$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\uexd}[1]{{u_{\small\mbox{e}, #1}}} \newcommand{\vex}{{v_{\small\mbox{e}}}} \newcommand{\vexd}[1]{{v_{\small\mbox{e}, #1}}} \newcommand{\Aex}{{A_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\halfi}{{1/2}} \newcommand{\tp}{\thinspace .} \newcommand{\Ddt}[1]{\frac{D #1}{dt}} \newcommand{\E}[1]{\hbox{E}\lbrack #1 \rbrack} \newcommand{\Var}[1]{\hbox{Var}\lbrack #1 \rbrack} \newcommand{\Std}[1]{\hbox{Std}\lbrack #1 \rbrack} \newcommand{\xpoint}{\boldsymbol{x}} \newcommand{\normalvec}{\boldsymbol{n}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\X}{\boldsymbol{X}} \renewcommand{\u}{\boldsymbol{u}} \renewcommand{\v}{\boldsymbol{v}} \newcommand{\w}{\boldsymbol{w}} \newcommand{\V}{\boldsymbol{V}} \newcommand{\e}{\boldsymbol{e}} \newcommand{\f}{\boldsymbol{f}} \newcommand{\F}{\boldsymbol{F}} \newcommand{\stress}{\boldsymbol{\sigma}} \newcommand{\strain}{\boldsymbol{\varepsilon}} \newcommand{\stressc}{{\sigma}} \newcommand{\strainc}{{\varepsilon}} \newcommand{\I}{\boldsymbol{I}} \newcommand{\T}{\boldsymbol{T}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\ii}{\boldsymbol{i}} \newcommand{\jj}{\boldsymbol{j}} \newcommand{\kk}{\boldsymbol{k}} \newcommand{\ir}{\boldsymbol{i}_r} \newcommand{\ith}{\boldsymbol{i}_{\theta}} \newcommand{\iz}{\boldsymbol{i}_z} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\Iz}{\mathcal{I}_z} \newcommand{\It}{\mathcal{I}_t} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\Ifb}{{I_b}} % for FEM \newcommand{\setb}[1]{#1^0} % set begin \newcommand{\sete}[1]{#1^{-1}} % set end \newcommand{\setl}[1]{#1^-} \newcommand{\setr}[1]{#1^+} \newcommand{\seti}[1]{#1^i} \newcommand{\sequencei}[1]{\left\{ {#1}_i \right\}_{i\in\If}} \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\psib}{\boldsymbol{\psi}} \newcommand{\sinL}[1]{\sin\left((#1+1)\pi\frac{x}{L}\right)} \newcommand{\xno}[1]{x_{#1}} \newcommand{\Xno}[1]{X_{(#1)}} \newcommand{\yno}[1]{y_{#1}} \newcommand{\Yno}[1]{Y_{(#1)}} \newcommand{\xdno}[1]{\boldsymbol{x}_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} \newcommand{\Real}{\mathbb{R}} \newcommand{\Integerp}{\mathbb{N}} \newcommand{\Integer}{\mathbb{Z}} $$
Study Guide: Introduction to Finite Element Methods

Study Guide: Introduction to Finite Element Methods

Hans Petter Langtangen [1, 2]

[1] Center for Biomedical Computing, Simula Research Laboratory
[2] Department of Informatics, University of Oslo

Dec 16, 2013

Why finite elements?

Domain for flow around a dolphin

The flow

Basic ingredients of the finite element method

Our learning strategy

Reason: the finite element method has many concepts and a jungle of details. This strategy minimizes the mixing of ideas, concepts, and technical details.

Approximation in vector spaces

Approximation set-up

General idea of finding an approximation \( u(x) \) to some given \( f(x) \):

 
$$ \begin{equation} u(x) = \sum_{i=0}^N c_i\baspsi_i(x) \tag{1} \end{equation} $$

 

where

How to determine the coefficients?

We shall address three approaches:

Underlying motivation for our notation. Our mathematical framework for doing this is phrased in a way such that it becomes easy to understand and use the FEniCS software package for finite element computing.

Approximation of planar vectors; problem

Given a vector \( \f = (3,5) \), find an approximation to \( \f \) directed along a given line.

Approximation of planar vectors; vector space terminology

 
$$ \begin{equation} V = \mbox{span}\,\{ \psib_0\} \end{equation} $$

 

Define

The least squares method; principle

 
$$ \begin{equation*} \frac{\partial E}{\partial c_0} = 0 \end{equation*} $$

 

The least squares method; calculations

 
$$ \begin{equation} E(c_0) = (\e,\e) = (\f,\f) - 2c_0(\f,\psib_0) + c_0^2(\psib_0,\psib_0) \end{equation} $$

 

 
$$ \begin{equation} \frac{\partial E}{\partial c_0} = -2(\f,\psib_0) + 2c_0 (\psib_0,\psib_0) = 0 \tag{2} \end{equation} $$

 

 
$$ \begin{equation} c_0 = \frac{(\f,\psib_0)}{(\psib_0,\psib_0)} \tag{3} \end{equation} $$

 

 
$$ \begin{equation} c_0 = \frac{3a + 5b}{a^2 + b^2} \end{equation} $$

 

Observation for later: the vanishing derivative (2) can be alternatively written as

 
$$ \begin{equation} (\e, \psib_0) = 0 \tag{4} \end{equation} $$

 

The projection (or Galerkin) method

Approximation of general vectors

Given a vector \( \f \), find an approximation \( \u\in V \):

 
$$ \begin{equation*} V = \hbox{span}\,\{\psib_0,\ldots,\psib_N\} \end{equation*} $$

 

The least squares method

Idea: find \( c_0,\ldots,c_N \) such that \( E= ||\e||^2 \) is minimized, \( \e=\f-\u \).

 
$$ \begin{align*} E(c_0,\ldots,c_N) &= (\e,\e) = (\f -\sum_jc_j\psib_j,\f -\sum_jc_j\psib_j) \nonumber\\ &= (\f,\f) - 2\sum_{j=0}^Nc_j(\f,\psib_j) + \sum_{p=0}^N\sum_{q=0}^N c_pc_q(\psib_p,\psib_q) \end{align*} $$

 

 
$$ \begin{equation*} \frac{\partial E}{\partial c_i} = 0,\quad i=0,\ldots,N \end{equation*} $$

 

After some work we end up with a linear system

 
$$ \begin{align} \sum_{j=0}^N A_{i,j}c_j &= b_i,\quad i=0,\ldots,N\\ A_{i,j} &= (\psib_i,\psib_j)\\ b_i &= (\psib_i, \f) \end{align} $$

 

The projection (or Galerkin) method

Can be shown that minimizing \( ||\e|| \) implies that \( \e \) is orthogonal to all \( \v\in V \):

 
$$ (\e,\v)=0,\quad \forall\v\in V $$

 
which implies that \( \e \) most be orthogonal to each basis vector:

 
$$ \begin{equation} (\e,\psib_i)=0,\quad i=0,\ldots,N \tag{5} \end{equation} $$

 

This orthogonality condition is the principle of the projection (or Galerkin) method. Leads to the same linear system as in the least squares method.

Approximation of functions

Let \( V \) be a function space spanned by a set of basis functions \( \baspsi_0,\ldots,\baspsi_N \),

 
$$ \begin{equation*} V = \hbox{span}\,\{\baspsi_0,\ldots,\baspsi_N\} \end{equation*} $$

 

Find \( u\in V \) as a linear combination of the basis functions:

 
$$ \begin{equation} u = \sum_{j\in\If} c_j\baspsi_j,\quad\If = \{0,1,\ldots,N\} \tag{6} \end{equation} $$

 

The least squares method

 
$$ \begin{equation} E = (e,e) = (f-u,f-u) = (f(x)-\sum_{j\in\If} c_j\baspsi_j(x), f(x)-\sum_{j\in\If} c_j\baspsi_j(x)) \tag{7} \end{equation} $$

 

 
$$ \begin{equation} E(c_0,\ldots,c_N) = (f,f) -2\sum_{j\in\If} c_j(f,\baspsi_i) + \sum_{p\in\If}\sum_{q\in\If} c_pc_q(\baspsi_p,\baspsi_q) \end{equation} $$

 

 
$$ \begin{equation*} \frac{\partial E}{\partial c_i} = 0,\quad i=\in\If \end{equation*} $$

 

After computations identical to the vector case, we get a linear system

 
$$ \begin{align} \sum_{j\in\If}^N A_{i,j}c_j &= b_i,\quad i\in\If \tag{8}\\ A_{i,j} &= (\baspsi_i,\baspsi_j) \tag{9}\\ b_i &= (f,\baspsi_i) \tag{10} \end{align} $$

 

The projection (or Galerkin) method

As before, minimizing \( (e,e) \) is equivalent to the projection (or Galerkin) method

 
$$ \begin{equation} (e,v)=0,\quad\forall v\in V \tag{11} \end{equation} $$

 
which means, as before,

 
$$ \begin{equation} (e,\baspsi_i)=0,\quad i\in\If \tag{12} \end{equation} $$

 

With the same algebra as in the multi-dimensional vector case, we get the same linear system as arose from the least squares method.

Example: linear approximation; problem

Problem. Approximate a parabola \( f(x) = 10(x-1)^2 - 1 \) by a straight line.

 
$$ \begin{equation*} V = \hbox{span}\,\{1, x\} \end{equation*} $$

 
That is, \( \baspsi_0(x)=1 \), \( \baspsi_1(x)=x \), and \( N=1 \). We seek

 
$$ \begin{equation*} u=c_0\baspsi_0(x) + c_1\baspsi_1(x) = c_0 + c_1x \end{equation*} $$

 

Example: linear approximation; solution

 
$$ \begin{align} A_{0,0} &= (\baspsi_0,\baspsi_0) = \int_1^21\cdot 1\, dx = 1\\ A_{0,1} &= (\baspsi_0,\baspsi_1) = \int_1^2 1\cdot x\, dx = 3/2\\ A_{1,0} &= A_{0,1} = 3/2\\ A_{1,1} &= (\baspsi_1,\baspsi_1) = \int_1^2 x\cdot x\,dx = 7/3 \end{align} $$

 

 
$$ \begin{align} b_1 &= (f,\baspsi_0) = \int_1^2 (10(x-1)^2 - 1)\cdot 1 \, dx = 7/3\\ b_2 &= (f,\baspsi_1) = \int_1^2 (10(x-1)^2 - 1)\cdot x\, dx = 13/3 \end{align} $$

 
Solution of 2x2 linear system:

 
$$ \begin{equation} c_0 = -38/3,\quad c_1 = 10,\quad u(x) = 10x - \frac{38}{3} \end{equation} $$

 

Example: linear approximation; plot

Implementation of the least squares method; ideas

Consider symbolic computation of the linear system, where

Carry out the integrations, solve the linear system, and return \( u(x)=\sum_jc_j\baspsi_j(x) \)

Implementation of the least squares method; symbolic code

import sympy as sp

def least_squares(f, psi, Omega):
    N = len(psi) - 1
    A = sp.zeros((N+1, N+1))
    b = sp.zeros((N+1, 1))
    x = sp.Symbol('x')
    for i in range(N+1):
        for j in range(i, N+1):
            A[i,j] = sp.integrate(psi[i]*psi[j],
                                  (x, Omega[0], Omega[1]))
            A[j,i] = A[i,j]
        b[i,0] = sp.integrate(psi[i]*f, (x, Omega[0], Omega[1]))
    c = A.LUsolve(b)
    u = 0
    for i in range(len(psi)):
        u += c[i,0]*psi[i]
    return u, c

Observe: symmetric coefficient matrix so we can halve the integrations.

Implementation of the least squares method; numerical code

def least_squares_numerical(f, psi, N, x,
                            integration_method='scipy',
                            orthogonal_basis=False):
    import scipy.integrate
    A = np.zeros((N+1, N+1))
    b = np.zeros(N+1)
    Omega = [x[0], x[-1]]
    dx = x[1] - x[0]

    for i in range(N+1):
        j_limit = i+1 if orthogonal_basis else N+1
        for j in range(i, j_limit):
            print '(%d,%d)' % (i, j)
            if integration_method == 'scipy':
                A_ij = scipy.integrate.quad(
                    lambda x: psi(x,i)*psi(x,j),
                    Omega[0], Omega[1], epsabs=1E-9, epsrel=1E-9)[0]
            elif ...
            A[i,j] = A[j,i] = A_ij

        if integration_method == 'scipy':
            b_i = scipy.integrate.quad(
                lambda x: f(x)*psi(x,i), Omega[0], Omega[1],
                epsabs=1E-9, epsrel=1E-9)[0]
        elif ...
        b[i] = b_i

    c = b/np.diag(A) if orthogonal_basis else np.linalg.solve(A, b)
    u = sum(c[i]*psi(x, i) for i in range(N+1))
    return u, c

Implementation of the least squares method; plotting

Compare \( f \) and \( u \) visually:

def comparison_plot(f, u, Omega, filename='tmp.pdf'):
    x = sp.Symbol('x')
    # Turn f and u to ordinary Python functions
    f = sp.lambdify([x], f, modules="numpy")
    u = sp.lambdify([x], u, modules="numpy")
    resolution = 401  # no of points in plot
    xcoor  = linspace(Omega[0], Omega[1], resolution)
    exact  = f(xcoor)
    approx = u(xcoor)
    plot(xcoor, approx)
    hold('on')
    plot(xcoor, exact)
    legend(['approximation', 'exact'])
    savefig(filename)

All code in module approx1D.py

Implementation of the least squares method; application

>>> from approx1D import *
>>> x = sp.Symbol('x')
>>> f = 10*(x-1)**2-1
>>> u, c = least_squares(f=f, psi=[1, x], Omega=[1, 2])
>>> comparison_plot(f, u, Omega=[1, 2])

Perfect approximation; parabola approximating parabola

>>> from approx1D import *
>>> x = sp.Symbol('x')
>>> f = 10*(x-1)**2-1
>>> u, c = least_squares(f=f, psi=[1, x, x**2], Omega=[1, 2])
>>> print u
10*x**2 - 20*x + 9
>>> print sp.expand(f)
10*x**2 - 20*x + 9

Perfect approximation; the general result

General result. If \( f\in V \), least squares and projection/Galerkin give \( u=f \).

Perfect approximation; proof of the general result

If \( f\in V \), \( f=\sum_{j\in\If}d_j\baspsi_j \), for some \( \sequencei{d} \). Then

 
$$ \begin{equation*} b_i = (f,\baspsi_i) = \sum_{j\in\If}d_j(\baspsi_j, \baspsi_i) = \sum_{j\in\If} d_jA_{i,j} \end{equation*} $$

 
The linear system \( \sum_j A_{i,j}c_j = b_i \), \( i\in\If \), is then

 
$$ \begin{equation*} \sum_{j\in\If}c_jA_{i,j} = \sum_{j\in\If}d_jA_{i,j},\quad i\in\If \end{equation*} $$

 
which implies that \( c_i=d_i \) for \( i\in\If \) and \( u \) is identical to \( f \).

Finite-precision/numerical computations

The previous computations were symbolic. What if we solve the linear system numerically with standard arrays?

exact sympy numpy32 numpy64
9 9.62 5.57 8.98
-20 -23.39 -7.65 -19.93
10 17.74 -4.50 9.96
0 -9.19 4.13 -0.26
0 5.25 2.99 0.72
0 0.18 -1.21 -0.93
0 -2.48 -0.41 0.73
0 1.81 -0.013 -0.36
0 -0.66 0.08 0.11
0 0.12 0.04 -0.02
0 -0.001 -0.02 0.002

Ill-conditioning (1)

Observations:

Problem: The basis functions \( x^i \) become almost linearly dependent for large \( N \).

Ill-conditioning (2)

Fourier series approximation; problem and code

Consider

 
$$ \begin{equation*} V = \hbox{span}\,\{ \sin \pi x, \sin 2\pi x,\ldots,\sin (N+1)\pi x\} \end{equation*} $$

 

N = 3
from sympy import sin, pi
psi = [sin(pi*(i+1)*x) for i in range(N+1)]
f = 10*(x-1)**2 - 1
Omega = [0, 1]
u, c = least_squares(f, psi, Omega)
comparison_plot(f, u, Omega)

Fourier series approximation; plot

\( N=3 \) vs \( N=11 \):

Fourier series approximation; improvements

 
$$ \begin{equation} u(x) = f(0)(1-x) + xf(1) + \sum_{j\in\If} c_j\baspsi_j(x) \end{equation} $$

 
The extra term ensures \( u(0)=f(0) \) and \( u(1)=f(1) \) and is a strikingly good help to get a good approximation!

Fourier series approximation; final results

\( N=3 \) vs \( N=11 \):

Orthogonal basis functions

This choice of sine functions as basis functions is popular because

In general for an orthogonal basis, \( A_{i,j} \) is diagonal and we can easily solve for \( c_i \):

 
$$ c_i = \frac{b_i}{A_{i,i}} = \frac{(f,\baspsi_i)}{(\baspsi_i,\baspsi_i)} $$

 

The collocation or interpolation method; ideas and math

Here is another idea for approximating \( f(x) \) by \( u(x)=\sum_jc_j\baspsi_j \):

 
$$ \begin{equation} u(\xno{i}) = \sum_{j\in\If} c_j \baspsi_j(\xno{i}) = f(\xno{i}) \quad i\in\If,N \end{equation} $$

 

This is a linear system with no need for integration:

 
$$ \begin{align} \sum_{j\in\If} A_{i,j}c_j &= b_i,\quad i\in\If\\ A_{i,j} &= \baspsi_j(\xno{i})\\ b_i &= f(\xno{i}) \end{align} $$

 

No symmetric matrix: \( \baspsi_j(\xno{i})\neq \baspsi_i(\xno{j}) \) in general

The collocation or interpolation method; implementation

points holds the interpolation/collocation points

def interpolation(f, psi, points):
    N = len(psi) - 1
    A = sp.zeros((N+1, N+1))
    b = sp.zeros((N+1, 1))
    x = sp.Symbol('x')
    # Turn psi and f into Python functions
    psi = [sp.lambdify([x], psi[i]) for i in range(N+1)]
    f = sp.lambdify([x], f)
    for i in range(N+1):
        for j in range(N+1):
            A[i,j] = psi[j](points[i])
        b[i,0] = f(points[i])
    c = A.LUsolve(b)
    u = 0
    for i in range(len(psi)):
        u += c[i,0]*psi[i](x)
    return u

The collocation or interpolation method; approximating a parabola by linear functions

\( (4/3,5/3) \) vs \( (1,2) \):

Lagrange polynomials; motivation and ideas

Motivation:

The Lagrange interpolating polynomials \( \baspsi_j \) have the property that

 
$$ \baspsi_i(\xno{j}) =\delta_{ij},\quad \delta_{ij} = \left\lbrace\begin{array}{ll} 1, & i=j\\ 0, & i\neq j \end{array}\right. $$

 

Hence, \( c_i = f(x_i) \) and

 
$$ \begin{equation} u(x) = \sum_{j\in\If} f(\xno{i})\baspsi_i(x) \end{equation} $$

 

Lagrange polynomials; formula and code

 
$$ \begin{equation} \baspsi_i(x) = \prod_{j=0,j\neq i}^N \frac{x-\xno{j}}{\xno{i}-\xno{j}} = \frac{x-x_0}{\xno{i}-x_0}\cdots\frac{x-\xno{i-1}}{\xno{i}-\xno{i-1}}\frac{x-\xno{i+1}}{\xno{i}-\xno{i+1}} \cdots\frac{x-x_N}{\xno{i}-x_N} \tag{13} \end{equation} $$

 

def Lagrange_polynomial(x, i, points):
    p = 1
    for k in range(len(points)):
        if k != i:
            p *= (x - points[k])/(points[i] - points[k])
    return p

Lagrange polynomials; successful example

Lagrange polynomials; a less successful example

Lagrange polynomials; oscillatory behavior

12 points, degree 11, plot of two of the Lagrange polynomials - note that they are zero at all points except one.

Problem: strong oscillations near the boundaries for larger \( N \) values.

Lagrange polynomials; remedy for strong oscillations

The oscillations can be reduced by a more clever choice of interpolation points, called the Chebyshev nodes:

 
$$ \begin{equation} \xno{i} = \half (a+b) + \half(b-a)\cos\left( \frac{2i+1}{2(N+1)}pi\right),\quad i=0\ldots,N \end{equation} $$

 
on an interval \( [a,b] \).

Lagrange polynomials; recalculation with Chebyshev nodes

Lagrange polynomials; less oscillations with Chebyshev nodes

12 points, degree 11, plot of two of the Lagrange polynomials - note that they are zero at all points except one.

Finite element basis functions

The basis functions have so far been global: \( \baspsi_i(x) \neq 0 \) almost everywhere

In the finite element method we use basis functions with local support

The linear combination of hat functions is a piecewise linear function

Elements and nodes

Split \( \Omega \) into non-overlapping subdomains called elements:

 
$$ \begin{equation} \Omega = \Omega^{(0)}\cup \cdots \cup \Omega^{(N_e)} \end{equation} $$

 

On each element, introduce points called nodes: \( \xno{0},\ldots,\xno{N_n} \)

Example on elements with two nodes (P1 elements)

Data structure: nodes holds coordinates or nodes, elements holds the node numbers in each element

nodes = [0, 1.2, 2.4, 3.6, 4.8, 5]
elements = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]]

Illustration of two basis functions on the mesh

Example on elements with three nodes (P2 elements)

nodes = [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0]
elements = [[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]]

Some corresponding basis functions (P2 elements)

Examples on elements with four nodes per element (P3 elements)

d = 3  # d+1 nodes per element
num_elements = 4
num_nodes = num_elements*d + 1
nodes = [i*0.5 for i in range(num_nodes)]
elements = [[i*d+j for j in range(d+1)] for i in range(num_elements)]

Some corresponding basis functions (P3 elements)

The numbering does not need to be regular from left to right

nodes = [1.5, 5.5, 4.2, 0.3, 2.2, 3.1]
elements = [[2, 1], [4, 5], [0, 4], [3, 0], [5, 2]]

Interpretation of the coefficients \( c_i \)

Important property: \( c_i \) is the value of \( u \) at node \( i \), \( \xno{i} \):

 
$$ \begin{equation} u(\xno{i}) = \sum_{j\in\If} c_j\basphi_j(\xno{i}) = c_i\basphi_i(\xno{i}) = c_i \tag{14} \end{equation} $$

 

because \( \basphi_j(\xno{i}) =0 \) if \( i\neq j \)

Properties of the basis functions

Since \( A_{i,j}=\int\basphi_i\basphi_j\dx \), most of the elements in the coefficient matrix will be zero

How to construct quadratic \( \basphi_i \) (P2 elements)

  1. Associate Lagrange polynomials with the nodes in an element
  2. When the polynomial is 1 on the element boundary, combine it with the polynomial in the neighboring element

Example on linear \( \basphi_i \) (P1 elements)

 
$$ \begin{equation} \basphi_i(x) = \left\lbrace\begin{array}{ll} 0, & x < \xno{i-1}\\ (x - \xno{i-1})/h & \xno{i-1} \leq x < \xno{i}\\ 1 - (x - x_{i})/h, & \xno{i} \leq x < \xno{i+1}\\ 0, & x\geq \xno{i+1} \end{array} \right. \tag{15} \end{equation} $$

 

Example on cubic \( \basphi_i \) (P3 elements)

Calculating the linear system for \( c_i \)

Computing a specific matrix entry (1)

\( A_{2,3}=\int_\Omega\basphi_2\basphi_3 dx \): \( \basphi_2\basphi_3\neq 0 \) only over element 2. There,

 
$$ \basphi_3(x) = (x-x_2)/h,\quad \basphi_2(x) = 1- (x-x_2)/h$$

 

 
$$ A_{2,3} = \int_\Omega \basphi_2\basphi_{3}\dx = \int_{\xno{2}}^{\xno{3}} \left(1 - \frac{x - \xno{2}}{h}\right) \frac{x - x_{2}}{h} \dx = \frac{h}{6} $$

 

Computing a specific matrix entry (2)

 
$$ A_{2,2} = \int_{\xno{1}}^{\xno{2}} \left(\frac{x - \xno{1}}{h}\right)^2\dx + \int_{\xno{2}}^{\xno{3}} \left(1 - \frac{x - \xno{2}}{h}\right)^2\dx = \frac{h}{3} $$

 

Calculating a general row in the matrix; figure

 
$$ A_{i,i-1} = \int_\Omega \basphi_i\basphi_{i-1}\dx = \hbox{?}$$

 

Calculating a general row in the matrix; details

 
$$ \begin{align*} A_{i,i-1} &= \int_\Omega \basphi_i\basphi_{i-1}\dx\\ &= \underbrace{\int_{\xno{i-2}}^{\xno{i-1}} \basphi_i\basphi_{i-1}\dx}_{\basphi_i=0} + \int_{\xno{i-1}}^{\xno{i}} \basphi_i\basphi_{i-1}\dx + \underbrace{\int_{\xno{i}}^{\xno{i+1}} \basphi_i\basphi_{i-1}\dx}_{\basphi_{i-1}=0}\\ &= \int_{\xno{i-1}}^{\xno{i}} \underbrace{\left(\frac{x - x_{i}}{h}\right)}_{\basphi_i(x)} \underbrace{\left(1 - \frac{x - \xno{i-1}}{h}\right)}_{\basphi_{i-1}(x)} \dx = \frac{h}{6} \end{align*} $$

 

Calculation of the right-hand side

 
$$ \begin{equation} b_i = \int_\Omega\basphi_i(x)f(x)\dx = \int_{\xno{i-1}}^{\xno{i}} \frac{x - \xno{i-1}}{h} f(x)\dx + \int_{x_{i}}^{\xno{i+1}} \left(1 - \frac{x - x_{i}}{h}\right) f(x) \dx \tag{16} \end{equation} $$

 

Need a specific \( f(x) \) to do more...

Specific example with two elements; linear system and solution

 
$$ \begin{equation*} A = \frac{h}{6}\left(\begin{array}{ccc} 2 & 1 & 0\\ 1 & 4 & 1\\ 0 & 1 & 2 \end{array}\right),\quad b = \frac{h^2}{12}\left(\begin{array}{c} 2 - 3h\\ 12 - 14h\\ 10 -17h \end{array}\right) \end{equation*} $$

 

 
$$ \begin{equation*} c_0 = \frac{h^2}{6},\quad c_1 = h - \frac{5}{6}h^2,\quad c_2 = 2h - \frac{23}{6}h^2 \end{equation*} $$

 

Specific example with two elements; plot

 
$$ \begin{equation*} u(x)=c_0\basphi_0(x) + c_1\basphi_1(x) + c_2\basphi_2(x)\end{equation*} $$

 

Specific example: what about four elements?

Assembly of elementwise computations

Split the integrals into elementwise integrals

 
$$ \begin{equation} A_{i,j} = \int_\Omega\basphi_i\basphi_jdx = \sum_{e} \int_{\Omega^{(e)}} \basphi_i\basphi_jdx,\quad A^{(e)}_{i,j}=\int_{\Omega^{(e)}} \basphi_i\basphi_jdx \tag{17} \end{equation} $$

 

Important:

The element matrix

 
$$ \tilde A^{(e)} = \{ \tilde A^{(e)}_{r,s}\},\quad \tilde A^{(e)}_{r,s} = \int_{\Omega^{(e)}}\basphi_{q(e,r)}\basphi_{q(e,s)}dx, \quad r,s\in\Ifd=\{0,\ldots,d\} $$

 

 
$$ \begin{equation} A_{q(e,r),q(e,s)} := A_{q(e,r),q(e,s)} + \tilde A^{(e)}_{r,s},\quad r,s\in\Ifd \end{equation} $$

 

Illustration of the matrix assembly: regularly numbered P1 elements

Animation

Illustration of the matrix assembly: regularly numbered P3 elements

Animation

Illustration of the matrix assembly: irregularly numbered P1 elements

Animation

Assembly of the right-hand side

 
$$ \begin{equation} b_i = \int_\Omega f(x)\basphi_i(x)dx = \sum_{e} \int_{\Omega^{(e)}} f(x)\basphi_i(x)dx,\quad b^{(e)}_{i}=\int_{\Omega^{(e)}} f(x)\basphi_i(x)dx \end{equation} $$

 

Important:

Assembly:

 
$$ \begin{equation} b_{q(e,r)} := b_{q(e,r)} + \tilde b^{(e)}_{r},\quad r,s\in\Ifd \end{equation} $$

 

Mapping to a reference element

Instead of computing

 
$$ \begin{equation*} \tilde A^{(e)}_{r,s} = \int_{\Omega^{(e)}}\basphi_{q(e,r)}(x)\basphi_{q(e,s)}(x)dx = \int_{x_L}^{x_R}\basphi_{q(e,r)}(x)\basphi_{q(e,s)}(x)dx \end{equation*} $$

 
we now map \( [x_L, x_R] \) to a standardized reference element domain \( [-1,1] \) with local coordinate \( X \)

Affine mapping

 
$$ \begin{equation} x = \half (x_L + x_R) + \half (x_R - x_L)X \tag{18} \end{equation} $$

 
or rewritten as

 
$$ \begin{equation} x = x_m + {\half}hX, \qquad x_m=(x_L+x_R)/2 \tag{19} \end{equation} $$

 

Integral transformation

Reference element integration: just change integration variable from \( x \) to \( X \). Introduce local basis function

 
$$ \begin{equation} \refphi_r(X) = \basphi_{q(e,r)}(x(X)) \end{equation} $$

 

 
$$ \begin{equation} \tilde A^{(e)}_{r,s} = \int_{\Omega^{(e)}}\basphi_{q(e,r)}(x)\basphi_{q(e,s)}(x)dx = \int\limits_{-1}^1 \refphi_r(X)\refphi_s(X)\underbrace{\frac{dx}{dX}}_{\det J = h/2}dX = \int\limits_{-1}^1 \refphi_r(X)\refphi_s(X)\det J\,dX \end{equation} $$

 

 
$$ \begin{equation} \tilde b^{(e)}_{r} = \int_{\Omega^{(e)}}f(x)\basphi_{q(e,r)}(x)dx = \int\limits_{-1}^1 f(x(X))\refphi_r(X)\det J\,dX \tag{20} \end{equation} $$

 

Advantages of the reference element

Standardized basis functions for P1 elements

 
$$ \begin{align} \refphi_0(X) &= \half (1 - X) \tag{21}\\ \refphi_1(X) &= \half (1 + X) \tag{22} \end{align} $$

 

Standardized basis functions for P2 elements

P2 elements:

 
$$ \begin{align} \refphi_0(X) &= \half (X-1)X\\ \refphi_1(X) &= 1 - X^2\\ \refphi_2(X) &= \half (X+1)X \end{align} $$

 

Easy to generalize to arbitrary order!

Integration over a reference element; element matrix

P1 elements and \( f(x)=x(1-x) \).

 
$$ \begin{align} \tilde A^{(e)}_{0,0} &= \int_{-1}^1 \refphi_0(X)\refphi_0(X)\frac{h}{2} dX\nonumber\\ &=\int_{-1}^1 \half(1-X)\half(1-X) \frac{h}{2} dX = \frac{h}{8}\int_{-1}^1 (1-X)^2 dX = \frac{h}{3} \tag{23}\\ \tilde A^{(e)}_{1,0} &= \int_{-1}^1 \refphi_1(X)\refphi_0(X)\frac{h}{2} dX\nonumber\\ &=\int_{-1}^1 \half(1+X)\half(1-X) \frac{h}{2} dX = \frac{h}{8}\int_{-1}^1 (1-X^2) dX = \frac{h}{6}\\ \tilde A^{(e)}_{0,1} &= \tilde A^{(e)}_{1,0} \tag{24}\\ \tilde A^{(e)}_{1,1} &= \int_{-1}^1 \refphi_1(X)\refphi_1(X)\frac{h}{2} dX\nonumber\\ &=\int_{-1}^1 \half(1+X)\half(1+X) \frac{h}{2} dX = \frac{h}{8}\int_{-1}^1 (1+X)^2 dX = \frac{h}{3} \tag{25} \end{align} $$

 

Integration over a reference element; element vector

 
$$ \begin{align} \tilde b^{(e)}_{0} &= \int_{-1}^1 f(x(X))\refphi_0(X)\frac{h}{2} dX\nonumber\\ &= \int_{-1}^1 (x_m + \half hX)(1-(x_m + \half hX)) \half(1-X)\frac{h}{2} dX \nonumber\\ &= - \frac{1}{24} h^{3} + \frac{1}{6} h^{2} x_{m} - \frac{1}{12} h^{2} - \half h x_{m}^{2} + \half h x_{m} \tag{26}\\ \tilde b^{(e)}_{1} &= \int_{-1}^1 f(x(X))\refphi_1(X)\frac{h}{2} dX\nonumber\\ &= \int_{-1}^1 (x_m + \half hX)(1-(x_m + \half hX)) \half(1+X)\frac{h}{2} dX \nonumber\\ &= - \frac{1}{24} h^{3} - \frac{1}{6} h^{2} x_{m} + \frac{1}{12} h^{2} - \half h x_{m}^{2} + \half h x_{m} \end{align} $$

 

\( x_m \): element midpoint.

Tedious calculations! Let's use symbolic software

>>> import sympy as sp
>>> x, x_m, h, X = sp.symbols('x x_m h X')
>>> sp.integrate(h/8*(1-X)**2, (X, -1, 1))
h/3
>>> sp.integrate(h/8*(1+X)*(1-X), (X, -1, 1))
h/6
>>> x = x_m + h/2*X
>>> b_0 = sp.integrate(h/4*x*(1-x)*(1-X), (X, -1, 1))
>>> print b_0
-h**3/24 + h**2*x_m/6 - h**2/12 - h*x_m**2/2 + h*x_m/2

Can printe out in LaTeX too (convenient for copying into reports):

>>> print sp.latex(b_0, mode='plain')
- \frac{1}{24} h^{3} + \frac{1}{6} h^{2} x_{m}
- \frac{1}{12} h^{2} - \half h x_{m}^{2}
+ \half h x_{m}

Implementation

Compute finite element basis functions in the reference element

Let \( \refphi_r(X) \) be a Lagrange polynomial of degree d:

import sympy as sp
import numpy as np

def phi_r(r, X, d):
    if isinstance(X, sp.Symbol):
        h = sp.Rational(1, d)  # node spacing
        nodes = [2*i*h - 1 for i in range(d+1)]
    else:
        # assume X is numeric: use floats for nodes
        nodes = np.linspace(-1, 1, d+1)
    return Lagrange_polynomial(X, r, nodes)

def Lagrange_polynomial(x, i, points):
    p = 1
    for k in range(len(points)):
        if k != i:
            p *= (x - points[k])/(points[i] - points[k])
    return p

def basis(d=1):
    """Return the complete basis."""
    X = sp.Symbol('X')
    phi = [phi_r(r, X, d) for r in range(d+1)]
    return phi

Compute the element matrix

def element_matrix(phi, Omega_e, symbolic=True):
    n = len(phi)
    A_e = sp.zeros((n, n))
    X = sp.Symbol('X')
    if symbolic:
        h = sp.Symbol('h')
    else:
        h = Omega_e[1] - Omega_e[0]
    detJ = h/2  # dx/dX
    for r in range(n):
        for s in range(r, n):
            A_e[r,s] = sp.integrate(phi[r]*phi[s]*detJ, (X, -1, 1))
            A_e[s,r] = A_e[r,s]
    return A_e

Example on symbolic vs numeric element matrix

>>> from fe_approx1D import *
>>> phi = basis(d=1)
>>> phi
[1/2 - X/2, 1/2 + X/2]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=True)
[h/3, h/6]
[h/6, h/3]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=False)
[0.0333333333333333, 0.0166666666666667]
[0.0166666666666667, 0.0333333333333333]

Compute the element vector

def element_vector(f, phi, Omega_e, symbolic=True):
    n = len(phi)
    b_e = sp.zeros((n, 1))
    # Make f a function of X
    X = sp.Symbol('X')
    if symbolic:
        h = sp.Symbol('h')
    else:
        h = Omega_e[1] - Omega_e[0]
    x = (Omega_e[0] + Omega_e[1])/2 + h/2*X  # mapping
    f = f.subs('x', x)  # substitute mapping formula for x
    detJ = h/2  # dx/dX
    for r in range(n):
        b_e[r] = sp.integrate(f*phi[r]*detJ, (X, -1, 1))
    return b_e

Note f.subs('x', x): replace x by \( x(X) \) such that f contains X

Fallback on numerical integration if symbolic integration fails

def element_vector(f, phi, Omega_e, symbolic=True):
        ...
        I = sp.integrate(f*phi[r]*detJ, (X, -1, 1))  # try...
        if isinstance(I, sp.Integral):
            h = Omega_e[1] - Omega_e[0]  # Ensure h is numerical
            detJ = h/2
            integrand = sp.lambdify([X], f*phi[r]*detJ)
            I = sp.mpmath.quad(integrand, [-1, 1])
        b_e[r] = I
        ...

Linear system assembly and solution

def assemble(nodes, elements, phi, f, symbolic=True):
    N_n, N_e = len(nodes), len(elements)
    zeros = sp.zeros if symbolic else np.zeros
    A = zeros((N_n, N_n))
    b = zeros((N_n, 1))
    for e in range(N_e):
        Omega_e = [nodes[elements[e][0]], nodes[elements[e][-1]]]

        A_e = element_matrix(phi, Omega_e, symbolic)
        b_e = element_vector(f, phi, Omega_e, symbolic)

        for r in range(len(elements[e])):
            for s in range(len(elements[e])):
                A[elements[e][r],elements[e][s]] += A_e[r,s]
            b[elements[e][r]] += b_e[r]
    return A, b

Linear system solution

if symbolic:
    c = A.LUsolve(b)           # sympy arrays, symbolic Gaussian elim.
else:
    c = np.linalg.solve(A, b)  # numpy arrays, numerical solve

Note: the symbolic computation of A and b and the symbolic solution can be very tedious.

Example on computing symbolic approximations

>>> h, x = sp.symbols('h x')
>>> nodes = [0, h, 2*h]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3,   h/6,   0]
[h/6, 2*h/3, h/6]
[  0,   h/6, h/3]
>>> b
[     h**2/6 - h**3/12]
[      h**2 - 7*h**3/6]
[5*h**2/6 - 17*h**3/12]
>>> c = A.LUsolve(b)
>>> c
[                           h**2/6]
[12*(7*h**2/12 - 35*h**3/72)/(7*h)]
[  7*(4*h**2/7 - 23*h**3/21)/(2*h)]

Example on computing numerical approximations

>>> nodes = [0, 0.5, 1]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> x = sp.Symbol('x')
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=False)
>>> A
[ 0.166666666666667, 0.0833333333333333,                  0]
[0.0833333333333333,  0.333333333333333, 0.0833333333333333]
[                 0, 0.0833333333333333,  0.166666666666667]
>>> b
[          0.03125]
[0.104166666666667]
[          0.03125]
>>> c = A.LUsolve(b)
>>> c
[0.0416666666666666]
[ 0.291666666666667]
[0.0416666666666666]

The structure of the coefficient matrix

>>> d=1; N_e=8; Omega=[0,1]  # 8 linear elements on [0,1]
>>> phi = basis(d)
>>> f = x*(1-x)
>>> nodes, elements = mesh_symbolic(N_e, d, Omega)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3,   h/6,     0,     0,     0,     0,     0,     0,   0]
[h/6, 2*h/3,   h/6,     0,     0,     0,     0,     0,   0]
[  0,   h/6, 2*h/3,   h/6,     0,     0,     0,     0,   0]
[  0,     0,   h/6, 2*h/3,   h/6,     0,     0,     0,   0]
[  0,     0,     0,   h/6, 2*h/3,   h/6,     0,     0,   0]
[  0,     0,     0,     0,   h/6, 2*h/3,   h/6,     0,   0]
[  0,     0,     0,     0,     0,   h/6, 2*h/3,   h/6,   0]
[  0,     0,     0,     0,     0,     0,   h/6, 2*h/3, h/6]
[  0,     0,     0,     0,     0,     0,     0,   h/6, h/3]

Note: do this by hand to understand what is going on!

General result: the coefficient matrix is sparse

 
$$ \begin{equation} A = \frac{h}{6} \left( \begin{array}{cccccccccc} 2 & 1 & 0 &\cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ 1 & 4 & 1 & \ddots & & & & & \vdots \\ 0 & 1 & 4 & 1 & \ddots & & & & \vdots \\ \vdots & \ddots & & \ddots & \ddots & 0 & & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & & 0 & 1 & 4 & 1 & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \ddots &\ddots & 0 \\ \vdots & & & & &\ddots & 1 & 4 & 1 \\ 0 &\cdots & \cdots &\cdots & \cdots & \cdots & 0 & 1 & 2 \end{array} \right) \end{equation} $$

 

Exemplifying the sparsity for P2 elements

 
$$ \begin{equation} A = \frac{h}{30} \left( \begin{array}{ccccccccc} 4 & 2 & - 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 2 & 16 & 2 & 0 & 0 & 0 & 0 & 0 & 0\\- 1 & 2 & 8 & 2 & - 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 2 & 16 & 2 & 0 & 0 & 0 & 0\\ 0 & 0 & - 1 & 2 & 8 & 2 & - 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 2 & 16 & 2 & 0 & 0\\ 0 & 0 & 0 & 0 & - 1 & 2 & 8 & 2 & - 1 \\0 & 0 & 0 & 0 & 0 & 0 & 2 & 16 & 2\\0 & 0 & 0 & 0 & 0 & 0 & - 1 & 2 & 4 \end{array} \right) \end{equation} $$

 

Matrix sparsity pattern for regular/random numbering of P1 elements

Matrix sparsity pattern for regular/random numbering of P3 elements

Sparse matrix storage and solution

The minimum storage requirements for the coefficient matrix \( A_{i,j} \):

Approximate \( f\sim x^9 \) by various elements; code

Compute a mesh with \( N_e \) elements, basis functions of degree \( d \), and approximate a given symbolic expression \( f(x) \) by a finite element expansion \( u(x) = \sum_jc_j\basphi_j(x) \):

import sympy as sp
from fe_approx1D import approximate
x = sp.Symbol('x')

approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=4)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=2)
approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=8)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=4)

Approximate \( f\sim x^9 \) by various elements; plot

Comparison of finite element and finite difference approximation

Interpolation/collocation with finite elements

Let \( \{\xno{i}\}_{i\in\If} \) be the nodes in the mesh. Collocation means

 
$$ \begin{equation} u(\xno{i})=f(\xno{i}),\quad i\in\If, \end{equation} $$

 
which translates to

 
$$ \sum_{j\in\If} c_j \basphi_j(\xno{i}) = f(\xno{i}),$$

 
but \( \basphi_j(\xno{i})=0 \) if \( i\neq j \) so the sum collapses to one term \( c_i\basphi_i(\xno{i}) = c_i \), and we have the result

 
$$ \begin{equation} c_i = f(\xno{i}) \end{equation} $$

 

Same result as the standard finite difference approach, but finite elements define \( u \) also between the \( \xno{i} \) points

Galerkin/project and least squares vs collocation/interpolation or finite differences

The P1 finite element machinery results in a linear system where equation no \( i \) is

 
$$ \begin{equation} \frac{h}{6}(u_{i-1} + 4u_i + u_{i+1}) = (f,\basphi_i) \tag{27} \end{equation} $$

 

Note:

Expressing the left-hand side in finite difference operator notation

Rewrite the left-hand side of finite element equation no \( i \):

 
$$ \begin{equation} h(u_i + \frac{1}{6}(u_{i-1} - 2u_i + u_{i+1})) = [h(u + \frac{h^2}{6}D_x D_x u)]_i \end{equation} $$

 
This is the standard finite difference approximation of

 
$$ h(u + \frac{h^2}{6}u'')$$

 

Treating the right-hand side; Trapezoidal rule

 
$$ (f,\basphi_i) = \int_{\xno{i-1}}^{\xno{i}} f(x)\frac{1}{h} (x - \xno{i-1}) dx + \int_{\xno{i}}^{\xno{i+1}} f(x)\frac{1}{h}(1 - (x - x_{i})) dx $$

 
Cannot do much unless we specialize \( f \) or use numerical integration.

Trapezoidal rule using the nodes:

 
$$ (f,\basphi_i) = \int_\Omega f\basphi_i dx\approx h\half( f(\xno{0})\basphi_i(\xno{0}) + f(\xno{N})\basphi_i(\xno{N})) + h\sum_{j=1}^{N-1} f(\xno{j})\basphi_i(\xno{j}) $$

 
\( \basphi_i(\xno{j})=\delta_{ij} \), so this formula collapses to one term:

 
$$ \begin{equation} (f,\basphi_i) \approx hf(\xno{i}),\quad i=1,\ldots,N-1\thinspace. \end{equation} $$

 

Same result as in collocation (interpolation) and the finite difference method!

Treating the right-hand side; Simpson's rule

 
$$ \int_\Omega g(x)dx \approx \frac{h}{6}\left( g(\xno{0}) + 2\sum_{j=1}^{N-1} g(\xno{j}) + 4\sum_{j=0}^{N-1} g(\xno{j+\half}) + f(\xno{2N})\right), $$

 
Our case: \( g=f\basphi_i \). The sums collapse because \( \basphi_i=0 \) at most of the points.

 
$$ \begin{equation} (f,\basphi_i) \approx \frac{h}{3}(f_{i-\half} + f_i + f_{i+\half}) \end{equation} $$

 

Conclusions:

Finite element approximation vs finite differences

With Trapezoidal integration of \( (f,\basphi_i) \), the finite element metod essentially solve

 
$$ \begin{equation} u + \frac{h^2}{6} u'' = f,\quad u'(0)=u'(L)=0, \end{equation} $$

 
by the finite difference method

 
$$ \begin{equation} [u + \frac{h^2}{6} D_x D_x u = f]_i \end{equation} $$

 

With Simpson integration of \( (f,\basphi_i) \) we essentially solve

 
$$ \begin{equation} [u + \frac{h^2}{6} D_x D_x u = \bar f]_i, \end{equation} $$

 
where

 
$$ \bar f_i = \frac{1}{3}(f_{i-1/2} + f_i + f_{i+1/2}) $$

 

Note: as \( h\rightarrow 0 \), \( hu''\rightarrow 0 \) and \( \bar f_i\rightarrow f_i \).

Making finite elements behave as finite differences

Result:

Limitations of the nodes and element concepts

So far,

One problem:

A generalized element concept

The concept of a finite element

  1. a reference cell in a local reference coordinate system
  2. a set of basis functions \( \refphi_r \) defined on the cell
  3. a set of degrees of freedom (e.g., function values) that uniquely determine the basis functions such that \( \refphi_r=1 \) for degree of freedom number \( r \) and \( \refphi_r=0 \) for all other degrees of freedom
  4. a mapping between local and global degree of freedom numbers (dof map)
  5. a geometric mapping of the reference cell onto to cell in the physical domain: \( [-1,1]\ \Rightarrow\ [x_L,x_R] \)

Implementation; basic data structures

The assembly process now applies dof_map:

A[dof_map[e][r], dof_map[e][s]] += A_e[r,s]
b[dof_map[e][r]] += b_e[r]

Implementation; example with P2 elements

vertices = [0, 0.4, 1]
cells = [[0, 1], [1, 2]]
dof_map = [[0, 1, 2], [2, 3, 4]]

Implementation; example with P0 elements

Example: Same mesh, but \( u \) is piecewise constant in each cell (P0 element). Same vertices and cells, but

dof_map = [[0], [1]]

May think of one node in the middle of each element.

We will hereafter work with cells, vertices, and dof_map.

Example on doing the algorithmic steps

# Use modified fe_approx1D module
from fe_approx1D_numint import *

x = sp.Symbol('x')
f = x*(1 - x)

N_e = 10
# Create mesh with P3 (cubic) elements
vertices, cells, dof_map = mesh_uniform(N_e, d=3, Omega=[0,1])

# Create basis functions on the mesh
phi = [basis(len(dof_map[e])-1) for e in range(N_e)]

# Create linear system and solve it
A, b = assemble(vertices, cells, dof_map, phi, f)
c = np.linalg.solve(A, b)

# Make very fine mesh and sample u(x) on this mesh for plotting
x_u, u = u_glob(c, vertices, cells, dof_map,
                resolution_per_element=51)
plot(x_u, u)

Approximating a parabola by P0 elements

The approximate function automates the steps in the previous slide:

from fe_approx1D_numint import *
x=sp.Symbol("x")
for N_e in 4, 8:
    approximate(x*(1-x), d=0, N_e=N_e, Omega=[0,1])

Computing the error of the approximation; principles

 
$$ L^2 \hbox{ error: }\quad ||e||_{L^2} = \left(\int_{\Omega} e^2 dx\right)^{1/2}$$

 

Accurate approximation of the integral:

Computing the error of the approximation; details

Note. We need a version of the Trapezoidal rule valid for non-uniformly spaced points:

 
$$ \int_\Omega g(x) dx \approx \sum_{j=0}^{n-1} \half(g(x_j) + g(x_{j+1}))(x_{j+1}-x_j)$$

 

# Given c, compute x and u values on a very fine mesh
x, u = u_glob(c, vertices, cells, dof_map,
              resolution_per_element=101)
# Compute the error on the very fine mesh
e = f(x) - u
e2 = e**2
# Vectorized Trapezoidal rule
E = np.sqrt(0.5*np.sum((e2[:-1] + e2[1:])*(x[1:] - x[:-1]))

How does the error depend on \( h \) and \( d \)?

Theory and experiments show that the least squares or projection/Galerkin method in combination with Pd elements of equal length \( h \) has an error

 
$$ \begin{equation} ||e||_{L^2} = Ch^{d+1} \tag{28} \end{equation} $$

 
where \( C \) depends on \( f \), but not on \( h \) or \( d \).

Cubic Hermite polynomials; definition

Consider a reference cell \( [-1,1] \). We introduce two nodes, \( X=-1 \) and \( X=1 \). The degrees of freedom are

Derivatives as unknowns ensure the same \( \basphi_i'(x) \) value at nodes and thereby continuous derivatives.

Cubic Hermite polynomials; derivation

4 constraints on \( \refphi_r \) (1 for dof \( r \), 0 for all others):

This gives 4 linear, coupled equations for each \( \refphi_r \) to determine the 4 coefficients in the cubic polynomial

Cubic Hermite polynomials; result

 
$$ \begin{align} \refphi_0(X) &= 1 - \frac{3}{4}(X+1)^2 + \frac{1}{4}(X+1)^3\\ \refphi_1(X) &= -(X+1)(1 - \half(X+1))^2\\ \refphi_2(X) &= \frac{3}{4}(X+1)^2 - \half(X+1)^3\\ \refphi_3(X) &= -\half(X+1)(\half(X+1)^2 - (X+1))\\ \end{align} $$

 

Numerical integration

Common form of a numerical integration rule:

 
$$ \begin{equation} \int_{-1}^{1} g(X)dX \approx \sum_{j=0}^M w_jg(\bar X_j), \end{equation} $$

 
where

Different rules correspond to different choices of points and weights

The Midpoint rule

Simplest possibility: the Midpoint rule,

 
$$ \begin{equation} \int_{-1}^{1} g(X)dX \approx 2g(0),\quad \bar X_0=0,\ w_0=2, \end{equation} $$

 

Exact for linear integrands

Newton-Cotes rules

The Trapezoidal rule:

 
$$ \begin{equation} \int_{-1}^{1} g(X)dX \approx g(-1) + g(1),\quad \bar X_0=-1,\ \bar X_1=1,\ w_0=w_1=1, \tag{29} \end{equation} $$

 

Simpson's rule:

 
$$ \begin{equation} \int_{-1}^{1} g(X)dX \approx \frac{1}{3}\left(g(-1) + 4g(0) + g(1)\right), \end{equation} $$

 
where

 
$$ \begin{equation} \bar X_0=-1,\ \bar X_1=0,\ \bar X_2=1,\ w_0=w_2=\frac{1}{3},\ w_1=\frac{4}{3} \end{equation} $$

 

Gauss-Legendre rules with optimized points

 
$$ \begin{align} M=1&:\quad \bar X_0=-\frac{1}{\sqrt{3}},\ \bar X_1=\frac{1}{\sqrt{3}},\ w_0=w_1=1\\ M=2&:\quad \bar X_0=-\sqrt{\frac{3}{{5}}},\ \bar X_0=0,\ \bar X_2= \sqrt{\frac{3}{{5}}},\ w_0=w_2=\frac{5}{9},\ w_1=\frac{8}{9} \end{align} $$

 

See numint.py for a large collection of Gauss-Legendre rules.

Approximation of functions in 2D

Extensibility of 1D ideas. All the concepts and algorithms developed for approximation of 1D functions \( f(x) \) can readily be extended to 2D functions \( f(x,y) \) and 3D functions \( f(x,y,z) \). Key formulas stay the same.

Inner product in 2D:

 
$$ \begin{equation} (f,g) = \int_\Omega f(x,y)g(x,y) dx dy \end{equation} $$

 

Least squares and project/Galerkin lead to a linear system

 
$$ \begin{align*} \sum_{j\in\If} A_{i,j}c_j &= b_i,\quad i\in\If\\ A_{i,j} &= (\baspsi_i,\baspsi_j)\\ b_i &= (f,\baspsi_i) \end{align*} $$

 

Challenge: How to construct 2D basis functions \( \baspsi_i(x,y) \)?

2D basis functions as tensor products of 1D functions

Use a 1D basis for \( x \) variation and a similar for \( y \) variation:

 
$$ \begin{align} V_x &= \mbox{span}\{ \hat\baspsi_0(x),\ldots,\hat\baspsi_{N_x}(x)\} \tag{30}\\ V_y &= \mbox{span}\{ \hat\baspsi_0(y),\ldots,\hat\baspsi_{N_y}(y)\} \tag{31} \end{align} $$

 

The 2D vector space can be defined as a tensor product \( V = V_x\otimes V_y \) with basis functions

 
$$ \baspsi_{p,q}(x,y) = \hat\baspsi_p(x)\hat\baspsi_q(y) \quad p\in\Ix,q\in\Iy\tp $$

 

Tensor products

Given two vectors \( a=(a_0,\ldots,a_M) \) and \( b=(b_0,\ldots,b_N) \) their outer tensor product, also called the dyadic product, is \( p=a\otimes b \), defined through

 
$$ p_{i,j}=a_ib_j,\quad i=0,\ldots,M,\ j=0,\ldots,N\tp$$

 
Note: \( p \) has two indices (as a matrix or two-dimensional array)

Example: 2D basis as tensor product of 1D spaces,

 
$$ \baspsi_{p,q}(x,y) = \hat\baspsi_p(x)\hat\baspsi_q(y), \quad p\in\Ix,q\in\Iy$$

 

Double or single index?

The 2D basis can employ a double index and double sum:

 
$$ u = \sum_{p\in\Ix}\sum_{q\in\Iy} c_{p,q}\baspsi_{p,q}(x,y) $$

 

Or just a single index:

 
$$ u = \sum_{j\in\If} c_j\baspsi_j(x,y)$$

 
with

 
$$ \baspsi_i(x,y) = \hat\baspsi_p(x)\hat\baspsi_q(y), \quad i=p N_y + q\hbox{ or } i=q N_x + p $$

 

Example on 2D (bilinear) basis functions; formulas

In 1D we use the basis

 
$$ \{ 1, x \} $$

 

2D tensor product (all combinations):

 
$$ \baspsi_{0,0}=1,\quad \baspsi_{1,0}=x, \quad \baspsi_{0,1}=y, \quad \baspsi_{1,1}=xy $$

 
or with a single index:

 
$$ \baspsi_0=1,\quad \baspsi_1=x, \quad \baspsi_2=y,\quad\baspsi_3 =xy $$

 

See notes for details of a hand-calculation.

Example on 2D (bilinear) basis functions; plot

Quadratic \( f(x,y) = (1+x^2)(1+2y^2) \) (left), bilinear \( u \) (right):

Implementation; principal changes to the 1D code

Very small modification of approx1D.py:

Implementation; 2D integration

import sympy as sp

integrand = psi[i]*psi[j]
I = sp.integrate(integrand,
                 (x, Omega[0][0], Omega[0][1]),
                 (y, Omega[1][0], Omega[1][1]))

# Fall back on numerical integration if symbolic integration
# was unsuccessful
if isinstance(I, sp.Integral):
    integrand = sp.lambdify([x,y], integrand)
    I = sp.mpmath.quad(integrand,
                       [Omega[0][0], Omega[0][1]],
                       [Omega[1][0], Omega[1][1]])

Implementation; 2D basis functions

Tensor product of 1D "Taylor-style" polynomials \( x^i \):

def taylor(x, y, Nx, Ny):
    return [x**i*y**j for i in range(Nx+1) for j in range(Ny+1)]

Tensor product of 1D sine functions \( \sin((i+1)\pi x) \):

def sines(x, y, Nx, Ny):
    return [sp.sin(sp.pi*(i+1)*x)*sp.sin(sp.pi*(j+1)*y)
            for i in range(Nx+1) for j in range(Ny+1)]

Complete code in approx2D.py

Implementation; application

\( f(x,y) = (1+x^2)(1+2y^2) \)

>>> from approx2D import *
>>> f = (1+x**2)*(1+2*y**2)
>>> psi = taylor(x, y, 1, 1)
>>> Omega = [[0, 2], [0, 2]]
>>> u, c = least_squares(f, psi, Omega)
>>> print u
8*x*y - 2*x/3 + 4*y/3 - 1/9
>>> print sp.expand(f)
2*x**2*y**2 + x**2 + 2*y**2 + 1

Implementation; trying a perfect expansion

Add higher powers to the basis such that \( f\in V \):

>>> psi = taylor(x, y, 2, 2)
>>> u, c = least_squares(f, psi, Omega)
>>> print u
2*x**2*y**2 + x**2 + 2*y**2 + 1
>>> print u-f
0

Expected: \( u=f \) when \( f\in V \)

Generalization to 3D

Key idea:

 
$$ V = V_x\otimes V_y\otimes V_z$$

 

Repeated outer tensor product of multiple vectors.

 
$$ \begin{align*} a^{(q)} &= (a^{(q)}_0,\ldots,a^{(q)}_{N_q}),\quad q=0,\ldots,m\\ p &= a^{(0)}\otimes\cdots\otimes a^{(m)}\\ p_{i_0,i_1,\ldots,i_m} &= a^{(0)}_{i_1}a^{(1)}_{i_1}\cdots a^{(m)}_{i_m} \end{align*} $$

 

 
$$ \begin{align*} \baspsi_{p,q,r}(x,y,z) &= \hat\baspsi_p(x)\hat\baspsi_q(y)\hat\baspsi_r(z)\\ u(x,y,z) &= \sum_{p\in\Ix}\sum_{q\in\Iy}\sum_{r\in\Iz} c_{p,q,r} \baspsi_{p,q,r}(x,y,z) \end{align*} $$

 

Finite elements in 2D and 3D

The two great advantages of the finite element method:

Finite elements in 1D: mostly for learning, insight, debugging

Examples on cell types

2D:

3D:

Rectangular domain with 2D P1 elements

Deformed geometry with 2D P1 elements

Rectangular domain with 2D Q1 elements

Basis functions over triangles in the physical domain

The P1 triangular 2D element: \( u \) is linear \( ax + by + c \) over each triangular cell

Basic features of 2D P1 elements

Linear mapping of reference element onto general triangular cell

\( \basphi_i \): pyramid shape, composed of planes

Element matrices and vectors

Basis functions over triangles in the reference cell

 
$$ \begin{align} \refphi_0(X,Y) &= 1 - X - Y\\ \refphi_1(X,Y) &= X\\ \refphi_2(X,Y) &= Y \end{align} $$

 

Higher-degree \( \refphi_r \) introduce more nodes (dof = node values)

2D P1, P2, P3, P4, P5, and P6 elements

P1 elements in 1D, 2D, and 3D

P2 elements in 1D, 2D, and 3D

Affine mapping of the reference cell; formula

Mapping of local \( \X = (X,Y) \) coordinates in the reference cell to global, physical \( \x = (x,y) \) coordinates:

 
$$ \begin{equation} \x = \sum_{r} \refphi_r^{(1)}(\X)\xdno{q(e,r)} \tag{32} \end{equation} $$

 

where

This mapping preserves the straight/planar faces and edges.

Affine mapping of the reference cell; figure

Isoparametric mapping of the reference cell

Idea: Use the basis functions of the element (not only the P1 functions) to map the element

 
$$ \begin{equation} \x = \sum_{r} \refphi_r(\X)\xdno{q(e,r)} \tag{33} \end{equation} $$

 

Advantage: higher-order polynomial basis functions now map the reference cell to a curved triangle or tetrahedron.

Computing integrals

Integrals must be transformed from \( \Omega^{(e)} \) (physical cell) to \( \tilde\Omega^r \) (reference cell):

 
$$ \begin{align} \int_{\Omega^{(e)}}\basphi_i (\x) \basphi_j (\x) \dx &= \int_{\tilde\Omega^r} \refphi_i (\X) \refphi_j (\X) \det J\, \dX\\ \int_{\Omega^{(e)}}\basphi_i (\x) f(\x) \dx &= \int_{\tilde\Omega^r} \refphi_i (\X) f(\x(\X)) \det J\, \dX \end{align} $$

 
where \( \dx = dx dy \) or \( \dx = dxdydz \) and \( \det J \) is the determinant of the Jacobian of the mapping \( \x(\X) \).

 
$$ \begin{equation} J = \left[\begin{array}{cc} \frac{\partial x}{\partial X} & \frac{\partial x}{\partial Y}\\ \frac{\partial y}{\partial X} & \frac{\partial y}{\partial Y} \end{array}\right], \quad \det J = \frac{\partial x}{\partial X}\frac{\partial y}{\partial Y} - \frac{\partial x}{\partial Y}\frac{\partial y}{\partial X} \tag{34} \end{equation} $$

 

Affine mapping (32): \( \det J=2\Delta \), \( \Delta = \hbox{cell volume} \)

!slide

Remark on going from 1D to 2D/3D

Finite elements in 2D and 3D builds on the same ideas and concepts as in 1D, but there is simply much more to compute because the specific mathematical formulas in 2D and 3D are more complicated and the book keeping with dof maps also gets more complicated. The manual work is tedious, lengthy, and error-prone so automation by the computer is a must.

Differential equation models

Our aim is to extend the ideas for approximating \( f \) by \( u \), or solving

 
$$ u = f $$

 

to real differential equations like[[[

 
$$ -u'' + bu = f,\quad u(0)=1,\ u'(L)=D $$

 

Three methods are addressed:

  1. least squares
  2. Galerkin/projection
  3. collocation (interpolation)

Method 2 will be totally dominating!

Abstract differential equation

 
$$ \begin{equation} \mathcal{L}(u) = 0,\quad x\in\Omega \end{equation} $$

 

Examples (1D problems):

 
$$ \begin{align} \mathcal{L}(u) &= \frac{d^2u}{dx^2} - f(x), \tag{35}\\ \mathcal{L}(u) &= \frac{d}{dx}\left(\dfc(x)\frac{du}{dx}\right) + f(x), \tag{36}\\ \mathcal{L}(u) &= \frac{d}{dx}\left(\dfc(u)\frac{du}{dx}\right) - au + f(x), \tag{37}\\ \mathcal{L}(u) &= \frac{d}{dx}\left(\dfc(u)\frac{du}{dx}\right) + f(u,x) \tag{38} \end{align} $$

 

Abstract boundary conditions

 
$$ \begin{equation} {\cal B}_0(u)=0,\ x=0,\quad {\cal B}_1(u)=0,\ x=L \end{equation} $$

 

Examples:

 
$$ \begin{align} \mathcal{B}_i(u) &= u - g,\quad &\hbox{Dirichlet condition}\\ \mathcal{B}_i(u) &= -\dfc \frac{du}{dx} - g,\quad &\hbox{Neumann condition}\\ \mathcal{B}_i(u) &= -\dfc \frac{du}{dx} - h(u-g),\quad &\hbox{Robin condition} \end{align} $$

 

Reminder about notation

New topics

Much is similar to approximating a function (solving \( u=f \)), but two new topics are needed:

Residual-minimizing principles

Inserting \( u=\sum_jc_j\baspsi_j \) in \( \mathcal{L}=0 \) gives a residual

 
$$ \begin{equation} R = \mathcal{L}(u) = \mathcal{L}(\sum_j c_j \baspsi_j) \neq 0 \end{equation} $$

 

Goal: minimize \( R \) wrt \( \sequencei{c} \) (and hope it makes a small \( e \) too)

 
$$ R=R(c_0,\ldots,c_N; x)$$

 

The least squares method

Idea: minimize

 
$$ \begin{equation} E = ||R||^2 = (R,R) = \int_{\Omega} R^2 dx \end{equation} $$

 

Minimization wrt \( \sequencei{c} \) implies

 
$$ \begin{equation} \frac{\partial E}{\partial c_i} = \int_{\Omega} 2R\frac{\partial R}{\partial c_i} dx = 0\quad \Leftrightarrow\quad (R,\frac{\partial R}{\partial c_i})=0,\quad i\in\If \tag{39} \end{equation} $$

 

\( N+1 \) equations for \( N+1 \) unknowns \( \sequencei{c} \)

The Galerkin method

Idea: make \( R \) orthogonal to \( V \),

 
$$ \begin{equation} (R,v)=0,\quad \forall v\in V \tag{40} \end{equation} $$

 

This implies

 
$$ \begin{equation} (R,\baspsi_i)=0,\quad i\in\If \tag{41} \end{equation} $$

 

\( N+1 \) equations for \( N+1 \) unknowns \( \sequencei{c} \)

The Method of Weighted Residuals

Generalization of the Galerkin method: demand \( R \) orthogonal to some space \( W \), possibly \( W\neq V \):

 
$$ \begin{equation} (R,v)=0,\quad \forall v\in W \tag{42} \end{equation} $$

 

If \( \{w_0,\ldots,w_N\} \) is a basis for \( W \):

 
$$ \begin{equation} (R,w_i)=0,\quad i\in\If \tag{43} \end{equation} $$

 

Terminology: test and trial Functions

The collocation method

Idea: demand \( R=0 \) at \( N+1 \) points

 
$$ \begin{equation} R(\xno{i}; c_0,\ldots,c_N)=0,\quad i\in\If \tag{44} \end{equation} $$

 

Note: The collocation method is a weighted residual method with delta functions as weights

 
$$ 0 = \int_\Omega R(x;c_0,\ldots,c_N) \delta(x-\xno{i})\dx = R(\xno{i}; c_0,\ldots,c_N)$$

 

 
$$ \begin{equation} \hbox{property of } \delta(x):\quad \int_{\Omega} f(x)\delta (x-\xno{i}) dx = f(\xno{i}),\quad \xno{i}\in\Omega \tag{45} \end{equation} $$

 

Examples on using the principles

Goal. Exemplify the least squares, Galerkin, and collocation methods in a simple 1D problem with global basis functions.

The first model problem

 
$$ \begin{equation} -u''(x) = f(x),\quad x\in\Omega=[0,L],\quad u(0)=0,\ u(L)=0 \tag{46} \end{equation} $$

 

Basis functions:

 
$$ \begin{equation} \baspsi_i(x) = \sinL{i},\quad i\in\If \tag{47} \end{equation} $$

 

The residual:

 
$$ \begin{align} R(x;c_0,\ldots,c_N) &= u''(x) + f(x),\nonumber\\ &= \frac{d^2}{dx^2}\left(\sum_{j\in\If} c_j\baspsi_j(x)\right) + f(x),\nonumber\\ &= -\sum_{j\in\If} c_j\baspsi_j''(x) + f(x) \tag{48} \end{align} $$

 

Boundary conditions

Since \( u(0)=u(L)=0 \) we must ensure that all \( \baspsi_i(0)=\baspsi_i(L)=0 \). Then

 
$$ u(0) = \sum_jc_j\baspsi_j(0) = 0,\quad u(L) = \sum_jc_j\baspsi_j(L) $$

 

The least squares method; principle

 
$$ (R,\frac{\partial R}{\partial c_i}) = 0,\quad i\in\If $$

 

 
$$ \begin{equation} \frac{\partial R}{\partial c_i} = \frac{\partial}{\partial c_i} \left(\sum_{j\in\If} c_j\baspsi_j''(x) + f(x)\right) = \baspsi_i''(x) \end{equation} $$

 

Because:

 
$$ \frac{\partial}{\partial c_i}\left(c_0\baspsi_0'' + c_1\baspsi_1'' + \cdots + c_{i-1}\baspsi_{i-1}'' + \color{blue}{c_i\baspsi_{i}''} + c_{i+1}\baspsi_{i+1}'' + \cdots + c_N\baspsi_N'' \right) = \baspsi_{i}'' $$

 

The least squares method; equation system

 
$$ \begin{equation} (\sum_j c_j \baspsi_j'' + f,\baspsi_i'')=0,\quad i\in\If \end{equation} $$

 

Rearrangement:

 
$$ \begin{equation} \sum_{j\in\If}(\baspsi_i'',\baspsi_j'')c_j = -(f,\baspsi_i''),\quad i\in\If \end{equation} $$

 

This is a linear system

 
$$ \begin{equation*} \sum_{j\in\If}A_{i,j}c_j = b_i,\quad i\in\If \end{equation*} $$

 
with

 
$$ \begin{align} A_{i,j} &= (\baspsi_i'',\baspsi_j'')\nonumber\\ & = \pi^4(i+1)^2(j+1)^2L^{-4}\int_0^L \sinL{i}\sinL{j}\, dx\nonumber\\ &= \left\lbrace \begin{array}{ll} {1\over2}L^{-3}\pi^4(i+1)^4 & i=j \\ 0, & i\neq j \end{array}\right. \\ b_i &= -(f,\baspsi_i'') = (i+1)^2\pi^2L^{-2}\int_0^Lf(x)\sinL{i}\, dx \end{align} $$

 

Orthogonality of the basis functions gives diagonal matrix

Useful property:

 
$$ \begin{equation} \int\limits_0^L \sinL{i}\sinL{j}\, dx = \delta_{ij},\quad \quad\delta_{ij} = \left\lbrace \begin{array}{ll} \half L & i=j \\ 0, & i\neq j \end{array}\right. \end{equation} $$

 

\( \Rightarrow\ (\baspsi_i'',\baspsi_j'') = \delta_{ij} \), i.e., diagonal \( A_{i,j} \), and we can easily solve for \( c_i \):

 
$$ \begin{equation} c_i = \frac{2L}{\pi^2(i+1)^2}\int_0^Lf(x)\sinL{i}\, dx \tag{49} \end{equation} $$

 

Least squares method; solution

Let's sympy do the work (\( f(x)=2 \)):

from sympy import *
import sys

i, j = symbols('i j', integer=True)
x, L = symbols('x L')
f = 2
a = 2*L/(pi**2*(i+1)**2)
c_i = a*integrate(f*sin((i+1)*pi*x/L), (x, 0, L))
c_i = simplify(c_i)
print c_i

 
$$ \begin{equation} c_i = 4 \frac{L^{2} \left(\left(-1\right)^{i} + 1\right)}{\pi^{3} \left(i^{3} + 3 i^{2} + 3 i + 1\right)},\quad u(x) = \sum_{k=0}^{N/2} \frac{8L^2}{\pi^3(2k+1)^3}\sinL{2k}\tp \end{equation} $$

 

Fast decay: \( c_2 = c_0/27 \), \( c_4=c_0/125 \) - only one term might be good enough:

 
$$ \begin{equation*} u(x) \approx \frac{8L^2}{\pi^3}\sin\left(\pi\frac{x}{L}\right)\tp \end{equation*} $$

 

The Galerkin method; principle

\( R=u''+f \):

 
$$ \begin{equation*} (u''+f,v)=0,\quad \forall v\in V, \end{equation*} $$

 
or

 
$$ \begin{equation} (u'',v) = -(f,v),\quad\forall v\in V \end{equation} $$

 

This is a variational formulation of the differential equation problem.

\( \forall v\in V \) means for all basis functions:

 
$$ \begin{equation} (\sum_{j\in\If} c_j\baspsi_j'', \baspsi_i)=-(f,\baspsi_i),\quad i\in\If \end{equation} $$

 

The Galerkin method; solution

Since \( \baspsi_i''\propto \baspsi_i \), Galerkin's method gives the same linear system and the same solution as the least squares method (in this particular example).

The collocation method

\( R=0 \) (i.e.,the differential equation) must be satisfied at \( N+1 \) points:

 
$$ \begin{equation} -\sum_{j\in\If} c_j\baspsi_j''(\xno{i}) = f(\xno{i}),\quad i\in\If \end{equation} $$

 

This is a linear system \( \sum_j A_{i,j}=b_i \) with entries

 
$$ \begin{equation*} A_{i,j}=-\baspsi_j''(\xno{i})= (j+1)^2\pi^2L^{-2}\sin\left((j+1)\pi \frac{x_i}{L}\right), \quad b_i=2 \end{equation*} $$

 

Choose: \( N=0 \), \( x_0=L/2 \)

 
$$ c_0=2L^2/\pi^2 $$

 

Comparison of the methods

Useful techniques

Integration by parts

Second-order derivatives will hereafter be integrated by parts

 
$$ \begin{align} \int_0^L u''(x)v(x) dx &= - \int_0^Lu'(x)v'(x)dx + [vu']_0^L\nonumber\\ &= - \int_0^Lu'(x)v'(x) dx + u'(L)v(L) - u'(0)v(0) \tag{50} \end{align} $$

 

Motivation:

Boundary function; principles

Boundary function; example (1)

Dirichlet conditions: \( u(0)=C \) and \( u(L)=D \). Choose for example

 
$$ B(x) = \frac{1}{L}(C(L-x) + Dx):\qquad B(0)=C,\ B(L)=D $$

 

 
$$ \begin{equation} u(x) = B(x) + \sum_{j\in\If} c_j\baspsi_j(x), \tag{51} \end{equation} $$

 

 
$$ u(0) = B(0)= C,\quad u(L) = B(L) = D $$

 

Boundary function; example (2)

Dirichlet condition: \( u(L)=D \). Choose for example

 
$$ B(x) = D:\qquad B(L)=D $$

 

 
$$ \begin{equation} u(x) = B(x) + \sum_{j\in\If} c_j\baspsi_j(x), \tag{51} \end{equation} $$

 

 
$$ u(L) = B(L) = D $$

 

Impact of the boundary function on the space where we seek the solution

Abstract notation for variational formulations

The finite element literature (and much FEniCS documentation) applies an abstract notation for the variational formulation:

Find \( (u-B)\in V \) such that

 
$$ a(u,v) = L(v)\quad \forall v\in V $$

 

Example on abstract notation

 
$$ -u''=f, \quad u'(0)=C,\ u(L)=D,\quad u=D + \sum_jc_j\baspsi_j$$

 

Variational formulation:

 
$$ \int_{\Omega} u' v'dx = \int_{\Omega} fvdx\quad - v(0)C \hbox{or}\quad (u',v') = (f,v) - v(0)C \quad\forall v\in V $$

 

Abstract formulation: finn \( (u-B)\in V \) such that

 
$$ a(u,v) = L(v)\quad \forall v\in V$$

 

We identify

 
$$ a(u,v) = (u',v'),\quad L(v) = (f,v) -v(0)C $$

 

Bilinear and linear forms

Linear form means

 
$$ L(\alpha_1 v_1 + \alpha_2 v_2) =\alpha_1 L(v_1) + \alpha_2 L(v_2), $$

 

Bilinear form means

 
$$ \begin{align*} a(\alpha_1 u_1 + \alpha_2 u_2, v) &= \alpha_1 a(u_1,v) + \alpha_2 a(u_2, v), \\ a(u, \alpha_1 v_1 + \alpha_2 v_2) &= \alpha_1 a(u,v_1) + \alpha_2 a(u, v_2) \end{align*} $$

 

In nonlinear problems: Find \( (u-B)\in V \) such that \( F(u;v)=0\ \forall v\in V \)

The linear system associated with abstract form

 
$$ a(u,v) = L(v)\quad \forall v\in V\quad\Leftrightarrow\quad a(u,\baspsi_i) = L(\baspsi_i)\quad i\in\If$$

 

We can now derive the corresponding linear system once and for all:

 
$$ a(\sum_{j\in\If} c_j \baspsi_j,\baspsi_i)c_j = L(\baspsi_i)\quad i\in\If$$

 

Because of linearity,

 
$$ \sum_{j\in\If} \underbrace{a(\baspsi_j,\baspsi_i)}_{A_{i,j}}c_j = \underbrace{L(\baspsi_i)}_{b_i}\quad i\in\If$$

 

Given \( a(u,v) \) and \( L(v) \) in a problem, we can immediately generate the linear system:

 
$$ A_{i,j} = a(\baspsi_j,\baspsi_i),\quad b_i = L(\baspsi_i) $$

 

Equivalence with minimization problem

If \( a(u,v)=a(v,u) \),

 
$$ a(u,v)=L(v)\quad\forall v\in V,$$

 

is equivalent to minimizing the functional

 
$$ F(v) = {\half}a(v,v) - L(v) $$

 
over all functions \( v\in V \). That is,

 
$$ F(u)\leq F(v)\quad \forall v\in V\tp $$

 

Examples on variational formulations

Goal. Derive variational formulations for many prototype differential equations in 1D that include

Variable coefficient; problem

 
$$ \begin{equation} -\frac{d}{dx}\left( \dfc(x)\frac{du}{dx}\right) = f(x),\quad x\in\Omega =[0,L],\ u(0)=C,\ u(L)=D \end{equation} $$

 

 
$$ u(x) = B(x) + \sum_{j\in\If} c_j\baspsi_i(x) $$

 

 
$$ B(x) = C + \frac{1}{L}(D-C)x$$

 

Variable coefficient; variational formulation (1)

 
$$ R = -\frac{d}{dx}\left( a\frac{du}{dx}\right) -f $$

 

Galerkin's method:

 
$$ (R, v) = 0,\quad \forall v\in V, $$

 

or with integrals:

 
$$ \int_{\Omega} \left(\frac{d}{dx}\left( \dfc\frac{du}{dx}\right) -f\right)v \dx = 0,\quad \forall v\in V \tp $$

 

Variable coefficient; variational formulation (2)

Integration by parts:

 
$$ -\int_{\Omega} \frac{d}{dx}\left( \dfc(x)\frac{du}{dx}\right) v \dx = \int_{\Omega} \dfc(x)\frac{du}{dx}\frac{dv}{dx}\dx - \left[\dfc\frac{du}{dx}v\right]_0^L \tp $$

 

Boundary terms vanish since \( v(0)=v(L)=0 \)

Variational formulation.

Find \( (u-B)\in V \) such that

 
$$ \int_{\Omega} \dfc(x)\frac{du}{dx}\frac{dv}{dx}dx = \int_{\Omega} f(x)vdx,\quad \forall v\in V, $$

 

Compact notation:

 
$$ \underbrace{(\dfc u',v')}_{a(u,v)} = \underbrace{(f,v)}_{L(v)}, \quad \forall v\in V $$

 

Variable coefficient; linear system (the easy way)

With

 
$$ a(u,v) = (\dfc u', v),\quad L(v) = (f,v) $$

 

we can just use the formula for the linear system:

 
$$ \begin{align*} A_{i,j} &= a(\baspsi_j,\baspsi_i) = (\dfc \baspsi_j', \baspsi_i') = \int_\Omega \dfc \baspsi_j' \baspsi_i'\dx = \int_\Omega \baspsi_i' \dfc \baspsi_j'\dx = a(\baspsi_i,\baspsi_j) = A_{j,i}\\ b_i &= (f,\baspsi_i) = \int_\Omega f\baspsi_i\dx \end{align*} $$

 

Variable coefficient; linear system (full derivation)

\( v=\baspsi_i \) and \( u=B + \sum_jc_j\baspsi_j \):

 
$$ (\dfc B' + \dfc \sum_{j\in\If} c_j \baspsi_j', \baspsi_i') = (f,\baspsi_i), \quad i\in\If \tp $$

 

Reorder to form linear system:

 
$$ \sum_{j\in\If} (\dfc\baspsi_j', \baspsi_i')c_j = (f,\baspsi_i) + (a(D-C)L^{-1}, \baspsi_i'), \quad i\in\If \tp $$

 

This is \( \sum_j A_{i,j}c_j=b_i \) with

 
$$ \begin{align*} A_{i,j} &= (a\baspsi_j', \baspsi_i') = \int_{\Omega} \dfc(x)\baspsi_j'(x) \baspsi_i'(x)\dx\\ b_i &= (f,\baspsi_i) + (a(D-C)L^{-1},\baspsi_i')= \int_{\Omega} \left(f(x)\baspsi_i(x) + \dfc(x)\frac{D-C}{L}\baspsi_i'(x)\right) \dx \end{align*} $$

 

First-order derivative in the equation and boundary condition; problem

 
$$ \begin{equation} -u''(x) + bu'(x) = f(x),\quad x\in\Omega =[0,L],\ u(0)=C,\ u'(L)=E \end{equation} $$

 

New features:

Initial steps:

First-order derivative in the equation and boundary condition; details

 
$$ u = C + \sum_{j\in\If} c_j \baspsi_i(x)$$

 

Galerkin's method: multiply by \( v \), integrate over \( \Omega \), integrate by parts.

 
$$ (-u'' + bu' - f, v) = 0,\quad\forall v\in V$$

 

 
$$ (u',v') + (bu',v) = (f,v) + [u' v]_0^L, \quad\forall v\in V$$

 

Now, \( [u' v]_0^L = u'(L)v(L) = E v(L) \) because \( v(0)=0 \) and \( u'(L)=E \):

 
$$ (u'v') + (bu',v) = (f,v) + Ev(L), \quad\forall v\in V$$

 

First-order derivative in the equation and boundary condition; observations

 
$$ (u'v') + (bu',v) = (f,v) + Ev(L), \quad\forall v\in V,$$

 

Important:

First-order derivative in the equation and boundary condition; abstract notation

Abstract notation:

 
$$ a(u,v)=L(v)\quad\forall v\in V$$

 

Here:

 
$$ \begin{align*} a(u,v)&=(u',v') + (bu',v)\\ L(v)&= (f,v) + E v(L) \end{align*} $$

 

First-order derivative in the equation and boundary condition; linear system

Insert \( u=C+\sum_jc_j\baspsi_j \) and \( v=\baspsi_i \):

 
$$ \sum_{j\in\If} \underbrace{((\baspsi_j',\baspsi_i') + (b\baspsi_j',\baspsi_i))}_{A_{i,j}} c_j = \underbrace{(f,\baspsi_i) + E \baspsi_i(L)}_{b_i} $$

 

Observation: \( A_{i,j} \) is not symmetric because of the term

 
$$ (b\baspsi_j',\baspsi_i)=\int_{\Omega} b\baspsi_j'\baspsi_i dx \neq \int_{\Omega} b \baspsi_i' \baspsi_jdx = (\baspsi_i',b\baspsi_j) $$

 

Terminology: natural and essential boundary conditions

 
$$ (u',v') + (bu',v) = (f,v) + u'(L)v(L) - u'(0)v(0)$$

 

Lesson learned. It is easy to forget the boundary term when integrating by parts. That mistake may prescribe a condition on \( u' \)!

Nonlinear coefficient; problem

Problem:

 
$$ \begin{equation} -(\dfc(u)u')' = f(u),\quad x\in [0,L],\ u(0)=0,\ u'(L)=E \end{equation} $$

 

Nonlinear coefficient; variational formulation

Galerkin: multiply by \( v \), integrate, integrate by parts

 
$$ \int_0^L \dfc(u)\frac{du}{dx}\frac{dv}{dx}\dx = \int_0^L f(u)v\dx + [\dfc(u)vu']_0^L\quad\forall v\in V $$

 

 
$$ \int_0^L \dfc(u)\frac{du}{dx}\frac{dv}{dx}v\dx = \int_0^L f(u)v\dx + \dfc(u(L))v(L)E\quad\forall v\in V $$

 

or

 
$$ (\dfc(u)u', v') = (f(u),v) + \dfc(u(L))v(L)E\quad\forall v\in V $$

 

Nonlinear coefficient; where does the nonlinearity cause challenges?

Computing with Dirichlet and Neumann conditions; problem

 
$$ \begin{equation*} -u''(x)=f(x),\quad x\in \Omega=[0,1],\quad u'(0)=C,\ u(1)=D \end{equation*} $$

 

Computing with Dirichlet and Neumann conditions; details

 
$$ A_{i,j} = (\baspsi_j',\baspsi_i') = \int_{0}^1 \baspsi_i'(x)\baspsi_j'(x)dx = \int_0^1 (i+1)(j+1)(1-x)^{i+j} dx, $$

 

Choose \( f(x)=2 \):

 
$$ \begin{align*} b_i &= (2,\baspsi_i) - (D,\baspsi_i') -C\baspsi_i(0)\\ &= \int_0^1 \left( 2(1-x)^{i+1} - D(i+1)(1-x)^i\right)dx -C\baspsi_i(0) \end{align*} $$

 

Can easily do the integrals with sympy. \( N=1 \):

 
$$ \begin{equation*} \left(\begin{array}{cc} 1 & 1\\ 1 & 4/3 \end{array}\right) \left(\begin{array}{c} c_0\\ c_1 \end{array}\right) = \left(\begin{array}{c} -C+D+1\\ 2/3 -C + D \end{array}\right) \end{equation*} $$

 

 
$$ c_0=-C+D+2, \quad c_1=-1,$$

 

 
$$ u(x) = 1 -x^2 + D + C(x-1)\quad\hbox{(exact solution)} $$

 

When the numerical method is exact

Assume that apart from boundary conditions, \( \uex \) lies in the same space \( V \) as where we seek \( u \):

 
$$ \begin{align*} u &= B + F,\quad F\in V a(B+F, v) &= L(v)\quad\forall v\in V \uex & = B + E,\quad E\in V a(B+E, v) &= L(v)\quad\forall v\in V \end{align*} $$

 

Subtract: \( a(F-E,v)=0\ \Rightarrow\ E=F \) and \( u = \uex \)

Computing with finite elements

Tasks:

Variational formulation, finite element mesh, and basis

 
$$ -u''(x) = 2,\quad x\in (0,L),\ u(0)=u(L)=0,$$

 

Variational formulation:

 
$$ (u',v') = (2,v)\quad\forall v\in V $$

 

Since \( u(0)=0 \) and \( u(L)=0 \), we must force

 
$$ v(0)=v(L)=0,\quad \baspsi_i(0)=\baspsi_i(L)=0$$

 

Use finite element basis, but exclude \( \basphi_0 \) and \( \basphi_{N_n} \) since these are not 0 on the boundary:

 
$$ \baspsi_i=\basphi_{i+1},\quad i=0,\ldots,N=N_n-2$$

 

Introduce index mapping \( \nu(j) \): \( \baspsi_i = \basphi_{\nu(i)} \)

 
$$ u = \sum_{j\in\If}c_j\basphi_{\nu(i)},\quad i=0,\ldots,N,\quad \nu(j) = j+1$$

 

Irregular numbering: more complicated \( \nu(j) \) table

Computation in the global physical domain; formulas

 
$$ \begin{equation*} A_{i,j}=\int_0^L\basphi_{i+1}'(x)\basphi_{j+1}'(x) dx,\quad b_i=\int_0^L2\basphi_{i+1}(x) dx \end{equation*} $$

 

Many will prefer to change indices to obtain a \( \basphi_i'\basphi_j' \) product: \( i+1\rightarrow i \), \( j+1\rightarrow j \)

 
$$ \begin{equation*} A_{i-1,j-1}=\int_0^L\basphi_{i}'(x)\basphi_{j}'(x) \dx,\quad b_{i-1}=\int_0^L2\basphi_{i}(x) \dx \end{equation*} $$

 

Computation in the global physical domain; details

 
$$ \basphi_i = \pm h^{-1} $$

 

 
$$ A_{i-1,i-1} = h^{-2}2h = 2h^{-1},\quad A_{i-1,i-2} = h^{-1}(-h^{-1})h = -h^{-1},\quad A_{i-1,i}=A_{i-1,i-2}$$

 

 
$$ b_{i-1} = 2({\half}h + {\half}h) = 2h$$

 

Computation in the global physical domain; linear system

 
$$ \begin{equation} \frac{1}{h}\left( \begin{array}{ccccccccc} 2 & -1 & 0 &\cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ -1 & 2 & -1 & \ddots & & & & & \vdots \\ 0 & -1 & 2 & -1 & \ddots & & & & \vdots \\ \vdots & \ddots & & \ddots & \ddots & 0 & & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \ddots &\ddots & 0 \\ \vdots & & & & &\ddots & \ddots &\ddots & -1 \\ 0 &\cdots & \cdots &\cdots & \cdots & \cdots & 0 & -1 & 2 \end{array} \right) \left( \begin{array}{c} c_0 \\ \vdots\\ \vdots\\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots\\ c_{N} \end{array} \right) = \left( \begin{array}{c} 2h \\ \vdots\\ \vdots\\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots\\ 2h \end{array} \right) \tag{53} \end{equation} $$

 

Comparison with a finite difference discretization

 
$$ \begin{equation} -\frac{1}{h}u_{i-1} + \frac{2}{h}u_{i} - \frac{1}{h}u_{i+1} = 2h \tag{54} \end{equation} $$

 

The standard finite difference method for \( -u''=2 \) is

 
$$ -\frac{1}{h^2}u_{i-1} + \frac{2}{h^2}u_{i} - \frac{1}{h^2}u_{i+1} = 2 $$

 

The finite element method and the finite difference method are identical in this example.

(Remains to study the equations involving boundary values)

Cellwise computations; formulas

 
$$ \begin{equation*} A_{i-1,j-1}^{(e)}=\int_{\Omega^{(e)}} \basphi_i'(x)\basphi_j'(x) \dx = \int_{-1}^1 \frac{d}{dx}\refphi_r(X)\frac{d}{dx}\refphi_s(X) \frac{h}{2} \dX, \end{equation*} $$

 

 
$$ \refphi_0(X)=\half(1-X),\quad\refphi_1(X)=\half(1+X)$$

 

 
$$ \frac{d\refphi_0}{dX} = -\half,\quad \frac{d\refphi_1}{dX} = \half $$

 

From the chain rule

 
$$ \frac{d\refphi_r}{dx} = \frac{d\refphi_r}{dX}\frac{dX}{dx} = \frac{2}{h}\frac{d\refphi_r}{dX}$$

 

Cellwise computations; details

 
$$ \begin{equation*} A_{i-1,j-1}^{(e)}=\int_{\Omega^{(e)}} \basphi_i'(x)\basphi_j'(x) \dx = \int_{-1}^1 \frac{2}{h}\frac{d\refphi_r}{dX}\frac{2}{h}\frac{d\refphi_s}{dX} \frac{h}{2} \dX = \tilde A_{r,s}^{(e)} \end{equation*} $$

 

 
$$ \begin{equation*} b_{i-1}^{(e)} = \int_{\Omega^{(e)}} 2\basphi_i(x) \dx = \int_{-1}^12\refphi_r(X)\frac{h}{2} \dX = \tilde b_{r}^{(e)}, \quad i=q(e,r),\ r=0,1 \end{equation*} $$

 

Must run through all \( r,s=0,1 \) and \( r=0,1 \) and compute each entry in the element matrix and vector:

 
$$ \begin{equation} \tilde A^{(e)} =\frac{1}{h}\left(\begin{array}{rr} 1 & -1\\ -1 & 1 \end{array}\right),\quad \tilde b^{(e)} = h\left(\begin{array}{c} 1\\ 1 \end{array}\right)\tp \tag{55} \end{equation} $$

 

Example:

 
$$ \tilde A^{(e)}_{0,1} = \int_{-1}^1 \frac{2}{h}\frac{d\refphi_0}{dX}\frac{2}{h}\frac{d\refphi_1}{dX} \frac{h}{2} \dX = \frac{2}{h}(-\half)\frac{2}{h}\half\frac{h}{2} \int_{-1}^1\dX = -\frac{1}{h} $$

 

Cellwise computations; details of boundary cells

For \( e=0 \) and \( =N_e \):

 
$$ \tilde A^{(e)} =\frac{1}{h}\left(\begin{array}{r} 1 \end{array}\right),\quad \tilde b^{(e)} = h\left(\begin{array}{c} 1 \end{array}\right) $$

 

Only one degree of freedom ("node") in these cells (\( r=0 \) counts the only dof)

Cellwise computations; assembly

4 P1 elements:

vertices = [0, 0.5, 1, 1.5, 2]
cells = [[0, 1], [1, 2], [2, 3], [3, 4]]
dof_map = [[0], [0, 1], [1, 2], [2]]       # only 1 dof in elm 0, 3

Python code for the assembly algorithm:

# Ae[e][r,s]: element matrix, be[e][r]: element vector
# A[i,j]: coefficient matrix, b[i]: right-hand side

for e in range(len(Ae)):
    for r in range(Ae[e].shape[0]):
        for s in range(Ae[e].shape[1]):
            A[dof_map[e,r],dof_map[e,s]] += Ae[e][i,j]
        b[dof_map[e,r]] += be[e][i,j]

Result: same linear system as arose from computations in the physical domain

General construction of a boundary function

 
$$ \begin{equation} B(x) = \sum_{j\in\Ifb} U_j\basphi_j(x) \end{equation} $$

 

Suppose we have a Dirichlet condition \( u(\xno{k})=U_k \), \( k\in\Ifb \):

 
$$ u(\xno{k}) = \sum_{j\in\Ifb} U_j\underbrace{\basphi_j(x)}_{\neq 0 \hbox{ only for }j=k} + \sum_{j\in\If} c_j\underbrace{\basphi_{\nu(j)}(\xno{k})}_{=0,\ k\not\in\If} = U_k $$

 

Example with two Dirichlet values; variational formulation

 
$$ -u''=2, \quad u(0)=C,\ u(L)=D $$

 

 
$$ \int_0^L u'v'\dx = \int_0^L2v\dx\quad\forall v\in V$$

 

 
$$ (u',v') = (2,v)\quad\forall v\in V$$

 

Example with two Dirichlet values; boundary function

 
$$ \begin{equation} B(x) = \sum_{j\in\Ifb} U_j\basphi_j(x) \end{equation} $$

 

Here \( \Ifb = \{0,N_n\} \), \( U_0=C \), \( U_{N_n}=D \),

 
$$ \baspsi_i = \basphi_{\nu(i)}, \quad \nu(i)=i+1,\quad i\in\If = \{0,\ldots,N=N_n-2\} $$

 

 
$$ \begin{equation} u(x) = C\basphi_0(x) + D\basphi_{N_n}(x) + \sum_{j\in\If}c_j\basphi_{\nu(j)} \end{equation} $$

 

Example with two Dirichlet values; details

Insert \( u = B + \sum_j c_j\baspsi_j \) in variational formulation:

 
$$ (u',v') = (2,v)\quad\Rightarrow\quad (\sum_jc_j\baspsi_j',\baspsi_i') = (2-B',\baspsi_i)\quad \forall v\in V$$

 

 
$$ \begin{align*} u(x) &= \underbrace{C\cdot\basphi_0 + D\basphi_{N_n}}_{B(x)} + \sum_{j\in\If} c_j\basphi_{j+1}\\ &= C\cdot\basphi_0 + D\basphi_{N_n} + c_0\basphi_1 + c_1\basphi_2 +\cdots + c_N\basphi_{N_n-1} \end{align*} $$

 

 
$$ A_{i-1,j-1} = \int_0^L \basphi_i'(x)\basphi_j'(x) \dx,\quad b_{i-1} = \int_0^L (f(x) - C\basphi_{0}'(x) - D\basphi_{N_n}'(x)) \basphi_i(x) \dx $$

 
for \( i,j = 1,\ldots,N+1=N_n-1 \).

New boundary terms from \( -\int B'\basphi_i\dx \): \( C/2 \) for \( i=1 \) and \( -D/2 \) for \( i=N_n-1 \)

Example with two Dirichlet values; cellwise computations

From the last cell:

 
$$ \tilde b_0^{(N_e)} = \int_{-1}^1 \left(f - D\frac{2}{h} \frac{d\refphi_1}{dX}\right) \refphi_0\frac{h}{2} \dX = (\frac{h}{2}(2 - D\frac{2}{h}\half) \int_{-1}^1 \refphi_0 \dX = h - D/2 $$

 

From the first cell:

 
$$ \tilde b_0^{(0)} = \int_{-1}^1 \left(f - C\frac{2}{h} \frac{d\refphi_0}{dX}\right) \refphi_1\frac{h}{2} \dX = (\frac{h}{2}(2 + C\frac{2}{h}\half) \int_{-1}^1 \refphi_1 \dX = h + C/2\tp $$

 

Modification of the linear system; ideas

Method 2: always \( \baspsi_i = \basphi_i \) and

 
$$ \begin{equation} u(x) = \sum_{j\in\If}c_j\basphi_j(x),\quad \If=\{0,\ldots,N=N_n\} \tag{56} \end{equation} $$

 

Attractive way of incorporating Dirichlet conditions. \( u \) is treated as unknown at all boundaries when computing entires in the linear system

Modification of the linear system; original system

 
$$ -u''=2,\quad u(0)=0,\ u(L)=D$$

 

Assemble as if there were no Dirichlet conditions:

 
$$ \begin{equation} \frac{1}{h}\left( \begin{array}{ccccccccc} 1 & -1 & 0 &\cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ -1 & 2 & -1 & \ddots & & & & & \vdots \\ 0 & -1 & 2 & -1 & \ddots & & & & \vdots \\ \vdots & \ddots & & \ddots & \ddots & 0 & & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \ddots &\ddots & 0 \\ \vdots & & & & &\ddots & \ddots &\ddots & -1 \\ 0 &\cdots & \cdots &\cdots & \cdots & \cdots & 0 & -1 & 1 \end{array} \right) \left( \begin{array}{c} c_0 \\ \vdots\\ \vdots\\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots\\ c_{N} \end{array} \right) = \left( \begin{array}{c} h \\ 2h\\ \vdots\\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 2h\\ h \end{array} \right) \tag{57} \end{equation} $$

 

Modification of the linear system; row replacement

 
$$ \begin{equation} \frac{1}{h}\left( \begin{array}{ccccccccc} h & 0 & 0 &\cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ -1 & 2 & -1 & \ddots & & & & & \vdots \\ 0 & -1 & 2 & -1 & \ddots & & & & \vdots \\ \vdots & \ddots & & \ddots & \ddots & 0 & & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \ddots &\ddots & 0 \\ \vdots & & & & &\ddots & \ddots &\ddots & -1 \\ 0 &\cdots & \cdots &\cdots & \cdots & \cdots & 0 & 0 & h \end{array} \right) \left( \begin{array}{c} c_0 \\ \vdots\\ \vdots\\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots\\ c_{N} \end{array} \right) = \left( \begin{array}{c} 0 \\ 2h\\ \vdots\\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 2h\\ D \end{array} \right) \tag{58} \end{equation} $$

 

Modification of the linear system; element matrix/vector

In cell 0 we know \( u \) for local node (degree of freedom) \( r=0 \). Replace the first cell equation by \( \tilde c_0 = 0 \):

 
$$ \begin{equation} \tilde A^{(0)} = A = \frac{1}{h}\left(\begin{array}{rr} h & 0\\ -1 & 1 \end{array}\right),\quad \tilde b^{(0)} = \left(\begin{array}{c} 0\\ h \end{array}\right) \tag{59} \end{equation} $$

 

In cell \( N_e \) we know \( u \) for local node \( r=1 \). Replace the last equation in the cell system by \( \tilde c_1=D \):

 
$$ \begin{equation} \tilde A^{(N_e)} = A = \frac{1}{h}\left(\begin{array}{rr} 1 & -1\\ 0 & h \end{array}\right),\quad \tilde b^{(N_e)} = \left(\begin{array}{c} h\\ D \end{array}\right) \tag{60} \end{equation} $$

 

Symmetric modification of the linear system; algorithm

Algorithm for incorporating \( c_i=U_i \) in a symmetric way:

  1. Subtract column \( i \) times \( U_i \) from the right-hand side
  2. Zero out column and row no \( i \)
  3. Place 1 on the diagonal
  4. Set \( b_i=U_i \)

Symmetric modification of the linear system; example

 
$$ \begin{equation} \frac{1}{h}\left( \begin{array}{ccccccccc} 1 & 0 & 0 &\cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & 2 & -1 & \ddots & & & & & \vdots \\ 0 & -1 & 2 & -1 & \ddots & & & & \vdots \\ \vdots & \ddots & & \ddots & \ddots & 0 & & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \ddots &\ddots & 0 \\ \vdots & & & & &\ddots & \ddots &\ddots & 0 \\ 0 &\cdots & \cdots &\cdots & \cdots & \cdots & 0 & 0 & 1 \end{array} \right) \left( \begin{array}{c} c_0 \\ \vdots\\ \vdots\\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots\\ c_{N} \end{array} \right) = \left( \begin{array}{c} 0 \\ 2h\\ \vdots\\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 2h +D/h\\ D \end{array} \right) \tag{61} \end{equation} $$

 

Symmetric modification of the linear system; element level

Symmetric modification applied to \( \tilde A^{(N_e)} \):

 
$$ \begin{equation} \tilde A^{(N_e)} = A = \frac{1}{h}\left(\begin{array}{rr} 1 & 0\\ 0 & 1 \end{array}\right),\quad \tilde b^{(N-1)} = \left(\begin{array}{c} h + D/h\\ D \end{array}\right) \tag{62} \end{equation} $$

 

Boundary conditions: specified derivative

Neumann conditions. How can we incorporate \( u'(0)=C \) with finite elements?

 
$$ -u''=f,\quad u'(0)=C,\ u(L)=D$$

 

The variational formulation

Galerkin's method:

 
$$ \begin{equation*} \int_0^L(u''(x)+f(x))\baspsi_i(x) dx = 0,\quad i\in\If \end{equation*} $$

 

Integration of \( u''\baspsi_i \) by parts:

 
$$ \begin{equation*} \int_0^Lu'(x)\baspsi_i'(x) \dx -(u'(L)\baspsi_i(L) - u'(0)\baspsi_i(0)) - \int_0^L f(x)\baspsi_i(x) \dx =0, \quad i\in\If \end{equation*} $$

 

Method 1: Boundary function and exclusion of Dirichlet degrees of freedom

 
$$ \begin{equation*} \int_0^Lu'(x)\basphi_i'(x) dx = \int_0^L f(x)\basphi_i(x) dx - C\basphi_i(0),\quad i\in\If \end{equation*} $$

 

 
$$ \begin{equation} \sum_{j=0}^{N=N_n-1}\left( \int_0^L \basphi_i'(x)\basphi_j'(x) dx \right)c_j = \int_0^L\left(f(x)\basphi_i(x) -D\basphi_N'(x)\basphi_i(x)\right) dx - C\basphi_i(0) \tag{63} \end{equation} $$

 
for \( i=0,\ldots,N=N_n-1 \).

Method 2: Use all \( \basphi_i \) and insert the Dirichlet condition in the linear system

We can forget about the term \( u'(L)\basphi_i(L) \)!

Result. Boundary terms \( u'\basphi_i \) at points \( \xno{i} \) where Dirichlet values apply can always be forgotten.

 
$$ \begin{equation*} u(x) = \sum_{j=0}^{N=N_n} c_j\basphi_j(x) \end{equation*} $$

 

 
$$ \begin{equation} \sum_{j=0}^{N=N_n}\left( \int_0^L \basphi_i'(x)\basphi_j'(x) dx \right)c_j = \int_0^L f(x)\basphi_i(x)\basphi_i(x) dx - C\basphi_i(0) \tag{63} \end{equation} $$

 

Assemble entries for \( i=0,\ldots,N=N_n \) and then modify the last equation to \( c_N=D \)

How the Neumann condition impacts the element matrix and vector

The extra term \( C\basphi_0(0) \) affects only the element vector from the first cells since \( \basphi_0=0 \) on all other cells.

 
$$ \begin{equation} \tilde A^{(0)} = A = \frac{1}{h}\left(\begin{array}{rr} 1 & 1\\ -1 & 1 \end{array}\right),\quad \tilde b^{(0)} = \left(\begin{array}{c} h - C\\ h \end{array}\right) \tag{65} \end{equation} $$

 

The finite element algorithm

The differential equation problem defines the integrals in the variational formulation.

Request these functions from the user:

integrand_lhs(phi, r, s, x)
boundary_lhs(phi, r, s, x)
integrand_rhs(phi, r, x)
boundary_rhs(phi, r, x)

Must also have a mesh with vertices, cells, and dof_map

Python pseudo code; the element matrix and vector

<Declare global matrix, global rhs: A, b>

# Loop over all cells
for e in range(len(cells)):

    # Compute element matrix and vector
    n = len(dof_map[e])  # no of dofs in this element
    h = vertices[cells[e][1]] - vertices[cells[e][0]]
    <Declare element matrix, element vector: A_e, b_e>

    # Integrate over the reference cell
    points, weights = <numerical integration rule>
    for X, w in zip(points, weights):
        phi = <basis functions + derivatives at X>
        detJ = h/2
        x = <affine mapping from X>
        for r in range(n):
            for s in range(n):
                A_e[r,s] += integrand_lhs(phi, r, s, x)*detJ*w
            b_e[r] += integrand_rhs(phi, r, x)*detJ*w

    # Add boundary terms
    for r in range(n):
        for s in range(n):
            A_e[r,s] += boundary_lhs(phi, r, s, x)*detJ*w
        b_e[r] += boundary_rhs(phi, r, x)*detJ*w

Python pseudo code; boundary conditions and assembly

for e in range(len(cells)):
    ...

    # Incorporate essential boundary conditions
    for r in range(n):
        global_dof = dof_map[e][r]
        if global_dof in essbc_dofs:
            # dof r is subject to an essential condition
            value = essbc_docs[global_dof]
            # Symmetric modification
            b_e -= value*A_e[:,r]
            A_e[r,:] = 0
            A_e[:,r] = 0
            A_e[r,r] = 1
            b_e[r] = value

    # Assemble
    for r in range(n):
        for s in range(n):
            A[dof_map[e][r], dof_map[e][r]] += A_e[r,s]
        b[dof_map[e][r] += b_e[r]

<solve linear system>

Variational formulations in 2D and 3D

How to do integration by parts is the major difference when moving to 2D and 3D.

Integration by parts

Rule for multi-dimensional integration by parts.

 
$$ \begin{equation} -\int_{\Omega} \nabla\cdot (a(\x)\nabla u) v\dx = \int_{\Omega} a(\x)\nabla u\cdot\nabla v \dx - \int_{\partial\Omega} a\frac{\partial u}{\partial n} v \ds \tag{66} \end{equation} $$

 

Example on integration by parts; problem

 
$$ \begin{align} \v\cdot\nabla u + \alpha u &= \nabla\cdot\left( a\nabla u\right) + f, \quad & \x\in\Omega\\ u &= u_0,\quad &\x\in\partial\Omega_D\\ -a\frac{\partial u}{\partial n} &= g,\quad &\x\in\partial\Omega_N \end{align} $$

 

Method 1 with boundary function and \( \baspsi_i=0 \) on \( \partial\Omega_D \):

 
$$ u(\x) = B(\x) + \sum_{j\in\If} c_j\baspsi_j(\x),\quad B(\x)=u_0(\x) $$

 

Example on integration by parts; details (1)

Galerkin's method: multiply by \( v\in V \) and integrate over \( \Omega \),

 
$$ \int_{\Omega} (\v\cdot\nabla u + \alpha u)v\dx = \int_{\Omega} \nabla\cdot\left( a\nabla u\right)\dx + \int_{\Omega}fv \dx $$

 

Integrate second-order term by parts:

 
$$ \int_{\Omega} \nabla\cdot\left( a\nabla u\right) v \dx = -\int_{\Omega} a\nabla u\cdot\nabla v\dx + \int_{\partial\Omega} a\frac{\partial u}{\partial n} v\ds, $$

 

Resulting variational form:

 
$$ \int_{\Omega} (\v\cdot\nabla u + \alpha u)v\dx = -\int_{\Omega} a\nabla u\cdot\nabla v\dx + \int_{\partial\Omega} a\frac{\partial u}{\partial n} v\ds + \int_{\Omega} fv \dx $$

 

Example on integration by parts; details (2)

Note: \( v\neq 0 \) only on \( \partial\Omega_N \):

 
$$ \int_{\partial\Omega} a\frac{\partial u}{\partial n} v\ds = \int_{\partial\Omega_N} \underbrace{a\frac{\partial u}{\partial n}}_{-g} v\ds = -\int_{\partial\Omega_N} gv\ds $$

 

The final variational form:

 
$$ \int_{\Omega} (\v\cdot\nabla u + \alpha u)v\dx = -\int_{\Omega} a\nabla u\cdot\nabla v \dx - \int_{\partial\Omega_N} g v\ds + \int_{\Omega} fv \dx $$

 

Or with inner product notation:

 
$$ (\v\cdot\nabla u, v) + (\alpha u,v) = - (a\nabla u,\nabla v) - (g,v)_{N} + (f,v) $$

 

\( (g,v)_{N} \): line or surface integral over \( \partial\Omega_N \).

Example on integration by parts; linear system

 
$$ u = B + \sum_{j\in\If} c_j\baspsi_j,\quad B = u_0 $$

 

 
$$ A_{i,j} = (\v\cdot\nabla \baspsi_j, \baspsi_i) + (\alpha \baspsi_j ,\baspsi_i) + (a\nabla \baspsi_j,\nabla \baspsi_i) $$

 

 
$$ b_i = (g,\baspsi_i)_{N} + (f,\baspsi_i) - (\v\cdot\nabla u_0, \baspsi_i) + (\alpha u_0 ,\baspsi_i) + (a\nabla u_0,\nabla \baspsi_i) $$

 

Transformation to a reference cell in 2D/3D (1)

We want to compute an integral in the physical domain by integrating over the reference cell.

 
$$ \begin{equation} \int_{{\Omega}^{(e)}} a(\x)\nabla\basphi_i\cdot\nabla\basphi_j\dx \end{equation} $$

 

Mapping from reference to physical coordinates:

 
$$ \x(\X) $$

 

with Jacobian \( J \),

 
$$ J_{i,j}=\frac{\partial x_j}{\partial X_i} $$

 

Transformation to a reference cell in 2D/3D (2)

Can derive

 
$$ \begin{align*} \nabla_{\X}\refphi_r &= J\cdot\nabla_{\x}\basphi_i\\ \nabla_{\x}\basphi_i &= \nabla_{\x}\refphi_r(\X) = J^{-1}\cdot\nabla_{\X}\refphi_r(\X) \end{align*} $$

 

Integral transformation from physical to reference coordinates:

 
$$ \begin{equation} \int_{\Omega^{(e)}} a(\x)\nabla_{\x}\basphi_i\cdot\nabla_{\x}\basphi_j\dx = \int_{\tilde\Omega^r} a(\x(\X))(J^{-1}\cdot\nabla_{\X}\refphi_r)\cdot (J^{-1}\cdot\nabla\refphi_s)\det J\dX \end{equation} $$

 

Numerical integration

Numerical integration over reference cell triangles and tetrahedra:

 
$$ \int_{\tilde\Omega^r} g\dX = \sum_{j=0}^{n-1} w_j g(\bar\X_j)$$

 

Module numint.py contains different rules:

>>> import numint
>>> x, w = numint.quadrature_for_triangles(num_points=3)
>>> x
[(0.16666666666666666, 0.16666666666666666),
 (0.66666666666666666, 0.16666666666666666),
 (0.16666666666666666, 0.66666666666666666)]
>>> w
[0.16666666666666666, 0.16666666666666666, 0.16666666666666666]

Time-dependent problems

Example: diffusion problem

 
$$ \begin{align} \frac{\partial u}{\partial t} &= \dfc\nabla^2 u + f(\x, t),\quad &\x\in\Omega, t\in (0,T] \tag{67}\\ u(\x, 0) & = I(\x),\quad &\x\in\Omega \tag{68}\\ \frac{\partial u}{\partial n} &= 0,\quad &\x\in\partial\Omega,\ t\in (0,T] \tag{69} \end{align} $$

 

A Forward Euler scheme; ideas

 
$$ \begin{equation} [D_t^+ u = \dfc\nabla^2 u + f]^n,\quad n=1,2,\ldots,N_t-1 \end{equation} $$

 

Solving wrt \( u^{n+1} \):

 
$$ \begin{equation} u^{n+1} = u^n + \Delta t \left( \dfc\nabla^2 u^n + f(\x, t_n)\right) \tag{70} \end{equation} $$

 

A Forward Euler scheme; stages in the discretization

 
$$ \begin{equation} \frac{\partial \uex}{\partial t} = \dfc\nabla^2 \uex + f(\x, t) \tag{71} \end{equation} $$

 

 
$$ \begin{equation} \uex^{n+1} = \uex^n + \Delta t \left( \dfc\nabla^2 \uex^n + f(\x, t_n)\right) \tag{72} \end{equation} $$

 

 
$$ \uex^n \approx u^n = \sum_{j=0}^{N} c_j^{n}\baspsi_j(\x),\quad \uex^{n+1} \approx u^{n+1} = \sum_{j=0}^{N} c_j^{n+1}\baspsi_j(\x) $$

 

 
$$ R = u^{n+1} - u^n - \Delta t \left( \dfc\nabla^2 u^n + f(\x, t_n)\right)$$

 

A Forward Euler scheme; weighted residual (or Galerkin) principle

 
$$ R = u^{n+1} - u^n - \Delta t \left( \dfc\nabla^2 u^n + f(\x, t_n)\right)$$

 

The weighted residual principle:

 
$$ \int_\Omega Rw\dx = 0,\quad \forall w\in W$$

 

results in

 
$$ \int_\Omega \left\lbrack u^{n+1} - u^n - \Delta t \left( \dfc\nabla^2 u^n + f(\x, t_n)\right) \right\rbrack w \dx =0, \quad \forall w \in W $$

 

Galerkin: \( W=V \), \( w=v \)

A Forward Euler scheme; integration by parts

Isolating the unknown \( u^{n+1} \) on the left-hand side:

 
$$ \int_{\Omega} u^{n+1}\baspsi_i\dx = \int_{\Omega} \left\lbrack u^n - \Delta t \left( \dfc\nabla^2 u^n + f(\x, t_n)\right) \right\rbrack v\dx $$

 

Integration by parts of \( \int\dfc(\nabla^2 u^n) v\dx \):

 
$$ \int_{\Omega}\dfc(\nabla^2 u^n)v \dx = -\int_{\Omega}\dfc\nabla u^n\cdot\nabla v\dx + \underbrace{\int_{\partial\Omega}\dfc\frac{\partial u^n}{\partial n}v \dx}_{=0\quad\Leftarrow\quad\partial u^n/\partial n=0} $$

 

Variational form:

 
$$ \begin{equation} \int_{\Omega} u^{n+1} v\dx = \int_{\Omega} u^n v\dx - \Delta t \int_{\Omega}\dfc\nabla u^n\cdot\nabla v\dx + \Delta t\int_{\Omega}f^n v\dx,\quad\forall v\in V \tag{73} \end{equation} $$

 

New notation for the solution at the most recent time levels

 
$$ \begin{equation} \int_{\Omega} u v\dx = \int_{\Omega} u_1 v\dx - \Delta t \int_{\Omega}\dfc\nabla u_1\cdot\nabla v\dx + \Delta t\int_{\Omega}f^n v\dx \tag{74} \end{equation} $$

 

or shorter

 
$$ \begin{equation} (u, \baspsi_i) = (u_1,v) - \Delta t (\dfc\nabla u_1,\nabla v) + (f^n, v) \tag{75} \end{equation} $$

 

Deriving the linear systems

 
$$

Insert these in

$$

 
(u, \baspsi_i) = (u_1,\baspsi_i) - \Delta t (\dfc\nabla u_1,\nabla\baspsi_i) + (f^n,\baspsi_i)

 
$$

and order terms as matrix-vector products:

$$

 
\begin{equation} \sum_{j=0}^{N} \underbrace{(\baspsi_i,\baspsi_j)}_{M_{i,j}} c_j = \sum_{j=0}^{N} \underbrace{(\baspsi_i,\baspsi_j)}_{M_{i,j}} c_{1,j} -\Delta t \sum_{j=0}^{N} \underbrace{(\nabla\baspsi_i,\dfc\nabla\baspsi_j)}_{K_{i,j}} c_{1,j} + (f^n,\baspsi_i),\quad i=0,\ldots,N \end{equation} $$

Structure of the linear systems

 
$$ \begin{equation} Mc = Mc_1 - \Delta t Kc_1 + f \end{equation} $$

 

 
$$ \begin{align*} M &= \{M_{i,j}\},\quad M_{i,j}=(\baspsi_i,\baspsi_j),\quad i,j\in\If\\ K &= \{K_{i,j}\},\quad K_{i,j}=(\nabla\baspsi_i,\dfc\nabla\baspsi_j),\quad i,j\in\If\\ f &= \{(f(\x,t_n),\baspsi_i)\}_{i\in\If}\\ c &= \{c_i\}_{i\in\If}\\ c_1 &= \{c_{1,i}\}_{i\in\If} \end{align*} $$

 

Computational algorithm

  1. Compute \( M \) and \( K \).
  2. Initialize \( u^0 \) by either interpolation or projection
  3. For \( n=1,2,\ldots,N_t \):
    1. compute \( b = Mc_1 - \Delta t Kc_1 + f \)
    2. solve \( Mc = b \)
    3. set \( c_1 = c \)

Initial condition:

Comparing P1 elements with the finite difference method; ideas

Comparing P1 elements with the finite difference method; results

Diffusion equation with finite elements is equivalent to

 
$$ \begin{equation} [D_t^+(u + \frac{1}{6}h^2D_xD_x u) = \dfc D_xD_x u + f]^n_i \tag{76} \end{equation} $$

 

Can lump the mass matrix by Trapezoidal integration and get the standard finite difference scheme

 
$$ \begin{equation} [D_t^+u = \dfc D_xD_x u + f]^n_i \end{equation} $$

 

Discretization in time by a Backward Euler scheme

Backward Euler scheme in time:

 
$$ [D_t^- u = \dfc\nabla^2 u + f(\x, t)]^n \tp $$

 

 
$$ \begin{equation} \uex^{n} - \Delta t \left( \dfc\nabla^2 \uex^n + f(\x, t_{n})\right) = \uex^{n-1} \tag{77} \end{equation} $$

 

 
$$ \uex^n \approx u^n = \sum_{j=0}^{N} c_j^{n}\baspsi_j(\x),\quad \uex^{n+1} \approx u^{n+1} = \sum_{j=0}^{N} c_j^{n+1}\baspsi_j(\x)$$

 

The variational form of the time-discrete problem

 
$$ \begin{equation} \int_{\Omega} \left( u^{n}v + \Delta t \dfc\nabla u^n\cdot\nabla v\right)\dx = \int_{\Omega} u^{n-1} v\dx - \Delta t\int_{\Omega}f^n v\dx,\quad\forall v\in V \tag{78} \end{equation} $$

 

or

 
$$ \begin{equation} (u,v) + \Delta t (\dfc\nabla u,\nabla v) = (u_1,v) + \Delta t (f^n,\baspsi_i) \tag{79} \end{equation} $$

 

The linear system: insert \( u=\sum_j c_j\baspsi_i \) and \( u_1=\sum_j c_{1,j}\baspsi_i \),

 
$$ \begin{equation} (M + \Delta t \dfc K)c = Mc_1 + f \tag{80} \end{equation} $$

 

Calculations with P1 elements in 1D

Can interpret the resulting equation system as

 
$$ \begin{equation} [D_t^-(u + \frac{1}{6}h^2D_xD_x u) = \dfc D_xD_x u + f]^n_i \tag{81} \end{equation} $$

 

Lumped mass matrix (by Trapezoidal integration) gives a standard finite difference method:

 
$$ \begin{equation} [D_t^- u = \dfc D_xD_x u + f]^n_i \tag{82} \end{equation} $$

 

Dirichlet boundary conditions

Dirichlet condition at \( x=0 \) and Neumann condition at \( x=L \):

 
$$ \begin{align} u(\x,t) &= u_0(\x,t),\quad & \x\in\partial\Omega_D\\ -\dfc\frac{\partial}{\partial n} u(\x,t) &= g(\x,t),\quad & \x\in\partial{\Omega}_N \end{align} $$

 

Forward Euler in time, Galerkin's method, and integration by parts:

 
$$ \begin{equation} \int_\Omega u^{n+1}v\dx = \int_\Omega (u^n - \Delta t\dfc\nabla u^n\cdot\nabla v)\dx - \Delta t\int_{\partial\Omega_N} gv\ds,\quad \forall v\in V \end{equation} $$

 

Requirement: \( v=0 \) on \( \partial\Omega_D \)

Boundary function

 
$$ u^n(\x) = u_0(\x,t_n) + \sum_{j\in\If}c_j^n\baspsi_j(\x)$$

 

 
$$ \begin{align*} \sum_{j\in\If} \left(\int_\Omega \baspsi_i\baspsi_j\dx\right) c^{n+1}_j &= \sum_{j\in\If} \left(\int_\Omega\left( \baspsi_i\baspsi_j - \Delta t\dfc\nabla \baspsi_i\cdot\nabla\baspsi_j\right)\dx\right) c_j^n - \\ &\quad \int_\Omega\left( u_0(\x,t_{n+1}) - u_0(\x,t_n) + \Delta t\dfc\nabla u_0(\x,t_n)\cdot\nabla \baspsi_i\right)\dx \\ & \quad + \Delta t\int_\Omega f\baspsi_i\dx - \Delta t\int_{\partial\Omega_N} g\baspsi_i\ds, \quad i\in\If \end{align*} $$

 

Finite element basis functions

 
$$ \begin{align*} u^n &= \sum_{j\in\Ifb} U_j^n\basphi_j + \sum_{j\in\If}c_{1,j}\basphi_{\nu(j)},\\ u^{n+1} &= \sum_{j\in\Ifb} U_j^{n+1}\basphi_j + \sum_{j\in\If}c_{j}\basphi_{\nu(j)} \end{align*} $$

 

 
$$ \begin{align*} \sum_{j\in\If} \left(\int_\Omega \basphi_i\basphi_j\dx\right) c_j &= \sum_{j\in\If} \left(\int_\Omega\left( \basphi_i\basphi_j - \Delta t\dfc\nabla \basphi_i\cdot\nabla\basphi_j\right)\dx\right) c_{1,j} - \\ &\quad \sum_{j\in\Ifb}\int_\Omega\left( \basphi_i\basphi_j(U_j^{n+1} - U_j^n) + \Delta t\dfc\nabla \basphi_i\cdot\nabla \basphi_jU_j^n\right)\dx \\ &\quad + \Delta t\int_\Omega f\basphi_i\dx - \Delta t\int_{\partial\Omega_N} g\basphi_i\ds, \quad i\in\If \end{align*} $$

 

Modification of the linear system; the raw system

 
$$ \begin{align*} \sum_{j\in\If} \biggl(\underbrace{\int_\Omega \basphi_i\basphi_j\dx}_{M_{i,j}}\biggr) c_j &= \sum_{j\in\If} \biggl(\underbrace{\int_\Omega \basphi_i\basphi_j \dx}_{M_{i,j}} - \Delta t\underbrace{\int_\Omega \dfc\nabla \basphi_i\cdot\nabla\basphi_j\dx}_{K_{i,j}}\biggr) c_{1,j} \\ &\quad \underbrace{-\Delta t\int_\Omega f\basphi_i\dx - \Delta t\int_{\partial\Omega_N} g\basphi_i\ds}_{f_i},\quad i\in\If \end{align*} $$

 

Modification of the linear system; setting Dirichlet conditions

 
$$ \begin{equation} Mc = b,\quad b = Mc_1 - \Delta t Kc_1 + \Delta t f \end{equation} $$

 

For each \( k \) where a Dirichlet condition applies, \( u(\xno{k},t_{n+1})=U_k^{n+1} \),

Or apply the slightly more complicated modification which preserves symmetry of \( M \)

Modification of the linear system; Backward Euler example

Backward Euler discretization in time gives a more complicated coefficient matrix:

 
$$ \begin{equation} Ac=b,\quad A = M + \Delta t K,\quad b = Mc_1 + \Delta t f\tp \end{equation} $$

 

Observe: \( A_{k,k} = M_{k,k} + \Delta t K_{k,k} = 1 + 0 \), so \( c_k = U_k^{n+1} \)

Analysis of the discrete equations

The diffusion equation \( u_t = \dfc u_{xx} \) allows a (Fourier) wave component

 
$$ \begin{equation} u = \Aex^n e^{ikx},\quad \Aex = e^{-\dfc k^2\Delta t} \tag{83} \end{equation} $$

 

Numerical schemes often allow the similar solution

 
$$ \begin{equation} u^n_q = A^n e^{ikx} \tag{84} \end{equation} $$

 

Handy formulas

 
$$ \begin{align*} [D_t^+ A^n e^{ikq\Delta x}]^n &= A^n e^{ikq\Delta x}\frac{A-1}{\Delta t},\\ [D_t^- A^n e^{ikq\Delta x}]^n &= A^n e^{ikq\Delta x}\frac{1-A^{-1}}{\Delta t},\\ [D_t A^n e^{ikq\Delta x}]^{n+\half} &= A^{n+\half} e^{ikq\Delta x}\frac{A^{\half}-A^{-\half}}{\Delta t} = A^ne^{ikq\Delta x}\frac{A-1}{\Delta t},\\ [D_xD_x A^ne^{ikq\Delta x}]_q &= -A^n \frac{4}{\Delta x^2}\sin^2\left(\frac{k\Delta x}{2}\right)\tp \end{align*} $$

 

Amplification factor for the Forward Euler method; results

Introduce \( p=k\Delta x/2 \) and \( C=\dfc\Delta t/\Delta x^2 \):

 
$$ A = 1 - 4C\frac{\sin^2 p}{1 - \underbrace{\frac{2}{3}\sin^2 p}_{\hbox{from }M}}$$

 

(See notes for details)

Stability: \( |A|\leq 1 \):

 
$$ \begin{equation} C\leq \frac{1}{6}\quad\Rightarrow\quad \Delta t\leq \frac{\Delta x^2}{6\dfc} \end{equation} $$

 

Finite differences: \( C\leq {\half} \), so finite elements give a stricter stability criterion for this PDE!

Amplification factor for the Backward Euler method; results

Coarse meshes:

 
$$ A = \left( 1 + 4C\frac{\sin^2 p}{1 + \frac{2}{3}\sin^2 p}\right)^{-1} \hbox{ (unconditionally stable)} $$

 

Amplification factors for smaller time steps; Forward Euler

Amplification factors for smaller time steps; Backward Euler