Study Guide: Finite difference methods for

vibration problems

Hans Petter Langtangen'»?

Center for Biomedical Computing, Simula Research Laboratory!

Department of Informatics, University of Oslo?

Dec 14, 2013

A simple vibration problem

"t +wPu=0, w(0)=1, J(0)=0, tc(0,T]. (1)
Exact solution:
u(t) = I cos(wt). (2)

u(t) oscillates with constant amplitude / and (angular) frequency
w. Period: P =27 /w.

A centered finite difference scheme; step 1 and 2

@ Strategy: follow the four steps of the finite difference method.

@ Step 1: Introduce a time mesh, here uniform on [0, T]:
t, = nAt
@ Step 2: Let the ODE be satisfied at each mesh point:

u"(tn) +w?u(t,) =0, n=1,...,N;. (3)

http://tinyurl.com/k3sdbuv/pub/decay-sphinx/main_decay.html#the-forward-euler-scheme

A centered finite difference scheme; step 3

Step 3: Approximate derivative(s) by finite difference
approximation(s). Very common (standard!) formula for u”:

un+1 —2u" 4+ unfl
. 4
At? *)

U”(tn) ~

Use this discrete initial condition together with the ODE at t =0
to eliminate u~! (insert (4) in (3)):

n+1 _ ouyn n—1
! Aut2 R —wu". (5)

A centered finite difference scheme; step 4

Step 4: Formulate the computational algorithm. Assume u”

u" are known, solve for unknown u"*t1:

1:2un_ At22n

Nick names for this scheme: Stormer’s method or Verlet
integration.

-1

and

(6)

http://en.wikipedia.org/wiki/Velocity_Verlet
http://en.wikipedia.org/wiki/Velocity_Verlet

Computing the first step

1

@ The formula breaks down for u! because u~1 is unknown and

outside the mesh!

@ And: we have not used the initial condition v/(0) = 0.
Discretize v/(0) = 0 by a centered difference

1 -1
%:0 = ufl:ul. (7)

Inserted in (6) for n = 0 gives

1
ut =10 — 2At2 200, (8)

The computational algorithm

o L=
@ compute u! from (8)
Q forn=1,2 ... ,N;—1:

© compute u™! from (6)

More precisly expressed in Python:

t = linspace(0, T, Nt+1) # mesh points in time

dt = t[1] - t[0] # constant time step.
u = zeros(Nt+1) # solution

ul0] = I

ul1] = ul0] - 0.5*dt**2*wx*2*ul0]

for n in range(1l, Nt):
u[n+1] = 2+uln] - uln-1] - dt*x2*w*x*x2xu[n]

Note: w is consistently used for w in my code.

Operator notation; ODE

With [D;D;u]" as the finite difference approximation to u”(t,) we
can write

[D:Deu + w?u = 0]". (9)

[D:D:u]" means applying a central difference with step At/2 twice:

_ [Deu]™ — [Deu)"
o At

[D¢(Dru)]”
which is written out as

1 (un+1 —y" u’ — un—1> un+1 — 2yt un—l

At At

At - At2

Operator notation; initial condition

[u=1]° [Dau=0]°, (10)

where [Dy;u]" is defined as

[Daet]” = —— (11)

u is often displacement/position, v’ is velocity and can be
computed by

u'(ty) % ——————— = [Dpu]". (12)

Core algorithm

from numpy import *
from matplotlib.pyplot import *
from vib_empirical_analysis import minmax, periods, amplitudes

def solver(I, w, dt, T):
mnnn
Solve u’’ + wx*2%u = 0 for t in (0,T], u(0)=I and u’(0)=0,
by a central finite difference method with time step dt.
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1)

ul0] =1
ul1] = ul0] - 0.5*dt**2*kw**x2%ul[0]
for n in range(l, Nt):
uln+1] = 2%uln] - uln-1] - dt**2xwx*2+u[n]
return u, t

def exact_solution(t, I, w):
return I*cos(w*t)

def visualize(u, t, I, w):
plot(t, u, ’r--o’)
t_fine = linspace(0, t[-1], 1001) # wvery fine mesh for u_e
u_e = exact_solution(t_fine, I, w)

hold(’on’)

plot(t_fine, u_e, ’b-’)

legend([’numerical’, ’exact’], loc=’upper left’)
xlabel(’t’)

ylabel(’u’)

dat = t[1] - t[0]

title(’dt=Yg’ % dt)

umin = 1.2*u.min(); umax = -umin
axis([t[0], t[-1], umin, umax])
savefig(’vibl.png’)
savefig(’vibl.pdf’)
savefig(’vibl.eps’)

I=1

w = 2%pi

dt = 0.05

num_periods = 5

P = 2%pi/w # one period
T = P*num_periods

u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)

User interface: command line

import argparse

parser = argparse.ArgumentParser ()
parser.add_argument (’--I’, type=float, default=1.0)
parser.add_argument (’--w’, type=float, default=2*pi)
parser.add_argument (’--dt’, type=float, default=0.05)
parser.add_argument (’--num_periods’, type=int, default=5)
a = parser.parse_args()

I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods

Running the program

vib_undamped.py:
Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

Generates frames tmp_vib%04d.png in files. Can make movie:

Terminal> avconv -r 12 -i tmp_vib%04d.png -vcodec flv movie.flv

Can use ffmpeg instead of avconv.

Format Codec and filename
Flash -vcodec flv movie. flv
MP4 -vcodec libxz64 movie.mpi
Webm -vcodec libupz movie.webm

Ogg -vcodec libtheora movie.ogg

http://tinyurl.com/jvzzcfn/vib/vib_undamped.py

First steps for testing and debugging

o Testing very simple solutions: v = const or u = ct + d do
not apply here (without a force term in the equation:
U+ w?u = f).

e Hand calculations: calculate u! and u? and compare with
program.

Checking convergence rates

The next function estimates convergence rates, i.e., it

e performs m simulations with halved time steps: 2~ ¥At,
k=0,....m—1,

@ computes the Ly norm of the error,
E= \/At; Z,’)’;_Ol(u” — ue(tn))? in each case,

@ estimates the rates r; from two consecutive experiments
(Ati_1,Ei_1) and (At;, E;), assuming E; = CAt]" and
Ei_1 = CAt]

Implementational details

def convergence_rates(m, num_periods=8):
nmumn
Return m-1 empirical estimates of the convergence rate
based on m simulations, where the time step is halwved
for each simulation.
w=0.35; I=0.3
dt = 2%pi/w/30 # 30 time step per pertod 2¥pi/w
T = 2*pi/wxnum_periods
dt_values = []
E_values = []
for i in range(m):
u, t = solver(I, w, dt, T)
u_e = exact_solution(t, I, w)
E = sqrt(dt*sum((u_e-u)**2))
dt_values.append(dt)
E_values.append(E)
dt = dt/2

r = [log(E_values[i-1]/E_values[i])/
log(dt_values[i-1]/dt_values[i])
for i in range(l, m, 1)]

return r

Result: r contains values equal to 2.00 - as expected!

Use final r[-1] in a unit test:

def test_convergence_rates():
r = convergence_rates(m=5, num_periods=8)
Accept rate to 1 decimal place
nt.assert_almost_equal(r[-1], 2.0, places=1)

Complete code in vib_undamped.py.

http://tinyurl.com/jvzzcfn/vib/vib_undamped.py

Long time simulations

Effect of the time step on long simulations

dt=0.1 dt=0.05

e - numerical e - numerical
“N — exact \ . b h "W — exact
f I '
o \
'R ;
| I '
o ' !
| o
A '

@ The numerical solution seems to have right amplitude.
@ There is a phase error (reduced by reducing the time step).

@ The total phase error seems to grow with time.

Using a moving plot window

@ In long time simulations we need a plot window that follows
the solution.

@ Method 1: scitools.MovingPlotWindow.
@ Method 2: scitools.avplotter (ASCII vertical plotter).

Example:
Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

Movie of the moving plot window.

http://tinyurl.com/k3sdbuv/pub/mov-vib/vib_undamped_dt0.05/index.html

Analysis of the numerical scheme

Deriving an exact numerical solution; ideas

Linear, homogeneous, difference equation for u".

Has solutions u” ~ IA", where A is unknown (number).
Here: wue(t) = I cos(wt) ~ I exp (iwt) = I(e“At)"

Trick for simplifying the algebra: u" = [A", with

A = exp (i®At), then find &

&: unknown numerical frequency (easier to calculate than A)

w — @ is the phase error

Use the real part as the physical relevant part of a complex
expression

Deriving an exact numerical solution; calculations (1)

= IA" = | exp (WAt n) = l exp (&t) = | cos(&t) + il sin(&t).

"t —oyn 4 yn-1
[DtDtu]n = At2
An+1 A" 1 Anfl
At?
exp (io(t + At)) — 2exp (idt) + exp (io(t — At))
At?

(exp (iG(At)) + exp (io(—At)) — 2)

=1

=1

1
= lexp (i®t)

— Jexp (itot) s (cosh(iBAL) — 1)

At2
At?
A— (cos(wAt) — 1)
WAt
)

2
= lexp (i&t)

= —lexp (id)t)ﬁ sin?(

Deriving an exact numerical; calculations (2)

The scheme (6) with u” = exp (iwAt n) inserted gives

5A
N S|n2(th) +w?lexp(itot) =0, (13)

which after dividing by lo exp (i&t) results in

—lexp (i0t)—

=w”. (14)

Solve for @:) A
t
G =t sin? <“2> . (15)

@ Phase error because & # w.

@ But how good is the approximation & to w?

Polynomial approximation of the phase error

Taylor series expansion for small At gives a formula that is easier
to understand:

>>> from sympy import *

>>> dt, w = symbols(’dt w’)

>>> w_tilde = asin(w*dt/2) .series(dt, 0, 4)*2/dt

>>> print w_tilde

(dt*w + dt**3xw**3/24 + 0(dt**4))/dt # observe final /dt

H=uw (1 + 214w2At2) +0O(A%). (16)

The numerical frequency is too large (to fast oscillations).

Plot of the phase error

1.6

— exact discrete frequency
- - 2nd-order expansion

1.5f

=
i

numerical frequency
=
w

1.1r

1'00 5 10 15 20 25 30 35

no of time steps per period

Recommendation: 25-30 points per period.

Exact discrete solution

2 A
u" = Il cos (OnAt), &= —sin"1 <M> . (17)
The error mesh function,

e" = ue(ty) — u" = I cos (wnAt) — | cos (WnAt)

is ideal for verification and analysis.

Convergence of the numerical scheme

Can easily show convergence:

e”" — 0as At — 0,

because

. ~ . 2 .1 wAt
lim &= lim —sin = w,
At—0 At—0 At

by L'Hopital's rule or simply asking
(2/x)*asin(wxx/2) as x->0 in WolframAlpha.

http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0

Observations:
@ Numerical solution has constant amplitude (desired!), but
phase error.
o Constant amplitude requires sin~1(wAt/2) to be real-valued
= |wAt/2] < 1.
o sin"1(x) is complex if |x| > 1, and then & becomes complex.
What is the consequence of complex &7
o Set W = &, + i;.
o Since sin~!(x) has a negative* imaginary part for x > 1,
exp (iwt) = exp (—@;t) exp (i@, t) leads to exponential growth
e it when —&;t > 0.

@ This is instability because the qualitative behavior is wrong.

http://www.wolframalpha.com/input/?i=arcsin%28x%29%2C+x+in+%280%2C3%29

The stability criterion

Cannot tolerate growth and must therefore demand a stability

criterion A
wAt
— <1 = At<

(18)

gl

Try At =249.01-1075 (slightly too big!):

dt=0.3184
2.5 T T T T T

& - numerical
2.0} exact f
I

-2.0

y
®
8

Summary of the analysis

We can draw three important conclusions:

© The key parameter in the formulas is p = wAt.
@ Period of oscillations: P =27 /w
® Number of time steps per period: Np = P/At
0 = p:wAt:27r/Np~]./Np
@ The smallest possible Np is 2 = p € (0, 7]
@ For p < 2 the amplitude of u” is constant (stable solution)

n H ~ ~ 1.2 :
© u" has a relative phase error &/w ~ 14 5;p°, making
numerical peaks occur too early

Alternative schemes based on 1st-order equations

Rewriting 2nd-order ODE as system of two 1st-order ODEs

The vast collection of ODE solvers (e.g., in Odespy) cannot be
applied to

'+ wu=0

unless we write this higher-order ODE as a system of 1st-order
ODEs.

Introduce an auxiliary variable v = u':

u=v, (19)
Vi = —w?u. (20)

Initial conditions: u(0) =/ and v(0) = 0.

https://github.com/hplgit/odespy

The Forward Euler scheme

We apply the Forward Euler scheme to each component equation:

[Df u=v]",
[Df v = —w?u]",
or written out,
u™ ="+ Aty (21)

vt = v AU (22)

The Backward Euler scheme

We apply the Backward Euler scheme to each component equation:

[Df u=v]", (23)
[D; v = —wu]"t?. (24)
Written out:
u™ — Ayt =y (25)
vt L At?ut = v, (26)

This is a coupled 2 x 2 system for the new values at t = tp11!

The Crank-Nicolson scheme

[Deu = V]2, (27)
[Drv = —wﬁt]”+% . (28)

The result is also a coupled system:

1 1
u"tt — EAtv”Jrl =u"+ EAtv”, (29)

Vn+1 + %Athu”Jrl =y - %Athun . (30)

Comparison of schemes via Odespy

Can use Odespy to compare many methods for first-order schemes:

import odespy
import numpy as np

def f(u, t, w=1):
u, v=u #u is array of length 2 holding our [u, v]
return [v, -wk*2*u]

def run_solvers_and_plot(solvers, timesteps_per_period=20,
num_periods=1, I=1, w=2*np.pi):
P = 2*np.pi/w # duration of one pertiod
dt = P/timesteps_per_period
Nt = num_periods*timesteps_per_period
T = Nt*dt
t_mesh = np.linspace(0, T, Nt+1)

legends = []

for solver in solvers:
solver.set (f_kwargs={"w’: w})
solver.set_initial_condition([I, 0])
u, t = solver.solve(t_mesh)

https://github.com/hplgit/odespy

Forward and Backward Euler and Crank-Nicolson

solvers = [
odespy.ForwardEuler (f),
Implicit methods must use Newton solver to converge
odespy .BackwardEuler (f, nonlinear_solver=’Newton’),
odespy.CrankNicolson(f, nonlinear_solver=’Newton’),

Two plot types:
o u(t)vst
o Parameterized curve (u(t), v(t)) in phase space

e Exact curve is an ellipse: (/ coswt, —w/ sinwt), closed and
periodic

Phase plane plot of the numerical solutions

N Time step: 0.05 Time step: 0.025

()
()

s e—a ForwardEuler -4 ForwardEuler
®—a BackwardEuler - BackwardEuler
v—v Midpointimplicit -§| - Midpointimplicit
exact exact
) -1 0 1 2 3 ~15 -1.0 -0.5 0.0 0.5 1.0 15 2.0
u(t) u(t)

Note: CrankNicolson in Odespy leads to the name
MidpointImplicit in plots.

Plain solution curves

Time step: 0.025

Time step: 0.05

ForwardEuler
BackwardEuler
Midpointimplicit
exact

ForwardEuler
BackwardEuler

Midpointimplicit
exact

Il

0.4 0.6 0.8

Comparison of classical schemes.

Observations from the figures

e Forward Euler has growing amplitude and outward (u, v)
spiral - pumps energy into the system.

@ Backward Euler is opposite: decreasing amplitude, inward
sprial, extracts energy.

@ Forward and Backward Euler are useless for vibrations.

@ Crank-Nicolson (MidpointImplicit) looks much better.

rder 2 and 4; short time series

Runge-Kutta methods of

Time step: 0.05

Time step: 0.1
6| 6|
4 4
2 2
s 0 30
-2 -2
-4 -4
o—e RK2
-6 -6 =—a RK4
exact
=S -10 ~05 0.0 05 10 15 =S -10 ~05 0.0 05 10 15
u(t) u(t)

Time step: 0.1 N Time step: 0.05

“135 0.2 0.4 0.6 0.8 1.0 “135 0.2

Runge-Kutta methods of order 2 and 4; longer time series

Time step: 0.1
30 6
20 i
10
N 2
‘ O
g 2o
10
-2
-20)
4
-30)
— RK2
40 — RK4 6
— exact
8 6 4 2 0 2 4 6 5

Time step: 0.1 5 Time step: 0.05

Crank-Nicolson; longer time series

v(t)

Time step: 0.1

Time step: 0.05

v(t)
°

Time step: 0.05

0.5]

— Midpointimplicit
— exact

Observations of RK and CN methods

@ 4th-order Runge-Kutta is very accurate, also for large At.

o 2th-order Runge-Kutta is almost as bad as Forward and
Backward Euler.

@ Crank-Nicolson is accurate, but the amplitude is not as
accurate as the difference scheme for u” + w?u = 0.

Energy conservation property

The model

v +wlu=0, wu(0)=1, J(0)=V,

has the nice energy conservation property that

2,2

1 1
E(t) = =(v')® + Zw?u® = const .

2 2
This can be used to check solutions.

Derivation of the energy conservation property

Multiply u” 4+ w?u = 0 by «’ and integrate:

T T
/ " dt +/ Wwud'dt =0.
0 0

Observing that

dl1 dl1
e AT AY / 772
uu-dtz(u), s = — s
we get
dt=E(T)— E(0
[AW+ & hme =) -)
where
Lona 1 oo
E(t) = E(u) +§w u”. (31)

Remark about E(t)

E(t) does not measure energy, energy per mass unit.

Starting with an ODE coming directly from Newton's 2nd law
F = ma with a spring force F = —ku and ma = mu” (a:
acceleration, u: displacement), we have

mu”" + ku=0

Integrating this equation gives a physical energy balance:

1 1
E(t) = §mv2 + EkU2 =E(0), v=1u
—— ——

kinetic energy potential energy

Note: the balance is not valid if we add other terms to the ODE.

The Euler-Cromer method; idea

Forward-backward discretization of the 2x2 system:

e Update u with Forward Euler

o Update v with Backward Euler, using latest u

[Dfu=v]", (32)
[Dy v = —wu]". (33)

The Euler-Cromer method; complete formulas

Written out:

u =1, (34)
V0 =0, (35)
U™t ="+ A", (36)
vt = v - Atw?umtt (37)

Names: Forward-backward scheme, Semi-implicit Euler method,
symplectic Euler, semi-explicit Euler, Newton-Stormer-Verlet, and
Euler-Cromer.

o Forward Euler and Backward Euler have error O(At)

e What about the overall scheme? Expect O(At)...

http://en.wikipedia.org/wiki/Semi-implicit_Euler_method

Equivalence with the scheme for the second-order ODE

Goal: eliminate v". We have
v = vl - Atw?u”,
which can be inserted in (36) to yield
u" = 0"+ Arv™ — At (38)

Using (36),
n—t u — un—l
v — T AL

At
and when this is inserted in (38) we get

u™ =20 — "t - A" (39)

Comparison of the treatment of initial conditions

@ The Euler-Cromer scheme is nothing but the centered scheme
for v’ + w?u =0 (6)!

@ The previous analysis of this scheme then also applies to the
Euler-Cromer method!

@ What about the initial conditions?

d=v=0 = =0,

and (36) implies u* = u°, while (37) says v! = —w?uC.

This u' = u® approximation corresponds to a first-order Forward
Euler discretization of v/(0) = 0: [D;f u = 0]°.

A method utilizing a staggered mesh

@ The Euler-Cromer scheme uses two unsymmetric differences in
a symmetric way...

@ We can derive the method from a more pedagogical point of
view where we use a staggered mesh and only centered
differences

Staggered mesh:

@ u is unknown at mesh points tg, t1,..., ts, ...

@ v is unknown at mesh points t /2, t3/2, .., thp1/2s - - -
(between the u points)

Centered differences on a staggered mesh

[Deu = v]™2, (40)
[Dev = —wu]™?. (41)
Written out:
U™ =y + A (42)
VI3 = v - Aty (43)

or shift one time level back (purely of esthetic reasons):

U = u" 4 AT (44)

VIt = v Atw?u” (45)

Comparison with the scheme for the 2nd-order ODE

o Can eliminate v"+1/2
v +wPu=0
@ What about the initial conditions? Their equivalent too!

u(0) = 0 and ¢/(0) = v(0) = 0 give u® =/ and

and get the centered scheme for

1
v(O)%E(v*%-FV%):O, = VvI=_yb,

NI

Combined with the scheme on the staggered mesh we get

1
ut = — EAtzwzl,

Implementation of a staggered mesh; integer indices

) 1,
e How to write v"*2 in the code? v[i+0.5] does not work...

@ Need a storage convention:

1
o vtz — v[n]
1—1
e vi~2 — v[n-1]

1 1
e vz = v 3 — Atw?u" becomes
vin] = vin-1] - dt*wk*2%ul[n]

\begin{minted} [fontsize=\fontsize{9pt}{9pt},linenos=false,mathescap
def solver(I, w, dt, T):
set up vartables...

u[0] I
v[0] 0 - 0.5*%dt*wx*2*u[0]
for n in range(l, Nt+1):
uln] = uln-1] + dt*v[n-1]
v[n] = v[n-1] - dt*w**2%u[n]
return u, t, v, t_v

Implementation of a staggered mesh; half-integer indices

(1)

It would be nice to write

_ _1
u"=u"t 4+ Az,

1 _1
vitE =172 — Atw?u”,

as

uln] = uln-1] + dt*v[n-half]
v[n+half] = v[n-half] - dt*w**2*ul[n]

(Implying that n+half is n and n-half is n-1.)

Implementation of a staggered mesh; half-integer indices

(2)

This class ensures that n+half is n and n-half is n-1:

class HalfInt:
def __radd__(self, other):
return other

def rsub__(self, other):

return other - 1

half = HalfInt()

Now

uln] = uln-1] + dt*v[n-half]
v[n+half] = v[n-half] - dt*w**2*ul[n]

is equivalent to

u[n]

v[n]

u[n-1] + dt*v[n-1]
v[n-1] - dt*w**2*uln]

Generalization: damping, nonlinear spring, and external

excitation

mu” + f(u') + s(u) = F(t), wu(0)=1, J/(0)=V, te(0,T].
(46)
Input data: m, f(u'), s(u), F(t), I, V, and T.
Typical choices of f and s:
e linear damping f(u') = bu, or
e quadratic damping f(u') = bu'|J/|
@ linear spring s(u) = cu

@ nonlinear spring s(u) ~ sin(u) (pendulum)

A centered scheme for linear damping

[thDtU —+ f(D2tU) + S(U) = F]n (47)
Written out
un+1 —2u"+ un—l un+1 _ un—l , ;
e () s = BT (49)

Assume f(u') is linear in v’ = v:

u"tt = (2mu” + (gAt —m)u"t + AP(F" - s(u"))) (m+gAt)_1 .
(49)

Initial conditions

w=1° = L=1, (50)
[Doru=V]° = ul=ul-2AtV (51)
End result:
1_,0 A7t2 . . 0 0
ut=u +AtV+2m(bV —s(u”) + F7). (52)

Same formula for u' as when using a centered scheme for
v 4+ wu=0.

Linearization via a geometric mean approximation

o f(u') = bu'|t/| leads to a quadratic equation for u"*!

@ Instead of solving the quadratic equation, we use a geometric
mean approximation

In general, the geometric mean approximation reads
(W2)" ~ wr o th
For |u|u" at t,:
1 1
/101" % o (1 +)| (80 =)]

For v/ at th+1/2 We use centered difference:

U (tne1j2) = [Det] ™2, U (tg 1) ~ [Deu]"" 2. (53)

A centered scheme for quadratic damping

After some algebra:

un+1 _ (m+ b|un _ un—1|)_1 %

(2mu" — mu""t + bu"|u" — " + A (F" — s(u"))) .
(54)

Initial condition for quadratic damping

Simply use that v/ = V in the scheme when t =0 (n = 0):

[mD¢Dsu+ bV|V| + s(u) = F]° (55)
which gives

At?
ut =+ ALV + ST (=bV|V| —s(u®)+ F°) . (56)

Algorithm

Q0=
@ compute u! from (52) if linear damping or (56) if quadratic
damping
Q forn=1,2 ... ,N;—1:
© compute u"™! from (49) if linear damping or (54) if quadratic
damping

Implementation

def solver(I, V, m, b, s, F, dt, T, damping=’linear’):
dt = float(dt); b = float(b); m = float(m) # avoid integer div.
Nt = int(round(T/dt))
u = zeros(Nt+1)
t linspace(0, Nt*dt, Nt+1)

ul0] = I
if damping == ’linear’:
ul1]l = ul0] + dt*V + dt**2/(2xm)*(-b*V - s(ul[0]) + F(t[0]))
elif damping == ’quadratic’:
ul1] = ul0] + dtxV + \
dt**2/ (2+m) * (-b*V+abs (V) - s(u[0]) + F(t[0]1))

for n in range(l, Nt):
if damping == ’linear’:
u[n+1] = (2*m*u[n] + (b*dt/2 - m)*ul[n-1] +
dt**x2x(F(t[n]) - s(uln])))/(m + bxdt/2)
elif damping == ’quadratic’:
uln+1] = (2*m*u[n] - m*u[n-1] + b*ul[n]l*abs(uln] - uln-1
+ dt**x2%(F(t[n]) - s(ulnl)))/\
(m + b*abs(uln] - uln-11))
return u, t

e Constant solution ue = I (V = 0) fulfills the ODE problem
and the discrete equations. ldeal for debugging!

@ Linear solution ue = Vt + I fulfills the ODE problem and the
discrete equations.

o Quadratic solution ue = bt? + Vt + [fulfills the ODE problem
and the discrete equations with linear damping, but not for
quadratic damping. A special discrete source term can allow
ue to also fulfill the discrete equations with quadratic
damping.

vib.py supports input via the command line:

Terminal> python vib.py --s ’sin(u)’ --F ’3*cos(4*t)’ --c 0.03
This results in a moving window following the function on the
screen.

dt=0.05

1.0f

0.5f

—0.5}

-1.0f

http://tinyurl.com/jvzzcfn/vib/vib.py
http://tinyurl.com/k3sdbuv/pub/mov-vib/vib_generalized_dt0.05/index.html

Euler-Cromer formulation

We rewrite

mu” + f(u') +s(u) = F(t), u(0)=1, (0)=V, te(0,T],
(57)

as a first-order ODE system

U =v, (58)
vVi=m (F(t) — f(v) — s(u)) . (59)

Staggered grid

@ u is unknown at t,: u”

. ntl
@ v is unknown at t, 151 v 2

@ All derivatives are approximated by centered differences

[Deu = v]"2, (60)
[Div = m~t (F(t) —f(v) —s(u))]". (61)
Written out,
u — unfl a1
A=V (62)
Vn+% v" % _ 1 Fn fly") — n 63)
Az =m = (F"=f(v") —s(u")) . (

Problem: f(v")

Linear damping

With f(v) = bv, we can use an arithmetic mean for bv" a la
Crank-Nicolson schemes.

Quadratic damping

With f(v) = b|v|v, we can use a geometric mean

blv"|v" ~ b\v”*%‘v’”r%,

resulting in

1
u" =y Atz

b
VIR = (14 2y A (v R Aem L (FT - s(u™) |
m

Initial conditions

W = /, (64)

1
vi=V - SN (65)

