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Properties of the solution

The PDE

ut = αuxx (1)

admits solutions

u(x , t) = Qe−αk
2t sin (kx) (2)

Observations from this solution:

The initial shape I (x) = Q sin kx undergoes a damping
exp (−αk2t)

The damping is very strong for short waves (large k)

The damping is weak for long waves (small k)

Consequence: u is smoothened with time



Example

Test problem:

ut = uxx , x ∈ (0, 1), t ∈ (0,T ]

u(0, t) = u(1, t) = 0, t ∈ (0,T ]

u(x , 0) = sin(πx) + 0.1 sin(100πx)

Exact solution:

u(x , t) = e−π
2t sin(πx) + 0.1e−π

2104t sin(100πx) (3)



Visualization of the damping in the diffusion equation
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Damping of a discontinuity; problem and model

Problem.

Two pieces of a material, at different temperatures, are brought in
contact at t = 0. Assume the end points of the pieces are kept at
the initial temperature. How does the heat flow from the hot to
the cold piece?

Solution.

Assume a 1D model is sufficient (insulated rod):

u(x , 0) =

{
UL, x < L/2
UR , x ≥ L/2

∂u

∂t
= α

∂2u

∂x2
, u(0, t) = UL, u(L, t) = UR



Damping of a discontinuity; Backward Euler simulation

Movie

http://tinyurl.com/k3sdbuv/pub/mov-diffu/BE_C0.5/index.html


Damping of a discontinuity; Forward Euler simulation

Movie

http://tinyurl.com/k3sdbuv/pub/mov-diffu/FE_C0.5/index.html


Damping of a discontinuity; Crank-Nicolson simulation

Movie

http://tinyurl.com/k3sdbuv/pub/mov-diffu/CN_C5/index.html


Fourier representation

Represent I (x) as a Fourier series

I (x) ≈
∑
k∈K

bke
ikx (4)

The corresponding sum for u is

u(x , t) ≈
∑
k∈K

bke
−αk2te ikx . (5)

Such solutions are also accepted by the numerical schemes, but
with an amplification factor A different from exp (−αk2t):

unq = Ane ikq∆x = Ane ikx (6)



Analysis of the finite difference schemes

Stability:

|A| < 1: decaying numerical solutions (as we want)

A < 0: oscillating numerical solutions (as we do not want)

Accuracy:

Compare numerical and exact amplification factor: A vs
Ae = exp (−αk2∆t)



Analysis of the Forward Euler scheme

[D+
t u = αDxDxu]nq

Inserting

unq = Ane ikq∆x

leads to

A = 1− 4C sin2

(
k∆x

2

)
, C =

α∆t

∆x2
(7)

The complete numerical solution is

unq = (1− 4C sin2 p)ne ikq∆x , p = k∆x/2 (8)



Results for stability

We always have A ≤ 1. The condition A ≥ −1 implies

4C sin2 p ≤ 2

The worst case is when sin2 p = 1, so a sufficient criterion for
stability is

C ≤ 1

2
(9)

or:

∆t ≤ ∆x2

2α
(10)

Implications of the stability result.

Less favorable criterion than for utt = c2uxx : halving ∆x implies
time step 1

4 ∆t (not just 1
2 ∆t as in a wave equation). Need very

small time steps for fine spatial meshes!



Analysis of the Backward Euler scheme

[D−t u = αDxDxu]nq

unq = Ane ikq∆x

A = (1 + 4C sin2 p)−1 (11)

unq = (1 + 4C sin2 p)−ne ikq∆x (12)



Stability

We see from (11) that |A| < 1 for all ∆t > 0 and that A > 0 (no
oscillations).



Analysis of the Crank-Nicolson scheme

The scheme

[Dtu = αDxDxu
x ]

n+ 1
2

q

leads to

A =
1− 2C sin2 p

1 + 2C sin2 p
(13)

unq =

(
1− 2C sin2 p

1 + 2C sin2 p

)n

e ikp∆x (14)



Stability

The criteria A > −1 and A < 1 are fulfilled for any ∆t > 0.



Summary of accuracy of amplification factors; large time
steps
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Summary of accuracy of amplification factors; time steps
around the Forward Euler stability limit
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Summary of accuracy of amplification factors; small time
steps
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Observations

Crank-Nicolson gives oscillations and not much damping of
short waves for increasing C .

These waves will manifest themselves as high frequency
oscillatory noise in the solution.

All schemes fail to dampen short waves enough

The problems of correct damping for ut = uxx is partially
manifested in the similar time discretization schemes for
u′(t) = −αu(t).


