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Why finite elements?

Can with ease solve PDEs in domains with complex geometry

Can with ease provide higher-order approximations

Has (in simpler stationary problems) a rigorus mathematical
analysis framework (not much considered here)



Domain for flow around a dolphin



The flow



Basic ingredients of the finite element method

Transform the PDE problem to a variational form

Define function approximation over finite elements

Use a machinery to derive linear systems

Solve linear systems



Our learning strategy

Start with approximation of functions, not PDEs

Introduce finite element approximations

See later how this is applied to PDEs

Reason: the finite element method has many concepts and a jungle
of details. This strategy minimizes the mixing of ideas, concepts,
and technical details.



Approximation in vector spaces
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Approximation set-up

General idea of finding an approximation u(x) to some given f (x):

u(x) =
N∑
i=0

ciψi (x) (1)

where

ψi (x) are prescribed functions

ci , i = 0, . . . ,N are unknown coefficients to be determined



How to determine the coefficients?

We shall address three approaches:

The least squares method

The projection (or Galerkin) method

The interpolation (or collocation) method

Underlying motivation for our notation.

Our mathematical framework for doing this is phrased in a way
such that it becomes easy to understand and use the FEniCS
software package for finite element computing.

http://fenicsproject.org


Approximation of planar vectors; problem

Given a vector f = (3, 5), find an approximation to f directed along
a given line.
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Approximation of planar vectors; vector space terminology

V = span {ψ0} (2)

ψ0 is a basis vector in the space V

Seek u = c0ψ0 ∈ V

Determine c0 such that u is the ”best” approximation to f

Visually, ”best” is obvious

Define

the error e = f − u

the (Eucledian) scalar product of two vectors: (u, v)

the norm of e: ||e|| =
√

(e, e)



The least squares method; principle

Idea: find c0 such that ||e|| is minimized

Actually, we always minimize E = ||e||2

∂E

∂c0
= 0



The least squares method; calculations

E (c0) = (e, e) = (f, f)− 2c0(f,ψ0) + c2
0 (ψ0,ψ0) (3)

∂E

∂c0
= −2(f,ψ0) + 2c0(ψ0,ψ0) = 0 (4)

c0 =
(f,ψ0)

(ψ0,ψ0)
(5)

c0 =
3a + 5b

a2 + b2
(6)

Observation for later: the vanishing derivative (4) can be
alternatively written as

(e,ψ0) = 0 (7)



The projection (or Galerkin) method

Backgrund: minimizing ||e||2 implies that e is orthogonal to
any vector v in the space V (visually clear, but can easily be
computed too)

Alternative idea: demand (e, v) = 0, ∀v ∈ V

Equivalent statement: (e,ψ0) = 0 (see notes for why)

Insert e = f − c0ψ0 and solve for c0

Same equation for c0 and hence same solution as in the least
squares method



Approximation of general vectors

Given a vector f, find an approximation u ∈ V :

V = span {ψ0, . . . ,ψN}

We have a set of linearly independent basis vectors
ψ0, . . . ,ψN

Any u ∈ V can then be written as u =
∑N

j=0 cjψj



The least squares method

Idea: find c0, . . . , cN such that E = ||e||2 is minimized, e = f − u.

E (c0, . . . , cN) = (e, e) = (f −
∑
j

cjψj , f −
∑
j

cjψj)

= (f, f)− 2
N∑
j=0

cj(f,ψj) +
N∑

p=0

N∑
q=0

cpcq(ψp,ψq)

∂E

∂ci
= 0, i = 0, . . . ,N

After some work we end up with a linear system

N∑
j=0

Ai ,jcj = bi , i = 0, . . . ,N (8)

Ai ,j = (ψi ,ψj) (9)

bi = (ψi , f) (10)



The projection (or Galerkin) method

Can be shown that minimizing ||e|| implies that e is orthogonal to
all v ∈ V :

(e, v) = 0, ∀v ∈ V

which implies that e most be orthogonal to each basis vector:

(e,ψi ) = 0, i = 0, . . . ,N (11)

This orthogonality condition is the principle of the projection (or
Galerkin) method. Leads to the same linear system as in the least
squares method.



Approximation of functions

Let V be a function space spanned by a set of basis functions
ψ0, . . . , ψN ,

V = span {ψ0, . . . , ψN}

Find u ∈ V as a linear combination of the basis functions:

u =
∑
j∈Is

cjψj , Is = {0, 1, . . . ,N} (12)



The least squares method

Extend the ideas from the vector case: minimize the (square)
norm of the error.
What norm? (f , g) =

∫
Ω f (x)g(x) dx

E = (e, e) = (f −u, f −u) = (f (x)−
∑
j∈Is

cjψj(x), f (x)−
∑
j∈Is

cjψj(x))

(13)

E (c0, . . . , cN) = (f , f )− 2
∑
j∈Is

cj(f , ψi ) +
∑
p∈Is

∑
q∈Is

cpcq(ψp, ψq)

(14)

∂E

∂ci
= 0, i =∈ Is

After computations identical to the vector case, we get a linear
system

N∑
j∈Is

Ai ,jcj = bi , i ∈ Is (15)

Ai ,j = (ψi , ψj) (16)

bi = (f , ψi ) (17)



The projection (or Galerkin) method

As before, minimizing (e, e) is equivalent to the projection (or
Galerkin) method

(e, v) = 0, ∀v ∈ V (18)

which means, as before,

(e, ψi ) = 0, i ∈ Is (19)

With the same algebra as in the multi-dimensional vector case, we
get the same linear system as arose from the least squares method.



Example: linear approximation; problem

Problem.

Approximate a parabola f (x) = 10(x − 1)2 − 1 by a straight line.

V = span {1, x}

That is, ψ0(x) = 1, ψ1(x) = x , and N = 1. We seek

u = c0ψ0(x) + c1ψ1(x) = c0 + c1x



Example: linear approximation; solution

A0,0 = (ψ0, ψ0) =

∫ 2

1
1 · 1 dx = 1 (20)

A0,1 = (ψ0, ψ1) =

∫ 2

1
1 · x dx = 3/2 (21)

A1,0 = A0,1 = 3/2 (22)

A1,1 = (ψ1, ψ1) =

∫ 2

1
x · x dx = 7/3 (23)

b1 = (f , ψ0) =

∫ 2

1
(10(x − 1)2 − 1) · 1 dx = 7/3 (24)

b2 = (f , ψ1) =

∫ 2

1
(10(x − 1)2 − 1) · x dx = 13/3 (25)

Solution of 2x2 linear system:

c0 = −38/3, c1 = 10, u(x) = 10x − 38

3
(26)



Example: linear approximation; plot
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Implementation of the least squares method; ideas

Consider symbolic computation of the linear system, where

f (x) is given as a sympy expression f (involving the symbol x),

psi is a list of {ψi}i∈Is ,
Omega is a 2-tuple/list holding the domain Ω

Carry out the integrations, solve the linear system, and return
u(x) =

∑
j cjψj(x)



Implementation of the least squares method; symbolic code

import sympy as sp

def least_squares(f, psi, Omega):
N = len(psi) - 1
A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))
x = sp.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
A[i,j] = sp.integrate(psi[i]*psi[j],

(x, Omega[0], Omega[1]))
A[j,i] = A[i,j]

b[i,0] = sp.integrate(psi[i]*f, (x, Omega[0], Omega[1]))
c = A.LUsolve(b)
u = 0
for i in range(len(psi)):

u += c[i,0]*psi[i]
return u, c

Observe: symmetric coefficient matrix so we can halve the
integrations.



Implementation of the least squares method; numerical
code

Symbolic integration may be impossible and/or very slow
Turn to pure numerical computations in those cases
Supply Python functions f(x), psi(x,i), and a mesh x

def least_squares_numerical(f, psi, N, x,
integration_method=’scipy’,
orthogonal_basis=False):

import scipy.integrate
A = np.zeros((N+1, N+1))
b = np.zeros(N+1)
Omega = [x[0], x[-1]]
dx = x[1] - x[0]

for i in range(N+1):
j_limit = i+1 if orthogonal_basis else N+1
for j in range(i, j_limit):

print ’(%d,%d)’ % (i, j)
if integration_method == ’scipy’:

A_ij = scipy.integrate.quad(
lambda x: psi(x,i)*psi(x,j),
Omega[0], Omega[1], epsabs=1E-9, epsrel=1E-9)[0]

elif ...
A[i,j] = A[j,i] = A_ij

if integration_method == ’scipy’:
b_i = scipy.integrate.quad(

lambda x: f(x)*psi(x,i), Omega[0], Omega[1],
epsabs=1E-9, epsrel=1E-9)[0]

elif ...
b[i] = b_i

c = b/np.diag(A) if orthogonal_basis else np.linalg.solve(A, b)
u = sum(c[i]*psi(x, i) for i in range(N+1))
return u, c



Implementation of the least squares method; plotting

Compare f and u visually:

def comparison_plot(f, u, Omega, filename=’tmp.pdf’):
x = sp.Symbol(’x’)
# Turn f and u to ordinary Python functions
f = sp.lambdify([x], f, modules="numpy")
u = sp.lambdify([x], u, modules="numpy")
resolution = 401 # no of points in plot
xcoor = linspace(Omega[0], Omega[1], resolution)
exact = f(xcoor)
approx = u(xcoor)
plot(xcoor, approx)
hold(’on’)
plot(xcoor, exact)
legend([’approximation’, ’exact’])
savefig(filename)

All code in module approx1D.py

http://tinyurl.com/jvzzcfn/fem/approx1D.py


Implementation of the least squares method; application
>>> from approx1D import *
>>> x = sp.Symbol(’x’)
>>> f = 10*(x-1)**2-1
>>> u, c = least_squares(f=f, psi=[1, x], Omega=[1, 2])
>>> comparison_plot(f, u, Omega=[1, 2])
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Perfect approximation; parabola approximating parabola

What if we add ψ2 = x2 to the space V ?

That is, approximating a parabola by any parabola?

(Hopefully we get the exact parabola!)

>>> from approx1D import *
>>> x = sp.Symbol(’x’)
>>> f = 10*(x-1)**2-1
>>> u, c = least_squares(f=f, psi=[1, x, x**2], Omega=[1, 2])
>>> print u
10*x**2 - 20*x + 9
>>> print sp.expand(f)
10*x**2 - 20*x + 9



Perfect approximation; the general result

What if we use ψi (x) = x i for i = 0, . . . ,N = 40?

The output from least_squares is ci = 0 for i > 2

General result.

If f ∈ V , least squares and projection/Galerkin give u = f .



Perfect approximation; proof of the general result

If f ∈ V , f =
∑

j∈Is djψj , for some {di}i∈Is . Then

bi = (f , ψi ) =
∑
j∈Is

dj(ψj , ψi ) =
∑
j∈Is

djAi ,j

The linear system
∑

j Ai ,jcj = bi , i ∈ Is , is then∑
j∈Is

cjAi ,j =
∑
j∈Is

djAi ,j , i ∈ Is

which implies that ci = di for i ∈ Is and u is identical to f .



Finite-precision/numerical computations

The previous computations were symbolic. What if we solve the
linear system numerically with standard arrays?

exact sympy numpy32 numpy64

9 9.62 5.57 8.98
-20 -23.39 -7.65 -19.93
10 17.74 -4.50 9.96

0 -9.19 4.13 -0.26
0 5.25 2.99 0.72
0 0.18 -1.21 -0.93
0 -2.48 -0.41 0.73
0 1.81 -0.013 -0.36
0 -0.66 0.08 0.11
0 0.12 0.04 -0.02
0 -0.001 -0.02 0.002

Column 2: sympy.mpmath.fp.matrix and
sympy.mpmath.fp.lu_solve

Column 3: numpy arrays with numpy.float32 entries
Column 4: numpy arrays with numpy.float64 entries



Ill-conditioning (1)
Observations:

Significant round-off errors in the numerical computations (!)
But if we plot the approximations they look good (!)

Problem: The basis functions x i become almost linearly dependent
for large N.
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Ill-conditioning (2)

Almost linearly dependent basis functions give almost singular
matrices

Such matrices are said to be ill conditioned, and Gaussian
elimination is severely affected by round-off errors

The basis 1, x , x2, x3, x4, . . . is a bad basis

Polynomials are fine as basis, but the more orthogonal they
are, (ψi , ψj) ≈ 0, the better



Fourier series approximation; problem and code

Consider

V = span {sinπx , sin 2πx , . . . , sin(N + 1)πx}
N = 3
from sympy import sin, pi
psi = [sin(pi*(i+1)*x) for i in range(N+1)]
f = 10*(x-1)**2 - 1
Omega = [0, 1]
u, c = least_squares(f, psi, Omega)
comparison_plot(f, u, Omega)



Fourier series approximation; plot

N = 3 vs N = 11:
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Fourier series approximation; improvements

Considerably improvement by N = 11

But always discrepancy of f (0)− u(0) = 9 at x = 0, because
all the ψi (0) = 0 and hence u(0) = 0

Possible remedy: add a term that leads to correct boundary
values

u(x) = f (0)(1− x) + xf (1) +
∑
j∈Is

cjψj(x) (27)

The extra term ensures u(0) = f (0) and u(1) = f (1) and is a
strikingly good help to get a good approximation!



Fourier series approximation; final results

N = 3 vs N = 11:
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Orthogonal basis functions

This choice of sine functions as basis functions is popular because

the basis functions are orthogonal: (ψi , ψj) = 0

implying that Ai ,j is a diagonal matrix

implying that we can solve for ci = 2
∫ 1

0 f (x) sin((i + 1)πx)dx

In general for an orthogonal basis, Ai ,j is diagonal and we can
easily solve for ci :

ci =
bi

Ai ,i
=

(f , ψi )

(ψi , ψi )



The collocation or interpolation method; ideas and math

Here is another idea for approximating f (x) by u(x) =
∑

j cjψj :

Force u(xi ) = f (xi ) at some selected collocation points
{xi}i∈Is
Then u interpolates f

The method is known as interpolation or collocation

u(xi ) =
∑
j∈Is

cjψj(xi ) = f (xi ) i ∈ Is ,N (28)

This is a linear system with no need for integration:

∑
j∈Is

Ai ,jcj = bi , i ∈ Is (29)

Ai ,j = ψj(xi ) (30)

bi = f (xi ) (31)

No symmetric matrix: ψj(xi ) 6= ψi (xj) in general



The collocation or interpolation method; implementation

points holds the interpolation/collocation points

def interpolation(f, psi, points):
N = len(psi) - 1
A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))
x = sp.Symbol(’x’)
# Turn psi and f into Python functions
psi = [sp.lambdify([x], psi[i]) for i in range(N+1)]
f = sp.lambdify([x], f)
for i in range(N+1):

for j in range(N+1):
A[i,j] = psi[j](points[i])

b[i,0] = f(points[i])
c = A.LUsolve(b)
u = 0
for i in range(len(psi)):

u += c[i,0]*psi[i](x)
return u



The collocation or interpolation method; approximating a
parabola by linear functions

Potential difficulty: how to choose xi?

The results are sensitive to the points!

(4/3, 5/3) vs (1, 2):
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Lagrange polynomials; motivation and ideas

Motivation:

The interpolation/collocation method avoids integration

With a diagonal matrix Ai ,j = ψj(xi ) we can solve the linear
system by hand

The Lagrange interpolating polynomials ψj have the property that

ψi (xj) = δij , δij =

{
1, i = j
0, i 6= j

Hence, ci = f (xi ) and

u(x) =
∑
j∈Is

f (xi )ψi (x) (32)

Lagrange polynomials and interpolation/collocation look
convenient

Lagrange polynomials are very much used in the finite element
method



Lagrange polynomials; formula and code

ψi (x) =
N∏

j=0,j 6=i

x − xj
xi − xj

=
x − x0

xi − x0
· · · x − xi−1

xi − xi−1

x − xi+1

xi − xi+1
· · · x − xN

xi − xN

(33)

def Lagrange_polynomial(x, i, points):
p = 1
for k in range(len(points)):

if k != i:
p *= (x - points[k])/(points[i] - points[k])

return p



Lagrange polynomials; successful example
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Lagrange polynomials; a less successful example
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Lagrange polynomials; oscillatory behavior
12 points, degree 11, plot of two of the Lagrange polynomials -
note that they are zero at all points except one.
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Problem: strong oscillations near the boundaries for larger N
values.



Lagrange polynomials; remedy for strong oscillations

The oscillations can be reduced by a more clever choice of
interpolation points, called the Chebyshev nodes:

xi =
1

2
(a + b) +

1

2
(b − a) cos

(
2i + 1

2(N + 1)
pi

)
, i = 0 . . . ,N (34)

on an interval [a, b].



Lagrange polynomials; recalculation with Chebyshev nodes
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Lagrange polynomials; less oscillations with Chebyshev
nodes

12 points, degree 11, plot of two of the Lagrange polynomials -
note that they are zero at all points except one.
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Finite element basis functions



The basis functions have so far been global: ψi (x) 6= 0
almost everywhere
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In the finite element method we use basis functions with
local support

Local support: ψi (x) 6= 0 for x in a small subdomain of Ω

Typically hat-shaped

u(x) based on these ψi is a piecewise polynomial defined over
many (small) subdomains

We introduce ϕi as the name of these finite element hat
functions (and for now choose ψi = ϕi )
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The linear combination of hat functions is a piecewise
linear function
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Elements and nodes

Split Ω into non-overlapping subdomains called elements:

Ω = Ω(0) ∪ · · · ∪ Ω(Ne) (35)

On each element, introduce points called nodes: x0, . . . , xNn

The finite element basis functions are named ϕi (x)

ϕi = 1 at node i and 0 at all other nodes

ϕi is a Lagrange polynomial on each element

For nodes at the boundary between two elements, ϕi is made
up of a Lagrange polynomial over each element



Example on elements with two nodes (P1 elements)
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Data structure: nodes holds coordinates or nodes, elements holds
the node numbers in each element

nodes = [0, 1.2, 2.4, 3.6, 4.8, 5]
elements = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]]



Illustration of two basis functions on the mesh
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Example on elements with three nodes (P2 elements)
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elements = [[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]]



Some corresponding basis functions (P2 elements)
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Examples on elements with four nodes per element (P3
elements)
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d = 3 # d+1 nodes per element
num_elements = 4
num_nodes = num_elements*d + 1
nodes = [i*0.5 for i in range(num_nodes)]
elements = [[i*d+j for j in range(d+1)] for i in range(num_elements)]



Some corresponding basis functions (P3 elements)
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The numbering does not need to be regular from left to
right

0 1 2 3 4 5 6 7
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

543 2 10

x

Ω(4) Ω(0)Ω(1)Ω(2)Ω(3)

nodes = [1.5, 5.5, 4.2, 0.3, 2.2, 3.1]
elements = [[2, 1], [4, 5], [0, 4], [3, 0], [5, 2]]



Interpretation of the coefficients ci

Important property: ci is the value of u at node i , xi :

u(xi ) =
∑
j∈Is

cjϕj(xi ) = ciϕi (xi ) = ci (36)

because ϕj(xi ) = 0 if i 6= j



Properties of the basis functions

ϕi (x) 6= 0 only on those elements that contain global node i

ϕi (x)ϕj(x) 6= 0 if and only if i and j are global node numbers
in the same element

Since Ai ,j =
∫
ϕiϕj dx , most of the elements in the coefficient

matrix will be zero

0 2 4 6
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

i+1ii−1i−2

x

φi−1 φi



How to construct quadratic ϕi (P2 elements)

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1 Associate Lagrange polynomials with the nodes in an element

2 When the polynomial is 1 on the element boundary, combine
it with the polynomial in the neighboring element



Example on linear ϕi (P1 elements)

0.0 0.2 0.4 0.6 0.8 1.0
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ϕi (x) =


0, x < xi−1

(x − xi−1)/h xi−1 ≤ x < xi
1− (x − xi )/h, xi ≤ x < xi+1

0, x ≥ xi+1

(37)



Example on cubic ϕi (P3 elements)
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Calculating the linear system for ci



Computing a specific matrix entry (1)

0 2 4 6
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

543210

x

Ω(4)Ω(0) Ω(1) Ω(2) Ω(3)

φ2 φ3

A2,3 =
∫

Ω ϕ2ϕ3dx : ϕ2ϕ3 6= 0 only over element 2. There,

ϕ3(x) = (x − x2)/h, ϕ2(x) = 1− (x − x2)/h

A2,3 =

∫
Ω
ϕ2ϕ3 dx =

∫ x3

x2

(
1− x − x2

h

)
x − x2

h
dx =

h

6



Computing a specific matrix entry (2)

0 2 4 6
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

543210

x

Ω(4)Ω(0) Ω(1) Ω(2) Ω(3)

φ2 φ3

A2,2 =

∫ x2

x1

(
x − x1

h

)2

dx +

∫ x3

x2

(
1− x − x2

h

)2

dx =
h

3



Calculating a general row in the matrix; figure

0 2 4 6
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

i+1ii−1i−2

x

φi−1 φi

Ai ,i−1 =

∫
Ω
ϕiϕi−1 dx = ?



Calculating a general row in the matrix; details

Ai ,i−1 =

∫
Ω
ϕiϕi−1 dx

=

∫ xi−1

xi−2

ϕiϕi−1 dx︸ ︷︷ ︸
ϕi=0

+

∫ xi

xi−1

ϕiϕi−1 dx +

∫ xi+1

xi

ϕiϕi−1 dx︸ ︷︷ ︸
ϕi−1=0

=

∫ xi

xi−1

(
x − xi

h

)
︸ ︷︷ ︸

ϕi (x)

(
1− x − xi−1

h

)
︸ ︷︷ ︸

ϕi−1(x)

dx =
h

6

Ai ,i+1 = Ai ,i−1 due to symmetry

Ai ,i = h/3 (same calculation as for A2,2)

A0,0 = AN,N = h/3 (only one element)



Calculation of the right-hand side

0 2 4 6
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

i+1ii−1i−2

x

φi f(x)

bi =

∫
Ω
ϕi (x)f (x) dx =

∫ xi

xi−1

x − xi−1

h
f (x)dx+

∫ xi+1

xi

(
1− x − xi

h

)
f (x)dx

(38)
Need a specific f (x) to do more...



Specific example with two elements; linear system and
solution

f (x) = x(1− x) on Ω = [0, 1]

Two equal-sized elements [0, 0.5] and [0.5, 1]

A =
h

6

 2 1 0
1 4 1
0 1 2

 , b =
h2

12

 2− 3h
12− 14h
10− 17h


c0 =

h2

6
, c1 = h − 5

6
h2, c2 = 2h − 23

6
h2



Specific example with two elements; plot

u(x) = c0ϕ0(x) + c1ϕ1(x) + c2ϕ2(x)
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Specific example: what about four elements?
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Assembly of elementwise computations



Split the integrals into elementwise integrals

Ai ,j =

∫
Ω
ϕiϕjdx =

∑
e

∫
Ω(e)

ϕiϕjdx , A
(e)
i ,j =

∫
Ω(e)

ϕiϕjdx (39)

Important:

A
(e)
i ,j 6= 0 if and only if i and j are nodes in element e

(otherwise no overlap between the basis functions)

all the nonzero elements in A
(e)
i ,j are collected in an element

matrix



The element matrix

Ã(e) = {Ã(e)
r ,s }, Ã

(e)
r ,s =

∫
Ω(e)

ϕq(e,r)ϕq(e,s)dx , r , s ∈ Id = {0, . . . , d}

r , s run over local node numbers in an element; i , j run over
global node numbers

i = q(e, r): mapping of local node number r in element e to
the global node number i (math equivalent to
i=elements[e][r])

Add Ã
(e)
r ,s into the global Ai ,j (assembly)

Aq(e,r),q(e,s) := Aq(e,r),q(e,s) + Ã
(e)
r ,s , r , s ∈ Id (40)



Illustration of the matrix assembly: regularly numbered P1
elements

Animation

http://tinyurl.com/k3sdbuv/pub/mov-fem/fe_assembly.html


Illustration of the matrix assembly: regularly numbered P3
elements

Animation

http://tinyurl.com/k3sdbuv/pub/mov-fem/fe_assembly.html


Illustration of the matrix assembly: irregularly numbered
P1 elements

Animation

http://tinyurl.com/k3sdbuv/pub/mov-fem/fe_assembly.html


Assembly of the right-hand side

bi =

∫
Ω

f (x)ϕi (x)dx =
∑
e

∫
Ω(e)

f (x)ϕi (x)dx , b
(e)
i =

∫
Ω(e)

f (x)ϕi (x)dx

(41)
Important:

b
(e)
i 6= 0 if and only if global node i is a node in element e

(otherwise ϕi = 0)

The d + 1 nonzero b
(e)
i can be collected in an element vector

b̃
(e)
r = {b̃(e)

r }, r ∈ Id

Assembly:

bq(e,r) := bq(e,r) + b̃
(e)
r , r , s ∈ Id (42)



Mapping to a reference element

Instead of computing

Ã
(e)
r ,s =

∫
Ω(e)

ϕq(e,r)(x)ϕq(e,s)(x)dx =

∫ xR

xL

ϕq(e,r)(x)ϕq(e,s)(x)dx

we now map [xL, xR ] to a standardized reference element domain
[−1, 1] with local coordinate X



Affine mapping

x =
1

2
(xL + xR) +

1

2
(xR − xL)X (43)

or rewritten as

x = xm +
1

2
hX , xm = (xL + xR)/2 (44)



Integral transformation

Reference element integration: just change integration variable
from x to X . Introduce local basis function

ϕ̃r (X ) = ϕq(e,r)(x(X )) (45)

Ã
(e)
r ,s =

∫
Ω(e)

ϕq(e,r)(x)ϕq(e,s)(x)dx =

1∫
−1

ϕ̃r (X )ϕ̃s(X )
dx

dX︸︷︷︸
det J=h/2

dX =

1∫
−1

ϕ̃r (X )ϕ̃s(X ) det J dX

(46)

b̃
(e)
r =

∫
Ω(e)

f (x)ϕq(e,r)(x)dx =

1∫
−1

f (x(X ))ϕ̃r (X ) det J dX (47)



Advantages of the reference element

Always the same domain for integration: [−1, 1]

We only need formulas for ϕ̃r (X ) over one element (no
piecewise polynomial definition)

ϕ̃r (X ) is the same for all elements: no dependence on element
length and location, which is ”factored out” in the mapping
and det J



Standardized basis functions for P1 elements

ϕ̃0(X ) =
1

2
(1− X ) (48)

ϕ̃1(X ) =
1

2
(1 + X ) (49)



Standardized basis functions for P2 elements

P2 elements:

ϕ̃0(X ) =
1

2
(X − 1)X (50)

ϕ̃1(X ) = 1− X 2 (51)

ϕ̃2(X ) =
1

2
(X + 1)X (52)

Easy to generalize to arbitrary order!



Integration over a reference element; element matrix

P1 elements and f (x) = x(1− x).

Ã
(e)
0,0 =

∫ 1

−1
ϕ̃0(X )ϕ̃0(X )

h

2
dX

=

∫ 1

−1

1

2
(1− X )

1

2
(1− X )

h

2
dX =

h

8

∫ 1

−1
(1− X )2dX =

h

3
(53)

Ã
(e)
1,0 =

∫ 1

−1
ϕ̃1(X )ϕ̃0(X )

h

2
dX

=

∫ 1

−1

1

2
(1 + X )

1

2
(1− X )

h

2
dX =

h

8

∫ 1

−1
(1− X 2)dX =

h

6
(54)

Ã
(e)
0,1 = Ã

(e)
1,0 (55)

Ã
(e)
1,1 =

∫ 1

−1
ϕ̃1(X )ϕ̃1(X )

h

2
dX

=

∫ 1

−1

1

2
(1 + X )

1

2
(1 + X )

h

2
dX =

h

8

∫ 1

−1
(1 + X )2dX =

h

3
(56)



Integration over a reference element; element vector

b̃
(e)
0 =

∫ 1

−1
f (x(X ))ϕ̃0(X )

h

2
dX

=

∫ 1

−1
(xm +

1

2
hX )(1− (xm +

1

2
hX ))

1

2
(1− X )

h

2
dX

= − 1

24
h3 +

1

6
h2xm −

1

12
h2 − 1

2
hx2

m +
1

2
hxm (57)

b̃
(e)
1 =

∫ 1

−1
f (x(X ))ϕ̃1(X )

h

2
dX

=

∫ 1

−1
(xm +

1

2
hX )(1− (xm +

1

2
hX ))

1

2
(1 + X )

h

2
dX

= − 1

24
h3 − 1

6
h2xm +

1

12
h2 − 1

2
hx2

m +
1

2
hxm (58)

xm: element midpoint.



Tedious calculations! Let’s use symbolic software

>>> import sympy as sp
>>> x, x_m, h, X = sp.symbols(’x x_m h X’)
>>> sp.integrate(h/8*(1-X)**2, (X, -1, 1))
h/3
>>> sp.integrate(h/8*(1+X)*(1-X), (X, -1, 1))
h/6
>>> x = x_m + h/2*X
>>> b_0 = sp.integrate(h/4*x*(1-x)*(1-X), (X, -1, 1))
>>> print b_0
-h**3/24 + h**2*x_m/6 - h**2/12 - h*x_m**2/2 + h*x_m/2

Can printe out in LATEX too (convenient for copying into reports):

>>> print sp.latex(b_0, mode=’plain’)
- \frac{1}{24} h^{3} + \frac{1}{6} h^{2} x_{m}
- \frac{1}{12} h^{2} - \half h x_{m}^{2}
+ \half h x_{m}



Implementation

Coming functions appear in fe_approx1D.py

Functions can operate in symbolic or numeric mode

The code documents all steps in finite element calculations!

http://tinyurl.com/jvzzcfn/fem/fe_approx1D.py


Compute finite element basis functions in the reference
element

Let ϕ̃r (X ) be a Lagrange polynomial of degree d:
import sympy as sp
import numpy as np

def phi_r(r, X, d):
if isinstance(X, sp.Symbol):

h = sp.Rational(1, d) # node spacing
nodes = [2*i*h - 1 for i in range(d+1)]

else:
# assume X is numeric: use floats for nodes
nodes = np.linspace(-1, 1, d+1)

return Lagrange_polynomial(X, r, nodes)

def Lagrange_polynomial(x, i, points):
p = 1
for k in range(len(points)):

if k != i:
p *= (x - points[k])/(points[i] - points[k])

return p

def basis(d=1):
"""Return the complete basis."""
X = sp.Symbol(’X’)
phi = [phi_r(r, X, d) for r in range(d+1)]
return phi



Compute the element matrix

def element_matrix(phi, Omega_e, symbolic=True):
n = len(phi)
A_e = sp.zeros((n, n))
X = sp.Symbol(’X’)
if symbolic:

h = sp.Symbol(’h’)
else:

h = Omega_e[1] - Omega_e[0]
detJ = h/2 # dx/dX
for r in range(n):

for s in range(r, n):
A_e[r,s] = sp.integrate(phi[r]*phi[s]*detJ, (X, -1, 1))
A_e[s,r] = A_e[r,s]

return A_e



Example on symbolic vs numeric element matrix

>>> from fe_approx1D import *
>>> phi = basis(d=1)
>>> phi
[1/2 - X/2, 1/2 + X/2]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=True)
[h/3, h/6]
[h/6, h/3]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=False)
[0.0333333333333333, 0.0166666666666667]
[0.0166666666666667, 0.0333333333333333]



Compute the element vector

def element_vector(f, phi, Omega_e, symbolic=True):
n = len(phi)
b_e = sp.zeros((n, 1))
# Make f a function of X
X = sp.Symbol(’X’)
if symbolic:

h = sp.Symbol(’h’)
else:

h = Omega_e[1] - Omega_e[0]
x = (Omega_e[0] + Omega_e[1])/2 + h/2*X # mapping
f = f.subs(’x’, x) # substitute mapping formula for x
detJ = h/2 # dx/dX
for r in range(n):

b_e[r] = sp.integrate(f*phi[r]*detJ, (X, -1, 1))
return b_e

Note f.subs(’x’, x): replace x by x(X ) such that f contains X



Fallback on numerical integration if symbolic integration
fails

Element matrix: only polynomials and sympy always succeeds

Element vector:
∫

f ϕ̃dx can fail (sympy then returns an
Integral object instead of a number)

def element_vector(f, phi, Omega_e, symbolic=True):
...
I = sp.integrate(f*phi[r]*detJ, (X, -1, 1)) # try...
if isinstance(I, sp.Integral):

h = Omega_e[1] - Omega_e[0] # Ensure h is numerical
detJ = h/2
integrand = sp.lambdify([X], f*phi[r]*detJ)
I = sp.mpmath.quad(integrand, [-1, 1])

b_e[r] = I
...



Linear system assembly and solution

def assemble(nodes, elements, phi, f, symbolic=True):
N_n, N_e = len(nodes), len(elements)
zeros = sp.zeros if symbolic else np.zeros
A = zeros((N_n, N_n))
b = zeros((N_n, 1))
for e in range(N_e):

Omega_e = [nodes[elements[e][0]], nodes[elements[e][-1]]]

A_e = element_matrix(phi, Omega_e, symbolic)
b_e = element_vector(f, phi, Omega_e, symbolic)

for r in range(len(elements[e])):
for s in range(len(elements[e])):

A[elements[e][r],elements[e][s]] += A_e[r,s]
b[elements[e][r]] += b_e[r]

return A, b



Linear system solution

if symbolic:
c = A.LUsolve(b) # sympy arrays, symbolic Gaussian elim.

else:
c = np.linalg.solve(A, b) # numpy arrays, numerical solve

Note: the symbolic computation of A and b and the symbolic
solution can be very tedious.



Example on computing symbolic approximations

>>> h, x = sp.symbols(’h x’)
>>> nodes = [0, h, 2*h]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, 0]
[h/6, 2*h/3, h/6]
[ 0, h/6, h/3]
>>> b
[ h**2/6 - h**3/12]
[ h**2 - 7*h**3/6]
[5*h**2/6 - 17*h**3/12]
>>> c = A.LUsolve(b)
>>> c
[ h**2/6]
[12*(7*h**2/12 - 35*h**3/72)/(7*h)]
[ 7*(4*h**2/7 - 23*h**3/21)/(2*h)]



Example on computing numerical approximations

>>> nodes = [0, 0.5, 1]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> x = sp.Symbol(’x’)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=False)
>>> A
[ 0.166666666666667, 0.0833333333333333, 0]
[0.0833333333333333, 0.333333333333333, 0.0833333333333333]
[ 0, 0.0833333333333333, 0.166666666666667]
>>> b
[ 0.03125]
[0.104166666666667]
[ 0.03125]
>>> c = A.LUsolve(b)
>>> c
[0.0416666666666666]
[ 0.291666666666667]
[0.0416666666666666]



The structure of the coefficient matrix

>>> d=1; N_e=8; Omega=[0,1] # 8 linear elements on [0,1]
>>> phi = basis(d)
>>> f = x*(1-x)
>>> nodes, elements = mesh_symbolic(N_e, d, Omega)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, 0, 0, 0, 0, 0, 0, 0]
[h/6, 2*h/3, h/6, 0, 0, 0, 0, 0, 0]
[ 0, h/6, 2*h/3, h/6, 0, 0, 0, 0, 0]
[ 0, 0, h/6, 2*h/3, h/6, 0, 0, 0, 0]
[ 0, 0, 0, h/6, 2*h/3, h/6, 0, 0, 0]
[ 0, 0, 0, 0, h/6, 2*h/3, h/6, 0, 0]
[ 0, 0, 0, 0, 0, h/6, 2*h/3, h/6, 0]
[ 0, 0, 0, 0, 0, 0, h/6, 2*h/3, h/6]
[ 0, 0, 0, 0, 0, 0, 0, h/6, h/3]

Note: do this by hand to understand what is going on!



General result: the coefficient matrix is sparse

Sparse = most of the entries are zeros

Below: P1 elements

A =
h

6



2 1 0 · · · · · · · · · · · · · · · 0

1 4 1
. . .

...

0 1 4 1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 1 4 1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . 1 4 1
0 · · · · · · · · · · · · · · · 0 1 2



(59)



Exemplifying the sparsity for P2 elements

A =
h

30



4 2 −1 0 0 0 0 0 0
2 16 2 0 0 0 0 0 0
−1 2 8 2 −1 0 0 0 0
0 0 2 16 2 0 0 0 0
0 0 −1 2 8 2 −1 0 0
0 0 0 0 2 16 2 0 0
0 0 0 0 −1 2 8 2 −1
0 0 0 0 0 0 2 16 2
0 0 0 0 0 0 −1 2 4


(60)



Matrix sparsity pattern for regular/random numbering of
P1 elements

Left: number nodes and elements from left to right

Right: number nodes and elements arbitrarily



Matrix sparsity pattern for regular/random numbering of
P3 elements

Left: number nodes and elements from left to right

Right: number nodes and elements arbitrarily



Sparse matrix storage and solution

The minimum storage requirements for the coefficient matrix Ai ,j :

P1 elements: only 3 nonzero entires per row

P2 elements: only 5 nonzero entires per row

P3 elements: only 7 nonzero entires per row

It is important to utilize sparse storage and sparse solvers

In Python: scipy.sparse package



Approximate f ∼ x9 by various elements; code

Compute a mesh with Ne elements, basis functions of degree d ,
and approximate a given symbolic expression f (x) by a finite
element expansion u(x) =

∑
j cjϕj(x):

import sympy as sp
from fe_approx1D import approximate
x = sp.Symbol(’x’)

approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=4)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=2)
approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=8)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=4)



Approximate f ∼ x9 by various elements; plot
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Comparison of finite element and finite difference
approximation

Finite difference approximation of a function f (x): simply
choose ui = f (xi ) (interpolation)

Galerkin/projection and least squares method: must derive
and solve a linear system

What is really the difference in u?



Interpolation/collocation with finite elements

Let {xi}i∈Is be the nodes in the mesh. Collocation means

u(xi ) = f (xi ), i ∈ Is , (61)

which translates to ∑
j∈Is

cjϕj(xi ) = f (xi ),

but ϕj(xi ) = 0 if i 6= j so the sum collapses to one term
ciϕi (xi ) = ci , and we have the result

ci = f (xi ) (62)

Same result as the standard finite difference approach, but finite
elements define u also between the xi points



Galerkin/project and least squares vs
collocation/interpolation or finite differences

Scope: work with P1 elements

Use projection/Galerkin or least squares (equivalent)

Interpret the resulting linear system as finite difference
equations

The P1 finite element machinery results in a linear system where
equation no i is

h

6
(ui−1 + 4ui + ui+1) = (f , ϕi ) (63)

Note:

We have used ui for ci to make notation similar to finite
differences

The finite difference counterpart is just ui = fi



Expressing the left-hand side in finite difference operator
notation

Rewrite the left-hand side of finite element equation no i :

h(ui +
1

6
(ui−1 − 2ui + ui+1)) = [h(u +

h2

6
DxDxu)]i (64)

This is the standard finite difference approximation of

h(u +
h2

6
u′′)



Treating the right-hand side; Trapezoidal rule

(f , ϕi ) =

∫ xi

xi−1

f (x)
1

h
(x − xi−1)dx +

∫ xi+1

xi

f (x)
1

h
(1− (x − xi ))dx

Cannot do much unless we specialize f or use numerical
integration.
Trapezoidal rule using the nodes:

(f , ϕi ) =

∫
Ω

f ϕidx ≈ h
1

2
(f (x0)ϕi (x0)+f (xN)ϕi (xN))+h

N−1∑
j=1

f (xj)ϕi (xj)

ϕi (xj) = δij , so this formula collapses to one term:

(f , ϕi ) ≈ hf (xi ), i = 1, . . . ,N − 1 . (65)

Same result as in collocation (interpolation) and the finite
difference method!



Treating the right-hand side; Simpson’s rule

∫
Ω

g(x)dx ≈ h

6

g(x0) + 2
N−1∑
j=1

g(xj) + 4
N−1∑
j=0

g(xj+ 1
2
) + f (x2N)

 ,

Our case: g = f ϕi . The sums collapse because ϕi = 0 at most of
the points.

(f , ϕi ) ≈
h

3
(fi− 1

2
+ fi + fi+ 1

2
) (66)

Conclusions:

While the finite difference method just samples f at xi , the
finite element method applies an average (smoothing) of f
around xi

On the left-hand side we have a term ∼ hu′′, and u′′ also
contribute to smoothing

There is some inherent smoothing in the finite element
method



Finite element approximation vs finite differences

With Trapezoidal integration of (f , ϕi ), the finite element metod
essentially solve

u +
h2

6
u′′ = f , u′(0) = u′(L) = 0, (67)

by the finite difference method

[u +
h2

6
DxDxu = f ]i (68)

With Simpson integration of (f , ϕi ) we essentially solve

[u +
h2

6
DxDxu = f̄ ]i , (69)

where

f̄i =
1

3
(fi−1/2 + fi + fi+1/2)

Note: as h→ 0, hu′′ → 0 and f̄i → fi .



Making finite elements behave as finite differences

Can we adjust the finite element method so that we do not
get the extra hu′′ smoothing term and averaging of f ?

This is sometimes important in time-dependent problems to
incorporate good properties of finite differences into finite
elements

Result:

Compute all integrals by the Trapezoidal method and P1
elements

Specifically, the coefficient matrix becomes diagonal
(”lumped”) - no linear system (!)

Loss of accuracy? The Trapezoidal rule has error O(h2), the
same as the approximation error in P1 elements



Limitations of the nodes and element concepts

So far,

Nodes: points for defining ϕi and computing u values

Elements: subdomain (containing a few nodes)

This is a common notion of nodes and elements

One problem:

Our algorithms need nodes at the element boundaries

This is often not desirable, so we need to throw the nodes

and elements arrays away and find a more generalized
element concept



A generalized element concept

We introduce cell for the subdomain that we up to now called
element

A cell has vertices (interval end points)

Nodes are, almost as before, points where we want to
compute unknown functions

Degrees of freedom is what the cj represent (usually function
values at nodes)



The concept of a finite element

1 a reference cell in a local reference coordinate system

2 a set of basis functions ϕ̃r defined on the cell

3 a set of degrees of freedom (e.g., function values) that
uniquely determine the basis functions such that ϕ̃r = 1 for
degree of freedom number r and ϕ̃r = 0 for all other degrees
of freedom

4 a mapping between local and global degree of freedom
numbers (dof map)

5 a geometric mapping of the reference cell onto to cell in the
physical domain: [−1, 1] ⇒ [xL, xR ]



Implementation; basic data structures

Cell vertex coordinates: vertices (equals nodes for P1
elements)

Element vertices: cell[e][r] holds global vertex number of
local vertex no r in element e (same as elements for P1
elements)

dof_map[e,r] maps local dof r in element e to global dof
number (same as elements for Pd elements)

The assembly process now applies dof_map:

A[dof_map[e][r], dof_map[e][s]] += A_e[r,s]
b[dof_map[e][r]] += b_e[r]



Implementation; example with P2 elements
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cells = [[0, 1], [1, 2]]
dof_map = [[0, 1, 2], [2, 3, 4]]



Implementation; example with P0 elements

Example: Same mesh, but u is piecewise constant in each cell (P0
element). Same vertices and cells, but

dof_map = [[0], [1]]

May think of one node in the middle of each element.

We will hereafter work with cells, vertices, and dof_map.



Example on doing the algorithmic steps

# Use modified fe_approx1D module
from fe_approx1D_numint import *

x = sp.Symbol(’x’)
f = x*(1 - x)

N_e = 10
# Create mesh with P3 (cubic) elements
vertices, cells, dof_map = mesh_uniform(N_e, d=3, Omega=[0,1])

# Create basis functions on the mesh
phi = [basis(len(dof_map[e])-1) for e in range(N_e)]

# Create linear system and solve it
A, b = assemble(vertices, cells, dof_map, phi, f)
c = np.linalg.solve(A, b)

# Make very fine mesh and sample u(x) on this mesh for plotting
x_u, u = u_glob(c, vertices, cells, dof_map,

resolution_per_element=51)
plot(x_u, u)



Approximating a parabola by P0 elements
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The approximate function automates the steps in the previous
slide:

from fe_approx1D_numint import *
x=sp.Symbol("x")
for N_e in 4, 8:

approximate(x*(1-x), d=0, N_e=N_e, Omega=[0,1])



Computing the error of the approximation; principles

L2 error: ||e||L2 =

(∫
Ω

e2dx

)1/2

Accurate approximation of the integral:

Sample u(x) at many points in each element (call u_glob,
returns x and u)

Use the Trapezoidal rule based on the samples

It is important to integrate u accurately over the elements

(In a finite difference method we would just sample the mesh
point values)



Computing the error of the approximation; details

Note.

We need a version of the Trapezoidal rule valid for non-uniformly
spaced points:∫

Ω
g(x)dx ≈

n−1∑
j=0

1

2
(g(xj) + g(xj+1))(xj+1 − xj)

# Given c, compute x and u values on a very fine mesh
x, u = u_glob(c, vertices, cells, dof_map,

resolution_per_element=101)
# Compute the error on the very fine mesh
e = f(x) - u
e2 = e**2
# Vectorized Trapezoidal rule
E = np.sqrt(0.5*np.sum((e2[:-1] + e2[1:])*(x[1:] - x[:-1]))



How does the error depend on h and d?

Theory and experiments show that the least squares or
projection/Galerkin method in combination with Pd elements of
equal length h has an error

||e||L2 = Chd+1 (70)

where C depends on f , but not on h or d .



Cubic Hermite polynomials; definition

Can we construct ϕi (x) with continuous derivatives? Yes!

Consider a reference cell [−1, 1]. We introduce two nodes, X = −1
and X = 1. The degrees of freedom are

0: value of function at X = −1

1: value of first derivative at X = −1

2: value of function at X = 1

3: value of first derivative at X = 1

Derivatives as unknowns ensure the same ϕ′i (x) value at nodes and
thereby continuous derivatives.



Cubic Hermite polynomials; derivation

4 constraints on ϕ̃r (1 for dof r , 0 for all others):

ϕ̃0(X(0)) = 1, ϕ̃0(X(1)) = 0, ϕ̃′0(X(0)) = 0, ϕ̃′0(X(1)) = 0

ϕ̃′1(X(0)) = 1, ϕ̃′1(X(1)) = 0, ϕ̃1(X(0)) = 0, ϕ̃1(X(1)) = 0

ϕ̃2(X(1)) = 1, ϕ̃2(X(0)) = 0, ϕ̃′2(X(0)) = 0, ϕ̃′2(X(1)) = 0

ϕ̃′3(X(1)) = 1, ϕ̃′3(X(0)) = 0, ϕ̃3(X(0)) = 0, ϕ̃3(X(1)) = 0

This gives 4 linear, coupled equations for each ϕ̃r to determine the
4 coefficients in the cubic polynomial



Cubic Hermite polynomials; result

ϕ̃0(X ) = 1− 3

4
(X + 1)2 +

1

4
(X + 1)3 (71)

ϕ̃1(X ) = −(X + 1)(1− 1

2
(X + 1))2 (72)

ϕ̃2(X ) =
3

4
(X + 1)2 − 1

2
(X + 1)3 (73)

ϕ̃3(X ) = −1

2
(X + 1)(

1

2
(X + 1)2 − (X + 1)) (74)

(75)



Numerical integration

∫
Ω f ϕidx must in general be computed by numerical

integration

Numerical integration is often used for the matrix too

Common form of a numerical integration rule:∫ 1

−1
g(X )dX ≈

M∑
j=0

wjg(X̄j), (76)

where

X̄j are integration points

wj are integration weights

Different rules correspond to different choices of points and weights



The Midpoint rule

Simplest possibility: the Midpoint rule,∫ 1

−1
g(X )dX ≈ 2g(0), X̄0 = 0, w0 = 2, (77)

Exact for linear integrands



Newton-Cotes rules

Idea: use a fixed, uniformly distributed set of points in [−1, 1]

The points often coincides with nodes

Very useful for making ϕiϕj = 0 and get diagonal (”mass”)
matrices (”lumping”)

The Trapezoidal rule:

∫ 1

−1
g(X )dX ≈ g(−1) + g(1), X̄0 = −1, X̄1 = 1, w0 = w1 = 1,

(78)
Simpson’s rule:∫ 1

−1
g(X )dX ≈ 1

3
(g(−1) + 4g(0) + g(1)) , (79)

where

X̄0 = −1, X̄1 = 0, X̄2 = 1, w0 = w2 =
1

3
, w1 =

4

3
(80)



Gauss-Legendre rules with optimized points

Optimize the location of points to get higher accuracy

Gauss-Legendre rules (quadrature) adjust points and weights
to integrate polynomials exactly

M = 1 : X̄0 = − 1√
3
, X̄1 =

1√
3
, w0 = w1 = 1 (81)

M = 2 : X̄0 = −
√

3

5
, X̄0 = 0, X̄2 =

√
3

5
, w0 = w2 =

5

9
, w1 =

8

9
(82)

M = 1: integrates 3rd degree polynomials exactly

M = 2: integrates 5th degree polynomials exactly

In general, M-point rule integrates a polynomial of degree
2M + 1 exactly.

See numint.py for a large collection of Gauss-Legendre rules.

http://tinyurl.com/jvzzcfn/fem/numint.py


Approximation of functions in 2D

Extensibility of 1D ideas.

All the concepts and algorithms developed for approximation of 1D
functions f (x) can readily be extended to 2D functions f (x , y) and
3D functions f (x , y , z). Key formulas stay the same.

Inner product in 2D:

(f , g) =

∫
Ω

f (x , y)g(x , y)dxdy (83)

Least squares and project/Galerkin lead to a linear system

∑
j∈Is

Ai ,jcj = bi , i ∈ Is

Ai ,j = (ψi , ψj)

bi = (f , ψi )

Challenge: How to construct 2D basis functions ψi (x , y)?



2D basis functions as tensor products of 1D functions

Use a 1D basis for x variation and a similar for y variation:

Vx = span{ψ̂0(x), . . . , ψ̂Nx (x)} (84)

Vy = span{ψ̂0(y), . . . , ψ̂Ny (y)} (85)

The 2D vector space can be defined as a tensor product
V = Vx ⊗ Vy with basis functions

ψp,q(x , y) = ψ̂p(x)ψ̂q(y) p ∈ Ix , q ∈ Iy .



Tensor products

Given two vectors a = (a0, . . . , aM) and b = (b0, . . . , bN) their
outer tensor product, also called the dyadic product, is p = a⊗ b,
defined through

pi ,j = aibj , i = 0, . . . ,M, j = 0, . . . ,N .

Note: p has two indices (as a matrix or two-dimensional array)
Example: 2D basis as tensor product of 1D spaces,

ψp,q(x , y) = ψ̂p(x)ψ̂q(y), p ∈ Ix , q ∈ Iy



Double or single index?

The 2D basis can employ a double index and double sum:

u =
∑
p∈Ix

∑
q∈Iy

cp,qψp,q(x , y)

Or just a single index:

u =
∑
j∈Is

cjψj(x , y)

with

ψi (x , y) = ψ̂p(x)ψ̂q(y), i = pNy + q or i = qNx + p



Example on 2D (bilinear) basis functions; formulas

In 1D we use the basis

{1, x}

2D tensor product (all combinations):

ψ0,0 = 1, ψ1,0 = x , ψ0,1 = y , ψ1,1 = xy

or with a single index:

ψ0 = 1, ψ1 = x , ψ2 = y , ψ3 = xy

See notes for details of a hand-calculation.



Example on 2D (bilinear) basis functions; plot

Quadratic f (x , y) = (1 + x2)(1 + 2y 2) (left), bilinear u (right):
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Implementation; principal changes to the 1D code

Very small modification of approx1D.py:

Omega = [[0, L_x], [0, L_y]]

Symbolic integration in 2D

Construction of 2D (tensor product) basis functions



Implementation; 2D integration

import sympy as sp

integrand = psi[i]*psi[j]
I = sp.integrate(integrand,

(x, Omega[0][0], Omega[0][1]),
(y, Omega[1][0], Omega[1][1]))

# Fall back on numerical integration if symbolic integration
# was unsuccessful
if isinstance(I, sp.Integral):

integrand = sp.lambdify([x,y], integrand)
I = sp.mpmath.quad(integrand,

[Omega[0][0], Omega[0][1]],
[Omega[1][0], Omega[1][1]])



Implementation; 2D basis functions

Tensor product of 1D ”Taylor-style” polynomials x i :

def taylor(x, y, Nx, Ny):
return [x**i*y**j for i in range(Nx+1) for j in range(Ny+1)]

Tensor product of 1D sine functions sin((i + 1)πx):

def sines(x, y, Nx, Ny):
return [sp.sin(sp.pi*(i+1)*x)*sp.sin(sp.pi*(j+1)*y)

for i in range(Nx+1) for j in range(Ny+1)]

Complete code in approx2D.py

http://tinyurl.com/jvzzcfn/fem/fe_approx2D.py


Implementation; application

f (x , y) = (1 + x2)(1 + 2y 2)

>>> from approx2D import *
>>> f = (1+x**2)*(1+2*y**2)
>>> psi = taylor(x, y, 1, 1)
>>> Omega = [[0, 2], [0, 2]]
>>> u, c = least_squares(f, psi, Omega)
>>> print u
8*x*y - 2*x/3 + 4*y/3 - 1/9
>>> print sp.expand(f)
2*x**2*y**2 + x**2 + 2*y**2 + 1



Implementation; trying a perfect expansion

Add higher powers to the basis such that f ∈ V :

>>> psi = taylor(x, y, 2, 2)
>>> u, c = least_squares(f, psi, Omega)
>>> print u
2*x**2*y**2 + x**2 + 2*y**2 + 1
>>> print u-f
0

Expected: u = f when f ∈ V



Generalization to 3D

Key idea:

V = Vx ⊗ Vy ⊗ Vz

Repeated outer tensor product of multiple vectors.

a(q) = (a
(q)
0 , . . . , a

(q)
Nq

), q = 0, . . . ,m

p = a(0) ⊗ · · · ⊗ a(m)

pi0,i1,...,im = a
(0)
i1

a
(1)
i1
· · · a(m)

im

ψp,q,r (x , y , z) = ψ̂p(x)ψ̂q(y)ψ̂r (z)

u(x , y , z) =
∑
p∈Ix

∑
q∈Iy

∑
r∈Iz

cp,q,rψp,q,r (x , y , z)



Finite elements in 2D and 3D

The two great advantages of the finite element method:

Can handle complex-shaped domains in 2D and 3D

Can easily provide higher-order polynomials in the
approximation

Finite elements in 1D: mostly for learning, insight, debugging



Examples on cell types

2D:

triangles

quadrilaterals

3D:

tetrahedra

hexahedra



Rectangular domain with 2D P1 elements
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Deformed geometry with 2D P1 elements
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Rectangular domain with 2D Q1 elements
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Basis functions over triangles in the physical domain
The P1 triangular 2D element: u is linear ax + by + c over each
triangular cell



Basic features of 2D P1 elements

ϕr (X ,Y ) is a linear function over each element

Cells = triangles

Vertices = corners of the cells

Nodes = vertices

Degrees of freedom = function values at the nodes



Linear mapping of reference element onto general
triangular cell
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local global
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ϕi : pyramid shape, composed of planes

ϕi (X ,Y ) varies linearly over an element

ϕi = 1 at vertex (node) i , 0 at all other vertices (nodes)



Element matrices and vectors

As in 1D, the contribution from one cell to the matrix involves
just a few numbers, collected in the element matrix and vector

ϕiϕj 6= 0 only if i and j are degrees of freedom
(vertices/nodes) in the same element

The 2D P1 has a 3× 3 element matrix



Basis functions over triangles in the reference cell

ϕ̃0(X ,Y ) = 1− X − Y (86)

ϕ̃1(X ,Y ) = X (87)

ϕ̃2(X ,Y ) = Y (88)

Higher-degree ϕ̃r introduce more nodes (dof = node values)



2D P1, P2, P3, P4, P5, and P6 elements



P1 elements in 1D, 2D, and 3D



P2 elements in 1D, 2D, and 3D

Interval, triangle, tetrahedron: simplex element (plural
quick-form: simplices)

Side of the cell is called face

Thetrahedron has also edges



Affine mapping of the reference cell; formula

Mapping of local X = (X ,Y ) coordinates in the reference cell to
global, physical x = (x , y) coordinates:

x =
∑
r

ϕ̃
(1)
r (X)xq(e,r) (89)

where

r runs over the local vertex numbers in the cell

xi are the (x , y) coordinates of vertex i

ϕ̃
(1)
r are P1 basis functions

This mapping preserves the straight/planar faces and edges.



Affine mapping of the reference cell; figure

x

local global
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Isoparametric mapping of the reference cell
Idea: Use the basis functions of the element (not only the P1
functions) to map the element

x =
∑
r

ϕ̃r (X)xq(e,r) (90)

Advantage: higher-order polynomial basis functions now map the
reference cell to a curved triangle or tetrahedron.
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Computing integrals

Integrals must be transformed from Ω(e) (physical cell) to Ω̃r

(reference cell):∫
Ω(e)

ϕi (x)ϕj(x) dx =

∫
Ω̃r

ϕ̃i (X)ϕ̃j(X) det J dX (91)∫
Ω(e)

ϕi (x)f (x) dx =

∫
Ω̃r

ϕ̃i (X)f (x(X)) det J dX (92)

where dx = dxdy or dx = dxdydz and det J is the determinant of
the Jacobian of the mapping x(X).

J =

[ ∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

]
, det J =

∂x

∂X

∂y

∂Y
− ∂x

∂Y

∂y

∂X
(93)

Affine mapping (89): det J = 2∆, ∆ = cell volume
!slide Remark on going from 1D to 2D/3D

Finite elements in 2D and 3D builds on the same ideas and
concepts as in 1D, but there is simply much more to compute
because the specific mathematical formulas in 2D and 3D are more
complicated and the book keeping with dof maps also gets more
complicated. The manual work is tedious, lengthy, and error-prone
so automation by the computer is a must.



Differential equation models

Our aim is to extend the ideas for approximating f by u, or solving

u = f

to real differential equations like[[[

−u′′ + bu = f , u(0) = 1, u′(L) = D

Three methods are addressed:

1 least squares

2 Galerkin/projection

3 collocation (interpolation)

Method 2 will be totally dominating!



Abstract differential equation

L(u) = 0, x ∈ Ω (94)

Examples (1D problems):

L(u) =
d2u

dx2
− f (x), (95)

L(u) =
d

dx

(
α(x)

du

dx

)
+ f (x), (96)

L(u) =
d

dx

(
α(u)

du

dx

)
− au + f (x), (97)

L(u) =
d

dx

(
α(u)

du

dx

)
+ f (u, x) (98)



Abstract boundary conditions

B0(u) = 0, x = 0, B1(u) = 0, x = L (99)

Examples:

Bi (u) = u − g , Dirichlet condition (100)

Bi (u) = −αdu

dx
− g , Neumann condition (101)

Bi (u) = −αdu

dx
− h(u − g), Robin condition (102)



Reminder about notation

ue(x) is the symbol for the exact solution of L(ue) = 0

u(x) denotes an approximate solution

We seek u ∈ V

V = span{ψ0(x), . . . , ψN(x)}, V has basis {ψi}i∈Is
Is = {0, . . . ,N} is an index set

u(x) =
∑

j∈Is cjψj(x)

Inner product: (u, v) =
∫

Ω uv dx

Norm: ||u|| =
√

(u, u)



New topics

Much is similar to approximating a function (solving u = f ), but
two new topics are needed:

Variational formulation of the differential equation problem
(including integration by parts)

Handling of boundary conditions



Residual-minimizing principles

When solving u = f we knew the error e = f − u and could
use principles for minimizing the error

When solving L(ue) = 0 we do not know ue and cannot work
with the error e = ue − u

We only have the error in the equation: the residual R

Inserting u =
∑

j cjψj in L = 0 gives a residual

R = L(u) = L(
∑
j

cjψj) 6= 0 (103)

Goal: minimize R wrt {ci}i∈Is (and hope it makes a small e too)

R = R(c0, . . . , cN ; x)



The least squares method

Idea: minimize

E = ||R||2 = (R,R) =

∫
Ω

R2dx (104)

Minimization wrt {ci}i∈Is implies

∂E

∂ci
=

∫
Ω

2R
∂R

∂ci
dx = 0 ⇔ (R,

∂R

∂ci
) = 0, i ∈ Is (105)

N + 1 equations for N + 1 unknowns {ci}i∈Is



The Galerkin method

Idea: make R orthogonal to V ,

(R, v) = 0, ∀v ∈ V (106)

This implies

(R, ψi ) = 0, i ∈ Is (107)

N + 1 equations for N + 1 unknowns {ci}i∈Is



The Method of Weighted Residuals

Generalization of the Galerkin method: demand R orthogonal to
some space W , possibly W 6= V :

(R, v) = 0, ∀v ∈W (108)

If {w0, . . . ,wN} is a basis for W :

(R,wi ) = 0, i ∈ Is (109)

N + 1 equations for N + 1 unknowns {ci}i∈Is
Weighted residual with wi = ∂R/∂ci gives least squares



Terminology: test and trial Functions

ψj used in
∑

j cjψj is called trial function

ψi or wi used as weight in Galerkin’s method is called test
function



The collocation method
Idea: demand R = 0 at N + 1 points

R(xi ; c0, . . . , cN) = 0, i ∈ Is (110)

Note: The collocation method is a weighted residual method with
delta functions as weights

0 =

∫
Ω

R(x ; c0, . . . , cN)δ(x − xi ) dx = R(xi ; c0, . . . , cN)

property of δ(x) :

∫
Ω

f (x)δ(x − xi )dx = f (xi ), xi ∈ Ω (111)
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Examples on using the principles

Goal.

Exemplify the least squares, Galerkin, and collocation methods in a
simple 1D problem with global basis functions.



The first model problem

−u′′(x) = f (x), x ∈ Ω = [0, L], u(0) = 0, u(L) = 0 (112)

Basis functions:

ψi (x) = sin
(

(i + 1)π
x

L

)
, i ∈ Is (113)

The residual:

R(x ; c0, . . . , cN) = u′′(x) + f (x),

=
d2

dx2

∑
j∈Is

cjψj(x)

+ f (x),

= −
∑
j∈Is

cjψ
′′
j (x) + f (x) (114)



Boundary conditions

Since u(0) = u(L) = 0 we must ensure that all ψi (0) = ψi (L) = 0.
Then

u(0) =
∑
j

cjψj(0) = 0, u(L) =
∑
j

cjψj(L)

u known: Dirichlet boundary condition

u′ known: Neumann boundary condition

Must have ψi = 0 where Dirichlet conditions apply



The least squares method; principle

(R,
∂R

∂ci
) = 0, i ∈ Is

∂R

∂ci
=

∂

∂ci

∑
j∈Is

cjψ
′′
j (x) + f (x)

 = ψ′′i (x) (115)

Because:

∂

∂ci

(
c0ψ

′′
0 + c1ψ

′′
1 + · · ·+ ci−1ψ

′′
i−1 + ciψ

′′
i + ci+1ψ

′′
i+1 + · · ·+ cNψ

′′
N

)
= ψ′′i



The least squares method; equation system

(
∑
j

cjψ
′′
j + f , ψ′′i ) = 0, i ∈ Is (116)

Rearrangement:∑
j∈Is

(ψ′′i , ψ
′′
j )cj = −(f , ψ′′i ), i ∈ Is (117)

This is a linear system∑
j∈Is

Ai ,jcj = bi , i ∈ Is

with

Ai ,j = (ψ′′i , ψ
′′
j )

= π4(i + 1)2(j + 1)2L−4

∫ L

0
sin
(

(i + 1)π
x

L

)
sin
(

(j + 1)π
x

L

)
dx

=

{
1
2 L−3π4(i + 1)4 i = j
0, i 6= j

(118)

bi = −(f , ψ′′i ) = (i + 1)2π2L−2

∫ L

0
f (x) sin

(
(i + 1)π

x

L

)
dx

(119)



Orthogonality of the basis functions gives diagonal matrix

Useful property:

L∫
0

sin
(

(i + 1)π
x

L

)
sin
(

(j + 1)π
x

L

)
dx = δij , δij =

{
1
2 L i = j
0, i 6= j

(120)
⇒ (ψ′′i , ψ

′′
j ) = δij , i.e., diagonal Ai ,j , and we can easily solve for ci :

ci =
2L

π2(i + 1)2

∫ L

0
f (x) sin

(
(i + 1)π

x

L

)
dx (121)



Least squares method; solution
Let’s sympy do the work (f (x) = 2):

from sympy import *
import sys

i, j = symbols(’i j’, integer=True)
x, L = symbols(’x L’)
f = 2
a = 2*L/(pi**2*(i+1)**2)
c_i = a*integrate(f*sin((i+1)*pi*x/L), (x, 0, L))
c_i = simplify(c_i)
print c_i

ci = 4
L2
(

(−1)i + 1
)

π3 (i3 + 3i2 + 3i + 1)
, u(x) =

N/2∑
k=0

8L2

π3(2k + 1)3
sin
(

(2k + 1)π
x

L

)
.

(122)
Fast decay: c2 = c0/27, c4 = c0/125 - only one term might be
good enough:

u(x) ≈ 8L2

π3
sin
(
π

x

L

)
.



The Galerkin method; principle

R = u′′ + f :

(u′′ + f , v) = 0, ∀v ∈ V ,

or

(u′′, v) = −(f , v), ∀v ∈ V (123)

This is a variational formulation of the differential equation
problem.
∀v ∈ V means for all basis functions:

(
∑
j∈Is

cjψ
′′
j , ψi ) = −(f , ψi ), i ∈ Is (124)



The Galerkin method; solution

Since ψ′′i ∝ ψi , Galerkin’s method gives the same linear system and
the same solution as the least squares method (in this particular
example).



The collocation method

R = 0 (i.e.,the differential equation) must be satisfied at N + 1
points:

−
∑
j∈Is

cjψ
′′
j (xi ) = f (xi ), i ∈ Is (125)

This is a linear system
∑

j Ai ,j = bi with entries

Ai ,j = −ψ′′j (xi ) = (j + 1)2π2L−2 sin
(

(j + 1)π
xi
L

)
, bi = 2

Choose: N = 0, x0 = L/2

c0 = 2L2/π2



Comparison of the methods

Exact solution: u(x) = x(L− x)

Galerkin or least squares (N = 0): u(x) = 8L2π−3 sin(πx/L)

Collocation method (N = 0): u(x) = 2L2π−2 sin(πx/L).

Max error in Galerkin/least sq.: −0.008L2

Max error in collocation: 0.047L2



Integration by parts

Second-order derivatives will hereafter be integrated by parts

∫ L

0
u′′(x)v(x)dx = −

∫ L

0
u′(x)v ′(x)dx + [vu′]L0

= −
∫ L

0
u′(x)v ′(x)dx + u′(L)v(L)− u′(0)v(0)

(126)

Motivation:

Lowers the order of derivatives
Gives more symmetric forms (incl. matrices)
Enables easy handling of Neumann boundary conditions
Finite element basis functions ϕi have discontinuous
derivatives (at cell boundaries) and are not suited for terms
with ϕ′′i

Boundary function; principles

What about nonzero Dirichlet conditions? Say u(L) = D
We always require ψi (L) = 0 (i.e., ψi = 0 where Dirichlet
conditions applies)
Problem: u(L) =

∑
j cjψj(L) =

∑
j cj · 0 = 0 6= D - always

Solution: u(x) = B(x) +
∑

j cjψj(x)
B(x): user-constructed boundary function that fulfills the
Dirichlet conditions
If u(L) = D, B(L) = D
No restrictions of how B(x) varies in the interior of Ω



Boundary function; example (1)

Dirichlet conditions: u(0) = C and u(L) = D. Choose for example

B(x) =
1

L
(C (L− x) + Dx) : B(0) = C , B(L) = D

u(x) = B(x) +
∑
j∈Is

cjψj(x), (127)

u(0) = B(0) = C , u(L) = B(L) = D



Boundary function; example (2)

Dirichlet condition: u(L) = D. Choose for example

B(x) = D : B(L) = D

u(x) = B(x) +
∑
j∈Is

cjψj(x), (128)

u(L) = B(L) = D



Impact of the boundary function on the space where we
seek the solution

{ψi}i∈Is is a basis for V∑
j∈Is cjψj(x) ∈ V

But u 6∈ V !

Reason: say u(0) = C and u ∈ V (any v ∈ V has v(0) = C ,
then 2u 6∈ V because 2u(0) = 2C

When u(x) = B(x) +
∑

j∈Is cjψj(x), B 6= 0, B 6∈ V (in
general) and u 6∈ V , but (u − B) ∈ V since

∑
j cjψj ∈ V



Abstract notation for variational formulations

The finite element literature (and much FEniCS documentation)
applies an abstract notation for the variational formulation:

Find (u − B) ∈ V such that

a(u, v) = L(v) ∀v ∈ V



Example on abstract notation

−u′′ = f , u′(0) = C , u(L) = D, u = D +
∑
j

cjψj

Variational formulation:

∫
Ω

u′v ′dx =

∫
Ω

fvdx −v(0)C or (u′, v ′) = (f , v)−v(0)C ∀v ∈ V

Abstract formulation: finn (u − B) ∈ V such that

a(u, v) = L(v) ∀v ∈ V

We identify

a(u, v) = (u′, v ′), L(v) = (f , v)− v(0)C



Bilinear and linear forms

a(u, v) is a bilinear form

L(v) is a linear form

Linear form means

L(α1v1 + α2v2) = α1L(v1) + α2L(v2),

Bilinear form means

a(α1u1 + α2u2, v) = α1a(u1, v) + α2a(u2, v),

a(u, α1v1 + α2v2) = α1a(u, v1) + α2a(u, v2)

In nonlinear problems: Find (u − B) ∈ V such that
F (u; v) = 0 ∀v ∈ V



The linear system associated with abstract form

a(u, v) = L(v) ∀v ∈ V ⇔ a(u, ψi ) = L(ψi ) i ∈ Is

We can now derive the corresponding linear system once and for
all:

a(
∑
j∈Is

cjψj , ψi )cj = L(ψi ) i ∈ Is

Because of linearity,∑
j∈Is

a(ψj , ψi )︸ ︷︷ ︸
Ai,j

cj = L(ψi )︸ ︷︷ ︸
bi

i ∈ Is

Given a(u, v) and L(v) in a problem, we can immediately generate
the linear system:

Ai ,j = a(ψj , ψi ), bi = L(ψi )



Equivalence with minimization problem

If a(u, v) = a(v , u),

a(u, v) = L(v) ∀v ∈ V ,

is equivalent to minimizing the functional

F (v) =
1

2
a(v , v)− L(v)

over all functions v ∈ V . That is,

F (u) ≤ F (v) ∀v ∈ V .

Much used in the early days of finite elements

Still much used in structural analysis and elasticity

Not as general as Galerkin’s method (since a(u, v) = a(v , u))



Examples on variational formulations

Goal.

Derive variational formulations for many prototype differential
equations in 1D that include

variable coefficients

mixed Dirichlet and Neumann conditions

nonlinear coefficients



Variable coefficient; problem

− d

dx

(
α(x)

du

dx

)
= f (x), x ∈ Ω = [0, L], u(0) = C , u(L) = D

(129)

Variable coefficient α(x)

Nonzero Dirichlet conditions at x = 0 and x = L

Must have ψi (0) = ψi (L) = 0

V = span{ψ0, . . . , ψN}
v ∈ V : v(0) = v(L) = 0

u(x) = B(x) +
∑
j∈Is

cjψi (x)

B(x) = C +
1

L
(D − C )x



Variable coefficient; variational formulation (1)

R = − d

dx

(
a

du

dx

)
− f

Galerkin’s method:

(R, v) = 0, ∀v ∈ V ,

or with integrals:∫
Ω

(
d

dx

(
α

du

dx

)
− f

)
v dx = 0, ∀v ∈ V .



Variable coefficient; variational formulation (2)

Integration by parts:

−
∫

Ω

d

dx

(
α(x)

du

dx

)
v dx =

∫
Ω
α(x)

du

dx

dv

dx
dx −

[
α

du

dx
v

]L
0

.

Boundary terms vanish since v(0) = v(L) = 0

Variational formulation.

Find (u − B) ∈ V such that∫
Ω
α(x)

du

dx

dv

dx
dx =

∫
Ω

f (x)vdx , ∀v ∈ V ,

Compact notation:

(αu′, v ′)︸ ︷︷ ︸
a(u,v)

= (f , v)︸ ︷︷ ︸
L(v)

, ∀v ∈ V



Variable coefficient; linear system (the easy way)

With

a(u, v) = (αu′, v), L(v) = (f , v)

we can just use the formula for the linear system:

Ai ,j = a(ψj , ψi ) = (αψ′j , ψ
′
i ) =

∫
Ω
αψ′jψ

′
i dx =

∫
Ω
ψ′iαψ

′
j dx = a(ψi , ψj) = Aj ,i

bi = (f , ψi ) =

∫
Ω

f ψi dx



Variable coefficient; linear system (full derivation)

v = ψi and u = B +
∑

j cjψj :

(αB ′ + α
∑
j∈Is

cjψ
′
j , ψ
′
i ) = (f , ψi ), i ∈ Is .

Reorder to form linear system:∑
j∈Is

(αψ′j , ψ
′
i )cj = (f , ψi ) + (a(D − C )L−1, ψ′i ), i ∈ Is .

This is
∑

j Ai ,jcj = bi with

Ai ,j = (aψ′j , ψ
′
i ) =

∫
Ω
α(x)ψ′j(x)ψ′i (x)dx

bi = (f , ψi ) + (a(D − C )L−1, ψ′i ) =

∫
Ω

(
f (x)ψi (x) + α(x)

D − C

L
ψ′i (x)

)
dx



First-order derivative in the equation and boundary
condition; problem

−u′′(x) + bu′(x) = f (x), x ∈ Ω = [0, L], u(0) = C , u′(L) = E
(130)

New features:

first-order derivative u′ in the equation

boundary condition with u′: u′(L) = E

Initial steps:

Must force ψi (0) = 0 because of Dirichlet condition at x = 0

Boundary function: B(x) = C (L− x) or just B(x) = C

No requirements on ψi (L) (no Dirichlet condition at x = L)



First-order derivative in the equation and boundary
condition; details

u = C +
∑
j∈Is

cjψi (x)

Galerkin’s method: multiply by v , integrate over Ω, integrate by
parts.

(−u′′ + bu′ − f , v) = 0, ∀v ∈ V

(u′, v ′) + (bu′, v) = (f , v) + [u′v ]L0, ∀v ∈ V

Now, [u′v ]L0 = u′(L)v(L) = Ev(L) because v(0) = 0 and
u′(L) = E :

(u′v ′) + (bu′, v) = (f , v) + Ev(L), ∀v ∈ V



First-order derivative in the equation and boundary
condition; observations

(u′v ′) + (bu′, v) = (f , v) + Ev(L), ∀v ∈ V ,

Important:

The boundary term can be used to implement Neumann
conditions

Forgetting the boundary term implies the condition u′ = 0 (!)

Such conditions are called natural boundary conditions



First-order derivative in the equation and boundary
condition; abstract notation

Abstract notation:

a(u, v) = L(v) ∀v ∈ V

Here:

a(u, v) = (u′, v ′) + (bu′, v)

L(v) = (f , v) + Ev(L)



First-order derivative in the equation and boundary
condition; linear system

Insert u = C +
∑

j cjψj and v = ψi :∑
j∈Is

((ψ′j , ψ
′
i ) + (bψ′j , ψi ))︸ ︷︷ ︸

Ai,j

cj = (f , ψi ) + Eψi (L)︸ ︷︷ ︸
bi

Observation: Ai ,j is not symmetric because of the term

(bψ′j , ψi ) =

∫
Ω

bψ′jψidx 6=
∫

Ω
bψ′iψjdx = (ψ′i , bψj)



Terminology: natural and essential boundary conditions

(u′, v ′) + (bu′, v) = (f , v) + u′(L)v(L)− u′(0)v(0)

Note: forgetting the boundary terms implies
u′(L) = u′(0) = 0 (unless prescribe a Dirichlet condition)

Conditions on u′ are simply inserted in the variational form
and called natural conditions

Conditions on u at x = 0 requires modifying V (through
ψi (0) = 0) and are known as essential conditions

Lesson learned.

It is easy to forget the boundary term when integrating by parts.
That mistake may prescribe a condition on u′!



Nonlinear coefficient; problem

Problem:

−(α(u)u′)′ = f (u), x ∈ [0, L], u(0) = 0, u′(L) = E (131)

V : basis {ψi}i∈Is with ψi (0) = 0 because of u(0) = 0

How does the nonlinear coefficients α(u) and f (u) impact the
variational formulation?

(Not much!)



Nonlinear coefficient; variational formulation

Galerkin: multiply by v , integrate, integrate by parts∫ L

0
α(u)

du

dx

dv

dx
dx =

∫ L

0
f (u)v dx + [α(u)vu′]L0 ∀v ∈ V

α(u(0))v(0)u′(0) = 0 since v(0)

α(u(L))v(L)u′(L) = α(u(L))v(L)E since u′(L) = E∫ L

0
α(u)

du

dx

dv

dx
v dx =

∫ L

0
f (u)v dx + α(u(L))v(L)E ∀v ∈ V

or

(α(u)u′, v ′) = (f (u), v) + α(u(L))v(L)E ∀v ∈ V



Nonlinear coefficient; where does the nonlinearity cause
challenges?

Abstract notation: no a(u, v) and L(v) because a and L are
nonlinear

Instead: F (u; v) = 0 ∀v ∈ V

What about forming a linear system? We get a nonlinear
system of algebraic equations

Must use methods like Picard iteration or Newton’s method
to solve nonlinear algebraic equations

But: the variational formulation was not much affected by
nonlinearities



Computing with Dirichlet and Neumann conditions;
problem

−u′′(x) = f (x), x ∈ Ω = [0, 1], u′(0) = C , u(1) = D

Use a global polynomial basis ψi ∼ x i on [0, 1]

Because of u(1) = D: ψi (1) = 0

Basis: ψi (x) = (1− x)i+1, i ∈ Is
B(x) = Dx



Computing with Dirichlet and Neumann conditions; details

Ai ,j = (ψ′j , ψ
′
i ) =

∫ 1

0
ψ′i (x)ψ′j(x)dx =

∫ 1

0
(i + 1)(j + 1)(1−x)i+jdx ,

Choose f (x) = 2:

bi = (2, ψi )− (D, ψ′i )− Cψi (0)

=

∫ 1

0

(
2(1− x)i+1 − D(i + 1)(1− x)i

)
dx − Cψi (0)

Can easily do the integrals with sympy. N = 1:(
1 1
1 4/3

)(
c0

c1

)
=

(
−C + D + 1
2/3− C + D

)
c0 = −C + D + 2, c1 = −1,

u(x) = 1− x2 + D + C (x − 1) (exact solution)



When the numerical method is exact

Assume that apart from boundary conditions, ue lies in the same
space V as where we seek u:

u = B + F , F ∈ Va(B + F , v) = L(v) ∀v ∈ Vue = B + E , E ∈ Va(B + E , v) = L(v) ∀v ∈ V

Subtract: a(F − E , v) = 0 ⇒ E = F and u = ue



Computing with finite elements

Tasks:

Address the model problem −u′′(x) = 2, u(0) = u(L) = 0

Uniform finite element mesh with P1 elements

Show all finite element computations in detail



Variational formulation, finite element mesh, and basis

−u′′(x) = 2, x ∈ (0, L), u(0) = u(L) = 0,

Variational formulation:

(u′, v ′) = (2, v) ∀v ∈ V

Since u(0) = 0 and u(L) = 0, we must force

v(0) = v(L) = 0, ψi (0) = ψi (L) = 0

Use finite element basis, but exclude ϕ0 and ϕNn since these are
not 0 on the boundary:

ψi = ϕi+1, i = 0, . . . ,N = Nn − 2

Introduce index mapping ν(j): ψi = ϕν(i)

u =
∑
j∈Is

cjϕν(i), i = 0, . . . ,N, ν(j) = j + 1

Irregular numbering: more complicated ν(j) table



Computation in the global physical domain; formulas

Ai ,j =

∫ L

0
ϕ′i+1(x)ϕ′j+1(x)dx , bi =

∫ L

0
2ϕi+1(x)dx

Many will prefer to change indices to obtain a ϕ′iϕ
′
j product:

i + 1→ i , j + 1→ j

Ai−1,j−1 =

∫ L

0
ϕ′i (x)ϕ′j(x)dx , bi−1 =

∫ L

0
2ϕi (x)dx



Computation in the global physical domain; details
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Computation in the global physical domain; linear system
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−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 −1 2 −1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . −1
0 · · · · · · · · · · · · · · · 0 −1 2





c0
...
...
...
...
...
...
...

cN



=



2h
...
...
...
...
...
...
...

2h


(132)



Comparison with a finite difference discretization

Recall: ci = u(xi+1) ≡ ui+1

Write out a general equation at node i − 1, expressed by ui

−1

h
ui−1 +

2

h
ui −

1

h
ui+1 = 2h (133)

The standard finite difference method for −u′′ = 2 is

− 1

h2
ui−1 +

2

h2
ui −

1

h2
ui+1 = 2

The finite element method and the finite difference method are
identical in this example.

(Remains to study the equations involving boundary values)



Cellwise computations; formulas

Repeat the previous example, but apply the cellwise algorithm

Work with one cell at a time

Transform physical cell to reference cell X ∈ [−1, 1]

A
(e)
i−1,j−1 =

∫
Ω(e)

ϕ′i (x)ϕ′j(x)dx =

∫ 1

−1

d

dx
ϕ̃r (X )

d

dx
ϕ̃s(X )

h

2
dX ,

ϕ̃0(X ) =
1

2
(1− X ), ϕ̃1(X ) =

1

2
(1 + X )

dϕ̃0

dX
= −1

2
,

dϕ̃1

dX
=

1

2

From the chain rule

dϕ̃r

dx
=

dϕ̃r

dX

dX

dx
=

2

h

dϕ̃r

dX



Cellwise computations; details

A
(e)
i−1,j−1 =

∫
Ω(e)

ϕ′i (x)ϕ′j(x) dx =

∫ 1

−1

2

h

dϕ̃r

dX

2

h

dϕ̃s

dX

h

2
dX = Ã

(e)
r ,s

b
(e)
i−1 =

∫
Ω(e)

2ϕi (x) dx =

∫ 1

−1
2ϕ̃r (X )

h

2
dX = b̃

(e)
r , i = q(e, r), r = 0, 1

Must run through all r , s = 0, 1 and r = 0, 1 and compute each
entry in the element matrix and vector:

Ã(e) =
1

h

(
1 −1
−1 1

)
, b̃(e) = h

(
1
1

)
. (134)

Example:

Ã
(e)
0,1 =

∫ 1

−1

2

h

dϕ̃0

dX

2

h

dϕ̃1

dX

h

2
dX =

2

h
(−1

2
)

2

h

1

2

h

2

∫ 1

−1
dX = −1

h



Cellwise computations; details of boundary cells

The boundary cells involve only one unknown

Ω(0): left node value known, only a contribution from right
node

Ω(Ne): right node value known, only a contribution from left
node

For e = 0 and = Ne :

Ã(e) =
1

h

(
1
)
, b̃(e) = h

(
1
)

Only one degree of freedom (”node”) in these cells (r = 0 counts
the only dof)



Cellwise computations; assembly

4 P1 elements:

vertices = [0, 0.5, 1, 1.5, 2]
cells = [[0, 1], [1, 2], [2, 3], [3, 4]]
dof_map = [[0], [0, 1], [1, 2], [2]] # only 1 dof in elm 0, 3

Python code for the assembly algorithm:

# Ae[e][r,s]: element matrix, be[e][r]: element vector
# A[i,j]: coefficient matrix, b[i]: right-hand side

for e in range(len(Ae)):
for r in range(Ae[e].shape[0]):

for s in range(Ae[e].shape[1]):
A[dof_map[e,r],dof_map[e,s]] += Ae[e][i,j]

b[dof_map[e,r]] += be[e][i,j]

Result: same linear system as arose from computations in the
physical domain



General construction of a boundary function

Now we address nonzero Dirichlet conditions

B(x) is not always easy to construct (extend to the interior of
Ω), especially not in 2D and 3D

With finite element ϕi , B(x) can be constructed in a
completely general way

Ib: set of indices with nodes where u is known

Ui : Dirichlet value of u at node i , i ∈ Ib

B(x) =
∑
j∈Ib

Ujϕj(x) (135)

Suppose we have a Dirichlet condition u(xk) = Uk , k ∈ Ib:

u(xk) =
∑
j∈Ib

Uj ϕj(x)︸ ︷︷ ︸
6=0 only for j=k

+
∑
j∈Is

cj ϕν(j)(xk)︸ ︷︷ ︸
=0, k 6∈Is

= Uk



Example with two Dirichlet values; variational formulation

−u′′ = 2, u(0) = C , u(L) = D

∫ L

0
u′v ′ dx =

∫ L

0
2v dx ∀v ∈ V

(u′, v ′) = (2, v) ∀v ∈ V



Example with two Dirichlet values; boundary function

B(x) =
∑
j∈Ib

Ujϕj(x) (136)

Here Ib = {0,Nn}, U0 = C , UNn = D,

ψi = ϕν(i), ν(i) = i + 1, i ∈ Is = {0, . . . ,N = Nn − 2}

u(x) = Cϕ0(x) + DϕNn(x) +
∑
j∈Is

cjϕν(j) (137)



Example with two Dirichlet values; details

Insert u = B +
∑

j cjψj in variational formulation:

(u′, v ′) = (2, v) ⇒ (
∑
j

cjψ
′
j , ψ
′
i ) = (2− B ′, ψi ) ∀v ∈ V

u(x) = C · ϕ0 + DϕNn︸ ︷︷ ︸
B(x)

+
∑
j∈Is

cjϕj+1

= C · ϕ0 + DϕNn + c0ϕ1 + c1ϕ2 + · · ·+ cNϕNn−1

Ai−1,j−1 =

∫ L

0
ϕ′i (x)ϕ′j(x)dx , bi−1 =

∫ L

0
(f (x)−Cϕ′0(x)−Dϕ′Nn

(x))ϕi (x) dx

for i , j = 1, . . . ,N + 1 = Nn − 1.
New boundary terms from −

∫
B ′ϕi dx : C/2 for i = 1 and −D/2

for i = Nn − 1



Example with two Dirichlet values; cellwise computations

Element matrices as in the previous example (with u = 0 on
the boundary)

New element vector in the first and last cell

From the last cell:

b̃
(Ne)
0 =

∫ 1

−1

(
f − D

2

h

dϕ̃1

dX

)
ϕ̃0

h

2
dX = (

h

2
(2−D

2

h

1

2
)

∫ 1

−1
ϕ̃0 dX = h−D/2

From the first cell:

b̃
(0)
0 =

∫ 1

−1

(
f − C

2

h

dϕ̃0

dX

)
ϕ̃1

h

2
dX = (

h

2
(2+C

2

h

1

2
)

∫ 1

−1
ϕ̃1 dX = h+C/2 .



Modification of the linear system; ideas

Method 1: incorporate Dirichlet values through a B(x)
function and demand ψi = 0 where Dirichlet values apply

Method 2: drop B(x), drop demands to ψi , just assemble as
if there were no Dirichlet conditions, and modify the linear
system instead

Method 2: always ψi = ϕi and

u(x) =
∑
j∈Is

cjϕj(x), Is = {0, . . . ,N = Nn} (138)

Attractive way of incorporating Dirichlet conditions.

u is treated as unknown at all boundaries when computing entires
in the linear system



Modification of the linear system; original system

−u′′ = 2, u(0) = 0, u(L) = D

Assemble as if there were no Dirichlet conditions:

1

h



1 −1 0 · · · · · · · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 −1 2 −1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . −1
0 · · · · · · · · · · · · · · · 0 −1 1





c0
...
...
...
...
...
...
...

cN



=



h
2h
...
...
...
...
...

2h
h


(139)



Modification of the linear system; row replacement

Dirichlet condition u(xk) = Uk means ck = Uk (since
ck = u(xk))

Replace first row by c0 = 0

Replace last row by cN = D

1

h



h 0 0 · · · · · · · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 −1 2 −1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . −1
0 · · · · · · · · · · · · · · · 0 0 h





c0
...
...
...
...
...
...
...

cN



=



0
2h
...
...
...
...
...

2h
D


(140)



Modification of the linear system; element matrix/vector

In cell 0 we know u for local node (degree of freedom) r = 0.
Replace the first cell equation by c̃0 = 0:

Ã(0) = A =
1

h

(
h 0
−1 1

)
, b̃(0) =

(
0
h

)
(141)

In cell Ne we know u for local node r = 1. Replace the last
equation in the cell system by c̃1 = D:

Ã(Ne) = A =
1

h

(
1 −1
0 h

)
, b̃(Ne) =

(
h
D

)
(142)



Symmetric modification of the linear system; algorithm

The modification above destroys symmetry of the matrix:
e.g., A0,1 6= A1,0

Symmetry is often important in 2D and 3D (faster
computations)

A more complex modification can preserve symmetry!

Algorithm for incorporating ci = Ui in a symmetric way:

1 Subtract column i times Ui from the right-hand side

2 Zero out column and row no i

3 Place 1 on the diagonal

4 Set bi = Ui



Symmetric modification of the linear system; example

1

h



1 0 0 · · · · · · · · · · · · · · · 0

0 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 −1 2 −1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . 0
0 · · · · · · · · · · · · · · · 0 0 1





c0
...
...
...
...
...
...
...

cN



=



0
2h
...
...
...
...
...

2h + D/h
D


(143)



Symmetric modification of the linear system; element level

Symmetric modification applied to Ã(Ne):

Ã(Ne) = A =
1

h

(
1 0
0 1

)
, b̃(N−1) =

(
h + D/h

D

)
(144)



Boundary conditions: specified derivative

Neumann conditions.

How can we incorporate u′(0) = C with finite elements?

−u′′ = f , u′(0) = C , u(L) = D

ψi (L) = 0 because of Dirichlet condition u(L) = D

No demand to ψi (0)



The variational formulation

Galerkin’s method:∫ L

0
(u′′(x) + f (x))ψi (x)dx = 0, i ∈ Is

Integration of u′′ψi by parts:

∫ L

0
u′(x)ψ′i (x) dx−(u′(L)ψi (L)−u′(0)ψi (0))−

∫ L

0
f (x)ψi (x)dx = 0, i ∈ Is

u′(L)ψi (L) = 0 since ψi (L) = 0

u′(0)ψi (0) = Cψi (0) since u′(0) = C



Method 1: Boundary function and exclusion of Dirichlet
degrees of freedom

ψi = ϕi , i ∈ Is = {0, . . . ,N = Nn − 1}
B(x) = DϕNn(x), u = B +

∑N
j=0 cjϕj∫ L

0
u′(x)ϕ′i (x)dx =

∫ L

0
f (x)ϕi (x)dx − Cϕi (0), i ∈ Is

N=Nn−1∑
j=0

(∫ L

0
ϕ′i (x)ϕ′j(x)dx

)
cj =

∫ L

0

(
f (x)ϕi (x)− Dϕ′N(x)ϕi (x)

)
dx−Cϕi (0)

(145)
for i = 0, . . . ,N = Nn − 1.



Method 2: Use all ϕi and insert the Dirichlet condition in
the linear system

Now ψi = ϕi , i = 0, . . . ,N = Nn

ϕN(L) 6= 0, so u′(L)ϕN(L) 6= 0
However, the term u′(L)ϕN(L) in bN will be erased when we
insert the Dirichlet value in bN = D

We can forget about the term u′(L)ϕi (L)!

Result.

Boundary terms u′ϕi at points xi where Dirichlet values apply can
always be forgotten.

u(x) =
N=Nn∑
j=0

cjϕj(x)

N=Nn∑
j=0

(∫ L

0
ϕ′i (x)ϕ′j(x)dx

)
cj =

∫ L

0
f (x)ϕi (x)ϕi (x)dx − Cϕi (0)

(146)
Assemble entries for i = 0, . . . ,N = Nn and then modify the last
equation to cN = D



How the Neumann condition impacts the element matrix
and vector

The extra term Cϕ0(0) affects only the element vector from the
first cells since ϕ0 = 0 on all other cells.

Ã(0) = A =
1

h

(
1 1
−1 1

)
, b̃(0) =

(
h − C

h

)
(147)



The finite element algorithm

The differential equation problem defines the integrals in the
variational formulation.
Request these functions from the user:

integrand_lhs(phi, r, s, x)
boundary_lhs(phi, r, s, x)
integrand_rhs(phi, r, x)
boundary_rhs(phi, r, x)

Must also have a mesh with vertices, cells, and dof_map



Python pseudo code; the element matrix and vector

<Declare global matrix, global rhs: A, b>

# Loop over all cells
for e in range(len(cells)):

# Compute element matrix and vector
n = len(dof_map[e]) # no of dofs in this element
h = vertices[cells[e][1]] - vertices[cells[e][0]]
<Declare element matrix, element vector: A_e, b_e>

# Integrate over the reference cell
points, weights = <numerical integration rule>
for X, w in zip(points, weights):

phi = <basis functions + derivatives at X>
detJ = h/2
x = <affine mapping from X>
for r in range(n):

for s in range(n):
A_e[r,s] += integrand_lhs(phi, r, s, x)*detJ*w

b_e[r] += integrand_rhs(phi, r, x)*detJ*w

# Add boundary terms
for r in range(n):

for s in range(n):
A_e[r,s] += boundary_lhs(phi, r, s, x)*detJ*w

b_e[r] += boundary_rhs(phi, r, x)*detJ*w



Python pseudo code; boundary conditions and assembly

for e in range(len(cells)):
...

# Incorporate essential boundary conditions
for r in range(n):

global_dof = dof_map[e][r]
if global_dof in essbc_dofs:

# dof r is subject to an essential condition
value = essbc_docs[global_dof]
# Symmetric modification
b_e -= value*A_e[:,r]
A_e[r,:] = 0
A_e[:,r] = 0
A_e[r,r] = 1
b_e[r] = value

# Assemble
for r in range(n):

for s in range(n):
A[dof_map[e][r], dof_map[e][r]] += A_e[r,s]

b[dof_map[e][r] += b_e[r]

<solve linear system>



Variational formulations in 2D and 3D

How to do integration by parts is the major difference when
moving to 2D and 3D.



Integration by parts

Rule for multi-dimensional integration by parts.

−
∫

Ω
∇·(a(x)∇u)v dx =

∫
Ω

a(x)∇u ·∇v dx−
∫
∂Ω

a
∂u

∂n
v ds (148)

∫
Ω()dx : area (2D) or volume (3D) integral∫
∂Ω()ds: line(2D) or surface (3D) integral

∂ΩN : Neumann conditions −a∂u∂n = g

∂ΩD : Dirichlet conditions u = u0

v ∈ V must vanish on ∂ΩD (in method 1)



Example on integration by parts; problem

v · ∇u + αu = ∇ · (a∇u) + f , x ∈ Ω (149)

u = u0, x ∈ ∂ΩD (150)

−a
∂u

∂n
= g , x ∈ ∂ΩN (151)

Known: a, α, f , u0, and g .

Second-order PDE: must have exactly one boundary condition
at each point of the boundary

Method 1 with boundary function and ψi = 0 on ∂ΩD :

u(x) = B(x) +
∑
j∈Is

cjψj(x), B(x) = u0(x)



Example on integration by parts; details (1)

Galerkin’s method: multiply by v ∈ V and integrate over Ω,∫
Ω

(v · ∇u + αu)v dx =

∫
Ω
∇ · (a∇u) dx +

∫
Ω

fv dx

Integrate second-order term by parts:∫
Ω
∇ · (a∇u) v dx = −

∫
Ω

a∇u · ∇v dx +

∫
∂Ω

a
∂u

∂n
v ds,

Resulting variational form:

∫
Ω

(v ·∇u +αu)v dx = −
∫

Ω
a∇u ·∇v dx +

∫
∂Ω

a
∂u

∂n
v ds +

∫
Ω

fv dx



Example on integration by parts; details (2)

Note: v 6= 0 only on ∂ΩN :∫
∂Ω

a
∂u

∂n
v ds =

∫
∂ΩN

a
∂u

∂n︸︷︷︸
−g

v ds = −
∫
∂ΩN

gv ds

The final variational form:

∫
Ω

(v · ∇u + αu)v dx = −
∫

Ω
a∇u · ∇v dx −

∫
∂ΩN

gv ds +

∫
Ω

fv dx

Or with inner product notation:

(v · ∇u, v) + (αu, v) = −(a∇u,∇v)− (g , v)N + (f , v)

(g , v)N : line or surface integral over ∂ΩN .



Example on integration by parts; linear system

u = B +
∑
j∈Is

cjψj , B = u0

Ai ,j = (v · ∇ψj , ψi ) + (αψj , ψi ) + (a∇ψj ,∇ψi )

bi = (g , ψi )N + (f , ψi )− (v · ∇u0, ψi ) + (αu0, ψi ) + (a∇u0,∇ψi )



Transformation to a reference cell in 2D/3D (1)

We want to compute an integral in the physical domain by
integrating over the reference cell.

∫
Ω(e)

a(x)∇ϕi · ∇ϕj dx (152)

Mapping from reference to physical coordinates:

x(X)

with Jacobian J,

Ji ,j =
∂xj
∂Xi

dx → det J dX .
Must express ∇ϕi by an expression with ϕ̃r , i = q(e, r):
∇ϕ̃r (X)
We want ∇xϕ̃r (X) (derivatives wrt x)
What we readily have is ∇Xϕ̃r (X) (derivative wrt X)
Need to transform ∇Xϕ̃r (X) to ∇xϕ̃r (X)



Transformation to a reference cell in 2D/3D (2)

Can derive

∇Xϕ̃r = J · ∇xϕi

∇xϕi = ∇xϕ̃r (X) = J−1 · ∇Xϕ̃r (X)

Integral transformation from physical to reference coordinates:

∫
Ω(e)

a(x)∇xϕi ·∇xϕj dx =

∫
Ω̃r

a(x(X))(J−1·∇Xϕ̃r )·(J−1·∇ϕ̃s) det J dX

(153)



Numerical integration

Numerical integration over reference cell triangles and tetrahedra:∫
Ω̃r

g dX =
n−1∑
j=0

wjg(X̄j)

Module numint.py contains different rules:

>>> import numint
>>> x, w = numint.quadrature_for_triangles(num_points=3)
>>> x
[(0.16666666666666666, 0.16666666666666666),
(0.66666666666666666, 0.16666666666666666),
(0.16666666666666666, 0.66666666666666666)]

>>> w
[0.16666666666666666, 0.16666666666666666, 0.16666666666666666]

Triangle: rules with n = 1, 3, 4, 7 integrate exactly polynomials
of degree 1, 2, 3, 4, resp.

Tetrahedron: rules with n = 1, 4, 5, 11 integrate exactly
polynomials of degree 1, 2, 3, 4, resp.

http://tinyurl.com/jvzzcfn/fem/numint.py


Time-dependent problems

So far: used the finite element framework for discretizing in
space

What about ut = uxx + f ?
1 Use finite differences in time to obtain a set of recursive spatial

problems
2 Solve the spatial problems by the finite element method



Example: diffusion problem

∂u

∂t
= α∇2u + f (x, t), x ∈ Ω, t ∈ (0,T ] (154)

u(x, 0) = I (x), x ∈ Ω (155)

∂u

∂n
= 0, x ∈ ∂Ω, t ∈ (0,T ] (156)



A Forward Euler scheme; ideas

[D+
t u = α∇2u + f ]n, n = 1, 2, . . . ,Nt − 1 (157)

Solving wrt un+1:

un+1 = un + ∆t
(
α∇2un + f (x, tn)

)
(158)

un =
∑

j cn
j ψj ∈ V , un+1 =

∑
j cn+1

j ψj ∈ V

Compute u0 from I

Compute un+1 from un by solving the PDE for un+1 at each
time level



A Forward Euler scheme; stages in the discretization

ue(x, t): exact solution of the space-and time-continuous
problem

un
e (x): exact solution of time-discrete problem (after applying

a finite difference scheme in time)

un
e (x) ≈ un =

∑
j∈Is cn

j ψj = solution of the time- and
space-discrete problem (after applying a Galerkin method in
space)

∂ue
∂t

= α∇2ue + f (x, t) (159)

un+1
e = un

e + ∆t
(
α∇2un

e + f (x, tn)
)

(160)

un
e ≈ un =

N∑
j=0

cn
j ψj(x), un+1

e ≈ un+1 =
N∑
j=0

cn+1
j ψj(x)

R = un+1 − un −∆t
(
α∇2un + f (x, tn)

)



A Forward Euler scheme; weighted residual (or Galerkin)
principle

R = un+1 − un −∆t
(
α∇2un + f (x, tn)

)
The weighted residual principle:∫

Ω
Rw dx = 0, ∀w ∈W

results in

∫
Ω

[
un+1 − un −∆t

(
α∇2un + f (x, tn)

)]
w dx = 0, ∀w ∈W

Galerkin: W = V , w = v



A Forward Euler scheme; integration by parts

Isolating the unknown un+1 on the left-hand side:∫
Ω

un+1ψi dx =

∫
Ω

[
un −∆t

(
α∇2un + f (x, tn)

)]
v dx

Integration by parts of
∫
α(∇2un)v dx :

∫
Ω
α(∇2un)v dx = −

∫
Ω
α∇un · ∇v dx +

∫
∂Ω
α
∂un

∂n
v dx︸ ︷︷ ︸

=0 ⇐ ∂un/∂n=0

Variational form:

∫
Ω

un+1v dx =

∫
Ω

unv dx−∆t

∫
Ω
α∇un·∇v dx+∆t

∫
Ω

f nv dx , ∀v ∈ V

(161)



New notation for the solution at the most recent time
levels

u and u: the spatial unknown function to be computed

u1 and u_1: the spatial function at the previous time level
t −∆t

u2 and u_2: the spatial function at t − 2∆t

This new notation gives close correspondance between code
and math∫

Ω
uv dx =

∫
Ω

u1v dx−∆t

∫
Ω
α∇u1 ·∇v dx +∆t

∫
Ω

f nv dx (162)

or shorter

(u, ψi ) = (u1, v)−∆t(α∇u1,∇v) + (f n, v) (163)



Deriving the linear systems

u =
∑N

j=0 cjψj(x)

u1 =
∑N

j=0 c1,jψj(x)

∀v ∈ V : for v = ψi , i = 0, . . . ,N

Insert these in

(u, ψi ) = (u1, ψi )−∆t(α∇u1,∇ψi ) + (f n, ψi )

and order terms as matrix-vector products:

N∑
j=0

(ψi , ψj)︸ ︷︷ ︸
Mi,j

cj =
N∑
j=0

(ψi , ψj)︸ ︷︷ ︸
Mi,j

c1,j−∆t
N∑
j=0

(∇ψi , α∇ψj)︸ ︷︷ ︸
Ki,j

c1,j+(f n, ψi ), i = 0, . . . ,N

(164)



Structure of the linear systems

Mc = Mc1 −∆tKc1 + f (165)

M = {Mi ,j}, Mi ,j = (ψi , ψj), i , j ∈ Is
K = {Ki ,j}, Ki ,j = (∇ψi , α∇ψj), i , j ∈ Is
f = {(f (x, tn), ψi )}i∈Is
c = {ci}i∈Is

c1 = {c1,i}i∈Is



Computational algorithm

1 Compute M and K .

2 Initialize u0 by either interpolation or projection
3 For n = 1, 2, . . . ,Nt :

1 compute b = Mc1 −∆tKc1 + f
2 solve Mc = b
3 set c1 = c

Initial condition:

Either interpolation: c1,j = I (xj) (finite elements)

Or projection: solve
∑

j Mi ,jc1,j = (I , ψi ), i ∈ Is



Comparing P1 elements with the finite difference method;
ideas

P1 elements in 1D

Uniform mesh on [0, L] with cell length h

No Dirichlet conditions: ψi = ϕi , i = 0, . . . ,N = Nn

Have found formulas for M and K at the element level

Have assembled the global matrices

Have developed corresponding finite difference operator
formulas

M: h[D+
t (u + 1

6 h2DxDxu)]ni
K : h[αDxDxu]ni



Comparing P1 elements with the finite difference method;
results

Diffusion equation with finite elements is equivalent to

[D+
t (u +

1

6
h2DxDxu) = αDxDxu + f ]ni (166)

Can lump the mass matrix by Trapezoidal integration and get the
standard finite difference scheme

[D+
t u = αDxDxu + f ]ni (167)



Discretization in time by a Backward Euler scheme

Backward Euler scheme in time:

[D−t u = α∇2u + f (x, t)]n .

un
e −∆t

(
α∇2un

e + f (x, tn)
)

= un−1
e (168)

un
e ≈ un =

N∑
j=0

cn
j ψj(x), un+1

e ≈ un+1 =
N∑
j=0

cn+1
j ψj(x)



The variational form of the time-discrete problem

∫
Ω

(unv + ∆tα∇un · ∇v) dx =

∫
Ω

un−1v dx−∆t

∫
Ω

f nv dx , ∀v ∈ V

(169)
or

(u, v) + ∆t(α∇u,∇v) = (u1, v) + ∆t(f n, ψi ) (170)

The linear system: insert u =
∑

j cjψi and u1 =
∑

j c1,jψi ,

(M + ∆tαK )c = Mc1 + f (171)



Calculations with P1 elements in 1D

Can interpret the resulting equation system as

[D−t (u +
1

6
h2DxDxu) = αDxDxu + f ]ni (172)

Lumped mass matrix (by Trapezoidal integration) gives a standard
finite difference method:

[D−t u = αDxDxu + f ]ni (173)



Dirichlet boundary conditions

Dirichlet condition at x = 0 and Neumann condition at x = L:

u(x, t) = u0(x, t), x ∈ ∂ΩD (174)

−α ∂

∂n
u(x, t) = g(x, t), x ∈ ∂ΩN (175)

Forward Euler in time, Galerkin’s method, and integration by parts:

∫
Ω

un+1v dx =

∫
Ω

(un−∆tα∇un·∇v) dx−∆t

∫
∂ΩN

gv ds, ∀v ∈ V

(176)
Requirement: v = 0 on ∂ΩD



Boundary function

un(x) = u0(x, tn) +
∑
j∈Is

cn
j ψj(x)

∑
j∈Is

(∫
Ω
ψiψj dx

)
cn+1
j =

∑
j∈Is

(∫
Ω

(ψiψj −∆tα∇ψi · ∇ψj) dx

)
cn
j −∫

Ω
(u0(x, tn+1)− u0(x, tn) + ∆tα∇u0(x, tn) · ∇ψi ) dx

+ ∆t

∫
Ω

f ψi dx −∆t

∫
∂ΩN

gψi ds, i ∈ Is



Finite element basis functions

B(x, tn) =
∑

j∈Ib Un
j ϕj

ψi = ϕν(j), j ∈ Is
ν(j), j ∈ Is , are the node numbers corresponding to all nodes
without a Dirichlet condition

un =
∑
j∈Ib

Un
j ϕj +

∑
j∈Is

c1,jϕν(j),

un+1 =
∑
j∈Ib

Un+1
j ϕj +

∑
j∈Is

cjϕν(j)

∑
j∈Is

(∫
Ω
ϕiϕj dx

)
cj =

∑
j∈Is

(∫
Ω

(ϕiϕj −∆tα∇ϕi · ∇ϕj) dx

)
c1,j−

∑
j∈Ib

∫
Ω

(
ϕiϕj(Un+1

j − Un
j ) + ∆tα∇ϕi · ∇ϕjU

n
j

)
dx

+ ∆t

∫
Ω

f ϕi dx −∆t

∫
∂ΩN

gϕi ds, i ∈ Is



Modification of the linear system; the raw system

Drop boundary function

Compute as if there are not Dirichlet conditions

Modify the linear system to incorporate Dirichlet conditions

Is holds the indices of all nodes {0, 1, . . . ,N = Nn}

∑
j∈Is

(∫
Ω
ϕiϕj dx︸ ︷︷ ︸
Mi,j

)
cj =

∑
j∈Is

(∫
Ω
ϕiϕj dx︸ ︷︷ ︸
Mi,j

−∆t

∫
Ω
α∇ϕi · ∇ϕj dx︸ ︷︷ ︸

Ki,j

)
c1,j

−∆t

∫
Ω

f ϕi dx −∆t

∫
∂ΩN

gϕi ds︸ ︷︷ ︸
fi

, i ∈ Is



Modification of the linear system; setting Dirichlet
conditions

Mc = b, b = Mc1 −∆tKc1 + ∆tf (177)

For each k where a Dirichlet condition applies, u(xk , tn+1) = Un+1
k ,

set row k in M to zero and 1 on the diagonal: Mk,j = 0,
j ∈ Is , Mk,k = 1

bk = Un+1
k

Or apply the slightly more complicated modification which
preserves symmetry of M



Modification of the linear system; Backward Euler example

Backward Euler discretization in time gives a more complicated
coefficient matrix:

Ac = b, A = M + ∆tK , b = Mc1 + ∆tf . (178)

Set row k to zero and 1 on the diagonal: Mk,j = 0, j ∈ Is ,
Mk,k = 1

Set row k to zero: Kk,j = 0, j ∈ Is
bk = Un+1

k

Observe: Ak,k = Mk,k + ∆tKk,k = 1 + 0, so ck = Un+1
k



Analysis of the discrete equations

The diffusion equation ut = αuxx allows a (Fourier) wave
component

u = An
ee ikx , Ae = e−αk

2∆t (179)

Numerical schemes often allow the similar solution

un
q = Ane ikx (180)

A: amplification factor to be computed

How good is this A compared to the exact one?



Handy formulas

[D+
t Ane ikq∆x ]n = Ane ikq∆x A− 1

∆t
,

[D−t Ane ikq∆x ]n = Ane ikq∆x 1− A−1

∆t
,

[DtA
ne ikq∆x ]n+ 1

2 = An+ 1
2 e ikq∆x A

1
2 − A−

1
2

∆t
= Ane ikq∆x A− 1

∆t
,

[DxDxAne ikq∆x ]q = −An 4

∆x2
sin2

(
k∆x

2

)
.



Amplification factor for the Forward Euler method; results

Introduce p = k∆x/2 and C = α∆t/∆x2:

A = 1− 4C
sin2 p

1− 2

3
sin2 p︸ ︷︷ ︸

from M

(See notes for details)
Stability: |A| ≤ 1:

C ≤ 1

6
⇒ ∆t ≤ ∆x2

6α
(181)

Finite differences: C ≤ 1
2 , so finite elements give a stricter stability

criterion for this PDE!



Amplification factor for the Backward Euler method;
results

Coarse meshes:

A =

(
1 + 4C

sin2 p

1 + 2
3 sin2 p

)−1

(unconditionally stable)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.60.0
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Amplification factors for smaller time steps; Forward Euler
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Amplification factors for smaller time steps; Backward
Euler
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