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1 A simple vibration problem
"t +w?u =0, u(0)=1I, v (0)=0,te(0,T]. (1)
Exact solution:

u(t) = I cos(wt) . (2)

u(t) oscillates with constant amplitude I and (angular) frequency w. Period: P = 27 /w.

1.1 A centered finite difference scheme; step 1 and 2
e Strategy: follow the four steps! of the finite difference method.
e Step 1: Introduce a time mesh, here uniform on [0,7T]: t, = nAt

e Step 2: Let the ODE be satisfied at each mesh point:

u’(tn) + wult,) =0, n=1,...,N;. (3)

1.2 A centered finite difference scheme; step 3

Step 3: Approximate derivative(s) by finite difference approximation(s). Very common (standard!)
formula for u’:

un+1 — 2" + un—l

u”(tn) ~ A . (4)

Use this discrete initial condition together with the ODE at ¢t = 0 to eliminate u~! (insert (4)

in (3)):

n+1 _ 2u™ n—1
“ Ath tu = —wu". (5)

1.3 A centered finite difference scheme; step 4

1

Step 4: Formulate the computational algorithm. Assume u"~+ and u™ are known, solve for

unknown »"t1:

u™t = 20" —u" T — AP (6)

Nick names for this scheme: Stérmer’s method or Verlet integration?.

Thttp://tinyurl.com/k3sdbuv/pub/decay-sphinx/main_decay.html#the-forward-euler-scheme
2http://en.wikipedia.org/wiki/Velocity Verlet
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1.4 Computing the first step

e The formula breaks down for u! because u~! is unknown and outside the mesh!
e And: we have not used the initial condition «'(0) = 0.
Discretize u’(0) = 0 by a centered difference

wl — oyt

_ -1 _ .1
AL =0 = u  =u.

Inserted in (6) for n = 0 gives

1
ut =l — iAthguO .

1.5 The computational algorithm
Lu =1
2. compute u! from (8)
3. forn=1,2,...,N; — 1:

(a) compute u"*! from (6)

More precisly expressed in Python:

t = linspace(0, T, Nt+1) # mesh points in time

dt = t[1] - t[o0] # constant time step.
u = zeros(Nt+1) # solution

ul0] =1

ul1] = ul[0] - 0.5*dt**2xw*x*x2%u[0]

for n in range(l, Nt):
uln+1] = 2*uln] - uln-1] - dt**2*w*x*2*ul[n]

Note: w is consistently used for w in my code.
1.6 Operator notation; ODE
With [D;Du]™ as the finite difference approximation to u”(t,) we can write
[D¢Dyu + w?u = 0" .
[D¢Dyu)™ means applying a central difference with step At/2 twice:

[Dtu]”'*'% _ [Dtu]n—%
At

[De(Dyu)]™ =

which is written out as

1 unJrl — " u” — unfl un+1 — " + unfl
At? '




1.7 Operator notation; initial condition
[u=1]° [Dou= 0], (10)
where [Dosu|™ is defined as

(11)

1.8 Computing
u is often displacement /position, v’ is velocity and can be computed by

un+1 _ unfl
/ ~ — n
W (tn) & g = [Daru]". (12)

2 Implementation

2.1 Core algorithm

from numpy import *
from matplotlib.pyplot import *
from vib_empirical_analysis import minmax, periods, amplitudes

def solver(I, w, dt, T):
nnn
Solve u’’ + wx*2%u = 0 for t in (0,T], u(0)=I and u’(0)=0,

by a central finite difference method with time step dt.
nnn

dt = float(dt)

Nt = int(round(T/dt))

u = zeros(Nt+1)

t = linspace(0, Nt*dt, Nt+1)

uf0] =1

ul1] = ul0] - 0.5*dt**2*xwx*2*xu[0]

for n in range(1, Nt):
uln+1] = 2*xul[n] - uln-1] - dt**2*w**x2*ul[n]
return u, t

2.2 Plotting

def exact_solution(t, I, w):
return I*cos(w*t)

def visualize(u, t, I, w):
plot(t, u, ’r--o’)
t_fine = linspace(0, t[-1], 1001) # very fine mesh for u_e
u_e = exact_solution(t_fine, I, w)
hold(’on’)
plot(t_fine, u_e, ’b-’)
legend([’numerical’, ’exact’], loc=’upper left’)
xlabel(’t’)
ylabel(’u’)
dt = t[1] - t[o]
title(’dt=Yg’ % dt)
umin = 1.2%u.min(); umax = -umin
axis([t[0], t[-1], umin, umax])
savefig(’vibl.png’)



savefig(’vibl.pdf’)
savefig(’vibl.eps’)

2.3 Main program

I=1

W = 2%pi

dt = 0.05

num_periods = 5

P = 2*pi/w # one period
T = P*num_periods

u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)

2.4 User interface: command line

import argparse

parser = argparse.ArgumentParser ()
parser.add_argument (’--I’, type=float, default=1.0)
parser.add_argument (’--w’, type=float, default=2*pi)
parser.add_argument (’--dt’, type=float, default=0.05)
parser.add_argument (’--num_periods’, type=int, default=5)
a = parser.parse_args()

I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods

2.5 Running the program

vib_undamped.py;

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

Generates frames tmp_vib04d.png in files. Can make movie:

Terminal> avconv -r 12 -i tmp_vib%04d.png -vcodec flv movie.flv

Can use ffmpeg instead of avconv.

Format Codec and filename

Flash -vcodec flv movie.flv

MP4 -vcodec 1ibx64 movie.mp4
Webm -vcodec libvpx movie.webm
Ogg -vcodec libtheora movie.ogg

3http://tinyurl.com/jvzzcfn/vib/vib_undamped.py
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3.1

Verification

First steps for testing and debugging

e Testing very simple solutions: u = const or u = ¢t + d do not apply here (without a

force term in the equation: u” + w?u = f).

e Hand calculations: calculate v' and u? and compare with program.

3.2
The

Checking convergence rates

next function estimates convergence rates, i.e., it

e performs m simulations with halved time steps: 27*At, k =0,...,m — 1,

e computes the Lo norm of the error, £ = \/Ati ij;gl(u” — ue(ty,))? in each case,

e estimates the rates r; from two consecutive experiments (At;_1, F;_1) and (At;, E;), as-

3.3

suming E; = CAt;" and E;_y = CAt

Implementational details

def convergence_rates(m, num_periods=8):

Return m-1 empirical estimates of the convergence rate
based on m simulations, where the time step is halved
for each simulation.
nnn
w=0.35; I=0.3
dt = 2xpi/w/30 # 30 time step per period 2*pi/w
T = 2%pi/w*num_periods
dt_values = []
E_values = []
for i in range(m):
u, t = solver(I, w, dt, T)
u_e = exact_solution(t, I, w)
E = sqrt(dt*sum((u_e-u)**2))
dt_values.append(dt)
E_values.append(E)
dt = dt/2

r = [log(E_values[i-1]/E_values[i])/
log(dt_values[i-1]/dt_values[i])
for i in range(1, m, 1)]

return r

Result: r contains values equal to 2.00 - as expected!

3.4 Nose test

Use final r[-1] in a unit test:

def test_convergence_rates():

r = convergence_rates(m=5, num_periods=8)
# Accept rate to 1 decimal place
nt.assert_almost_equal(r[-1], 2.0, places=1)



Complete code in vib_undamped.py*.

4 Long time simulations

4.1 Effect of the time step on long simulations

dt=0.1 dt=0.05

1o % numerical 1o ® numerical
"IN — exact "N — exact

0.5 0.5

=0.5

—=0.5

~1.0 -1.0

The numerical solution seems to have right amplitude.

There is a phase error (reduced by reducing the time step).

The total phase error seems to grow with time.

4.2 Using a moving plot window

e In long time simulations we need a plot window that follows the solution.
e Method 1: scitools.MovingPlotWindow.

e Method 2: scitools.avplotter (ASCII vertical plotter).

Example:

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

Movie of the moving plot window®.

5 Analysis of the numerical scheme

5.1 Deriving an exact numerical solution; ideas

e Linear, homogeneous, difference equation for u".

4http://tinyurl.com/jvzzcfn/vib/vib_undamped. py
Shttp://tinyurl.com/k3sdbuv/pub/mov-vib/vib_undamped dt0.05/index.html
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Has solutions u™ ~ I A", where A is unknown (number).
o Here: ue(t) = I cos(wt) ~ I exp (iwt) = I(e™At)
e Trick for simplifying the algebra: u™ = IA™, with A = exp (iwAt), then find ©

e &: unknown numerical frequency (easier to calculate than A)

w — w is the phase error

Use the real part as the physical relevant part of a complex expression

5.2 Deriving an exact numerical solution; calculations (1)

u" = TA™ = T'exp (WAtn) = Iexp (Wt) = I cos(wt) + i1 sin(@t) .

un+1 — 2" un—l
[DtDtU,}n = AL2 +
IAnJrl —2A" + Anfl
B At?
exp (iw(t + At)) — 2 exp (iwt) + exp (iw(t — At))
At?

~ Texp (i@t)ﬁ (exp (iG(A)) + exp (iD(—At)) — 2)

2
= lexp (z@t)ﬁ (cosh(iwAt) — 1)

=17

(cos(WAL) — 1)

2

= —lexp (zdjt)Ait2 sinz(%)

5.3 Deriving an exact numerical; calculations (2)

The scheme (6) with u™ = I exp (iwAtn) inserted gives

4 BAN
— Texp (i) 13 sin2(wT) + w?T exp (iit) = 0, (13)
which after dividing by Toexp (iwt) results in
4 oAt
@siHQ(wT) =2, (14)
Solve for @: ) A
t
G =t sin! (“2) . (15)

e Phase error because @ # w.

e But how good is the approximation @ to w?



5.4 Polynomial approximation of the phase error

Taylor series expansion for small At gives a formula that is easier to understand:

>>> from sympy import *

>>> dt, w = symbols(’dt w’)

>>> w_tilde = asin(w*dt/2).series(dt, 0, 4)*2/dt

>>> print w_tilde

(dt*w + dt**3xw*x*3/24 + 0(dt**4))/dt # observe final /dt

O =uw (1 + 214w2At2> +0(At%).

The numerical frequency is too large (to fast oscillations).

5.5 Plot of the phase error

1.6 T T T T T T

— exact discrete frequency
- - 2nd-order expansion

1.5F .

=
H
T
I

numerical frequency
=
w
T

=
N
T

1'00 5 10 15 20 25 30 35

no of time steps per period

Recommendation: 25-30 points per period.
5.6 Exact discrete solution

2 At
u™ = I cos (OnAt), = Esirf1 (w) .

The error mesh function,

10

(16)



e" = ue(ty) — u™ = I cos (wnAt) — I cos (GnAt)

is ideal for verification and analysis.

5.7 Convergence of the numerical scheme

Can easily show convergence:

e — 0 as At — 0,

because

im & I 2 . (wAL
Iim w = l1m — Sin _— = Ww
At—0 At—0 At 2 ’

by L’Hopital’s rule or simply asking (2/x)*asin(w*x/2) as x->0 in WolframAlphaS.

5.8 Stability

Observations:

e Numerical solution has constant amplitude (desired!), but phase error.
e Constant amplitude requires sin~'(wAt/2) to be real-valued = |wAt/2| < 1.

e sin~'(z) is complex if |z| > 1, and then & becomes complex.
What is the consequence of complex @?
e Set @ = @, + iw;.

e Since sin~!(z) has a negative® imaginary part” for x > 1, exp (iwt) = exp (—@;t) exp (i@,t)
leads to exponential growth e~%i* when —@;t > 0.

e This is instability because the qualitative behavior is wrong.

5.9 The stability criterion

Cannot tolerate growth and must therefore demand a stability criterion

wAt

— <1 = A< (18)

IS N

Try At = 2 +9.01- 1075 (slightly too big!):

Shttp://www.wolframalpha.com/input/?i=%282%2Fx%29%asin28w*x%2F2%29+as+x-%3E0
"http://www.wolframalpha.com/input/?i=arcsin%28x%29%2C+x+in+%280%2C3%29

11
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5.10 Summary of the analysis

We can draw three important conclusions:

dt=0.3184

e - numerical
exact

[ —

1. The key parameter in the formulas is p = wAt.

(
(b

)
)
()
)

a) Period of oscillations: P = 27 /w

(d) The smallest possible Np is 2 = p € (0, 7]

Number of time steps per period: Np = P/At
= p=wAt=27/Np ~1/Np

2. For p < 2 the amplitude of u™ is constant (stable solution)

3. u™ has a relative phase error w/w =~ 1+ in, making numerical peaks occur too early

6 Alternative schemes based on 1st-order equations

6.1 Rewriting 2nd-order ODE as system of two 1st-order ODEs

ool

The vast collection of ODE solvers (e.g., in Odespy®) cannot be applied to

w4 wlu=0

unless we write this higher-order ODE as a system of 1st-order ODEs.

8https://github.com/hplgit/odespy

12
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Introduce an auxiliary variable v = u/':

Initial conditions: «(0) = I and v(0) = 0.

6.2 The Forward Euler scheme
We apply the Forward Euler scheme to each component equation:
[Dju = v]n’
[D?_U = 7w2u}n’
or written out,
u" =" + Ato",

"t =" — Atw?u".

6.3 The Backward Euler scheme

We apply the Backward Euler scheme to each component equation:

[Dy u =",

[D;y v = —wu]" .

Written out:

u"tt — Aty =",

0" 4 Atwut = o™

This is a coupled 2 x 2 system for the new values at t = ¢, 41!

6.4 The Crank-Nicolson scheme

[Dtu = @t}n—‘r%,
[Dyv = —wi!]" 2 .
The result is also a coupled system:

1 1
n+l _ = tn+1: n ZAt"
U 2AU u+2Av,

1 1
ot §Atw2u”+1 =" — §Atw2u” .

13



6.5 Comparison of schemes via Odespy

Can use Odespy” to compare many methods for first-order schemes:

import odespy
import numpy as np

def f(u, t, w=1):
u, v =u # u is array of length 2 holding our [u, v]
return [v, -w*x2*u]

def run_solvers_and_plot(solvers, timesteps_per_period=20,
num_periods=1, I=1, w=2*np.pi):
P = 2*np.pi/w # duration of one period
dt = P/timesteps_per_period
Nt = num_periods*timesteps_per_period
T = Nt*dt
t_mesh = np.linspace(0, T, Nt+1)

legends = []

for solver in solvers:
solver.set (f_kwargs={’w’: w})
solver.set_initial_condition([I, 0])
u, t = solver.solve(t_mesh)

6.6 Forward and Backward Euler and Crank-Nicolson

solvers = [
odespy .ForwardEuler (f),
# Implicit methods must use Newton solver to converge
odespy .BackwardEuler (f, nonlinear_solver=’Newton’),
odespy .CrankNicolson(f, nonlinear_solver=’Newton’),

Two plot types:
o u(t) vst
e Parameterized curve (u(t),v(t)) in phase space

e Exact curve is an ellipse: (I coswt, —w]I sinwt), closed and periodic

9mttps://github.com/hplgit/odespy

14
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6.7 Phase plane plot of the numerical solutions
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Note: CrankNicolson in Odespy leads to the name MidpointImplicit in plots.

6.8 Plain solution curves

Time step: 0.05

w

e—e ForwardEuler
=—a BackwardEuler
¥—v Midpointimplicit

exact

6.9 Observations from the figures
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Comparison of classical schemes.

e Forward Euler has growing amplitude and outward (u,v) spiral - pumps energy into the

system.

e Backward Euler is opposite: decreasing amplitude, inward sprial, extracts energy.

e Forward and Backward Euler are useless for vibrations.

e Crank-Nicolson (MidpointImplicit) looks much better.
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6.11 Runge-Kutta methods of order 2 and 4; longer time series
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Crank-Nicolson; longer time series
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(MidpointImplicit means CrankNicolson in Odespy)
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6.13 Observations of RK and CN methods

e 4th-order Runge-Kutta is very accurate, also for large At.
e 2th-order Runge-Kutta is almost as bad as Forward and Backward Euler.

e Crank-Nicolson is accurate, but the amplitude is not as accurate as the difference scheme
for v’ + w?u = 0.

6.14 Energy conservation property

The model

W' 4+ wPu=0, u0)=1I, «(0)=V,
has the nice energy conservation property that

1 1
E@t) = 5(1/)2 + §w2u2 = const .

This can be used to check solutions.

6.15 Derivation of the energy conservation property

Multiply v + w?u = 0 by v/ and integrate:

T T
/ u'u'dt + / wiuu'dt = 0.
0 0

Observing that

d1 d1

u'u' = %5(1/)27 uu' = £§u2,

we get
T
dl, ,, dl 5,
i L2 2aydt = B(T) — E(0
| G5 + gty = B(T) - B(O),

where

6.16 Remark about E(t)

E(t) does not measure energy, energy per mass unit.
Starting with an ODE coming directly from Newton’s 2nd law F' = ma with a spring force
F = —ku and ma = mu” (a: acceleration, u: displacement), we have

mu” +ku=0

Integrating this equation gives a physical energy balance:
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1 1
E(t) = §m1)2 + §kUQ = E(0),
—_— ——

kinetic energy potential energy

Note: the balance is not valid if we add other terms to the ODE.

6.17 The Euler-Cromer method; idea

Forward-backward discretization of the 2x2 system:
e Update u with Forward Euler

e Update v with Backward Euler, using latest u

6.18 The Euler-Cromer method; complete formulas

Written out:

u =1,
W = 0,
u"tt =" + A",

v =" — Atw?un Tt

(
(
(
(

Names: Forward-backward scheme, Semi-implicit Euler method!?, symplectic Euler, semi-

explicit Euler, Newton-Stormer-Verlet, and Euler-Cromer.
e Forward Euler and Backward Euler have error O(At)

e What about the overall scheme? Expect O(At)...

6.19 Equivalence with the scheme for the second-order ODE

Goal: eliminate v™. We have
V" =" — Atw?u,

which can be inserted in (36) to yield
u™t =y 4 At — A2wum,

Using (36),

and when this is inserted in (38) we get

umt =2y — " — A2

Ohttp://en.wikipedia.org/wiki/Semi-implicit_Euler method
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6.20 Comparison of the treatment of initial conditions

e The Euler-Cromer scheme is nothing but the centered scheme for u” + w?u = 0 (6)!
e The previous analysis of this scheme then also applies to the Euler-Cromer method!

e What about the initial conditions?

W=v=0 = °=0,

and (36) implies u! = u°, while (37) says v! = —w?u°.

This u' = u® approximation corresponds to a first-order Forward Euler discretization of
u'(0) = 0: [Dffu = 0]°.

6.21 A method utilizing a staggered mesh

e The Euler-Cromer scheme uses two unsymmetric differences in a symmetric way...

e We can derive the method from a more pedagogical point of view where we use a staggered
mesh and only centered differences

Staggered mesh:

e y is unknown at mesh points tg,t1,..., ¢, ...

e v is unknown at mesh points ¢y,9,%3/2,...,tn+1/2,. - (between the u points)

6.22 Centered differences on a staggered mesh

1

[Dtu = U]n+§’ (40)
[Dyv = —wu]" . (41)
Written out:
W = w4 A3 (42)
0" = ot - Ayt (43)

or shift one time level back (purely of esthetic reasons):

1

u" =u" 4 At (44)

0" = 0" = AtwPu” (45)
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6.23 Comparison with the scheme for the 2nd-order ODE
e Can eliminate v"*!/2 and get the centered scheme for u” + w?u = 0

e What about the initial conditions? Their equivalent too!
u(0) = 0 and v/ (0) = v(0) = 0 give u® = I and

1
v(O)%i(v*%—FU%):O, = = g2,

Combined with the scheme on the staggered mesh we get

1
ul = ol — iAt%JQI,

6.24 Implementation of a staggered mesh; integer indices

e How to write v"*3 in the code? v[i+0.5] does not work...
e Need a storage convention:

1
— vz — v[n]

— = v[n-1]

o v"3 = "3 — Atw2u" becomes vn] = vIn-1] - dt*wk*2xu[n]

\begin{shadedquoteBlue}

\fontsize{9pt}{9pt}

\begin{Verbatim}

def solver(I, w, dt, T):
# set up variables...

u[0] I
v[0] 0 - 0.5*dt*w**2*u[0]
for n in range(1l, Nt+1):
u[n] uln-1] + dt*v[n-1]
v[n] = v[n-1] - dt*w**2*u[n]
return u, t, v, t_v

6.25 Implementation of a staggered mesh; half-integer indices (1)

It would be nice to write

_ _1
ut = u" "+ At 2,
1 _1
"2 = "2 — Atw?um,
as

uln] = uln-1] + dt*v[n-half]
v[n+half] = v[n-half] - dt*wx*2*u[n]

(Implying that n+half is n and n-half is n-1.)
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6.26 Implementation of a staggered mesh; half-integer indices (2)

This class ensures that n+half is n and n-half is n—-1:

class HalfInt:
def __radd__(self, other):
return other

def __rsub__(self, other):
return other - 1

half = HalfInt()
Now

uln] = uln-1] + dt*v[n-half]
v[n+half] = v[n-half] - dt*wx*2%u[n]

is equivalent to

u[n-1] + dt*v[n-1]
v[n-1] - dt*w**2*u[n]

u[n]
v[n]

7 Generalization: damping, nonlinear spring, and external
excitation
mu” + f(u') + s(u) = F(t), w0)=1, «'(0)=V, t€(0,T]. (46)

Input data: m, f(u'), s(u), F(t), I, V,and T.
Typical choices of f and s:

e linear damping f(u') = bu, or
e quadratic damping f(u') = bu'|u/|
e linear spring s(u) = cu

e nonlinear spring s(u) ~ sin(u) (pendulum)

7.1 A centered scheme for linear damping

[mDyDyu + f(Dayu) + s(u) = F]" (47)
Written out
un+1 — oy + unfl unJrl _ u’ﬂfl n n
m e 4 J(a ) () = F (45)

Assume f(u) is linear in w' = v:

untt = <2mu” + (gAt —m)u""t + A (F" — s(u"))) (m+ gAt)fl . (49)
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7.2 Initial conditions

u(0) =1, d'(0)=V:

u=1° = =1, (50)
[Dyu=V]" = u'=u'-2AtV (51)
End result:
1_ .0 Aitz B o(e,0 0
u=u —|—AtV+2m( bV —s(u”) + F7). (52)

Same formula for u' as when using a centered scheme for u” + wu = 0.

7.3 Linearization via a geometric mean approximation
o f(u') = bu'|u'| leads to a quadratic equation for u™*?
e Instead of solving the quadratic equation, we use a geometric mean approximation
In general, the geometric mean approximation reads
n+3 .

(w?)" =~ W w

For |u/'|u’ at t,:

1 1
[/ )" & ! (tn + )l (En = )1
2 2

For ' at t,,41,/2 we use centered difference:

W (b1 j2) ~ [Dyu] ™2, W/ (ty_1)2) ~ [Dyu] "% . (53)

7.4 A centered scheme for quadratic damping

After some algebra:

"t = (m + blu™ — 1L"71\)_1 X

(2mu” — mu ! 4 b u” — u" T A+ AP (ET — s(u™))) - (54)

7.5 Initial condition for quadratic damping

Simply use that ' =V in the scheme when ¢t =0 (n = 0):
[mDyDyu + bV |V | + s(u) = F]° (55)

which gives

At?
ut = u + AtV + o (—bV|V| = s(u’) + F°) . (56)
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7.6
1.

2.
3.

7.7

def

7.8

7.9

Algorithm
ul =1
compute u! from (52) if linear damping or (56) if quadratic damping
form=1,2,...,N; — 1:

(a) compute u™*! from (49) if linear damping or (54) if quadratic damping

Implementation

solver(I, V, m, b, s, F, dt, T, damping=’linear’):

dt = float(dt); b = float(b); m = float(m) # avoid integer div.
Nt = int(round(T/dt))

u = zeros(Nt+1)

t = linspace(0, Nt*dt, Nt+1)

uf0] =1
if damping == ’linear’:

ul1] = uf0] + dt*V + dt**2/(2*m)*(-b*V - s(ul0]) + F(t[0]))
elif damping == ’quadratic’:

ul1] = ul0] + dt*V + \
dt**2/ (2*m) * (-b*V*abs (V) - s(u[0]) + F(t[0]))

for n in range(1l, Nt):
if damping == ’linear’:
uln+1] = (2*m*u[n] + (b*dt/2 - m)*uln-1] +
dt**2x(F(t[n]) - s(ulnl)))/(m + bxdt/2)
elif damping == ’quadratic’:
u[n+1] = (2*m*u[n] - m*u[n-1] + b*ul[n]*abs(u[n] - u[n-1])
+ dt*x2x(F(t[n]) - s(ulnl)))/\
(m + b*xabs(u[n] - uln-11))
return u, t

Verification

Constant solution ue = I (V = 0) fulfills the ODE problem and the discrete equations.
Ideal for debugging!

Linear solution ue = V't + I fulfills the ODE problem and the discrete equations.

Quadratic solution ue = bt? 4 V't + I fulfills the ODE problem and the discrete equations
with linear damping, but not for quadratic damping. A special discrete source term can
allow ue to also fulfill the discrete equations with quadratic damping.

Demo program

vib.py!! supports input via the command line:

Terminal> python vib.py --s ’sin(u)’ --F ’3%cos(4*t)’ --c 0.03

Unttp://tinyurl.com/jvzzctn/vib/vib.py
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This results in a moving window following the function'? on the screen.

. . dt=F).05 . .
1.0 i
0.5F i
S 0.0f
—0.5F i
—1.0t i
0 1IO 2|0 3;0 4|0 5|0

7.10 Euler-Cromer formulation

We rewrite

mu” + f(u') +s(u) = F(t), u(0)=1, «'(0)=V, te(0,T],

as a first-order ODE system

7.11 Staggered grid

e 1 is unknown at ¢,: u"
; k . onti
e v is unknown at tn_;’_l/g. T2

e All derivatives are approximated by centered differences

Zhttp://tinyurl. com/k3sdbuv/pub/mov-vib/vib_generalized dt0.05/index.html
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Written out,

u™ _Aunfl _ ,Unfé’
t
n+s _ n—1%
VT () - )

Problem: f(v™)

7.12 Linear damping

With f(v) = bv, we can use an arithmetic mean for bv™ a la Crank-Nicolson schemes.

_ 1
u" =u"T 4+ At 2,

<1+$;A¢>1<M15kAhnl<Fm;f@ﬁé)shﬂﬁ)>.

"t

[N

7.13 Quadratic damping

With f(v) = blv|v, we can use a geometric mean

blvnh}n ~ bwn—%wn—&-%’

resulting in

_ _1
ut =" At 2

1 b 1 1
n+3 n—z 1 n—z -1 n n
% =1+ —m|v |At) (v + Atm™ (F" — s(u ))) .

7.14 Initial conditions

O=7

S
I

)

<
N
Il

1
V—§Am%.
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frequency (of oscillations), 1
Hz (unit), 1

period (of oscillations), 1
stability criterion, 10

staggered Euler-Cromer scheme, 18
staggered mesh, 18
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