$$
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\uexd}[1]{{u_{\small\mbox{e}, #1}}}
\newcommand{\vex}{{v_{\small\mbox{e}}}}
\newcommand{\vexd}[1]{{v_{\small\mbox{e}, #1}}}
\newcommand{\Aex}{{A_{\small\mbox{e}}}}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\halfi}{{1/2}}
\newcommand{\tp}{\thinspace .}
\newcommand{\Ddt}[1]{\frac{D #1}{dt}}
\newcommand{\E}[1]{\hbox{E}\lbrack #1 \rbrack}
\newcommand{\Var}[1]{\hbox{Var}\lbrack #1 \rbrack}
\newcommand{\Std}[1]{\hbox{Std}\lbrack #1 \rbrack}
\newcommand{\xpoint}{\boldsymbol{x}}
\newcommand{\normalvec}{\boldsymbol{n}}
\newcommand{\Oof}[1]{\mathcal{O}(#1)}
\newcommand{\x}{\boldsymbol{x}}
\newcommand{\X}{\boldsymbol{X}}
\renewcommand{\u}{\boldsymbol{u}}
\renewcommand{\v}{\boldsymbol{v}}
\newcommand{\w}{\boldsymbol{w}}
\newcommand{\V}{\boldsymbol{V}}
\newcommand{\e}{\boldsymbol{e}}
\newcommand{\f}{\boldsymbol{f}}
\newcommand{\F}{\boldsymbol{F}}
\newcommand{\stress}{\boldsymbol{\sigma}}
\newcommand{\strain}{\boldsymbol{\varepsilon}}
\newcommand{\stressc}{{\sigma}}
\newcommand{\strainc}{{\varepsilon}}
\newcommand{\I}{\boldsymbol{I}}
\newcommand{\T}{\boldsymbol{T}}
\newcommand{\dfc}{\alpha} % diffusion coefficient
\newcommand{\ii}{\boldsymbol{i}}
\newcommand{\jj}{\boldsymbol{j}}
\newcommand{\kk}{\boldsymbol{k}}
\newcommand{\ir}{\boldsymbol{i}_r}
\newcommand{\ith}{\boldsymbol{i}_{\theta}}
\newcommand{\iz}{\boldsymbol{i}_z}
\newcommand{\Ix}{\mathcal{I}_x}
\newcommand{\Iy}{\mathcal{I}_y}
\newcommand{\Iz}{\mathcal{I}_z}
\newcommand{\It}{\mathcal{I}_t}
\newcommand{\If}{\mathcal{I}_s} % for FEM
\newcommand{\Ifd}{{I_d}} % for FEM
\newcommand{\Ifb}{{I_b}} % for FEM
\newcommand{\setb}[1]{#1^0} % set begin
\newcommand{\sete}[1]{#1^{-1}} % set end
\newcommand{\setl}[1]{#1^-}
\newcommand{\setr}[1]{#1^+}
\newcommand{\seti}[1]{#1^i}
\newcommand{\sequencei}[1]{\left\{ {#1}_i \right\}_{i\in\If}}
\newcommand{\basphi}{\varphi}
\newcommand{\baspsi}{\psi}
\newcommand{\refphi}{\tilde\basphi}
\newcommand{\psib}{\boldsymbol{\psi}}
\newcommand{\sinL}[1]{\sin\left((#1+1)\pi\frac{x}{L}\right)}
\newcommand{\xno}[1]{x_{#1}}
\newcommand{\Xno}[1]{X_{(#1)}}
\newcommand{\yno}[1]{y_{#1}}
\newcommand{\Yno}[1]{Y_{(#1)}}
\newcommand{\xdno}[1]{\boldsymbol{x}_{#1}}
\newcommand{\dX}{\, \mathrm{d}X}
\newcommand{\dx}{\, \mathrm{d}x}
\newcommand{\ds}{\, \mathrm{d}s}
\newcommand{\Real}{\mathbb{R}}
\newcommand{\Integerp}{\mathbb{N}}
\newcommand{\Integer}{\mathbb{Z}}
$$
Properties of the solution
The PDE
$$
\begin{equation}
u_t = \dfc u_{xx}
\tag{1}
\end{equation}
$$
admits solutions
$$
\begin{equation}
u(x,t) = Qe^{-\dfc k^2 t}\sin\left( kx\right)
\tag{2}
\end{equation}
$$
Observations from this solution:
The initial shape \( I(x)=Q\sin kx \)
undergoes a damping \( \exp{(-\dfc k^2t)} \)
The damping is very strong for short waves (large \( k \))
The damping is weak for long waves (small \( k \))
Consequence: \( u \) is smoothened with time
Example
Test problem:
$$
\begin{align*}
u_t &= u_{xx},\quad &x\in (0,1),\ t\in (0,T]\\
u(0,t) &= u(1,t) = 0,\quad &t\in (0,T]\\
u(x,0) & = \sin (\pi x) + 0.1\sin(100\pi x)
\end{align*}
$$
Exact solution:
$$
\begin{equation}
u(x,t) = e^{-\pi^2 t}\sin (\pi x) + 0.1e^{-\pi^2 10^4 t}\sin (100\pi x)
\tag{3}
\end{equation}
$$
Visualization of the damping in the diffusion equation
Damping of a discontinuity; problem and model
Problem.
Two pieces of a material, at different temperatures, are brought
in contact at \( t=0 \). Assume the end points of the pieces are
kept at the initial temperature. How does the heat flow from
the hot to the cold piece?
Solution.
Assume a 1D model is sufficient (insulated rod):
$$
u(x,0)=\left\lbrace
\begin{array}{ll}
U_L, & x < L/2\\
U_R,& x\geq L/2
\end{array}\right.
$$
$$ \frac{\partial u}{\partial t} = \dfc
\frac{\partial^2 u}{\partial x^2},\quad u(0,t)=U_L,\ u(L,t)=U_R$$
Damping of a discontinuity; Backward Euler simulation
Damping of a discontinuity; Forward Euler simulation
Damping of a discontinuity; Crank-Nicolson simulation
Fourier representation
Represent \( I(x) \) as a Fourier series
$$
\begin{equation}
I(x) \approx \sum_{k\in K} b_k e^{ikx}
\end{equation}
$$
The corresponding sum for \( u \) is
$$
\begin{equation}
u(x,t) \approx \sum_{k\in K} b_k e^{-\dfc k^2t}e^{ikx}
\tag{4}
\tp
\end{equation}
$$
Such solutions are also accepted by the numerical schemes, but
with an amplification factor \( A \) different from \( \exp{({-\dfc k^2t})} \):
$$
\begin{equation}
u^n_q = A^n e^{ikq\Delta x} = A^ne^{ikx}
\tag{5}
\end{equation}
$$
Analysis of the finite difference schemes
Stability:
\( |A|< 1 \): decaying numerical solutions (as we want)
\( A<0 \): oscillating numerical solutions (as we do not want)
Accuracy:
Compare numerical and exact amplification factor: \( A \) vs \( \Aex = \exp{(-\dfc k^2 \Delta t)} \)
$$
Analysis of the Forward Euler scheme
$$
\begin{equation*} [D_t^+ u = \dfc D_xD_x u]^n_q \end{equation*}
$$
Inserting
$$ u^n_q = A^n e^{ikq\Delta x}$$
leads to
$$
\begin{equation}
A = 1 -4C\sin^2\left(
\frac{k\Delta x}{2}\right),\quad
C = \frac{\dfc\Delta t}{\Delta x^2}
\end{equation}
$$
The complete numerical solution is
$$
\begin{equation}
u^n_q = (1 -4C\sin^2 p)^ne^{ikq\Delta x},\quad
p = k\Delta x/2
\end{equation}
$$
Results for stability
We always have \( A\leq 1 \). The condition \( A\geq -1 \) implies
$$ 4C\sin^2p\leq 2 $$
The worst case is when \( \sin^2 p=1 \), so a sufficient criterion for
stability is
$$
\begin{equation}
C\leq {\half}
\end{equation}
$$
or:
$$
\begin{equation}
\Delta t\leq \frac{\Delta x^2}{2\dfc}
\end{equation}
$$
Implications of the stability result.
Less favorable criterion than for \( u_{tt}=c^2u_{xx} \): halving \( \Delta x \)
implies time step \( \frac{1}{4}\Delta t \) (not just \( \half\Delta t \)
as in a wave equation). Need very small time steps for fine spatial
meshes!
Analysis of the Backward Euler scheme
$$
\begin{equation*} [D_t^- u = \dfc D_xD_x u]^n_q\end{equation*}
$$
$$ u^n_q = A^n e^{ikq\Delta x}$$
$$
\begin{equation}
A = (1 + 4C\sin^2p)^{-1}
\tag{6}
\end{equation}
$$
$$
\begin{equation}
u^n_q = (1 + 4C\sin^2p)^{-n}e^{ikq\Delta x}
\end{equation}
$$
Stability
We see from (6) that \( |A|<1 \) for all \( \Delta t>0 \)
and that \( A>0 \) (no oscillations).
Analysis of the Crank-Nicolson scheme
The scheme
$$ [D_t u = \dfc D_xD_x \overline{u}^x]^{n+\half}_q$$
leads to
$$
\begin{equation}
A = \frac{ 1 - 2C\sin^2p}{1 + 2C\sin^2p}
\end{equation}
$$
$$
\begin{equation}
u^n_q = \left(\frac{ 1 - 2C\sin^2p}{1 + 2C\sin^2p}\right)^ne^{ikp\Delta x}
\end{equation}
$$
Stability
The criteria \( A>-1 \) and \( A<1 \) are fulfilled for any \( \Delta t >0 \).
Summary of accuracy of amplification factors; large time steps
Summary of accuracy of amplification factors; time steps around the Forward Euler stability limit
Summary of accuracy of amplification factors; small time steps
Observations
Crank-Nicolson gives oscillations and not much damping of short waves
for increasing \( C \).
These waves will manifest themselves as high frequency
oscillatory noise in the solution.
All schemes fail to dampen short waves enough
The problems of correct damping for \( u_t = u_{xx} \) is partially
manifested in the similar time discretization schemes for \( u'(t)=-\dfc u(t) \).
←
→