Study Guide: Finite difference methods for

vibration problems

Hans Petter Langtangen'?
!Center for Biomedical Computing, Simula Research Laboratory

2Department of Informatics, University of Oslo

Dec 14, 2013

Contents

1 A simple vibration problem
1.1 A centered finite difference scheme; step 1and 2

1.2 A centered finite difference scheme; step 3 oL
1.3 A centered finite difference scheme; step 4 L.
1.4 Computing the first step
1.5 The computational algorithm L.
1.6 Operator notation; ODE
1.7 Operator notation; initial condition
1.8 Computing u'

2 Implementation
2.1 Corealgorithm e

2.2 Plotting e e
2.3 Main program o e e e e
2.4 User interface: command line L.

2.5 Running the program L Lo

3 Verification

3.1 First steps for testing and debugging oL oL
3.2 Checking convergence rateso e
3.3 Implementational details Lo

3.4 Nosetest e e e

4 Long time simulations
4.1 Effect of the time step on long simulations
4.2 Using a moving plot window L Lo

U b s W W LW W W N NNDN = -

S Ot ot ot

- O S

5 Analysis of the numerical scheme

5.1 Deriving an exact numerical solution; ideas
5.2 Deriving an exact numerical solution; calculations (1)
5.3 Deriving an exact numerical; calculations (2)
5.4 Polynomial approximation of the phase error
5.5 Plot of the phaseerror L
5.6 Exact discrete solution oL Lo
5.7 Convergence of the numerical scheme L.
5.8 Stabilityo
5.9 The stability criterion oo
5.10 Summary of the analysis Lo

Alternative schemes based on 1st-order equations

6.1 Rewriting 2nd-order ODE as system of two 1st-order ODEs
6.2 The Forward Euler scheme L.
6.3 The Backward Euler scheme Lo oL
6.4 The Crank-Nicolson scheme
6.5 Comparison of schemes via Odespy,
6.6 Forward and Backward Euler and Crank-Nicolson
6.7 Phase plane plot of the numerical solutions
6.8 Plain solution curves
6.9 Observations from the figures
6.10 Runge-Kutta methods of order 2 and 4; short time series
6.11 Runge-Kutta methods of order 2 and 4; longer time series
6.12 Crank-Nicolson; longer time series
6.13 Observations of RK and CN methods
6.14 Energy conservation property Lo o
6.15 Derivation of the energy conservation property
6.16 Remark about E(f)
6.17 The Euler-Cromer method; idea
6.18 The Euler-Cromer method; complete formulas
6.19 Equivalence with the scheme for the second-order ODE
6.20 Comparison of the treatment of initial conditions
6.21 A method utilizing a staggered mesh oo
6.22 Centered differences on a staggered mesh
6.23 Comparison with the scheme for the 2nd-order ODE
6.24 Implementation of a staggered mesh; integer indices
6.25 Implementation of a staggered mesh; half-integer indices (1)
6.26 Implementation of a staggered mesh; half-integer indices (2)

Generalization: damping, nonlinear spring, and external excitation

7.1 A centered scheme for linear damping o 0oL
7.2 Imitial conditions L Lo
7.3 Linearization via a geometric mean approximation
7.4 A centered scheme for quadratic damping
7.5 Initial condition for quadratic damping
7.6 Algorithm L
7.7 Implementation Lo
7.8 Verification

© © 00 03I

10
11

11
11
11
12
12
12
13
13
13
13
14
15
15
16
16
16
17
17
17
18
18
18
18
19
19
20
20

7.9 Demo program o e e e e e e e e 23

7.10 Euler-Cromer formulation 23
7.11 Staggered grid e 24
7.12 Linear damping e 24
7.13 Quadratic damping 24
7.14 Initial conditions 24

1 A simple vibration problem
"t +w?u =0, u(0)=1I, v (0)=0,te(0,T]. (1)
Exact solution:

u(t) = I cos(wt) . (2)

u(t) oscillates with constant amplitude I and (angular) frequency w. Period: P = 27 /w.

1.1 A centered finite difference scheme; step 1 and 2
e Strategy: follow the four steps! of the finite difference method.
e Step 1: Introduce a time mesh, here uniform on [0,7T]: t, = nAt

e Step 2: Let the ODE be satisfied at each mesh point:

u’(tn) + wult,) =0, n=1,...,N;. (3)

1.2 A centered finite difference scheme; step 3

Step 3: Approximate derivative(s) by finite difference approximation(s). Very common (standard!)
formula for u’:

un+1 — 2" + un—l

u”(tn) ~ A . (4)

Use this discrete initial condition together with the ODE at ¢t = 0 to eliminate u~! (insert (4)

in (3)):

n+1 _ 2u™ n—1
“ Ath tu = —wu". (5)

1.3 A centered finite difference scheme; step 4

1

Step 4: Formulate the computational algorithm. Assume u"~+ and u™ are known, solve for

unknown »"t1:

u™t = 20" —u" T — AP (6)

Nick names for this scheme: Stérmer’s method or Verlet integration?.

Thttp://tinyurl.com/k3sdbuv/pub/decay-sphinx/main_decay.html#the-forward-euler-scheme
2http://en.wikipedia.org/wiki/Velocity Verlet

http://tinyurl.com/k3sdbuv/pub/decay-sphinx/main_decay.html#the-forward-euler-scheme
http://en.wikipedia.org/wiki/Velocity_Verlet

1.4 Computing the first step

e The formula breaks down for u! because u~! is unknown and outside the mesh!
e And: we have not used the initial condition «'(0) = 0.
Discretize u’(0) = 0 by a centered difference

wl — oyt

_ -1 _ .1
AL =0 = u =u.

Inserted in (6) for n = 0 gives

1
ut =l — iAthguO .

1.5 The computational algorithm
Lu =1
2. compute u! from (8)
3. forn=1,2,...,N; — 1:

(a) compute u"*! from (6)

More precisly expressed in Python:

t = linspace(0, T, Nt+1) # mesh points in time

dt = t[1] - t[o0] # constant time step.
u = zeros(Nt+1) # solution

ul0] =1

ul1] = ul[0] - 0.5*dt**2xw*x*x2%u[0]

for n in range(l, Nt):
uln+1] = 2*uln] - uln-1] - dt**2*w*x*2*ul[n]

Note: w is consistently used for w in my code.
1.6 Operator notation; ODE
With [D;Du]™ as the finite difference approximation to u”(t,) we can write
[D¢Dyu + w?u = 0" .
[D¢Dyu)™ means applying a central difference with step At/2 twice:

[Dtu]”'*'% _ [Dtu]n—%
At

[De(Dyu)]™ =

which is written out as

1 unJrl — " u” — unfl un+1 — " + unfl
At? '

1.7 Operator notation; initial condition
[u=1]° [Dou= 0], (10)
where [Dosu|™ is defined as

(11)

1.8 Computing
u is often displacement /position, v’ is velocity and can be computed by

un+1 _ unfl
/ ~ — n
W (tn) & g = [Daru]". (12)

2 Implementation

2.1 Core algorithm

from numpy import *
from matplotlib.pyplot import *
from vib_empirical_analysis import minmax, periods, amplitudes

def solver(I, w, dt, T):
nnn
Solve u’’ + wx*2%u = 0 for t in (0,T], u(0)=I and u’(0)=0,

by a central finite difference method with time step dt.
nnn

dt = float(dt)

Nt = int(round(T/dt))

u = zeros(Nt+1)

t = linspace(0, Nt*dt, Nt+1)

uf0] =1

ul1] = ul0] - 0.5*dt**2*xwx*2*xu[0]

for n in range(1, Nt):
uln+1] = 2*xul[n] - uln-1] - dt**2*w**x2*ul[n]
return u, t

2.2 Plotting

def exact_solution(t, I, w):
return I*cos(w*t)

def visualize(u, t, I, w):
plot(t, u, ’r--o’)
t_fine = linspace(0, t[-1], 1001) # very fine mesh for u_e
u_e = exact_solution(t_fine, I, w)
hold(’on’)
plot(t_fine, u_e, ’b-’)
legend([’numerical’, ’exact’], loc=’upper left’)
xlabel(’t’)
ylabel(’u’)
dt = t[1] - t[o]
title(’dt=Yg’ % dt)
umin = 1.2%u.min(); umax = -umin
axis([t[0], t[-1], umin, umax])
savefig(’vibl.png’)

savefig(’vibl.pdf’)
savefig(’vibl.eps’)

2.3 Main program

I=1

W = 2%pi

dt = 0.05

num_periods = 5

P = 2*pi/w # one period
T = P*num_periods

u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)

2.4 User interface: command line

import argparse

parser = argparse.ArgumentParser ()
parser.add_argument (’--I’, type=float, default=1.0)
parser.add_argument (’--w’, type=float, default=2*pi)
parser.add_argument (’--dt’, type=float, default=0.05)
parser.add_argument (’--num_periods’, type=int, default=5)
a = parser.parse_args()

I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods

2.5 Running the program

vib_undamped.py;

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

Generates frames tmp_vib04d.png in files. Can make movie:

Terminal> avconv -r 12 -i tmp_vib%04d.png -vcodec flv movie.flv

Can use ffmpeg instead of avconv.

Format Codec and filename

Flash -vcodec flv movie.flv

MP4 -vcodec 1ibx64 movie.mp4
Webm -vcodec libvpx movie.webm
Ogg -vcodec libtheora movie.ogg

3http://tinyurl.com/jvzzcfn/vib/vib_undamped.py

http://tinyurl.com/jvzzcfn/vib/vib_undamped.py

3

3.1

Verification

First steps for testing and debugging

e Testing very simple solutions: u = const or u = ¢t + d do not apply here (without a

force term in the equation: u” + w?u = f).

e Hand calculations: calculate v' and u? and compare with program.

3.2
The

Checking convergence rates

next function estimates convergence rates, i.e., it

e performs m simulations with halved time steps: 27*At, k =0,...,m — 1,

e computes the Lo norm of the error, £ = \/Ati ij;gl(u” — ue(ty,))? in each case,

e estimates the rates r; from two consecutive experiments (At;_1, F;_1) and (At;, E;), as-

3.3

suming E; = CAt;" and E;_y = CAt

Implementational details

def convergence_rates(m, num_periods=8):

Return m-1 empirical estimates of the convergence rate
based on m simulations, where the time step is halved
for each simulation.
nnn
w=0.35; I=0.3
dt = 2xpi/w/30 # 30 time step per period 2*pi/w
T = 2%pi/w*num_periods
dt_values = []
E_values = []
for i in range(m):
u, t = solver(I, w, dt, T)
u_e = exact_solution(t, I, w)
E = sqrt(dt*sum((u_e-u)**2))
dt_values.append(dt)
E_values.append(E)
dt = dt/2

r = [log(E_values[i-1]/E_values[i])/
log(dt_values[i-1]/dt_values[i])
for i in range(1, m, 1)]

return r

Result: r contains values equal to 2.00 - as expected!

3.4 Nose test

Use final r[-1] in a unit test:

def test_convergence_rates():

r = convergence_rates(m=5, num_periods=8)
Accept rate to 1 decimal place
nt.assert_almost_equal(r[-1], 2.0, places=1)

Complete code in vib_undamped.py*.

4 Long time simulations

4.1 Effect of the time step on long simulations

dt=0.1 dt=0.05

1o % numerical 1o ® numerical
"IN — exact "N — exact

0.5 0.5

=0.5

—=0.5

~1.0 -1.0

The numerical solution seems to have right amplitude.

There is a phase error (reduced by reducing the time step).

The total phase error seems to grow with time.

4.2 Using a moving plot window

e In long time simulations we need a plot window that follows the solution.
e Method 1: scitools.MovingPlotWindow.

e Method 2: scitools.avplotter (ASCII vertical plotter).

Example:

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

Movie of the moving plot window®.

5 Analysis of the numerical scheme

5.1 Deriving an exact numerical solution; ideas

e Linear, homogeneous, difference equation for u".

4http://tinyurl.com/jvzzcfn/vib/vib_undamped. py
Shttp://tinyurl.com/k3sdbuv/pub/mov-vib/vib_undamped dt0.05/index.html

http://tinyurl.com/jvzzcfn/vib/vib_undamped.py
http://tinyurl.com/k3sdbuv/pub/mov-vib/vib_undamped_dt0.05/index.html

Has solutions u™ ~ I A", where A is unknown (number).
o Here: ue(t) = I cos(wt) ~ I exp (iwt) = I(e™At)
e Trick for simplifying the algebra: u™ = IA™, with A = exp (iwAt), then find ©

e &: unknown numerical frequency (easier to calculate than A)

w — w is the phase error

Use the real part as the physical relevant part of a complex expression

5.2 Deriving an exact numerical solution; calculations (1)

u" = TA™ = T'exp (WAtn) = Iexp (Wt) = I cos(wt) + i1 sin(@t) .

un+1 — 2" un—l
[DtDtU,}n = AL2 +
IAnJrl —2A" + Anfl
B At?
exp (iw(t + At)) — 2 exp (iwt) + exp (iw(t — At))
At?

~ Texp (i@t)ﬁ (exp (iG(A)) + exp (iD(—At)) — 2)

2
= lexp (z@t)ﬁ (cosh(iwAt) — 1)

=17

(cos(WAL) — 1)

2

= —lexp (zdjt)Ait2 sinz(%)

5.3 Deriving an exact numerical; calculations (2)

The scheme (6) with u™ = I exp (iwAtn) inserted gives

4 BAN
— Texp (i) 13 sin2(wT) + w?T exp (iit) = 0, (13)
which after dividing by Toexp (iwt) results in
4 oAt
@siHQ(wT) =2, (14)
Solve for @:) A
t
G =t sin! (“2) . (15)

e Phase error because @ # w.

e But how good is the approximation @ to w?

5.4 Polynomial approximation of the phase error

Taylor series expansion for small At gives a formula that is easier to understand:

>>> from sympy import *

>>> dt, w = symbols(’dt w’)

>>> w_tilde = asin(w*dt/2).series(dt, 0, 4)*2/dt

>>> print w_tilde

(dt*w + dt**3xw*x*3/24 + 0(dt**4))/dt # observe final /dt

O =uw (1 + 214w2At2> +0(At%).

The numerical frequency is too large (to fast oscillations).

5.5 Plot of the phase error

1.6 T T T T T T

— exact discrete frequency
- - 2nd-order expansion

1.5F .

=
H
T
I

numerical frequency
=
w
T

=
N
T

1'00 5 10 15 20 25 30 35

no of time steps per period

Recommendation: 25-30 points per period.
5.6 Exact discrete solution

2 At
u™ = I cos (OnAt), = Esirf1 (w) .

The error mesh function,

10

(16)

e" = ue(ty) — u™ = I cos (wnAt) — I cos (GnAt)

is ideal for verification and analysis.

5.7 Convergence of the numerical scheme

Can easily show convergence:

e — 0 as At — 0,

because

im & I 2 . (wAL
Iim w = l1m — Sin _— = Ww
At—0 At—0 At 2 ’

by L’Hopital’s rule or simply asking (2/x)*asin(w*x/2) as x->0 in WolframAlphaS.

5.8 Stability

Observations:

e Numerical solution has constant amplitude (desired!), but phase error.
e Constant amplitude requires sin~'(wAt/2) to be real-valued = |wAt/2| < 1.

e sin~'(z) is complex if |z| > 1, and then & becomes complex.
What is the consequence of complex @?
e Set @ = @, + iw;.

e Since sin~!(z) has a negative® imaginary part” for x > 1, exp (iwt) = exp (—@;t) exp (i@,t)
leads to exponential growth e~%i* when —@;t > 0.

e This is instability because the qualitative behavior is wrong.

5.9 The stability criterion

Cannot tolerate growth and must therefore demand a stability criterion

wAt

— <1 = A< (18)

IS N

Try At = 2 +9.01- 1075 (slightly too big!):

Shttp://www.wolframalpha.com/input/?i=%282%2Fx%29%asin28w*x%2F2%29+as+x-%3E0
"http://www.wolframalpha.com/input/?i=arcsin%28x%29%2C+x+in+%280%2C3%29

11

http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0
http://www.wolframalpha.com/input/?i=arcsin%28x%29%2C+x+in+%280%2C3%29

2.5

2.0F

15}f

1.0

0.5

0.0

-0.5F

-1.0f

=1.5F

-2.0

5.10 Summary of the analysis

We can draw three important conclusions:

dt=0.3184

e - numerical
exact

[—

1. The key parameter in the formulas is p = wAt.

(
(b

)
)
()
)

a) Period of oscillations: P = 27 /w

(d) The smallest possible Np is 2 = p € (0, 7]

Number of time steps per period: Np = P/At
= p=wAt=27/Np ~1/Np

2. For p < 2 the amplitude of u™ is constant (stable solution)

3. u™ has a relative phase error w/w =~ 1+ in, making numerical peaks occur too early

6 Alternative schemes based on 1st-order equations

6.1 Rewriting 2nd-order ODE as system of two 1st-order ODEs

ool

The vast collection of ODE solvers (e.g., in Odespy®) cannot be applied to

w4 wlu=0

unless we write this higher-order ODE as a system of 1st-order ODEs.

8https://github.com/hplgit/odespy

12

https://github.com/hplgit/odespy

Introduce an auxiliary variable v = u/':

Initial conditions: «(0) = I and v(0) = 0.

6.2 The Forward Euler scheme
We apply the Forward Euler scheme to each component equation:
[Dju = v]n’
[D?_U = 7w2u}n’
or written out,
u" =" + Ato",

"t =" — Atw?u".

6.3 The Backward Euler scheme

We apply the Backward Euler scheme to each component equation:

[Dy u =",

[D;y v = —wu]" .

Written out:

u"tt — Aty =",

0" 4 Atwut = o™

This is a coupled 2 x 2 system for the new values at t = ¢, 41!

6.4 The Crank-Nicolson scheme

[Dtu = @t}n—‘r%,
[Dyv = —wi!]" 2 .
The result is also a coupled system:

1 1
n+l _ = tn+1: n ZAt"
U 2AU u+2Av,

1 1
ot §Atw2u”+1 =" — §Atw2u” .

13

6.5 Comparison of schemes via Odespy

Can use Odespy” to compare many methods for first-order schemes:

import odespy
import numpy as np

def f(u, t, w=1):
u, v =u # u is array of length 2 holding our [u, v]
return [v, -w*x2*u]

def run_solvers_and_plot(solvers, timesteps_per_period=20,
num_periods=1, I=1, w=2*np.pi):
P = 2*np.pi/w # duration of one period
dt = P/timesteps_per_period
Nt = num_periods*timesteps_per_period
T = Nt*dt
t_mesh = np.linspace(0, T, Nt+1)

legends = []

for solver in solvers:
solver.set (f_kwargs={’w’: w})
solver.set_initial_condition([I, 0])
u, t = solver.solve(t_mesh)

6.6 Forward and Backward Euler and Crank-Nicolson

solvers = [
odespy .ForwardEuler (f),
Implicit methods must use Newton solver to converge
odespy .BackwardEuler (f, nonlinear_solver=’Newton’),
odespy .CrankNicolson(f, nonlinear_solver=’Newton’),

Two plot types:
o u(t) vst
e Parameterized curve (u(t),v(t)) in phase space

e Exact curve is an ellipse: (I coswt, —w]I sinwt), closed and periodic

9mttps://github.com/hplgit/odespy

14

https://github.com/hplgit/odespy

6.7 Phase plane plot of the numerical solutions

15

Time step: 0.05

10|

v(t)

ForwardEuler
BackwardEuler
Midpointimplicit
exact

BER

2 3

10

Time step: 0.025

v(t)

ForwardEuler

BackwardEuler
Midpointimplicit 4
exact

BEY

=15

-1.0 -0.5 0.0 0.5 1.0 15 2.0
u(t)

Note: CrankNicolson in Odespy leads to the name MidpointImplicit in plots.

6.8 Plain solution curves

Time step: 0.05

w

e—e ForwardEuler
=—a BackwardEuler
¥—v Midpointimplicit

exact

6.9 Observations from the figures

0.4

0.6

Figure 1:

0.8 1.0

Time step: 0.025

2.0

1.5¢

11!

ForwardEuler
BackwardEuler
Midpointimplicit
exact

139

0.2 0.4 0.6 0.8 1.0

Comparison of classical schemes.

e Forward Euler has growing amplitude and outward (u,v) spiral - pumps energy into the

system.

e Backward Euler is opposite: decreasing amplitude, inward sprial, extracts energy.

e Forward and Backward Euler are useless for vibrations.

e Crank-Nicolson (MidpointImplicit) looks much better.

6.10

> 0.0

Time step: 0.1

e—e RK2
=—a RK4 [

— exact

=05

0.0 0.5 1.0 15
u(t)

Time step: 0.1

1.0

0.5

—0.5]

-1.0

e—e RK2
=—a RK4
— exact

_1'15.0

0.4 0.6 0.8 1.0

v(t)

Runge-Kutta methods of order 2 and 4; short time series

Time step: 0.05

e—e RK2
-6 =—a RK4
— exact

15 -1.0 -0.5 0.5 1.0 15

0.0
u(t)

Time step: 0.05

6.11 Runge-Kutta methods of order 2 and 4; longer time series

40

Time step: 0.1

16

Time step: 0.05

Time step: 0.1

Time step: 0.1

-6 — Midpointimplicit
— exact

~1.0 -0.5 0.0 0.5 1.0
u(t)
10 Time step: 0.1

— Midpointimplicit
— exact

0.5

0.0

-0.5]

o
N
I
o
©

10

Time step: 0.05

— RK2
— RK4

exact h

-15

©

Crank-Nicolson; longer time series

Time step: 0.05

v(t)
o

— Midpointimplicit
— exact

=15 -1.0 -0.5 0.0

u(®

Time step: 0.05

0.5 1.0 15

0.5

> 0.0

1.V\/\/\/W
-1.0

-0.5]

— Midpointimplicit
— exact

(MidpointImplicit means CrankNicolson in Odespy)

17

6.13 Observations of RK and CN methods

e 4th-order Runge-Kutta is very accurate, also for large At.
e 2th-order Runge-Kutta is almost as bad as Forward and Backward Euler.

e Crank-Nicolson is accurate, but the amplitude is not as accurate as the difference scheme
for v’ + w?u = 0.

6.14 Energy conservation property

The model

W' 4+ wPu=0, u0)=1I, «(0)=V,
has the nice energy conservation property that

1 1
E@t) = 5(1/)2 + §w2u2 = const .

This can be used to check solutions.

6.15 Derivation of the energy conservation property

Multiply v + w?u = 0 by v/ and integrate:

T T
/ u'u'dt + / wiuu'dt = 0.
0 0

Observing that

d1 d1

u'u' = %5(1/)27 uu' = £§u2,

we get
T
dl, ,, dl 5,
i L2 2aydt = B(T) — E(0
| G5 + gty = B(T) - B(O),

where

6.16 Remark about E(t)

E(t) does not measure energy, energy per mass unit.
Starting with an ODE coming directly from Newton’s 2nd law F' = ma with a spring force
F = —ku and ma = mu” (a: acceleration, u: displacement), we have

mu” +ku=0

Integrating this equation gives a physical energy balance:

18

1 1
E(t) = §m1)2 + §kUQ = E(0),
—_— ——

kinetic energy potential energy

Note: the balance is not valid if we add other terms to the ODE.

6.17 The Euler-Cromer method; idea

Forward-backward discretization of the 2x2 system:
e Update u with Forward Euler

e Update v with Backward Euler, using latest u

6.18 The Euler-Cromer method; complete formulas

Written out:

u =1,
W = 0,
u"tt =" + A",

v =" — Atw?un Tt

(
(
(
(

Names: Forward-backward scheme, Semi-implicit Euler method!?, symplectic Euler, semi-

explicit Euler, Newton-Stormer-Verlet, and Euler-Cromer.
e Forward Euler and Backward Euler have error O(At)

e What about the overall scheme? Expect O(At)...

6.19 Equivalence with the scheme for the second-order ODE

Goal: eliminate v™. We have
V" =" — Atw?u,

which can be inserted in (36) to yield
u™t =y 4 At — A2wum,

Using (36),

and when this is inserted in (38) we get

umt =2y — " — A2

Ohttp://en.wikipedia.org/wiki/Semi-implicit_Euler method

19

http://en.wikipedia.org/wiki/Semi-implicit_Euler_method

6.20 Comparison of the treatment of initial conditions

e The Euler-Cromer scheme is nothing but the centered scheme for u” + w?u = 0 (6)!
e The previous analysis of this scheme then also applies to the Euler-Cromer method!

e What about the initial conditions?

W=v=0 = °=0,

and (36) implies u! = u°, while (37) says v! = —w?u°.

This u' = u® approximation corresponds to a first-order Forward Euler discretization of
u'(0) = 0: [Dffu = 0]°.

6.21 A method utilizing a staggered mesh

e The Euler-Cromer scheme uses two unsymmetric differences in a symmetric way...

e We can derive the method from a more pedagogical point of view where we use a staggered
mesh and only centered differences

Staggered mesh:

e y is unknown at mesh points tg,t1,..., ¢, ...

e v is unknown at mesh points ¢y,9,%3/2,...,tn+1/2,. - (between the u points)

6.22 Centered differences on a staggered mesh

1

[Dtu = U]n+§’ (40)
[Dyv = —wu]" . (41)
Written out:
W = w4 A3 (42)
0" = ot - Ayt (43)

or shift one time level back (purely of esthetic reasons):

1

u" =u" 4 At (44)

0" = 0" = AtwPu” (45)

20

6.23 Comparison with the scheme for the 2nd-order ODE
e Can eliminate v"*!/2 and get the centered scheme for u” + w?u = 0

e What about the initial conditions? Their equivalent too!
u(0) = 0 and v/ (0) = v(0) = 0 give u® = I and

1
v(O)%i(v*%—FU%):O, = = g2,

Combined with the scheme on the staggered mesh we get

1
ul = ol — iAt%JQI,

6.24 Implementation of a staggered mesh; integer indices

e How to write v"*3 in the code? v[i+0.5] does not work...
e Need a storage convention:

1
— vz — v[n]

— = v[n-1]

o v"3 = "3 — Atw2u" becomes vn] = vIn-1] - dt*wk*2xu[n]

\begin{shadedquoteBlue}

\fontsize{9pt}{9pt}

\begin{Verbatim}

def solver(I, w, dt, T):
set up variables...

u[0] I
v[0] 0 - 0.5*dt*w**2*u[0]
for n in range(1l, Nt+1):
u[n] uln-1] + dt*v[n-1]
v[n] = v[n-1] - dt*w**2*u[n]
return u, t, v, t_v

6.25 Implementation of a staggered mesh; half-integer indices (1)

It would be nice to write

_ _1
ut = u" "+ At 2,
1 _1
"2 = "2 — Atw?um,
as

uln] = uln-1] + dt*v[n-half]
v[n+half] = v[n-half] - dt*wx*2*u[n]

(Implying that n+half is n and n-half is n-1.)

21

6.26 Implementation of a staggered mesh; half-integer indices (2)

This class ensures that n+half is n and n-half is n—-1:

class HalfInt:
def __radd__(self, other):
return other

def __rsub__(self, other):
return other - 1

half = HalfInt()
Now

uln] = uln-1] + dt*v[n-half]
v[n+half] = v[n-half] - dt*wx*2%u[n]

is equivalent to

u[n-1] + dt*v[n-1]
v[n-1] - dt*w**2*u[n]

u[n]
v[n]

7 Generalization: damping, nonlinear spring, and external
excitation
mu” + f(u') + s(u) = F(t), w0)=1, «'(0)=V, t€(0,T]. (46)

Input data: m, f(u'), s(u), F(t), I, V,and T.
Typical choices of f and s:

e linear damping f(u') = bu, or
e quadratic damping f(u') = bu'|u/|
e linear spring s(u) = cu

e nonlinear spring s(u) ~ sin(u) (pendulum)

7.1 A centered scheme for linear damping

[mDyDyu + f(Dayu) + s(u) = F]" (47)
Written out
un+1 — oy + unfl unJrl _ u’ﬂfl n n
m e 4 J(a) () = F (45)

Assume f(u) is linear in w' = v:

untt = <2mu” + (gAt —m)u""t + A (F" — s(u"))) (m+ gAt)fl . (49)

22

7.2 Initial conditions

u(0) =1, d'(0)=V:

u=1° = =1, (50)
[Dyu=V]" = u'=u'-2AtV (51)
End result:
1_ .0 Aitz B o(e,0 0
u=u —|—AtV+2m(bV —s(u”) + F7). (52)

Same formula for u' as when using a centered scheme for u” + wu = 0.

7.3 Linearization via a geometric mean approximation
o f(u') = bu'|u'| leads to a quadratic equation for u™*?
e Instead of solving the quadratic equation, we use a geometric mean approximation
In general, the geometric mean approximation reads
n+3 .

(w?)" =~ W w

For |u/'|u’ at t,:

1 1
[/)" & ! (tn +)l (En =)1
2 2

For ' at t,,41,/2 we use centered difference:

W (b1 j2) ~ [Dyu] ™2, W/ (ty_1)2) ~ [Dyu] "% . (53)

7.4 A centered scheme for quadratic damping

After some algebra:

"t = (m + blu™ — 1L"71\)_1 X

(2mu” — mu ! 4 b u” — u" T A+ AP (ET — s(u™))) - (54)

7.5 Initial condition for quadratic damping

Simply use that ' =V in the scheme when ¢t =0 (n = 0):
[mDyDyu + bV |V | + s(u) = F]° (55)

which gives

At?
ut = u + AtV + o (—bV|V| = s(u’) + F°) . (56)

23

7.6
1.

2.
3.

7.7

def

7.8

7.9

Algorithm
ul =1
compute u! from (52) if linear damping or (56) if quadratic damping
form=1,2,...,N; — 1:

(a) compute u™*! from (49) if linear damping or (54) if quadratic damping

Implementation

solver(I, V, m, b, s, F, dt, T, damping=’linear’):

dt = float(dt); b = float(b); m = float(m) # avoid integer div.
Nt = int(round(T/dt))

u = zeros(Nt+1)

t = linspace(0, Nt*dt, Nt+1)

uf0] =1
if damping == ’linear’:

ul1] = uf0] + dt*V + dt**2/(2*m)*(-b*V - s(ul0]) + F(t[0]))
elif damping == ’quadratic’:

ul1] = ul0] + dt*V + \
dt**2/ (2*m) * (-b*V*abs (V) - s(u[0]) + F(t[0]))

for n in range(1l, Nt):
if damping == ’linear’:
uln+1] = (2*m*u[n] + (b*dt/2 - m)*uln-1] +
dt**2x(F(t[n]) - s(ulnl)))/(m + bxdt/2)
elif damping == ’quadratic’:
u[n+1] = (2*m*u[n] - m*u[n-1] + b*ul[n]*abs(u[n] - u[n-1])
+ dt*x2x(F(t[n]) - s(ulnl)))/\
(m + b*xabs(u[n] - uln-11))
return u, t

Verification

Constant solution ue = I (V = 0) fulfills the ODE problem and the discrete equations.
Ideal for debugging!

Linear solution ue = V't + I fulfills the ODE problem and the discrete equations.

Quadratic solution ue = bt? 4 V't + I fulfills the ODE problem and the discrete equations
with linear damping, but not for quadratic damping. A special discrete source term can
allow ue to also fulfill the discrete equations with quadratic damping.

Demo program

vib.py!! supports input via the command line:

Terminal> python vib.py --s ’sin(u)’ --F ’3%cos(4*t)’ --c 0.03

Unttp://tinyurl.com/jvzzctn/vib/vib.py

24

http://tinyurl.com/jvzzcfn/vib/vib.py

This results in a moving window following the function'? on the screen.

. . dt=F).05 . .
1.0 i
0.5F i
S 0.0f
—0.5F i
—1.0t i
0 1IO 2|0 3;0 4|0 5|0

7.10 Euler-Cromer formulation

We rewrite

mu” + f(u') +s(u) = F(t), u(0)=1, «'(0)=V, te(0,T],

as a first-order ODE system

7.11 Staggered grid

e 1 is unknown at ¢,: u"
; k . onti
e v is unknown at tn_;’_l/g. T2

e All derivatives are approximated by centered differences

Zhttp://tinyurl. com/k3sdbuv/pub/mov-vib/vib_generalized dt0.05/index.html

25

60

http://tinyurl.com/k3sdbuv/pub/mov-vib/vib_generalized_dt0.05/index.html

Written out,

u™ _Aunfl _ ,Unfé’
t
n+s _ n—1%
VT () -)

Problem: f(v™)

7.12 Linear damping

With f(v) = bv, we can use an arithmetic mean for bv™ a la Crank-Nicolson schemes.

_ 1
u" =u"T 4+ At 2,

<1+$;A¢>1<M15kAhnl<Fm;f@ﬁé)shﬂﬁ)>.

"t

[N

7.13 Quadratic damping

With f(v) = blv|v, we can use a geometric mean

blvnh}n ~ bwn—%wn—&-%’

resulting in

_ _1
ut =" At 2

1 b 1 1
n+3 n—z 1 n—z -1 n n
% =1+ —m|v |At) (v + Atm™ (F" — s(u))) .

7.14 Initial conditions

O=7

S
I

)

<
N
Il

1
V—§Am%.

26

Index

frequency (of oscillations), 1
Hz (unit), 1

period (of oscillations), 1
stability criterion, 10

staggered Euler-Cromer scheme, 18
staggered mesh, 18

27

	A simple vibration problem
	A centered finite difference scheme; step 1 and 2
	A centered finite difference scheme; step 3
	A centered finite difference scheme; step 4
	Computing the first step
	The computational algorithm
	Operator notation; ODE
	Operator notation; initial condition
	Computing u'

	Implementation
	Core algorithm
	Plotting
	Main program
	User interface: command line
	Running the program

	Verification
	First steps for testing and debugging
	Checking convergence rates
	Implementational details
	Nose test

	Long time simulations
	Effect of the time step on long simulations
	Using a moving plot window

	Analysis of the numerical scheme
	Deriving an exact numerical solution; ideas
	Deriving an exact numerical solution; calculations (1)
	Deriving an exact numerical; calculations (2)
	Polynomial approximation of the phase error
	Plot of the phase error
	Exact discrete solution
	Convergence of the numerical scheme
	Stability
	The stability criterion
	Summary of the analysis

	Alternative schemes based on 1st-order equations
	Rewriting 2nd-order ODE as system of two 1st-order ODEs
	The Forward Euler scheme
	The Backward Euler scheme
	The Crank-Nicolson scheme
	Comparison of schemes via Odespy
	Forward and Backward Euler and Crank-Nicolson
	Phase plane plot of the numerical solutions
	Plain solution curves
	Observations from the figures
	Runge-Kutta methods of order 2 and 4; short time series
	Runge-Kutta methods of order 2 and 4; longer time series
	Crank-Nicolson; longer time series
	Observations of RK and CN methods
	Energy conservation property
	Derivation of the energy conservation property
	Remark about E(t)
	The Euler-Cromer method; idea
	The Euler-Cromer method; complete formulas
	Equivalence with the scheme for the second-order ODE
	Comparison of the treatment of initial conditions
	A method utilizing a staggered mesh
	Centered differences on a staggered mesh
	Comparison with the scheme for the 2nd-order ODE
	Implementation of a staggered mesh; integer indices
	Implementation of a staggered mesh; half-integer indices (1)
	Implementation of a staggered mesh; half-integer indices (2)

	Generalization: damping, nonlinear spring, and external excitation
	A centered scheme for linear damping
	Initial conditions
	Linearization via a geometric mean approximation
	A centered scheme for quadratic damping
	Initial condition for quadratic damping
	Algorithm
	Implementation
	Verification
	Demo program
	Euler-Cromer formulation
	Staggered grid
	Linear damping
	Quadratic damping
	Initial conditions

