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1 Analysis of schemes for the diffusion equation

1.1 Properties of the solution

The PDE
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Ut = QUgy (1)

admits solutions

u(z,t) = Qe~*t sin (kx) (2)

Observations from this solution:

The initial shape I(z) = @ sin kx undergoes a damping exp (—ak?t)

The damping is very strong for short waves (large k)

The damping is weak for long waves (small k)

Consequence: u is smoothened with time

1.2 Example

Test problem:

Ut = Ugz, x e (0’1)7 te (OvT}
u(0,t) = u(l,t) =0, te (0,7
u(x,0) = sin(wx) + 0.1sin(1007x)

Exact solution:

u(zx,t) = e ™t sin(mx) + 0.1e" ™ 10% sin(1007x) (3)



1.3 Visualization of the damping in the diffusion equation
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1.4 Damping of a discontinuity; problem and model

Problem.

Two pieces of a material, at different temperatures, are brought in contact at ¢ = 0. Assume
the end points of the pieces are kept at the initial temperature. How does the heat flow from
L the hot to the cold piece?

Solution.
Assume a 1D model is sufficient (insulated rod):

N UL, = <Zl;/2
@, 0) = { Ugr, x=>1L/2
ou 0%u
ot @@7 u(0,t) =Ur, u(L,t) = Ug

1.5 Damping of a discontinuity; Backward Euler simulation
Movie!

Thttp://tinyurl.com/k3sdbuv/pub/mov-diffu/BE_CO.5/index.html



http://tinyurl.com/k3sdbuv/pub/mov-diffu/BE_C0.5/index.html

1.6 Damping of a discontinuity; Forward Euler simulation

Movie?

1.7 Damping of a discontinuity; Crank-Nicolson simulation

Movie?

1.8 Fourier representation
Represent I(z) as a Fourier series

I(z) =~ Z beth®

keK
The corresponding sum for u is

u(z,t) = Z bee O teikT

keK

(5)

Such solutions are also accepted by the numerical schemes, but with an amplification factor A

different from exp (—ak?t):

UZ — AnequAfc — Anezk,x

1.9 Analysis of the finite difference schemes
Stability:

e |A| < 1: decaying numerical solutions (as we want)

o A < 0: oscillating numerical solutions (as we do not want)

Accuracy:

e Compare numerical and exact amplification factor: A vs Ae = exp (—ak?At)

1.10 Analysis of the Forward Euler scheme
[Df u = aD,Dyul}
Inserting
UZ, _ Aneikqu
leads to

kAx alAt
1 N _aat
A=1-4Csin ( 9 ) , C= 5

The complete numerical solution is

ul = (1 —4Csin®p)"e™ 127 p = kAz/2

2http://tinyurl.com/k3sdbuv/pub/mov-diffu/FE_C0.5/index.html
3http://tinyurl.com/k3sdbuv/pub/mov-diffu/CN_C5/index.html

(6)


http://tinyurl.com/k3sdbuv/pub/mov-diffu/FE_C0.5/index.html
http://tinyurl.com/k3sdbuv/pub/mov-diffu/CN_C5/index.html

1.11 Results for stability

We always have A < 1. The condition A > —1 implies

4Csin2p <2

The worst case is when sin?p = 1, so a sufficient criterion for stability is

1
< =
< )
or:
Az?
< —
At < 50, (10)

Implications of the stability result.

Less favorable criterion than for u;; = c?uge: halving Az implies time step %At (not just
%At as in a wave equation). Need very small time steps for fine spatial meshes!

1.12 Analysis of the Backward Euler scheme
[Dy u = aD;Dyulg

u:; — AneikqAac
A= (1+4Csin?p)~! (11)
ug = (1+4C sin? p) ~"etkaAz (12)

1.13 Stability
We see from (11) that |A| < 1 for all A¢ > 0 and that A > 0 (no oscillations).

1.14 Analysis of the Crank-Nicolson scheme

The scheme
[Dju = aD, D, "]l "2
leads to

e 1—2Csin?p

== 13
1+2Csin?p (13)
1 _ 20 L 2 n )
e (14)
14+ 2Csin"p

1.15 Stability
The criteria A > —1 and A < 1 are fulfilled for any At > 0.
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1.16 Summary of accuracy of amplification factors; large time steps

—0.5 \
-1.01 \

0.0 0.5 1.0 1.5

. 2.0 2.5 3.0
p=kAx

0.0 0.5 1.0

15

. 2.0 2.5 3.0
p=kAx

1.17 Summary of accuracy of amplification factors; time steps around
the Forward Euler stability limit
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1.18 Summary of accuracy of amplification factors; small time steps
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1.19 Observations
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e Crank-Nicolson gives oscillations and not much damping of short waves for increasing C.

e These waves will manifest themselves as high frequency oscillatory noise in the solution.

e All schemes fail to dampen short waves enough

The problems of correct damping for u; = wu,, is partially manifested in the similar time

discretization schemes for v/ (t) = —awu(t).
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