Study Guide: Finite difference methods for wave motion

Hans Petter Langtangen ${ }^{1,2}$
Center for Biomedical Computing, Simula Research Laboratory ${ }^{1}$
Department of Informatics, University of Oslo ${ }^{2}$

Dec 12, 2013

Finite difference methods for waves on a string

Waves on a string can be modeled by the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

$u(x, t)$ is the displacement of the string Demo of waves on a string.

$$
\begin{array}{rlrl}
\frac{\partial^{2} u}{\partial t^{2}} & =c^{2} \frac{\partial^{2} u}{\partial x^{2}}, & x \in(0, L), & \\
u(x, 0)(0, T] \\
u(x, 0) & =I(x), & & x \in[0, L] \\
\frac{\partial}{\partial t} u(x, 0) & =0, & & x \in[0, L] \\
u(0, t) & =0, & & t \in(0, T] \tag{5}\\
u(L, t) & =0, & & t \in(0, T]
\end{array}
$$

- Initial condition $u(x, 0)=I(x)$: initial string shape
- Initial condition $u_{t}(x, 0)=0$: string starts from rest
- $c=\sqrt{T / \varrho}$: velocity of waves on the string
- (T is the tension in the string, ϱ is density of the string)
- Two boundary conditions on $u: u=0$ means fixed ends (no displacement)

Rule for number of initial and boundary conditions:

- $u_{t t}$ in the PDE: two initial conditions, on u and u_{t}
- u_{t} (and no $u_{t t}$) in the PDE: one initial conditions, on u
- $u_{x x}$ in the PDE: one boundary condition on u at each boundary point
- Our numerical method is sometimes exact (!)
- Our numerical method is sometimes subject to serious non-physical effects

Demo of a vibrating string ($C=1.0012$)

Ooops!

Mesh in time:

$$
\begin{equation*}
0=t_{0}<t_{1}<t_{2}<\cdots<t_{N_{t}-1}<t_{N_{t}}=T \tag{6}
\end{equation*}
$$

Mesh in space:

$$
\begin{equation*}
0=x_{0}<x_{1}<x_{2}<\cdots<x_{N_{x}-1}<x_{N_{x}}=L \tag{7}
\end{equation*}
$$

Uniform mesh with constant mesh spacings Δt and Δx :

$$
\begin{equation*}
x_{i}=i \Delta x, i=0, \ldots, N_{x}, \quad t_{i}=n \Delta t, n=0, \ldots, N_{t} \tag{8}
\end{equation*}
$$

The discrete solution

- The numerical solution is a mesh function: $u_{i}^{n} \approx u_{\mathrm{e}}\left(x_{i}, t_{n}\right)$
- Finite difference stencil (or scheme): equation for u_{i}^{n} involving neighboring space-time points

Stencil at interior point

Let the PDE be satisfied at all interior mesh points:

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} u\left(x_{i}, t_{n}\right)=c^{2} \frac{\partial^{2}}{\partial x^{2}} u\left(x_{i}, t_{n}\right) \tag{9}
\end{equation*}
$$

for $i=1, \ldots, N_{x}-1$ and $n=1, \ldots, N_{t}-1$.
For $n=0$ we have the initial conditions $u=I(x)$ and $u_{t}=0$, and at the boundaries $i=0, N_{x}$ we have the boundary condition $u=0$.

Step 3: Replacing derivatives by finite differences

Widely used finite difference formula for the second-order derivative:

$$
\frac{\partial^{2}}{\partial t^{2}} u\left(x_{i}, t_{n}\right) \approx \frac{u_{i}^{n+1}-2 u_{i}^{n}+u_{i}^{n-1}}{\Delta t^{2}}=\left[D_{t} D_{t} u\right]_{i}^{n}
$$

and

$$
\frac{\partial^{2}}{\partial x^{2}} u\left(x_{i}, t_{n}\right) \approx \frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{\Delta x^{2}}=\left[D_{x} D_{x} u\right]_{i}^{n}
$$

Step 3: Algebraic version of the PDE

Replace derivatives by differences:

$$
\begin{equation*}
\frac{u_{i}^{n+1}-2 u_{i}^{n}+u_{i}^{n-1}}{\Delta t^{2}}=c^{2} \frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{\Delta x^{2}} \tag{10}
\end{equation*}
$$

In operator notation:

$$
\begin{equation*}
\left[D_{t} D_{t} u=c^{2} D_{x} D_{x}\right]_{i}^{n} \tag{11}
\end{equation*}
$$

- Need to replace the derivative in the initial condition $u_{t}(x, 0)=0$ by a finite difference approximation
- The differences for $u_{t t}$ and $u_{x x}$ have second-order accuracy
- Use a centered difference for $u_{t}(x, 0)$

$$
\left[D_{2 t} u\right]_{i}^{n}=0, \quad n=0 \quad \Rightarrow \quad u_{i}^{n-1}=u_{i}^{n+1}, \quad i=0, \ldots, N_{x}
$$

The other initial condition $u(x, 0)=I(x)$ can be computed by

$$
u_{i}^{0}=I\left(x_{i}\right), \quad i=0, \ldots, N_{x}
$$

- Nature of the algorithm: compute u in space at $t=\Delta t, 2 \Delta t, 3 \Delta t, \ldots$
- Three time levels are involved in the general discrete equation: $n+1, n, n-1$
- u_{i}^{n} and u_{i}^{n-1} are then already computed for $i=0, \ldots, N_{x}$, and u_{i}^{n+1} is the unknown quantity
Write out $\left[D_{t} D_{t} u=c^{2} D_{x} D_{x}\right]_{i}^{n}$ and solve for u_{i}^{n+1},

$$
\begin{equation*}
u_{i}^{n+1}=-u_{i}^{n-1}+2 u_{i}^{n}+C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right) \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
C=c \frac{\Delta t}{\Delta x} \tag{13}
\end{equation*}
$$

is known as the (dimensionless) Courant number

Notice.

There is only one parameter, C, in the discrete model: C lumps mesh parameters with the wave velocity c. The value C and the smoothness of $I(x)$ govern the quality of the numerical solution.

Stencil at interior point

- Problem: the stencil for $n=1$ involves u_{i}^{-1}, but time $t=-\Delta t$ is outside the mesh
- Remedy: use the initial condition $u_{t}=0$ together with the stencil to eliminate u_{i}^{-1}
Initial condition:

$$
\left[D_{2 t} u=0\right]_{i}^{0} \quad \Rightarrow \quad u_{i}^{-1}=u_{i}^{1}
$$

Insert in stencil $\left[D_{t} D_{t} u=c^{2} D_{x} D_{x}\right]_{i}^{0}$ to get

$$
\begin{equation*}
u_{i}^{1}=u_{i}^{0}-\frac{1}{2} C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right) \tag{14}
\end{equation*}
$$

(1) Compute $u_{i}^{0}=I\left(x_{i}\right)$ for $i=0, \ldots, N_{x}$
(2) Compute u_{i}^{1} by (14) and set $u_{i}^{1}=0$ for the boundary points $i=0$ and $i=N_{x}$, for $n=1,2, \ldots, N-1$,
(3) For each time level $n=1,2, \ldots, N_{t}-1$
(1) apply (12) to find u_{i}^{n+1} for $i=1, \ldots, N_{x}-1$
(2) set $u_{i}^{n+1}=0$ for the boundary points $i=0, i=N_{x}$.

Moving finite difference stencil

web page or a movie file.

- Arrays:
- u[i] stores u_{i}^{n+1}
- u_1 [i] stores u_{i}^{n}
- u_2[i] stores u_{i}^{n-1}

Naming convention.

u is the unknown to be computed (a spatial mesh function), $\mathrm{u} _\mathrm{k}$ is the computed spatial mesh function k time steps back in time.

Important to minimize the memory usage.

The algorithm only needs to access the three most recent time levels, so we need only three arrays for u_{i}^{n+1}, u_{i}^{n}, and u_{i}^{n-1}, $i=0, \ldots, N_{x}$. Storing all the solutions in a two-dimensional array of size $\left(N_{x}+1\right) \times\left(N_{t}+1\right)$ would be possible in this simple one-dimensional PDE problem, but not in large 2D problems and not even in small 3D problems.

Sketch of an implementation (2)

```
\# Given mesh points as arrays \(x\) and \(t\) ( \(x[i], t[n]\) )
\(\mathrm{dx}=\mathrm{x}[1]-\mathrm{x}[0]\)
\(\mathrm{dt}=\mathrm{t}[1]-\mathrm{t}[0]\)
C \(=\mathrm{c} * \mathrm{dt} / \mathrm{dx} \quad\) \# Courant number
\(\mathrm{Nt}=\operatorname{len}(\mathrm{t})-1\)
C2 = C**2 \# Help variable in the scheme
\# Set initial condition \(u(x, 0)=I(x)\)
for in in range( \(0, N x+1\) ):
    u_1[i] = I(x[i])
\# Apply special formula for first step, incorporating \(d u / d t=0\)
for i in range(1, Nx):
    \(u[i]=u \_1[i]-0.5 * C * * 2\left(u_{-} 1[i+1]-2 * u_{-} 1[i]+u_{-} 1[i-1]\right)\)
\(\mathrm{u}[0]=0 ; \mathrm{u}[\mathrm{Nx}]=0 \quad\) \# Enforce boundary conditions
\# Switch variables before next step
u_2[:], u_1[:] = u_1, u
for n in range(1, Nt ):
    \# Update all inner mesh points at time \(t[n+1]\)
    for i in range(1, Nx):
        \(u[i]=2 u_{-} 1[i]-u_{-} 2[i]-\\)
                        C**2(u_1[i+1] - 2*u_1[i] + u_1[i-1])
    \# Insert boundary conditions
    \(\mathrm{u}[0]=0 ; \quad \mathrm{u}[\mathrm{Nx}]=0\)
```

- Think about testing and verification before you start implementing the algorithm!
- Powerful testing tool: method of manufactured solutions and computation of convergence rates
- Will need a source term in the PDE and $u_{t}(x, 0) \neq 0$
- Even more powerful method: exact solution of the scheme

A slightly generalized model problem

Add source term f and nonzero initial condition $u_{t}(x, 0)$:

$$
\begin{align*}
u_{t t} & =c^{2} u_{x x}+f(x, t), & & \tag{15}\\
u(x, 0) & =l(x), & & x \in[0, L] \tag{16}\\
u_{t}(x, 0) & =V(x), & & x \in[0, L] \tag{17}\\
u(0, t) & =0, & & t>0, \tag{18}\\
u(L, t) & =0, & & t>0 \tag{1}
\end{align*}
$$

Discrete model for the generalized model problem

$$
\begin{equation*}
\left[D_{t} D_{t} u=c^{2} D_{x} D_{x}+f\right]_{i}^{n} \tag{20}
\end{equation*}
$$

Writing out and solving for the unknown u_{i}^{n+1} :

$$
\begin{equation*}
u_{i}^{n+1}=-u_{i}^{n-1}+2 u_{i}^{n}+C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right)+\Delta t^{2} f_{i}^{n} \tag{21}
\end{equation*}
$$

Modified equation for the first time level

Centered difference for $u_{t}(x, 0)=V(x)$:

$$
\left[D_{2 t} u=V\right]_{i}^{0} \quad \Rightarrow \quad u_{i}^{-1}=u_{i}^{1}-2 \Delta t V_{i}
$$

Inserting this in the stencil (21) for $n=0$ leads to

$$
\begin{equation*}
u_{i}^{1}=u_{i}^{0}-\Delta t V_{i}+\frac{1}{2} C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right)+\frac{1}{2} \Delta t^{2} f_{i}^{n} \tag{22}
\end{equation*}
$$

Using an analytical solution of physical significance

- Standing waves occur in real life on a string
- Can be analyzed mathematically (known exact solution)

$$
\begin{equation*}
\left.u_{\mathrm{e}}(x, y, t)\right)=A \sin \left(\frac{\pi}{L} x\right) \cos \left(\frac{\pi}{L} c t\right) \tag{23}
\end{equation*}
$$

- PDE data: $f=0$, boundary conditions $u_{\mathrm{e}}(0, t)=u_{\mathrm{e}}(L, 0)=0$, initial conditions $I(x)=A \sin \left(\frac{\pi}{L} x\right)$ and $V=0$
- Note: $u_{i}^{n+1} \neq u_{\mathrm{e}}\left(x_{i}, t_{n+1}\right.$, and we do not know the error, so testing must aim at reproducing the expected convergence rates

Manufactured solution: principles

- Disadvantage with the previous physical solution: it does not test $V \neq 0$ and $f \neq 0$
- Method of manufactured solution:
- Choose some $u_{\mathrm{e}}(x, t)$
- Insert in PDE and fit f
- Set boundary and initial conditions compatible with the chosen $u_{\mathrm{e}}(x, t)$

Manufactured solution: example

$$
u_{\mathrm{e}}(x, t)=x(L-x) \sin t
$$

PDE $u_{t t}=c^{2} u_{x x}+f$:

$$
-x(L-x) \sin t=-2 \sin t+f \quad \Rightarrow f=(2-x(L-x)) \sin t
$$

Initial conditions become

$$
\begin{aligned}
u(x, 0) & =I(x)=0 \\
u_{t}(x, 0) & =V(x)=(2-x(L-x)) \cos t
\end{aligned}
$$

Boundary conditions:

$$
u(x, 0)=u(x, L)=0
$$

Testing a manufactured solution

- Introduce common mesh parameter: $h=\Delta t, \Delta x=c h / C$
- This h keeps C and $\Delta t / \Delta x$ constant
- Select coarse mesh $h: h_{0}$
- Run experiments with $h_{i}=2^{-i} h_{0}$ (halving the cell size), $i=0, \ldots, m$
- Record the error E_{i} and h_{i} in each experiment
- Compute pariwise convergence rates

$$
r_{i}=\ln E_{i+1} / E_{i} / \ln h_{i+1} / h_{i}
$$

- Verification: $r_{i} \rightarrow 2$ as i increases

Constructing an exact solution of the discrete equations

- Manufactured solution with computation of convergence rates: much manual work
- Simpler and more powerful: use an exact solution for u_{i}^{n}
- A linear or quadratic u_{e} in x and t is often a good candidate

Analytical work with the PDE problem

Here, choose u_{e} such that $u_{\mathrm{e}}(x, 0)=u_{\mathrm{e}}(L, 0)=0$:

$$
u_{\mathrm{e}}(x, t)=x(L-x)\left(1+\frac{1}{2} t\right),
$$

Insert in the PDE and find f :

$$
f(x, t)=2(1+t) c^{2}
$$

Initial conditions:

$$
I(x)=x(L-x), \quad V(x)=\frac{1}{2} x(L-x)
$$

Analytical work with the discrete equations (1)

We want to show that u_{e} also solves the discrete equations! Useful preliminary result:

$$
\begin{align*}
{\left[D_{t} D_{t} t^{2}\right]^{n} } & =\frac{t_{n+1}^{2}-2 t_{n}^{2}+t_{n-1}^{2}}{\Delta t^{2}}=(n+1)^{2}-n^{2}+(n-1)^{2}=2 \tag{24}\\
{\left[D_{t} D_{t} t\right]^{n} } & =\frac{t_{n+1}-2 t_{n}+t_{n-1}}{\Delta t^{2}}=\frac{((n+1)-n+(n-1)) \Delta t}{\Delta t^{2}}=0 \tag{25}
\end{align*}
$$

Hence,
$\left[D_{t} D_{t} u_{e}\right]_{i}^{n}=x_{i}\left(L-x_{i}\right)\left[D_{t} D_{t}\left(1+\frac{1}{2} t\right)\right]^{n}=x_{i}\left(L-x_{i}\right) \frac{1}{2}\left[D_{t} D_{t} t\right]^{n}=0$

Analytical work with the discrete equations (1)

$$
\begin{aligned}
{\left[D_{x} D_{x} u_{e}\right]_{i}^{n} } & =\left(1+\frac{1}{2} t_{n}\right)\left[D_{x} D_{x}\left(x L-x^{2}\right)\right]_{i}=\left(1+\frac{1}{2} t_{n}\right)\left[L D_{x} D_{x} x-D_{x} D_{x} x^{2}\right. \\
& =-2\left(1+\frac{1}{2} t_{n}\right)
\end{aligned}
$$

Now, $f_{i}^{n}=2\left(1+\frac{1}{2} t_{n}\right) c^{2}$ and we get
$\left[D_{t} D_{t} u_{\mathrm{e}}-c^{2} D_{x} D_{x} u_{\mathrm{e}}-f\right]_{i}^{n}=0-c^{2}(-1) 2\left(1+\frac{1}{2} t_{n}+2\left(1+\frac{1}{2} t_{n}\right) c^{2}=0\right.$
Moreover, $u_{\mathrm{e}}\left(x_{i}, 0\right)=I\left(x_{i}\right), \partial u_{\mathrm{e}} / \partial t=V\left(x_{i}\right)$ at $t=0$, and $u_{\mathrm{e}}\left(x_{0}, t\right)=u_{\mathrm{e}}\left(x_{N_{x}}, 0\right)=0$. Also the modified scheme for the first time step is fulfilled by $u_{\mathrm{e}}\left(x_{i}, t_{n}\right)$.

Testing with the exact discrete solution

- We have established that

$$
u_{i}^{n+1}=u_{\mathrm{e}}\left(x_{i}, t_{n+1}\right)=x_{i}\left(L-x_{i}\right)\left(1+t_{n+1} / 2\right)
$$

- Run one simulation with one choice of $c, \Delta t$, and Δx
- Check that $\max _{i}\left|u_{i}^{n+1}-u_{\mathrm{e}}\left(x_{i}, t_{n+1}\right)\right|<\epsilon, \epsilon \sim 10^{-14}$ (machine precision + some round-off errors)
- This is the simplest and best verification test

Later we show that the exact solution of the discrete equations can be obtained by $C=1$ (!)

Testing with the exact discrete solution

- We have established that

$$
u_{i}^{n+1}=u_{\mathrm{e}}\left(x_{i}, t_{n+1}\right)=x_{i}\left(L-x_{i}\right)\left(1+t_{n+1} / 2\right)
$$

- Run one simulation with one choice of $c, \Delta t$, and Δx
- Check that $\max _{i}\left|u_{i}^{n+1}-u_{\mathrm{e}}\left(x_{i}, t_{n+1}\right)\right|<\epsilon, \epsilon \sim 10^{-14}$ (machine precision + some round-off errors)
- This is the simplest and best verification test

Later we show that the exact solution of the discrete equations can be obtained by $C=1$ (!)

Implementation

(1) Compute $u_{i}^{0}=I\left(x_{i}\right)$ for $i=0, \ldots, N_{x}$
(2) Compute u_{i}^{1} by (14) and set $u_{i}^{1}=0$ for the boundary points $i=0$ and $i=N_{x}$, for $n=1,2, \ldots, N-1$,
(3) For each time level $n=1,2, \ldots, N_{t}-1$
(1) apply (12) to find u_{i}^{n+1} for $i=1, \ldots, N_{x}-1$
(2) set $u_{i}^{n+1}=0$ for the boundary points $i=0, i=N_{x}$.

- Different problem settings demand different actions with the computed u_{i}^{n+1} at each time step
- Solution: let the solver function make a callback to a user function where the user can do whatever is desired with the solution
- Advantage: solver just solves and user uses the solution

```
def user_action(u, x, t, n):
    # u[i] at spatial mesh points x[i] at time t[n]
    # plot u
    # or store u
```

def solver(I, V, f, C, L, Nx, C, T, user_action=None): """Solve $u_{-} t t=c^{\wedge} 2 * u_{-} x x+f$ on ($0, L$) $x(0, T] . " " "$ $\mathrm{x}=$ linspace($0, \mathrm{~L}, \mathrm{Nx}+1$) \# Mesh points in space $\mathrm{dx}=\mathrm{x}[1]-\mathrm{x}[0]$
$\mathrm{dt}=\mathrm{C} * \mathrm{dx} / \mathrm{c}$
$\mathrm{Nt}=\operatorname{int}($ round $(T / d t))$
t = linspace(0, Nt*dt, Nt+1) \# Mesh points in time
$\mathrm{C} 2=\mathrm{C} * * 2$ \# Help variable in the scheme
if f is None or $f=0$:
$\mathrm{f}=\mathrm{lambda} \mathrm{x}, \mathrm{t}: 0$
if V is None or $\mathrm{V}==0$:
$\mathrm{V}=$ lambda $\mathrm{x}: 0$
u = zeros(Nx+1) \# Solution array at new time level
u_1 $=\operatorname{zeros}(N x+1)$ \# Solution at 1 time level back
$u_{\mathbf{L}} 2=\operatorname{zeros}(N \mathrm{x}+1)$ \# Solution at 2 time levels back
import time; t0 = time.clock() \# for measuring CPU time
\# Load initial condition into u_1
for i in range $(0, N x+1)$:
u_1[i] = I(x[i])
if user_action is not None: user_action(u_1, x, t, 0)

Making a solver function (2)

def solver(I, V, f, c, L, Nx, C, T, user_action=None):

```
# Special formula for first time step
n = 0
for i in range(1, Nx):
    u[i] = u_1[i] + dt*V(x[i]) + \
        0.5*C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + \
        0.5*dt**2*f(x[i], t[n])
u[0] = 0; u[Nx] = 0
if user_action is not None:
    user_action(u, x, t, 1)
# Switch variables before next step
u_2[:], u_1[:] = u_1, u
===== Making a solver function (3) =====
```

\begin\{minted\}[fontsize=\fontsize\{9pt\}\{9pt\},linenos=false, mathescap } def solver(I, V, f, c, L, Nx, C, T, user_action=None):

```
# Time loop
```

for n in range(1, Nt):
\# Update all inner points at time $t[n+1]$
for i in range(1, Nx):

Verification: exact quadratic solution

Exact solution of the PDE problem and the discrete equations:
$u_{\mathrm{e}}(x, t)=x(L-x)\left(1+\frac{1}{2} t\right)$
import nose.tools as nt
def test_quadratic():
"""Check that $u(x, t)=x(L-x)(1+t / 2)$ is exactly reproduced."""
def exact_solution(x, t):
return $\mathrm{x} *(\mathrm{~L}-\mathrm{x}) *(1+0.5 * \mathrm{t})$
def $I(x)$:
return exact_solution(x, 0)
def $V(x)$:
return 0.5*exact_solution(x, 0)
def $f(x, t):$
return $2 *(1+0.5 * \mathrm{t}) * \mathrm{c} * * 2$
$L=2.5$
$c=1.5$
$N \mathrm{x}=3$ \# Very coarse mesh
$C=0.75$
$\mathrm{T}=18$
$u, x, t, c p u=\operatorname{solver}(I, V, f, c, L, N x, C, T)$
$u_{\text {_ }}=$ exact_solution(x, t[-1])
$\operatorname{diff}=\operatorname{abs}(u-u$ e) $\cdot \max ()$

Visualization: animating $u(x, t)$

Make a viz function for animating the curve, with plotting in a user_action function plot_u:
def viz(I, V, f, c, L, Nx, C, T, umin, umax, animate=True):
"""Run solver and visualize u at each time level.""" import scitools.std as plt
import time, glob, os
def plot_u(u, x, $t, n)$:
"""user_action function for solver."""
plt.plot(x, u, 'r-',
xlabel='x', ylabel='u',
axis=[0, L, umin, umax],
title='t=\%f' \% t[n], show=True)
\# Let the initial condition stay on the screen for 2
\# seconds, else insert a pause of 0.2 s between each plot
time.sleep(2) if $\mathrm{t}[\mathrm{n}]==0$ else time.sleep(0.2)
plt.savefig('frame_\%04d.png' \% n) \# for movie making
\# Clean up old movie frames
for filename in glob.glob('frame_*.png'): os.remove(filename)
user_action = plot_u if animate else None
u, x, t, cpu = solver(I, V, f, c, L, Nx, C, T, user_action)
\# Make movie files
fps $=4$ \# Frames per second

- Store spatial curve in a file, for each time level
- Name files like 'something_\%04d.png' \% frame_counter
- Combine files to a movie

Terminal> scitools movie encoder=html output_file=movie.html \} fps=4 frame_*.png \# web page with a player
Terminal> avconv -r 4-i frame_\% 04d.png -vcodec flv movie.flv
Terminal> avconv -r 4 -i frame_\%04d.png -vcodec libtheora movie.ogg
Terminal> avconv -r 4 -i frame_\% 04d.png -vcodec libx264 movie.mp4
Terminal> avconv -r 4 -i frame_\% 04d.png -vcodec libtheora movie.ogg
Terminal> avconv -r 4 -i frame_\%04d.png -vcodec libpvx movie.webm

Important.

- Zero padding (\%04d) is essential for correct sequence of frames in something_*.png (Unix alphanumeric sort)
- Remove old frame_*.png files before making a new movie

Running a case

- Vibrations of a guitar string
- Triangular initial shape (at rest)

$$
I(x)= \begin{cases}a x / x_{0}, & x<x_{0} \tag{26}\\ a(L-x) /\left(L-x_{0}\right), & \text { otherwise }\end{cases}
$$

Appropriate data:

- $L=75 \mathrm{~cm}, x_{0}=0.8 L, a=5 \mathrm{~mm}, N_{x}=50$, time frequency $\nu=440 \mathrm{~Hz}$

Implementation of the case

```
def guitar(C):
    """Triangular wave (pulled guitar string)."""
    \(\mathrm{L}=0.75\)
    \(\mathrm{x} 0=0.8 * \mathrm{~L}\)
    \(\mathrm{a}=0.005\)
    freq \(=440\)
    wavelength \(=2 *\) L
    c = freq*wavelength
    omega \(=2 *\) pi*freq
    num_periods = 1
    T = 2*pi/omega*num_periods
    \(\mathrm{Nx}=50\)
    def \(I(x)\) :
        return \(a * x / x 0\) if \(x<x 0\) else \(a /(L-x 0) *(L-x)\)
    umin \(=-1.2 * \mathrm{a} ; \quad u \max =-\) umin
    cpu \(=\operatorname{viz}(I, 0,0, c, L, N x, C, T, u m i n, ~ u m a x, ~ a n i m a t e=T r u e) ~\)
```

Program: wave1D_u0_s.py.

Resulting movie for $C=0.8$

Movie of the vibrating string

- It is difficult to figure out all the physical parameters of a case
- And it is not necessary because of a powerful: scaling Introduce new x, t, and u without dimension:

$$
\bar{x}=\frac{x}{L}, \quad \bar{t}=\frac{c}{L} t, \quad \bar{u}=\frac{u}{a}
$$

Insert this in the PDE (with $f=0$) and dropping bars

$$
u_{t t}=u_{x x}
$$

Initial condition: set $a=1, L=1$, and $x_{0} \in[0,1]$ in (26). In the code: set $\mathrm{a}=\mathrm{c}=\mathrm{L}=1, \mathrm{x} 0=0.8$, and there is no need to calculate with wavelengths and frequencies to estimate c ! Just one challenge: determine the period of the waves and an appropriate end time (see the text for details).

Vectorization

- Problem: Python loops over long arrays are slow
- One remedy: use vectorized (numpy) code instead of explicit loops
- Other remedies: use Cython, port spatial loops to Fortran or C
- Speedup: 100-1000 (varies with N_{x})

Next: vectorized loops

Operations on slices of arrays

- Introductory example: compute $d_{i}=u_{i+1}-u_{i}$

$$
\begin{aligned}
& n=u . s i z e \\
& \text { for } i \text { in range (0, } n-1): \\
& \quad d[i]=u[i+1]-u[i]
\end{aligned}
$$

- Note: all the differences here are independent of each other.
- Therefore $d=\left(u_{1}, u_{2}, \ldots, u_{n}\right)-\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$
- In numpy code: $u[1: n]$ - $u[0: n-1]$ or just $u[1:]-u[:-1]$

Test the understanding

Newcomers to vectorization are encouraged to choose a small array u, say with five elements, and simulate with pen and paper both the loop version and the vectorized version.

Vectorization of finite difference schemes (1)

Finite difference schemes basically contains differences between array elements with shifted indices. Consider the updating formula

```
for i in range(1, n-1):
    u2[i] = u[i-1] - 2*u[i] + u[i+1]
```

The vectorization consists of replacing the loop by arithmetics on slices of arrays of length $n-2$:

$$
\begin{aligned}
& \mathrm{u} 2=\mathrm{u}[:-2]-2 * \mathrm{u}[1:-1]+\mathrm{u}[2:] \\
& \mathrm{u} 2=\mathrm{u}[0: \mathrm{n}-2]-2 * \mathrm{u}[1: \mathrm{n}-1]+\mathrm{u}[2: \mathrm{n}] \quad \text { \# alternative }
\end{aligned}
$$

Note: u2 gets length $\mathrm{n}-2$.
If $u 2$ is already an array of length n, do update on "inner" elements

$$
\begin{aligned}
& \mathrm{u} 2[1:-1]=\mathrm{u}[:-2]-2 * \mathrm{u}[1:-1]+\mathrm{u}[2:] \\
& \mathrm{u} 2[1: \mathrm{n}-1]=\mathrm{u}[0: \mathrm{n}-2]-2 * \mathrm{u}[1: \mathrm{n}-1]+\mathrm{u}[2: \mathrm{n}] \quad \text { \# alternative }
\end{aligned}
$$

Vectorization of finite difference schemes (2)

Include a function evaluation too:

```
def f(x):
    return x**2 + 1
# Scalar version
for i in range(1, n-1):
        u2[i] = u[i-1] - 2*u[i] + u[i+1] + f(x[i])
    # Vectorized version
    u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:] + f(x[1:-1])
```


Vectorized implementation in the solver function

Scalar loop:

```
for i in range(1, Nx):
        u[i] = 2*u_1[i] - u_2[i] + \
        C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])
```

Vectorized loop:

$$
\begin{aligned}
u[1:-1]= & -u_{_} 2[1:-1]+2 * u_{1} 1[1:-1]+\text { } \\
& C 2 *\left(u_{-} 1[:-2]-2 * u_{-} 1[1:-1]+u_{-} 1[2:]\right)
\end{aligned}
$$

or

$$
\begin{aligned}
u[1: N x]= & 2 * u_{-} 1[1: N x]-u_{-} 2[1: N x]+\backslash \\
& C 2 *\left(u_{-} 1[0: N x-1]-2 * u_{-} 1[1: N x]+u_{-} 1[2: N x+1]\right)
\end{aligned}
$$

Program: wave1D_u0_sv.py

```
def test_quadratic():
    | || |
Check the scalar and vectorized versions work for
" "|")
# The following function must work for }x\mathrm{ as array or scalar
exact_solution = lambda x, t: x*(L - x)*(1 + 0.5*t)
I = lambda x: exact_solution(x, 0)
V = lambda x: 0.5*exact_solution(x, 0)
# f is a scalar (zeros_like(x) works for scalar x too)
f = lambda x, t: zeros_like(x) + 2*c**2*(1 + 0.5*t)
L = 2.5
c = 1.5
Nx = 3 # Very coarse mesh
C = 1
T = 18 # Long time integration
def assert_no_error(u, x, t, n):
    u_e = exact_solution(x, t[n])
    diff = abs(u - u_e).max()
    nt.assert_almost_equal(diff, 0, places=13)
solver(I, V, f, c, L, Nx, C, T,
    user_action=assert_no_error, version='scalar')
solver(I, V, f, c, L, Nx, C, T,
        user_action=assert_no_error, version='vectorized')
```

- Run wave1D_u0_sv.py for N_{x} as $50,100,200,400,800$ and measuring the CPU time
- Observe substantial speed-up: vectorized version is about $N_{x} / 5$ times faster

Much bigger improvements for 2D and 3D codes!

Generalization: reflecting boundaries

- Boundary condition $u=0$: u changes sign
- Boundary condition $u_{x}=0$: wave is perfectly reflected
- How can we implement u_{x} ? (more complicated than $u=0$)

Demo of boundary conditions

Neumann boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial n} \equiv \mathbf{n} \cdot \nabla u=0 \tag{27}
\end{equation*}
$$

For a 1D domain $[0, L]$:

$$
\left.\frac{\partial}{\partial n}\right|_{x=L}=\frac{\partial}{\partial x},\left.\quad \frac{\partial}{\partial n}\right|_{x=0}=-\frac{\partial}{\partial x}
$$

Boundary condition terminology:

- u_{x} specified: Neumann condition
- u specified: Dirichlet condition
- How can we incorporate the condition $u_{x}=0$ in the finite difference scheme?
- We used centeral differences for $u_{t t}$ and $u_{x x}: \mathcal{O}\left(\Delta t^{2}, \Delta x^{2}\right)$ accuracy
- Also for $u_{t}(x, 0)$
- Should use central difference for u_{x} to preserve second order accuracy

$$
\begin{equation*}
\frac{u_{-1}^{n}-u_{1}^{n}}{2 \Delta x}=0 \tag{28}
\end{equation*}
$$

$$
\frac{u_{-1}^{n}-u_{1}^{n}}{2 \Delta x}=0
$$

- Problem: u_{-1}^{n} is outside the mesh (fictitious value)
- Remedy: use the stencil at the boundary to eliminate u_{-1}^{n}; just replace u_{-1}^{n} by u_{1}^{n}

$$
\begin{equation*}
u_{i}^{n+1}=-u_{i}^{n-1}+2 u_{i}^{n}+2 C^{2}\left(u_{i+1}^{n}-u_{i}^{n}\right), \quad i=0 \tag{29}
\end{equation*}
$$

Discrete equation for computing u_{0}^{3} in terms of u_{0}^{2}, u_{0}^{1}, and u_{1}^{2} :
Animation in a web page or a movie file.

Implementation of Neumann conditions

- Use the general stencil for interior points also on the boundary
- Replace u_{i-1}^{n} by u_{i+1}^{n} for $i=0$
- Replace u_{i+1}^{n} by u_{i-1}^{n} for $i=N_{x}$

```
i = 0
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])
i = Nx
im1 = i-1
ip1= im1 # i+1 -> i-1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])
# Or just one loop over all points
for i in range(0, Nx+1):
    ip1 = i+1 if i < Nx else i-1
    im1 = i-1 if i > 0 else i+1
    u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])
```

Program wave1D_dn0.py

Moving finite difference stencil

web page or a movie file.

- Tedious to write index sets like $i=0, \ldots, N_{x}$ and $n=0, \ldots, N_{t}$
- Notation not valid if i or n starts at 1 instead...
- Both in math and code it is advantageous to use index sets
- $i \in \mathcal{I}_{x}$ instead of $i=0, \ldots, N_{x}$
- Definition: $\mathcal{I}_{x}=\left\{0, \ldots, N_{x}\right\}$
- The first index: $i=\mathcal{I}_{x}^{0}$
- The last index: $i=\mathcal{I}_{x}^{-1}$
- All interior points: $i \in \mathcal{I}_{x}^{i}, \mathcal{I}_{x}^{i}=\left\{1, \ldots, N_{x}-1\right\}$
- \mathcal{I}_{x}^{-}means $\left\{0, \ldots, N_{x}-1\right\}$
- \mathcal{I}_{x}^{+}means $\left\{1, \ldots, N_{x}\right\}$

Index set notation in code

Notation	Python
\mathcal{I}_{x}	$I x$
\mathcal{I}_{x}^{0}	$I x[0]$
\mathcal{I}_{x}^{-1}	$I x[-1]$
\mathcal{I}_{x}^{-}	$I x[1:]$
\mathcal{I}_{χ}^{+}	$I x[:-1]$
\mathcal{I}_{x}^{i}	$I x[1:-1]$

Index sets for a problem in the x, t plane:

$$
\begin{equation*}
\mathcal{I}_{x}=\left\{0, \ldots, N_{x}\right\}, \quad \mathcal{I}_{t}=\left\{0, \ldots, N_{t}\right\} \tag{30}
\end{equation*}
$$

Implemented in Python as

$$
\begin{aligned}
& \mathrm{Ix}=\operatorname{range}(0, N x+1) \\
& \mathrm{It}=\operatorname{range}(0, N \mathrm{Nt}+1)
\end{aligned}
$$

A finite difference scheme can with the index set notation be specified as

$$
\begin{aligned}
u_{i}^{n+1} & =-u_{i}^{n-1}+2 u_{i}^{n}+C^{2}\left(u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right), \quad i \in \mathcal{I}_{x}^{i}, n \in \mathcal{I}_{t}^{i} \\
u_{i} & =0, \quad i=\mathcal{I}_{x}^{0}, n \in \mathcal{I}_{t}^{i} \\
u_{i} & =0, \quad i=\mathcal{I}_{x}^{-1}, n \in \mathcal{I}_{t}^{i}
\end{aligned}
$$

Corresponding implementation:

```
for n in It[1:-1]:
    for i in Ix[1:-1]:
        u[i] = - u_2[i] + 2*u_1[i] + \
        C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])
    i = Ix[0]; u[i] = 0
    i = Ix[-1]; u[i] = 0
```

Program wave1D_dn.py

Alternative implementation via ghost cells

- Instead of modifying the stencil at the boundary, we extend the mesh to cover u_{-1}^{n} and $u_{N_{x}+1}^{n}$
- The extra left and right cell are called ghost cells
- The extra points are called ghost points
- The u_{-1}^{n} and $u_{N_{x}+1}^{n}$ values are called ghost values
- Update ghost values as $u_{i-1}^{n}=u_{i+1}^{n}$ for $i=0$ and $i=N_{x}$
- Then the stencil becomes right at the boundary

Add ghost points:

$$
\begin{aligned}
& \mathrm{u} \quad=\operatorname{zeros}(N x+3) \\
& \mathrm{u}_{1} 1=\operatorname{zeros}(N x+3) \\
& \mathrm{u}_{-} 2=\operatorname{zeros}(N x+3) \\
& \mathrm{x}=\text { linspace }(0, \mathrm{~L}, \mathrm{Nx}+1) \quad \text { \# Mesh points without ghost points }
\end{aligned}
$$

- A major indexing problem arises with ghost cells since Python indices must start at 0 .
- $u[-1]$ will always mean the last element in u
- Math indexing: $-1,0,1,2, \ldots, N_{x}+1$
- Python indexing: $0, \ldots, N x+2$
- Remedy: use index sets

Implementation of ghost cells (2)

```
\(\mathrm{u}=\operatorname{zeros}(\mathrm{Nx}+3)\)
Ix = range (1, u.shape [0]-1)
```

\# Boundary values: u[Ix[0]], u[Ix[-1]]
\# Set initial conditions
for i in Ix:
u_1[i] $=$ I (x[i-Ix[0]]) \# Note i-Ix[0]
\# Loop over all physical mesh points
for i in Ix:
$u[i]=-u_{2} 2[i]+2 * u_{-1}[i]+\$
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])
\# Update ghost values
$i=\operatorname{Ix}[0] \quad \# x=0$ boundary
$u[i-1]=u[i+1]$
$\mathrm{i}=\operatorname{Ix}[-1] \quad \# \mathrm{x}=\mathrm{L}$ boundary
$u[i-1]=u[i+1]$
Program: wave1D_dn0_ghost.py.

Generalization: variable wave velocity

Heterogeneous media: varying $c=c(x)$

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)+f(x, t) \tag{31}
\end{equation*}
$$

This equation sampled at a mesh point $\left(x_{i}, t_{n}\right)$:

$$
\frac{\partial^{2}}{\partial t^{2}} u\left(x_{i}, t_{n}\right)=\frac{\partial}{\partial x}\left(q\left(x_{i}\right) \frac{\partial}{\partial x} u\left(x_{i}, t_{n}\right)\right)+f\left(x_{i}, t_{n}\right)
$$

Discretizing the variable coefficient (1)

The principal idea is to first discretize the outer derivative.
Define

$$
\phi=q(x) \frac{\partial u}{\partial x}
$$

Then use a centered derivative around $x=x_{i}$ for the derivative of ϕ :

$$
\left[\frac{\partial \phi}{\partial x}\right]_{i}^{n} \approx \frac{\phi_{i+\frac{1}{2}}-\phi_{i-\frac{1}{2}}}{\Delta x}=\left[D_{x} \phi\right]_{i}^{n}
$$

Then discretize the inner operators:

$$
\phi_{i+\frac{1}{2}}=q_{i+\frac{1}{2}}\left[\frac{\partial u}{\partial x}\right]_{i+\frac{1}{2}}^{n} \approx q_{i+\frac{1}{2}} \frac{u_{i+1}^{n}-u_{i}^{n}}{\Delta x}=\left[q D_{x} u\right]_{i+\frac{1}{2}}^{n}
$$

Similarly,

$$
\phi_{i-\frac{1}{2}}=q_{i-\frac{1}{2}}\left[\frac{\partial u}{\partial x}\right]_{i-\frac{1}{2}}^{n} \approx q_{i-\frac{1}{2}} \frac{u_{i}^{n}-u_{i-1}^{n}}{\Delta x}=\left[q D_{x} u\right]_{i-\frac{1}{2}}^{n}
$$

Discretizing the variable coefficient (3)

These intermediate results are now combined to

$$
\begin{equation*}
\left[\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)\right]_{i}^{n} \approx \frac{1}{\Delta x^{2}}\left(q_{i+\frac{1}{2}}\left(u_{i+1}^{n}-u_{i}^{n}\right)-q_{i-\frac{1}{2}}\left(u_{i}^{n}-u_{i-1}^{n}\right)\right) \tag{32}
\end{equation*}
$$

In operator notation:

$$
\begin{equation*}
\left[\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)\right]_{i}^{n} \approx\left[D_{x} q D_{x} u\right]_{i}^{n} \tag{33}
\end{equation*}
$$

Remark.

Many are tempted to use the chain rule on the term $\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)$, but this is not a good idea!

Computing the coefficient between mesh points

- Given $q(x)$: compute $q_{i+\frac{1}{2}}$ as $q\left(x_{i+\frac{1}{2}}\right)$
- Given q at the mesh points: q_{i}, use an average

$$
\begin{array}{lr}
q_{i+\frac{1}{2}} \approx \frac{1}{2}\left(q_{i}+q_{i+1}\right)=\left[\bar{q}^{\chi}\right]_{i} & \\
\text { (arithmetic mean) } \\
q_{i+\frac{1}{2}} \approx 2\left(\frac{1}{q_{i}}+\frac{1}{q_{i+1}}\right)^{-1} & \tag{36}\\
q_{i+\frac{1}{2}} \approx\left(q_{i} q_{i+1}\right)^{1 / 2} & \\
\text { (garmonic mean) } \\
\text { geometric mean) }
\end{array}
$$

The arithmetic mean in (34) is by far the most used averaging technique.

Discretization of variable-coefficient wave equation in operator notation

$$
\begin{equation*}
\left[D_{t} D_{t} u=D_{x} \bar{q}^{\times} D_{x} u+f\right]_{i}^{n} \tag{37}
\end{equation*}
$$

We clearly see the type of finite differences and averaging! Write out and solve wrt u_{i}^{n+1} :

$$
\begin{align*}
u_{i}^{n+1}= & -u_{i}^{n-1}+2 u_{i}^{n}+\left(\frac{\Delta x}{\Delta t}\right)^{2} \times \\
& \left(\frac{1}{2}\left(q_{i}+q_{i+1}\right)\left(u_{i+1}^{n}-u_{i}^{n}\right)-\frac{1}{2}\left(q_{i}+q_{i-1}\right)\left(u_{i}^{n}-u_{i-1}^{n}\right)\right)+ \\
& \Delta t^{2} f_{i}^{n} \tag{38}
\end{align*}
$$

Consider $\partial u / \partial x=0$ at $x=L=N_{x} \Delta x$:

$$
\frac{u_{i+1}^{n}-u_{i-1}^{n}}{2 \Delta x}=0 \quad u_{i+1}^{n}=u_{i-1}^{n}, \quad i=N_{x}
$$

Insert $u_{i+1}^{n}=u_{i-1}^{n}$ in the stencil (38) for $i=N_{x}$ and obtain

$$
u_{i}^{n+1} \approx-u_{i}^{n-1}+2 u_{i}^{n}+\left(\frac{\Delta x}{\Delta t}\right)^{2} 2 q_{i}\left(u_{i-1}^{n}-u_{i}^{n}\right)+\Delta t^{2} f_{i}^{n}
$$

(We have used $q_{i+\frac{1}{2}}+q_{i-\frac{1}{2}} \approx 2 q_{i}$.)
Alternative: assume $d q / d x=0$ (simpler).

Implementation of variable coefficients

Assume c[i] holds c_{i} the spatial mesh points

```
for i in range(1, Nx):
    u[i] = - u_2[i] + 2*u_1[i] + \
        C2*(0.5*(q[i] + q[i+1])*(u_1[i+1] - u_1[i]) - \
            0.5*(q[i] + q[i-1])*(u_1[i] - u_1[i-1])) + \
        dt2*f(x[i], t[n])
```

Here: C2=(dt/dx)**2
Vectorized version:

$$
\begin{aligned}
\mathrm{u}[1:-1]= & -u^{2} 2[1:-1]+2 * \mathrm{u} _1[1:-1]+\backslash \\
& \mathrm{C} 2 *\left(0.5 *(\mathrm{q}[1:-1]+\mathrm{q}[2:]) *\left(\mathrm{u} 1[2:]-\mathrm{u} _1[1:-1]\right)-\right. \\
& 0.5 *(\mathrm{q}[1:-1]+\mathrm{q}[:-2]) *(\mathrm{u} 1[1:-1]-\mathrm{u} 1[:-2]))+\backslash \\
& \mathrm{dt} 2 * \mathrm{f}(\mathrm{x}[1:-1], \mathrm{t}[\mathrm{n}])
\end{aligned}
$$

Neumann condition $u_{x}=0$: same ideas as in 1D (modified stencil or ghost cells).

$$
\begin{equation*}
\varrho(x) \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial x}\left(q(x) \frac{\partial u}{\partial x}\right)+f(x, t) \tag{39}
\end{equation*}
$$

A natural scheme is

$$
\begin{equation*}
\left[\varrho D_{t} D_{t} u=D_{x} \bar{q}^{\times} D_{x} u+f\right]_{i}^{n} \tag{40}
\end{equation*}
$$

Or

$$
\begin{equation*}
\left[D_{t} D_{t} u=\varrho^{-1} D_{x} \bar{q}^{\times} D_{x} u+f\right]_{i}^{n} \tag{41}
\end{equation*}
$$

No need to average ϱ, just sample at i

Why do waves die out?

- Damping (non-elastic effects, air resistance)
- 2D/3D: conservation of energy makes an amplitude reduction by $1 / \sqrt{r}(2 \mathrm{D})$ or $1 / r$ (3D)

Simplest damping model (for physical behavior, see demo):

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}+b \frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}+f(x, t) \tag{42}
\end{equation*}
$$

$b \geq 0$: prescribed damping coefficient.
Discretization via centered differences to ensure $\mathcal{O}\left(\Delta t^{2}\right)$ error:

$$
\begin{equation*}
\left[D_{t} D_{t} u+b D_{2 t} u=c^{2} D_{x} D_{x} u+f\right]_{i}^{n} \tag{43}
\end{equation*}
$$

Need special formula for $u_{i}^{1}+$ special stencil (or ghost cells) for Neumann conditions.

Building a general 1D wave equation solver

The program wave1D_dn_vc.py solves a fairly general 1D wave equation:

$$
\begin{align*}
u_{t} & =\left(c^{2}(x) u_{x}\right)_{x}+f(x, t), & & x \in(0, L), \tag{44}\\
u(x, 0) & =I(x), & & x \in[0, T] \\
u_{t}(x, 0) & =V(t), & & x \in[0, L] \\
u(0, t) & =U_{0}(t) \text { or } u_{x}(0, t)=0, & & t \in(0, T] \\
u(L, t) & =U_{L}(t) \text { or } u_{x}(L, t)=0, & & t \in(0, T]
\end{align*}
$$

Can be adapted to many needs.

Collection of initial conditions

The function pulse in wave1D_dn_vc.py offers four initial conditions:
(1) a rectangular pulse ("plug")
(2) a Gaussian function (gaussian)
(3) a "cosine hat": one period of $1+\cos (\pi x, x \in[-1,1]$
(9) half a " cosine hat": half a period of $\cos \pi x, x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$

Can locate the initial pulse at $x=0$ or in the middle
>>> import wave1D_dn_vc as w
>>> w.pulse(loc='left', pulse_tp='cosinehat', $N x=50$, every_frame=10)

Constant wave velocity c :

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \nabla^{2} u \text { for } \mathbf{x} \in \Omega \subset \mathbb{R}^{d}, t \in(0, T] \tag{49}
\end{equation*}
$$

Variable wave velocity:

$$
\begin{equation*}
\varrho \frac{\partial^{2} u}{\partial t^{2}}=\nabla \cdot(q \nabla u)+f \text { for } \mathbf{x} \in \Omega \subset \mathbb{R}^{d}, t \in(0, T] \tag{50}
\end{equation*}
$$

Examples on wave equations written out in 2D/3D

3D, constant c :

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

2D, variable c :

$$
\begin{equation*}
\varrho(x, y) \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial x}\left(q(x, y) \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(q(x, y) \frac{\partial u}{\partial y}\right)+f(x, y, t) \tag{51}
\end{equation*}
$$

Compact notation:

$$
\begin{align*}
u_{t t} & =c^{2}\left(u_{x x}+u_{y y}+u_{z z}\right)+f, \tag{52}\\
\varrho u_{t t} & =\left(q u_{x}\right)_{x}+\left(q u_{z}\right)_{z}+\left(q u_{z}\right)_{z}+f \tag{53}
\end{align*}
$$

We need one boundary condition at each point on $\partial \Omega$:
(1) u is prescribed ($u=0$ or known incoming wave)
(2) $\partial u / \partial n=\mathbf{n} \cdot \nabla u$ prescribed ($=0$: reflecting boundary)
(3) open boundary (radiation) condition: $u_{t}+\mathbf{c} \cdot \nabla u=0$ (let waves travel undisturbed out of the domain)

PDEs with second-order time derivative need two initial conditions:
(1) $u=1$,
(2) $u_{t}=V$.

- Mesh point: $\left(x_{i}, y_{j}, z_{k}, t_{n}\right)$
- x direction: $x_{0}<x_{1}<\cdots<x_{N_{x}}$
- y direction: $y_{0}<y_{1}<\cdots<y_{N_{y}}$
- z direction: $z_{0}<z_{1}<\cdots<z_{N_{z}}$
- $u_{i, j, k}^{n} \approx u_{\mathrm{e}}\left(x_{i}, y_{j}, z_{k}, t_{n}\right)$

$$
\left[D_{t} D_{t} u=c^{2}\left(D_{x} D_{x} u+D_{y} D_{y} u\right)+f\right]_{i, j, k}^{n},
$$

Written out in detail:

$$
\begin{aligned}
\frac{u_{i, j}^{n+1}-2 u_{i, j}^{n}+u_{i, j}^{n-1}}{\Delta t^{2}}= & c^{2} \frac{u_{i+1, j}^{n}-2 u_{i, j}^{n}+u_{i-1, j}^{n}}{\Delta x^{2}}+ \\
& c^{2} \frac{u_{i, j+1}^{n}-2 u_{i, j}^{n}+u_{i, j-1}^{n}}{\Delta y^{2}}+f_{i, j}^{n}
\end{aligned}
$$

$u_{i, j}^{n-1}$ and $u_{i, j}^{n}$ are known, solve for $u_{i, j}^{n+1}$:

$$
u_{i, j}^{n+1}=2 u_{i, j}^{n}+u_{i, j}^{n-1}+c^{2} \Delta t^{2}\left[D_{x} D_{x} u+D_{y} D_{y} u\right]_{i, j}^{n}
$$

- The stencil for $u_{i, j}^{1}(n=0)$ involves $u_{i, j}^{-1}$ which is outside the time mesh
- Remedy: use discretized $u_{t}(x, 0)=V$ and the stencil for $n=0$ to develop a special stencil (as in the 1D case)

$$
\begin{gathered}
{\left[D_{2 t} u=V\right]_{i, j}^{0} \Rightarrow u_{i, j}^{-1}=u_{i, j}^{1}-2 \Delta t V_{i, j}} \\
u_{i, j}^{n+1}=u_{i, j}^{n}-2 \Delta V_{i, j}+\frac{1}{2} c^{2} \Delta t^{2}\left[D_{x} D_{x} u+D_{y} D_{y} u\right]_{i, j}^{n}
\end{gathered}
$$

Variable coefficients (1)

3D wave equation:

$$
\varrho u_{t t}=\left(q u_{x}\right)_{x}+\left(q u_{y}\right)_{y}+\left(q u_{z}\right)_{z}+f(x, y, z, t)
$$

Just apply the 1D discretization for each term:

$$
\begin{equation*}
\left[\varrho D_{t} D_{t} u=\left(D_{x} \bar{q}^{x} D_{x} u+D_{y} \bar{q}^{y} D_{y} u+D_{z} \bar{q}^{z} D_{z} u\right)+f\right]_{i, j, k}^{n} \tag{54}
\end{equation*}
$$

Need special formula for $u_{i, j, k}^{1}$ (use $\left[D_{2 t} u=V\right]^{0}$ and stencil for $n=0$).

Variable coefficients (2)

Written out:

$$
\begin{aligned}
& u_{i, j, k}^{n+1}=-u_{i, j, k}^{n-1}+2 u_{i, j, k}^{n}+ \\
&=\frac{1}{\varrho_{i, j, k}} \frac{1}{\Delta x^{2}}\left(\frac{1}{2}\left(q_{i, j, k}+q_{i+1, j, k}\right)\left(u_{i+1, j, k}^{n}-u_{i, j, k}^{n}\right)-\right. \\
&\left.\frac{1}{2}\left(q_{i-1, j, k}+q_{i, j, k}\right)\left(u_{i, j, k}^{n}-u_{i-1, j, k}^{n}\right)\right)+ \\
&=\frac{1}{\varrho_{i, j, k}} \frac{1}{\Delta x^{2}}\left(\frac{1}{2}\left(q_{i, j, k}+q_{i, j+1, k}\right)\left(u_{i, j+1, k}^{n}-u_{i, j, k}^{n}\right)-\right. \\
&\left.\frac{1}{2}\left(q_{i, j-1, k}+q_{i, j, k}\right)\left(u_{i, j, k}^{n}-u_{i, j-1, k}^{n}\right)\right)+ \\
&=\frac{1}{\varrho_{i, j, k}} \frac{1}{\Delta x^{2}}\left(\frac{1}{2}\left(q_{i, j, k}+q_{i, j, k+1}\right)\left(u_{i, j, k+1}^{n}-u_{i, j, k}^{n}\right)-\right. \\
&+\left.\frac{1}{2}\left(q_{i, j, k-1}+q_{i, j, k}\right)\left(u_{i, j, k}^{n}-u_{i, j, k-1}^{n}\right)\right)+ \\
& \Delta t^{2} f_{i, j, k}^{n}
\end{aligned}
$$

Use ideas from 1D! Example: $\frac{\partial u}{\partial n}$ at $y=0, \frac{\partial u}{\partial n}=-\frac{\partial u}{\partial y}$
Boundary condition discretization:

$$
\left[-D_{2 y} u=0\right]_{i, 0}^{n} \quad \Rightarrow \quad \frac{u_{i, 1}^{n}-u_{i,-1}^{n}}{2 \Delta y}=0, i \in \mathcal{I}_{x}
$$

Insert $u_{i,-1}^{n}=u_{i, 1}^{n}$ in the stencil for $u_{i, j=0}^{n+1}$ to obtain a modified stencil on the boundary.
Pattern: use interior stencil also on the bundary, but replace j - 1 by $j+1$
Alternative: use ghost cells and ghost values

Implementation of 2D/3D problems

$$
\begin{array}{rlr}
u_{t} & =c^{2}\left(u_{x x}+u_{y y}\right)+f(x, y, t), & (x, y) \in \Omega, t \in(0, T] \tag{55}\\
u(x, y, 0) & =I(x, y), & (x, y) \in \Omega \\
& (56) \\
u_{t}(x, y, 0) & =V(x, y), & (x, y) \in \Omega \\
& (57) \\
u & =0, & (x, y) \in \partial \Omega, t \in(0, T] \\
& \\
\Omega=\left[0, L_{x}\right] \times\left[0, L_{y}\right]
\end{array}
$$

$$
\left[D_{t} D_{t} u=c^{2}\left(D_{x} D_{x} u+D_{y} D_{y} u\right)+f\right]_{i, j}^{n},
$$

Algorithm

(1) Set initial condition $u_{i, j}^{0}=I\left(x_{i}, y_{j}\right)$
(2) Compute $u_{i, j}^{1}=\cdots$ for $i \in \mathcal{I}_{x}^{i}$ and $j \in \mathcal{I}_{y}^{i}$
(3) Set $u_{i, j}^{1}=0$ for the boundaries $i=0, N_{x}, j=0, N_{y}$
(9) For $n=1,2, \ldots, N_{t}$:
(1) Find $u_{i, j}^{n+1}=\cdots$ for $i \in \mathcal{I}_{x}^{i}$ and $j \in \mathcal{I}_{y}^{i}$
(2) Set $u_{i, j}^{n+1}=0$ for the boundaries $i=0, N_{x}, j=0, N_{y}$

Program: wave2D_u0.py

```
def solver(I, V, f, c, Lx, Ly, Nx, Ny, dt, T,
    user_action=None, version='scalar'):
```

Mesh:

```
\(\mathrm{x}=\operatorname{linspace}(0, \mathrm{Lx}, \mathrm{Nx}+1)\)
\(\mathrm{y}=\) linspace(0, Ly, Ny+1)
\(\mathrm{dx}=\mathrm{x}[1]-\mathrm{x}[0]\)
\(d y=y[1]-y[0]\)
Nt = int(round(T/float(dt)))
\(\mathrm{t}=\) linspace( \(0, \mathrm{~N} * \mathrm{dt}, \mathrm{N}+1\) ) \# mesh points in time
\(\mathrm{Cx} 2=(\mathrm{c} * \mathrm{dt} / \mathrm{dx}) * * 2 ; \quad \mathrm{Cy} 2=(\mathrm{c} * \mathrm{dt} / \mathrm{dy}) * * 2 \quad\) \# help variables
\(\mathrm{dt} 2=\mathrm{dt} * * 2\)
```

```
# mesh points in x dir
```


mesh points in x dir

mesh points in y dir

```
# mesh points in y dir
```


Scalar computations: arrays

Store $u_{i, j}^{n+1}, u_{i, j}^{n}$, and $u_{i, j}^{n-1}$ in three two-dimensional arrays:

$$
\begin{array}{ll}
u_{1}=\operatorname{zeros}((N x+1, N y+1)) & \text { \# solution array } \\
\mathbf{u}_{-1}=\operatorname{zeros}((N x+1, N y+1)) & \text { \# solution at } t-d t \\
u_{-}=\operatorname{zeros}((N x+1, N y+1)) & \text { \# solution at } t-2 * d t
\end{array}
$$

$u_{i, j}^{n+1}$ corresponds to $u[i, j]$, etc.

Scalar computations: initial condition

```
Ix = range(0, u.shape[0])
Iy = range(0, u.shape[1])
It = range(0, t.shape[0])
for i in Ix:
    for j in Iy:
        u_1[i,j] = I(x[i], y[j])
if user_action is not None:
    user_action(u_1, x, xv, y, yv, t, 0)
```

Arguments xv and yv: for vectorized computations

```
def advance_scalar(u, u_1, u_2, f, x, y, t, n, Cx2, Cy2, dt,
            \(\mathrm{V}=\) None, step1=False):
    Ix = range ( \(0, \mathrm{u}\). shape[0]); \(\mathrm{Iy}=\) range ( \(0, \mathrm{u}\). shape [1])
    \(\mathrm{dt} 2=\mathrm{dt} * * 2\)
if step1:
    Cx2 \(=0.5 * \operatorname{Cx} 2 ; \quad\) Cy2 \(=0.5 * \operatorname{Cy} 2 ; \mathrm{dt} 2=0.5 * d t 2\)
    D1 = 1; \(\quad\) 2 \(=0\)
else:
    D1 = 2; D2 = 1
for i in \(\operatorname{Ix}[1:-1]:\)
    for j in \(\mathrm{Iy}[1:-1]:\)
        \(u_{-x}=u_{-} 1[i-1, j]-2 * u_{-} 1[i, j]+u_{-} 1[i+1, j]\)
        \(u_{-} y y=u_{-} 1[i, j-1]-2 * u_{-} 1[i, j]+u_{-} 1[i, j+1]\)
        \(\mathrm{u}[\mathrm{i}, \mathrm{j}]=\mathrm{D} 1 * \mathrm{u}_{-} 1[\mathrm{i}, \mathrm{j}]-\mathrm{D} 2 * \mathrm{u}_{\mathrm{L}} 2[\mathrm{i}, \mathrm{j}]+\) +
                        \(C x 2 * u_{-} x x+C y 2 * u_{-} y y+d t 2 * f(x[i], y[j], t[n])\)
        if step1:
            \(u[i, j]+=d t * V(x[i], y[j])\)
    \# Boundary condition \(u=0\)
    \(j=\operatorname{Iy}[0]\)
    for i in Ix: \(u[i, j]=0\)
    \(j=\operatorname{Iy}[-1]\)
    for \(i\) in \(I x: u[i, j]=0\)
    i \(=\operatorname{Ix}[0]\)
    for j in \(I y: u[i, j]=0\)
    i \(=\operatorname{Ix}[-1]\)
    for j in \(I y: u[i, j]=0\)
    return u
```


Vectorized computations: mesh coordinates

Mesh with 30×30 cells: vectorization reduces the CPU time by a factor of 70 (!).
Need special coordinate arrays $x v$ and $y v$ such that $I(x, y)$ and $f(x, y, t)$ can be vectorized:

```
from numpy import newaxis
\(\mathrm{xv}=\mathrm{x}[:\),newaxis]
yv = y[newaxis,:]
u_1[:,:] = I(xv, yv)
f_a[:,:] = f(xv, yv, t)
```

def advance_vectorized(u, u_1, u_2, f_a, Cx2, Cy2, dt, $\mathrm{V}=$ None, step1=False):

$$
\begin{aligned}
& \mathrm{dt} 2=\mathrm{dt} * * 2 \\
& \text { if step1: } \\
& \text { Cx2 }=0.5 * \operatorname{Cx} 2 ; \quad \mathrm{Cy} 2=0.5 * \mathrm{Cy} 2 ; \mathrm{dt2}=0.5 * \mathrm{dt} 2 \\
& \text { D1 = 1; } \quad \text { 2 }=0 \\
& \text { else: } \\
& \text { D1 = 2; } \quad \text { 2 } 2=1 \\
& u_{-} x x=u_{-1}[:-2,1:-1]-2 * u_{-} 1[1:-1,1:-1]+u_{-1}[2:, 1:-1] \\
& u_{-} y y=u_{1}[1:-1,:-2]-2 * u_{-} 1[1:-1,1:-1]+u_{-1}[1:-1,2:] \\
& \mathrm{u}[1:-1,1:-1]=\text { D1*u_1[1:-1,1:-1] - D2*u_2[1:-1,1:-1] + \} } \\
{\text { Cx2*u_xx + Cy2*u_yy + dt2*f_a[1:-1,1:-1] }} \\
{\text { if step1: }}
\end{aligned}
$$

Verification: quadratic solution (1)

Manufactured solution:

$$
\begin{equation*}
u_{e}(x, y, t)=x\left(L_{x}-x\right) y\left(L_{y}-y\right)\left(1+\frac{1}{2} t\right) \tag{59}
\end{equation*}
$$

Requires $f=2 c^{2}\left(1+\frac{1}{2} t\right)\left(y\left(L_{y}-y\right)+x\left(L_{x}-x\right)\right)$.
This u_{e} is ideal because it also solves the discrete equations!

Verification: quadratic solution (2)

- $\left[D_{t} D_{t} 1\right]^{n}=0$
- $\left[D_{t} D_{t} t\right]^{n}=0$
- $\left[D_{t} D_{t} t^{2}\right]=2$
- $D_{t} D_{t}$ is a linear operator:
$\left[D_{t} D_{t}(a u+b v)\right]^{n}=a\left[D_{t} D_{t} u\right]^{n}+b\left[D_{t} D_{t} v\right]^{n}$

$$
\begin{aligned}
{\left[D_{x} D_{x} u_{\mathrm{e}}\right]_{i, j}^{n} } & =\left[y\left(L_{y}-y\right)\left(1+\frac{1}{2} t\right) D_{x} D_{x} x\left(L_{x}-x\right)\right]_{i, j}^{n} \\
& =y_{j}\left(L_{y}-y_{j}\right)\left(1+\frac{1}{2} t_{n}\right) 2
\end{aligned}
$$

- Similar calculations for $\left[D_{y} D_{y} u_{\mathrm{e}}\right]_{i, j}^{n}$ and $\left[D_{t} D_{t} u_{\mathrm{e}}\right]_{i, j}^{n}$ terms
- Must also check the equation for $u_{i, j}^{1}$

Migrating loops to Cython

- Vectorization: 5-10 times slower than pure C or Fortran code
- Cython: extension of Python for translating functions to C
- Principle: declare variables with type

Declaring variables and annotating the code

Pure Python code:

```
def advance_scalar(u, u_1, u_2, f, x, y, t,
                        n, Cx2, Cy2, dt2, D1=2, D2=1):
    Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
    for i in Ix[1:-1]:
        for j in Iy[1:-1]:
        u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
        u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
        u[i,j] = D1*u_1[i,j] - D2*u_2[i,j] + \
        Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
```

- Copy this function and put it in a file with .pyx extension.
- Add type of variables:
- function(a, b) \rightarrow cpdef function(int a, double b)
- $\mathrm{v}=1.2 \rightarrow$ cdef double $\mathrm{v}=1.2$
- Array declaration: np.ndarray[np.float64_t, ndim=2, mode='c'] u

Cython version of the functions

```
import numpy as np
cimport numpy as np
cimport cython
ctypedef np.float64_t DT # data type
@cython.boundscheck(False) # turn off array bounds check
@cython.wraparound(False) # turn off negative indices (u[-1,-1])
cpdef advance(
    np.ndarray [DT, ndim=2, mode='c'] u,
    np.ndarray [DT, ndim=2, mode='c'] u_1,
    np.ndarray [DT, ndim=2, mode='c'] u_2,
    np.ndarray[DT, ndim=2, mode='c'] f,
    double Cx2, double Cy2, double dt2):
cdef int Nx, Ny, i, j
cdef double u_xx, u_yy
Nx = u.shape[0]-1
Ny = u.shape[1]-1
for i in xrange(1, Nx):
        for j in xrange(1, Ny):
        u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
        u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
        u[i,j] = 2*u_1[i,j] - u_2[i,j] + \
        Cx2*u_xx + Cy2*u_yy + dt2*f[i,j]
```

Note: from now in we skip the code for setting boundary values

Visual inspection of the C translation

See how effective Cython can translate this code to C:
Terminal> cython -a wave2D_u0_loop_cy.pyx
Load wave2D_u0_loop_cy.html in a browser (white: pure C, yellow: still Python):

```
Ran output: wave2D u0 loop cy.a
inport numpy as np
cinport mumpy as mp
3: cinport cython
ctypedef np float64_t DT # data type
6: @cython.boundscheck(False)
@cython.wraparound(False) # turn off array bounds check
: cpdef advancel
            np.ndarray [DT, ndim=2, mode='c'| u,
            np, ndarray [DT, ndim=2, mode='c'] U_l,
            np.ndarray [DT, ndim-2, mode-'C}] U_
            np.ndarraylDT. ndim=2, mode='c''l f
            cdef int Ix_start = 0
            cdef int Iy_start = 0
            cdef int Ix_end = u.shape[0]-]
            cdef int Iy_end - U.shape[1]-1
            cdef int ly_end - U.sha
            cdef int 1.
            cdef double u_xx, u_yy
            for i in range(Ix_start+1. Ix_end)
            for j in range(Iy_start+1, Iy_end)
                u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_l[i+1,j]
                    u_yy - u_l[i,j-1] - 2*u_1[i,j] + u_l[i,j+1]
            u[i,j] = 2*u_1[i,j]-u_2[i,j]+\
        # Boundary condition u-0
        J = Iy_start
        for i in range(Ix_start, Ix_end+1): u[i,j] - 0
        j = Iy_ end
        for i in range(Ix_start, Ix_end+1): u[i,j]=0
        i - Ix start
        for j in range(Iy_start, Iy_end+1):u[i,j] = 0
        i - Iy_end
        for j in range(Iy_start, Iy_end+1): u[i,j]=0
        return
```

Can click on wave2D_u0_loop_cy.c to see the generated C code...

Building the extension module

- Cython code must be translated to C
- C code must be compiled
- Compiled C code must be linked to Python C libraries
- Result: C extension module (.so file) that can be loaded as a standard Python module
- Use a setup.py script to build the extension module

```
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
cymodule = 'wave2D_u0_loop_cy'
setup(
    name=cymodule
    ext_modules=[Extension(cymodule, [cymodule + '.pyx'],)],
    cmdclass={'build_ext': build_ext},
)
Terminal> python setup.py build_ext --inplace
```


Calling the Cython function from Python

import wave2D_u0_loop_cy
advance = wave2D_u0_loop_cy.advance

```
for n in It[1:-1: # time loop
    f_a[:,:] = f(xv, yv, t[n]) # precompute, size as u
    u = advance(u, u_1, u_2, f_a, x, y, t, Cx2, Cy2, dt2)
```

Efficiency:

- 120×120 cells in space:
- Pure Python: 1370 CPU time units
- Vectorized numpy: 5.5
- Cython: 1
- 60×60 cells in space:
- Pure Python: 1000 CPU time units
- Vectorized numpy: 6
- Cython: 1

Migrating loops to Fortran

- Write the advance function in pure Fortran
- Use f2py to generate C code for calling Fortran from Python
- Full manual control of the translation to Fortran

```
    subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
    integer Nx, Ny
    real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
    real*8 f(0:Nx, 0:Ny), Cx2, Cy2, dt2
    integer i, j
Cf2py intent(in, out) u
C Scheme at interior points
    do j = 1,Ny-1
        u(i,j) = 2*u_1(i,j) - u_2(i,j) +
& Cx2*(u_1(i-1,j) - 2*u_1(i,j) + u_1(i+1,j)) +
& Cy2*(u_1(i,j-1) - 2*u_1(i,j) + u_1(i,j+1)) +
& dt2*f(i,j)
        end do
    end do
```

Note: Cf2py comment declares u as input argument and return value back to Python

```
Terminal> f2py -m wave2D_u0_loop_f77 -h wave2D_u0_loop_f77.pyf \}
    --overwrite-signature wave2D_u0_loop_f77.f
Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \}
    -DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f
```

f2py changes the argument list (!)
>>> import wave2D_u0_loop_f77
>>> print wave2D_u0_loop_f77.-_doc_-
This module 'wave2D_u0_loop_f77' is auto-generated with f2py.... Functions:
u = advance(u,u_1,u_2,f,cx2, cy2,dt2, $n x=(\operatorname{shape}(u, 0)-1), n y=(\operatorname{shape}(u, 1)-1))$

- Array limits have default values
- Examine doc strings from f2py!

How to avoid array copying

- Two-dimensional arrays are stored row by row in Python and C
- Two-dimensional arrays are stored column by column in Fortran
- f2py takes a copy of a numpy (C) array and transposes it when calling Fortran
- Such copies are time and memory consuming
- Remedy: declare numpy arrays with Fortran storage

```
order = 'Fortran' if version == 'f77' else 'C'
u = zeros((Nx+1,Ny+1), order=order)
u_1 = zeros((Nx+1,Ny+1), order=order)
u_2 = zeros((Nx+1,Ny+1), order=order)
```

Option -DF2PY_REPORT_ON_ARRAY_COPY=1 makes f2py write out array copying:

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \} -DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

Efficiency of translating to Fortran

- Same efficiency (in this example) as Cython and C
- About 5 times faster than vectorized numpy code
- > 1000 faster than pure Python code

Migrating loops to C via Cython

- Write the advance function in pure C
- Use Cython to generate C code for calling C from Python
- Full manual control of the translation to C
- numpy arrays transferred to C are one-dimensional in C
- Need to translate $[i, j]$ indices to single indices

```
/* Translate (i,j) index to single array index */
#define idx(i,j) (i)*(Ny+1) + j
void advance(double* u, double* u_1, double* u_2, double* f,
        double Cx2, double Cy2, double dt2,
        int Nx, int Ny)
{
    int i, j;
    /* Scheme at interior points */
    for (i=1; i<=Nx-1; i++) {
        for (j=1; j<=Ny-1; j++) {
                u[idx(i,j)] = 2*u_1[idx(i,j)] - u_2[idx(i,j)] +
                Cx2*(u_1[idx(i-1,j)] - 2*u_1[idx(i,j)] + u_1[idx(i+1,j)])
                Cy2*(u_1[idx(i,j-1)] - 2*u_1[idx(i,j)] + u_1[idx(i,j+1)])
                dt2*f[idx(i,j)];
}
        }
    }
}
```


The Cython interface file

```
import numpy as np
cimport numpy as np
cimport cython
cdef extern from "wave2D_u0_loop_c.h":
        void advance(double* u, double* u_1, double* u_2, double* f,
                        double Cx2, double Cy2, double dt2,
                        int Nx, int Ny)
@cython.boundscheck(False)
@cython.wraparound(False)
def advance_cwrap(
    np.ndarray[double, ndim=2, mode='c'] u,
    np.ndarray [double, ndim=2, mode='c'] u_1,
    np.ndarray[double, ndim=2, mode='c'] u_2,
    np.ndarray[double, ndim=2, mode='c'] f,
    double Cx2, double Cy2, double dt2):
    advance(&u[0,0], &u_1[0,0], &u_2[0,0], &f[0,0],
    Cx2, Cy2, dt2,
    u.shape [0]-1, u.shape[1]-1)
    return u
```


Building the extension module

Compile and link the extension module with a setup.py file:

```
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
sources = ['wave2D_u0_loop_c.c', 'wave2D_u0_loop_c_cy.pyx']
module = 'wave2D_uO_loop_c_cy'
setup(
    name=module,
    ext_modules=[Extension(module, sources,
                                    libraries=[], # C libs to link with
                                    )],
    cmdclass={'build_ext': build_ext},
)
```

Terminal> python setup.py build_ext --inplace
In Python:

```
import wave2D_u0_loop_c_cy
advance = wave2D_u0_loop_c_cy.advance_cwrap
f_a[:,:] = f(xv, yv, t[n])
u = advance(u, u_1, u_2, f_a, Cx2, Cy2, dt2)
```


Migrating loops to C via f2py

- Write the advance function in pure C
- Use f2py to generate C code for calling C from Python
- Full manual control of the translation to C
- Write the C function advance as before
- Write a Fortran 90 module defining the signature of the advance function
- Or: write a Fortran 77 function defining the signature and let f2py generate the Fortran 90 module

Fortran 77 signature (note intent(c)):

```
    subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
Cf2py intent(c) advance
    integer Nx, Ny, N
    real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
    real*8 f(0:Nx, 0:Ny), Cx2, Cy2, dt2
Cf2py intent(in, out) u
Cf2py intent(c) u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny
    return
    end
```

Generate Fortran 90 module (wave2D_u0_loop_c_f2py.pyf):
Terminal> f2py -m wave2D_u0_loop_c_f2py \}
-h wave2D_u0_loop_c_f2py.pyf --overwrite-signature \} wave2D_u0_loop_c_f2py_signature.f

The compile and build step must list the C files:
Terminal> f2py -c wave2D_u0_loop_c_f2py.pyf
--build-dir tmp_build_c \}
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_c.c

Migrating loops to C++ via f2py

- $C++$ can be used as an alternative to C
- C++ code often applies sophisticated arrays
- Challenge: translate from numpy C arrays to C++ array classes
- Can use SWIG to make C++ classes available as Python classes
- Easier (and more efficient):
- Make C API to the C++ code
- Wrap C API with f2py
- Send numpy arrays to C API and let C translate numpy arrays into C++ array classes

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Solutions:

$$
\begin{equation*}
u(x, t)=g_{R}(x-c t)+g_{L}(x+c t) \tag{60}
\end{equation*}
$$

If $u(x, 0)=I(x)$ and $u_{t}(x, 0)=0$:

$$
\begin{equation*}
u(x, t)=\frac{1}{2} I(x-c t)+\frac{1}{2} I(x+c t) \tag{61}
\end{equation*}
$$

Two waves: one traveling to the right and one to the left

Effect of variable wave velocity

A wave propagates perfectly $(C=1)$ and hits a medium with $1 / 4$ of the wave velocity. A part of the wave is reflected and the rest is transmitted.

We have just changed the initial condition...

Representation of waves as sum of sine/cosine waves

Build $I(x)$ of wave components $e^{i k x}=\cos k x+i \sin k x$:

$$
\begin{equation*}
I(x) \approx \sum_{k \in K} b_{k} e^{i k x} \tag{62}
\end{equation*}
$$

- k is the frequency of a component $(\lambda=2 \pi / k$ corresponding wave length)
- K is some set of all k needed to approximate $I(x)$ well
- b_{k} must be computed (Fourier coefficients)

Since $u(x, t)=\frac{1}{2} l(x-c t)+\frac{1}{2} l(x+c t)$:

$$
\begin{equation*}
u(x, t)=\frac{1}{2} \sum_{k \in K} b_{k} e^{i k(x-c t)}+\frac{1}{2} \sum_{k \in K} b_{k} e^{i k(x+c t)} \tag{63}
\end{equation*}
$$

Our interest: one component $e^{i(k x-\omega t)}, \omega=k c$

Analysis of the finite difference scheme

A similar discrete $u_{q}^{n}=e^{i\left(k x_{q}-\tilde{\omega} t_{n}\right)}$ solves

$$
\begin{equation*}
\left[D_{t} D_{t} u=c^{2} D_{x} D_{x} u\right]_{q}^{n} \tag{64}
\end{equation*}
$$

Note: different frequency $\tilde{\omega} \neq \omega$

- How accurate is $\tilde{\omega}$ compared to ω ?
- What about the wave amplitude?

Preliminary results

$$
\left[D_{t} D_{t} e^{i \omega t}\right]^{n}=-\frac{4}{\Delta t^{2}} \sin ^{2}\left(\frac{\omega \Delta t}{2}\right) e^{i \omega n \Delta t}
$$

By $\omega \rightarrow k, t \rightarrow x, n \rightarrow q$) it follows that

$$
\left[D_{x} D_{x} e^{i k x}\right]_{q}=-\frac{4}{\Delta x^{2}} \sin ^{2}\left(\frac{k \Delta x}{2}\right) e^{i k g \Delta x}
$$

Inserting a basic wave component $u=e^{i\left(k x_{q}-\tilde{\omega} t_{n}\right)}$ in the scheme (64) requires computation of

$$
\begin{align*}
{\left[D_{t} D_{t} e^{i k x} e^{-i \tilde{\omega} t}\right]_{q}^{n} } & =\left[D_{t} D_{t} e^{-i \tilde{\omega} t}\right]^{n} e^{i k q \Delta x} \\
& =-\frac{4}{\Delta t^{2}} \sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right) e^{-i \tilde{\omega} n \Delta t} e^{i k g \Delta x} \tag{65}\\
{\left[D_{x} D_{x} e^{i k x} e^{-i \tilde{\omega} t}\right]_{q}^{n} } & =\left[D_{x} D_{x} e^{i k x}\right]_{q} e^{-i \tilde{\omega} n \Delta t} \\
& =-\frac{4}{\Delta x^{2}} \sin ^{2}\left(\frac{k \Delta x}{2}\right) e^{i k g \Delta x} e^{-i \tilde{\omega} n \Delta t} \tag{66}
\end{align*}
$$

The complete scheme,

$$
\left[D_{t} D_{t} e^{i k x} e^{-i \tilde{\omega} t}=c^{2} D_{x} D_{x} e^{i k x} e^{-i \tilde{\omega} t}\right]_{q}^{n}
$$

leads to an equation for $\tilde{\omega}$:

$$
\begin{equation*}
\sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)=C^{2} \sin ^{2}\left(\frac{k \Delta x}{2}\right) \tag{67}
\end{equation*}
$$

where $C=\frac{c \Delta t}{\Delta x}$ is the Courant number

Taking the square root of (67):

$$
\begin{equation*}
\sin \left(\frac{\tilde{\omega} \Delta t}{2}\right)=C \sin \left(\frac{k \Delta x}{2}\right), \tag{68}
\end{equation*}
$$

- Exact ω is real
- Look for a real solution $\tilde{\omega}$ of (68)
- Then the sine functions are in $[-1,1]$
- Lef-hand side in $[-1,1]$ requires $C \leq 1$

Stability criterion

$$
\begin{equation*}
C=\frac{c \Delta t}{\Delta x} \leq 1 \tag{69}
\end{equation*}
$$

Why $C \leq 1$ is a stability criterion

Assume $C>1$. Then

$$
\underbrace{\sin \left(\frac{\tilde{\omega} \Delta t}{2}\right)}>1=C \sin \left(\frac{k \Delta x}{2}\right)
$$

- $|\sin x|>1$ implies complex x
- Here: complex $\tilde{\omega}=\tilde{\omega}_{r} \pm i \tilde{\omega}_{i}$
- One $\tilde{\omega}_{i}<0$ gives $\exp \left(i \cdot i \tilde{\omega}_{i}\right)=\exp \left(\tilde{\omega}_{i}\right)$ and exponential growth
- How close is $\tilde{\omega}$ to ω ?
- Can solve for an explicit formula for $\tilde{\omega}$

$$
\begin{equation*}
\tilde{\omega}=\frac{2}{\Delta t} \sin ^{-1}\left(C \sin \left(\frac{k \Delta x}{2}\right)\right) \tag{70}
\end{equation*}
$$

- $\omega=k c$ is the analytical dispersion relation
- $\tilde{\omega}=\tilde{\omega}(k, c, \Delta x, \Delta t)$ is the numerical dispersion relation
- Speed of waves: $c=\omega / k, \tilde{c}=\tilde{\omega} / k$
- The numerical wave component has a wrong, mesh-dependent speed
- For $C=1, \tilde{\omega}=\omega$
- The numerical solution is exact (at the mesh points)!
- The only requirement is constant c

Computing the error in wave velocity

- Introduce $p=k \Delta x / 2$
- p measures no of mesh points in space per wave length in space
- Study error in wave velocity through \tilde{c} / c as function of p

$$
r(C, p)=\frac{\tilde{c}}{c}=\frac{1}{C p} \sin ^{-1}(C \sin p), \quad C \in(0,1], p \in(0, \pi / 2]
$$

Visualizing the error in wave velocity

```
def r(C, p):
    return 2/(C*p)*asin(C*sin(p))
```


Taylor expanding the error in wave velocity

For small p, Taylor expand $\tilde{\omega}$ as polynomial in p :

```
>>> C, p = symbols('C p')
>>> rs = r(C, p).series(p, 0, 7)
>>> print rs
1 - p**2/6 + p**4/120 - p**6/5040 + C**2*p**2/6 -
C**2*p**4/12 + 13*C**2*p**6/720 + 3*C**4*p**4/40 -
C**4*p**6/16 + 5*C**6*p**6/112 + O(p**7)
```

>>> \# Factorize each term and drop the remainder O(...) term
>>> rs_factored $=$ [factor(term) for term in rs.lseries (p)]
>>> rs_factored = sum(rs_factored)
>>> print rs_factored
$\mathrm{p} * * 6 *(\mathrm{C}-1) *(\mathrm{C}+1) *(225 * \mathrm{C} * * 4-90 * \mathrm{C} * * 2+1) / 5040+$
$\mathrm{p} * * 4 *(\mathrm{C}-1) *(\mathrm{C}+1) *(3 * \mathrm{C}-1) *(3 * \mathrm{C}+1) / 120+$
$\mathrm{p} * * 2 *(\mathrm{C}-1) *(\mathrm{C}+1) / 6+1$

Leading error term is $\frac{1}{6}\left(C^{2}-1\right) p^{2}$ or

$$
\begin{equation*}
\frac{1}{6}\left(\frac{k \Delta x}{2}\right)^{2}\left(C^{2}-1\right)=\frac{k^{2}}{24}\left(c^{2} \Delta t^{2}-\Delta x^{2}\right)=\mathcal{O}\left(\Delta t^{2}, \Delta x^{2}\right) \tag{71}
\end{equation*}
$$

Example on effect of wrong wave velocity (1)

Smooth wave, few short waves (large k) in $I(x)$:

Example on effect of wrong wave velocity (1)

Not so smooth wave, significant short waves (large k) in $I(x)$:

Extending the analysis to 2D (and 3D)

$$
u(x, y, t)=g\left(k_{x} x+k_{y} y-\omega t\right)
$$

is a typically solution of

$$
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right)
$$

Can build solutions by adding complex Fourier components of the form

$$
e^{i\left(k_{x} x+k_{y} y-\omega t\right)}
$$

Discrete wave components in 2D

$$
\begin{equation*}
\left[D_{t} D_{t} u=c^{2}\left(D_{x} D_{x} u+D_{y} D_{y} u\right)\right]_{q, r}^{n} \tag{72}
\end{equation*}
$$

This equation admits a Fourier component

$$
\begin{equation*}
u_{q, r}^{n}=e^{i\left(k_{x} q \Delta x+k_{y} r \Delta y-\tilde{\omega} n \Delta t\right)} \tag{73}
\end{equation*}
$$

Inserting the expression and using formulas from the 1D analysis:

$$
\begin{equation*}
\sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)=C_{x}^{2} \sin ^{2} p_{x}+C_{y}^{2} \sin ^{2} p_{y} \tag{74}
\end{equation*}
$$

where

$$
C_{x}=\frac{c^{2} \Delta t^{2}}{\Delta x^{2}}, \quad C_{y}=\frac{c^{2} \Delta t^{2}}{\Delta y^{2}}, \quad p_{x}=\frac{k_{x} \Delta x}{2}, \quad p_{y}=\frac{k_{y} \Delta y}{2}
$$

Stability criterion in 2D

Rreal-valued $\tilde{\omega}$ requires

$$
\begin{equation*}
C_{x}^{2}+C_{y}^{2} \leq 1 \tag{75}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta t \leq \frac{1}{c}\left(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}\right)^{-1 / 2} \tag{76}
\end{equation*}
$$

Stability criterion in 3D

$$
\begin{equation*}
\Delta t \leq \frac{1}{c}\left(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}+\frac{1}{\Delta z^{2}}\right)^{-1 / 2} \tag{77}
\end{equation*}
$$

For $c^{2}=c^{2}(\mathbf{x})$ we must use the worst-case value $\bar{c}=\sqrt{\max _{\mathbf{x} \in \Omega} c^{2}(\mathbf{x})}$ and a safety factor $\beta \leq 1$:

$$
\begin{equation*}
\Delta t \leq \beta \frac{1}{\bar{c}}\left(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}+\frac{1}{\Delta z^{2}}\right)^{-1 / 2} \tag{78}
\end{equation*}
$$

$$
\tilde{\omega}=\frac{2}{\Delta t} \sin ^{-1}\left(\left(C_{x}^{2} \sin ^{2} p_{x}+C_{y}^{2} \sin _{y}^{p}\right)^{\frac{1}{2}}\right)
$$

For visualization, introduce θ :

$$
k_{x}=k \sin \theta, \quad k_{y}=k \cos \theta, \quad p_{x}=\frac{1}{2} k h \cos \theta, \quad p_{y}=\frac{1}{2} k h \sin \theta
$$

Also: $\Delta x=\Delta y=h$. Then $C_{x}=C_{y}=c \Delta t / h \equiv C$.
Now $\tilde{\omega}$ depends on

- C reflecting the number cells a wave is displaced during a time step
- kh reflecting the number of cells per wave length in space
- θ expressing the direction of the wave

$$
\frac{\tilde{c}}{c}=\frac{1}{C k h} \sin ^{-1}\left(C\left(\sin ^{2}\left(\frac{1}{2} k h \cos \theta\right)+\sin ^{2}\left(\frac{1}{2} k h \sin \theta\right)\right)^{\frac{1}{2}}\right)
$$

Can make color contour plots of $1-\tilde{c} / c$ in polar coordinates with θ as the angular coordinate and $k h$ as the radial coordinate.

Numerical dispersion relation in 2D (3)

