Study Guide: Finite difference methods for vibration problems

Hans Petter Langtangen ${ }^{1,2}$

Center for Biomedical Computing, Simula Research Laboratory ${ }^{1}$
Department of Informatics, University of Oslo ${ }^{2}$

Dec 14, 2013

A simple vibration problem

$$
\begin{equation*}
u^{\prime \prime} t+\omega^{2} u=0, \quad u(0)=I, u^{\prime}(0)=0, t \in(0, T] . \tag{1}
\end{equation*}
$$

Exact solution:

$$
\begin{equation*}
u(t)=I \cos (\omega t) \tag{2}
\end{equation*}
$$

$u(t)$ oscillates with constant amplitude I and (angular) frequency ω. Period: $P=2 \pi / \omega$.

A centered finite difference scheme; step 1 and 2

- Strategy: follow the four steps of the finite difference method.
- Step 1: Introduce a time mesh, here uniform on $[0, T]$:

$$
t_{n}=n \Delta t
$$

- Step 2: Let the ODE be satisfied at each mesh point:

$$
\begin{equation*}
u^{\prime \prime}\left(t_{n}\right)+\omega^{2} u\left(t_{n}\right)=0, \quad n=1, \ldots, N_{t} \tag{3}
\end{equation*}
$$

A centered finite difference scheme; step 3

Step 3: Approximate derivative(s) by finite difference approximation(s). Very common (standard!) formula for $u^{\prime \prime}$:

$$
\begin{equation*}
u^{\prime \prime}\left(t_{n}\right) \approx \frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}} \tag{4}
\end{equation*}
$$

Use this discrete initial condition together with the ODE at $t=0$ to eliminate u^{-1} (insert (4) in (3)):

$$
\begin{equation*}
\frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}}=-\omega^{2} u^{n} \tag{5}
\end{equation*}
$$

A centered finite difference scheme; step 4

Step 4: Formulate the computational algorithm. Assume u^{n-1} and u^{n} are known, solve for unknown u^{n+1} :

$$
\begin{equation*}
u^{n+1}=2 u^{n}-u^{n-1}-\Delta t^{2} \omega^{2} u^{n} . \tag{6}
\end{equation*}
$$

Nick names for this scheme: Störmer's method or Verlet integration.

Computing the first step

- The formula breaks down for u^{1} because u^{-1} is unknown and outside the mesh!
- And: we have not used the initial condition $u^{\prime}(0)=0$.

Discretize $u^{\prime}(0)=0$ by a centered difference

$$
\begin{equation*}
\frac{u^{1}-u^{-1}}{2 \Delta t}=0 \quad \Rightarrow \quad u^{-1}=u^{1} \tag{7}
\end{equation*}
$$

Inserted in (6) for $n=0$ gives

$$
\begin{equation*}
u^{1}=u^{0}-\frac{1}{2} \Delta t^{2} \omega^{2} u^{0} \tag{8}
\end{equation*}
$$

The computational algorithm

(1) $u^{0}=1$
(2) compute u^{1} from (8)
(3) for $n=1,2, \ldots, N_{t}-1$:
(1) compute u^{n+1} from (6)

More precisly expressed in Python:

```
t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0] # constant time step.
u = zeros(Nt+1) # solution
u[0] = I
u[1] = u[0] - 0.5*dt**2*W**2*u[0]
for n in range(1, Nt):
    u[n+1] = 2*u[n] - u[n-1] - dt**2*W**2*u[n]
```

Note: w is consistently used for ω in my code.

Operator notation; ODE

With $\left[D_{t} D_{t} u\right]^{n}$ as the finite difference approximation to $u^{\prime \prime}\left(t_{n}\right)$ we can write

$$
\begin{equation*}
\left[D_{t} D_{t} u+\omega^{2} u=0\right]^{n} \tag{9}
\end{equation*}
$$

$\left[D_{t} D_{t} u\right]^{n}$ means applying a central difference with step $\Delta t / 2$ twice:

$$
\left[D_{t}\left(D_{t} u\right)\right]^{n}=\frac{\left[D_{t} u\right]^{n+\frac{1}{2}}-\left[D_{t} u\right]^{n-\frac{1}{2}}}{\Delta t}
$$

which is written out as

$$
\frac{1}{\Delta t}\left(\frac{u^{n+1}-u^{n}}{\Delta t}-\frac{u^{n}-u^{n-1}}{\Delta t}\right)=\frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}}
$$

Operator notation; initial condition

$$
\begin{equation*}
[u=I]^{0}, \quad\left[D_{2 t} u=0\right]^{0}, \tag{10}
\end{equation*}
$$

where $\left[D_{2 t} u\right]^{n}$ is defined as

$$
\begin{equation*}
\left[D_{2 t} u\right]^{n}=\frac{u^{n+1}-u^{n-1}}{2 \Delta t} . \tag{11}
\end{equation*}
$$

Computing u^{\prime}

u is often displacement/position, u^{\prime} is velocity and can be computed by

$$
\begin{equation*}
u^{\prime}\left(t_{n}\right) \approx \frac{u^{n+1}-u^{n-1}}{2 \Delta t}=\left[D_{2 t} u\right]^{n} \tag{12}
\end{equation*}
$$

```
from numpy import *
from matplotlib.pyplot import *
from vib_empirical_analysis import minmax, periods, amplitudes
def solver(I, w, dt, T):
    """
    Solve u'' + w**2*u = 0 for t in ( O,T], u(0)=I and u'(0)=0,
    by "", central finite difference method with time step dt.
    dt = float(dt)
    Nt = int(round(T/dt))
    u = zeros(Nt+1)
    t = linspace(0, Nt*dt, Nt+1)
    u[0] = I
    u[1] = u[0] - 0.5*dt**2*W**2*u[0]
    for n in range(1, Nt):
    u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]
    return u, t
```

```
def exact_solution(t, I, w):
    return I* cos(w*t)
def visualize(u, t, I, w):
    plot(t, u, 'r--o')
    t_fine = linspace(0, t[-1], 1001) # very fine mesh for u_e
    u_e = exact_solution(t_fine, I, w)
    hold('on')
    plot(t_fine, u_e, 'b-')
    legend(['numerical', 'exact'], loc='upper left')
    xlabel('t')
    ylabel('u')
    dt = t[1] - t[0]
    title('dt=%g' % dt)
    umin = 1.2*u.min(); umax = -umin
    axis([t[0], t[-1], umin, umax])
    savefig('vib1.png')
    savefig('vib1.pdf')
    savefig('vib1.eps')
```


Main program

$$
\begin{aligned}
& \mathrm{I}=1 \\
& \mathrm{w}=2 * \mathrm{pi} \\
& \mathrm{dt}=0.05 \\
& \text { num_periods }=5 \\
& \mathrm{P}=2 * \mathrm{pi} / \mathrm{w} \text { \# one period } \\
& \mathrm{T}=\mathrm{P} * \text { num_periods } \\
& \mathrm{u}, \mathrm{t}=\text { solver(I, w, dt, } \mathrm{T}) \\
& \text { visualize(u, } \mathrm{t}, \mathrm{I}, \mathrm{w}, \mathrm{dt})
\end{aligned}
$$

User interface: command line

```
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--I', type=float, default=1.0)
parser.add_argument('--w', type=float, default=2*pi)
parser.add_argument('--dt', type=float, default=0.05)
parser.add_argument('--num_periods', type=int, default=5)
a = parser.parse_args()
I, W, dt, num_periods = a.I, a.w, a.dt, a.num_periods
```

vib_undamped.py:
Terminal> python vib_undamped.py --dt 0.05 --num_periods 40
Generates frames tmp_vib\%04d.png in files. Can make movie:
Terminal> avconv -r 12 -i tmp_vib\%04d.png -vcodec flv movie.flv
Can use ffmpeg instead of avconv.

Format	Codec and filename
Flash	-vcodec flv movie.flv
MP4	-vcodec libx64 movie.mp4
Webm	-vcodec libvpx movie.webm
Ogg	-vcodec libtheora movie.ogg

First steps for testing and debugging

- Testing very simple solutions: $u=$ const or $u=c t+d$ do not apply here (without a force term in the equation: $u^{\prime \prime}+\omega^{2} u=f$).
- Hand calculations: calculate u^{1} and u^{2} and compare with program.

Checking convergence rates

The next function estimates convergence rates, i.e., it

- performs m simulations with halved time steps: $2^{-k} \Delta t$, $k=0, \ldots, m-1$,
- computes the L_{2} norm of the error,
$E=\sqrt{\Delta t_{i} \sum_{n=0}^{N_{t}-1}\left(u^{n}-u_{\mathrm{e}}\left(t_{n}\right)\right)^{2}}$ in each case,
- estimates the rates r_{i} from two consecutive experiments

$$
\begin{aligned}
& \left(\Delta t_{i-1}, E_{i-1}\right) \text { and }\left(\Delta t_{i}, E_{i}\right), \text { assuming } E_{i}=C \Delta t_{i}^{r_{i}} \text { and } \\
& E_{i-1}=C \Delta t_{i-1}^{r_{i}}:
\end{aligned}
$$

Implementational details

```
def convergence_rates(m, num_periods=8):
Return m-1 empirical estimates of the convergence rate
based on \(m\) simulations, where the time step is halved
for each simulation.
\(\mathrm{w}=0.35 ; \mathrm{I}=0.3\)
\(\mathrm{dt}=2 * \mathrm{pi} / \mathrm{w} / 30\) \# 30 time step per period \(2 * p i / w\)
\(\mathrm{T}=2 * \mathrm{pi} / \mathrm{w} *\) num_periods
dt_values \(=\) []
E_values = []
for i in range(m):
        u, \(\mathrm{t}=\) solver \((\mathrm{I}, \mathrm{w}, \mathrm{dt}, \mathrm{T})\)
        \(u_{-} e=\) exact_solution(t, I, w)
        \(\mathrm{E}=\operatorname{sqrt}\left(\mathrm{dt} * \operatorname{sum}\left(\left(\mathbf{u}_{-}-\mathrm{e}-\mathrm{u}\right) * * 2\right)\right)\)
        dt_values.append (dt)
        E_values.append (E)
        \(\mathrm{dt}=\mathrm{dt} / 2\)
\(r=\left[\log \left(E \_v a l u e s[i-1] / E \_v a l u e s[i]\right) /\right.\)
    \(\log \left(d t \_v a l u e s[i-1] / d t \_v a l u e s[i]\right)\)
    for \(i\) in range(1, m, 1)]
return \(r\)
```

Result: r contains values equal to 2.00 - as expected!

Use final $r[-1]$ in a unit test:

```
def test_convergence_rates():
    r = convergence_rates(m=5, num_periods=8)
    # Accept rate to 1 decimal place
    nt.assert_almost_equal(r[-1], 2.0, places=1)
```

Complete code in vib_undamped.py.

Long time simulations

- The numerical solution seems to have right amplitude.
- There is a phase error (reduced by reducing the time step).
- The total phase error seems to grow with time.

Using a moving plot window

- In long time simulations we need a plot window that follows the solution.
- Method 1: scitools.MovingPlotWindow.
- Method 2: scitools.avplotter (ASCII vertical plotter).

Example:
Terminal> python vib_undamped.py --dt 0.05 --num_periods 40
Movie of the moving plot window.

- Linear, homogeneous, difference equation for u^{n}.
- Has solutions $u^{n} \sim I A^{n}$, where A is unknown (number).
- Here: $u_{\mathrm{e}}(t)=I \cos (\omega t) \sim I \exp (i \omega t)=I\left(e^{i \omega \Delta t}\right)^{n}$
- Trick for simplifying the algebra: $u^{n}=I A^{n}$, with $A=\exp (i \tilde{\omega} \Delta t)$, then find $\tilde{\omega}$
- $\tilde{\omega}$: unknown numerical frequency (easier to calculate than A)
- $\omega-\tilde{\omega}$ is the phase error
- Use the real part as the physical relevant part of a complex expression

Deriving an exact numerical solution; calculations (1)

$$
\begin{aligned}
u^{n}=I A^{n} & =I \exp (\tilde{\omega} \Delta t n)=I \exp (\tilde{\omega} t)=I \cos (\tilde{\omega} t)+i l \sin (\tilde{\omega} t) . \\
{\left[D_{t} D_{t} u\right]^{n} } & =\frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}} \\
& =I \frac{A^{n+1}-2 A^{n}+A^{n-1}}{\Delta t^{2}} \\
& =I \frac{\exp (i \tilde{\omega}(t+\Delta t))-2 \exp (i \tilde{\omega} t)+\exp (i \tilde{\omega}(t-\Delta t))}{\Delta t^{2}} \\
& =I \exp (i \tilde{\omega} t) \frac{1}{\Delta t^{2}}(\exp (i \tilde{\omega}(\Delta t))+\exp (i \tilde{\omega}(-\Delta t))-2) \\
& =I \exp (i \tilde{\omega} t) \frac{2}{\Delta t^{2}}(\cosh (i \tilde{\omega} \Delta t)-1) \\
& =I \exp (i \tilde{\omega} t) \frac{2}{\Delta t^{2}}(\cos (\tilde{\omega} \Delta t)-1) \\
& =-I \exp (i \tilde{\omega} t) \frac{4}{\Delta t^{2}} \sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)
\end{aligned}
$$

The scheme (6) with $u^{n}=I \exp (i \omega \tilde{\Delta} t n)$ inserted gives

$$
\begin{equation*}
-l \exp (i \tilde{\omega} t) \frac{4}{\Delta t^{2}} \sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)+\omega^{2} I \exp (i \tilde{\omega} t)=0 \tag{13}
\end{equation*}
$$

which after dividing by lo $\exp (i \tilde{\omega} t)$ results in

$$
\begin{equation*}
\frac{4}{\Delta t^{2}} \sin ^{2}\left(\frac{\tilde{\omega} \Delta t}{2}\right)=\omega^{2} . \tag{14}
\end{equation*}
$$

Solve for $\tilde{\omega}$:

$$
\begin{equation*}
\tilde{\omega}= \pm \frac{2}{\Delta t} \sin ^{-1}\left(\frac{\omega \Delta t}{2}\right) . \tag{15}
\end{equation*}
$$

- Phase error because $\tilde{\omega} \neq \omega$.
- But how good is the approximation $\tilde{\omega}$ to ω ?

Polynomial approximation of the phase error

Taylor series expansion for small Δt gives a formula that is easier to understand:

```
>>> from sympy import *
>>> dt, w = symbols('dt w')
>>> w_tilde = asin(w*dt/2).series(dt, 0, 4)*2/dt
>>> print w_tilde
(dt*W + dt**3*W**3/24 + O(dt**4))/dt # observe final /dt
```

$$
\begin{equation*}
\tilde{\omega}=\omega\left(1+\frac{1}{24} \omega^{2} \Delta t^{2}\right)+\mathcal{O}\left(\Delta t^{3}\right) . \tag{16}
\end{equation*}
$$

The numerical frequency is too large (to fast oscillations).

Recommendation: $25-30$ points per period.

$$
\begin{equation*}
u^{n}=I \cos (\tilde{\omega} n \Delta t), \quad \tilde{\omega}=\frac{2}{\Delta t} \sin ^{-1}\left(\frac{\omega \Delta t}{2}\right) \tag{17}
\end{equation*}
$$

The error mesh function,

$$
e^{n}=u_{\mathrm{e}}\left(t_{n}\right)-u^{n}=I \cos (\omega n \Delta t)-I \cos (\tilde{\omega} n \Delta t)
$$

is ideal for verification and analysis.

Convergence of the numerical scheme

Can easily show convergence:

$$
e^{n} \rightarrow 0 \text { as } \Delta t \rightarrow 0,
$$

because

$$
\lim _{\Delta t \rightarrow 0} \tilde{\omega}=\lim _{\Delta t \rightarrow 0} \frac{2}{\Delta t} \sin ^{-1}\left(\frac{\omega \Delta t}{2}\right)=\omega
$$

by L'Hopital's rule or simply asking (2/x)*asin($\mathrm{w} * \mathrm{x} / 2$) as $\mathrm{x}->0$ in WolframAlpha.

Observations:

- Numerical solution has constant amplitude (desired!), but phase error.
- Constant amplitude requires $\sin ^{-1}(\omega \Delta t / 2)$ to be real-valued $\Rightarrow|\omega \Delta t / 2| \leq 1$.
- $\sin ^{-1}(x)$ is complex if $|x|>1$, and then $\tilde{\omega}$ becomes complex.

What is the consequence of complex $\tilde{\omega}$?

- Set $\tilde{\omega}=\tilde{\omega}_{r}+i \tilde{\omega}_{i}$.
- Since $\sin ^{-1}(x)$ has a negative* imaginary part for $x>1$, $\exp (i \omega \tilde{t})=\exp \left(-\tilde{\omega}_{i} t\right) \exp \left(i \tilde{\omega}_{r} t\right)$ leads to exponential growth $e^{-\tilde{\omega}_{i} t}$ when $-\tilde{\omega}_{i} t>0$.
- This is instability because the qualitative behavior is wrong.

The stability criterion
Cannot tolerate growth and must therefore demand a stability criterion

$$
\begin{equation*}
\frac{\omega \Delta t}{2} \leq 1 \quad \Rightarrow \quad \Delta t \leq \frac{2}{\omega} . \tag{18}
\end{equation*}
$$

Try $\Delta t=\frac{2}{\omega}+9.01 \cdot 10^{-5}$ (slightly too big!):

We can draw three important conclusions:
(1) The key parameter in the formulas is $p=\omega \Delta t$.
(1) Period of oscillations: $P=2 \pi / \omega$
(2) Number of time steps per period: $N_{P}=P / \Delta t$
(3) $\Rightarrow p=\omega \Delta t=2 \pi / N_{P} \sim 1 / N_{P}$
(1) The smallest possible N_{P} is $2 \Rightarrow p \in(0, \pi]$
(2) For $p \leq 2$ the amplitude of u^{n} is constant (stable solution)
(3) u^{n} has a relative phase error $\tilde{\omega} / \omega \approx 1+\frac{1}{24} p^{2}$, making numerical peaks occur too early

Alternative schemes based on 1st-order equations

The vast collection of ODE solvers (e.g., in Odespy) cannot be applied to

$$
u^{\prime \prime}+\omega^{2} u=0
$$

unless we write this higher-order ODE as a system of 1st-order ODEs.
Introduce an auxiliary variable $v=u^{\prime}$:

$$
\begin{align*}
u^{\prime} & =v, \tag{19}\\
v^{\prime} & =-\omega^{2} u \tag{20}
\end{align*}
$$

Initial conditions: $u(0)=I$ and $v(0)=0$.

We apply the Forward Euler scheme to each component equation:

$$
\begin{aligned}
& {\left[D_{t}^{+} u=v\right]^{n}} \\
& {\left[D_{t}^{+} v=-\omega^{2} u\right]^{n}}
\end{aligned}
$$

or written out,

$$
\begin{align*}
& u^{n+1}=u^{n}+\Delta t v^{n}, \tag{21}\\
& v^{n+1}=v^{n}-\Delta t \omega^{2} u^{n} . \tag{22}
\end{align*}
$$

We apply the Backward Euler scheme to each component equation:

$$
\begin{align*}
& {\left[D_{t}^{-} u=v\right]^{n+1}} \tag{23}\\
& {\left[D_{t}^{-} v=-\omega u\right]^{n+1}} \tag{24}
\end{align*}
$$

Written out:

$$
\begin{align*}
u^{n+1}-\Delta t v^{n+1} & =u^{n}, \tag{25}\\
v^{n+1}+\Delta t \omega^{2} u^{n+1} & =v^{n} \tag{26}
\end{align*}
$$

This is a coupled 2×2 system for the new values at $t=t_{n+1}$!

$$
\begin{align*}
& {\left[D_{t} u=\bar{v}^{t}\right]^{n+\frac{1}{2}},} \tag{27}\\
& {\left[D_{t} v=-\omega \bar{u}^{t}\right]^{n+\frac{1}{2}} .} \tag{28}
\end{align*}
$$

The result is also a coupled system:

$$
\begin{align*}
u^{n+1}-\frac{1}{2} \Delta t v^{n+1} & =u^{n}+\frac{1}{2} \Delta t v^{n} \tag{29}\\
v^{n+1}+\frac{1}{2} \Delta t \omega^{2} u^{n+1} & =v^{n}-\frac{1}{2} \Delta t \omega^{2} u^{n} \tag{30}
\end{align*}
$$

Comparison of schemes via Odespy

Can use Odespy to compare many methods for first-order schemes:

```
import odespy
import numpy as np
def f(u, t, w=1):
    u, v = u # u is array of length 2 holding our [u, v]
    return [v, -w**2*u]
def run_solvers_and_plot(solvers, timesteps_per_period=20,
    num_periods=1, I=1, w=2*np.pi):
    P = 2*np.pi/w # duration of one period
    dt = P/timesteps_per_period
    Nt = num_periods*timesteps_per_period
    T = Nt*dt
    t_mesh = np.linspace(0, T, Nt+1)
    legends = []
    for solver in solvers:
        solver.set(f_kwargs={'w': w})
        solver.set_initial_condition([I, 0])
        u, t = solver.solve(t_mesh)
```

```
solvers = [
    odespy.ForwardEuler(f),
    # Implicit methods must use Newton solver to converge
    odespy.BackwardEuler(f, nonlinear_solver='Newton'),
    odespy.CrankNicolson(f, nonlinear_solver='Newton'),
    ]
```

Two plot types:

- $u(t)$ vs t
- Parameterized curve $(u(t), v(t))$ in phase space
- Exact curve is an ellipse: $(I \cos \omega t,-\omega / \sin \omega t)$, closed and periodic

Phase plane plot of the numerical solutions

Note: CrankNicolson in Odespy leads to the name Midpointlmplicit in plots.

Figure: Comparison of classical schemes.

Observations from the figures

- Forward Euler has growing amplitude and outward (u, v) spiral - pumps energy into the system.
- Backward Euler is opposite: decreasing amplitude, inward sprial, extracts energy.
- Forward and Backward Euler are useless for vibrations.
- Crank-Nicolson (Midpointlmplicit) looks much better.

Runge-Kutta methods of order 2 and 4; short time series

Runge-Kutta methods of order 2 and 4; longer time series

Time step: 0.1

Time step: 0.05

Crank-Nicolson; longer time series

Observations of RK and CN methods

- 4th-order Runge-Kutta is very accurate, also for large Δt.
- 2th-order Runge-Kutta is almost as bad as Forward and Backward Euler.
- Crank-Nicolson is accurate, but the amplitude is not as accurate as the difference scheme for $u^{\prime \prime}+\omega^{2} u=0$.

Energy conservation property

The model

$$
u^{\prime \prime}+\omega^{2} u=0, \quad u(0)=I, \quad u^{\prime}(0)=V
$$

has the nice energy conservation property that

$$
E(t)=\frac{1}{2}\left(u^{\prime}\right)^{2}+\frac{1}{2} \omega^{2} u^{2}=\text { const } .
$$

This can be used to check solutions.

Derivation of the energy conservation property

Multiply $u^{\prime \prime}+\omega^{2} u=0$ by u^{\prime} and integrate:

$$
\int_{0}^{T} u^{\prime \prime} u^{\prime} d t+\int_{0}^{T} \omega^{2} u u^{\prime} d t=0
$$

Observing that

$$
u^{\prime \prime} u^{\prime}=\frac{d}{d t} \frac{1}{2}\left(u^{\prime}\right)^{2}, \quad u u^{\prime}=\frac{d}{d t} \frac{1}{2} u^{2},
$$

we get

$$
\int_{0}^{T}\left(\frac{d}{d t} \frac{1}{2}\left(u^{\prime}\right)^{2}+\frac{d}{d t} \frac{1}{2} \omega^{2} u^{2}\right) d t=E(T)-E(0)
$$

where

$$
\begin{equation*}
E(t)=\frac{1}{2}\left(u^{\prime}\right)^{2}+\frac{1}{2} \omega^{2} u^{2} . \tag{31}
\end{equation*}
$$

$E(t)$ does not measure energy, energy per mass unit. Starting with an ODE coming directly from Newton's 2nd law $F=m a$ with a spring force $F=-k u$ and $m a=m u^{\prime \prime}(a$:
acceleration, u : displacement), we have

$$
m u^{\prime \prime}+k u=0
$$

Integrating this equation gives a physical energy balance:

$$
E(t)=\underbrace{\frac{1}{2} m v^{2}}_{\text {kinetic energy }}+\underbrace{\frac{1}{2} k u^{2}}_{\text {potential energy }}=E(0), \quad v=u^{\prime}
$$

Note: the balance is not valid if we add other terms to the ODE.

The Euler-Cromer method; idea

Forward-backward discretization of the 2×2 system:

- Update u with Forward Euler
- Update v with Backward Euler, using latest u

$$
\begin{align*}
& {\left[D_{t}^{+} u=v\right]^{n}} \tag{32}\\
& {\left[D_{t}^{-} v=-\omega u\right]^{n+1}} \tag{33}
\end{align*}
$$

Written out:

$$
\begin{align*}
u^{0} & =I, \tag{34}\\
v^{0} & =0, \tag{35}\\
u^{n+1} & =u^{n}+\Delta t v^{n}, \tag{36}\\
v^{n+1} & =v^{n}-\Delta t \omega^{2} u^{n+1} . \tag{37}
\end{align*}
$$

Names: Forward-backward scheme, Semi-implicit Euler method, symplectic Euler, semi-explicit Euler, Newton-Stormer-Verlet, and Euler-Cromer.

- Forward Euler and Backward Euler have error $\mathcal{O}(\Delta t)$
- What about the overall scheme? Expect $\mathcal{O}(\Delta t) \ldots$

Goal: eliminate v^{n}. We have

$$
v^{n}=v^{n-1}-\Delta t \omega^{2} u^{n}
$$

which can be inserted in (36) to yield

$$
\begin{equation*}
u^{n+1}=u^{n}+\Delta t v^{n-1}-\Delta t^{2} \omega^{2} u^{n} . \tag{38}
\end{equation*}
$$

Using (36),

$$
v^{n-1}=\frac{u^{n}-u^{n-1}}{\Delta t}
$$

and when this is inserted in (38) we get

$$
\begin{equation*}
u^{n+1}=2 u^{n}-u^{n-1}-\Delta t^{2} \omega^{2} u^{n} \tag{39}
\end{equation*}
$$

- The Euler-Cromer scheme is nothing but the centered scheme for $u^{\prime \prime}+\omega^{2} u=0$ (6)!
- The previous analysis of this scheme then also applies to the Euler-Cromer method!
- What about the initial conditions?

$$
u^{\prime}=v=0 \quad \Rightarrow \quad v^{0}=0
$$

and (36) implies $u^{1}=u^{0}$, while (37) says $v^{1}=-\omega^{2} u^{0}$.
This $u^{1}=u^{0}$ approximation corresponds to a first-order Forward Euler discretization of $u^{\prime}(0)=0:\left[D_{t}^{+} u=0\right]^{0}$.

A method utilizing a staggered mesh

- The Euler-Cromer scheme uses two unsymmetric differences in a symmetric way...
- We can derive the method from a more pedagogical point of view where we use a staggered mesh and only centered differences

Staggered mesh:

- u is unknown at mesh points $t_{0}, t_{1}, \ldots, t_{n}, \ldots$
- v is unknown at mesh points $t_{1 / 2}, t_{3 / 2}, \ldots, t_{n+1 / 2}, \ldots$ (between the u points)

Centered differences on a staggered mesh

$$
\begin{align*}
& {\left[D_{t} u=v\right]^{n+\frac{1}{2}}} \tag{4}\\
& {\left[D_{t} v=-\omega u\right]^{n+1} .} \tag{41}
\end{align*}
$$

Written out:

$$
\begin{align*}
u^{n+1} & =u^{n}+\Delta t v^{n+\frac{1}{2}}, \tag{42}\\
v^{n+\frac{3}{2}} & =v^{n+\frac{1}{2}}-\Delta t \omega^{2} u^{n+1} . \tag{43}
\end{align*}
$$

or shift one time level back (purely of esthetic reasons):

$$
\begin{align*}
u^{n} & =u^{n-1}+\Delta t v^{n-\frac{1}{2}}, \tag{44}\\
v^{n+\frac{1}{2}} & =v^{n-\frac{1}{2}}-\Delta t \omega^{2} u^{n} . \tag{45}
\end{align*}
$$

- Can eliminate $v^{n \pm 1 / 2}$ and get the centered scheme for

$$
u^{\prime \prime}+\omega^{2} u=0
$$

- What about the initial conditions? Their equivalent too!

$$
u(0)=0 \text { and } u^{\prime}(0)=v(0)=0 \text { give } u^{0}=I \text { and }
$$

$$
v(0) \approx \frac{1}{2}\left(v^{-\frac{1}{2}}+v^{\frac{1}{2}}\right)=0, \quad \Rightarrow \quad v^{-\frac{1}{2}}=-v^{\frac{1}{2}}
$$

Combined with the scheme on the staggered mesh we get

$$
u^{1}=u^{0}-\frac{1}{2} \Delta t^{2} \omega^{2} I
$$

- How to write $v^{n+\frac{1}{2}}$ in the code? v[i+0.5] does not work...
- Need a storage convention:
- $v^{1+\frac{1}{2}} \rightarrow \mathrm{v}[\mathrm{n}]$
- $v^{1-\frac{1}{2}} \rightarrow \mathrm{v}[\mathrm{n}-1]$
- $v^{n+\frac{1}{2}}=v^{n-\frac{1}{2}}-\Delta t \omega^{2} u^{n}$ becomes
$\mathrm{v}[\mathrm{n}]=\mathrm{v}[\mathrm{n}-1]-\mathrm{dt} * \mathrm{w} * * 2 * \mathrm{u}[\mathrm{n}]$

```
\begin{minted}[fontsize=\fontsize{9pt}{9pt},linenos=false,mathescap
def solver(I, w, dt, T):
    # set up variables...
    u[0] = I
    v[0] = 0 - 0.5*dt*w**2*u[0]
    for n in range(1, Nt+1):
        u[n] = u[n-1] + dt*v[n-1]
        v[n] = v[n-1] - dt*W**2*u[n]
    return u, t, v, t_v
```

Implementation of a staggered mesh; half-integer indices (1)

It would be nice to write

$$
\begin{aligned}
u^{n} & =u^{n-1}+\Delta t v^{n-\frac{1}{2}}, \\
v^{n+\frac{1}{2}} & =v^{n-\frac{1}{2}}-\Delta t \omega^{2} u^{n},
\end{aligned}
$$

as

$$
\begin{aligned}
& \mathrm{u}[\mathrm{n}]=\mathrm{u}[\mathrm{n}-1]+\mathrm{dt} * \mathrm{v}[\mathrm{n}-\mathrm{half}] \\
& \mathrm{v}[\mathrm{n}+\mathrm{half}]=\mathrm{v}[\mathrm{n}-\mathrm{half}]-\mathrm{dt} * \mathrm{w} * * 2 * \mathrm{u}[\mathrm{n}]
\end{aligned}
$$

(Implying that $\mathrm{n}+$ half is n and n -half is $\mathrm{n}-1$.)

Implementation of a staggered mesh; half-integer indices

(2)

This class ensures that $n+h a l f$ is n and n-half is $n-1$:

```
class HalfInt:
    def __radd__(self, other):
        return other
        def __rsub__(self, other):
        return other - 1
half = HalfInt()
```

Now

$$
\begin{aligned}
& \mathrm{u}[\mathrm{n}]=\mathrm{u}[\mathrm{n}-1]+\mathrm{dt} * \mathrm{v}[\mathrm{n}-\mathrm{half}] \\
& \mathrm{v}[\mathrm{n}+\mathrm{half}]=\mathrm{v}[\mathrm{n}-\mathrm{half}]-\mathrm{dt} * \mathrm{w} * * 2 * \mathrm{u}[\mathrm{n}]
\end{aligned}
$$

is equivalent to

$$
\begin{aligned}
& \mathrm{u}[\mathrm{n}]=\mathrm{u}[\mathrm{n}-1]+\mathrm{dt} * \mathrm{v}[\mathrm{n}-1] \\
& \mathrm{v}[\mathrm{n}]=\mathrm{v}[\mathrm{n}-1]-\mathrm{dt} * \mathrm{w} * * 2 * \mathrm{u}[\mathrm{n}]
\end{aligned}
$$

Generalization: damping, nonlinear spring, and external excitation

$$
\begin{equation*}
m u^{\prime \prime}+f\left(u^{\prime}\right)+s(u)=F(t), \quad u(0)=I, u^{\prime}(0)=V, t \in(0, T] \tag{46}
\end{equation*}
$$

Input data: $m, f\left(u^{\prime}\right), s(u), F(t), I, V$, and T.
Typical choices of f and s :

- linear damping $f\left(u^{\prime}\right)=b u$, or
- quadratic damping $f\left(u^{\prime}\right)=b u^{\prime}\left|u^{\prime}\right|$
- linear spring $s(u)=c u$
- nonlinear spring $s(u) \sim \sin (u)$ (pendulum)

A centered scheme for linear damping

$$
\begin{equation*}
\left[m D_{t} D_{t} u+f\left(D_{2 t} u\right)+s(u)=F\right]^{n} \tag{47}
\end{equation*}
$$

Written out

$$
\begin{equation*}
m \frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}}+f\left(\frac{u^{n+1}-u^{n-1}}{2 \Delta t}\right)+s\left(u^{n}\right)=F^{n} \tag{48}
\end{equation*}
$$

Assume $f\left(u^{\prime}\right)$ is linear in $u^{\prime}=v$:

$$
\begin{equation*}
u^{n+1}=\left(2 m u^{n}+\left(\frac{b}{2} \Delta t-m\right) u^{n-1}+\Delta t^{2}\left(F^{n}-s\left(u^{n}\right)\right)\right)\left(m+\frac{b}{2} \Delta t\right)^{-1} . \tag{49}
\end{equation*}
$$

Initial conditions

$u(0)=I, u^{\prime}(0)=V:$

$$
\left.\begin{array}{rl}
{[u=l]^{0}} & \Rightarrow \quad u^{0}=I, \\
{\left[D_{2 t} u\right.} & =V]^{0} \tag{51}
\end{array} \Rightarrow \quad u^{-1}=u^{1}-2 \Delta t V\right) .
$$

End result:

$$
\begin{equation*}
u^{1}=u^{0}+\Delta t V+\frac{\Delta t^{2}}{2 m}\left(-b V-s\left(u^{0}\right)+F^{0}\right) \tag{52}
\end{equation*}
$$

Same formula for u^{1} as when using a centered scheme for $u^{\prime \prime}+\omega u=0$.

Linearization via a geometric mean approximation

- $f\left(u^{\prime}\right)=b u^{\prime}\left|u^{\prime}\right|$ leads to a quadratic equation for u^{n+1}
- Instead of solving the quadratic equation, we use a geometric mean approximation

In general, the geometric mean approximation reads

$$
\left(w^{2}\right)^{n} \approx w^{n-\frac{1}{2}} w^{n+\frac{1}{2}}
$$

For $\left|u^{\prime}\right| u^{\prime}$ at t_{n} :

$$
\left[u^{\prime}\left|u^{\prime}\right|\right]^{n} \approx u^{\prime}\left(t_{n}+\frac{1}{2}\right)\left|u^{\prime}\left(t_{n}-\frac{1}{2}\right)\right| .
$$

For u^{\prime} at $t_{n \pm 1 / 2}$ we use centered difference:

$$
\begin{equation*}
u^{\prime}\left(t_{n+1 / 2}\right) \approx\left[D_{t} u\right]^{n+\frac{1}{2}}, \quad u^{\prime}\left(t_{n-1 / 2}\right) \approx\left[D_{t} u\right]^{n-\frac{1}{2}} \tag{53}
\end{equation*}
$$

A centered scheme for quadratic damping

After some algebra:

$$
\begin{aligned}
u^{n+1}= & \left(m+b\left|u^{n}-u^{n-1}\right|\right)^{-1} \times \\
& \left(2 m u^{n}-m u^{n-1}+b u^{n}\left|u^{n}-u^{n-1}\right|+\Delta t^{2}\left(F^{n}-s\left(u^{n}\right)\right)\right) .
\end{aligned}
$$

Initial condition for quadratic damping

Simply use that $u^{\prime}=V$ in the scheme when $t=0(n=0)$:

$$
\begin{equation*}
\left[m D_{t} D_{t} u+b V|V|+s(u)=F\right]^{0} \tag{55}
\end{equation*}
$$

which gives

$$
\begin{equation*}
u^{1}=u^{0}+\Delta t V+\frac{\Delta t^{2}}{2 m}\left(-b V|V|-s\left(u^{0}\right)+F^{0}\right) \tag{56}
\end{equation*}
$$

Algorithm

(1) $u^{0}=1$
(2) compute u^{1} from (52) if linear damping or (56) if quadratic damping
(3) for $n=1,2, \ldots, N_{t}-1$:
(1) compute u^{n+1} from (49) if linear damping or (54) if quadratic damping

```
def solver(I, V, m, b, s, F, dt, T, damping='linear'):
    dt \(=\) float (dt); b \(=\) float(b); m = float(m) \# avoid integer div.
    Nt = int(round(T/dt))
    \(\mathrm{u}=\mathrm{zeros}(\mathrm{Nt}+1)\)
    \(\mathrm{t}=\) linspace ( \(0, \mathrm{Nt} * \mathrm{dt}, \mathrm{Nt}+1\) )
    \(\mathrm{u}[0]=\mathrm{I}\)
    if damping == 'linear':
    \(\mathrm{u}[1]=\mathrm{u}[0]+\mathrm{dt} * \mathrm{~V}+\mathrm{dt} * * 2 /(2 * \mathrm{~m}) *(-\mathrm{b} * \mathrm{~V}-\mathrm{s}(\mathrm{u}[0])+\mathrm{F}(\mathrm{t}[0]))\)
    elif damping == 'quadratic':
        \(u[1]=u[0]+d t * V+\\)
                        \(\mathrm{dt} * * 2 /(2 * \mathrm{~m}) *(-\mathrm{b} * \mathrm{~V} * \mathrm{abs}(\mathrm{V})-\mathrm{s}(\mathrm{u}[0])+\mathrm{F}(\mathrm{t}[0]))\)
    for \(n\) in range(1, Nt):
        if damping == 'linear':
        \(u[n+1]=(2 * m * u[n]+(b * d t / 2-m) * u[n-1]+\)
                        \(d t * * 2 *(F(t[n])-s(u[n]))) /(m+b * d t / 2)\)
    elif damping == 'quadratic':
        \(u[n+1]=(2 * m * u[n]-m * u[n-1]+b * u[n] * a b s(u[n]-u[n-1\)
    \(+d t * * 2 *(F(t[n])-s(u[n]))) / \backslash\)
    (m + b*abs \((\mathrm{u}[\mathrm{n}]-\mathrm{u}[\mathrm{n}-1])\) )
    return u, t
```

- Constant solution $u_{\mathrm{e}}=I(V=0)$ fulfills the ODE problem and the discrete equations. Ideal for debugging!
- Linear solution $u_{\mathrm{e}}=V t+I$ fulfills the ODE problem and the discrete equations.
- Quadratic solution $u_{\mathrm{e}}=b t^{2}+V t+I$ fulfills the ODE problem and the discrete equations with linear damping, but not for quadratic damping. A special discrete source term can allow u_{e} to also fulfill the discrete equations with quadratic damping.
vib.py supports input via the command line:
Terminal> python vib.py --s 'sin(u)' --F '3*cos(4*t)' --c 0.03
This results in a moving window following the function on the screen.

Euler-Cromer formulation

We rewrite

$$
\begin{equation*}
m u^{\prime \prime}+f\left(u^{\prime}\right)+s(u)=F(t), \quad u(0)=I, u^{\prime}(0)=V, t \in(0, T] \tag{57}
\end{equation*}
$$

as a first-order ODE system

$$
\begin{align*}
& u^{\prime}=v, \tag{58}\\
& v^{\prime}=m^{-1}(F(t)-f(v)-s(u)) . \tag{59}
\end{align*}
$$

- u is unknown at $t_{n}: u^{n}$
- v is unknown at $t_{n+1 / 2}: v^{n+\frac{1}{2}}$
- All derivatives are approximated by centered differences

$$
\begin{align*}
& {\left[D_{t} u=v\right]^{n-\frac{1}{2}}} \tag{60}\\
& {\left[D_{t} v=m^{-1}(F(t)-f(v)-s(u))\right]^{n}} \tag{61}
\end{align*}
$$

Written out,

$$
\begin{align*}
\frac{u^{n}-u^{n-1}}{\Delta t} & =v^{n-\frac{1}{2}} \tag{62}\\
\frac{v^{n+\frac{1}{2}}-v^{n-\frac{1}{2}}}{\Delta t} & =m^{-1}\left(F^{n}-f\left(v^{n}\right)-s\left(u^{n}\right)\right) . \tag{63}
\end{align*}
$$

Problem: $f\left(v^{n}\right)$

Linear damping

With $f(v)=b v$, we can use an arithmetic mean for $b v^{n}$ a la Crank-Nicolson schemes.

$$
\begin{aligned}
u^{n} & =u^{n-1}+\Delta t v^{n-\frac{1}{2}} \\
v^{n+\frac{1}{2}} & =\left(1+\frac{b}{2 m} \Delta t\right)^{-1}\left(v^{n-\frac{1}{2}}+\Delta t m^{-1}\left(F^{n}-\frac{1}{2} f\left(v^{n-\frac{1}{2}}\right)-s\left(u^{n}\right)\right)\right)
\end{aligned}
$$

Quadratic damping

With $f(v)=b|v| v$, we can use a geometric mean

$$
b\left|v^{n}\right| v^{n} \approx b\left|v^{n-\frac{1}{2}}\right| v^{n+\frac{1}{2}}
$$

resulting in

$$
\begin{aligned}
u^{n} & =u^{n-1}+\Delta t v^{n-\frac{1}{2}} \\
v^{n+\frac{1}{2}} & =\left(1+\frac{b}{m}\left|v^{n-\frac{1}{2}}\right| \Delta t\right)^{-1}\left(v^{n-\frac{1}{2}}+\Delta t m^{-1}\left(F^{n}-s\left(u^{n}\right)\right)\right) .
\end{aligned}
$$

Initial conditions

$$
\begin{align*}
u^{0} & =I \tag{64}\\
v^{\frac{1}{2}} & =V-\frac{1}{2} \Delta t \omega^{2} I \tag{65}
\end{align*}
$$

