
Study Guide: Truncation Error Analysis

Hans Petter Langtangen1,2

Center for Biomedical Computing, Simula Research Laboratory1

Department of Informatics, University of Oslo2

Dec 12, 2013

Overview of what truncation errors are

Definition: The truncation error is the discrepancy that arises
from performing a finite number of steps to approximate a
process with infinitely many steps.

Widely used: truncation of infinite series, finite precision
arithmetic, finite differences, and differential equations.

Why? The truncation error is an error measure that is easy to
compute.

Abstract problem setting

Consider an abstract differential equation

L(u) = 0 .

Example: L(u) = u′(t) + a(t)u(t)− b(t).
The corresponding discrete equation:

L∆(u) = 0 .

Let now

u be the numerical solution of the discrete equations,
computed at mesh points: un, n = 0, . . . ,Nt

ue the exact solution of the differential equation

L(ue) = 0,

L∆(u) = 0 .

u is computed at mesh points

Various error measures

Dream: the true error e = ue − u, but usually impossible

Must find other error measures that are easier to calculate

Derive formulas for u in (very) special, simplified cases
Compute empirical convergence rates for special choices of ue
(usually non-physical ue)

To what extent does ue fulfill L∆(ue) = 0?

It does not fit, but we can measure the error L∆(ue) = R

R is the truncation error and it is easy to compute in general,
without considering special cases

Truncation errors in finite difference formulas

Example: The backward difference for u′(t)

Backward difference approximation to u′:

[D−t u]n =
un − un−1

∆t
≈ u′(tn) . (1)

Define the truncation error of this approximation as

Rn = [D−t u]n − u′(tn) . (2)

The common way of calculating Rn is to

1 expand u(t) in a Taylor series around the point where the
derivative is evaluated, here tn,

2 insert this Taylor series in (2), and

3 collect terms that cancel and simplify the expression.

Taylor series

General Taylor series expansion from calculus:

f (x + h) =
∞∑
i=0

1

i !

d i f

dx i
(x)hi .

Here: expand un−1 around tn:

u(tn−1) = u(t −∆t) =
∞∑
i=0

1

i !

d iu

dt i
(tn)(−∆t)i

= u(tn)− u′(tn)∆t +
1

2
u′′(tn)∆t2 +O(∆t3),

O(∆t3): power-series in ∆t where the lowest power is ∆t3

Small ∆t: ∆t � ∆t3 � ∆t4

Taylor series inserted in the backward difference
approximation

[D−t u]n − u′(tn) =
u(tn)− u(tn−1)

∆t
− u′(tn)

=
u(tn)− (u(tn)− u′(tn)∆t + 1

2 u′′(tn)∆t2 +O(∆t3))

∆t
− u′(tn)

= −1

2
u′′(tn)∆t +O(∆t2))

Result:

Rn = −1

2
u′′(tn)∆t +O(∆t2)) . (3)

The difference approximation is of first order in ∆t. It is exact for
linear ue.

The forward difference for u′(t)

Now consider a forward difference:

u′(tn) ≈ [D+
t u]n =

un+1 − un

∆t
.

Define the truncation error:

Rn = [D+
t u]n − u′(tn) .

Expand un+1 in a Taylor series around tn,

u(tn+1) = u(tn) + u′(tn)∆t +
1

2
u′′(tn)∆t2 +O(∆t3) .

We get

R =
1

2
u′′(tn)∆t +O(∆t2) .

The central difference for u′(t) (1)

For the central difference approximation,

u′(tn) ≈ [Dtu]n, [Dtu]n =
un+ 1

2 − un− 1
2

∆t
,

the truncation error is

Rn = [Dtu]n − u′(tn) .

Expand u(tn+ 1
2
) and u(tn−1/2) in Taylor series around the point tn

where the derivative is evaluated:

u(tn+ 1
2
) =u(tn) + u′(tn)

1

2
∆t +

1

2
u′′(tn)(

1

2
∆t)2+

1

6
u′′′(tn)(

1

2
∆t)3 +

1

24
u′′′′(tn)(

1

2
∆t)4 +O(∆t5)

u(tn−1/2) =u(tn)− u′(tn)
1

2
∆t +

1

2
u′′(tn)(

1

2
∆t)2−

1

6
u′′′(tn)(

1

2
∆t)3 +

1

24
u′′′′(tn)(

1

2
∆t)4 +O(∆t5) .

The central difference for u′(t) (1)

u(tn+ 1
2
)− u(tn−1/2) = u′(tn)∆t +

1

24
u′′′(tn)∆t3 +O(∆t5) .

By collecting terms in [Dtu]n − u(tn) we find Rn to be

Rn =
1

24
u′′′(tn)∆t2 +O(∆t4), (4)

Note:

Second-order accuracy since the leading term is ∆t2

Only even powers of ∆t

Leading-order error terms in finite differences (1)

[Dtu]n =
un+ 1

2 − un− 1
2

∆t
= u′(tn) + Rn, (5)

Rn =
1

24
u′′′(tn)∆t2 +O(∆t4) (6)

[D2tu]n =
un+1 − un−1

2∆t
= u′(tn) + Rn, (7)

Rn =
1

6
u′′′(tn)∆t2 +O(∆t4) (8)

[D−t u]n =
un − un−1

∆t
= u′(tn) + Rn, (9)

Rn = −1

2
u′′(tn)∆t +O(∆t2) (10)

[D+
t u]n =

un+1 − un

∆t
= u′(tn) + Rn, (11)

Rn =
1

2
u′′(tn)∆t +O(∆t2) (12)

Leading-order error terms in finite differences (2)

[D̄tu]n+θ =
un+1 − un

∆t
= u′(tn+θ) + Rn+θ, (13)

Rn+θ =
1

2
(1− 2θ)u′′(tn+θ)∆t − 1

6
((1− θ)3 − θ3)u′′′(tn+θ)∆t2 +O(∆t3)

(14)

[D2−
t u]n =

3un − 4un−1 + un−2

2∆t
= u′(tn) + Rn, (15)

Rn = −1

3
u′′′(tn)∆t2 +O(∆t3) (16)

[DtDtu]n =
un+1 − 2un + un−1

∆t2
= u′′(tn) + Rn, (17)

Rn =
1

12
u′′′′(tn)∆t2 +O(∆t4) (18)

Leading-order error terms in mean values (1)

Weighted arithmetic mean:

[ut,θ]n+θ = θun+1 + (1− θ)un = u(tn+θ) + Rn+θ, (19)

Rn+θ =
1

2
u′′(tn+θ)∆t2θ(1− θ) +O(∆t3) . (20)

Standard arithmetic mean:

[ut]n =
1

2
(un− 1

2 + un+ 1
2) = u(tn) + Rn, (21)

Rn =
1

8
u′′(tn)∆t2 +

1

384
u′′′′(tn)∆t4 +O(∆t6) . (22)

Leading-order error terms in mean values (2)

Geometric mean:

[u2
t,g

]n = un− 1
2 un+ 1

2 = (un)2 + Rn, (23)

Rn = −1

4
u′(tn)2∆t2 +

1

4
u(tn)u′′(tn)∆t2 +O(∆t4) . (24)

Harmonic mean:

[ut,h]n = un =
2

1

un−
1
2

+ 1

un+ 1
2

+ Rn+ 1
2 , (25)

Rn = −u′(tn)2

4u(tn)
∆t2 +

1

8
u′′(tn)∆t2 . (26)

Software for computing truncation errors

Can use sympy to automate calculations with Taylor series.

Tool: course module truncation_errors

>>> from truncation_errors import TaylorSeries
>>> from sympy import *
>>> u, dt = symbols(’u dt’)
>>> u_Taylor = TaylorSeries(u, 4)
>>> u_Taylor(dt)
D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24 + u
>>> FE = (u_Taylor(dt) - u)/dt
>>> FE
(D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24)/dt
>>> simplify(FE)
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24

Notation: D1u for u′, D2u for u′′, etc.
See trunc/truncation_errors.py.

http://tinyurl.com/jvzzcfn/trunc/truncation_errors.py

Symbolic computing with difference operators

A class DiffOp represents many common difference operators:

>>> from truncation_errors import DiffOp
>>> from sympy import *
>>> u = Symbol(’u’)
>>> diffop = DiffOp(u, independent_variable=’t’)
>>> diffop[’geometric_mean’]
-D1u**2*dt**2/4 - D1u*D3u*dt**4/48 + D2u**2*dt**4/64 + ...
>>> diffop[’Dtm’]
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24
>>> diffop.operator_names()
[’geometric_mean’, ’harmonic_mean’, ’Dtm’, ’D2t’, ’DtDt’,
’weighted_arithmetic_mean’, ’Dtp’, ’Dt’]

Names in diffop: Dtp for D+
t , Dtm for D−t , Dt for Dt , D2t for

D2t , DtDt for DtDt .

Truncation errors in exponential decay ODE

u′(t) = −au(t)

Truncation error of the Forward Euler scheme

The Forward Euler scheme:

[D+
t u = −au]n . (27)

Definition of the truncation error Rn:

[D+
t ue + aue = R]n . (28)

From (11)-(12):

[D+
t ue]n = u′e(tn) +

1

2
u′′e (tn)∆t +O(∆t2) .

Inserted in (28):

u′e(tn) +
1

2
u′′e (tn)∆t +O(∆t2) + aue(tn) = Rn .

Note: u′e(tn) + aun
e = 0 since ue solves the ODE. Then

Rn =
1

2
u′′e (tn)∆t +O(∆t2) . (29)

Truncation error of the Crank-Nicolson scheme

Crank-Nicolson:
[Dtu = −au]n+ 1

2 , (30)

Truncation error:

[Dtue + aue
t = R]n+ 1

2 . (31)

From (5)-(6) and (21)-(22):

[Dtue]n+ 1
2 = u′(tn+ 1

2
) +

1

24
u′′′e (tn+ 1

2
)∆t2 +O(∆t4),

[aue
t]n+ 1

2 = u(tn+ 1
2
) +

1

8
u′′(tn)∆t2 + +O(∆t4)

Inserted in the scheme we get

Rn+ 1
2 =

(
1

24
u′′′e (tn+ 1

2
) +

1

8
u′′(tn)

)
∆t2 +O(∆t4) (32)

Rn = O(∆t2) (second-order scheme)

Test the understanding!

Analyze the the truncation error of the Backward Euler scheme
and show that it is O(∆t) (first order scheme).

Truncation error of the θ-rule

The θ-rule:
[D̄tu = −aut,θ]n+θ .

Truncation error:

[D̄tue + aue
t,θ = R]n+θ .

Use (13)-(14) and (19)-(20) along with u′e(tn+θ) + aue(tn+θ) = 0
to show

Rn+θ =(
1

2
− θ)u′′e (tn+θ)∆t +

1

2
θ(1− θ)u′′e (tn+θ)∆t2+

1

2
(θ2 − θ + 3)u′′′e (tn+θ)∆t2 +O(∆t3) (33)

Note: 2nd-order scheme if and only if θ = 1/2.

Using symbolic software

Can use sympy and the tools in truncation_errors.py:

def decay():
u, a = sm.symbols(’u a’)
diffop = DiffOp(u, independent_variable=’t’,

num_terms_Taylor_series=3)
D1u = diffop.D(1) # symbol for du/dt
ODE = D1u + a*u # define ODE

Define schemes
FE = diffop[’Dtp’] + a*u
CN = diffop[’Dt’] + a*u
BE = diffop[’Dtm’] + a*u
Residuals (truncation errors)
R = {’FE’: FE-ODE, ’BE’: BE-ODE, ’CN’: CN-ODE}
return R

The returned dictionary becomes

decay: {
’BE’: D2u*dt/2 + D3u*dt**2/6,
’FE’: -D2u*dt/2 + D3u*dt**2/6,
’CN’: D3u*dt**2/24,

}

θ-rule: see truncation_errors.py (long expression, very
advantageous to automate the math!)

http://tinyurl.com/jvzzcfn/trunc/truncation_errors.py

Empirical verification of the truncation error (1)

Ideas:

Compute Rn numerically

Run a sequence of meshes

Estimate the convergence rate of Rn

For the Forward Euler scheme:

Rn = [D+
t ue + aue]n . (34)

Insert correct ue(t) = Ie−at (or use method of manufactured
solution in more general cases).

Empirical verification of the truncation error (2)

Assume Rn = C ∆tr

C and r will vary with n - must estimate r for each mesh point

Use a sequence of meshes with Nt = 2−kN0 intervals,
k = 1, 2, . . .

Transform Rn data to the coarsest mesh and estimate r for
each coarse mesh point

See the text for more details and an implementation.

http://tinyurl.com/k3sdbuv/pub/sphinx-trunc/index.html

Empirical verification of the truncation error in the
Forward Euler scheme

Figure: Estimated truncation error at mesh points for different meshes.

Empirical verification of the truncation error in the
Forward Euler scheme

Figure: Difference between theoretical and estimated truncation error at
mesh points for different meshes.

Increasing the accuracy by adding correction terms

Question.

Can we add terms in the differential equation that can help
increase the order of the truncation error?
To be precise for the Forward Euler scheme, can we find C to
make R O(∆t2)?

[D+
t ue + aue = C + R]n . (35)

1

2
u′′e (tn)∆t − 1

6
u′′′e (tn)∆t2 +O(∆t3) = Cn + Rn .

Choosing

Cn =
1

2
u′′e (tn)∆t,

makes

Rn =
1

6
u′′′e (tn)∆t2 +O(∆t3) .

Lowering the order of the derivative in the correction term

Cn contains u′′

Can discretize u′′ (requires un+1, un, and un−1)

Can also express u′′ in terms of u′ or u

u′ = −au, ⇒ u′′ = −au′ = a2u .

Result for u′′ = a2u: apply Forward Euler to a perturbed ODE,

u′ = −âu, â = a(1− 1

2
a∆t), (36)

to make a second-order scheme!

With a correction term Forward Euler becomes
Crank-Nicolson

Use the other alternative u′′ = −au′:

u′ = −au − 1

2
a∆tu′ ⇒

(
1 +

1

2
a∆t

)
u′ = −au .

Apply Forward Euler:(
1 +

1

2
a∆t

)
un+1 − un

∆t
= −aun,

which after some algebra can be written as

un+1 =
1− 1

2 a∆t

1 + 1
2 a∆t

un .

This is a Crank-Nicolson scheme (of second order)!

Correction terms in the Crank-Nicolson scheme (1)

[Dtu = −aut]n+ 1
2 ,

Definition of the truncation error R and correction terms C :

[Dtue + aue
t = C + R]n+ 1

2 .

Must Taylor expand

the derivative

the arithmetic mean

Cn+ 1
2 + Rn+ 1

2 =
1

24
u′′′e (tn+ 1

2
)∆t2 +

a

8
u′′e (tn+ 1

2
)∆t2 +O(∆t4) .

Let Cn+ 1
2 cancel the ∆t2 terms:

Cn+ 1
2 =

1

24
u′′′e (tn+ 1

2
)∆t2 +

a

8
u′′e (tn)∆t2 .

Correction terms in the Crank-Nicolson scheme (2)

Must replace u′′′ and u′′ in correction term

Using u′ = −au: u′′ = a2u and u′′′ = −a3u

Result: solve the perturbed ODE by a Crank-Nicolson method,

u′ = −âu, â = a(1− 1

12
a2∆t2) .

and experience an error O(∆t4).

Extension to variable coefficients

u′(t) = −a(t)u(t) + b(t)

Forward Euler:

[D+
t u = −au + b]n . (37)

The truncation error is found from

[D+
t ue + aue − b = R]n . (38)

Using (11)-(12):

u′e(tn)− 1

2
u′′e (tn)∆t +O(∆t2) + a(tn)ue(tn)− b(tn) = Rn .

Because of the ODE, u′e(tn) + a(tn)ue(tn)− b(tn) = 0, and

Rn = −1

2
u′′e (tn)∆t +O(∆t2) . (39)

No problems with variable coefficients!

Exact solutions of the finite difference equations

How does the truncation error depend on ue in finite differences?

One-sided differences: u′′e∆t (lowest order)

Centered differences: u′′′e ∆t2 (lowest order)

Only harmonic and geometric mean involve u′e or ue

Consequence:

ue(t) = ct + d will very often give exact solution of the
discrete equations (R = 0)!

Ideal for verification

Centered schemes allow quadratic ue

Problem: harmonic and geometric mean (error depends on u′e and
ue)

Computing truncation errors in nonlinear problems (1)

u′ = f (u, t) (40)

Crank-Nicolson scheme:

[Dtu
′ = f

t
]n+ 1

2 . (41)

Truncation error:

[Dtu
′
e − f

t
= R]n+ 1

2 . (42)

Using (21)-(22) for the arithmetic mean:

[f
t
]n+ 1

2 =
1

2
(f (un

e , tn) + f (un+1
e , tn+1))

= f (u
n+ 1

2
e , tn+ 1

2
) +

1

8
u′′e (tn+ 1

2
)∆t2 +O(∆t4) .

Computing truncation errors in nonlinear problems (2)

With (5)-(6), (42) leads to Rn+ 1
2 equal to

u′e(tn+ 1
2
)+

1

24
u′′′e (tn+ 1

2
)∆t2−f (u

n+ 1
2

e , tn+ 1
2
)−1

8
u′′e (tn+ 1

2
)∆t2+O(∆t4) .

Since u′e(tn+ 1
2
)− f (u

n+ 1
2

e , tn+ 1
2
) = 0, the truncation error becomes

Rn+ 1
2 = (

1

24
u′′′e (tn+ 1

2
)− 1

8
u′′e (tn+ 1

2
))∆t2 .

The computational techniques worked well even for this nonlinear
ODE!

Truncation errors in vibration ODEs

Linear model without damping

u′′(t) + ω2u(t) = 0, u(0) = I , u′(0) = 0 . (43)

Centered difference approximation:

[DtDtu + ω2u = 0]n . (44)

Truncation error:

[DtDtue + ω2ue = R]n . (45)

Use (17)-(18) to expand [DtDtue]n:

[DtDtue]n = u′′e (tn) +
1

12
u′′′′e (tn)∆t2,

Collect terms: u′′e (t) + ω2ue(t) = 0. Then,

Rn =
1

12
u′′′′e (tn)∆t2 +O(∆t4) . (46)

Truncation errors in the initial condition

Initial conditions: u(0) = I , u′(0) = V

Need discretization of u′(0)

Standard, centered difference: [D2tu = V]0, R0 = O(∆t2)

Simpler, forward difference: [D+
t u = V]0, R0 = O(∆t)

Does the lower order of the forward scheme impact the order
of the whole simulation?

Answer: run experiments!

Computing correction terms

Can we add terms to the ODE such that the truncation error
is improved?

[DtDtue + ω2ue = C + R]n,

Idea: choose Cn such that it absorbs the ∆t2 term in Rn,

Cn =
1

12
u′′′′e (tn)∆t2 .

Downside: got a u′′′′ term

Remedy: use the ODE u′′ = −ω2u to see that u′′′′ = ω4u.

Just apply the standard scheme to a modified ODE:

[DtDtu + ω2(1− 1

12
ω2∆t2)u = 0]n,

Accuracy is O(∆t4).

Model with damping and nonlinearity

Linear damping βu′, nonlinear spring force s(u), and excitation F :

mu′′ + βu′ + s(u) = F (t) . (47)

Central difference discretization:

[mDtDtu + βD2tu + s(u) = F]n . (48)

Truncation error is defined by

[mDtDtue + βD2tue + s(ue) = F + R]n . (49)

Carrying out the truncation error analysis

Using (17)-(18) and (7)-(8) we get

[mDtDtue + βD2tue]n = mu′′e (tn) + βu′e(tn)+(
m

12
u′′′′e (tn) +

β

6
u′′′e (tn)

)
∆t2 +O(∆t4)

The terms

mu′′e (tn) + βu′e(tn) + ω2ue(tn) + s(ue(tn))− F n,

correspond to the ODE (= zero).
Result: accuracy of O(∆t2) since

Rn =

(
m

12
u′′′′e (tn) +

β

6
u′′′e (tn)

)
∆t2 +O(∆t4), (50)

Correction terms: complicated when the ODE has many terms...

Extension to quadratic damping

mu′′ + β|u′|u′ + s(u) = F (t) . (51)

Centered scheme: |u′|u′ gives rise to a nonlinearity.
Linearization trick: use a geometric mean,

[|u′|u′]n ≈ |[u′]n−
1
2 |[u′]n+ 1

2 .

Scheme:

[mDtDtu]n + β|[Dtu]n−
1
2 |[Dtu]n+ 1

2 + s(un) = F n . (52)

The truncation error for quadratic damping (1)
Definition of Rn:

[mDtDtue]n + β|[Dtue]n−
1
2 |[Dtue]n+ 1

2 + s(un
e)− F n = Rn . (53)

Truncation error of the geometric mean, see (23)-(24),

|[Dtue]n−
1
2 |[Dtue]n+ 1

2 = [|Dtue|Dtue]n − 1

4
u′(tn)2∆t2+

1

4
u(tn)u′′(tn)∆t2 +O(∆t4) .

Using (5)-(6) for the Dtue factors results in

[|Dtue|Dtue]n = |u′e +
1

24
u′′′e (tn)∆t2 +O(∆t4)|×

(u′e +
1

24
u′′′e (tn)∆t2 +O(∆t4))

The truncation error for quadratic damping (2)

For simplicity, remove the absolute value. The product becomes

[DtueDtue]n = (u′e(tn))2 +
1

12
ue(tn)u′′′e (tn)∆t2 +O(∆t4) .

With

m[DtDtue]n = mu′′e (tn) +
m

12
u′′′′e (tn)∆t2 +O(∆t4),

and using mu′′ + β(u′)2 + s(u) = F , we end up with

Rn = (
m

12
u′′′′e (tn) +

β

12
ue(tn)u′′′e (tn))∆t2 +O(∆t4) .

Second-order accuracy! Thanks to

difference approximation with error O(∆t2)

geometric mean approximation with error O(∆t2)

The general model formulated as first-order ODEs

mu′′ + β|u′|u′ + s(u) = F (t) . (54)

Rewritten as first-order system:

u′ = v , (55)

v ′ =
1

m
(F (t)− β|v |v − s(u)) . (56)

To solution methods:

Forward-backward scheme

Centered scheme on a staggered mesh

The forward-backward scheme

Forward step for u, backward step for v :

[D+
t u = v]n, (57)

[D−t v =
1

m
(F (t)− β|v |v − s(u))]n+1 . (58)

Note:

step u forward with known v in (57)
step v forward with known u in (58)

Problem: |v |v gives nonlinearity |vn+1|vn+1.

Remedy: linearized as |vn|vn+1

[D+
t u = v]n, (59)

[D−t v]n+1 =
1

m
(F (tn+1)− β|vn|vn+1 − s(un+1)) . (60)

Truncation error analysis

Aim (as always): turn difference operators into derivatives +
truncation error terms

One-sided forward/backward differences: error O(∆t)

Linearization of |vn+1|vn+1 to |vn|vn+1: error O(∆t)

All errors are O(∆t)

First-order scheme? No!

”Symmetric” use of the O(∆t) building blocks yields in fact a
O(∆t2) scheme (!)

Why? See next slide...

A centered scheme on a staggered mesh

Staggered mesh:

u is computed at mesh points tn

v is computed at points tn+ 1
2

Centered differences in (55)-(55):

[Dtu = v]n−
1
2 , (61)

[Dtv =
1

m
(F (t)− β|v |v − s(u))]n . (62)

Problem: |vn|vn, because vn is not computed directly

Remedy: Geometric mean,

|vn|vn ≈ |vn− 1
2 |vn+ 1

2 .

Truncation error analysis (1)
Resulting scheme:

[Dtu]n−
1
2 = vn− 1

2 , (63)

[Dtv]n =
1

m
(F (tn)− β|vn− 1

2 |vn+ 1
2 − s(un)) . (64)

The truncation error in each equation is found from

[Dtue]n−
1
2 = ve(tn− 1

2
) + R

n− 1
2

u ,

[Dtve]n =
1

m
(F (tn)− β|ve(tn− 1

2
)|ve(tn+ 1

2
)− s(un)) + Rn

v .

Using (5)-(6) for derivatives and (23)-(24) for the geometric mean:

u′e(tn− 1
2
) +

1

24
u′′′e (tn− 1

2
)∆t2 +O(∆t4) = ve(tn− 1

2
) + R

n− 1
2

u ,

and

v ′e(tn) =
1

m
(F (tn)− β|ve(tn)|ve(tn) +O(∆t2)− s(un)) + Rn

v .

Truncation error analysis (2)

Resulting truncation error is O(∆t2):

R
n− 1

2
u = O(∆t2), Rn

v = O(∆t2) .

Observation.

Comparing The schemes (63)-(64) and (59)-(60) are equivalent.
Therefore, the forward/backward scheme with ad hoc linearization
is also O(∆t2)!

