numpy as np
import matplotlib.pyplot as plt

> = np.linspace(0, T, Nt+1)
1_e = I*np.exp(-a*t)
>1t.plot(t, u_e)

version of the decay_mod module where we use the np and plt prefixes is
sund in the file decay_mod_prefix.py?°.

The downside of prefixing functions by the module name is that mathematical
<pressions like e~ sin(27t) get cluttered with module names,

wmpy . exp (-a*t) *numpy . sin (2 (numpy . pi*t)
b or
1p. exp(-a*t)*np.sin(2*np.pix*t)

uch an expression looks like exp(-a*t)*sin(2*pi*t) in most other program-
ling languages. Similarly, np.linspace and plt.plot look less familiar to peo-
le who are used to MATLAB and who have not adopted Python’s prefix style.
’hether to do from module import * or import module depends on personal
wste and the problem at hand. In these writings we use from module import
1 shorter programs where similarity with MATLAB could be an advantage, and
here a one-to-one correspondence between mathematical formulas and Python
xpressions is important. The style import module is preferred inside Python
10dules (see Exercise 11 for a demonstration).

29nttp://tinyurl.com/jvzzcfn/decay/decay mod_prefix.py

49

3.3 Doctests

We have emphasized how important it is to be able to run tests in the prc
any time. This was solved by calling various verify* functions in the j
examples. However, there exists well-established procedures and corres
tools for automating the execution of tests. We shall briefly demonst:
important techniques: doctest and unit testing. The corresponding files
modules decay_mod_doctest.py®’ and decay_mod_nosetest.py>!l.

A doc string (the first string after the function header) is used to dc
the purpose of functions and their arguments. Very often it is instru
include an example on how to use the function. Interactive example
Python shell are most illustrative as we can see the output resulting from
calls. For example, we can in the solver function include an example o1
this function and printing the computed u and t arrays:

def solver(I, a, T, dt, theta):

Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt.

>>> u, t = solver(I=0.8, a=1.2, T=4, dt=0.5, theta=0.5)
for t_n, u_n in zip(t, w:

print ’t=).1f, u=),.14f> % (t_n, u_n)
1u=0.80000000000000
1u=0.43076923076923
u=0.23195266272189
u=0.12489758761948
u=0.06725254717972
1u=0.03621291001985
u=0.01949925924146
1u=0.01049960113002
1u=0.00565363137770

Vv
Vv
Vv
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When such interactive demonstrations are inserted in doc strings, F
doctest?? module can be used to automate running all commands in int
sessions and compare new output with the output appearing in the do
All we have to do in the current example is to write

Terminal> python -m doctest decay_mod_doctest.py

This command imports the doctest module, which runs all tests. No ac
command-line argument is allowed when running doctests. If any test f
problem is reported, e.g.,

Terminal> python -m doctest decay_mod_doctest.py
stk sk ok sk ok sk sk ok ok sk sk ok sk ok sk sk sk sk ok sk ok ok sk sk sk ok sk ok ok sk sk sk ok sk sk ok sk sk ok sk sk ok sk ok ok ok ok

30nttp://tinyurl.com/jvzzcfn/decay/decay mod_doctest.py
3lnttp://tinyurl.com/jvzzcfn/decay/decay mod_nosetest.py
32nttp://docs.python.org/library/doctest.html
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ile "decay_mod_doctest.py", line 12, in decay_mod_doctest....
ailed example:
for t_n, u_n in zip(t, w:
print ’t=}.1f, u=%.14f’ I (t_n, u_n)

tpected:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
t=2.0, u=0.06725254717972
ot:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
t=2.0, u=0.06725254718756

sk sk sk o o ok ok ok ok ok ok sk K K K o ok ok ok ok ok ok K K K K 3 o ok ok ok ok ok ok K K K K 3 o o ok ok ok ok ok K K K Kk ok
items had failures:

1 of 2 in decay_mod_doctest.solver
«*Test Failed*** 1 failures.

Note that in the output of t and u we write u with 14 digits. Writing all 16
igits is not a good idea: if the tests are run on different hardware, round-off
rors might be different, and the doctest module detects that the numbers are
ot precisely the same and reports failures. In the present application, where
< u(t) < 0.8, we expect round-off errors to be of size 10716, so comparing 15
igits would probably be reliable, but we compare 14 to be on the safe side.

Doctests are highly encouraged as they do two things: 1) demonstrate how a
wction is used and 2) test that the function works.

Here is an example on a doctest in the explore function:

lef explore(I, a, T, dt, theta=0.5, makeplot=True):
Run a case with the solver, compute error measure,
and plot the numerical and exact solutions (if makeplot=True).

>>> for theta in 0, 0.5, 1:
E = explore(I=1.9, a=2.1, T=5, dt=0.1, theta=theta,
makeplot=False)
print ’%.10E’ % E

7. 3565079236E-02
2.4183893110E-03
6.5013039886E-02

his time we limit the output to 10 digits.

Caution.

Doctests requires careful coding if they use command-line input or print
results to the terminal window. Command-line input must be simulated
by filling sys.argv correctly, e.g., sys.argv = >--I 1.0 --a 5’ .split.
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The output lines of print statements must be copied exactly as they a
when running the statements in an interactive Python shell.

3.4 Unit testing with nose

The unit testing technique consists of identifying small units of code,
functions (or classes), and write one or more tests for each unit. One test
ideally, not depend on the outcome of other tests. For example, the
in function solver is a unit test, and the doctest in function explore
but the latter depends on a working solver. Putting the error comy
and plotting in explore in two separate functions would allow independ
tests. In this way, the design of unit tests impacts the design of functio
recommended practice is actually to design and write the unit tests f
then implement the functions!

In scientific computing it is not always obvious how to best perfo
testing. The units is naturally larger than in non-scientific software. Ve
the solution procedure of a mathematical problem identifies a unit.

Basic use of nose. The nose package is a versatile tool for implement
tests in Python. Here is a short explanation of the usage of nose:

1. Implement tests in functions with names starting with test_. Su
tions cannot have any arguments.

2. The test functions perform assertions on computed results using
functions from the nose.tools module.

3. The test functions can be in the source code files or be collected in ¢
files with names test*.py.

Here comes a very simple illustration of the three points. Assume that
this function in a module mymod:

def double(n):
return 2*n

Either in this file, or in a separate file test_mymod.py, we implemer
function whose purpose is to test that the function double works as in
import nose.tools as nt
def test_double():

result = double(4)
nt.assert_equal (result, 8)

Notice that test_double has no arguments. We need to do an import
or from mymod import double if this test resides in a separate file. Ra
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sarminal> nosetests -s mymod

1akes the nose tool run all functions with names matching test_*x() in
ymod.py. Alternatively, if the test functions are in some test_mymod.py file,
e can just write nosetests -s. The nose tool will then look for all files with
ames mathching test*.py and run all functions test_*() in these files.

When you have nose tests in separate test files with names test*.py it is
>mmon to collect these files in a subdirectory tests, or *_tests if you have
swveral test subdirectories. Running nosetests -s will then recursively look for
I tests and *_tests subdirectories and run all functions test_x() in all files
est_x.py in these directories. Just one command can then launch a series of
sts in a directory tree!

An example of a tests directory with different types of test*.py files are
wund in src/decay /tests33. Note that these perform imports of modules in the
arent directory. These imports works well because the tests are supposed to be
n by nosetests -s executed in the parent directory (decay).

Tip.

The -s option to nosetests assures that any print statement in the test_x
functions appears in the output. Without this option, nosetests suppressed
whatever the tests writes to the terminal window (standard output). Such
behavior is annoying, especially when developing and testing tests.

The number of failed tests and their details are reported, or an OK is printed
all tests passed.
The advantage with the nose package is two-fold:

1. tests are written and collected in a structured way, and

2. large collections of tests, scattered throughout a tree of directories, can be
executed with one command nosetests -s.

Jternative assert statements. In casethe nt.assert_equal function finds
1at the two arguments are equal, the test is a success, otherwise it is a failure
ad an exception of type AssertionError is raised. The particular exception is
1e indicator that a test has failed.

Instead of calling the convenience function nt.assert_equal, we can use
ython’s plain assert statement, which tests if a boolean expression is true and
rises an AssertionError otherwise. Here, the statement is assert result ==

A completely manual alternative is to explicitly raise an AssertionError
xception if the computed result is wrong:

33nttp://tinyurl.com/jvzzcfn/decay/tests
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if result != 8:
raise AssertionError()

Applying nose. Let us illustrate how to use the nose tool for test
functions in the decay_mod module. Or more precisely, the module i
decay_mod_unittest with all the verify* functions removed as these
outdated by the unit tests.

We design three unit tests:

1. A comparison between the computed u"™ values and the exact
solution.

2. A comparison between the computed u™ values and precomputed,
reference values.

3. A comparison between observed and expected convergence rates.

These tests follow very closely the code in the previously shown verifyx* fi
We start with comparing u™, as computed by the function solver, to the
for the exact discrete solution:

import nose.tools as nt
import decay_mod_unittest as decay_mod
import numpy as np

def exact_discrete_solution(n, I, a, theta, dt):
"""Return exact discrete solution of the theta scheme."""
dt = float(dt) # avoid integer division
factor = (1 - (1-theta)*a*dt)/(1 + thetaxdt*a)
return Ixfactor**n

def test_exact_discrete_solution():

nnn

Compare result from solver against

formula for the discrete solution.

nnn

theta = 0.8; a=2; I =0.1; dt = 0.8

N = int(8/dt) # no of steps

u, t = decay_mod.solver(I=I, a=a, T=N*dt, dt=dt, theta=theta)

u_de = np.array([exact_discrete_solution(n, I, a, theta, dt)
for n in range(N+1)1)

diff = np.abs(u_de - uw).max()

nt.assert_almost_equal(diff, 0, delta=1E-14)

The nt.assert_almost_equal is the relevant function for compar
real numbers. The delta argument specifies a tolerance for the com
Alternatively, one can specify a places argument for the number of
places to be used in the comparison.

After having carefully verified the implementation, we may store c
computed numbers in the test program or in files for use in future tests.
an example on how the outcome from the solver function can be comj
what is considered to be correct results:
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lef test_solver():

nnn

Compare result from solver against

precomputed arrays for theta=0, 0.5, 1.

nnn

I=0.8; a=1.2; T=4; dt=0.5 # fixed parameters

precomputed = {
’t’: np.array([ 0. , 0.5, 1., 1.5, 2., 2.5,
3., 3.5, 4. 1),
0.5: np.array(

[ 0.8 , 0.43076923, 0.23195266, 0.12489759,
0.06725255, 0.03621291, 0.01949926, 0.0104996 ,
0.005653631),

0: np.array(

[ 8.00000000e-01,  3.20000000e-01,
1.28000000e-01, 5.12000000e-02,
2.04800000e-02,  8.19200000e-03,
3.27680000e-03, 1.31072000e-03,
5.24288000e-04]) ,

1: np.array(

[ 0.8 , 0.5 , 0.3125 , 0.1953125 ,
0.12207031, 0.07629395, 0.04768372, 0.02980232,
0.01862645]) ,

for theta in 0, 0.5, 1:
u, t = decay_mod.solver(I, a, T, dt, theta=theta)
diff = np.abs(u - precomputed[theta]) .max()
# Precomputed numbers are known to 8 decimal places
nt.assert_almost_equal(diff, O, places=8,
msg=’theta=Ys’ % theta)

he precomputed object is a dictionary with four keys: ’t’ for the time mesh,
nd three 6 values for u™ solutions corresponding to 6 = 0,0.5, 1.

Testing for special type of input data that may cause trouble constitutes
common way of constructing unit tests. For example, the updating formula

r u"t! may be incorrectly evaluated because of unintended integer divisions.
/ith

cheta = 1; a=1; I =1; dt = 2
1e nominator and denominator in the updating expression,

1 - (1-theta)*axdt)
{1 + theta*dt*a)

valuate to 1 and 3, respectively, and the fraction 1/3 will call up integer division
nd consequently lead to u[n+1]1=0. We construct a unit test to make sure
olver is smart enough to avoid this problem:

lef test_potential_integer_division():
"""Choose variables that can trigger integer division."""
theta = 1; a=1; I =1; dt = 2

N =4
u, t = decay_mod.solver(I=I, a=a, T=N*dt, dt=dt, theta=theta)
u_de = np.array([exact_discrete_solution(n, I, a, theta, dt)

for n in range(N+1)1)
diff = np.abs(u_de - uw).max()
nt.assert_almost_equal(diff, 0, delta=1E-14)

The final test is to see that the convergence rates corresponding to 6 =
are 1, 2, and 1, respectively:

def test_convergence_rates():
"""Compare empirical convergence rates to exact ones."""
# Set command-line arguments directly in sys.argv
import sys
sys.argv[1:] = °--I 0.8 --a 2.1 --T 5 °’\
’--dt 0.4 0.2 0.1 0.05 0.025’.split()

r = decay_mod.main()
for theta in r:

nt.assert_true(r[thetal]) # check for non-empty list

expected_rates = {0: 1, 1: 1, 0.5: 2}
for theta in r:
r_final = r[theta] [-1]
# Compare to 1 decimal place
nt.assert_almost_equal (expected_rates[thetal, r_final,
places=1, msg=’theta=/s’ % theta)

Nothing more is needed in the test_decay_nose.py>* file where t
reside. Running nosetests -s will report Ran 3 tests and an OK for
Everytime we modify the decay_mod_unittest module we can run nos
to quickly see if the edits have any impact on the verification tests.

Installation of nose. The nose package does not come with a s
Python distribution and must therefore be installed separately. The proc
standard and described on Nose’s web pages®®. On Debian-based Linux
the command is sudo apt-get install python-nose, and with MacP
run sudo port install py27-nose.

Using nose to test modules with doctests. Assume that mod is t!
of some module that contains doctests. We may let nose run these doct:
report errors in the standard way using the code set-up

import doctest
import mod

def test_mod():
failure_count, test_count = doctest.testmod(m=mod)
nt.assert_equal (failure_count, O,
msg=’%d tests out of %d failed’ %
(failure_count, test_count))

34nttp://tinyurl.com/jvzzcfn/decay/tests/test_decay nose.py
35nhttp://nose.readthedocs.org/en/latest/
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he call to doctest.testmod runs all doctests in the module file mod.py and
sturns the number of failures (failure_count) and the total number of tests
;est_count). A real example is found in the file test_decay_doctest.py>C.

.5 Classical class-based unit testing

he classical way of implementing unit tests derives from the JUnit tool in Java
here all tests are methods in a class for testing. Python comes with a module
nittest for doing this type of unit tests. While nose allows simple functions for
nit tests, unittest requires deriving a class Test* from unittest.TestCase
nd implementing each test as methods with names test_x in that class. I
rongly recommend to use nose over unittest, because it is much simpler and
1ore convenient, but class-based unit testing is a very classical subject that
ymputational scientists should have some knowledge about. That is why a short
itroduction to unittest is included below.

sasic use of unittest. We apply the double function in the mymod module
itroduced in the previous section as example. Unit testing with the aid of the
nittest module consists of writing a file test_mymod.py with the content

import unittest
import mymod

:lass TestMyCode(unittest.TestCase):
def test_double(self):
result = mymod.double(4)
self.assertEqual (result, 8)

if __name__ == ’__main__’:
unittest.main()

he test is run by executing the test file test_mymod.py as a standard Python
rogram. There is no support in unittest for automatically locating and
mning all tests in all test files in a directory tree.

Those who have experience with object-oriented programming will see that
1e difference between using unittest and nose is minor.

Jemonstration of unittest. The same tests as shown for the nose framework

re reimplemented with the TestCase classes in the file test_decay_unittest.

y37. The tests are identical, the only difference being that with unittest we
wist write the tests as methods in a class and the assert functions have slightly
ifferent names.

import unittest
import decay_mod_unittest as decay
import numpy as np

36nttp://tinyurl.com/jvzzcfn/decay/tests/test_decay_doctest.py
3Thttp://tinyurl.com/jvzzcfn/decay/tests/test_decay_ nose.py
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def exact_discrete_solution(n, I, a, theta, dt):
factor = (1 - (1-theta)*axdt)/(1 + thetakxdt*a)
return Ixfactor**n

class TestDecay(unittest.TestCase):
def test_exact_discrete_solution(self):

diff = np.abs(u_de - u).max()
self.assertAlmostEqual(diff, 0, delta=1E-14)

def test_solver(self):
for theta in 0, 0.5, 1:

self.assertAlmostEqual(diff, 0, places=8,
msg=’theta=Ys’ % theta)

def test_potential_integer_division():
ééif.assertAlmostEqual(diff, 0, delta=1E-14)
def test_convergence_rates(self):
féi theta in r:
ééif.assertAlmostEqual(...)

if __name__ == ’__main__’:
unittest.main()

3.6 Implementing simple problem and solver classe

The 6-rule was compactly and conveniently implemented in a function
in Section 2.1. In more complicated problems it might be beneficia
classes and introduce a class Problem to hold the definition of the |
problem, a class Solver to hold the data and methods needed to numn
solve the problem, and a class Visualizer to make plots. This idea will
illustrated, resulting in code that represents an alternative to the sol-
explore functions found in the decay_mod module.

Explaining the details of class programming in Python is considered
the scope of this text. Readers who are unfamiliar with Python class progr
should first consult one of the many electronic Python tutorials or te:
to come up to speed with concepts and syntax of Python classes before
on. The author has a gentle introduction to class programming for s
applications in [4], see Chapter 7 and 9 and Appendix E. Other useful r
are

e The Python Tutorial: http://docs.python.org/2/tutorial/c
html

e Wiki book on Python Programming: http://en.wikibooks. or;
Python_Programming/Classes
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e tutorialspoint.com: http://www.tutorialspoint.com/python/python_
classes_objects.htm

'he problem class. The purpose of the problem class is to store all infor-
1ation about the mathematical model. This usually means all the physical
arameters in the problem. In the current example with exponential decay we
1ay also add the exact solution of the ODE to the problem class. The simplest
rrm of a problem class is therefore

rom numpy import exp

:lass Problem:
def __init__(self, I=1, a=1, T=10):
self.T, self.I, self.a = I, float(a), T

def exact_solution(self, t):
I, a = self.I, self.a
return I*exp(-axt)

/e could in the exact_solution method have written self.I*exp(-self.axt),
ut using local variables I and a allows the formula Ixexp(-a*t) which looks
oser to the mathematical expression Te~%'. This is not an important issue with
1e current compact formula, but is beneficial in more complicated problems
ith longer formulas to obtain the closest possible relationship between code
ad mathematics. My coding style is to strip off the self prefix when the code
xpresses mathematical formulas.

The class data can be set either as arguments in the constructor or at any
me later, e.g.,

»roblem = Problem(T=5)
>roblem.T 8
»roblem.dt = 1.5

jome programmers prefer set and get functions for setting and getting data in
asses, often implemented via properties in Python, but I consider that overkill
hen we just have a few data items in a class.)

It would be convenient if class Problem could also initialize the data from the
»mmand line. To this end, we add a method for defining a set of command-line
ptions and a method that sets the local attributes equal to what was found on
1e command line. The default values associated with the command-line options
ce taken as the values provided to the constructor. Class Problem now becomes

:lass Problem:
def __init__(self, I=1, a=1, T=10):
self.T, self.I, self.a = I, float(a), T

def define_command_line_options(self, parser=None):
if parser is None:
import argparse
parser = argparse.ArgumentParser ()
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parser.add_argument (
’--I’, ’--initial_condition’, type=float,
default=self.I, help=’initial condition, u(0)’,
metavar="1’)
parser.add_argument (
’--a’, type=float, default=self.a,
help=’coefficient in ODE’, metavar=’a’)
parser.add_argument (
’--T’, ’--stop_time’, type=float, default=self.T,
help=’end time of simulation’, metavar=’T’)
return parser

def init_from_command_line(self, args):
self.I, self.a, self.T = args.I, args.a, args.T

def exact_solution(self, t):
I, a = self.I, self.a
return I*exp(-axt)

Observe that if the user already has an ArgumentParser object it can be s
but if she does not have any, class Problem makes one. Python’s None ¢
used to indicate that a variable is not initialized with a proper value.

The solver class. The solver class stores data related to the numerical
method and provides a function solve for solving the problem. A probler
must be given to the constructor so that the solver can easily look up -
data. In the present example, the data related to the numerical solution
consists of At and 6. We add, as in the problem class, functionality for
At and 6 from the command line:

class Solver:
def __init__(self, problem, dt=0.1, theta=0.5):
self.problem = problem
self.dt, self.theta = float(dt), theta

def define_command_line_options(self, parser):

parser.add_argument (

’--dt’, ’--time_step_value’, type=float,

default=0.5, help=’time step value’, metavar=’dt’)
parser.add_argument (

’--theta’, type=float, default=0.5,

help=’time discretization parameter’, metavar=’dt’)
return parser

def init_from_command_line(self, args):
self.dt, self.theta = args.dt, args.theta

def solve(self):
from decay_mod import solver
self.u, self.t = solver(
self.problem.I, self.problem.a, self.problem.T,
self.dt, self.theta)

def error(self):

u_e = self.problem.exact_solution(self.t)
e =u_e - self.u
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E = sqrt(self.dt*sum(e**2))
return E

‘ote that we here simply reuse the implementation of the numerical method from
1e decay_mod module. The solve function is just a wrapper of the previously
eveloped stand-alone solver function.

'he visualizer class.

al solution stored in class Solver. We also add the possibility to plot the exact

©lution.

Access to the problem and solver objects is required when making

lots so the constructor must hold references to these objects:

:lass Visualizer:

def

def

__init__(self, problem, solver):
self.problem, self.solver = problem, solver

plot(self, include_exact=True, plt=None):
nnn
Add solver.u curve to the plotting object plt,
and include the exact solution if include_exact is True.
This plot function can be called several times (if
the solver object has computed new solutions).
nnn
if plt is None:
import scitools.std as plt # can use matplotlib as well

plt.plot(self.solver.t, self.solver.u, ’--o’)
plt.hold(’on’)
theta2name = {0: ’FE’, 1: ’BE’, 0.5: °CN’}
name = theta2name.get(self.solver.theta, ’’)
legends = [’numerical %s’ % name]
if include_exact:
t_e = linspace(0, self.problem.T, 1001)
u_e = self.problem.exact_solution(t_e)
plt.plot(t_e, u_e, ’b-’)
legends.append(’exact’)
plt.legend(legends)
plt.xlabel(’t’)
plt.ylabel(’u’)
plt.title(’theta=Y%g, dt=lhg’ %
(self.solver.theta, self.solver.dt))
plt.savefig(’Ys_%g.png’ % (name, self.solver.dt))
return plt

The plt object in the plot method is worth a comment. The idea is that
lot can add a numerical solution curve to an existing plot. Calling plot with
plt object (which has to be a matplotlib.pyplot or scitools.std object
1 this implementation), will just add the curve self.solver.u as a dashed
ne with circles at the mesh points (leaving the color of the curve up to the
lotting tool). This functionality allows plots with several solutions: just make
loop where new data is set in the problem and/or solver classes, the solver’s
olve () method is called, and the most recent numerical solution is plotted by
1e plot (plt) method in the visualizer object Exercise 12 describes a problem
stting where this functionality is explored.
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The purpose of the visualizer class is to plot the numer-

Combining the objects. Eventually we need to show how the classes F
Solver, and Visualizer play together:

def main():
problem = Problem()
solver = Solver(problem)
viz = Visualizer(problem, solver)

# Read input from the command line

parser = problem.define_command_line_options()
parser = solver. define_command_line_options(parser)
args = parser.parse_args()
problem.init_from_command_line(args)

solver. init_from_command_line(args)

# Solve and plot
solver.solve()
import matplotlib.pyplot as plt
#import scitools.std as plt
plt = viz.plot(plt=plt)
E = solver.error()
if E is not None:
print ’Error: %.4E’ % E
plt.show()

The file decay_class.py>® constitutes a module with the three clas
the main function.

Test the understanding.

Implement the problem in Exercise 29 in terms of problem, solver
visualizer classes. Equip the classes and their methods with doc st
with tests. Also include nose tests.

3.7 Improving the problem and solver classes

The previous Problem and Solver classes containing parameters soon g
repetitive code when the number of parameters increases. Much of this ¢
be parameterized and be made more compact. For this purpose, we d
collect all parameters in a dictionary, self . prms, with two associated dict
self.types and self.help for holding associated object types and hely
Provided a problem, solver, or visualizer class defines these three dictior
the constructor, using default or user-supplied values of the parameters.
create a super class Parameters with general code for defining comm:
options and reading them as well as methods for setting and getting a pa
A Problem or Solver class will then inherit command-line functionality
set/get methods from the Parameters class.

A generic class for parameters. A simplified version of the parame
looks as follows:

38nttp://tinyurl.com/jvzzctn/decay/decay_class.py
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slass Parameters:
def set(self, *xparameters):
for name in parameters:
self .prms[name] = parameters[name]

def get(self, name):
return self.prms[name]

def define_command_line_options(self, parser=None):
if parser is None:
import argparse
parser = argparse.ArgumentParser ()

for name in self.prms:
tp = self.types[name] if name in self.types else str
help = self.help[name] if name in self.help else None
parser.add_argument (
’--? + name, default=self.get(name), metavar=name,
type=tp, help=help)

return parser

def init_from_command_line(self, args):
for name in self.prms:
self .prms[name] = getattr(args, name)

he file class_decay_oo.py>? contains a slightly more advanced version of class
arameters where we in the set and get functions test for valid parameter names
nd raise exceptions with informative messages if any name is not registered.

'he problem class. A class Problem for the problem v’ = —au, u(0) = I,
€ (0,T], with parameters input a, I, and T can now be coded as

:lass Problem(Parameters) :
Physical parameters for the problem u’=-a*u, u(0)=I,
with t in [0,T].
def __init__(self):
self.prms = dict(I=1, a=1, T=10)
self.types = dict(I=float, a=float, T=float)
self .help = dict(I=’initial condition, u(0)’,
a=’coefficient in ODE’,
T=’end time of simulation’)

def exact_solution(self, t):
I, a = self.get(’I’), self.get(’a’)
return I*np.exp(-axt)

'he solver class. Also the solver class is derived from class Parameters
nd works with the prms, types, and help dictionaries in the same way as
ass Problem. Otherwise, the code is very similar to class Solver in the
ecay_class.py file:

39mttp://tinyurl.com/jvzzcfn/decay/class_decay_oo.py
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class Solver (Parameters):
def __init__(self, problem):
self.problem = problem
self.prms = dict(dt=0.5, theta=0.5)
self.types = dict(dt=float, theta=float)
self .help = dict(dt=’time step value’,
theta=’time discretization parameter’)

def solve(self):

from decay_mod import solver

self.u, self.t = solver(
self.problem.get(’I’),
self.problem.get(’a’),
self.problem.get (°T’),
self.get(’dt’),
self.get(’theta’))

def error(self):

try:
u_e = self.problem.exact_solution(self.t)
e = u_e - self.u
E = np.sqrt(self.get(’dt’)*np.sum(e**2))

except AttributeError:
E = None
return E

The visualizer class. Class Visualizer can be identical to the on
decay_class.py file since the class does not need any parameters. Ho
few adjustments in the plot method is necessary since parameters are
as, e.g., problem.get (’T’) rather than problem.T. The details are f
the file class_decay_oo.py.

Finally, we need a function that solves a real problem using the
Problem, Solver, and Visualizer. This function can be just like mai
decay_class.py file.

The advantage with the Parameters class is that it scales to proble
a large number of physical and numerical parameters: as long as the par
are defined once via a dictionary, the compact code in class Paramet
handle any collection of parameters of any size.

4 Performing scientific experiments

Goal.

This section explores the behavior of a numerical method for a differ
equation through computer experiments. In particular, it is showr
scientific experiments can be set up and reported. We address the
problem

' (t) = —au(t), «(0)=1I, te(0,T],
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numerically discretized by the 6-rule:

il 1—(1-0)aAt
1+ faAt

Our aim is to plot u®, u', ..., 4 together with the exact solution ue = Te~%
for various choices of the parameters in this numerical problem: I, a, At,
and 0. We are especially interested in how the discrete solution compares
with the exact solution when the At parameter is varied and 6 takes on
the three values corresponding to the Forward Euler, Backward Euler, and
Crank-Nicolson schemes (6 = 0,1, 0.5, respectively).

U u?, u=1I.

1

.1 Software

verified implementation for computing the numerical solution «™ and plotting
together with the exact solution ue is found in the file decay_mod.py?°. This
rogram admits command-line arguments to specify a series of At values and
ill run a loop over these values and 6 = 0,0.5,1. We make a slight edit of how
1e plots are designed: the numerical solution is specified with line type ’r--o’
lashed red lines with dots at the mesh points), and the show() command is
moved to avoid a lot of plot windows popping up on the computer screen (but
ardcopies of the plot are still stored in files via savefig). The slightly modified
rogram has the name experiments/decay_mod.py*'. All files associated with
1e scientific investigation are collected in a subdirectory experiments.
Running the experiments is easy since the decay_mod.py program already
as the loops over § and At implemented. An experiment with [ =1, a = 2,
"=5, and dt = 0.5,0.25,0.1,0.05 is run by

srminal> python decay_mod.py --I 1 --a 2 --makeplot \
--T 5 --dt 0.5 0.25 0.1 0.05

.2 Combining plot files

he decay_mod.py program generates a lot of image files, e.g., FE_*.png,
E_*.png, and CN_*.png. We want to combine all the FE_*.png files in a
iwble fashion in one file, with two images in each row, starting with the largest
t in the upper left corner and decreasing the value as we go to the right and
own. This can be done using the montage?? program. The often occurring white
reas around the plots can be cropped away by the convert -trim command.
he remaining white can be made transparent for HTML pages with a non-white
ackground by the command convert -transparent white.

4Ohttp://tinyurl.com/jvzzcfn/decay/decay mod. py
4lhttp://tinyurl.com/jvzzcfn/decay/experiments/decay_mod.py
42nhttp://wuw.imagemagick.org/script/montage.php
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Also plot files in the PDF format with names FE_x.pdf, BE_*.p
CN_*.pdf are generated and these should be combined using other tools
to combine individual plots into one file with one plot per page, and
to combine the pages into a table with multiple plots per page. The r
image often has some extra surrounding white space that can be remove:
pdfcrop program. The code snippets below contain all details about tl
of montage, convert, pdftk, pdfnup, and pdfcrop.

Running manual commands is boring, and errors may easily sneak i
for automating manual work and documenting the operating system co1
we actually issued in the experiment, we should write a script (little p1
An alternative is to write the commands into an IPython notebook
the notebook as the script. A plain script as a standard Python progr
separate text file will be used here.

Reproducible science.

A script that automates running our computer experiments will ensur:
the experiments can easily be rerun by ourselves or others in the fi
either to check the results or redo the experiments with other input
Also, whatever we did to produce the results is documented in every
in the script. Automating scripts are therefore essential to makin
research reproducible, which is a fundamental principle in science.

The script takes a list of At values on the command line as inj
makes three combined images, one for each  value, displaying the qualit
numerical solution as At varies. For example,

Terminal> python decay_experO.py 0.5 0.25 0.1 0.05

results in images FE.png, CN.png, BE.png, FE.pdf, CN.pdf, and BE. pc
with four plots corresponding to the four At values. Each plot comp:
numerical solution with the exact one. The latter image is shown in Fi

Ideally, the script should be scalable in the sense that it works for any
of At values, which is the case for this particular implementation:

import os, sys

def run_experiments(I=1, a=2, T=5):
# The command line must contain dt values
if len(sys.argv) > 1:
dt_values = [float(arg) for arg in sys.argv[1:]]
else:
print ’Usage: %s dtl dt2 dt3 ...’ % sys.argv[0]
sys.exit(1) # abort

# Run module file as a stand-alone application

cmd = ’python decay_mod.py --I %g --a %g --makeplot --T %g’
(I, a, T

dt_values_str = ’> ’.join([str(v) for v in dt_values])
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Method: theta-rule, theta=1, dt=0.5

® -e numerical
— exact

Method: theta-rule, theta=1, dt=0.1

® -o numerical
— exact

Method: theta-rule, theta=1, dt=0.25

® - numerical
— exact

Method: theta-rule, theta=1, dt=0.05

e - numerical
— exact

num_rows = int(round(len(dt_values)/2.0))
image_commands . append (

’pdfnup --nup 2x%d tmp.pdf’ 7% num_rows)
image_commands . append (

’pdfcrop tmp-nup.pdf %s.pdf’ % method)

for cmd in image_commands:
print cmd
failure = os.system(cmd)
if failure:
print ’Command failed:’, cmd; sys.exit(1)

# Remove the files generated above and by decay_mod.py
from glob import glob
filenames = glob(’*_*.png’) + glob(’*_x.pdf’) + \
glob(’*_*.eps’) + glob(’tmp*.pdf’)
for filename in filenames:
os.remove (filename)

igure 10: Illustration of the Backward Euler method for four time step values.

cmd += ° --dt %s’ % dt_values_str
print cmd
failure = os.system(cmd)
if failure:
print ’Command failed:’, cmd; sys.exit(1)

# Combine images into rows with 2 plots in each row
image_commands = []
for method in ’BE’, ’CN’, ’FE’:

pdf_files = ’> ’.join([’%s_%g.pdf’ % (method, dt)
for dt in dt_values])
png_files = ° ’.join([’%s_%g.png’ % (method, dt)

for dt in dt_values])

image_commands . append (

’montage -background white -geometry 100%’ +

> -tile 2x %s %s.png’ % (png_files, method))
image_commands . append (

’convert -trim %s.png %s.png’ % (method, method))
image_commands . append (

’convert %s.png -transparent white %s.png’ %

(method, method))
image_commands . append (

’pdftk %s output tmp.pdf’ % pdf_files)
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if

name

== 9

__main_

).

run_experiments ()

This file is available as experiments/decay_exper0.py*3.
We may comment upon many useful constructs in this script:

e [float(arg) for arg in sys.argv[1:]] builds a list of real r
from all the command-line arguments.

e failure = os.system(cmd) runs an operating system commai
another program. The execution is successful only if failure is z

e Unsuccessful execution usually makes it meaningless to continue
gram, and therefore we abort the program with sys.exit(1). A
ment different from 0 signifies to the computer’s operating system
program stopped with a failure.

o [Ys_V%s.png’ % (method, dt) for dt in dt_values] builds
filenames from a list of numbers (dt_values).

e Allmontage, convert, pdftk, pdfnup, and pdf crop commands for
composite figures are stored in a list and later executed in a loop

e glob(’*_*.png’) returns a list of the names of all files in the
directory where the filename matches the Unix wildcard notation** »

(meaning any text, underscore, any text, and then .png).

e os.remove(filename) removes the file with name filename.

3http://tinyurl.com/jvzzcfn/decay/experiments/decay_exper0.py
44nttp://en.wikipedia.org/wiki/Glob_(programming)
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.3 Interpreting output from other programs

rograms that run other programs, like decay_exper0.py does, will often need
) interpret output from those programs. Let us demonstrate how this is done
1 Python by extracting the relations between 6, At, and the error F as written
> the terminal window by the decay_mod.py program, when being executed by
ecay_exper0.py. We will

e read the output from the decay_mod.py program
e interpret this output and store the E values in arrays for each 6 value

e plot F versus At, for each 6, in a log-log plot

The simple os.system(cmd) call does not allow us to read the output from
mning cmd. Instead we need to invoke a bit more involved procedure:

‘rom subprocess import Popen, PIPE, STDOUT
> = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT)
»utput, dummy = p.communicate()
failure = p.returncode
if failure:
print ’Command failed:’, cmd; sys.exit(1)

he command stored in cmd is run and all text that is written to the standard
utput and the standard error is available in the string output. Or in other
ords, the text in output is what appeared in the terminal window while running
nd.

Our next task is to run through the output string, line by line, and if the
arrent line prints 6, At, and E, we split the line into these three pieces and
;ore the data. The chosen storage structure is a dictionary errors with keys
t to hold the At values in a list, and three  keys to hold the corresponding F
alues in a list. The relevant code lines are

scrrors = {’dt’: dt_values, 1: [], 0: [], 0.5: [1}
‘or line in output.splitlines():
words = line.split()
if words[0] in (’°0.0’, ’0.5°, °1.0°): # line with E?
# typical line: 0.0 1.25: 7.463E+00
theta = float (words[0])
E = float(words[2])
errors [theta] . append (E)

ote that we do not bother to store the At values as we read them from output,
ecause we already have these values in the dt_values list.
We are now ready to plot E versus At for § = 0,0.5,1:

import matplotlib.pyplot as plt
>1t.loglog(errors[’dt’], errors[0], ’ro-’)
>1t.hold(’on’)
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log(error)

plt.loglog(errors[’dt’], errors[0.5], ’b+-’)
plt.loglog(errors[’dt’], errors[1], ’gx-’)
plt.legend([’FE’, ’CN’, ’BE’], loc=’upper left’)
plt.xlabel (’log(time step)’)
plt.ylabel(’log(error)’)

plt.title(’Error vs time step’)
plt.savefig(’error.png’)
plt.savefig(’error.pdf’)

Plots occasionally need some manual adjustments. Here, the axis of the
plot look nicer if we adapt them strictly to the data, see Figure 11. To 1
we need to compute min F and max F, and later specify the extent of t

# Find min/max for the axis

E_min = 1E+20; E_max = -E_min

for theta in 0, 0.5, 1:
E_min = min(E_min, min(errors[thetal))
E_max = max(E_max, max(errors[theta]))

plt.loglog(errors[’dt’], errors[0], ’ro-’)

plt.axis([min(dt_values), max(dt_values), E_min, E_max])

Error vs time step Error vs time step

oo FE oo FE
—+ CN —+ CN
— BE — BE

=

5
log(error)
5

2 10

3

10
10™ 10° 10" 10’
log(time step) log(time step)

Figure 11: Default plot (left) and manually adjusted axes (right

The complete program, incorporating the code snippets above, is f
experiments/decay_experl.py*®. This example can hopefully act as t
for numerous other occasions where one needs to run experiments, extr:
from the output of programs, make plots, and combine several plots in
file. The decay_experl.py program is organized as a module, and ot
can then easily extend the functionality, as illustrated in the next secti

45nttp://tinyurl.com/jvzzctn/decay/experiments/decay_experl.py
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.4 Making a report

he results of running computer experiments are best documented in a little
)port containing the problem to be solved, key code segments, and the plots
om a series of experiments. At least the part of the report containing the
lots should be automatically generated by the script that performs the set of
<periments, because in that script we know exactly which input data that were
sed to generate a specific plot, thereby ensuring that each figure is connected to
1e right data. Take a look at an example at http://tinyurl.com/k3sdbuv/
riting_reports//sphinx-cloud/ to see what we have in mind.

'lain HTML. Scientific reports can be written in a variety of formats. Here
e begin with the HTML*® format which allows efficient viewing of all the
<periments in any web browser. The program decay_experi_html.py*” calls
ecay_experl.py to perform the experiments and then runs statements for cre-
ting an HTML file with a summary, a section on the mathematical problem, a
sction on the numerical method, a section on the solver function implementing
1e method, and a section with subsections containing figures that show the
ssults of experiments where At is varied for = 0,0.5,1. The mentioned Python
le contains all the details for writing this HTML report*8. You can view the re-
ort on http://tinyurl.com/k3sdbuv/writing_reports//_static/report_
tml.html.

[TML with MathJax. Scientific reports usually need mathematical for-
wlas and hence mathematical typesetting. In plain HTML, as used in the
ecay_experl_html.py file, we have to use just the keyboard characters to
rite mathematics. However, there is an extension to HTML, called MathJax??,
hich allows formulas and equations to be typeset with XTEX syntax and nicely
:ndered in web browsers, see Figure 12. A relatively small subset of I TEX
avironments is supported, but the syntax for formulas is quite rich. Inline
rrmulas are look like \( u’=-au \) while equations are surrounded by $$
gns. Inside such signs, one can use \[ u’=-au \] for unnumbered equations,
t \begin{equation} and \end{equation} surrounding u’=-au for numbered
juations, or \begin{align} and \end{align} for multiple aligned equations.
ou need to be familiar with mathematical typesetting in LaTeX5°.

The file decay_exper1_mathjax.py°! contains all the details for turning the
revious plain HTML report into web pages with nicely typeset mathematics.
he corresponding HTML code®? be studied to see all details of the mathematical
rpesetting.

46nttp://en.wikipedia.org/wiki/HTML
4Thttp://tinyurl.com/jvzzcfn/decay/experiments/decay_experl html.py
48nttp://tinyurl.com/k3sdbuv/writing reports//_static/report_html.html.html
4Onttp://www.mathjax.org/

50nttp://en.wikibooks.org/wiki/LaTeX/Mathematics
5lnttp://tinyurl.com/jvzzcfn/decay/experiments/decay_experi_ html.py
52nttp://tinyurl.com/k3sdbuv/writing reports//_static/report_mathjax.html.html
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‘We address the initial-value problem

W(t) = —au(t), te(0.T).
u(0) =1,

where a, I, and T are prescribed parameters, and (1) is the unknown function to be estimated. This mathematical model is relevant for physical
phenomena featuring exponential decay in time.

Numerical solution method

We introduce a mesh in time with points 0 = to < 1 --- < tx = T For simplicity, we assume constant spacing At between the mesh points:
At=t,—ta1,n=1,...,N. Letu" be the numerical approximation to the exact solution at t.. The #-rule is used to solve (1) numerically:
at 1-(1-6)alrt u"
1+ 6aAt

forn=0,1....,N — 1. This scheme corresponds o
+ The Forward Euler scheme when § =0

+ The Backward Euler scheme when 6 = 1
« The Crank-Nicolson scheme when 6 = 1/2

Implementation

The numerical method is implemented in a Python function:

def theta_rule(I, a, T, dt, theta)
"iiSolve u'=-a*u, u(0)=I, for t in (O,T] with steps of dt."""
N = int(round(T/float(dt))) # no of intervals
u = zeros(N+1)
t = linspace(®, T, N+1)

Figure 12: Report in HTML format with MathJax.

BTEX. The de facto language for mathematical typesetting and s
report writing is LaTeX®3. A number of very sophisticated packages ha
added to the language over a period of three decades, allowing very fin
layout and typesetting. For output in the PDF format®?, see Figur
an example, N TEX is the definite choice when it comes to quality. Th
language used to write the reports has typically a lot of commands ir
backslashes and braces®®. For output on the web, using HTML (and not t
directly in the browser window), WTEX struggles with delivering high
typesetting. Other tools, especially Sphinx, give better results and ¢
produce nice-looking PDFs. The file decay_experi_latex.py shows
generate the WIEX source from a program.

Sphinx. Sphinx®® is a typesetting language with similarities to HT:
IMTEX, but with much less tagging. It has recently become very pop
software documentation and mathematical reports. Sphinx can utilize K
mathematical formulas and equations (via MathJax or PNG images).
nately, the subset of ITEX mathematics supported is less than in full )
(in particular, numbering of multiple equations in an align type enviror
not supported). The Sphinx syntax®” is an extension of the reStructu
language. An attractive feature of Sphinx is its rich support for fancy I
web pages®®. In particular, Sphinx can easily be combined with variou

53nttp://en.wikipedia.org/wiki/LaTeX
54nttp://tinyurl.com/k3sdbuv/writing reports//_static/report.pdf
55nttp://tinyurl.com/k3sdbuv/writing reports//_static/report.tex.html
56nttp://sphinx.pocoo.org/

5Thttp://tinyurl.com/k3sdbuv/writing reports//_static/report_sphinx.rst.]
58nttp://tinyurl.com/k3sdbuv/writing reports//_static/sphinx-cloud/index
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3 Implementation

The numerical method is implemented in a Python function:

def theta_rule(I, a, T, dt, theta):
nniSolue u’'=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
N = int(round(T/float(dt))) # no of intervals
u = zeros(N+1)
t = linspace(0, T, N+1)

ul0] = 1
for n in range(0, N):

uln+1] = (1 - (i-theta)*a=dt)/(1 + theta*dt+a)+u[n]
return u, t

4 Numerical experiments

We define a set of numerieal experiments where I, a, and T are fixed, while At
and # are varied. In particular, I =1, a = 2, At = 1.25,0.75.0.5,0.1.

Figure 13: Report in PDF format generated from KTEX source.

1emes that give a certain look and feel to the web site and that offers table of
ntents, navigation, and search facilities, see Figure 14.

method

B Mathematical problem

Previous topic We address the initial-value problem

Experiments with Schemes for Ly _ 1

' (t) =—au(t), te(0,7T],

Exponential Decay ( ) ( ) € ( 5L
u(0) =1,

Quick search
where a, I, and T are prescribed parameters, and u(t) is the unknown function to be

Go estimated. This mathematical model is relevant for physical phenomena featuring
exponential decay in time.

Numerical solution method

We introduce a mesh in time with points 0 = £y < t1 - -+ <t = T For simplicity, we
assume constant spacing Af between the mesh points: At =t, —t,_1,n=1,...,N.
Let 4™ be the numerical approximation to the exact solution at t,,.

The f-rule is used to solve (ode) numerically:

. 1-(1-6)aAt
 1+6aAt

n+

o n

form =0,1,..., N — 1. This scheme corresponds to
Figure 14: Report in HTML format generated from Sphinx source.
Tarkdown. A recently popular format for easy writing of web pages is Mark-

own®. Text is written very much like one would do in email, using spacing and
secial characters to naturally format the code instead of heavily tagging the

59mttp://daringfireball.net/projects/markdown/
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text as in IXTREX and HTML. With the tool Pandoc®® one can go from M:
to a variety of formats. HTML is a common output format, but KTg:
XML, OpenOffice, MediaWiki, and MS Word are some other possibilit

Wiki formats. A range of wiki formats are popular for creating r
the web, especially documents which allow groups of people to edit ¢
content. Apart from MediaWiki®! (the wiki format used for Wikipedi
formats have no support for mathematical typesetting and also limited
displaying computer code in nice ways. Wiki formats are therefore less
for scientific reports compared to the other formats mentioned here.

Doconce. Since it is difficult to choose the right tool or format for w
scientific report, it is advantageous to write the content in a format th:
translates to IWTEX, HTML, Sphinx, Markdown, and various wikis. Docc
such a tool. It is similar to Pandoc, but offers some special convenient
for writing about mathematics and programming. The tagging is m
somewhere between IXTEX and Markdown. The program decay_expe:
demonstrates how to generate (and write) Doconce code for a report.

Worked example. The HTML, BTEX (PDF), Sphinx, and Doconce
for the scientific report whose content is outlined above, are exemplifi
source codes and results at the web pages associated with this teaching 1
http://tinyurl.com/k3sdbuv/writing_reports/.

4.5 Publishing a complete project

A report documenting scientific investigations should be accompanied b
software and data used for the investigations so that others have a possi
redo the work and assess the qualify of the results. This possibility is in
for reproducible research and hence reaching reliable scientific conclusic
One way of documenting a complete project is to make a directory t
all relevant files. Preferably, the tree is published at some project hosting
Bitbucket, GitHub, or Googlecode® so that others can download it as .
zipfile, or clone the files directly using a version control system like M
or Git. For the investigations outlined in Section 4.4, we can create a d
tree with files
setup.py
./src:
decay_mod.py
./doc:

./src:
decay_experl_mathjax.py

60nttp://johnmacfarlane.net/pandoc/
61http://www.mediawiki.org/wiki/MediaWiki
%2nttps://github.com/hplgit/doconce
63nttp://tinyurl.com/k3sdbuv/writing reports//_static/report.do.txt.html
64nttp://hplgit.github.com/teamods/bitgit/html/
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make_report.sh
run.sh

./pub:
report.html

he src directory holds source code (modules) to be reused in other projects,
1e setup.py builds and installs such software, the doc directory contains the
ocumentation, with src for the source of the documentation and pub for ready-
1ade, published documentation. The run.sh file is a simple Bash script listing
1e python command we used to run decay_experl_mathjax.py to generate
1e experiments and the report.html file.

v Exercises and Problems

xercise 1: Derive schemes for Newton’s law of cooling

how in detail how we can apply the ideas of the Forward Euler, Backward
uler, Crank-Nicolson, and 6-rule discretizations to derive explicit computational
rmulas for new temperature values in Newton’s law of cooling (see Section 11.5):

ar
dt
ere, T is the temperature of the body, T is the temperature of the surroundings,
is time, k is the heat transfer coefficient, and Tj is the initial temperature of
1e body.
Filename: schemes_cooling.pdf.

k(T -T,), T(0)=Ty. (50)

xercise 2: Implement schemes for Newton’s law of cooling

ormulate a #-rule for the three schemes in Exercise 1 such that you can get
1e three schemes from a single formula by varying the 6 parameter. Implement
1e 6 scheme in a function cooling(TO, k, T_s, t_end, dt, theta=0.5),
here TO is the initial temperature, k is the heat transfer coefficient, T_s is the
'mperature of the surroundings, t_end is the end time of the simulation, dt is
1e time step, and theta corresponds to 6. The cooling function should return
1e temperature as an array T of values at the mesh points and the time mesh t.
'onstruct verification examples to check that the implementation works.

[int. For verification, try to find an exact solution of the discrete equations.
trick is to introduce u = T — Ty, observe that u™ = (Ty — Ts)A™ for some

mplification factor A, and then express this formula in terms of 7.
Filename: cooling.py.

xercise 3: Find time of murder from body temperature

detective measures the temperature of a dead body to be 26.7 C at 2 pm. One
our later the temperature is 25.8 C. The question is when death occurred.
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Assume that Newton’s law of cooling (120) is an appropriate mathe
model for the evolution of the temperature in the body. First, dete
in (120) by formulating a Forward Euler approximation with one tin
from time 2 am to time 3 am, where knowing the two temperatures al
finding k. Assume the temperature in the air to be 20 C. Thereafter, s
the temperature evolution from the time of murder, taken as t = (
T = 37 C, until the temperature reaches 25.8 C. The corresponding tim
for answering when death occurred. Filename: detective.py.

Exercise 4: Experiment with integer division

Explain what happens in the following computations, where some are
matically unexpected:

>>> dt = 3
>>> T =8

>>> Nt = T/dt
>>> Nt

2

>>> theta = 1; a =1
>>> (1 - (1-theta)*axdt)/(1 + theta*dt*a)
0

Filename: pyproblems.txt.

Exercise 5: Experiment with wrong computations
Consider the solver function in the decay_v1.py®® file and the followin
u, t = solver(I=1, a=1, T=7, dt=2, theta=1)

The output becomes

t= 0.000 u=1
t= 2.000 u=0
t= 4.000 u=0
t= 6.000 u=0

Print out the result of all intermediate computations and use type (v) tc
object type of the result stored in v. Examine the intermediate calculati
explain why u is wrong and why we compute up to ¢ = 6 only even thc
specified T'= 7. Filename: decay_v1_err.py.

Exercise 6: Plot the error function

Solve the problem v’ = —au, u(0) = I, using the Forward Euler, Backwa
and Crank-Nicolson schemes. For each scheme, plot the error functic
Ue(ty,) —u™ for At, iAt, and %At, where ue is the exact solution of the C
u™ is the numerical solution at mesh point ¢,,. Filename: decay_plot_ez

65nttp://tinyurl.com/jvzzctn/decay/decay vi.py
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xercise 7: Compare methods for a given time mesh

[ake a program that imports the solver function from the decay_mod module
ad offers a function compare(dt, I, a) for comparing, in a plot, the methods
rresponding to @ = 0,0.5, 1 and the exact solution. This plot shows the accuracy
f the methods for a given time mesh. Read input data for the problem from
1e command line using appropriate functions in the decay_mod module (the
-dt option for giving several time step values can be reused: just use the first
me step value for the computations). Filename: decay_compare_theta.py.

xercise 8: Change formatting of numbers and debug

he decay_memsave.py®® program writes the time values and solution values to
file which looks like

0.0000000000000000E+00  1.0000000000000000E+00
2.0000000000000001E-01  8.3333333333333337E-01
4.0000000000000002E-01  6.9444444444444453E-01
6.0000000000000009E-01  5.7870370370370383E-01
8.0000000000000004E-01 4.8225308641975323E-01
1.0000000000000000E+00 4.0187757201646102E-01
1.2000000000000000E+00 3.3489797668038418E-01
1.3999999999999999E+00 2.7908164723365347E-01

[odify the file output such that it looks like

0.000 1.00000
0.200 0.83333

0.400 0.69444
0.600 0.57870
0.800 0.48225
1.000 0.40188
1.200 0.33490
1.400 0.27908

un the modified program

srminal> python decay_memsave_v2.py --T 10 --theta 1 \
--dt 0.2 --makeplot

he program just prints Bug in the implementation! and does not show the
lot. What went wrong? Filename: decay_memsave_v2.py.

'roblem 9: Write a doctest

ype in the following program and equip the roots function with a doctest:

import sys
# This sqrt(x) returns real if x>0 and complex if x<O
from numpy.lib.scimath import sqrt

def roots(a, b, c):

66nttp://tinyurl.com/jvzzcfn/decay/decay memsave.py
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Return the roots of the quadratic polynomial
p(x) = a*xx**2 + bxx + c.

The roots are real or complex objects.
nnn

q = b**2 - 4xaxc

rl = (-b + sqrt(q))/(2*a)
r2 = (-b - sqrt(q))/(2*a)
return ri, r2

a, b, ¢ = [float(arg) for arg in sys.argv([1:]]
print roots(a, b, c)

Make sure to test both real and complex roots. Write out numbers with °
or less. Filename: doctest_roots.py.

Problem 10: Write a nose test

Make a nose test for the roots function in Problem 9. Filename: test_xrc

Problem 11: Make a module

Let
RAe*

Q(t):m-

Make a Python module q_module containing two functions q(t) and dqd
computing ¢(t) and ¢'(t), respectively. Perform a from numpy import :
module. Import q and dqdt in another file using the ”star import” cons
from g_module import *. All objects available in this file is given b
Print dir ) and len(dir()). Then change the import of numpy in q_moc
to import numpy as np. What is the effect of this import on the nu
objects in dir() in a file that does from gq_module import *?
Filename: g_module.py.

Exercise 12: Make use of a class implementation

We want to solve the exponential decay problem v = —au, u(0) = I, for
At values and 0 = 0,0.5, 1. For each At value, we want to make a plot w
three solutions corresponding to § = 0, 0.5, 1 appear along with the exact
Write a function experiment to accomplish this. The function should im
classes Problem, Solver, and Visualizer from the decay_class®” moc
make use of these. A new command-line option ——dt_values must be &
allow the user to specify the At values on the command line (the optio
and --theta implemented by the decay_class module have then no effe
running the experiment function). Note that the classes in the decay
module should not be modified. Filename: decay_class_exper.py.

67http://tinyurl.com/jvzzctn/decay/decay_class.py
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xercise 13: Generalize a class implementation

'onsider the file decay_class.py®® where the exponential decay problem u' =

-au, u(0) = I, is implemented via the classes Problem, Solver, and Visualizer.

xtend the classes to handle the more general problem
u'(t) = —a(t)u(t) + b(t), u(0) =1, t€(0,T],

sing the 6-rule for discretization.

In the case with arbitrary functions a(t) and b(¢) the problem class is no
mger guaranteed to provide an exact solution. Let the exact_solution in
ass Problem return None if the exact solution for the particular problem is not
vailable. Modify classes Solver and Visualizer accordingly.

Add test functions test_*() for the nose testing tool in the module. Also
dd a demo example where the environment suddenly changes (modeled as an
brupt change in the decay rate a):

1, 0<t<ty,
a(t)_{k, t >ty

here t, is the point of time the environment changes. Take t, = 1 and

1ake plots that illustrate the effect of having £k > 1 and k < 1. Filename:

ecay_class2.py.

xercise 14: Generalize an advanced class implementation

olve Exercise 13 by utilizing the class implementations in decay_class_oo.py%°.

ilename: decay_class3.py.

»  Analysis of finite difference equations

/e address the ODE for exponential decay,
W (t) = —au(t), u(0) =1, (51)

here a and I are given constants. This problem is solved by the #-rule finite

ifference scheme, resulting in the recursive equations

11 _ 1= (1—6aAt
1+ 6aAt

7 the numerical solution ©™*!, which approximates the exact solution ue at time

un

u” (52)

oint t,41. For constant mesh spacing, which we assume here, t,,11 = (n+1)At.

liscouraging numerical solutions. Choosing I = 1, a = 2, and running
xperiments with # = 1,0.5,0 for At = 1.25,0.75,0.5,0.1, gives the results in
igures 15, 16, and 17.

The characteristics of the displayed curves can be summarized as follows:

68http://tinyurl.com/jvzzcfn/decay/decay_class.py
%9nttp://tinyurl.com/jvzzcfn/decay/decay_class_oo.py
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Figure 15: Backward Euler.

e The Backward Euler scheme always gives a monotone solution, lyir
the exact curve.

e The Crank-Nicolson scheme gives the most accurate results, but f
1.25 the solution oscillates.

e The Forward Euler scheme gives a growing, oscillating solution f
1.25; a decaying, oscillating solution for At = 0.75; a strange :
u™ = 0 for n > 1 when At = 0.5; and a solution seemingly as acc
the one by the Backward Euler scheme for At = 0.1, but the ct
below the exact solution.

Since the exact solution of our model problem is a monotone function
Ie= some of these qualitatively wrong results are indeed alarming!

Goal.
We ask the question

e Under what circumstances, i.e., values of the input data I, a, a1
will the Forward Euler and Crank-Nicolson schemes result in und
oscillatory solutions?
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Figure 16: Crank-Nicolson. Figure 17: Forward Euler.

The question will be investigated both by numerical experiments and by for some value of n, since we expect u™ to decay with n, but oscillations
precise mathematical theory. The latter will help establish general critera increase over a time step. We will quickly see that oscillations are inde
on At for avoiding non-physical oscillatory or growing solutions. of I, but do depend on a and At. Therefore, we introduce a two-dime

Another question to be raised is function B(a,At) which is 1 if oscillations occur and 0 otherwise.
visualize B as a contour plot (lines for which B = const). The contour
corresponds to the borderline between oscillatory regions with B =
monotone regions with B = 0 in the a, At plane.

e How does At impact the error in the numerical solution?

For our simple model problem we can answer this question very precisely,

but we will also look at simplified formulas for small At and touch upon The B function is defined at discrete a and At values. Say we have gi
important concepts such as convergence rate and the order of a scheme. Yalues, a0, -+, aAP-1, and Q At values, Aty, ..., Atg_y. These a; and 4’5
Other fundamental concepts mentioned are stability, consistency, and con- i=0,...,P—1,7j=0,...,Q—1, form a rectangular mesh of P x Q poin
vergence. plane. At each point (a;, At;), we associate the corresponding value of B(

/ denoted B;;. The B;; values are naturally stored in a two-dimensional ax

can thereafter create a plot of the contour line B;; = 0.5 dividing the os
and monotone regions. The file decay_osc_regions.py’’ osc_region:
for ”oscillatory regions”) contains all nuts and bolts to produce the B =
in Figures 18 and 19. The oscillatory region is above this line.

.1 Experimental investigation of oscillatory solutions

o address the first question above, we may set up an experiment where we
op over values of I, a, and At. For each experiment, we flag the solution as
scillatory if

u >yt s "Ohttp://tinyurl.com/jvzzctn/decay/decay_osc_regions.py
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from decay_mod import solver
import numpy as np
import scitools.std as st

def non_physical_behavior(I, a, T, dt, theta):
nnn
Given lists/arrays a and dt, and numbers I, dt, and theta,
make a two-dimensional contour line B=0.5, where B=1>0.5
means oscillatory (unstable) solution, and B=0<0.5 means
monotone solution of u’=-au.
a = np.asarray(a); dt = np.asarray(dt) # must be arrays
B = np.zeros((len(a), len(dt))) # results
for i in range(len(a)):
for j in range(len(dt)):
u, t = solver(I, al[il, T, dt[j]l, theta)
# Does u have the right monotone decay properties?
correct_qualitative_behavior = True
for n in range(1l, len(u)):
if u[n] > uln-1]: # Not decaying?
correct_qualitative_behavior = False
break # Jump out of loop
B[i,j] = float(correct_qualitative_behavior)
a_, dt_ = st.ndgrid(a, dt) # make mesh of a and dt values
st.contour(a_, dt_, B, 1)
st.grid(’on’)
st.title(’theta=/g’ % theta)
st.xlabel(’a’); st.ylabel(’dt’)
st.savefig(’osc_region_theta_Y%s.png’ % theta)
st.savefig(’osc_region_theta_Y%s.pdf’ 7 theta)

non_physical_behavior (
I=1,
a=np.linspace(0.01, 4, 22),
dt=np.linspace(0.01, 4, 22),
T=6,
theta=0.5)

By looking at the curves in the figures one may guess that aAt must be less
1an a critical limit to avoid the undesired oscillations. This limit seems to be
bout 2 for Crank-Nicolson and 1 for Forward Euler. We shall now establish

precise mathematical analysis of the discrete model that can explain the
bservations in our numerical experiments.

.2 Exact numerical solution

tarting with u® = I, the simple recursion (52) can be applied repeatedly n
mes, with the result that

1—(1-0)aAt

wt=14% A= 1+ faAt

Solving difference equations. 1
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2.5

dt
o
—

15

Figure 18: Forward Euler scheme: oscillatory solutions occur for point
the curve.

n+1 n
)

Difference equations where all terms are linear in u u™, and n
u? L w2 etc., are called homogeneous, linear difference equations
their solutions are generally of the form u™ = A™. Inserting this exprt
and dividing by A"*! gives a polynomial equation in A. In the presen
we get
1—(1-0)aAt

1+ faAt

This is a solution technique of wider applicability than repeated use
recursion (52).

A=

Regardless of the solution approach, we have obtained a formula for 1

formula can explain everything what we see in the figures above, bu
gives us a more general insight into accuracy and stability properties of t
schemes.

6.3 Stability

Since u™ is a factor A raised to an integer power n, we realize that A
for odd powers imply u™ < 0 and for even power result in v > 0. Tha
solution oscillates between the mesh points. We have oscillations due t
when
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theta=0.5

4 \\I T T T T T T
35 .

2.5

dt
[E%]
T

15

0.5 -

igure 19: Crank-Nicolson scheme: oscillatory solutions occur for points above
1e curve.

(1—0)aAt>1. (54)

ince A > 0 is a requirement for having a numerical solution with the same
asic property (monotonicity) as the exact solution, we may say that A > 0is a
tability criterion. Expressed in terms of At the stability criterion reads

1

At<m.

(55)

The Backward Euler scheme is always stable since A < 0 is impossible for
= 1, while non-oscillating solutions for Forward Euler and Crank-Nicolson
emand At < 1/a and At < 2/a, respectively. The relation between At and a
ok reasonable: a larger a means faster decay and hence a need for smaller time
eps.

Looking at Figure 17, we see that with aAt =2-1.25 =2.5, A = —1.5, and
1e solution u™ = (—1.5)" oscillates and grows. With aAt = 2-0.75 = 1.5,
= —0.5, u™ = (—0.5)" decays but oscillates. The peculiar case At = 0.5,
here the Forward Euler scheme produces a solution that is stuck on the t axis,
srresponds to A = 0 and therefore ©® = I = 1 and ™ = 0 for n > 1. The
ecaying oscillations in the Crank-Nicolson scheme for At = 1.25 are easily
xplained by the fact that A ~ —0.11 < 0.
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The factor A is called the amplification factor since the solution at a n
level is A times the solution at the previous time level. For a decay pro
must obviously have |A| < 1, which is fulfilled for all At if § > 1/2. Ar]
large values of u can be generated when |A| > 1 and n is large enoug
numerical solution is in such cases totally irrelevant to an ODE modelir
processes! To avoid this situation, we must for § < 1/2 have

2

At< —n—
~ (1-20)a’

which means At < 2/a for the Forward Euler scheme.

Stability properties.
We may summarize the stability investigations as follows:

1. The Forward Euler method is a conditionally stable scheme be
it requires At < 2/a for avoiding growing solutions and At < 1,
avoiding oscillatory solutions.

2. The Crank-Nicolson is unconditionally stable with respect to gr
solutions, while it is conditionally stable with the criterion At -
for avoiding oscillatory solutions.

3. The Backward Euler method is unconditionally stable with resp:
growing and oscillatory solutions - any At will work.

Much literature on ODEs speaks about L-stable and A-stable methoc
our case A-stable methods ensures non-growing solutions, while L-¢
methods also avoids oscillatory solutions.

6.4 Comparing amplification factors

After establishing how A impacts the qualitative features of the solution,
now look more into how well the numerical amplification factor appro
the exact one. The exact solution reads u(t) = Ie~%, which can be rew

Ue(tn) _ IefanAt — I(efaAt)n'
From this formula we see that the exact amplification factor is
A = e Bt

We realize that the exact and numerical amplification factors depend ¢
At through the product aAt. Therefore, it is convenient to introduce a
for this product, p = aAt, and view A and Ae as functions of p. Figure 2
these functions. Crank-Nicolson is clearly closest to the exact ampli
factor, but that method has the unfortunate oscillatory behavior when
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Amplification factors
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Figure 20: Comparison of amplification factors.

.5 Series expansion of amplification factors

s an alternative to the visual understanding inherent in Figure 20, there is a
rong tradition in numerical analysis to establish formulas for the approximation
‘rors when the discretization parameter, here At, becomes small. In the present
1se we let p be our small discretization parameter, and it makes sense to simplify
1e expressions for A and A by using Taylor polynomials around p = 0. The
aylor polynomials are accurate for small p and greatly simplifies the comparison
f the analytical expressions since we then can compare polynomials, term by
rm.

Calculating the Taylor series for A is easily done by hand, but the three
arsions of A for § =0, 1, % lead to more cumbersome calculations. Nowadays,
nalytical computations can benefit greatly by symbolic computer algebra soft-
are. The Python package sympy represents a powerful computer algebra system,
ot yet as sophisticated as the famous Maple and Mathematica systems, but
ee and very easy to integrate with our numerical computations in Python.

When using sympy, it is convenient to enter the interactive Python mode
here we can write expressions and statements and immediately see the results.
ere is a simple example. We strongly recommend to use isympy (or ipython)
r such interactive sessions.

Let us illustrate sympy with a standard Python shell syntax (>>> prompt) to
»mpute a Taylor polynomial approximation to e™?:
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>>> from sympy import *
>>> # Create p as a mathematical symbol with name ’p’

>>> p = Symbol(’p’)

>>> # Create a mathematical expression with p
>>> A_e = exp(-p)

>>>

>>> # Find the first 6 terms of the Taylor series of A_e
>>> A_e.series(p, 0, 6)
1 + (1/2)*p**2 - p — 1/6%p**3 — 1/120*p**5 + (1/24)*p**4 + 0(p**6

Lines with >>> represent input lines and lines without this prompt rej
the result of computations (note that isympy and ipython apply other j
but in this text we always apply >>> for interactive Python computing)
from the order of the powers, the computed formula is easily recognize:
beginning of the Taylor series for e .

Let us define the numerical amplification factor where p and 6 e
formula as symbols:

>>> theta = Symbol(’theta’)
>>> A = (1-(1-theta)*p)/(1+theta*p)

To work with the factor for the Backward Euler scheme we can substi
value 1 for theta:

>>> A.subs(theta, 1)
1/(1 + p)

Similarly, we can replace theta by 1/2 for Crank-Nicolson, preferably 1
exact rational representation of 1/2 in sympy:

>>> half = Rational(1,2)
>>> A.subs(theta, half)
1/(1 + (1/2)*p)*(1 - 1/2%p)

The Taylor series of the amplification factor for the Crank-Nicolson
can be computed as

>>> A.subs(theta, half).series(p, 0, 4)
1+ (1/2)*p**2 — p — 1/4*p**3 + 0(p**4)

We are now in a position to compare Taylor series:

>>> FE = A_e.series(p, 0, 4) - A.subs(theta, 0).series(p, 0, 4)
>>> BE = A_e.series(p, 0, 4) - A.subs(theta, 1).series(p, 0, 4)
>>> CN = A_e.series(p, 0, 4) - A.subs(theta, half).series(p, 0, 4
>>> FE

(1/2)*p**2 - 1/6%pxx3 + 0(px*4)

>>> BE

-1/2%p**2 + (5/6)*p**3 + 0(p**4)

>>> CN

(1/12) xpx*3 + 0(p**4)
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rom these expressions we see that the error A — Ao ~ O(p?) for the Forward
nd Backward Euler schemes, while 4 — Ae ~ O(p®) for the Crank-Nicolson
‘heme. It is the leading order term, i.e., the term of the lowest order (polynomial
egree), that is of interest, because as p — 0, this term is (much) bigger than
1e higher-order terms (think of p = 0.01: p is a hundred times larger than p?).

Now, a is a given parameter in the problem, while At is what we can vary.
me therefore usually writes the error expressions in terms A¢t. When then have

(59)

A A — O(At?), Forward and Backward Euler,
° 7 1 O(At®), Crank-Nicolson

We say that the Crank-Nicolson scheme has an error in the amplification
wctor of order At3, while the two other schemes are of order At? in the same
uantity. What is the significance of the order expression? If we halve At,
1e error in amplification factor at a time level will be reduced by a factor of
in the Forward and Backward Euler schemes, and by a factor of 8 in the
rank-Nicolson scheme. That is, as we reduce At to obtain more accurate
ssults, the Crank-Nicolson scheme reduces the error more efficiently than the
ther schemes.

.6 The fraction of numerical and exact amplification fac-
tors

n alternative comparison of the schemes is to look at the ratio A/Ae, or the
Tor 1 — A/Ae in this ratio:

>>> FE = 1 - (A.subs(theta, 0)/A_e).series(p, 0, 4)
>>> BE = 1 - (A.subs(theta, 1)/A_e).series(p, 0, 4)
»>> CN = 1 - (A.subs(theta, half)/A_e).series(p, 0, 4)
>>> FE

(1/2)*p**2 + (1/3)*p**3 + 0(p**4)

>>> BE

-1/2xpx*2 + (1/3)*p**3 + 0(p**4)

>>> CN

(1/12) xpx*3 + 0(p**4)

he leading-order terms have the same powers as in the analysis of A — Ae.

.7 The global error at a point

he error in the amplification factor reflects the error when progressing from
me level ¢, to t,_1. To investigate the real error at a point, known as the
lobal error, we look at " = u™ — ue(t,) for some n and Taylor expand the
1athematical expressions as functions of p = aAt:

»>> n = Symbol(’n’)

>>> u_e = exp(-p*n)

>>> u_n = Axxn

»>> FE = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
»>> BE = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)
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>>> CN = u_e.series(p, 0, 4) - u_n.subs(theta, half).series(p, O,
>>> FE

(1/2) *n*p**2 - 1/2*n**2*p**3 + (1/3)*n*p**3 + 0(p**4)

>>> BE

(1/2) *n**2xpx*3 — 1/2+n*p**2 + (1/3)*n*p**3 + 0(p*x*4)

>>> CN

(1/12) *nxpx*3 + 0(p**4)

For a fixed time ¢, the parameter n in these expressions increases as p —
t = nAt = const and hence n must increase like At~!. With n sub
by t/At in the leading-order error terms, these become $na?At? = Ltc
the Forward and Backward Euler scheme, and ﬁna3At3 = 1—12ta3At2
Crank-Nicolson scheme. The global error is therefore of second order (in
the latter scheme and of first order for the former schemes.

When the global error € — 0 as At — 0, we say that the scheme is cos
It means that the numerical solution approaches the exact solution as t
is refined, and this is a much desired property of a numerical method.

6.8 Integrated errors

It is common to study the norm of the numerical error, as explained in «
Section 2.4. The L? norm can be computed by treating ¢” as a functio:
sympy and performing symbolic integration. For the Forward Euler sct
have

p, n, a, dt, t, T, theta = symbols(’p n a dt t T ’theta’)
A = (1-(1-theta)*p)/(1+thetaxp)

u_e = exp(-p*n)

u_n = A*xxn

error = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
# Introduce t and dt instead of n and p

error = error.subs(’n’, ’t/dt’).subs(p, ’axdt’)

error = error.as_leading_term(dt) # study only the first term
print error

error_L2 = sqrt(integrate(error**2, (t, 0, T)))

print error_L2

The output reads

sqrt (30) *sqrt (Tk*3xax*4d*dt**2* (6xTx*2*a*x*2 - 15xT*a + 10))/60

which means that the L? error behaves like a?At.
Strictly speaking, the numerical error is only defined at the mesh poi
makes most sense to compute the ¢ error

Ny
le™llez = | Aty (ue(tn) —um)?.
n=0

We have obtained an exact analytical expressions for the error at ¢ =
here we use the leading-order error term only since we are mostly inter
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ow the error behaves as a polynomial in At, and then the leading order term
ill dominate. For the Forward Euler scheme, wue(t,) — u" = %np2, and we have

Ny Ny

1 1
|le"]|7. = Atz Zn2p4 = Atip4 Z n?.

n=0 n=0

‘ow, 27]:[;0 n? ~ LN?. Using this approximation, setting N; = T//At, and
1Wking the square root gives the expression

1 /T3
e” 2 = = 7&2At.
2V 3

‘alculations for the Backward Euler scheme are very similar and provide the
ume result, while the Crank-Nicolson scheme leads to

1 /13
lle®lee = 55

4703 0,2
13 3&At.

Summary of errors.

Both the point-wise and the time-integrated true errors are of second order
in At for the Crank-Nicolson scheme and of first order in At for the Forward
Euler and Backward Euler schemes.

.9 Truncation error

he truncation error is a very frequently used error measure for finite difference
iethods. It is defined as the error in the difference equation that arises when
1serting the exact solution. Contrary to many other error measures, e.g., the
‘ue error e = ue(t,) — u", the truncation error is a quantity that is easily
mputable.

Let us illustrate the calculation of the truncation error for the Forward Euler
heme. We start with the difference equation on operator form,

[Diu = —au]”,
e.,
n+1
U —u" "
— = —au
At

he idea is to see how well the exact solution ue(t) fulfills this equation. Since
e(t) in general will not obey the discrete equation, error in the discrete equation,
alled a residual, denoted here by R™:

Ue (tn+1 ) — Ue (tn)

R = At

+ aue(ty,) . (60)
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The residual is defined at each mesh point and is therefore a mesh funct:
a superscript n.

The interesting feature of R™ is to see how it depends on the discre
parameter At. The tool for reaching this goal is to Taylor expand we arc
point where the difference equation is supposed to hold, here t = t,,. \
that

1
Ue(tnt1) = ue(tn) + ub(tn) At + §ug(tn)At2 +-.

Inserting this Taylor series in (60) gives

1
R" = ul(t,) + iug(tn)At + ...+ aue(ty) -

Now, ue fulfills the ODE ul, = —aue such that the first and last term
and we have

This R™ is the truncation error, which for the Forward Euler is seen
first order in At.

The above procedure can be repeated for the Backward Euler and th
Nicolson schemes. We start with the scheme in operator notation, write
detail, Taylor expand ue around the point ¢ at which the difference equ
defined, collect terms that correspond to the ODE (here u), 4+ auc), and
the remaining terms as the residual R, which is the truncation errc
Backward Euler scheme leads to

while the Crank-Nicolson scheme gives

R~ iug'(tn+%)At2.

The order r of a finite difference scheme is often defined through the
term At” in the truncation error. The above expressions point out t
Forward and Backward Euler schemes are of first order, while Crank-I
is of second order. We have looked at other error measures in other s
like the error in amplification factor and the error e® = we(t,) —
expressed these error measures in terms of At to see the order of the
Normally, calculating the truncation error is more straightforward than
the expressions for other error measures and therefore the easiest way to €
the order of a scheme.
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.10 Consistency, stability, and convergence

hree fundamental concepts when solving differential equations by numerical
1ethods are consistency, stability, and convergence. We shall briefly touch these
»ncepts below in the context of the present model problem.

Consistency means that the error in the difference equation, measured through
1e truncation error, goes to zero as At — 0. Since the truncation error
2lls how well the exact solution fulfills the difference equation, and the exact
>lution fulfills the differential equation, consistency ensures that the difference
juation approaches the differential equation in the limit. The expressions for the
uncation errors in the previous section are all proportional to At or A2, hence
1ey vanish as At — 0, and all the schemes are consistent. Lack of consistency
nplies that we actually solve a different differential equation in the limit At — 0
1an we aim at.

Stability means that the numerical solution exhibits the same qualitative
roperties as the exact solution. This is obviously a feature we want the numerical
slution to have. In the present exponential decay model, the exact solution is
1onotone and decaying. An increasing numerical solution is not in accordance
ith the decaying nature of the exact solution and hence unstable. We can also
vy that an oscillating numerical solution lacks the property of monotonicity
f the exact solution and is also unstable. We have seen that the Backward
uler scheme always leads to monotone and decaying solutions, regardless of At,
ad is hence stable. The Forward Euler scheme can lead to increasing solutions
nd oscillating solutions if At is too large and is therefore unstable unless At is
ifficiently small. The Crank-Nicolson can never lead to increasing solutions and
as no problem to fulfill that stability property, but it can produce oscillating
>lutions and is unstable in that sense, unless At is sufficiently small.

Convergence implies that the global (true) error mesh function e = wue(t,,) —
"™ — 0 as At — 0. This is really what we want: the numerical solution gets as
ose to the exact solution as we request by having a sufficiently fine mesh.

Convergence is hard to establish theoretically, except in quite simple problems
ke the present one. Stability and consistency are much easier to calculate. A
1ajor breakthrough in the understanding of numerical methods for differential
juations came in 1956 when Lax and Richtmeyer established equivalence
etween convergence on one hand and consistency and stability on the other (the
ax equivalence theorem™). In practice it meant that one can first establish that
method is stable and consistent, and then it is automatically convergent (which

much harder to establish). The result holds for linear problems only, and in
1e world of nonlinear differential equations the relations between consistency,
;ability, and convergence are much more complicated.

We have seen in the previous analysis that the Forward Euler, Backward
uler, and Crank-Nicolson schemes are convergent (e — 0), that they are
nsistent (R™ — 0, and that they are stable under certain conditions on the
ze of At. We have also derived explicit mathematical expressions for e”, the
‘uncation error, and the stability criteria.

"http://en.wikipedia.org/wiki/Lax_equivalence_theorem
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7 Exercises

Exercise 15: Visualize the accuracy of finite differenc
—at

(&

The purpose of this exercise is to visualize the accuracy of finite di
approximations of the derivative of a given function. For any finite di
approximation, take the Forward Euler difference as an example, and any
function, take u = e~%, we may introduce an error fraction specific

[Dfu]"  exp(—a(t, + At)) —exp (—at,) 1

E= ' (tn) B —aexp (—aty) NG (exp (—alt)

and view E as a function of At. We expect that lima; o F = 1, while
deviate significantly from unit for large At. How the error depends on A
visualized in a graph where we use a logarithmic scale on for At, so we ¢
many orders of magnitude of that quantity. Here is a code segment cre:
array of 100 intervals, on the logarithmic scale, ranging from 1076 to 1 a
plotting F versus p = a/At with logarithmic scale on the At axis:

from numpy import logspace, exp
from matplotlib.pyplot import plot
p = logspace(-6, 1, 101)

y = —(exp(-p)-1)/p

semilog(p, y)

Ilustrate such errors for the finite difference operators [D; u]™ (forward),
(backward), and [Du]™ (centered).

Perform a Taylor series expansions of the error fractions and find the
order r in the expressions of type 1+CAt" +O(At"+1), where C is some «
Filename: decay_plot_fd_exp_error.py.

Exercise 16: Explore the ¢-rule for exponential grow

This exercise asks you to solve the ODE «' = —au with a < 0 such t
ODE models exponential growth instead of exponential decay. A centre
is to investigate numerical artifacts and non-physical solution behavior

a) Run experiments with 6 and At to uncover numerical artifacts (tl
solution is a monotone, growing function). Use the insight to design
experiments that aims to demonstrate all types of numerical artifacts for «
choices of At while a is fixed.

Hint. Modify the decay_experl.py code to suit your needs.
Filename: growth_exper.py.

b) Write a scientific report about the findings.
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[int. Use examples from Section 4.4 to see how scientific reports can be
ritten.
Filenames: growth_exper.pdf, growth_exper.html.

) Plot the amplification factors for the various schemes together with the
xact one for a < 0 and use the plot to explain the observations made in the
xperiments.

[int. Modify the decay_ampf_plot.py’? code.
Filename: growth_ampf.py.

»  Model extensions

; is time to consider generalizations of the simple decay model v = —au and
lso to look at additional numerical solution methods.

.1 Generalization: including a variable coefficient

1 the ODE for decay, v’ = —au, we now consider the case where a depends on
me:

W(t) = —a(t)ult), te(0,T], u0)=1I. (61)

A Forward Euler scheme consist of evaluating (61) at ¢ = ¢,, and approximat-
1g the derivative with a forward difference [D; u]™:

%t—u” = —a(ty)u" . (62)
he Backward Euler scheme becomes

u™ — un—l

v —a(tp)u™. (63)

he Crank-Nicolson method builds on sampling the ODE at ¢, 41 We can
valuate a at t,, 1 and use an average for u at times ¢,, and t,41:

= ~altyay) 50" ). (64

Iternatively, we can use an average for the product au:

u"+l —u" 1 n n
g = 5 et + alten ). (65)

he 6-rule unifies the three mentioned schemes. One version is to have a
valuated at t,40,

Thttp://tinyurl.com/jvzzcfn/decay/decay_ampf_plot.py
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= (= Ot Ot 1) (1= Ou” + 0u” ).

Another possibility is to apply a weighted average for the product au,

n+1

U —u”

At
With the finite difference operator notation the Forward Euler and B
Fuler schemes can be summarized as

= —(1—0)a(ty)u™ — a(t,y1)u™t.

[Dfu = —au]™,
[Df u=—au]™.
The Crank-Nicolson and # schemes depend on whether we evaluate ¢

sample point for the ODE or if we use an average. The various vers
written as

[Dyu = faﬂt]"*'i
[Deu = —aa']"*+2,
[Dyu = faﬂt’g}”"'g,
[Diu = —Wt’g}""'g .

8.2 Generalization: including a source term

A further extension of the model ODE is to include a source term b(%):
' (t) = —a(t)u(t) + b(t), te€(0,7], u(0)=1I.

Schemes. The time point where we sample the ODE determines wher
evaluated. For the Crank-Nicolson scheme and the 6-rule we have a c
whether to evaluate a(t) and b(t) at the correct point or use an avera,
chosen strategy becomes particularly clear if we write up the scheme
operator notation:

[Dfu = —au + )",
[D; u=—au+ b]",

[Dyu = —au" + b]”*é,
[Dyu = —au + bt]”*'%,
[Dyu = —awt? + b7,
[Diu = —au + bt’e]"+9 .
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.3 Implementation of the generalized model problem

Jeriving the 6-rule formula. Writing out the f-rule in (80), using (32) and
13), we get

= 0(—a" " ") + (1 - 0)(—a"u™ + b)), (81)

here a™ means evaluating a at ¢t = t,, and similar for a®*!, b", and b" 1. We
slve for unt1:

u = (1= AL = 0)a™)u" + AtOV™ + (1 - 0)b™)(1 + Atba" 1)~ (82)

'he Python code. Here is a suitable implementation of (81) where a(t) and
't) are given as Python functions:

ief solver(I, a, b, T, dt, theta):
nnn
Solve u’=-a(t)*u + b(t), u(0)=I,
for t in (0,T] with steps of dt.
a and b are Python functions of t.

dt = float(dt) # avoid integer division

Nt = int(round(T/dt)) # no of time intervals

T = Nt*xdt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values

t = linspace(0, T, Nt+1) # time mesh

ufo] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

uln+1] = ((1 - dtx(1-theta)*a(t[n]))*ul[n] + \
dt*(theta*b(t[n+1]) + (1-theta)*b(t[n])))/\
(1 + dt*theta*a(t[n+1]))
return u, t

his function is found in the file decay_vc.py™ (vc stands for ”variable coeffi-
ents”).

joding of variable coefficients. The solver function shown above demands
1e arguments a and b to be Python functions of time t, say

lef a(t):
return a_0 if t < tp else k*a_0

lef b(t):
return 1

ere, a(t) has three parameters a0, tp, and k, which must be global variables.

better implementation is to represent a by a class where the parameters are
ttributes and a special method __call__ evaluates a(t):

Thttp://tinyurl.com/jvzzcfn/decay/decay_vc.py
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class A:
def __init__(self, al0=1, k=2):

self.a0, self.k = a0, k

def __call__(self, t):
return self.a0 if t < self.tp else self.k*self.a0

a = A(a0=2, k=1) # a behaves as a function a(t)

For quick tests it is cumbersome to write a complete function or a cle
lambda function construction in Python is then convenient. For examp

a = lambda t: a_0 if t < tp else k*a_0

is equivalent to the def a(t): definition above. In general,
f = lambda argl, arg2, ...: expressin

is equivalent to

def f(argl, arg2, ...):
return expression

One can use lambda functions directly in calls. Say we want to solve v’ =
u(0) =2:

u, t = solver(2, lambda t: 1, lambda t: 1, T, dt, theta)

A lambda function can appear anywhere where a variable can appear.

8.4 Verifying a constant solution

A very useful partial verification method is to construct a test proble
a very simple solution, usually u = const. Especially the initial debuy
a program code can benefit greatly from such tests, because 1) all
numerical methods will exactly reproduce a constant solution, 2) man
intermediate calculations are easy to control for a constant u, and 3
constant v can uncover many bugs in an implementation.

The only constant solution for the problem v’ = —au is u = 0, but tc
bugs can escape from that trivial solution. It is much better to sear
problem where u = C' = const # 0. Then «' = —a(t)u+ b(t) is more app:
with u = C we can choose any a(t) and set b = a(t)C and I = C. An app
nose test is

import nose.tools as nt
def test_constant_solution():

Test problem where u=u_const is the exact solution, to be
reproduced (to machine precision) by any relevant method.
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def exact_solution(t):
return u_const

def a(t):
return 2.5%(1+t**3) # can be arbitrary

def b(t):
return a(t)*u_const

u_const = 2.15

theta = 0.4; I = u_const; dt = 4

Nt = 4 # enough with a few steps

u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
print u

u_e = exact_solution(t)

difference = abs(u_e - u).max() # max deviation
nt.assert_almost_equal(difference, O, places=14)

An interesting question is what type of bugs that will make the computed u™
eviate from the exact solution C'. Fortunately, the updating formula and the
iitial condition must be absolutely correct for the test to pass! Any attempt to
1ake a wrong indexing in terms like a(t[n]) or any attempt to introduce an
roneous factor in the formula creates a solution that is different from C.

.5 Verification via manufactured solutions

ollowing the idea of the previous section, we can choose any formula as the
<act solution, insert the formula in the ODE problem and fit the data a(t), b(t),
nd I to make the chosen formula fulfill the equation. This powerful technique
r generating exact solutions is very useful for verification purposes and known
5 the method of manufactured solutions, often abbreviated MMS.

One common choice of solution is a linear function in the independent
ariable(s). The rationale behind such a simple variation is that almost any
:levant numerical solution method for differential equation problems is able to
s)produce the linear function exactly to machine precision (if u is about unity
| size; precision is lost if u take on large values, see Exercise 17). The linear
>lution also makes some stronger demands to the numerical method and the
nplementation than the constant solution used in Section 8.4, at least in more
»mplicated applications. However, the constant solution is often ideal for initial
ebugging before proceeding with a linear solution.

We choose a linear solution u(t) = ¢t 4 d. From the initial condition it follows
1at d = I. Inserting this u in the ODE results in

c=—a(t)u+b(t).
ny function u = ¢t + I is then a correct solution if we choose
b(t) =c+a(t)(ct+1).

/ith this b(t) there are no restrictions on a(t) and c.
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Let prove that such a linear solution obeys the numerical schemes.
end, we must check that u™ = ca(t,)(ct, + I) fulfills the discrete equatis
these calculations, and later calculations involving linear solutions ins
finite difference schemes, it is convenient to compute the action of a di
operator on a linear function ¢:

t -1
e = e

At '
— tn_tnfl
[ t] At )
thrl —tn_1 (n+ l)At — (n — 1)At
Dtn: 2 2 _ 2 2 -1
[D:t] A7 A

Clearly, all three finite difference approximations to the derivative are e
u(t) =t or its mesh function counterpart u™ = t,,.
The difference equation for the Forward Euler scheme

[Df u = —au + b)",
with a™ = a(ty,), " = ¢+ a(t,)(ct, + I), and u™ = ct,, + I then results

c=—a(ty)(cty +I) +c+alty)(ct, +I)=c

which is always fulfilled. Similar calculations can be done for the Be
Euler and Crank-Nicolson schemes, or the #-rule for that matter. In &
u™ = ct, + I is an exact solution of the discrete equations. That is
should expect that u™ — ue(t,) = 0 mathematically and |u™ — ue(t,)| It
a small number about the machine precision for n =0, ..., N;.

The following function offers an implementation of this verification te
on a linear exact solution:

def test_linear_solution():
nnn
Test problem where u=c*t+I is the exact solution, to be
reproduced (to machine precision) by any relevant method.
nnn
def exact_solution(t):
return c*xt + I

def a(t):
return t**0.5 # can be arbitrary

def b(t):
return c + a(t)*exact_solution(t)

theta = 0.4; I = 0.1; dt = 0.1; ¢ = -0.5

T =4

Nt = int(T/dt) # no of steps

u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
u_e = exact_solution(t)

difference = abs(u_e - u).max() # max deviation

print difference
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# No of decimal places for comparison depend on size of c
nt.assert_almost_equal(difference, O, places=14)

ny error in the updating formula makes this test fail!

Choosing more complicated formulas as the exact solution, say cos(t), will not
1ake the numerical and exact solution coincide to machine precision, because
nite differencing of cos(t) does not exactly yield the exact derivative — sin(t). In
1ch cases, the verification procedure must be based on measuring the convergence
ites as exemplified in Section 2.8. Convergence rates can be computed as long
5 one has an exact solution of a problem that the solver can be tested on, but
1is can always be obtained by the method of manufactured solutions.

.6 Extension to systems of ODEs

lany ODE models involves more than one unknown function and more than
ne equation. Here is an example of two unknown functions u(t) and v(¢):

' = au + b, (86)
v = cu+dv, (87)

r constants a, b, ¢,d. Applying the Forward Euler method to each equation
ssults in simple updating formula

u" = u" + At(au™ + ™), (88)
" =" 4 At(cu™ + do™) . (89)

m the other hand, the Crank-Nicolson or Backward Euler schemes result in a
x 2 linear system for the new unknowns. The latter schemes gives

u = u" + At(au™ + b T), (90)
" =™ £ At(cu T 4 do™ ). (91)

'ollecting u™*! as well as v™*! on the left-hand side results in

(1 — Ata)u™ 4+ o™ =", (92)
cu™ ™+ (1 — Atd)" T =", (93)

hich is a system of two coupled, linear, algebraic equations in two unknowns.

) General first-order ODEs

/e now turn the attention to general, nonlinear ODEs and systems of such
\DEs. Our focus is on numerical methods that can be readily reused for time-
iscretization PDEs, and diffusion PDEs in particular. The methods are just
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briefly listed, and we refer to the rich literature for more detailed desc
and analysis - the books [6, 1, 2, 3] are all excellent resources on nt
methods for ODEs. We also demonstrate the Odespy Python interf:
range of different software for general first-order ODE systems.

9.1 Generic form

ODEs are commonly written in the generic form

u/:f(uvt)’ u(0) =1,

where f(u,t) is some prescribed function. As an example, our most
exponential decay model (74) has f(u,t) = —a(t)u(t) + b(t).

The unknown u in (94) may either be a scalar function of time ¢, or
valued function of ¢ in case of a system of ODEs with m unknown com

u(t) = @),V ),...,u" V().
In that case, the right-hand side is vector-valued function with m comy

f(uv t) = (f(O)(u(O) (t)’ e 7u(m_1)(t))a
FO@O @), um (@),

FmD O @) M (1)))

Actually, any system of ODEs can be written in the form (94), but
order ODEs then need auxiliary unknown functions to enable convers
first-order system.

Next we list some well-known methods for ' = f(u,t), valid bo
single ODE (scalar u) and systems of ODEs (vector u). The choice of 1
is inspired by the kind of schemes that are popular also for partial difl
equations.

9.2 The 6-rule

The 6-rule scheme applied to v’ = f(u,t) becomes

un+1 _ un
At

Bringing the unknown u"*! to the left-hand side and the known term:
right-hand side gives

= 0f(u" tng1) + (1= 0) f(u" L)

un+1 o At&f(u”“,th) ="+ At(l — 9)f(u”7tn) .

For a general f (not linear in w), this equation is nonlinear in the unknor
unless § = 0. For a scalar ODE (m = 1), we have to solve a single n
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lgebraic equation for w1, while for a system of ODEs, we get a system of
»upled, nonlinear algebraic equations. Newton’s method is a popular solution
pproach in both cases. Note that with the Forward Euler scheme (6 = 0) we
o not have to deal with nonlinear equations, because in that case we have an
¢plicit updating formula for »™*!. This is known as an explicit scheme. With
# 1 we have to solve systems of algebraic equations, and the scheme is said to
e implicit.

.3 An implicit 2-step backward scheme
he implicit backward method with 2 steps applies a three-level backward

ifference as approximation to u’'(t),
Juntlt — 4y !
2At ’

u/ (tn+1) ~

hich is an approximation of order At? to the first derivative. The resulting
‘heme for v’ = f(u,t) reads
ut = éu" - 1u"_1 + gAtf(u”"'l, tntt) - (97)
3 3 3
igher-order versions of the scheme (97) can be constructed by including more
me levels. These schemes are known as the Backward Differentiation Formulas
3DF), and the particular version (97) is often referred to as BDF2.
Note that the scheme (97) is implicit and requires solution of nonlinear
juations when f is nonlinear in u. The standard 1st-order Backward Euler
iethod or the Crank-Nicolson scheme can be used for the first step.

.4 Leapfrog schemes

'he ordinary Leapfrog scheme. The derivative of u at some point t¢,, can

e approximated by a central difference over two time steps,

un+1 _ unfl
2A¢t

hich is an approximation of second order in At. The scheme can then be
ritten as

o (tn) ~ = [Doyu]™ (98)

[Daeu = f(u,t)]",

| operator notation. Solving for u"*! gives

u" T =" 4 AL (U t,) (99)

'bserve that (99) is an explicit scheme, and that a nonlinear f (in u) is trivial
> handle since it only involves the known u™ value. Some other scheme must
e used as starter to compute u!, preferably the Forward Euler scheme since it
also explicit.
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The filtered Leapfrog scheme. Unfortunately, the Leapfrog sche
will develop growing oscillations with time (see Problem 22)[[[. A ren
such undesired oscillations is to introduce a filtering technique. First, a s
Leapfrog step is taken, according to (99), and then the previous u™
adjusted according to

u o u Fy(u" Tt = 2u™ )

The ~-terms will effectively damp oscillations in the solution, especial
with short wavelength (like point-to-point oscillations). A common choic
0.6 (a value used in the famous NCAR Climate Model).

9.5 The 2nd-order Runge-Kutta scheme

The two-step scheme

wF=u" -+ Atf(unytn)v
1
u" Tt ="+ At§ (fu" tn) + f(u*, tny1)) s

essentially applies a Crank-Nicolson method (102) to the ODE, but :
the term f(u™*!,t,.1) by a prediction f(u*,t,+1) based on a Forwar
step (101). The scheme (101)-(102) is known as Huen’s method, but
a 2nd-order Runge-Kutta method. The scheme is explicit, and the
expected to behave as At2.

9.6 A 2nd-order Taylor-series method
One way to compute ™! given u™ is to use a Taylor polynomial. We m

up a polynomial of 2nd degree:
1
u™ = () At + 5u”(tn)At2 )

From the equation v’ = f(u,t) it follows that the derivatives of u can be e:
in terms of f and its derivatives:

u/(tn) = f(u",tn),

of of
" _ Y n / Y)
u’(tn) = 3u(u st)u () + ot
PTG of
resulting in the scheme
1 af of
n+l _ . n n - n (T —_4 2
" =u" + f(u ,tn)At—l—Q(f(u ,tn)au(u ,tn)—l—at)At .

More terms in the series could be included in the Taylor polynomial tc
methods of higher order than 2.
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.7 The 2nd- and 3rd-order Adams-Bashforth schemes

he following method is known as the 2nd-order Adams-Bashforth scheme:

u"t =" 4 %At (3f(una tn) — f(un_lvtnfl)) : (104)

he scheme is explicit and requires another one-step scheme to compute u! (the
orward Euler scheme or Heun’s method, for instance). As the name implies,
1e scheme is of order At?.

Another explicit scheme, involving four time levels, is the 3rd-order Adams-
ashforth scheme

umtl = 4 % (23f(u,tn) — 16f(u" ' tpo1) + 5f(u" 2, ty—2)) . (105)

he numerical error is of order At3, and the scheme needs some method for
smputing u' and u?.

More general, higher-order Adams-Bashforth schemes (also called explicit
dams methods) compute u™*! as a linear combination of f at k previous time
eps:

here 8; are known coefficients.

.8 4th-order Runge-Kutta scheme

he perhaps most widely used method to solve ODEs is the 4th-order Runge-

utta method, often called RK4. Its derivation is a nice illustration of common

umerical approximation strategies, so let us go through the steps in detail.
The starting point is to integrate the ODE v’ = f(u,t) from ¢, to t,41:

tni1

tnsn) =~ ulta) = [ F(ult) .

tn

/e want to compute u(t,+1) and regard u(t,) as known. The task is to find
cod approximations for the integral, since the integrand involves the unknown
between t¢,, and 1.

The integral can be approximated by the famous Simpson’s rule™:

tnt1

Pl e~ 2 (7 agmrd g )

tn

Tnttp://en.wikipedia.org/wiki/Simpson’s_rule
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The problem now is that we do not know fm*z = f(u""z, tp+1/2) and
(u™*1 t,11) as we know only u™ and hence f*. The idea is to use various
imations for f”*é and f"*! based on using well-known schemes for the
the intervals [t,,t,1/2] and [ty, t,41]. We split the integral approximat
four terms:

tnt1
At P o1 =
/ f(u(t),t)dt% F (fn+2fn+§ +2fn+§ +f"+1),

tn

where frtz, fntz and f°+! are approximations to f"*z and f*! tha
oy o 1
based on already computed quantities. For f*72 we can apply an approx
1 . .
to u™T2 using the Forward Euler method with step %At:

A1 1
e = fu + §Atfn7 thy1/2)

Since this gives us a prediction of f"*é, we can for f"*é try a Backwas
. 1
method to approximate u™*z2:

a1 R T Y
S = f(u +§Atf 2 tta0).

With f’”% as a hopefully good approximation to f”*é, we can for t
term f"*! use a Crank-Nicolson method to approximate u"*1:

Forl = fu™ + ALY b))

We have now used the Forward and Backward Euler methods as wel
Crank-Nicolson method in the context of Simpson’s rule. The hope is 1
combination of these methods yields an overall time-stepping scheme frc
tn+1 that is much more accurate than the O(At) and O(At?) of the in
steps. This is indeed true: the overall accuracy is O(At*)!

To summarize, the 4th-order Runge-Kutta method becomes

, At . ~ .
un+1 _ un + ? (fn + 2fn+% + 2fn+% + f’n+1) ,

where the quantities on the right-hand side are computed from (10¢
Note that the scheme is fully explicit so there is never any need to solx
or nonlinear algebraic equations. However, the stability is conditio
depends on f. There is a whole range of implicit Runge-Kutta methods
unconditionally stable, but require solution of algebraic equations involv
each time step.

The simplest way to explore more sophisticated methods for OD
apply one of the many high-quality software packages that exist, as t
section explains.
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.9 The Odespy software

wide range of the methods and software exist for solving (94). Many of methods
re accessible through a unified Python interface offered by the Odespy ™ package.
idespy features simple Python implementations of the most fundamental schemes
5 well as Python interfaces to several famous packages for solving ODEs:
'DEPACK"®, Vode™, rke.f™®, rkf45.f7%, Radau5®?, as well as the ODE solvers
1 SciPy®!, SymPy®?, and odelab®3.

The usage of Odespy follows this setup for the ODE v = —au, u(0) = I,
€ (0,T], here solved by the famous 4th-order Runge-Kutta method, using
t =1 and Ny = 6 steps:

def f(u, t):
return -a*u

import odespy
import numpy as np

I=1; a=0.5; Nt = 6; dt = 1
solver = odespy.RK4(f)
solver.set_initial_condition(I)
t_mesh = np.linspace(0, Nt*dt, Nt+1)
u, t = solver.solve(t_mesh)

The previously listed methods for ODEs are all accessible in Odespy:

e the f-rule: ThetaRule

e special cases of the f-rule: ForwardEuler, BackwardEuler, CrankNicolson
e the 2nd- and 4th-order Runge-Kutta methods: RK2 and RK4

e The BDF methods and the Adam-Bashforth methods: Vode, Lsode, Lsoda,
lsoda_scipy

e The Leapfrog scheme: Leapfrog and LeapfrogFiltered

.10 Example: Runge-Kutta methods

ince all solvers have the same interface in Odespy, modulo different set of
arameters to the solvers’ constructors, one can easily make a list of solver
bjects and run a loop for comparing (a lot of) solvers. The code below, found
1 complete form in decay_odespy.py®*, compares the famous Runge-Kutta

Thttps://github.com/hplgit/odespy
"Shttps://computation.llnl.gov/casc/odepack/odepack_home.html
""https://computation.llnl.gov/casc/odepack/odepack home.html
"Shttp://www.netlib.org/ode/rkc.f

"http://www.netlib.org/ode/rkf45. £

80http://www.unige.ch/ hairer/software.html
8lhttp://docs.scipy.org/doc/scipy/reference/generated/scipy. integrate.ode.html
82nttp://docs . sympy . org/dev/modules/mpmath/calculus/odes.html
83nttp://olivierverdier.github.com/odelab/

84nttp: //tinyurl.com/jvzzcfn/decay/decay_odespy.py
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u
relevant f-rule for large time steps, the Backward Euler scheme (0 = 1),
Figure 21 shows the results.

methods of orders 2, 3, and 4 with the exact solution of the decay e

! = —au. Since we have quite long time steps, we have included t

import numpy as np
import scitools.std as plt
import sys

def f(u, t):
return -a*u

I=1;,a=2;T=686
dt = float(sys.argv[1]) if len(sys.argv) >= 2 else 0.75
Nt = int(round(T/dt))
t = np.linspace(0, Ntxdt, Nt+1)
solvers = [odespy.RK2(f),
odespy .RK3(f),
odespy.RK4(f),
odespy.BackwardEuler (f, nonlinear_solver=’Newton’)]

legends = []

for solver in solvers:
solver.set_initial_condition(I)
u, t = solver.solve(t)

plt.plot(t, w)
plt.hold(’on’)
legends.append(solver.__class__.__name__)
# Compare with exact solution plotted on a very fine mesh
t_fine = np.linspace(0, T, 10001)
u_e = I*np.exp(-a*t_fine)
plt.plot(t_fine, u_e, ’-’) # avoid markers by specifying line typ
legends.append(’exact’)

plt.legend(legends)
plt.title(’Time step: %g’ % dt)
plt.show()

Visualization tip.

We use SciTools for plotting here, but importing matplotlib.pypl
plt instead also works. However, plain use of Matplotlib as done
results in curves with different colors, which may be hard to distin
on black-and-white paper. Using SciTools, curves are automatically
colors and markers, thus making curves easy to distinguish on screen
colors and on black-and-white paper. The automatic adding of mark
normally a bad idea for a very fine mesh since all the markers get clut
but SciTools limits the number of markers in such cases. For the
solution we use a very fine mesh, but in the code above we specif
line type as a solid line (=), which means no markers and just a co
be automatically determined by the backend used for plotting (Matp
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by default, but SciTools gives the opportunity to use other backends to
produce the plot, e.g., Gnuplot or Grace).
Also note the that the legends are based on the class names of the solvers,

and in Python the name of a the class type (as a string) of an object obj is
obtained by obj.__class name_

, Time step: 1.05 ) Time step: 0.75
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Figure 21: Behavior of different schemes for the decay equation.

The runs in Figure 21 and other experiments reveal that the 2nd-order
unge-Kutta method (RK2) is unstable for At > 1 and decays slower than
1e Backward Euler scheme for large and moderate At (see Exercise 21 for
n analysis). However, for fine At = 0.25 the 2nd-order Runge-Kutta method
pproaches the exact solution faster than the Backward Euler scheme. That is,
1e latter scheme does a better job for larger At, while the higher order scheme

superior for smaller At. This is a typical trend also for most schemes for
rdinary and partial differential equations.

The 3rd-order Runge-Kutta method (RK3) has also artifacts in form of
scillatory behavior for the larger At values, much like that of the Crank-

icolson scheme. For finer At, the 3rd-order Runge-Kutta method converges
uickly to the exact solution.

The 4th-order Runge-Kutta method (RK4) is slightly inferior to the Backward
uler scheme on the coarsest mesh, but is then clearly superior to all the other
‘hemes. It is definitely the method of choice for all the tested schemes.
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Remark about using the f-rule in Odespy. The Odespy package

that the ODE is written as v’ = f(u,t) with an f that is possibly nonlin
The 6-rule for v’ = f(u,t) leads to

Wt ="+ At (Of(u"H, tot1) + (1 —0) f(u™, tn)) ,

which is a nonlinear equation in u™*'. Odespy’s implementation of th
(ThetaRule) and the specialized Backward Euler (BackwardEuler) anc
Nicolson (CrankNicolson) schemes must invoke iterative methods for
the nonlinear equation in w®*!. This is done even when f is linear
in the model problem v = —au, where we can easily solve for u"*+! t
Therefore, we need to specify use of Newton’s method to the equations.
allows other methods than Newton’s to be used, for instance Picard it
but that method is not suitable. The reason is that it applies the Forwa:
scheme to generate a start value for the iterations. Forward Euler may g
wrong solutions for large At values. Newton’s method, on the other !
insensitive to the start value in linear problems.)

9.11 Example: Adaptive Runge-Kutta methods

Odespy offers solution methods that can adapt the size of At with time t
a desired accuracy in the solution. Intuitively, small time steps will be c
areas where the solution is changing rapidly, while larger time steps can
where the solution is slowly varying. Some kind of error estimator is
adjust the next time step at each time level.

A very popular adaptive method for solving ODEs is the Dormanc
Runge-Kutta method of order 4 and 5. The 5th-order method is us
reference solution and the difference between the 4th- and 5th-order me
used as an indicator of the error in the numerical solution. The Dormanc
method is the default choice in MATLAB’s widely used ode45 routine.

We can easily set up Odespy to use the Dormand-Prince method
how it selects the optimal time steps. To this end, we request only one ti
from t =0 to t =T and ask the method to compute the necessary non-
time mesh to meet a certain error tolerance. The code goes like

import odespy

import numpy as np

import decay_mod

import sys

#import matplotlib.pyplot as plt
import scitools.std as plt

def f(u, t):
return -a*u

def exact_solution(t):
return I*np.exp(-a*t)

I=1; a=2; T=5
tol = float(sys.argv([1])
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solver = odespy.DormandPrince(f, atol=tol, rtol=0.1%tol)

Nt =1 # just one step - let the scheme find its intermediate points
t_mesh = np.linspace(0, T, Nt+1)
= np.linspace(0, T, 10001)

solver.set_initial_condition(I)
u, t = solver.solve(t_mesh)

# u and t will only consist of [I, u”Nt] and [0,T]

# solver.u_all and solver.t_all contains all computed points
plt.plot(solver.t_all, solver.u_all, ’ko’)

plt.hold(’on’)

plt.plot(t_fine, exact_solution(t_fine), ’b-’)
plt.legend([’tol=%.0E’ % tol, ’exact’])
plt.savefig(’tmp_odespy_adaptive.png’)

plt.show()

Running four cases with tolerances 10~!, 1073, 107, and 1077, gives the

ssults in Figure 22. Intuitively, one would expect denser points in the beginning
f the decay and larger time steps when the solution flattens out.
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Figure 22: Choice of adaptive time mesh by the Dormand-Prince met
different tolerances.

10 Exercises

Exercise 17: Experiment with precision in tests an
size of u

It is claimed in Section 8.5 that most numerical methods will reproduce a 1
act solution to machine precision. Test this assertion using the nose test :
test_linear_solution in the decay_vc.py85 program. Vary the para
from very small, via c=1 to many larger values, and print out the maximu
ence between the numerical solution and the exact solution. What is the
value of the places (or delta) argument to nose.tools.assert_almost
in each case? Filename: test_precision.py.

85nttp://tinyurl.com/jvzzctn/decay/decay_vc.py
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xercise 18: Implement the 2-step backward scheme

nplement the 2-step backward method (97) for the model v/ (t) = —a(t)u(t) +
1), u(0) = I. Allow the first step to be computed by either the Backward
uler scheme or the Crank-Nicolson scheme. Verify the implementation by
100sing a(t) and b(t) such that the exact solution is linear in ¢ (see Section 8.5).
how mathematically that a linear solution is indeed a solution of the discrete
Juations.

Compute convergence rates (see Section 2.8) in a test case a = const and
= 0, where we easily have an exact solution, and determine if the choice of
first-order scheme (Backward Euler) for the first step has any impact on the
verall accuracy of this scheme. The expected error goes like O(At?). Filename:
ecay_backward2step.py.

xercise 19: Implement the 2nd-order Adams-Bashforth
cheme

nplement the 2nd-order Adams-Bashforth method (104) for the decay problem
"= —a(t)u+b(t), u(0) = I, t € (0,T]. Use the Forward Euler method for the
rst step such that the overall scheme is explicit. Verify the implementation
sing an exact solution that is linear in time. Analyze the scheme by searching
r solutions u™ = A™ when a = const and b = 0. Compare this second-order
:cheme to the Crank-Nicolson scheme. Filename: decay_AdamsBashforth2.py.

xercise 20: Implement the 3rd-order Adams-Bashforth
cheme

nplement the 3rd-order Adams-Bashforth method (105) for the decay problem
"= —a(t)u+b(t), u(0) = I,t € (0,T)]. Since the scheme is explicit, allow it to be
arted by two steps with the Forward Euler method. Investigate experimentally
1e case where b = 0 and a is a constant: Can we have oscillatory solutions for
iwrge At? Filename: decay_AdamsBashforth3.py.

xercise 21: Analyze explicit 2nd-order methods

how that the schemes (102) and (103) are identical in the case f(u,t) =
‘a, where a > 0 is a constant. Assume that the numerical solution reads
" = A" for some unknown amplification factor A to be determined. Find
~and derive stability criteria. Can the scheme produce oscillatory solutions
f v = —au? Plot the numerical and exact amplification factor. Filename:
ecay_RK2_Taylor2.py.

'roblem 22: Implement and investigate the Leapfrog scheme

Leapfrog scheme for the ODE /() = —a(t)u(t) + b(t) is defined by
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[Datu = —au + b]™.

A separate method is needed to compute u'. The Forward Euler sche
possible candidate.

a) Implement the Leapfrog scheme for the model equation. Plot the
inthecase a=1,0=0,1 =1, At =0.01, t € [0,4]. Compare with tl

solution wue(t) = e~

b) Show mathematically that a linear solution in ¢ fulfills the Forwa
scheme for the first step and the Leapfrog scheme for the subsequent ste
this linear solution to verify the implementation, and automate the ver
through a nose test.

Hint. It can be wise to automate the calculations such that it is easy
the calculations for other types of solutions. Here is a possible sympy {
that takes a symbolic expression u (implemented as a Python function o
the b term, and checks if u fulfills the discrete equations:

import sympy as sp

def analyze(u):
t, dt, a = sp.symbols(’t dt a’)

print ’Analyzing u_e(t)=%s’ % u(t)
print ’u(0)=Y%s’ % u(t).subs(t, 0)

# Fit source term to the given u(t)
b = sp.diff(u(t), t) + a*u(t)

b = sp.simplify(b)

print ’Source term b:’, b

# Residual in discrete equations; Forward Euler step
R_stepl = (u(t+dt) - u(t))/dt + axu(t) - b

R_stepl = sp.simplify(R_stepl)

print ’Residual Forward Euler step:’, R_stepl

# Residual in discrete equations; Leapfrog steps
R = (u(t+dt) - u(t-dt))/(2*dt) + a*u(t) - b

R = sp.simplify(R)

print ’Residual Leapfrog steps:’, R

def u_e(t):
return cxt + I

analyze(u_e)
# or short form: analyze(lambda t: c*t + I)

¢) Show that a second-order polynomial in ¢ cannot be a solution of the
equations. However, if a Crank-Nicolson scheme is used for the first
second-order polynomial solves the equations exactly.
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) Create a manufactured solution u(t) = sin(t) for the ODE v = —au + b.
‘ompute the convergence rate of the Leapfrog scheme using this manufactured
dlution. The expected convergence rate of the Leapfrog scheme is O(At?). Does
1e use of a 1st-order method for the first step impact the convergence rate?

) Set up a set of experiments to demonstrate that the Leapfrog scheme (99)
associated with numerical artifacts (instabilities). Document the main results
om this investigation.

) Analyze and explain the instabilities of the Leapfrog scheme (99):

1. Choose a = const and b = 0. Assume that an exact solution of the discrete
equations has the form u™ = A™, where A is an amplification factor to
be determined. Derive an equation for A by inserting u™ = A" in the
Leapfrog scheme.

2. Compute A either by hand and/or with the aid of sympy. The polynomial
for A has two roots, A; and As. Let u™ be a linear combination u™ =
C1 AT + Co Ay,

3. Show that one of the roots is the explanation of the instability.
4. Compare A with the exact expression, using a Taylor series approximation.

5. How can C7 and C5 be determined?

) Since the original Leapfrog scheme is unconditionally unstable as time
rows, it demands some stabilization. This can be done by filtering, where
e first find u"*! from the original Leapfrog scheme and then replace u" by
" y(unTt — 20" + w1, where v can be taken as 0.6. Implement the filtered
eapfrog scheme and check that it can handle tests where the original Leapfrog
‘heme is unstable.

Filenames: decay_leapfrog.py, decay_leapfrog.pdf.

'roblem 23: Make a unified implementation of many schemes

'onsider the linear ODE problem u/(t) = —a(t)u(t) + b(t), w(0) = I. Explicit
‘hemes for this problem can be written in the general form

m
n+1l __ n—j
u Tt = E cju7, (110)
i=0
r some choice of co, ..., cy,. Find expressions for the c¢; coefficients in case of

1e f-rule, the three-level backward scheme, the Leapfrog scheme, the 2nd-order
unge-Kutta method, and the 3rd-order Adams-Bashforth scheme.

115

Make a class ExpDecay that implements the general updating formu
The formula cannot be applied for n < m, and for those n values, other
must be used. Assume for simplicity that we just repeat Crank-Nicolsc
until (110) can be used. Use a subclass to specify the list cq,...,c
particular method, and implement subclasses for all the mentioned ¢
Verify the implementation by testing with a linear solution, which sh
exactly reproduced by all methods. Filename: decay_schemes_oo.py.

11 Applications of exponential decay modz

This section presents many mathematical models that all end up with (
the type v’ = —au + b. The applications are taken from biology, finar
physics, and cover population growth or decay, compound interest and i
radioactive decay, cooling of objects, compaction of geological media, |
variations in the atmosphere, and air resistance on falling or rising bod

11.1 Scaling

Real applications of a model v’ = —au + b will often involve a lot of par
in the expressions for a and b. It can be quite a challenge to find relevar
of all parameters. In simple problems, however, it turns out that it is no
necessary to estimate all parameters because we can lump them into one
dimensionless numbers by using a very attractive technique called sce
simply means to stretch the u and ¢ axis is the present problem - and sud«
parameters in the problem are lumped one parameter if b # 0 and no pa
when b = 0!
Scaling means that we introduce a new function @(t), with
7= u—um’ f:i,
Ue te

where u,,, is a characteristic value of u, u. is a characteristic size of the ra
values, and t. is a characteristic size of the range of t. where u varies sign
Choosing u,, ., and t. is not always easy and often an art in com
problems. We just state one choice first:

Ue=1I, um=>bla, t.=1/a.

Inserting « = u,, + u.% and ¢t = t.t in the problem u' = —au + b, asst
and b are constants, results after some algebra in the scaled problem

di
ditf:—a, a(0) =1 B,
where 8 is a dimensionless number
b
B = Ta"
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hat is, only the special combination of b/(Ia) matters, not what the individual
alues of b, a, and I are. Moreover, if b = 0, the scaled problem is independent
fa and I! In practice this means that we can perform one numerical simulation
f the scaled problem and recover the solution of any problem for a given a and
by stretching the axis in the plot: u = Ia and t = ¢/a. For b # 0, we simulate
1e scaled problem for a few 3 values and recover the physical solution u by
-anslating and stretching the u axis and stretching the t axis.

The scaling breaks down if I = 0. In that case we may choose u,, = 0,
« =b/a, and t. = 1/b, resulting in a slightly different scaled problem:

G =1-u a(0)=0.

s with b = 0, the case I = 0 has a scaled problem with no physical parameters!
It is common to drop the bars after scaling and write the scaled problem
su'=—u,uw(0)=1-08,or v/ =1—wu, u(0) =0. Any implementation of the
roblem u' = —au + b, u(0) = I, can be reused for the scaled problem by setting
=1,b=0,and I =1 — B in the code, if I # 0, or one sets a = 1, b = 1,
nd I = 0 when the physical I is zero. Falling bodies in fluids, as described in
ection 11.8, involves ' = —au + b with seven physical parameters. All these
anish in the scaled version of the problem if we start the motion from rest!

1.2 Evolution of a population

et N be the number of individuals in a population occupying some spatial
omain. Despite N being an integer in this problem, we shall compute with IV
5 a real number and view N(t) as a continuous function of time. The basic
10del assumption is that in a time interval At the number of newcomers to the
opulations (newborns) is proportional to N, with proportionality constant b.
he amount of newcomers will increase the population and result in to

N(t+ At) = N(t) +bN(t).

; is obvious that a long time interval At will result in more newcomers and
ence a larger b. Therefore, we introduce b = b/At: the number of newcomers
er unit time and per individual. We must then multiply b by the length of the
me interval considered and by the population size to get the total number of
ew individuals, bAZN.

If the number of removals from the population (deaths) is also proportional
» N, with proportionality constant dAt, the population evolves according to

N(t+ At) = N(t) + bAtN(t) — dALN(t) .
ividing by At and letting At — 0, we get the ODE
N' =(b-d)N, N(0)=Ny. (111)

1 a population where the death rate (d) is larger than then newborn rate (b),
> 0, and the population experiences exponential decay rather than exponential
rowth.
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In some populations there is an immigration of individuals into the
domain. With I individuals coming in per time unit, the equation
population change becomes

N(t+ At) = N(t) + bAtN(t) — dAtN(t) + Atl .
The corresponding ODE reads

N' =(b-dN+1I, N(0)=N,.

Some simplification arises if we introduce a fractional measure of the
tion: w = N/Ny and set r = b — d. The ODE problem now becomes

W =ru+f, u(0)=1,

where f = I/Np measures the net immigration per time unit as the fra
the initial population. Very often, r is approximately constant, but f is
a function of time.

The growth rate r of a population decreases if the environment has
resources. Suppose the environment can sustain at most Np.x individu
may then assume that the growth rate approaches zero as N approache
i.e., as u approaches M = Npax/Ng. The simplest possible evolutior
then a linear function: r(t) = ro(1 — u(t)/M), where ¢ is the initial gros
when the population is small relative to the maximum size and there is
resources. Using this r(¢) in (113) results in the logistic model for the e
of a population (assuming for the moment that f = 0):

u =ro(l —u/M)u, u(0)=1.

Initially, u will grow at rate rg, but the growth will decay as u approa
and then there is no more change in u, causing u — M as t — oo. N
the logistic equation v’ = 7o(1 — u/M)u is nonlinear because of the qu
term —u?ro/M.

11.3 Compound interest and inflation

Say the annual interest rate is r percent and that the bank adds the
once a year to your investment. If ™ is the investment in year n, the inv
in year u"*! grows to
n+l _ , n r n
u =u + 10 Ou .

In reality, the interest rate is added every day. We therefore introduce a pa
m for the number of periods per year when the interest is added. If r
the periods, we have the fundamental model for compound interest:

n+l _ . n r n
T Toom
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his model is a difference equation, but it can be transformed to a continuous
ifferential equation through a limit process. The first step is to derive a formula
v the growth of the investment over a time . Starting with an investment u°,
nd assuming that r is constant in time, we get

n+1: 1 T )n
v <+100m“

= <1+ 771 )2u7171
100m

= (1 + ﬁ)nﬂ u’

itroducing time ¢, which here is a real-numbered counter for years, we have
1at n = mt, so we can write

r mt
u™ = (1 + ) ul.
100m
he second step is to assume continuous compounding, meaning that the interest
added continuously. This implies m — oo, and in the limit one gets the

yrmula

u(t) = uge™/ 10, (116)
hich is nothing but the solution of the ODE problem
, r
= —— = . 11
U= 1o u(0) = ug (117)

his is then taken as the ODE model for compound interest if » > 0. However,
1e reasoning applies equally well to inflation, which is just the case r < 0.
me may also take the r in (117) as the net growth of an investemt, where r
ikes both compound interest and inflation into account. Note that for real
pplications we must use a time-dependent r in (117).

Introducing a = 155, continuous inflation of an initial fortune I is then a
rocess exhibiting exponential decay according to

v = —au, u(0)=1I.

1.4 Radioactive Decay

n atomic nucleus of an unstable atom may lose energy by emitting ionizing
articles and thereby be transformed to a nucleus with a different number of
rotons and neutrons. This process is known as radioactive decay®5. Actually,
1e process is stochastic when viewed for a single atom, because it is impossible
» predict exactly when a particular atom emits a particle. Nevertheless, with
large number of atoms, N, one may view the process as deterministic and
>mpute the mean behavior of the decay. Below we reason intuitively about
n ODE for the mean behavior. Thereafter, we show mathematically that a
etailed stochastic model for single atoms leads the same mean behavior.

86nttp://en.wikipedia.org/wiki/Radioactive_decay
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Deterministic model. Suppose at time ¢, the number of the origin
type is N(¢). A basic model assumption is that the transformation of th
of the original type in a small time interval At is proportional to N, so

N(t+ At) = N(t) — aAtN(2),

where a > 0 is a constant. Introducing u = N(¢)/N(0), dividing by
letting At — 0 gives the following ODE:

v =—au, u(0)=1.

The parameter a can for a given nucleus be expressed through the half-
which is the time taken for the decay to reduce the initial amount by «
ie., u(tyy2) =0.5. With u(t) =™, we get t1/o =a 'In2 or a =1n2/

Stochastic model. We have originally Ny atoms. Each atom m:
decayed or survived at a particular time ¢t. We want to count how many
atoms that are left, i.e., how many atoms that have survived. The su1
a single atom at time ¢ is a random event. Since there are only two ot
survival or decay, we have a Bernoulli trial®”. Let p be the probal
survival (implying that the probability of decay is 1 — p). If each atom
independently of the others, and the probability of survival is the same f
atom, we have Ny statistically Bernoulli trials, known as a binomial exy
from probability theory. The probability P(IN) that N out of the Ny ato
survived at time ¢ is then given by the famous binomial distribution
_ No! N No—N
P(N)—mp (1-p) .

The mean (or expected) value E[P] of P(N) is known to be Nyp.

It remains to estimate p. Let the interval [0,¢] be divided into 1
subintervals of length A¢. We make the assumption that the probal
decay of a single atom in an interval of length At is p, and that this prc
is proportional to At: p = AAt (it sounds natural that the probal
decay increases with At). The corresponding probability of survival is
Believing that A is independent of time, we have, for each interval of ler
a Bernoulli trial: the atom either survives or decays in that interval.
should be the probability that the atom survives in all the intervals, i
we have m successful Bernoulli trials in a row and therefore

p=(1-XAt)™.

The expected number of atoms of the original type at time ¢ is

E[P] = Nop = No(1 — MAY)™, m = t/At.

87http://en.wikipedia.org/wiki/Bernoulli trial
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To see the relation between the two types of Bernoulli trials and the ODE
bove, we go to the limit At — ¢, m — oco. One can show that

m
p= lim (1 —AA)™ = lim (1 - )\t> =M
m—o0 m—o0 m

his is the famous exponential waiting time (or arrival time) distribution for
Poisson process in probability theory (obtained here, as often done, as the
mit of a binomial experiment). The probability of decay, 1 — e~**, follows an
xponential distribution®®. The limit means that m is very large, hence At is
ary small, and p = AAt is very small since the intensity of the events, A, is
ssumed finite. This situation corresponds to a very small probability that an
tom will decay in a very short time interval, which is a reasonable model. The
une model occurs in lots of different applications, e.g., when waiting for a taxi,
¢ when finding defects along a rope.

telation between stochastic and deterministic models. With p = e=*
e get the expected number of original atoms at ¢t as Nyp = Nge~ ™, which

exactly the solution of the ODE model N’ = —AN. This gives also an
iterpretation of a via A or vice versa. Our important finding here is that the
'DE model captures the mean behavior of the underlying stochastic model.
his is, however, not always the common relation between microscopic stochastic
1odels and macroscopic ”averaged” models.

Also of interest is to see that a Forward Euler discretization of N/ = —\N,
7(0) = No, gives N™ = No(1 — AA¢)™ at time t,, = mAt, which is exactly
1e expected value of the stochastic experiment with Ny atoms and m small
itervals of length At, where each atom can decay with probability AAt in an
iterval.

A fundamental question is how accurate the ODE model is. The underlying
;ochastic model fluctuates around its expected value. A measure of the fluc-
1ations is the standard deviation of the binomial experiment with Ny atoms,
hich can be shown to be Std[P] = \/Nop(1 — p). Compared to the size of the

xpectation, we get the normalized standard deviation

\/ P _ _
%?125 D N T T = N2 - e - T ()2,

1owing that the normalized fluctuations are very small if Ny is very large, which
usually the case.

1.5 Newton’s law of cooling

/hen a body at some temperature is placed in a cooling environment, experi-
ace shows that the temperature falls rapidly in the beginning, and then the

88nttp://en.wikipedia.org/wiki/Exponential distribution
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changes in temperature levels off until the body’s temperature equals
the surroundings. Newton carried out some experiments on cooling ]
and found that the temperature evolved as a ”geometric progression at
arithmetic progression”, meaning that the temperature decayed expon
Later, this result was formulated as a differential equation: the rate of cl
the temperature in a body is proportional to the temperature difference
the body and its surroundings. This statement is known as Newton’
cooling, which can be mathematically expressed as

dr
dt - _k(T - Ts)v
where T is the temperature of the body, T is the temperature of the surro
t is time, and k is a positive constant. Equation (120) is primarily vi
an empirical law, valid when heat is efficiently convected away from the
of the body by a flowing fluid such as air at constant temperature i
heat transfer coefficient k reflects the transfer of heat from the body
surroundings and must be determined from physical experiments.

We must obviously have an initial condition 7'(0) = Tp in additio
cooling law (120).

11.6 Decay of atmospheric pressure with altitude

Vertical equilibrium of air in the atmosphere is governed by the equatic

dp _

i —09 -

Here, p(2) is the air pressure, g is the density of air, and g = 9.807
standard value of the acceleration of gravity. (Equation (121) follows
from the general Navier-Stokes equations for fluid motion, with the assi
that the air does not move.)

The pressure is related to density and temperature through the ideal

_ Mp

- R

where M is the molar mass of the Earth’s air (0.029 kg/mol), R* is the v
gas constant (8.314 Nm/(mol K)), and T is the temperature. All varial

and T vary with the height z. Inserting (122) in (121) results in an ODI
variable coefficient:

1%

dp _ Mg
dz R*T(z)p'

Multiple atmospheric layers. The atmosphere can be approximate
eled by seven layers. In each layer, (123) is applied with a linear temper
the form
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here z = h; denotes the bottom of layer number 7, having temperature T;, and
; is a constant in layer number i. The table below lists h; (m), 7; (K), and L;
{/m) for the layers i = 0,...,6.

0 288 -0.0065
11,000 216 0.0
20,000 216 0.001
32,000 228  0.0028
47,000 270 0.0
51,000 270 -0.0028
71,000 214  -0.002

UL W N~ O

or implementation it might be convenient to write (123) on the form

dp Mg
&=~ RO TG mE)” (124)

here T(z), L(z), and h(z) are piecewise constant functions with values given in
1e table. The value of the pressure at the sea level z = 0, py = p(0), is 101325
a.

implification: L =0. One commonly used simplification is to assume that
1e temperature is constant within each layer. This means that L = 0.

implification: one-layer model. Another commonly used approximation

to work with one layer instead of seven. This one-layer model® is based on
'(2) = To— Lz, with sea level standard temperature Ty = 288 K and temperature
ipse rate L = 0.0065 K/m.

1.7 Compaction of sediments

ediments, originally made from materials like sand and mud, get compacted
wrough geological time by the weight of new material that is deposited on the
sa bottom. The porosity ¢ of the sediments tells how much void (fluid) space
1ere is between the sand and mud grains. The porosity reduces with depth
ecause the weight of the sediments above and causes the void space to shrink
nd thereby increase the compaction.

A typical assumption is that the change in ¢ at some depth z is negatively
roportional to ¢. This assumption leads to the differential equation problem

do _ B
a - C¢7 ¢(0) - ¢0a (125)

89nttp://en.wikipedia.org/wiki/Density_of _air
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where the z axis points downwards, z = 0 is the surface with known j
and ¢ > 0 is a constant.

The upper part of the Earth’s crust consists of many geological layers
on top of each other, as indicated in Figure 23. The model (125) can be
for each layer. In layer number 4, we have the unknown porosity functi
fulfilling ¢}(z) = —c;2, since the constant ¢ in the model (125) dep
the type of sediment in the layer. From the figure we see that new 1
sediments are deposited on top of older ones as time progresses. The com
as measured by ¢, is rapid in the beginning and then decreases (expon
with depth in each layer.

Sediment Compaction

4 H

2 (metres)

-2500

-3000

Geological Epochs

Figure 23: Illustration of the compaction of geological layers (with ¢
colors) through time.

When we drill a well at present time through the right-most co.
sediments in Figure 23, we can measure the thickness of the sediment in (
bottom layer. Let L; be this thickness. Assuming that the volume of s
remains constant through time, we have that the initial volume, fOLl‘O b1c
equal the volume seen today, ff_ I ¢1dz, where £ is the depth of the bc
the sediment in the present day configuration. After having solved for
function of z, we can then find the original thickness L; o of the sedime

the equation
L1 ¢
/ (;Sldz = / ¢1d2’ .
0 £—L

In hydrocarbon exploration it is important to know L; g and the com
history of the various layers of sediments.
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1.8 Vertical motion of a body in a viscous fluid

- body moving vertically through a fluid (liquid or gas) is subject to three
ifferent types of forces: the gravity force, the drag force®?, and the buoyancy
ree.

‘verview of forces. The gravity force is I; = —mg, where m is the mass
f the body and g is the acceleration of gravity. The uplift or buoyancy force
Archimedes force”) is F, = ggV, where p is the density of the fluid and V' is
1e volume of the body. Forces and other quantities are taken as positive in the
pward direction.
The drag force is of two types, depending on the Reynolds number
od|v|

Re = =, 126
. (126)

here d is the diameter of the body in the direction perpendicular to the flow, v
the velocity of the body, and u is the dynamic viscosity of the fluid. When
e < 1, the drag force is fairly well modeled by the so-called Stokes’ drag, which
r a spherical body of diameter d reads

Fés) = —3nduv . (127)
or large Re, typically Re > 103, the drag force is quadratic in the velocity:
FO— _Lopoa 128
d = T50pe v]v, (128)
here Cp is a dimensionless drag coefficient depending on the body’s shape,

nd A is the cross-sectional area as produced by a cut plane, perpendicular to
1e motion, through the thickest part of the body. The superscripts ¢ and < in

'LES) and Féq) indicate Stokes drag and quadratic drag, respectively.

iquation of motion. All the mentioned forces act in the vertical direction.

‘ewton’s second law of motion applied to the body says that the sum of these
rces must equal the mass of the body times its acceleration a in the vertical
irection.
mang—i—Fés) + Fy.
ere we have chosen to model the fluid resistance by the Stokes drag. Inserting
1e expressions for the forces yields
ma = —mg — 3rduv + ogV .

he unknowns here are v and a, i.e., we have two unknowns but only one
juation. From kinematics in physics we know that the acceleration is the time

Onttp://en.wikipedia.org/wiki/Drag_(physics)
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derivative of the velocity: a = dv/dt. This is our second equation. We cz
eliminate a and get a single differential equation for v:
d
md—: = —mg — 3mdpv + ogV .

A small rewrite of this equation is handy: We express m as g,V , where ,
density of the body, and we divide by the mass to get

3mdp 0
V() =— v+ (— — 1) )
®) oV I\ o

We may introduce the constants

3rdp < 0 >
a= , b= - -1,
oV g b

so that the structure of the differential equation becomes obvious:

V' (t) = —av(t) +b.

The corresponding initial condition is v(0) = vy for some prescribed
velocity vg.

This derivation can be repeated with the quadratic drag force thq),
to the result

1 oA 0
v (t) = —=Cp—=|vjv + <—1).
(1) = —5Cb 25 ol -+ (2
Defining

1 0A

= -Cp—,
“ 2 DQ(,V
and b as above, we can write (132) as

v'(t) = —alv|v +b.

Terminal velocity. An interesting aspect of (131) and (134) is wheth
approach a final constant value, the so-called terminal velocity vr, as t -
constant v means that v'(¢t) — 0 as t — oo and therefore the terminal
v solves

0=—avr+b

and
0 = —alvp|vr + .

The former equation implies vr = b/a, while the latter has solutior
—+/|b]/a for a falling body (vy < 0) and vy = y/b/a for a rising body (
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. Crank-Nicolson scheme. Both governing equations, the Stokes’ drag
10del (131) and the quadratic drag model (134), can be readily solved by the
orward Euler scheme. For higher accuracy one can use the Crank-Nicolson
iethod, but a straightforward application this method results a nonlinear
juation in the new unknown value v"*! when applied to (134):

n

vt

At
owever, instead of approximating the term —|v|v by an arithmetic average, we
AN use a geometric mean:

1
= fa§(\v"+1|v"+1 + [v"v™) +b. (135)

(Jofo)™*3 = oo™ +1. (136)
he error is of second order in At, just as for the arithmetic average and the
mtered finite difference approximation in (135). With this approximation trick,
1e discrete equation

n+1 n

v -v
At

ecomes a linear equation in v"1, and we can therefore easily solve for v"+1:

= —a|v"|v" " +b

prtt = Un B A0 TE Atbf% . (137)
1+ Ata™ 2 |vn|

'hysical data. Suitable values of y are 1.8-107° Pas for air and 8.9-10~% Pas
ir water. Densities can be taken as 1.2 kg/m3 for air and as 1.0 - 103 kg/m3 for
ater. For considerable vertical displacement in the atmosphere one should take
1ito account that the density of air varies with the altitude, see Section 11.6.
me possible density variation arises from the one-layer model in the mentioned
:ction.

Any density variation makes b time dependent and we need "2 in (137).
o compute the density that enters b"2 we must also compute the vertical
osition z(t) of the body. Since v = dz/dt, we can use a centered difference
pproximation:

1 1
n+3; n—g

z —Zz

Al =" = z"+%:z"_%+Atv".

his 2”2 is used in the expression for b to compute o(2"*2) and then b""z.

The drag coefficient?® Cp depends heavily on the shape of the body. Some
alues are: 0.45 for a sphere, 0.42 for a semi-sphere, 1.05 for a cube, 0.82 for a
mg cylinder (when the center axis is in the vertical direction), 0.75 for a rocket,
0-1.3 for a man in upright position, 1.3 for a flat plate perpendicular to the
ow, and 0.04 for a streamlined, droplet-like body.

9nttp://en.wikipedia.org/wiki/Drag_coefficient
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Verification. To verify the program, one may assume a heavy bod
such that the F;, force can be neglected, and further assume a small
such that the air resistance Fj; can also be neglected. This can be obte
setting 1 and g to zero. The motion then leads to the velocity v(t) =
which is linear in ¢ and therefore should be reproduced to machine p
(say tolerance 1071%) by any implementation based on the Crank-Nic
Forward Euler schemes.

Another verification, but not as powerful as the one above, can be t
computing the terminal velocity and comparing with the exact expressic
advantage of this verification is that we can also the test situation o #

As always, the method of manufactured solutions can be applied to
implementation of all terms in the governing equation, but the solution t
no physical relevance in general.

Scaling. Applying scaling, as described in Section 11.1, will for the lin
reduce the need to estimate values for seven parameters down to choos
value of a single dimensionless parameter

ongV (;"b - 1)
N 3mdpl
provided I # 0. If the motion starts from rest, I = 0, the scaled
@' = 1—1, u(0) = 0, has no need for estimating physical parameters. Thi
that there is a single universal solution to the problem of a falling body
from rest: u(t) =1 — e~ !. All real physical cases correspond to stretchi
axis and the @ axis in this dimensionless solution. More precisely, the -
velocity u(t) is related to the dimensionless velocity @(¢) through

ogV (g% - 1) ~
u= WU(t/(g(Q/@b -1))).

11.9 Decay ODEs from solving a PDE by Fourier ¢
sions

Suppose we have a partial differential equation

ou 0%u
5% Yo + f(=, ),

with boundary conditions u(0,t) = u(L,t) = 0 and initial condition u
I(z). One may express the solution as

u(a,t) =Y Ap(t)e /b,
k=1

for appropriate unknown functions Ay, £ = 1,...,m. We use the «
exponential e?**7/L for casy algebra, but the physical u is taken as
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art of any complex expression. Note that the expansion in terms of e?**7/L is
smpatible with the boundary conditions: all functions e***7/% vanish for z = 0

nd z = L. Suppose we can express I(x) as

I(CL‘) — Z Ikeikxﬂ'/L )
k=1

uch an expansion can be computed by well-known Fourier expansion techniques,
ut the details are not important here. Also, suppose we can express the given
(z,t) as

Fo.t) = 3 bt
k=1

1serting the expansions for v and f in the differential equations demands that
[l terms corresponding to a given k£ must be equal. The calculations results in
1e follow system of ODEs:

2.2

ke
440 = a7

+bi(t), k=1,...,m.
rom the initial condition

u(x,0) = ZAk(O)eikxﬂ'/L =I(z) = Zlke(ikmw/L)7
k k

follows that Ax(0) = I, k =1,...,m. We then have m equations of the form

4 = —aAr +b, Ap(0) = I, for appropriate definitions of a and b. These ODE
roblems independent each other such that we can solve one problem at a time.
he outline technique is a quite common approach for solving partial differential
juations.

temark. Since aj depends on k and the stability of the Forward Euler scheme
emands arAt < 1, we get that At < a~'L2772k~2. Usually, quite large k
alues are needed to accurately represent the given functions I and f and then At
eeds to be very small for these large values of k. Therefore, the Crank-Nicolson
nd Backward Euler schemes, which allow larger At without any growth in the
>lutions, are more popular choices when creating time-stepping algorithms for
artial differential equations of the type considered in this example.

2 Exercises and Projects

xercise 24: Simulate an oscillating cooling process

he surrounding temperature 7 in Newton’s law of cooling (120) may vary in
me. Assume that the variations are periodic with period P and amplitude a
round a constant mean temperature 7,:

2
Ty(t) = T), + asin (;t) . (138)
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Simulate a process with the following data: k = 20 min~*, T(0) =5 C,
C,a=25C,and P =1 h. Also experiment with P = 10 min and 1/
Plot T and T in the same plot. Filename: osc_cooling.py.

Exercise 25: Radioactive decay of Carbon-14

The Carbon-14°? isotope, whose radioactive decay is used extensively i1
organic material that is tens of thousands of years old, has a half-life
years. Determine the age of an organic material that contains 8.4 perce
initial amount of Carbon-14. Use a time unit of 1 year in the computatic
uncertainty in the half time of Carbon-14 is £40 years. What is the corres
uncertainty in the estimate of the age?

Hint. Use simulations with 5,730 440 y as input and find the corres
interval for the result.
Filename: carboni4.py.

Exercise 26: Simulate stochastic radioactive decay

The purpose of this exercise is to implement the stochastic model desc
Section 11.4 and show that its mean behavior approximates the solutio
corresponding ODE model.

The simulation goes on for a time interval [0, 7] divided into N intc
length At. We start with Ny atoms. In some time interval, we have ]
that have survived. Simulate N Bernoulli trials with probability AA1
interval by drawing N random numbers, each being 0 (survival) or 1
where the probability of getting 1 is AAt. We are interested in the
of decays, d, and the number of survived atoms in the next interval
N — d. The Bernoulli trials are simulated by drawing N uniformly dist
real numbers on [0, 1] and saying that 1 corresponds to a value less tha

# Given lambda_, dt, N

import numpy as np

uniform = np.random.uniform(N)

Bernoulli_trials = np.asarray(uniform < lambda_*dt, dtype=np.int)
d = Bernoulli_trials.size

Observe that uniform < lambda_x*dt is a boolean array whose true a
values become 1 and 0, respectively, when converted to an integer arra;
Repeat the simulation over [0,7] a large number of times, comg
average value of N in each interval, and compare with the solutior
corresponding ODE model. Filename: stochastic_decay.py.

92nttp://en.wikipedia.org/wiki/Carbon-14
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xercise 27: Radioactive decay of two substances

'onsider two radioactive substances A and B. The nuclei in substance A decay
» form nuclei of type B with a half-life A, /5, while substance B decay to form
rpe A nuclei with a half-life B, /5. Letting us and up be the fractions of the
iitial amount of material in substance A and B, respectively, the following
sstem of ODEs governs the evolution of u(t) and up(t):

1

EUTAZUB/Bl/Q—UA/Al/g, (139)
1

EU/B =ua/Ayj2 —up/Byy, (140)

ith UA(O) = UB(O) =1.

Make a simulation program that solves for u4(t) and upg(t). Verify the
nplementation by computing analytically the limiting values of u4 and up
3t — oo (assume u/y,uz — 0) and comparing these with those obtained
umerically.

Run the program for the case of A;/, = 10 minutes and B; /o = 50 minutes.
'se a time unit of 1 minute. Plot us and up versus time in the same plot.
ilename: radioactive_decay_2subst.py.

xercise 28: Simulate the pressure drop in the atmosphere

/e consider the models for atmospheric pressure in Section 11.6. Make a program
ith three functions,

e one computing the pressure p(z) using a seven-layer model and varying L,

e one computing p(z) using a seven-layer model, but with constant tempera-
ture in each layer, and

e one computing p(z) based on the one-layer model.

ow can these implementations be verified? Should ease of verification impact
ow you code the functions? Compare the three models in a plot. Filename:
tmospheric_pressure.py.

xercise 29: Make a program for vertical motion in a fluid

nplement the Stokes” drag model (129) and the quadratic drag model (132)
om Section 11.8, using the Crank-Nicolson scheme and a geometric mean for
J|v as explained, and assume constant fluid density. At each time level, compute
1e Reynolds number Re and choose the Stokes’ drag model if Re < 1 and the
uadratic drag model otherwise.

The computation of the numerical solution should take place either in a stand-
lone function (as in Section 2.1) or in a solver class that looks up a problem
ass for physical data (as in Section 3.6). Create a module (see Section 3.1) and
Juip it with nose tests (see Section 3.4) for automatically verifying the code.

Verification tests can be based on
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e the terminal velocity (see Section 11.8),
e the exact solution when the drag force is neglected (see Section 1

e the method of manufactured solutions (see Section 8.5) combin
computing convergence rates (see Section 2.8).

Use, e.g., a quadratic polynomial for the velocity in the method of manu
solutions. The expected error is O(At?) from the centered finite di
approximation and the geometric mean approximation for |v|v.

A solution that is linear in ¢t will also be an exact solution of the
equations in many problems. Show that this is true for linear drag (by
a source term that depends on t), but not for quadratic drag becaus
geometric mean approximation. Use the method of manufactured solu
add a source term in the discrete equations for quadratic drag such that
function of ¢ is a solution. Add a nose test for checking that the linear
is reproduced to machine precision in the case of both linear and quadra

Apply the software to a case where a ball rises in water. The buoyan
is here the driving force, but the drag will be significant and balance tl
forces after a short time. A soccer ball has radius 11 ¢cm and mass 0.43 k
the motion from rest, set the density of water, g, to 1000 kg/m?’7 set the
viscosity, p, to 1073 Pa s, and use a drag coefficient for a sphere: 0.45.
velocity of the rising ball. Filename: vertical_motion.py.

Project 30: Simulate parachuting

The aim of this project is to develop a general solver for the vertical mot
body with quadratic air drag, verify the solver, apply the solver to a sky
free fall, and finally apply the solver to a complete parachute jump.

All the pieces of software implemented in this project should be ree
Python functions and/or classes and collected in one module.

a) Set up the differential equation problem that governs the velocit;
motion. The parachute jumper is subject to the gravity force and a qu
drag force. Assume constant density. Add an extra source term be 1
program verification. Identify the input data to the problem.

b) Make a Python module for computing the velocity of the motio
equip the module with functionality for plotting the velocity.

Hint 1. Use the Crank-Nicolson scheme with a geometric mean of |v|v
to linearize the equation of motion with quadratic drag.
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[int 2. You can either use functions or classes for implementation. If you
100se functions, make a function solver that takes all the input data in the
roblem as arguments and that returns the velocity (as a mesh function) and
1e time mesh. In case of a class-based implementation, introduce a problem
ass with the physical data and a solver class with the numerical data and a
olve method that stores the velocity and the mesh in the class.

Allow for a time-dependent area and drag coefficient in the formula for the
rag force.

) Show that a linear function of ¢ does not fulfill the discrete equations because
f the geometric mean approximation used for the quadratic drag term. Fit
source term, as in the method of manufactured solutions, such that a linear
inction of ¢ is a solution of the discrete equations. Make a nose test to check
1at this solution is reproduced to machine precision.

) The expected error in this problem goes like At? because we use a cen-
sred finite difference approximation with error O(At?) and a geometric mean
pproximation with error O(At#?). Use the method of manufactured solutions
»mbined with computing convergence rate to verify the code. Make a nose test
r checking that the convergence rate is correct.

) Compute the drag force, the gravity force, and the buoyancy force as a
iction of time. Create a plot with these three forces.

[int. You can either make a function forces(v, t, plot=None) that returns
1e forces (as mesh functions) and t and shows a plot on the screen and also
wes the plot to a file with name plot if plot is not None, or you can extend
1e solver class with computation of forces and include plotting of forces in the
isualization class.

)  Compute the velocity of a skydiver in free fall before the parachute opens.

[int. Meade and Struthers [5] provide some data relevant to skydiving?®. The
1ass of the human body and equipment can be set to 100 kg. A skydiver in
read-eagle formation has a cross-section of 0.5 m? in the horizontal plane. The
ensity of air decreases varies altitude, but can be taken as constant, 1 kg/ m3,
ir altitudes relevant to skydiving (0-4000 m). The drag coefficient for a man in
pright position can be set to 1.2. Start with a zero velocity. A free fall typically
as a terminating velocity of 45 m/s. (This value can be used to tune other
arameters.)

9http://en.wikipedia.org/wiki/Parachuting
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g) The next task is to simulate a parachute jumper during free fall a
the parachute opens. At time t,, the parachute opens and the drag co
and the cross-sectional area change dramatically. Use the program to sir
jump from z = 3000 m to the ground z = 0. What is the maximum acce
measured in units of g, experienced by the jumper?

Hint. Following Meade and Struthers [5], one can set the cross-sect;
perpendicular to the motion to 44 m? when the parachute is open.
that it takes 8 s to increase the area linearly from the original to the fin
The drag coefficient for an open parachute can be taken as 1.8, but tune
the known value of the typical terminating velocity reached before land
m/s. One can take the drag coefficient as a piecewise constant functi
an abrupt change at ¢,. The parachute is typically released after ¢, = €
larger values of ¢, can be used to make plots more illustrative.
Filename: skydiving.py.

Exercise 31: Formulate vertical motion in the atmos;

Vertical motion of a body in the atmosphere needs to take into account a
air density if the range of altitudes is many kilometers. In this case, ¢ var
the altitude z. The equation of motion for the body is given in Section 1
us assume quadratic drag force (otherwise the body has to be very, ver:
A differential equation problem for the air density, based on the informs
the one-layer atmospheric model in Section 11.6, can be set up as

P(z) =~ o,
R*(Tp + Lz)
_ M
e= PR

To evaluate p(z) we need the altitude z. From the principle that the ve
the derivative of the position we have that

2'(t) = v(t),

where v is the velocity of the body.
Explain in detail how the governing equations can be discretized by
ward Euler and the Crank-Nicolson methods. Filename: falling_in_var

Exercise 32: Simulate vertical motion in the atmospl

Implement the Forward Euler or the Crank-Nicolson scheme derived
cise 31. Demonstrate the effect of air density variation on a falling hum
the famous fall of Felix Baumgartner®®. The drag coefficient can be set

9nttp://en.wikipedia.org/wiki/Felix Baumgartner
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temark. In the Crank-Nicolson scheme one must solve a 3 x 3 system of
juations at each time level, since p, o, and v are coupled, while each equation
an be stepped forward at a time with the Forward Euler scheme. Filename:
alling_in_variable_density.py.

xercise 33: Compute y = |z| by solving an ODE
'onsider the ODE problem

, . -1, <0, .
y(m)f{ 1, £>0 z € (1,1, y(l-)=1,

hich has the solution y(z) = |z|. Using a mesh zp = —1, z; = 0, and
2 = 1, calculate by hand y; and y, from the Forward Euler, Backward Euler,
rank-Nicolson, and Leapfrog methods. Use all of the former three methods for
mputing the y; value to be used in the Leapfrog calculation of yo. Thereafter,
isualize how these schemes perform for a uniformly partitioned mesh with
I'=10 and N = 11 points. Filename: signum.py.

xercise 34: Simulate growth of a fortune with random
aterest rate

he goal of this exercise is to compute the value of a fortune subject to inflation
nd a random interest rate. Suppose that the inflation is constant at i percent
er year and that the annual interest rate, p, changes randomly at each time
ep, starting at some value pg at t = 0. The random change is from a value p"
bt = t, to p, + Ap with probability 0.25 and p,, — Ap with probability 0.25.
‘0 change occurs with probability 0.5. There is also no change if p"*! exceeds
5> or becomes below 1. Use a time step of one month, pg = 4, initial fortune
saled to 1, and simulate 1000 scenarios of length 20 years. Compute the mean
volution of one unit of money and the corresponding standard deviation. Plot
1e mean curve along with the mean plus one standard deviation and the mean
iinus one standard deviation. This will illustrate the uncertainty in the mean
rve.

[int 1. The following code snippet computes p™*':

import random

lef new_interest_rate(p_n, dp=0.5):
r = random.random() # uniformly distr. random number in [0,1)
if 0 <= r < 0.25:
p_npl = p_n + dp
elif 0.25 <=r < 0.5:
p_npl = p_n - dp
else:
p_npl = p.n
return (p_npl if 1 <= p_npl <= 15 else p_n)
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Hint 2. If u,(¢) is the value of the fortune in experiment numbe:

0,..., N — 1, the mean evolution of the fortune is

10 =13 u)

u(t) = — ;

N £ i)
1=0

and the standard deviation is

1 N-1

= | — | —(@(t))?2 (+))2
s =\ v ( (@) + 3 (0 ) .

Suppose u;(t) is stored in an array u. The mean and the standard di
of the fortune is most efficiently computed by using two accumulatior
sum_u and sum_u2, and performing sum_u += uand sum_u2 += u**2 aft
experiment. This technique avoids storing all the u;(¢) time series for col
the statistics.

Filename: random_interest.py.

Exercise 35: Simulate a population in a changing en
ment

We shall study a population modeled by (113) where the environment, rep:
by r and f, undergoes changes with time.

a) Assume that there is a sudden drop (increase) in the birth (death)
time t = t,., because of limited nutrition or food supply:

_ 70, t<ty,
“”‘{m—A,tzm

This drop in population growth is compensated by a sudden net immigr
time ¢ty > ¢,
- 0, t <tf7
ﬂ”_{h,tzm
Start with 9 and make A > ry. Experiment with these and other par
to illustrate the interplay of growth and decay in such a problem. F:
population_drop.py.

b) Now we assume that the environmental conditions changes periodice
time so that we may take

2
r(t) = ro + Asin (;t) .

That is, the combined birth and death rate oscillates around ry with a m
change of +A repeating over a period of length P in time. Set f =
experiment with the other parameters to illustrate typical features of the
Filename: population_osc.py.
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xercise 36: Simulate logistic growth

olve the logistic ODE (114) using a Crank-Nicolson scheme where (u"+2)? is
pproximated by a geometric mean:

(un-ﬁ-% )2 ~ un+1un .
his trick makes the discrete equation linear in u™*!. Filename: logistic_CN.py.

xercise 37: Rederive the equation for continuous com-
ound interest

he ODE model (117) was derived under the assumption that r was constant.
erform an alternative derivation without this assumption: 1) start with (115);
) introduce a time step At instead of m: At = 1/m if t is measured in
sars; 3) divide by At and take the limit A¢ — 0. Simulate a case where the
iflation is at a constant level I percent per year and the interest rate oscillates:
= —I/2 4 rosin(2nt). Compare solutions for ro = I,31/2,2I. Filename:
nterest_modeling.py.
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