Study Guide: Truncation Error Analysis

$$
\text { Hans Petter Langtangen }{ }^{1,2}
$$

Center for Biomedical Computing, Simula Research Laboratory ${ }^{1}$
Department of Informatics, University of Oslo ${ }^{2}$
Dec 12, 2013

Overview of what truncation errors are

- Definition: The truncation error is the discrepancy that arises from performing a finite number of steps to approximate a process with infinitely many steps.
- Widely used: truncation of infinite series, finite precision arithmetic, finite differences, and differential equations.
- Why? The truncation error is an error measure that is easy to compute.

Abstract problem setting

Consider an abstract differential equation

$$
\mathcal{L}(u)=0 .
$$

Example: $\mathcal{L}(u)=u^{\prime}(t)+a(t) u(t)-b(t)$.
The corresponding discrete equation:

$$
\mathcal{L}_{\Delta}(u)=0 .
$$

Let now

- u be the numerical solution of the discrete equations, computed at mesh points: $u^{n}, n=0, \ldots, N_{t}$
- u_{e} the exact solution of the differential equation

$$
\begin{aligned}
\mathcal{L}\left(u_{\mathrm{e}}\right) & =0 \\
\mathcal{L}_{\Delta}(u) & =0
\end{aligned}
$$

u is computed at mesh points

- Dream: the true error $e=u_{\mathrm{e}}-u$, but usually impossible
- Must find other error measures that are easier to calculate
- Derive formulas for u in (very) special, simplified cases
- Compute empirical convergence rates for special choices of u_{e} (usually non-physical u_{e})
- To what extent does u_{e} fulfill $\mathcal{L}_{\Delta}\left(u_{\mathrm{e}}\right)=0$?
- It does not fit, but we can measure the error $\mathcal{L}_{\Delta}\left(u_{\mathrm{e}}\right)=R$
- R is the truncation error and it is easy to compute in general, without considering special cases

Truncation errors in finite difference formulas

Example: The backward difference for $u^{\prime}(t)$

Backward difference approximation to u^{\prime} :

$$
\begin{equation*}
\left[D_{t}^{-} u\right]^{n}=\frac{u^{n}-u^{n-1}}{\Delta t} \approx u^{\prime}\left(t_{n}\right) \tag{1}
\end{equation*}
$$

Define the truncation error of this approximation as

$$
\begin{equation*}
R^{n}=\left[D_{t}^{-} u\right]^{n}-u^{\prime}\left(t_{n}\right) . \tag{2}
\end{equation*}
$$

The common way of calculating R^{n} is to
(1) expand $u(t)$ in a Taylor series around the point where the derivative is evaluated, here t_{n},
(2) insert this Taylor series in (2), and
(3) collect terms that cancel and simplify the expression.

General Taylor series expansion from calculus:

$$
f(x+h)=\sum_{i=0}^{\infty} \frac{1}{i!} \frac{d^{i} f}{d x^{i}}(x) h^{i} .
$$

Here: expand u^{n-1} around t_{n} :

$$
\begin{aligned}
u\left(t_{n-1}\right)=u(t-\Delta t) & =\sum_{i=0}^{\infty} \frac{1}{i!} \frac{d^{i} u}{d t^{i}}\left(t_{n}\right)(-\Delta t)^{i} \\
& =u\left(t_{n}\right)-u^{\prime}\left(t_{n}\right) \Delta t+\frac{1}{2} u^{\prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{3}\right)
\end{aligned}
$$

- $\mathcal{O}\left(\Delta t^{3}\right)$: power-series in Δt where the lowest power is Δt^{3}
- Small $\Delta t: \Delta t \gg \Delta t^{3} \gg \Delta t^{4}$

Taylor series inserted in the backward difference approximation

$$
\begin{aligned}
{\left[D_{t}^{-} u\right]^{n}-u^{\prime}\left(t_{n}\right)=} & \frac{u\left(t_{n}\right)-u\left(t_{n-1}\right)}{\Delta t}-u^{\prime}\left(t_{n}\right) \\
= & \frac{u\left(t_{n}\right)-\left(u\left(t_{n}\right)-u^{\prime}\left(t_{n}\right) \Delta t+\frac{1}{2} u^{\prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{3}\right)\right)}{\Delta t} \\
& -u^{\prime}\left(t_{n}\right) \\
= & \left.-\frac{1}{2} u^{\prime \prime}\left(t_{n}\right) \Delta t+\mathcal{O}\left(\Delta t^{2}\right)\right)
\end{aligned}
$$

Result:

$$
\begin{equation*}
\left.R^{n}=-\frac{1}{2} u^{\prime \prime}\left(t_{n}\right) \Delta t+\mathcal{O}\left(\Delta t^{2}\right)\right) \tag{3}
\end{equation*}
$$

The difference approximation is of first order in Δt. It is exact for linear u_{e}.

Now consider a forward difference:

$$
u^{\prime}\left(t_{n}\right) \approx\left[D_{t}^{+} u\right]^{n}=\frac{u^{n+1}-u^{n}}{\Delta t}
$$

Define the truncation error:

$$
R^{n}=\left[D_{t}^{+} u\right]^{n}-u^{\prime}\left(t_{n}\right) .
$$

Expand u^{n+1} in a Taylor series around t_{n},

$$
u\left(t_{n+1}\right)=u\left(t_{n}\right)+u^{\prime}\left(t_{n}\right) \Delta t+\frac{1}{2} u^{\prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{3}\right)
$$

We get

$$
R=\frac{1}{2} u^{\prime \prime}\left(t_{n}\right) \Delta t+\mathcal{O}\left(\Delta t^{2}\right) .
$$

For the central difference approximation,

$$
u^{\prime}\left(t_{n}\right) \approx\left[D_{t} u\right]^{n}, \quad\left[D_{t} u\right]^{n}=\frac{u^{n+\frac{1}{2}}-u^{n-\frac{1}{2}}}{\Delta t}
$$

the truncation error is

$$
R^{n}=\left[D_{t} u\right]^{n}-u^{\prime}\left(t_{n}\right) .
$$

Expand $u\left(t_{n+\frac{1}{2}}\right)$ and $u\left(t_{n-1 / 2}\right)$ in Taylor series around the point t_{n} where the derivative is evaluated:

$$
\begin{aligned}
u\left(t_{n+\frac{1}{2}}\right)= & u\left(t_{n}\right)+u^{\prime}\left(t_{n}\right) \frac{1}{2} \Delta t+\frac{1}{2} u^{\prime \prime}\left(t_{n}\right)\left(\frac{1}{2} \Delta t\right)^{2}+ \\
& \frac{1}{6} u^{\prime \prime \prime}\left(t_{n}\right)\left(\frac{1}{2} \Delta t\right)^{3}+\frac{1}{24} u^{\prime \prime \prime \prime}\left(t_{n}\right)\left(\frac{1}{2} \Delta t\right)^{4}+\mathcal{O}\left(\Delta t^{5}\right) \\
u\left(t_{n-1 / 2}\right)= & u\left(t_{n}\right)-u^{\prime}\left(t_{n}\right) \frac{1}{2} \Delta t+\frac{1}{2} u^{\prime \prime}\left(t_{n}\right)\left(\frac{1}{2} \Delta t\right)^{2}- \\
& \frac{1}{6} u^{\prime \prime \prime}\left(t_{n}\right)\left(\frac{1}{2} \Delta t\right)^{3}+\frac{1}{24} u^{\prime \prime \prime \prime}\left(t_{n}\right)\left(\frac{1}{2} \Delta t\right)^{4}+\mathcal{O}\left(\Delta t^{5}\right) .
\end{aligned}
$$

The central difference for $u^{\prime}(t)(1)$

$$
u\left(t_{n+\frac{1}{2}}\right)-u\left(t_{n-1 / 2}\right)=u^{\prime}\left(t_{n}\right) \Delta t+\frac{1}{24} u^{\prime \prime \prime}\left(t_{n}\right) \Delta t^{3}+\mathcal{O}\left(\Delta t^{5}\right) .
$$

By collecting terms in $\left[D_{t} u\right]^{n}-u\left(t_{n}\right)$ we find R^{n} to be

$$
\begin{equation*}
R^{n}=\frac{1}{24} u^{\prime \prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right), \tag{4}
\end{equation*}
$$

Note:

- Second-order accuracy since the leading term is Δt^{2}
- Only even powers of Δt

$$
\begin{align*}
{\left[D_{t} u\right]^{n} } & =\frac{u^{n+\frac{1}{2}}-u^{n-\frac{1}{2}}}{\Delta t}=u^{\prime}\left(t_{n}\right)+R^{n} \tag{5}\\
R^{n} & =\frac{1}{24} u^{\prime \prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right) \tag{6}\\
{\left[D_{2 t} u\right]^{n} } & =\frac{u^{n+1}-u^{n-1}}{2 \Delta t}=u^{\prime}\left(t_{n}\right)+R^{n}, \tag{7}\\
R^{n} & =\frac{1}{6} u^{\prime \prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right) \tag{8}\\
{\left[D_{t}^{-} u\right]^{n} } & =\frac{u^{n}-u^{n-1}}{\Delta t}=u^{\prime}\left(t_{n}\right)+R^{n}, \tag{9}\\
R^{n} & =-\frac{1}{2} u^{\prime \prime}\left(t_{n}\right) \Delta t+\mathcal{O}\left(\Delta t^{2}\right) \tag{10}\\
{\left[D_{t}^{+} u\right]^{n} } & =\frac{u^{n+1}-u^{n}}{\Delta t}=u^{\prime}\left(t_{n}\right)+R^{n} \tag{11}\\
R^{n} & =\frac{1}{2} u^{\prime \prime}\left(t_{n}\right) \Delta t+\mathcal{O}\left(\Delta t^{2}\right) \tag{12}
\end{align*}
$$

Leading-order error terms in finite differences (2)

$$
\begin{align*}
{\left[\bar{D}_{t} u\right]^{n+\theta} } & =\frac{u^{n+1}-u^{n}}{\Delta t}=u^{\prime}\left(t_{n+\theta}\right)+R^{n+\theta}, \tag{13}\\
R^{n+\theta} & =\frac{1}{2}(1-2 \theta) u^{\prime \prime}\left(t_{n+\theta}\right) \Delta t-\frac{1}{6}\left((1-\theta)^{3}-\theta^{3}\right) u^{\prime \prime \prime}\left(t_{n+\theta}\right) \Delta t^{2}+\mathcal{O}(\tag{14}\\
{\left[D_{t}^{2-} u\right]^{n} } & =\frac{3 u^{n}-4 u^{n-1}+u^{n-2}}{2 \Delta t}=u^{\prime}\left(t_{n}\right)+R^{n}, \tag{15}\\
R^{n} & =-\frac{1}{3} u^{\prime \prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{3}\right) \tag{16}\\
{\left[D_{t} D_{t} u\right]^{n} } & =\frac{u^{n+1}-2 u^{n}+u^{n-1}}{\Delta t^{2}}=u^{\prime \prime}\left(t_{n}\right)+R^{n}, \tag{17}\\
R^{n} & =\frac{1}{12} u^{\prime \prime \prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right) \tag{18}
\end{align*}
$$

Weighted arithmetic mean:

$$
\begin{align*}
{\left[\bar{u}^{t, \theta}\right]^{n+\theta} } & =\theta u^{n+1}+(1-\theta) u^{n}=u\left(t_{n+\theta}\right)+R^{n+\theta} \tag{19}\\
R^{n+\theta} & =\frac{1}{2} u^{\prime \prime}\left(t_{n+\theta}\right) \Delta t^{2} \theta(1-\theta)+\mathcal{O}\left(\Delta t^{3}\right) \tag{20}
\end{align*}
$$

Standard arithmetic mean:

$$
\begin{align*}
{\left[\bar{u}^{t}\right]^{n} } & =\frac{1}{2}\left(u^{n-\frac{1}{2}}+u^{n+\frac{1}{2}}\right)=u\left(t_{n}\right)+R^{n} \tag{21}\\
R^{n} & =\frac{1}{8} u^{\prime \prime}\left(t_{n}\right) \Delta t^{2}+\frac{1}{384} u^{\prime \prime \prime \prime}\left(t_{n}\right) \Delta t^{4}+\mathcal{O}\left(\Delta t^{6}\right) \tag{22}
\end{align*}
$$

Leading-order error terms in mean values (2)

Geometric mean:

$$
\begin{align*}
{\left[{\overline{u^{2}}}^{t, g}\right]^{n} } & =u^{n-\frac{1}{2}} u^{n+\frac{1}{2}}=\left(u^{n}\right)^{2}+R^{n} \tag{23}\\
R^{n} & =-\frac{1}{4} u^{\prime}\left(t_{n}\right)^{2} \Delta t^{2}+\frac{1}{4} u\left(t_{n}\right) u^{\prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right) . \tag{24}
\end{align*}
$$

Harmonic mean:

$$
\begin{align*}
{\left[\bar{u}^{t, h}\right]^{n} } & =u^{n}=\frac{2}{\frac{1}{u^{n-\frac{1}{2}}}+\frac{1}{u^{n+\frac{1}{2}}}}+R^{n+\frac{1}{2}} \tag{25}\\
R^{n} & =-\frac{u^{\prime}\left(t_{n}\right)^{2}}{4 u\left(t_{n}\right)} \Delta t^{2}+\frac{1}{8} u^{\prime \prime}\left(t_{n}\right) \Delta t^{2} . \tag{26}
\end{align*}
$$

- Can use sympy to automate calculations with Taylor series.
- Tool: course module truncation_errors

```
>>> from truncation_errors import TaylorSeries
>>> from sympy import *
>>> u, dt = symbols('u dt')
>>> u_Taylor = TaylorSeries(u, 4)
>>> u_Taylor(dt)
D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24 + u
>>> FE = (u_Taylor(dt) - u)/dt
>>> FE
(D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24)/dt
>>> simplify(FE)
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24
```

Notation: D1u for u^{\prime}, D2u for $u^{\prime \prime}$, etc.
See trunc/truncation_errors.py.

A class DiffOp represents many common difference operators:
>>> from truncation_errors import DiffOp
>>> from sympy import *
>>> u = Symbol('u')
>>> diffop = DiffOp(u, independent_variable='t')
>>> diffop['geometric_mean']
$-\mathrm{D} 1 \mathrm{u} * * 2 * \mathrm{dt} * * 2 / 4-\mathrm{D} 1 \mathrm{u} * \mathrm{D} 3 \mathrm{u} * \mathrm{dt} * * 4 / 48+\mathrm{D} 2 \mathrm{u} * * 2 * \mathrm{dt} * * 4 / 64+\ldots$
>>> diffop['Dtm']
$\mathrm{D} 1 \mathrm{u}+\mathrm{D} 2 \mathrm{u} * \mathrm{dt} / 2+\mathrm{D} 3 \mathrm{u} * \mathrm{dt} * * 2 / 6+\mathrm{D} 4 \mathrm{u} * \mathrm{dt} * * 3 / 24$
>>> diffop.operator_names()
['geometric_mean', 'harmonic_mean', 'Dtm', 'D2t', 'DtDt',
'weighted_arithmetic_mean', 'Dtp', 'Dt']
Names in diffop: Dtp for D_{t}^{+}, Dtm for D_{t}^{-}, Dt for $D_{t}, \mathrm{D} 2 \mathrm{t}$ for $D_{2 t}$, DtDt for $D_{t} D_{t}$.

Truncation errors in exponential decay ODE

$$
u^{\prime}(t)=-a u(t)
$$

The Forward Euler scheme:

$$
\begin{equation*}
\left[D_{t}^{+} u=-a u\right]^{n} . \tag{27}
\end{equation*}
$$

Definition of the truncation error R^{n} :

$$
\begin{equation*}
\left[D_{t}^{+} u_{\mathrm{e}}+a u_{\mathrm{e}}=R\right]^{n} \tag{28}
\end{equation*}
$$

From (11)-(12):

$$
\left[D_{t}^{+} u_{\mathrm{e}}\right]^{n}=u_{\mathrm{e}}^{\prime}\left(t_{n}\right)+\frac{1}{2} u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right) \Delta t+\mathcal{O}\left(\Delta t^{2}\right)
$$

Inserted in (28):

$$
u_{\mathrm{e}}^{\prime}\left(t_{n}\right)+\frac{1}{2} u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right) \Delta t+\mathcal{O}\left(\Delta t^{2}\right)+a u_{\mathrm{e}}\left(t_{n}\right)=R^{n}
$$

Note: $u_{\mathrm{e}}^{\prime}\left(t_{n}\right)+a u_{\mathrm{e}}^{n}=0$ since u_{e} solves the ODE. Then

$$
\begin{equation*}
R^{n}=\frac{1}{2} u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right) \Delta t+\mathcal{O}\left(\Delta t^{2}\right) \tag{29}
\end{equation*}
$$

Crank-Nicolson:

$$
\begin{equation*}
\left[D_{t} u=-a u\right]^{n+\frac{1}{2}} \tag{30}
\end{equation*}
$$

Truncation error:

$$
\begin{equation*}
\left[D_{t} u_{\mathrm{e}}+a{\overline{u_{\mathrm{e}}}}^{t}=R\right]^{n+\frac{1}{2}} \tag{31}
\end{equation*}
$$

From (5)-(6) and (21)-(22):

$$
\begin{aligned}
& {\left[D_{t} u_{\mathrm{e}}\right]^{n+\frac{1}{2}}=u^{\prime}\left(t_{n+\frac{1}{2}}\right)+\frac{1}{24} u_{\mathrm{e}}^{\prime \prime \prime}\left(t_{n+\frac{1}{2}}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right)} \\
& {\left[a \bar{u}_{\mathrm{e}}^{t}\right]^{n+\frac{1}{2}}=u\left(t_{n+\frac{1}{2}}\right)+\frac{1}{8} u^{\prime \prime}\left(t_{n}\right) \Delta t^{2}++\mathcal{O}\left(\Delta t^{4}\right)}
\end{aligned}
$$

Inserted in the scheme we get

$$
\begin{equation*}
R^{n+\frac{1}{2}}=\left(\frac{1}{24} u_{\mathrm{e}}^{\prime \prime \prime}\left(t_{n+\frac{1}{2}}\right)+\frac{1}{8} u^{\prime \prime}\left(t_{n}\right)\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right) \tag{32}
\end{equation*}
$$

$R^{n}=\mathcal{O}\left(\Delta t^{2}\right)$ (second-order scheme)

Test the understanding!

Analyze the the truncation error of the Backward Euler scheme and show that it is $\mathcal{O}(\Delta t)$ (first order scheme).

The θ-rule:

$$
\left[\bar{D}_{t} u=-a \bar{u}^{t, \theta}\right]^{n+\theta}
$$

Truncation error:

$$
\left[\bar{D}_{t} u_{\mathrm{e}}+a \bar{u}_{\mathrm{e}}{ }^{t, \theta}=R\right]^{n+\theta}
$$

Use (13)-(14) and (19)-(20) along with $u_{\mathrm{e}}^{\prime}\left(t_{n+\theta}\right)+a u_{\mathrm{e}}\left(t_{n+\theta}\right)=0$ to show

$$
\begin{align*}
R^{n+\theta}= & \left(\frac{1}{2}-\theta\right) u_{\mathrm{e}}^{\prime \prime}\left(t_{n+\theta}\right) \Delta t+\frac{1}{2} \theta(1-\theta) u_{\mathrm{e}}^{\prime \prime}\left(t_{n+\theta}\right) \Delta t^{2}+ \\
& \frac{1}{2}\left(\theta^{2}-\theta+3\right) u_{\mathrm{e}}^{\prime \prime \prime}\left(t_{n+\theta}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{3}\right) \tag{33}
\end{align*}
$$

Note: 2 nd-order scheme if and only if $\theta=1 / 2$.

Using symbolic software

Can use sympy and the tools in truncation_errors.py:

```
def decay():
    u, a = sm.symbols('u a')
    diffop = DiffOp(u, independent_variable='t',
        num_terms_Taylor_series=3)
    D1u = diffop.D(1) # symbol for du/dt
    ODE = D1u + a*u # define ODE
    # Define schemes
    FE = diffop['Dtp'] + a*u
    CN = diffop['Dt' ] + a*u
    BE = diffop['Dtm'] + a*u
    # Residuals (truncation errors)
    R = {'FE': FE-ODE, 'BE': BE-ODE, 'CN': CN-ODE}
    return R
```

The returned dictionary becomes

```
decay: {
    'BE': D2u*dt/2 + D3u*dt**2/6,
    'FE': -D2u*dt/2 + D3u*dt**2/6,
    'CN': D3u*dt**2/24,
}
```

θ-rule: see truncation_errors.py (long expression, very advantageous to automate the math!)

Ideas:

- Compute R^{n} numerically
- Run a sequence of meshes
- Estimate the convergence rate of R^{n}

For the Forward Euler scheme:

$$
\begin{equation*}
R^{n}=\left[D_{t}^{+} u_{\mathrm{e}}+a u_{\mathrm{e}}\right]^{n} . \tag{34}
\end{equation*}
$$

Insert correct $u_{\mathrm{e}}(t)=l e^{-a t}$ (or use method of manufactured solution in more general cases).

Empirical verification of the truncation error (2)

- Assume $R^{n}=C \Delta t^{r}$
- C and r will vary with n-must estimate r for each mesh point
- Use a sequence of meshes with $N_{t}=2^{-k} N_{0}$ intervals, $k=1,2, \ldots$
- Transform R^{n} data to the coarsest mesh and estimate r for each coarse mesh point

See the text for more details and an implementation.

Empirical verification of the truncation error in the Forward Euler scheme

Eigurn: Ectimatad troungtion prror at moch nointe for difforont monhor

Empirical verification of the truncation error in the Forward Euler scheme

Fioure Difference between theoretical and estimated truncation error at

Increasing the accuracy by adding correction terms

Question.

Can we add terms in the differential equation that can help increase the order of the truncation error?
To be precise for the Forward Euler scheme, can we find C to make $R \mathcal{O}\left(\Delta t^{2}\right)$?

$$
\begin{equation*}
\left[D_{t}^{+} u_{\mathrm{e}}+a u_{\mathrm{e}}=C+R\right]^{n} \tag{35}
\end{equation*}
$$

$$
\frac{1}{2} u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right) \Delta t-\frac{1}{6} u_{\mathrm{e}}^{\prime \prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{3}\right)=C^{n}+R^{n}
$$

Choosing

$$
C^{n}=\frac{1}{2} u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right) \Delta t
$$

makes

$$
R^{n}=\frac{1}{6} u_{\mathrm{e}}^{\prime \prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{3}\right)
$$

Lowering the order of the derivative in the correction term

- C^{n} contains $u^{\prime \prime}$
- Can discretize $u^{\prime \prime}$ (requires u^{n+1}, u^{n}, and u^{n-1})
- Can also express $u^{\prime \prime}$ in terms of u^{\prime} or u

$$
u^{\prime}=-a u, \quad \Rightarrow \quad u^{\prime \prime}=-a u^{\prime}=a^{2} u
$$

Result for $u^{\prime \prime}=a^{2} u$: apply Forward Euler to a perturbed $O D E$,

$$
\begin{equation*}
u^{\prime}=-\hat{a} u, \quad \hat{a}=a\left(1-\frac{1}{2} a \Delta t\right) \tag{36}
\end{equation*}
$$

to make a second-order scheme!

With a correction term Forward Euler becomes Crank-Nicolson

Use the other alternative $u^{\prime \prime}=-a u^{\prime}$:

$$
u^{\prime}=-a u-\frac{1}{2} a \Delta t u^{\prime} \quad \Rightarrow \quad\left(1+\frac{1}{2} a \Delta t\right) u^{\prime}=-a u
$$

Apply Forward Euler:

$$
\left(1+\frac{1}{2} a \Delta t\right) \frac{u^{n+1}-u^{n}}{\Delta t}=-a u^{n}
$$

which after some algebra can be written as

$$
u^{n+1}=\frac{1-\frac{1}{2} a \Delta t}{1+\frac{1}{2} a \Delta t} u^{n}
$$

This is a Crank-Nicolson scheme (of second order)!

Correction terms in the Crank-Nicolson scheme (1)

$$
\left[D_{t} u=-a \bar{u}^{t}\right]^{n+\frac{1}{2}}
$$

Definition of the truncation error R and correction terms C :

$$
\left[D_{t} u_{\mathrm{e}}+a{\overline{u_{\mathrm{e}}}}^{t}=C+R\right]^{n+\frac{1}{2}} .
$$

Must Taylor expand

- the derivative
- the arithmetic mean

$$
C^{n+\frac{1}{2}}+R^{n+\frac{1}{2}}=\frac{1}{24} u_{\mathrm{e}}^{\prime \prime \prime}\left(t_{n+\frac{1}{2}}\right) \Delta t^{2}+\frac{a}{8} u_{\mathrm{e}}^{\prime \prime}\left(t_{n+\frac{1}{2}}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right) .
$$

Let $C^{n+\frac{1}{2}}$ cancel the Δt^{2} terms:

$$
C^{n+\frac{1}{2}}=\frac{1}{24} u_{e}^{\prime \prime \prime}\left(t_{n+\frac{1}{2}}\right) \Delta t^{2}+\frac{a}{8} u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right) \Delta t^{2}
$$

Correction terms in the Crank-Nicolson scheme (2)

- Must replace $u^{\prime \prime \prime}$ and $u^{\prime \prime}$ in correction term
- Using $u^{\prime}=-a u: u^{\prime \prime}=a^{2} u$ and $u^{\prime \prime \prime}=-a^{3} u$

Result: solve the perturbed ODE by a Crank-Nicolson method,

$$
u^{\prime}=-\hat{a} u, \quad \hat{a}=a\left(1-\frac{1}{12} a^{2} \Delta t^{2}\right) .
$$

and experience an error $\mathcal{O}\left(\Delta t^{4}\right)$.

Extension to variable coefficients

$$
u^{\prime}(t)=-a(t) u(t)+b(t)
$$

Forward Euler:

$$
\begin{equation*}
\left[D_{t}^{+} u=-a u+b\right]^{n} \tag{37}
\end{equation*}
$$

The truncation error is found from

$$
\begin{equation*}
\left[D_{t}^{+} u_{\mathrm{e}}+a u_{\mathrm{e}}-b=R\right]^{n} \tag{38}
\end{equation*}
$$

Using (11)-(12):

$$
u_{\mathrm{e}}^{\prime}\left(t_{n}\right)-\frac{1}{2} u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right) \Delta t+\mathcal{O}\left(\Delta t^{2}\right)+a\left(t_{n}\right) u_{\mathrm{e}}\left(t_{n}\right)-b\left(t_{n}\right)=R^{n} .
$$

Because of the ODE, $u_{\mathrm{e}}^{\prime}\left(t_{n}\right)+a\left(t_{n}\right) u_{\mathrm{e}}\left(t_{n}\right)-b\left(t_{n}\right)=0$, and

$$
\begin{equation*}
R^{n}=-\frac{1}{2} u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right) \Delta t+\mathcal{O}\left(\Delta t^{2}\right) \tag{39}
\end{equation*}
$$

No problems with variable coefficients!

How does the truncation error depend on u_{e} in finite differences?

- One-sided differences: $u_{\mathrm{e}}^{\prime \prime} \Delta t$ (lowest order)
- Centered differences: $u_{\mathrm{e}}^{\prime \prime \prime} \Delta t^{2}$ (lowest order)
- Only harmonic and geometric mean involve u_{e}^{\prime} or u_{e}

Consequence:

- $u_{\mathrm{e}}(t)=c t+d$ will very often give exact solution of the discrete equations $(R=0)$!
- Ideal for verification
- Centered schemes allow quadratic u_{e}

Problem: harmonic and geometric mean (error depends on u_{e}^{\prime} and u_{e})

Computing truncation errors in nonlinear problems (1)

$$
\begin{equation*}
u^{\prime}=f(u, t) \tag{40}
\end{equation*}
$$

Crank-Nicolson scheme:

$$
\begin{equation*}
\left[D_{t} u^{\prime}=\bar{f}^{t}\right]^{n+\frac{1}{2}} . \tag{41}
\end{equation*}
$$

Truncation error:

$$
\begin{equation*}
\left[D_{t} u_{\mathrm{e}}^{\prime}-\bar{f}^{t}=R\right]^{n+\frac{1}{2}} . \tag{42}
\end{equation*}
$$

Using (21)-(22) for the arithmetic mean:

$$
\begin{aligned}
{\left[\bar{f}^{t}\right]^{n+\frac{1}{2}} } & =\frac{1}{2}\left(f\left(u_{\mathrm{e}}^{n}, t_{n}\right)+f\left(u_{\mathrm{e}}^{n+1}, t_{n+1}\right)\right) \\
& =f\left(u_{\mathrm{e}}^{n+\frac{1}{2}}, t_{n+\frac{1}{2}}\right)+\frac{1}{8} u_{\mathrm{e}}^{\prime \prime}\left(t_{n+\frac{1}{2}}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right) .
\end{aligned}
$$

Computing truncation errors in nonlinear problems (2)

With (5)-(6), (42) leads to $R^{n+\frac{1}{2}}$ equal to
$u_{\mathrm{e}}^{\prime}\left(t_{n+\frac{1}{2}}\right)+\frac{1}{24} u_{\mathrm{e}}^{\prime \prime \prime}\left(t_{n+\frac{1}{2}}\right) \Delta t^{2}-f\left(u_{\mathrm{e}}^{n+\frac{1}{2}}, t_{n+\frac{1}{2}}\right)-\frac{1}{8} u_{\mathrm{e}}^{\prime \prime}\left(t_{n+\frac{1}{2}}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right)$.
Since $u_{\mathrm{e}}^{\prime}\left(t_{n+\frac{1}{2}}\right)-f\left(u_{\mathrm{e}}^{n+\frac{1}{2}}, t_{n+\frac{1}{2}}\right)=0$, the truncation error becomes

$$
R^{n+\frac{1}{2}}=\left(\frac{1}{24} u_{\mathrm{e}}^{\prime \prime \prime}\left(t_{n+\frac{1}{2}}\right)-\frac{1}{8} u_{\mathrm{e}}^{\prime \prime}\left(t_{n+\frac{1}{2}}\right)\right) \Delta t^{2} .
$$

The computational techniques worked well even for this nonlinear ODE!

Truncation errors in vibration ODEs

$$
\begin{equation*}
u^{\prime \prime}(t)+\omega^{2} u(t)=0, \quad u(0)=I, \quad u^{\prime}(0)=0 . \tag{43}
\end{equation*}
$$

Centered difference approximation:

$$
\begin{equation*}
\left[D_{t} D_{t} u+\omega^{2} u=0\right]^{n} . \tag{44}
\end{equation*}
$$

Truncation error:

$$
\begin{equation*}
\left[D_{t} D_{t} u_{\mathrm{e}}+\omega^{2} u_{\mathrm{e}}=R\right]^{n} . \tag{45}
\end{equation*}
$$

Use (17)-(18) to expand $\left[D_{t} D_{t} u_{\mathrm{e}}\right]^{n}$:

$$
\left[D_{t} D_{t} u_{\mathrm{e}}\right]^{n}=u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right)+\frac{1}{12} u_{\mathrm{e}}^{\prime \prime \prime \prime}\left(t_{n}\right) \Delta t^{2},
$$

Collect terms: $u_{\mathrm{e}}^{\prime \prime}(t)+\omega^{2} u_{\mathrm{e}}(t)=0$. Then,

$$
\begin{equation*}
R^{n}=\frac{1}{12} u_{\mathrm{e}}^{\prime \prime \prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right) . \tag{46}
\end{equation*}
$$

Truncation errors in the initial condition

- Initial conditions: $u(0)=I, u^{\prime}(0)=V$
- Need discretization of $u^{\prime}(0)$
- Standard, centered difference: $\left[D_{2 t} u=V\right]^{0}, R^{0}=\mathcal{O}\left(\Delta t^{2}\right)$
- Simpler, forward difference: $\left[D_{t}^{+} u=V\right]^{0}, R^{0}=\mathcal{O}(\Delta t)$
- Does the lower order of the forward scheme impact the order of the whole simulation?
- Answer: run experiments!

Computing correction terms

- Can we add terms to the ODE such that the truncation error is improved?

$$
\left[D_{t} D_{t} u_{\mathrm{e}}+\omega^{2} u_{\mathrm{e}}=C+R\right]^{n}
$$

- Idea: choose C^{n} such that it absorbs the Δt^{2} term in R^{n},

$$
C^{n}=\frac{1}{12} u_{\mathrm{e}}^{\prime \prime \prime \prime}\left(t_{n}\right) \Delta t^{2}
$$

- Downside: got a $u^{\prime \prime \prime \prime}$ term
- Remedy: use the ODE $u^{\prime \prime}=-\omega^{2} u$ to see that $u^{\prime \prime \prime \prime}=\omega^{4} u$.
- Just apply the standard scheme to a modified ODE:

$$
\left[D_{t} D_{t} u+\omega^{2}\left(1-\frac{1}{12} \omega^{2} \Delta t^{2}\right) u=0\right]^{n}
$$

- Accuracy is $\mathcal{O}\left(\Delta t^{4}\right)$.

Model with damping and nonlinearity

Linear damping βu^{\prime}, nonlinear spring force $s(u)$, and excitation F :

$$
\begin{equation*}
m u^{\prime \prime}+\beta u^{\prime}+s(u)=F(t) \tag{47}
\end{equation*}
$$

Central difference discretization:

$$
\begin{equation*}
\left[m D_{t} D_{t} u+\beta D_{2 t} u+s(u)=F\right]^{n} . \tag{48}
\end{equation*}
$$

Truncation error is defined by

$$
\begin{equation*}
\left[m D_{t} D_{t} u_{\mathrm{e}}+\beta D_{2 t} u_{\mathrm{e}}+s\left(u_{\mathrm{e}}\right)=F+R\right]^{n} \tag{49}
\end{equation*}
$$

Carrying out the truncation error analysis

Using (17)-(18) and (7)-(8) we get

$$
\begin{aligned}
{\left[m D_{t} D_{t} u_{\mathrm{e}}+\beta D_{2 t} u_{\mathrm{e}}\right]^{n}=} & m u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right)+\beta u_{\mathrm{e}}^{\prime}\left(t_{n}\right)+ \\
& \left(\frac{m}{12} u_{\mathrm{e}}^{\prime \prime \prime \prime}\left(t_{n}\right)+\frac{\beta}{6} u_{\mathrm{e}}^{\prime \prime \prime}\left(t_{n}\right)\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right)
\end{aligned}
$$

The terms

$$
m u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right)+\beta u_{\mathrm{e}}^{\prime}\left(t_{n}\right)+\omega^{2} u_{\mathrm{e}}\left(t_{n}\right)+s\left(u_{\mathrm{e}}\left(t_{n}\right)\right)-F^{n},
$$

correspond to the ODE (= zero).
Result: accuracy of $\mathcal{O}\left(\Delta t^{2}\right)$ since

$$
\begin{equation*}
R^{n}=\left(\frac{m}{12} u_{\mathrm{e}}^{\prime \prime \prime \prime}\left(t_{n}\right)+\frac{\beta}{6} u_{\mathrm{e}}^{\prime \prime \prime}\left(t_{n}\right)\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right), \tag{50}
\end{equation*}
$$

Correction terms: complicated when the ODE has many terms...

Extension to quadratic damping

$$
\begin{equation*}
m u^{\prime \prime}+\beta\left|u^{\prime}\right| u^{\prime}+s(u)=F(t) . \tag{51}
\end{equation*}
$$

Centered scheme: $\left|u^{\prime}\right| u^{\prime}$ gives rise to a nonlinearity. Linearization trick: use a geometric mean,

$$
\left[\left|u^{\prime}\right| u^{\prime}\right]^{n} \approx\left|\left[u^{\prime}\right]^{n-\frac{1}{2}}\right|\left[u^{\prime}\right]^{n+\frac{1}{2}} .
$$

Scheme:

$$
\begin{equation*}
\left[m D_{t} D_{t} u\right]^{n}+\beta\left|\left[D_{t} u\right]^{n-\frac{1}{2}}\right|\left[D_{t} u\right]^{n+\frac{1}{2}}+s\left(u^{n}\right)=F^{n} . \tag{52}
\end{equation*}
$$

The truncation error for quadratic damping (1)

Definition of R^{n} :

$$
\begin{equation*}
\left[m D_{t} D_{t} u_{\mathrm{e}}\right]^{n}+\beta\left|\left[D_{t} u_{\mathrm{e}}\right]^{n-\frac{1}{2}}\right|\left[D_{t} u_{\mathrm{e}}\right]^{n+\frac{1}{2}}+s\left(u_{\mathrm{e}}^{n}\right)-F^{n}=R^{n} . \tag{53}
\end{equation*}
$$

Truncation error of the geometric mean, see (23)-(24),

$$
\begin{aligned}
\left|\left[D_{t} u_{\mathrm{e}}\right]^{n-\frac{1}{2}}\right|\left[D_{t} u_{\mathrm{e}}\right]^{n+\frac{1}{2}}= & {\left[\left|D_{t} u_{\mathrm{e}}\right| D_{t} u_{\mathrm{e}}\right]^{n}-\frac{1}{4} u^{\prime}\left(t_{n}\right)^{2} \Delta t^{2}+} \\
& \frac{1}{4} u\left(t_{n}\right) u^{\prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right)
\end{aligned}
$$

Using (5)-(6) for the $D_{t} u_{\mathrm{e}}$ factors results in

$$
\begin{aligned}
{\left[\left|D_{t} u_{\mathrm{e}}\right| D_{t} u_{\mathrm{e}}\right]^{n}=} & \left|u_{\mathrm{e}}^{\prime}+\frac{1}{24} u_{\mathrm{e}}^{\prime \prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right)\right| \times \\
& \left(u_{\mathrm{e}}^{\prime}+\frac{1}{24} u_{\mathrm{e}}^{\prime \prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right)\right)
\end{aligned}
$$

For simplicity, remove the absolute value. The product becomes

$$
\left[D_{t} u_{\mathrm{e}} D_{t} u_{\mathrm{e}}\right]^{n}=\left(u_{\mathrm{e}}^{\prime}\left(t_{n}\right)\right)^{2}+\frac{1}{12} u_{\mathrm{e}}\left(t_{n}\right) u_{\mathrm{e}}^{\prime \prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right)
$$

With

$$
m\left[D_{t} D_{t} u_{\mathrm{e}}\right]^{n}=m u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right)+\frac{m}{12} u_{\mathrm{e}}^{\prime \prime \prime \prime}\left(t_{n}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right)
$$

and using $m u^{\prime \prime}+\beta\left(u^{\prime}\right)^{2}+s(u)=F$, we end up with

$$
R^{n}=\left(\frac{m}{12} u_{\mathrm{e}}^{\prime \prime \prime \prime}\left(t_{n}\right)+\frac{\beta}{12} u_{\mathrm{e}}\left(t_{n}\right) u_{\mathrm{e}}^{\prime \prime \prime}\left(t_{n}\right)\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right) .
$$

Second-order accuracy! Thanks to

- difference approximation with error $\mathcal{O}\left(\Delta t^{2}\right)$
- geometric mean approximation with error $\mathcal{O}\left(\Delta t^{2}\right)$

$$
\begin{equation*}
m u^{\prime \prime}+\beta\left|u^{\prime}\right| u^{\prime}+s(u)=F(t) . \tag{54}
\end{equation*}
$$

Rewritten as first-order system:

$$
\begin{align*}
u^{\prime} & =v \tag{55}\\
v^{\prime} & =\frac{1}{m}(F(t)-\beta|v| v-s(u)) \tag{56}
\end{align*}
$$

To solution methods:

- Forward-backward scheme
- Centered scheme on a staggered mesh

Forward step for u, backward step for v :

$$
\begin{align*}
& {\left[D_{t}^{+} u=v\right]^{n}} \tag{57}\\
& {\left[D_{t}^{-} v=\frac{1}{m}(F(t)-\beta|v| v-s(u))\right]^{n+1} .} \tag{58}
\end{align*}
$$

- Note:
- step u forward with known v in (57)
- step v forward with known u in (58)
- Problem: $|v| v$ gives nonlinearity $\left|v^{n+1}\right| v^{n+1}$.
- Remedy: linearized as $\left|v^{n}\right| v^{n+1}$

$$
\begin{align*}
{\left[D_{t}^{+} u\right.} & =v]^{n} \tag{59}\\
{\left[D_{t}^{-} v\right]^{n+1} } & =\frac{1}{m}\left(F\left(t_{n+1}\right)-\beta\left|v^{n}\right| v^{n+1}-s\left(u^{n+1}\right)\right) \tag{60}
\end{align*}
$$

- Aim (as always): turn difference operators into derivatives + truncation error terms
- One-sided forward/backward differences: error $\mathcal{O}(\Delta t)$
- Linearization of $\left|v^{n+1}\right| v^{n+1}$ to $\left|v^{n}\right| v^{n+1}$: error $\mathcal{O}(\Delta t)$
- All errors are $\mathcal{O}(\Delta t)$
- First-order scheme? No!
- "Symmetric" use of the $\mathcal{O}(\Delta t)$ building blocks yields in fact a $\mathcal{O}\left(\Delta t^{2}\right)$ scheme (!)
- Why? See next slide...

A centered scheme on a staggered mesh

Staggered mesh:

- u is computed at mesh points t_{n}
- v is computed at points $t_{n+\frac{1}{2}}$

Centered differences in (55)-(55):

$$
\begin{align*}
& {\left[D_{t} u=v\right]^{n-\frac{1}{2}},} \tag{61}\\
& {\left[D_{t} v=\frac{1}{m}(F(t)-\beta|v| v-s(u))\right]^{n} .} \tag{62}
\end{align*}
$$

- Problem: $\left|v^{n}\right| v^{n}$, because v^{n} is not computed directly
- Remedy: Geometric mean,

$$
\left|v^{n}\right| v^{n} \approx\left|v^{n-\frac{1}{2}}\right| v^{n+\frac{1}{2}}
$$

Truncation error analysis (1)

Resulting scheme:

$$
\begin{align*}
{\left[D_{t} u\right]^{n-\frac{1}{2}} } & =v^{n-\frac{1}{2}} \tag{63}\\
{\left[D_{t} v\right]^{n} } & =\frac{1}{m}\left(F\left(t_{n}\right)-\beta\left|v^{n-\frac{1}{2}}\right| v^{n+\frac{1}{2}}-s\left(u^{n}\right)\right) \tag{64}
\end{align*}
$$

The truncation error in each equation is found from

$$
\begin{aligned}
{\left[D_{t} u_{\mathrm{e}}\right]^{n-\frac{1}{2}} } & =v_{\mathrm{e}}\left(t_{n-\frac{1}{2}}\right)+R_{u}^{n-\frac{1}{2}} \\
{\left[D_{t} v_{\mathrm{e}}\right]^{n} } & =\frac{1}{m}\left(F\left(t_{n}\right)-\beta\left|v_{\mathrm{e}}\left(t_{n-\frac{1}{2}}\right)\right| v_{\mathrm{e}}\left(t_{n+\frac{1}{2}}\right)-s\left(u^{n}\right)\right)+R_{v}^{n}
\end{aligned}
$$

Using (5)-(6) for derivatives and (23)-(24) for the geometric mean:

$$
u_{\mathrm{e}}^{\prime}\left(t_{n-\frac{1}{2}}\right)+\frac{1}{24} u_{\mathrm{e}}^{\prime \prime \prime}\left(t_{n-\frac{1}{2}}\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right)=v_{\mathrm{e}}\left(t_{n-\frac{1}{2}}\right)+R_{u}^{n-\frac{1}{2}}
$$

and

$$
v_{\mathrm{e}}^{\prime}\left(t_{n}\right)=\frac{1}{m}\left(F\left(t_{n}\right)-\beta\left|v_{\mathrm{e}}\left(t_{n}\right)\right| v_{\mathrm{e}}\left(t_{n}\right)+\mathcal{O}\left(\Delta t^{2}\right)-s\left(u^{n}\right)\right)+R_{v}^{n}
$$

Truncation error analysis (2)

Resulting truncation error is $\mathcal{O}\left(\Delta t^{2}\right)$:

$$
R_{u}^{n-\frac{1}{2}}=\mathcal{O}\left(\Delta t^{2}\right), \quad R_{v}^{n}=\mathcal{O}\left(\Delta t^{2}\right)
$$

Observation.
Comparing The schemes (63)-(64) and (59)-(60) are equivalent. Therefore, the forward/backward scheme with ad hoc linearization is also $\mathcal{O}\left(\Delta t^{2}\right)$!

