Study Guide: Intro to Computing with Finite Difference Methods

Hans Petter Langtangen ${ }^{1,2}$
Center for Biomedical Computing, Simula Research Laboratory ${ }^{1}$
Department of Informatics, University of Oslo ${ }^{2}$

Dec 14, 2013

INF5620 in a nutshell

- Numerical methods for partial differential equations (PDEs)
- How to we solve a PDE in practice and produce numbers?
- How to we trust the answer?
- Approach: simplify, understand, generalize

After the course.

You see a PDE and can't wait to program a method and visualize a solution! Somebody asks if the solution is right and you can give convincing answer.

The new official six-point course description

After having completed INF5620 you

```
- can derive methods and implement them to solve frequently
arising partial differential equations (PDEs) from physics and
mechanics.
have a good understanding of finite difference and finite
element methods and how they are applied in linear and
nonlinear PDE problems.
```


The new official six-point course description

After having completed INF5620 you

- can derive methods and implement them to solve frequently arising partial differential equations (PDEs) from physics and mechanics.
- have a good understanding of finite difference and finite element methods and how they are applied in linear and nonlinear PDE problems.

The new official six-point course description

After having completed INF5620 you

- can derive methods and implement them to solve frequently arising partial differential equations (PDEs) from physics and mechanics.
- have a good understanding of finite difference and finite element methods and how they are applied in linear and nonlinear PDE problems.
- can identify numerical artifacts and perform mathematical analysis to understand and cure non-physical effects. modern, flexible simulation programs.

The new official six-point course description

After having completed INF5620 you

- can derive methods and implement them to solve frequently arising partial differential equations (PDEs) from physics and mechanics.
- have a good understanding of finite difference and finite element methods and how they are applied in linear and nonlinear PDE problems.
- can identify numerical artifacts and perform mathematical analysis to understand and cure non-physical effects.
- can apply sophisticated programming techniques in Python, combined with Cython, C, C++, and Fortran code, to create modern, flexible simulation programs.

The new official six-point course description

After having completed INF5620 you

- can derive methods and implement them to solve frequently arising partial differential equations (PDEs) from physics and mechanics.
- have a good understanding of finite difference and finite element methods and how they are applied in linear and nonlinear PDE problems.
- can identify numerical artifacts and perform mathematical analysis to understand and cure non-physical effects.
- can apply sophisticated programming techniques in Python, combined with Cython, C, C++, and Fortran code, to create modern, flexible simulation programs.
- can construct verification tests and automate them

The new official six-point course description

After having completed INF5620 you

- can derive methods and implement them to solve frequently arising partial differential equations (PDEs) from physics and mechanics.
- have a good understanding of finite difference and finite element methods and how they are applied in linear and nonlinear PDE problems.
- can identify numerical artifacts and perform mathematical analysis to understand and cure non-physical effects.
- can apply sophisticated programming techniques in Python, combined with Cython, C, C++, and Fortran code, to create modern, flexible simulation programs.
- can construct verification tests and automate them.
- have experience with project hosting sites (Bitbucket, GitHub), version control systems (Git), report writing (LATEX), and Python scripting for performing reproducible

The new official six-point course description

After having completed INF5620 you

- can derive methods and implement them to solve frequently arising partial differential equations (PDEs) from physics and mechanics.
- have a good understanding of finite difference and finite element methods and how they are applied in linear and nonlinear PDE problems.
- can identify numerical artifacts and perform mathematical analysis to understand and cure non-physical effects.
- can apply sophisticated programming techniques in Python, combined with Cython, C, C++, and Fortran code, to create modern, flexible simulation programs.
- can construct verification tests and automate them.
- have experience with project hosting sites (Bitbucket, GitHub), version control systems (Git), report writing (LATEX), and Python scripting for performing reproducible computational science.

More specific description of the contents; part 1

- Finite difference methods
- ODEs
- the wave equation $u_{t t}=u_{x x}$ in 1D, 2D, 3D
- the diffusion equation $u_{t}=u_{x x}$ in 1D, 2D, 3D
- write your own software from scratch
- understand how the methods work and why they fail
- Finite element methods for
- stationary diffusion equations $u_{x x}=f$ in 1 D
- time-dependent diffusion and wave equations in 1D
- PDEs in 2D and 3D by use of the FEniCS software
- perform hand-calculations, write your own software (1D)
- understand how the methods work and why they fail

More specific description of the contents; part 2

- Nonlinear PDEs
- Newton and Picard iteration methods, finite differences and elements
- More advanced PDEs for fluid flow and elasticity
- Parallel computing

Philosophy: simplify, understand, generalize

- Start with simplified ODE/PDE problems
- Learn to reason about the discretization
- Learn to implement, verify, and experiment
- Understand the method, program, and results
- Generalize the problem, method, and program

This is the power of applied mathematics!

The exam

- Oral exam
- 6 problems (topics) are announced two weeks before the exam - Work out a 20 min presentations (talks) for each problem

The exam

- Oral exam
- 6 problems (topics) are announced two weeks before the exam - Work out a 20 min presentations (talks) for each problem
- Oral exam
- 6 problems (topics) are announced two weeks before the exam
- Work out a 20 min presentations (talks) for each problem - At the exam: throw a die to pick your problem to be presented
- Oral exam
- 6 problems (topics) are announced two weeks before the exam
- Work out a 20 min presentations (talks) for each problem
- At the exam: throw a die to pick your problem to be presented
- Aids: plots, computer programs
- Oral exam
- 6 problems (topics) are announced two weeks before the exam
- Work out a 20 min presentations (talks) for each problem
- At the exam: throw a die to pick your problem to be presented
- Aids: plots, computer programs
- Why? Very effective way of learning
- Oral exam
- 6 problems (topics) are announced two weeks before the exam
- Work out a 20 min presentations (talks) for each problem
- At the exam: throw a die to pick your problem to be presented
- Aids: plots, computer programs
- Why? Very effective way of learning

- Oral exam
- 6 problems (topics) are announced two weeks before the exam
- Work out a 20 min presentations (talks) for each problem
- At the exam: throw a die to pick your problem to be presented
- Aids: plots, computer programs
- Why? Very effective way of learning
- Sure? Excellent results over 15 years
- When? Late december
- Oral exam
- 6 problems (topics) are announced two weeks before the exam
- Work out a 20 min presentations (talks) for each problem
- At the exam: throw a die to pick your problem to be presented
- Aids: plots, computer programs
- Why? Very effective way of learning
- Sure? Excellent results over 15 years
- When? Late december
- Oral exam
- 6 problems (topics) are announced two weeks before the exam
- Work out a 20 min presentations (talks) for each problem
- At the exam: throw a die to pick your problem to be presented
- Aids: plots, computer programs
- Why? Very effective way of learning
- Sure? Excellent results over 15 years
- When? Late december

Required software

- Our software platform: Python (sometimes combined with Cython, Fortran, C, C++)
- Important Python packages: numpy, scipy, matplotlib, sympy, fenics, scitools, ...
- Suggested installation: Run Ubuntu in a virtual machine
- Alternative: run a (course-specific) Vagrant machine

Assumed/ideal background

- INF1100: Python programming, solution of ODEs
- Some experience with finite difference methods
- Some analytical and numerical knowledge of PDEs
- Much experience with calculus and linear algebra
- Much experience with programming of mathematical problems
- Experience with mathematical modeling with PDEs (from physics, mechanics, geophysics, or ...)

What if you don't have this ideal background?

- Students come to this course with very different backgrounds
- First task: summarize assumed background knowledge by going through a simple example
- Also in this example:
- Some fundamental material on software implementation and software testing
- Material on analyzing numerical methods to understand why they can fail
- Applications to real-world problems

Start-up example

ODE problem.

$$
u^{\prime}=-a u, \quad u(0)=I, t \in(0, T]
$$

where $a>0$ is a constant.
Everything we do is motivated by what we need as building blocks for solving PDEs!

What to learn in the start-up example; standard topics

- How to think when constructing finite difference methods, with special focus on the Forward Euler, Backward Euler, and Crank-Nicolson (midpoint) schemes
- How to formulate a computational algorithm and translate it into Python code
- How to make curve plots of the solutions
- How to compute numerical errors
- How to compute convergence rates
- How to verify an implementation and automate verification through nose tests in Python
- How to structure code in terms of functions, classes, and modules
- How to work with Python concepts such as arrays, lists, dictionaries, lambda functions, functions in functions (closures), doctests, unit tests, command-line interfaces, graphical user interfaces
- How to perform array computing and understand the difference from scalar computing
- How to conduct and automate large-scale numerical experiments
- How to generate scientific reports

What to learn in the start-up example; mathematical analysis

- How to uncover numerical artifacts in the computed solution
- How to analyze the numerical schemes mathematically to understand why artifacts occur
- How to derive mathematical expressions for various measures of the error in numerical methods, frequently by using the sympy software for symbolic computation
- Introduce concepts such as finite difference operators, mesh (grid), mesh functions, stability, truncation error, consistency, and convergence
- Generalize the example to $u^{\prime}(t)=-a(t) u(t)+b(t)$
- Present additional methods for the general nonlinear ODE $u^{\prime}=f(u, t)$, which is either a scalar ODE or a system of ODEs
- How to access professional packages for solving ODEs
- How our model equations like $u^{\prime}=-a u$ arises in a wide range of phenomena in physics, biology, and finance

Finite difference methods

- The finite difference method is the simplest method for solving differential equations
- Fast to learn, derive, and implement
- A very useful tool to know, even if you aim at using the finite element or the finite volume method

- How to derive a finite difference discretization of an ODE
- Key concepts: mesh, mesh function, finite difference approximations
- The Forward Euler, Backward Euler, and Crank-Nicolson methods
- Finite difference operator notation
- How to derive an algorithm and implement it in Python
- How to test the implementation

A basic model for exponential decay

The world's simplest (?) ODE:

$$
u^{\prime}(t)=-a u(t), \quad u(0)=I, t \in(0, T]
$$

Observation.

We can learn a lot about numerical methods, computer implementation, program testing, and real applications of these tools by using this very simple ODE as example. The teaching principle is to keep the math as simple as possible while learning computer tools.

Applications

- Growth and decay of populations (cells, animals, human)
- Growth and decay of a fortune
- Radioactive decay
- Cooling/heating of an object
- Pressure variation in the atmosphere
- Vertical motion of a body in water/air
- Time-discretization of diffusion PDEs by Fourier techniques

See the text for details.

Continuous problem

$$
\begin{equation*}
u^{\prime}=-a u, t \in(0, T], \quad u(0)=1 . \tag{1}
\end{equation*}
$$

Solution of the continuous problem ("continuous solution"):

$$
u(t)=l e^{-a t}
$$

(special case that we can derive a formula for the discrete solution)
$u^{n} \approx u\left(t_{n}\right)$ means that u is found at discrete time points $t_{1}, t_{2}, t_{3}, \ldots$
Typical computational formula:

$$
u^{n+1}=A u^{n}
$$

The constant A depends on the type of finite difference method. Solution of the discrete problem ("discrete solution"):

$$
u^{n+1}=I A^{n}
$$

(special case that we can derive a formula for the discrete solution)

Solving a differential equation by a finite difference method consists of four steps:
(1) discretizing the domain,
(2) fulfilling the equation at discrete time points,
(3) replacing derivatives by finite differences,
(9) formulating a recursive algorithm.

The time domain $[0, T]$ is represented by a mesh: a finite number of $N_{t}+1$ points

$$
0=t_{0}<t_{1}<t_{2}<\cdots<t_{N_{t}-1}<t_{N_{t}}=T .
$$

- We seek the solution u at the mesh points: $u\left(t_{n}\right)$, $n=1,2, \ldots, N_{t}$.
- Note: u^{0} is known as I.
- Notational short-form for the numerical approximation to $u\left(t_{n}\right): u^{n}$
- In the differential equation: u is the exact solution
- In the numerical method and implementation: u^{n} is the numerical approximation, $u_{\mathrm{e}}(t)$ is the exact solution

Step 1: Discretizing the domain

u^{n} is a mesh function, defined at the mesh points $t_{n}, n=0, \ldots, N_{t}$ only.

What about a mesh function between the mesh points?

Can extend the mesh function to yield values between mesh points by linear interpolation:

$$
\begin{equation*}
u(t) \approx u^{n}+\frac{u^{n+1}-u^{n}}{t_{n+1}-t_{n}}\left(t-t_{n}\right) \tag{2}
\end{equation*}
$$

Step 2: Fulfilling the equation at discrete time points

- The ODE holds for all $t \in(0, T]$ (infinite no of points)
- Idea: let the ODE be valid at the mesh points only (finite no of points)

$$
\begin{equation*}
u^{\prime}\left(t_{n}\right)=-a u\left(t_{n}\right), \quad n=1, \ldots, N_{t} . \tag{3}
\end{equation*}
$$

Step 3: Replacing derivatives by finite differences

Now it is time for the finite difference approximations of derivatives:

$$
\begin{equation*}
u^{\prime}\left(t_{n}\right) \approx \frac{u^{n+1}-u^{n}}{t_{n+1}-t_{n}} \tag{4}
\end{equation*}
$$

Inserting the finite difference approximation in

$$
u^{\prime}\left(t_{n}\right)=-a u\left(t_{n}\right)
$$

gives

$$
\begin{equation*}
\frac{u^{n+1}-u^{n}}{t_{n+1}-t_{n}}=-a u^{n}, \quad n=0,1, \ldots, N_{t}-1 \tag{5}
\end{equation*}
$$

This is the

- discrete equation
- discrete problem
- finite difference method
- finite difference scheme
- How can we actually compute the u^{n} values?
- Fundamental structure:
- given $u^{0}=I$
- compute u^{1} from u^{0}
- compute u^{2} from u^{1}
- compute u^{3} from u^{2} (and so forth)
- In general: we have u^{n} and seek u^{n+1}

The Forward Euler scheme.

Solve wrt u^{n+1} to get the computational formula:

$$
\begin{equation*}
u^{n+1}=u^{n}-a\left(t_{n+1}-t_{n}\right) u^{n} . \tag{6}
\end{equation*}
$$

Assume constant time spacing: $\Delta t=t_{n+1}-t_{n}=$ const

$$
\begin{aligned}
u_{0} & =I \\
u_{1} & =u^{0}-a \Delta t u^{0}=I(1-a \Delta t) \\
u_{2} & =I(1-a \Delta t)^{2} \\
u^{3} & =I(1-a \Delta t)^{3} \\
& \vdots \\
u^{N_{t}} & =I(1-a \Delta t)^{N_{t}}
\end{aligned}
$$

Ooops - we can find the numerical solution by hand (in this simple example)! No need for a computer (yet)...

Here is another finite difference approximation to the derivative (backward difference):

$$
\begin{equation*}
u^{\prime}\left(t_{n}\right) \approx \frac{u^{n}-u^{n-1}}{t_{n}-t_{n-1}} \tag{7}
\end{equation*}
$$

Inserting the finite difference approximation in $u^{\prime}\left(t_{n}\right)=-a u\left(t_{n}\right)$ yields the Backward Euler (BE) scheme:

$$
\begin{equation*}
\frac{u^{n}-u^{n-1}}{t_{n}-t_{n-1}}=-a u^{n} \tag{8}
\end{equation*}
$$

Solve with respect to the unknown u^{n+1} :

$$
\begin{equation*}
u^{n+1}=\frac{1}{1+a\left(t_{n+1}-t_{n}\right)} u^{n} \tag{9}
\end{equation*}
$$

A centered difference

Centered differences are better approximations than forward or backward differences.

Idea 1: let the ODE hold at $t_{n+1 / 2}$

$$
u^{\prime}\left(t_{n+1 / 2}=-a u\left(t_{n+1 / 2}\right) .\right.
$$

Idea 2: approximate $u^{\prime}\left(t_{n+1 / 2}\right.$ by a centered difference

$$
\begin{equation*}
u^{\prime}\left(t_{n+\frac{1}{2}}\right) \approx \frac{u^{n+1}-u^{n}}{t_{n+1}-t_{n}} \tag{10}
\end{equation*}
$$

Problem: $u\left(t_{n+1 / 2}\right)$ is not defined, only $u^{n}=u\left(t_{n}\right)$ and $u^{n+1}=u\left(t_{n+1}\right)$
Solution:

$$
u\left(t_{n+1 / 2}\right) \approx \frac{1}{2}\left(u^{n}+u^{n+1}\right)
$$

Result:

$$
\begin{equation*}
\frac{u^{n+1}-u^{n}}{t_{n+1}-t_{n}}=-a \frac{1}{2}\left(u^{n}+u^{n+1}\right) \tag{11}
\end{equation*}
$$

Solve wrt to u^{n+1} :

$$
\begin{equation*}
u^{n+1}=\frac{1-\frac{1}{2} a\left(t_{n+1}-t_{n}\right)}{1+\frac{1}{2} a\left(t_{n+1}-t_{n}\right)} u^{n} . \tag{12}
\end{equation*}
$$

This is a Crank-Nicolson (CN) scheme or a midpoint or centered scheme.

The unifying θ-rule

The Forward Euler, Backward Euler, and Crank-Nicolson schemes can be formulated as one scheme with a varying parameter θ :

$$
\begin{equation*}
\frac{u^{n+1}-u^{n}}{t_{n+1}-t_{n}}=-a\left(\theta u^{n+1}+(1-\theta) u^{n}\right) \tag{13}
\end{equation*}
$$

- $\theta=0$: Forward Euler
- $\theta=1$: Backward Euler
- $\theta=1 / 2$: Crank-Nicolson
- We may alternatively choose any $\theta \in[0,1]$.
u^{n} is known, solve for u^{n+1} :

$$
\begin{equation*}
u^{n+1}=\frac{1-(1-\theta) a\left(t_{n+1}-t_{n}\right)}{1+\theta a\left(t_{n+1}-t_{n}\right)} \tag{14}
\end{equation*}
$$

Constant time step

Very common assumption (not important, but exclusively used for simplicity hereafter): constant time step $t_{n+1}-t_{n} \equiv \Delta t$

Summary of schemes for constant time step.

$$
\begin{array}{rlr}
u^{n+1} & =(1-a \Delta t) u^{n} & \text { Forward Euler } \\
u^{n+1} & =\frac{1}{1+a \Delta t} u^{n} & \text { Backward Euler } \\
u^{n+1} & =\frac{1-\frac{1}{2} a \Delta t}{1+\frac{1}{2} a \Delta t} u^{n} & \text { Crank-Nicolson } \\
u^{n+1} & =\frac{1-(1-\theta) a \Delta t}{1+\theta a \Delta t} u^{n} & \text { The } \theta-\text { rule } \tag{18}
\end{array}
$$

Test the understanding!

Derive Forward Euler, Backward Euler, and Crank-Nicolson schemes for Newton's law of cooling:

$$
T^{\prime}=-k\left(T-T_{s}\right), \quad T(0)=T_{0}, t \in\left(0, t_{\mathrm{end}}\right]
$$

Physical quantities:

- $T(t)$: temperature of an object at time t
- k : parameter expressing heat loss to the surroundings
- T_{s} : temperature of the surroundings
- T_{0} : initial temperature

Compact operator notation for finite differences

- Finite difference formulas can be tedious to write and read/understand
- Handy tool: finite difference operator notation
- Advantage: communicates the nature of the difference in a compact way

$$
\begin{equation*}
\left[D_{t}^{-} u=-a u\right]^{n} . \tag{19}
\end{equation*}
$$

Compact operator notation for difference operators

Forward difference:

$$
\begin{equation*}
\left[D_{t}^{+} u\right]^{n}=\frac{u^{n+1}-u^{n}}{\Delta t} \approx \frac{d}{d t} u\left(t_{n}\right) \tag{20}
\end{equation*}
$$

Centered difference:

$$
\begin{equation*}
\left[D_{t} u\right]^{n}=\frac{u^{n+\frac{1}{2}}-u^{n-\frac{1}{2}}}{\Delta t} \approx \frac{d}{d t} u\left(t_{n}\right) \tag{21}
\end{equation*}
$$

Backward difference:

$$
\begin{equation*}
\left[D_{t}^{-} u\right]^{n}=\frac{u^{n}-u^{n-1}}{\Delta t} \approx \frac{d}{d t} u\left(t_{n}\right) \tag{22}
\end{equation*}
$$

$$
\left[D_{t}^{-} u\right]^{n}=-a u^{n}
$$

Common to put the whole equation inside square brackets:

$$
\begin{equation*}
\left[D_{t}^{-} u=-a u\right]^{n} . \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\left[D_{t}^{+} u=-a u\right]^{n} . \tag{24}
\end{equation*}
$$

The Crank-Nicolson scheme with operator notation

Introduce an averaging operator:

$$
\begin{equation*}
\left[\bar{u}^{t}\right]^{n}=\frac{1}{2}\left(u^{n-\frac{1}{2}}+u^{n+\frac{1}{2}}\right) \approx u\left(t_{n}\right) \tag{25}
\end{equation*}
$$

The Crank-Nicolson scheme can then be written as

$$
\begin{equation*}
\left[D_{t} u=-a \bar{u}^{t}\right]^{n+\frac{1}{2}} \tag{26}
\end{equation*}
$$

Test: use the definitions and write out the above formula to see that it really is the Crank-Nicolson scheme!

Implementation

Model:

$$
u^{\prime}(t)=-a u(t), \quad t \in(0, T], \quad u(0)=I,
$$

Numerical method:

$$
u^{n+1}=\frac{1-(1-\theta) a \Delta t}{1+\theta a \Delta t} u^{n}
$$

for $\theta \in[0,1]$. Note

- $\theta=0$ gives Forward Euler
- $\theta=1$ gives Backward Euler
- $\theta=1 / 2$ gives Crank-Nicolson

Requirements of a program

- Compute the numerical solution $u^{n}, n=1,2, \ldots, N_{t}$
- Display the numerical and exact solution $u_{\mathrm{e}}(t)=e^{-a t}$
- Bring evidence to a correct implementation (verification)
- Compare the numerical and the exact solution in a plot
- computes the error $u_{\mathrm{e}}\left(t_{n}\right)-u^{n}$
- computes the convergence rate of the numerical scheme
- reads its input data from the command line
- Basic Python programming
- Array computing with numpy
- Plotting with matplotlib.pyplot and scitools
- File writing and reading
- Making command-line user interface via argparse.ArgumentParser
- Making graphical user interfaces via Parampool

Notice.

All programs are in the directory src/decay.

Why implement in Python?

- Python has a very clean, readable syntax (often known as "executable pseudo-code").
- Python code is very similar to MATLAB code (and MATLAB has a particularly widespread use for scientific computing).
- Python is a full-fledged, very powerful programming language.
- Python is similar to, but much simpler to work with and results in more reliable code than $\mathrm{C}++$.

Why implement in Python?

- Python has a rich set of modules for scientific computing, and its popularity in scientific computing is rapidly growing.
- Python was made for being combined with compiled languages (C, C ++ , Fortran) to reuse existing numerical software and to reach high computational performance of new implementations.
- Python has extensive support for administrative task needed when doing large-scale computational investigations.
- Python has extensive support for graphics (visualization, user interfaces, web applications).
- FEniCS, a very powerful tool for solving PDEs by the finite element method, is most human-efficient to operate from Python.

Algorithm

- Store $u^{n}, n=0,1, \ldots, N_{t}$ in an array u.
- Algorithm:
(1) initialize u^{0}
(2) for $t=t_{n}, n=1,2, \ldots, N_{t}$: compute u_{n} using the θ-rule formula

Translation to Python function

```
from numpy import *
def solver(I, a, T, dt, theta):
    """Solve u'=-a*u, u(O)=I, for t in (O,T] with steps of dt."""
    Nt = int(T/dt) # no of time intervals
    T = Nt*dt # adjust T to fit time step dt
    u = zeros(Nt+1) # array of u[n] values
    t = linspace(0, T, Nt+1) # time mesh
    u[0] = I # assign initial condition
    for n in range(0, Nt): # n=0,1,...,Nt-1
    u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
    return u, t
```

Note about the for loop: range($0, \mathrm{Nt}, \mathrm{s}$) generates all integers from 0 to Nt in steps of s (default 1), but not including Nt (!). Sample call:
$\mathrm{u}, \mathrm{t}=\operatorname{solver}(\mathrm{I}=1, \mathrm{a}=2, \mathrm{~T}=8$, $\mathrm{dt}=0.8$, theta=1)

Integer division

Python applies integer division: $1 / 2$ is 0 , while $1 . / 2$ or $1.0 / 2$ or $1 / 2$. or $1 / 2.0$ or $1.0 / 2.0$ all give 0.5 .
A safer solver function ($d t=f l o a t(d t)$ - guarantee float):
from numpy import *

```
def solver(I, a, T, dt, theta):
    """Solve u'=-a*u, u(0)=I, for t in (O,T] with steps of dt."""
    dt = float(dt) # avoid integer division
    Nt = int(round(T/dt)) # no of time intervals
    T = Nt*dt # adjust T to fit time step dt
    u = zeros(Nt+1) # array of u[n] values
    t = linspace(0, T, Nt+1) # time mesh
    u[0] = I # assign initial condition
    for n in range(0, Nt): # n=0,1,\ldots,Nt-1
        u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
    return u, t
```

- First string after the function heading
- Used for documenting the function
- Automatic documentation tools can make fancy manuals for you
- Can be used for automatic testing

```
def solver(I, a, T, dt, theta):
    |||
    Solve
        u'(t) = -a*u(t),
    with initial condition u(0)=I, for t in the time interval
    (O,T]. The time interval is divided into time steps of
    length dt.
    theta=1 corresponds to the Backward Euler scheme, theta=0
    to the Forward Euler scheme, and theta=0.5 to the Crank-
    Nicolson method.
    | | |
```

 . . .

Formatting of numbers

Can control formatting of reals and integers through the printf format:
print 't=\%6.3f u=\%g' \% (t[i], u[i])

Or the alternative format string syntax:

$$
\text { print 't=\{t:6.3f\} } \left.u=\{u: g\}^{\prime} \text {.format (t=t[i], } u=u[i]\right)
$$

Running the program

How to run the program decay_v1.py:
Terminal> python decay_v1.py
Can also run it as "normal" Unix programs: ./decay_v1.py if the first line is

```
'#!/usr/bin/env python'
```

Then
Terminal> chmod a+rx decay_v1.py
Terminal> ./decay_v1.py

Verifying the implementation

- Verification $=$ bring evidence that the program works
- Find suitable test problems
- Make function for each test problem
- Later: put the verification tests in a professional testing framework

Use a calculator $(I=0.1, \theta=0.8, \Delta t=0.8)$:

$$
A \equiv \frac{1-(1-\theta) a \Delta t}{1+\theta a \Delta t}=0.298245614035
$$

$$
\begin{aligned}
& u^{1}=A I=0.0298245614035 \\
& u^{2}=A u^{1}=0.00889504462912 \\
& u^{3}=A u^{2}=0.00265290804728
\end{aligned}
$$

See the function verify_three_steps in decay_verf1.py.

Comparison with an exact discrete solution

Best verification.

Compare computed numerical solution with a closed-form exact discrete solution (if possible).

Define

$$
A=\frac{1-(1-\theta) a \Delta t}{1+\theta a \Delta t} .
$$

Repeated use of the θ-rule:

$$
\begin{aligned}
& u^{0}=I \\
& u^{1}=A u^{0}=A I, \\
& u^{n}=A^{n} u^{n-1}=A^{n} I
\end{aligned}
$$

Making a test based on an exact discrete solution

The exact discrete solution as

$$
\begin{equation*}
u^{n}=I A^{n} . \tag{27}
\end{equation*}
$$

Question.
Understand what n in u^{n} and in A^{n} means!
Test if

$$
\max _{n}\left|u^{n}-u_{\mathrm{e}}\left(t_{n}\right)\right|<\epsilon \sim 10^{-15}
$$

Implementation in decay_verf2.py.

Test the understanding!

Make a program for solving Newton's law of cooling

$$
T^{\prime}=-k\left(T-T_{s}\right), \quad T(0)=T_{0}, t \in\left(0, t_{\text {end }}\right]
$$

with the Forward Euler, Backward Euler, and Crank-Nicolson schemes (or a θ scheme). Verify the implementation.

Computing the numerical error as a mesh function

Task: compute the numerical error $e^{n}=u_{\mathrm{e}}\left(t_{n}\right)-u^{n}$
Exact solution: $u_{\mathrm{e}}(t)=l e^{-a t}$, implemented as

```
def exact_solution(t, I, a):
    return I*exp(-a*t)
```

Compute e^{n} by

```
u, t = solver(I, a, T, dt, theta) # Numerical solution
u_e = exact_solution(t, I, a)
e = u_e - u
```


Array arithmetics - we compute on entire arrays!

- exact_solution(t, I, a) works with t as array
- Must have exp from numpy (not math)
- e = u_e - u: array subtraction
- Array arithmetics gives shorter and much faster code

Computing the norm of the error

- e^{n} is a mesh function
- Usually we want one number for the error
- Use a norm of e^{n}

Norms of a function $f(t)$:

$$
\begin{align*}
\|f\|_{L^{2}} & =\left(\int_{0}^{T} f(t)^{2} d t\right)^{1 / 2} \tag{28}\\
\|f\|_{L^{1}} & =\int_{0}^{T}|f(t)| d t \tag{29}\\
\|f\|_{L^{\infty}} & =\max _{t \in[0, T]}|f(t)| \tag{30}
\end{align*}
$$

- Problem: $f^{n}=f\left(t_{n}\right)$ is a mesh function and hence not defined for all t. How to integrate f^{n} ?
- Idea: Apply a numerical integration rule, using only the mesh points of the mesh function.

The Trapezoidal rule:

$$
\left\|f^{n}\right\|=\left(\Delta t\left(\frac{1}{2}\left(f^{0}\right)^{2}+\frac{1}{2}\left(f^{N_{t}}\right)^{2}+\sum_{n=1}^{N_{t}-1}\left(f^{n}\right)^{2}\right)\right)^{1 / 2}
$$

Common simplification yields the L^{2} norm of a mesh function:

$$
\left\|f^{n}\right\|_{\ell^{2}}=\left(\Delta t \sum_{n=0}^{N_{t}}\left(f^{n}\right)^{2}\right)^{1 / 2}
$$

Implementation of the norm of the error

$$
E=\left\|e^{n}\right\|_{\ell^{2}}=\sqrt{\Delta t \sum_{n=0}^{N_{t}}\left(e^{n}\right)^{2}}
$$

Python w/array arithmetics:

$$
\begin{aligned}
& \mathrm{e}=\mathrm{u}_{-} \operatorname{exact}(\mathrm{t})-\mathrm{u} \\
& \mathrm{E}=\operatorname{sqrt}(\mathrm{dt} * \operatorname{sum}(\mathrm{e} * * 2))
\end{aligned}
$$

Comment on array vs scalar computation

Scalar computing of $\mathrm{E}=\operatorname{sqrt}(\mathrm{dt} *$ sum $(\mathrm{e} * * 2)$):

```
\(\mathrm{m}=\operatorname{len}(\mathrm{u}) \quad \#\) length of \(u\) array (alt: u.size)
u_e \(=\operatorname{zeros}(\mathrm{m})\)
\(\mathrm{t}=0\)
for \(i\) in range(m):
    u_e[i] = exact_solution(t, a, I)
    \(\mathrm{t}=\mathrm{t}+\mathrm{dt}\)
\(\mathrm{e}=\operatorname{zeros}(\mathrm{m})\)
for i in range(m):
        \(e[i]=u_{-} e[i]-u[i]\)
\(\mathrm{s}=0\) \# summation variable
for \(i\) in range(m):
    \(s=s+e[i] * * 2\)
error \(=\operatorname{sqrt}(\mathrm{dt} * \mathrm{~s})\)
```

Obviously, scalar computing

- takes more code
- is less readable
- runs much slower

Rule.

Compute on entire arrays (when possible)!

Plotting solutions

Basic plotting with Matplotlib is much like MATLAB plotting
from matplotlib.pyplot import *
plot(t, u)
show ()
Compare u curve with $u_{\mathrm{e}}(t)$:
$t_{\text {_e }}=\operatorname{linspace}(0, \mathrm{~T}, 1001)$
u_{-}= exact_solution(t_e, I, a)
plot (t_e, u_e, 'b-')
plot(t, u, 'r--o')
\# fine mesh
\# blue line for u_e
\# red dashes w/circles

- Use different line types
- Add axis labels
- Add curve legends
- Add plot title
- Save plot to file

```
from matplotlib.pyplot import *
```

```
figure()
```

figure()
t_e = linspace(0, T, 1001)
t_e = linspace(0, T, 1001)
u_e = exact_solution(t_e, I, a)
u_e = exact_solution(t_e, I, a)
plot(t, u, 'r--o') \# red dashes w/circles
plot(t, u, 'r--o') \# red dashes w/circles
plot(t_e, u_e, 'b-') \# blue line for exact sol.
plot(t_e, u_e, 'b-') \# blue line for exact sol.
legend(['numerical', 'exact'])
legend(['numerical', 'exact'])
xlabel('t')
xlabel('t')
ylabel('u')
ylabel('u')
title('theta=%g, dt=%g' % (theta, dt))
title('theta=%g, dt=%g' % (theta, dt))
savefig(%%s_%g.png' % (theta, dt))
savefig(%%s_%g.png' % (theta, dt))
show()

```
show()
```

See complete code in decay_plot_mpl.py.

SciTools provides a unified plotting interface (Easyviz) to many different plotting packages: Matplotlib, Gnuplot, Grace, VTK, OpenDX, ...
Can use Matplotlib (MATLAB-like) syntax, or a more compact plot function syntax:

```
from scitools.std import *
plot(t, u, 'r--o', # red dashes w/circles
    t_e, u_e, 'b-', # blue line for exact sol.
    legend=['numerical', 'exact'],
    xlabel='t',
    ylabel='u',
    title='theta=%g, dt=%g' % (theta, dt),
    savefig='%s_%g.png' % (theta2name[theta], dt),
    show=True)
```

Complete code in decay_plot_st.py.
Change backend (plotting engine, Matplotlib by default):
Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend gnuplot
Terminal> python decay_plot_st.py --SCITOOLS_easyviz_backend grace

Creating user interfaces

- Never edit the program to change input!
- Set input data on the command line or in a graphical user interface
- How is explained next

Accessing command-line arguments

- All command-line arguments are available in sys.argv
- sys.argv[0] is the program
- sys.argv[1:] holds the command-line arguments
- Method 1: fixed sequence of parameters on the command line
- Method 2: --option value pairs on the command line (with default values)

Terminal> python myprog.py 1.520 .50 .80 .4
Terminal> python myprog.py --I 1.5 --a 2 --dt 0.80 .4

Reading a sequence of command-line arguments

The program decay_plot_mpl.py needs this input:

- I
- a
- T
- an option to turn the plot on or off (makeplot)
- a list of Δt values

Give these on the command line in correct sequence
Terminal> python decay_cml.py 1.520 .50 .80 .4

Implementation

```
import sys
def read_command_line():
    if len(sys.argv) < 6:
        print 'Usage: %s I a T on/off dt1 dt2 dt3 ...' % \
        sys.argv[0]; sys.exit(1) # abort
    I = float(sys.argv[1])
    a = float(sys.argv[2])
    T = float(sys.argv[3])
    makeplot = sys.argv[4] in ('on', 'True')
    dt_values = [float(arg) for arg in sys.argv[5:]]
    return I, a, T, makeplot, dt_values
```

Note:

- sys.argv[i] is always a string
- Must explicitly convert to (e.g.) float for computations
- List comprehensions make lists:
[expression for e in somelist]
Complete program: decay_cml.py.

Working with an argument parser

Set option-value pairs on the command line if the default value is not suitable:
Terminal> python decay_argparse.py --I 1.5 --a 2 --dt 0.80 .4
Code:

```
def define_command_line_options():
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('--I', '--initial_condition', type=float,
    default=1.0, help='initial condition, \(u(0)\)
    metavar='I')
parser.add_argument('--a', type=float,
    default=1.0, help='coefficient in ODE',
    metavar='a')
parser.add_argument('--T', '--stop_time', type=float,
    default=1.0, help='end time of simulation',
    metavar='T')
parser.add_argument('--makeplot', action='store_true',
    help='display plot or not')
parser.add_argument('--dt', '--time_step_values', type=float,
    default=[1.0], help='time step values',
    metavar='dt', nargs='+', dest='dt_values')
```

 return parser
 (metavar is the symbol used in help output)

Reading option-values pairs

argparse.ArgumentParser parses the command-line arguments:

```
def read_command_line():
    parser = define_command_line_options()
    args = parser.parse_args()
    print 'I={}, a={}, T={}, makeplot={}, dt_values={}'.format(
        args.I, args.a, args.T, args.makeplot, args.dt_values)
    return args.I, args.a, args.T, args.makeplot, args.dt_values
```

Complete program: decay_argparse.py.

A graphical user interface

Input:

| I | $\boxed{1.0}$ |
| :--- | :--- | :--- |
| a | 0.2 |
| T | 4.0 |
| dt_values | $[1.25,0.5]$ |
| theta_values | $[1,0.5]$ |

Compute

Results:

BE, $\mathrm{dt}=1.25$, error: 0.062653947195

BE, $\mathbf{d t = 0 . 5}$, error: $\mathbf{0 . 0 2 6 1 8 2 7 9 2 0 1 4 8}$

CN, dt=1.25, error: $\mathbf{0 . 0 0 2 9 6 6 0 8 9 8 1 9 3 2}$

CN, dt=0.5, error: $\mathbf{0 . 0 0 0 4 5 9 5 6 8 3 4 5 2 0 6}$

Normally very much programming required - and much competence on graphical user interfaces. Here: use a tool to automatically create it in a few minutes (!)

The Parampool package

- Parampool is a package for handling a large pool of input parameters in simulation programs
- Parampool can automatically create a sophisticated web-based graphical user interface (GUI) to set parameters and view solutions

Remark.

The forthcoming material aims at those with particular interest in equipping their programs with a GUI - others can safely skip it.

Making a compute function

- Key concept: a compute function that takes all input data as arguments and returning HTML code for viewing the results (e.g., plots and numbers)
- What we have: decay_plot_mpl.py
- main function carries out simulations and plotting for a series of Δt values
- Goal: steer and view these experiments from a web GUI
- What to do:
- create a compute function
- call parampool functionality

The compute function main_GUI:

```
def main_GUI(I=1.0, a=.2, T=4.0,
    dt_values=[1.25, 0.75, 0.5, 0.1],
    theta_values=[0, 0.5, 1]):
```


The hard part of the compute function: the HTML code

- The results are to be displayed in a web page
- Only you know what to display in your problem
- Therefore, you need to specify the HTML code

Suppose explore solves the problem, makes a plot, computes the error and returns appropriate HTML code with the plot. Embed error and plots in a table:

```
def main_GUI(I=1.0, a=.2, T=4.0,
            dt_values=[1.25, 0.75, 0.5, 0.1],
            theta_values=[0, 0.5, 1]):
    # Build HTML code for web page. Arrange plots in columns
    # corresponding to the theta values, with dt down the rows
    theta2name = {0: 'FE', 1: 'BE', 0.5: 'CN'}
    html_text = '<table>\n'
    for dt in dt_values:
        html_text += '<tr>\n'
        for theta in theta_values:
            E, html = explore(I, a, T, dt, theta, makeplot=True)
            html_text += """
<td>
<center><b>%s, dt=%g, error: %s</b></center><br>
%s
</td>
""" % (theta2name[theta], dt, E, html)
    html_text += '</tr>\n'
```

In explore:

```
    import matplotlib.pyplot as plt
    # plot
    plt.plot(t, u, r-')
    plt.xlabel('t')
    plt.ylabel('u')
    from parampool.utils import save_png_to_str
    html_text = save_png_to_str(plt, plotwidth=400)
```

If you know HTML, you can return more sophisticated layout etc.

Make a file decay_GUI_generate.py:

```
from parampool.generator.flask import generate
from decay_GUI import main
generate(main,
    output_controller='decay_GUI_controller.py',
    output_template='decay_GUI_view.py',
    output_model='decay_GUI_model.py')
```

Running decay_GUI_generate.py results in
(1) decay_GUI_model.py defines HTML widgets to be used to set input data in the web interface,
(2) templates/decay_GUI_views.py defines the layout of the web page,
(3) decay_GUI_controller.py runs the web application.

Good news: we only need to run decay_GUI_controller.py and there is no need to look into any of these files!

Running the web application

Start the GUI

Terminal> python decay_GUI_controller.py
Open a web browser at 127.0.0.1:5000

Input:

Results:

1.0	-
0.2	-
4.0	-
[1.25, 0.5]	

Compute

BE, $\mathrm{dt}=1.25$, error: 0.062653947195

BE, $\mathrm{dt}=\mathbf{0 . 5}$, error: 0.0261827920148

$\mathrm{CN}, \mathrm{dt}=1.25$, error: $\mathbf{0 . 0 0 2 9 6 6 0 8 9 8 1 9 3 2}$

CN, dt=0.5, error: 0.000459568345206

More advanced use

- The compute function can have arguments of type float, int, string, list, dict, numpy array, filename (file upload)
- Alternative: specify a hierarchy of input parameters with name, default value, data type, widget type, unit ($\mathrm{m}, \mathrm{kg}, \mathrm{s}$), validity check
- The generated web GUI can have user accounts with login and storage of results in a database

Computing convergence rates

Frequent assumption on the relation between the numerical error E and some discretization parameter Δt :

$$
\begin{equation*}
E=C \Delta t^{r} \tag{31}
\end{equation*}
$$

- Unknown: C and r.
- Goal: estimate r (and C) from numerical experiments

Estimating the convergence rate r

Perform numerical experiments: $\left(\Delta t_{i}, E_{i}\right), i=0, \ldots, m-1$. Two methods for finding r (and C):
(1) Take the logarithm of (31), $\ln E=r \ln \Delta t+\ln C$, and fit a straight line to the data points $\left(\Delta t_{i}, E_{i}\right), i=0, \ldots, m-1$.
(2) Consider two consecutive experiments, $\left(\Delta t_{i}, E_{i}\right)$ and $\left(\Delta t_{i-1}, E_{i-1}\right)$. Dividing the equation $E_{i-1}=C \Delta t_{i-1}^{r}$ by $E_{i}=C \Delta t_{i}^{r}$ and solving for r yields

$$
\begin{equation*}
r_{i-1}=\frac{\ln \left(E_{i-1} / E_{i}\right)}{\ln \left(\Delta t_{i-1} / \Delta t_{i}\right)} \tag{32}
\end{equation*}
$$

for $i=1,=\ldots, m-1$.
Method 2 is best.

Implementation

Compute $r_{0}, r_{1}, \ldots, r_{m-2}$:

```
from math import log
def main():
    I, a, T, makeplot, dt_values = read_command_line()
    r = {} # estimated convergence rates
    for theta in 0, 0.5, 1:
        E_values = []
        for dt in dt_values:
                        E = explore(I, a, T, dt, theta, makeplot=False)
                E_values.append(E)
            # Compute convergence rates
            m = len(dt_values)
            r[theta] = [log(E_values[i-1]/E_values[i])/
                        log(dt_values[i-1]/dt_values[i])
                        for i in range(1, m, 1)]
    for theta in r:
        print '\nPairwise convergence rates for theta=%g:' % theta
        print , '.join([%%.2f, % r_ for r_ in r[theta]])
    return r
```

Complete program: decay_convrate.py.

Execution

Terminal> python decay_convrate.py --dt 0.50 .250 .10 .050 .0250 .01
Pairwise convergence rates for theta=0:
1.331 .151 .071 .031 .02

Pairwise convergence rates for theta=0.5:
2.142 .072 .032 .012 .01

Pairwise convergence rates for theta=1:
0.980 .990 .991 .001 .00

Strong verification method.

Verify that r has the expected value!

Debugging via convergence rates

Potential bug: missing a in the denominator,

$$
u[n+1]=(1-(1-\text { theta }) * a * d t) /(1+\text { theta } a d t) * u[n]
$$

Running decay_convrate.py gives same rates.
Why? The value of $a \ldots \quad(a=1)$
0 and 1 are bad values in tests!
Better:
Terminal> python decay_convrate.py --a 2.1 --I 0.1 \} --dt 0.50 .250 .10 .050 .0250 .01

Pairwise convergence rates for theta=0:
1.491 .181 .071 .041 .02

Pairwise convergence rates for theta=0.5:
$-1.42-0.22-0.07-0.03-0.01$
Pairwise convergence rates for theta=1:
0.210 .120 .060 .030 .01

Forward Euler works...because $\theta=0$ hides the bug.
This bug gives $r \approx 0$:

$$
u[n+1]=((1-\text { theta }) * a * d t) /(1+\text { theta } * d t * a) * u[n]
$$

Memory-saving implementation

- Note 1: we store the entire array u, i.e., u^{n} for $n=0,1, \ldots, N_{t}$
- Note 2: the formula for u^{n+1} needs u^{n} only, not u^{n-1}, u^{n-2},
- No need to store more than u^{n+1} and u^{n}
- Extremely important when solving PDEs
- No practical importance here (much memory available)
- But let's illustrate how to do save memory!
- Idea 1: store u^{n+1} in u, u^{n} in u_1 (float)
- Idea 2: store u in a file, read file later for plotting

Memory-saving solver function

def solver_memsave(I, a, T, dt, theta, filename='sol.dat'): """

Solve $u^{\prime}=-a * u, u(0)=I$, for t in ($\left.0, T\right]$ with steps of $d t$. Minimum use of memory. The solution is stored in a file (with name filename) for later plotting. """

```
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of intervals
```

```
outfile = open(filename, 'w')
```

\# u: time level $n+1, u_{-} 1:$ time level n
$\mathrm{t}=0$
$u_{-1}=I$
outfile.write($\%$. 16E \%.16E n' $^{\prime} \%$ (t, u_1))
for n in range (1, $\mathrm{Nt}+1$):
$\mathrm{u}=(1-(1$-theta $) * \mathrm{a} * \mathrm{dt}) /\left(1+\right.$ theta*dt*a) $* \mathrm{u}_{-} 1$
$\mathrm{u}_{\mathrm{-}} 1$ = u
$\mathrm{t}+=\mathrm{dt}$
outfile.write($\%$. 16E \%.16E $\backslash n$ ' \% (t, u))
outfile.close()
return u, t

```
def read_file(filename='sol.dat'):
    infile = open(filename, 'r')
    u = []; t = []
    for line in infile:
        words = line.split()
        if len(words) != 2:
            print 'Found more than two numbers on a line!', words
            sys.exit(1) # abort
        t.append(float(words[0]))
        u.append(float(words[1]))
    return np.array(t), np.array(u)
```

Simpler code with numpy functionality for reading/writing tabular data:

```
def read_file_numpy(filename='sol.dat'):
    data \(=n p . l o a d t x t(f i l e n a m e)\)
    \(\mathrm{t}=\operatorname{data}[:, 0]\)
    \(\mathrm{u}=\operatorname{data}[:, 1]\)
    return t, u
```

Similar function np.savetxt, but then we need all u^{n} and t^{n} values in a two-dimensional array (which we try to prevent now!).

Usage of memory-saving code

```
def explore(I, a, T, dt, theta=0.5, makeplot=True):
    filename = 'u.dat'
    u, t = solver_memsave(I, a, T, dt, theta, filename)
    t, u = read_file(filename)
    u_e = exact_solution(t, I, a)
    e = u_e - u
    E = np.sqrt(dt*np.sum(e**2))
    if makeplot:
        plt.figure()
```

Complete program: decay_memsave.py.

Goal: make more professional numerical software. Topics:

- How to make modules (reusable libraries)
- Testing frameworks (doctest, nose, unittest)
- Implementation with classes

Making a module

- Previous programs: much repetitive code (esp. solver)
- DRY (Don't Repeat Yourself) principle: no copies of code
- A change needs to be done in one and only one place
- Module $=$ just a file with functions (reused through import)
- Let's make a module by putting these functions in a file:
- solver
- verify_three_steps
- verify_discrete_solution
- explore
- define_command_line_options
- read_command_line
- main (with convergence rates)
- verify_convergence_rate

Module name: decay_mod, filename: decay_mod.py.
Sketch:
from numpy import *
from matplotlib.pyplot import *
import sys
def solver(I, a, T, dt, theta):

Prefixing imported functions by the module name

```
from numpy import *
from matplotlib.pyplot import *
```

This imports a large number of names (sin, exp, linspace, plot, ...).
Confusion: is a function from'numpy'? Or matplotlib.pyplot? Alternative (recommended) import:

```
import numpy
import matplotlib.pyplot
```

Now we need to prefix functions with module name:

```
t = numpy.linspace(0, T, Nt+1)
u_e = I*numpy.exp(-a*t)
matplotlib.pyplot.plot(t, u_e)
```

Common standard:

```
import numpy as np
import matplotlib.pyplot as plt
t = np.linspace(0, T, Nt+1)
u_e = I*np.exp(-a*t)
plt.plot(t, u_e)
```


Downside of module prefix notation

A math line like $e^{-a t} \sin (2 \pi t)$ gets cluttered with module names,

```
numpy.exp(-a*t)*numpy.sin(2(numpy.pi*t)
# or
np}\cdot\operatorname{exp}(-a*t)*np.\operatorname{sin}(2*np.pi*t
```

Solution (much used in this course): do two imports

```
import numpy as np
from numpy import exp, sin, pi
t = np.linspace(0, T, Nt+1)
u_e = exp(-a*t)*sin(2*pi*t)
```

Doc strings can be equipped with interactive Python sessions for demonstrating usage and automatic testing of functions.

```
def solver(I, a, T, dt, theta):
    |||
    Solve u'=-a*u, u(0)=I, for t in (O,T] with steps of dt.
    >> u, t = solver(I=0.8, a=1.2, T=4, dt=0.5, theta=0.5)
    >> for t_n, u_n in zip(t, u):
    ... print 't=%.1f, u=%.14f'% (t_n, u_n)
    t=0.0, u=0.800000000000000
    t=0.5,u=0.43076923076923
    t=1.0,u=0.23195266272189
    t=1.5,u=0.12489758761948
    t=2.0,u=0.06725254717972
    t=2.5, u=0.03621291001985
    t=3.0,u=0.01949925924146
    t=3.5,u=0.01049960113002
    t=4.0,u=0.00565363137770
    """"
```

Automatic check that the code reproduces the doctest output:
Terminal> python -m doctest decay_mod_doctest.py
Report in case of failure:
Terminal> python -m doctest decay_mod_doctest.py
$* *$
File "decay_mod_doctest.py", line 12, in decay_mod_doctest....
Failed example:
for $t_{-n}, u_{-} n$ in $\operatorname{zip}(t, u)$:
print ${ }^{\prime} t=\% .1 f, u=\% .14 f$, $\%$ (t_n, u_n)
Expected:
$t=0.0, u=0.80000000000000$
$\mathrm{t}=0.5, \mathrm{u}=0.43076923076923$
$\mathrm{t}=1.0, \mathrm{u}=0.23195266272189$
$\mathrm{t}=1.5, \mathrm{u}=0.12489758761948$
$\mathrm{t}=2.0, \mathrm{u}=0.06725254717972$
Got:
$t=0.0, u=0.80000000000000$
$\mathrm{t}=0.5, \mathrm{u}=0.43076923076923$
$\mathrm{t}=1.0, \mathrm{u}=0.23195266272189$
$\mathrm{t}=1.5, \mathrm{u}=0.12489758761948$
$\mathrm{t}=2.0, \mathrm{u}=0.06725254718756$

```
1 items had failures:
    1 of 2 in decay_mod_doctest.solver
***Test Failed*** 1 failures.
```


Floats are difficult to compare.

Unit testing with nose

- Nose is a very user-friendly testing framework
- Based on unit testing
- Identify (small) units of code and test each unit
- Nose automates running all tests
- Good habit: run all tests after (small) edits of a code
- Even better habit: write tests before the code (!)
- Remark: unit testing in scientific computing is not yet well established

Basic use of nose

(1) Implement tests in test functions with names starting with test_.
(2) Test functions cannot have arguments.
(3) Test functions perform assertions on computed results using assert functions from the nose.tools module.
(9) Test functions can be in the source code files or be collected in separate files test*.py.

Very simple module mymod (in file mymod.py):
def double(n): return $2 *$ n

Write test function in mymod.py:

```
def double(n):
    return 2*n
import nose.tools as nt
def test_double():
    result = double(4)
    nt.assert_equal(result, 8)
```

Running
Terminal> nosetests -s mymod
makes the nose tool run all test_*() functions in mymod.py.

Example on a nose test in a separate file

Write the test in a separate file, say test_mymod.py:

```
import nose.tools as nt
import mymod
def test_double():
    result = mymod.double(4)
    nt.assert_equal(result, 8)
```

Running
Terminal> nosetests -s
makes the nose tool run all test_*() functions in all files test*.py in the current directory and in all subdirectories (recursevely) with names tests or *_tests.

Tip.
Start with test functions in the source code file. When the file contains many tests, or when you have many source code files, move tests to separate files.

- Put test_*() functions in the module
- When you get many test_*() functions, collect them in tests/test*.py

Alternative ways of raising AssertionError if result is not 8:

```
import nose.tools as nt
def test_double():
    result = ...
    nt.assert_equal(result, 8) # alternative 1
    assert result == 8 # alternative 2
    if result != 8: # alternative 3
            raise AssertionError()
```


Advantages of nose

- Easier to use than other test frameworks
- Tests are written and collected in a compact and structured way
- Large collections of tests, scattered throughout a directory tree can be executed with one command (nosetests -s)
- Nose is a much-adopted standard

Aim: test function solver for $u^{\prime}=-a u, u(0)=I$.
We design three unit tests:
(1) A comparison between the computed u^{n} values and the exact discrete solution
(2) A comparison between the computed u^{n} values and precomputed verified reference values
(3) A comparison between observed and expected convergence rates

These tests follow very closely the previous verify* functions.

```
import nose.tools as nt
import decay_mod_unittest as decay_mod
import numpy as np
def exact_discrete_solution(n, I, a, theta, dt):
    """Return exact discrete solution of the theta scheme."""
    dt = float(dt) # avoid integer division
    factor = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
    return I*factor**n
def test_exact_discrete_solution():
    """
    Compare result from solver against
    formula for the discrete solution.
    theta = 0.8; a = 2; I = 0.1; dt = 0.8
    N = int(8/dt) # no of steps
    u, t = decay_mod.solver(I=I, a=a, T=N*dt, dt=dt, theta=theta)
    u_de = np.array([exact_discrete_solution(n, I, a, theta, dt)
    for n in range(N+1)])
    diff = np.abs(u_de - u).max()
    nt.assert_almost_equal(diff, 0, delta=1E-14)
```

- Round-off errors make exact comparison of floats unreliable
- nt.assert_almost_equal: compare two floats to some digits or precision

```
def test_solver():
    """
    Compare result from solver against
    precomputed arrays for theta=0, 0.5, 1.
    I=0.8; a=1.2; T=4; dt=0.5 # fixed parameters
    precomputed = {
    't': np.array([ 0. , 0.5, 1. , 1.5, 2. , 2.5,
                                3. , 3.5, 4. ]),
    0.5: np.array(
            [ 0.8 , 0.43076923, 0.23195266, 0.12489759,
                        0.06725255, 0.03621291, 0.01949926, 0.0104996 ,
                0.00565363]),
    0: ...,
    1: ...
    }
    for theta in 0, 0.5, 1:
    u, t = decay_mod.solver(I, a, T, dt, theta=theta)
    diff = np.abs(u - precomputed[theta]).max()
    # Precomputed numbers are known to 8 decimal places
    nt.assert_almost_equal(diff, 0, places=8,
```

- Find input data that may cause trouble and test such cases
- Here: the formula for u^{n+1} may involve integer division

Example:

$$
\text { theta }=1 ; \mathrm{a}=1 ; \mathrm{I}=1 ; \mathrm{dt}=2
$$

may lead to integer division:

```
(1 - (1-theta)*a*dt) \# becomes 1
(1 + theta*dt*a) \# becomes 2
(1 - (1-theta) \(* \mathrm{a}\) *dt)/(1 + theta*dt*a) \# becomes 0 (!)
```

Test that solver does not suffer from such integer division:
def test_potential_integer_division():
"""Choose variables that can trigger integer division."""
theta $=1 ; \mathrm{a}=1 ; \mathrm{I}=1 ; \mathrm{dt}=2$
$\mathrm{N}=4$
$u, t=$ decay_mod.solver $(I=I, a=a, T=N * d t, d t=d t$, theta=theta)
$u_{\text {_ }}$ de $=$ np. array ([exact_discrete_solution(n, I, a, theta, dt)
for n in range $(N+1)]$)
diff $=$ np.abs (u_de - u). max ()
nt.assert_almost_equal(diff, 0, delta=1E-14)

Test of convergence rates

Convergence rate tests are very common for differential equation solvers.

```
def test_convergence_rates():
    """Compare empirical convergence rates to exact ones."""
    # Set command-line arguments directly in sys.argv
    import sys
    sys.argv[1:] = '--I 0.8 --a 2.1 --T 5 '\
        '--dt 0.4 0.2 0.1 0.05 0.025'.split()
    r = decay_mod.main()
    for theta in r:
        nt.assert_true(r[theta]) # check for non-empty list
    expected_rates = {0: 1, 1: 1, 0.5: 2}
    for theta in r:
        r_final = r[theta][-1]
        # Compare to 1 decimal place
        nt.assert_almost_equal(expected_rates[theta], r_final,
                        places=1, msg='theta=%s'% theta)
```

Complete program: test_decay_nose.py.

Classical unit testing with unittest

- unittest is a Python module mimicing the classical JUnit class-based unit testing framework from Java
- This is how unit testing is normally done
- Requires knowledge of object-oriented programming

Remark.

You will probably not use it, but you're not educated unless you know what unit testing with classes is.

Basic use of unittest

Write file test_mymod.py:

```
import unittest
import mymod
class TestMyCode(unittest.TestCase):
    def test_double(self):
            result = mymod.double(4)
            self.assertEqual(result, 8)
if __name__ == '__main__':
    unittest.main()
```

```
import unittest
import decay_mod_unittest as decay
import numpy as np
def exact_discrete_solution(n, I, a, theta, dt):
    factor = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
    return I*factor**n
class TestDecay(unittest.TestCase):
    def test_exact_discrete_solution(self):
    diff = np.abs(u_de - u).max()
    self.assertAlmostEqual(diff, 0, delta=1E-14)
    def test_solver(self):
    for theta in 0, 0.5, 1:
        self.assertAlmostEqual(diff, 0, places=8,
                        msg='theta=%s' % theta)
    def test_potential_integer_division():
    self.assertAlmostEqual(diff, 0, delta=1E-14)
    def test_convergence_rates(self):
```


Implementing simple problem and solver classes

- So far: programs are built of Python functions
- New focus: alternative implementations using classes
- Class-based implementations are very popular, especially in business/adm applications
- Class-based implementations scales better to large and complex scientific applications

What to learn

Tasks:

- Explain basic use of classes to build a differential equation solver
- Introduce concepts that make such programs easily scale to more complex applications
- Demonstrate the advantage of using classes

Ideas:

- Classes for Problem, Solver, and Visualizer
- Problem: all the physics information about the problem
- Solver: all the numerics information + numerical computations
- Visualizer: plot the solution and other quantities
- Model problem: $u^{\prime}=-a u, u(0)=I$, for $t \in(0, T]$.
- Class Problem stores the physical parameters a, I, T
- May also offer other data, e.g., $u_{\mathrm{e}}(t)=l e^{-a t}$

Implementation:

```
from numpy import exp
class Problem:
    def __init__(self, I=1, a=1, T=10):
        self.T, self.I, self.a = I, float(a), T
        def exact_solution(self, t):
        I, a = self.I, self.a # extract local variables
        return I*exp(-a*t)
```

Basic usage:

```
problem = Problem(T=5)
problem.T = 8
problem.dt = 1.5
```


Improved problem class

More flexible input from the command line:

```
class Problem:
    def __init__(self, I=1, a=1, T=10):
        self.T, self.I, self.a = I, float(a), T
    def define_command_line_options(self, parser=None):
        if parser is None:
            import argparse
            parser = argparse.ArgumentParser()
    parser.add_argument(
            '--I', '--initial_condition', type=float,
            default=self.I, help='initial condition, u(0)',
            metavar='I')
    parser.add_argument(
            '--a', type=float, default=self.a,
            help='coefficient in ODE', metavar='a')
    parser.add_argument(
            '--T', '--stop_time', type=float, default=self.T,
            help='end time of simulation', metavar='T')
    return parser
    def init_from_command_line(self, args):
    self.I, self.a, self.T = args.I, args.a, args.T
    def exact_solution(self, t):
    I, a = self.I, self.a
```

- Store numerical data $\Delta t, \theta$
- Compute solution and quantities derived from the solution Implementation:

```
class Solver:
```

def __init__(self, problem, dt=0.1, theta=0.5):
self.problem = problem
self.dt, self.theta $=$ float(dt), theta
def define_command_line_options(self, parser):
parser.add_argument(
'--dt', '--time_step_value', type=float,
default=0.5, help='time step value', metavar='dt')
parser.add_argument(
'--theta', type=float, default=0.5,
help='time discretization parameter', metavar='dt')
return parser
def init_from_command_line(self, args):
self.dt, self.theta = args.dt, args.theta
def solve(self):
from decay_mod import solver
self.u, self.t = solver (
self.problem.I, self.problem.a, self.problem.T,
self.dt, self.theta)

```
class Visualizer:
    def __init__(self, problem, solver):
    def plot(self, include_exact=True, plt=None):
    Add solver.u curve to the plotting object plt,
    and include the exact solution if include_exact is True.
    This plot function can be called several times (if
    the solver object has computed new solutions).
    """
    if plt is None:
        import scitools.std as plt # can use matplotlib as wel
    plt.plot(self.solver.t, self.solver.u, '--o')
    plt.hold('on')
    theta2name = {0: 'FE', 1: 'BE', 0.5: 'CN'}
    name = theta2name.get(self.solver.theta, '')
    legends = ['numerical %s' % name]
    if include_exact:
        t_e = linspace(0, self.problem.T, 1001)
        u_e = self.problem.exact_solution(t_e)
        plt.plot(t_e, u_e, 'b-')
        legends.append('exact')
    plt.legend(legends)
    plt.xlabel('t')
    plt.ylabel('u')
    nlt+itle('theta=%o, dt=%\sigma' %
```


Combing the classes

Let Problem, Solver, and Visualizer play together:

```
def main():
    problem = Problem()
    solver = Solver(problem)
    viz = Visualizer(problem, solver)
    # Read input from the command line
    parser = problem.define_command_line_options()
    parser = solver. define_command_line_options(parser)
    args = parser.parse_args()
    problem.init_from_command_line(args)
    solver. init_from_command_line(args)
    # Solve and plot
    solver.solve()
    import matplotlib.pyplot as plt
    #import scitools.std as plt
    plt = viz.plot(plt=plt)
    E = solver.error()
    if E is not None:
        print 'Error: %.4E' % E
    plt.show()
```

Complete program: decay_class.py.

Implementing more advanced problem and solver classes

- The previous Problem and Solver classes soon contain much repetitive code when the number of parameters increases
- Much of such code can be parameterized and be made more compact
- Idea: collect all parameters in a dictionary self.prms, with two associated dictionaries self.types and self.help for holding associated object types and help strings
- Collect common code in class Parameters
- Let Problem, Solver, and maybe Visualizer be subclasses of class Parameters, basically defining self.prms, self.types, self.help

A generic class for parameters

class Parameters:

```
    def set(self, **parameters):
    for name in parameters:
        self.prms[name] = parameters[name]
```

 def get(self, name):
 return self.prms[name]
 def define_command_line_options(self, parser=None):
 if parser is None:
 import argparse
 parser = argparse.ArgumentParser()
 for name in self.prms:
 tp = self.types[name] if name in self.types else str
 help = self.help[name] if name in self.help else None
 parser.add_argument(
 '--' + name, default=self.get(name), metavar=name,
 type=tp, help=help)
 return parser
 def init_from_command_line(self, args):
 for name in self.prms:
 self.prms[name] = getattr (args, name)
 Slightly more advanced version in class_decay_verf1.py.

class Problem(Parameters):

" " "
Physical parameters for the problem $u^{\prime}=-a * u, u(0)=I$, with t in [O,T].
"""

```
def __init__(self):
    self.prms = dict(I=1, a=1, T=10)
    self.types = dict(I=float, a=float, T=float)
    self.help = dict(I='initial condition, u(0)',
                                    a='coefficient in ODE',
                                    T='end time of simulation')
    def exact_solution(self, t):
    I, a = self.get('I'), self.get('a')
    return I*np.exp(-a*t)
```

```
class Solver(Parameters):
    def __init__(self, problem):
        self.problem = problem
        self.prms = dict(dt=0.5, theta=0.5)
        self.types = dict(dt=float, theta=float)
        self.help = dict(dt='time step value',
        theta='time discretization parameter')
    def solve(self):
        from decay_mod import solver
        self.u, self.t = solver(
            self.problem.get('I'),
            self.problem.get('a'),
            self.problem.get('T'),
            self.get('dt'),
            self.get('theta'))
    def error(self):
        try:
            u_e = self.problem.exact_solution(self.t)
            e = u_e - self.u
            E = np.sqrt(self.get('dt')*np.sum(e**2))
    except AttributeError:
            E = None
    return E
```


The visualizer class

- No parameters needed (for this simple problem), no need to inherit class Parameters
- Same code as previously shown class Visualizer
- Same code as previously shown for combining Problem, Solver, and Visualizer

Performing scientific experiments

Goal: explore the behavior of a numerical method for a differential equation and show how scientific experiments can be set up and reported.
Tasks:

- Write scripts to automate experiments
- Generate scientific reports from scripts

Tools to learn:

- os.system for running other programs
- subprocess for running other programs and extracting the output
- List comprehensions
- Formats for scientific reports: HTML w/MathJax, ${ }^{A} T_{E} X$, Sphinx, Doconce

Model problem and numerical solution method

Problem:

$$
\begin{equation*}
u^{\prime}(t)=-a u(t), \quad u(0)=I, \quad 0<t \leq T \tag{33}
\end{equation*}
$$

Solution method (θ-rule):

$$
u^{n+1}=\frac{1-(1-\theta) a \Delta t}{1+\theta a \Delta t} u^{n}, \quad u^{0}=l
$$

- Plot u^{n} against $u_{\mathrm{e}}=l e^{-a t}$ for various choices of the parameters $I, a, \Delta t$, and θ
- How does the discrete solution compare with the exact solution when Δt is varied and $\theta=0,0.5,1$?
- Use the decay_mod.py module (little modification of the plotting, see experiments/decay_mod.py)
- Make separate program for running (automating) the experiments (script)
(1)
python decay_mod.py --I 1 --a 2 --makeplot --T 5 --dt 0.
(2) Combine generated figures $\mathrm{FE}_{-} * . \mathrm{png}, \mathrm{BE}_{-} *$. png, and CN_*.png to new figures with multiple plots
(3) Run script as
python decay_exper0.py $0.5 \quad 0.250 .10 .05(\Delta t$ values on the command line)

Typical plot summarizing the results

Script code

Typical script (small administering program) for running the experiments:

```
import os, sys
def run_experiments(I=1, a=2, T=5):
    # The command line must contain dt values
    if len(sys.argv) > 1:
    dt_values = [float(arg) for arg in sys.argv[1:]]
    else:
        print 'Usage: %s dt1 dt2 dt3 ...' % sys.argv[0]
        sys.exit(1) # abort
    # Run module file as a stand-alone application
    cmd = 'python decay_mod.py --I %g --a %g --makeplot --T %g' %
        (I, a, T)
    dt_values_str = ' '.join([str(v) for v in dt_values])
    cmd += ' --dt %s' % dt_values_str
    print cmd
    failure = os.system(cmd)
    if failure:
        print 'Command failed:', cmd; sys.exit(1)
    # Combine images into rows with 2 plots in each row
    image_commands = []
    for method in 'BE', 'CN', 'FE':
        pdf_files = ' '.join(['%s_%g.pdf' % (method, dt)
        for dt in dt_values])
```


Comments to the code

Many useful constructs in the previous script:

- [float(arg) for arg in sys.argv[1:]] builds a list of real numbers from all the command-line arguments
- failure $=$ os.system(cmd) runs an operating system command (e.g., another program)
- sys.exit(1) aborts the program
- [\%s_\%s.png' \% (method, dt) for dt in dt_values] builds a list of filenames from a list of numbers (dt_values)
- All montage commands for creating composite figures are stored in a list and thereafter executed in a loop
- glob.glob('*_*.png') returns a list of the names of all files in the current folder where the filename matches the Unix wildcard notation *_*.png (meaning "any text, underscore, any text, and then '.png'")
- os.remove(filename) removes the file with name filename

Interpreting output from other programs

In decay_exper0.py we run a program (os.system) and want to grab the output, e.g.,

Terminal>				python decay_plot_mpl.py
0.0	$0.40:$	$2.105 \mathrm{E}-01$		
0.0	$0.04:$	$1.449 \mathrm{E}-02$		
0.5	$0.40:$	$3.362 \mathrm{E}-02$		
0.5	$0.04:$	$1.887 \mathrm{E}-04$		
1.0	$0.40:$	$1.030 \mathrm{E}-01$		
1.0	$0.04:$	$1.382 \mathrm{E}-02$		

Tasks:

- read the output from the decay_mod.py program
- interpret this output and store the E values in arrays for each θ value
- plot E versus Δt, for each θ, in a log-log plot

Code for grabbing output from another program

Use the subprocess module to grab output:

```
from subprocess import Popen, PIPE, STDOUT
p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT)
output, dummy = p.communicate()
failure = p.returncode
if failure:
    print 'Command failed:', cmd; sys.exit(1)
```


Code for interpreting the grabbed output

- Run through the output string, line by line
- If the current line prints $\theta, \Delta t$, and E, split the line into these three pieces and store the data
- Store data in a dictionary errors with keys dt and the three θ values

```
errors = {'dt': dt_values, 1: [], 0: [], 0.5: []}
for line in output.splitlines():
    words = line.split()
    if words[0] in ('0.0', '0.5', '1.0'): # line with E?
        # typical line: 0.0 1.25: 7.463E+00
        theta = float(words[0])
        E = float(words[2])
        errors[theta] .append(E)
```

Next: plot E versus Δt for $\theta=0,0.5,1$
Complete program: experiments/decay_exper1.py. Fine recipe for

- how to run other programs
- how to extract and interpret output from other programs
- how to automate many manual steps in creating simulations and figures

Making a report

- Scientific investigations are best documented in a report!
- A sample report
- How can we write such a report?
- First problem: what format should I write in?
- Plain HTML, generated by decay_exper1_html.py
- HTML with MathJax, generated by decay_exper1_mathjax.py
- LaTeX PDF, based on LaTeX source
- Sphinx HTML, based on reStructuredText
- Markdown, MediaWiki, ...
- Doconce can generate LATEX, HTML w/MathJax, Sphinx, Markdown, MediaWiki, ... (Doconce source for the examples above, and Python program for generating the Doconce source)
- Examples on different report formats

Publishing a complete project

- Make folder (directory) tree
- Keep track of all files via a version control system (Mercurial, Git, ...)
- Publish as private or public repository
- Utilize Bitbucket, Googlecode, GitHub, or similar
- See the intro to such tools

Analysis of finite difference equations

Model:

$$
\begin{equation*}
u^{\prime}(t)=-a u(t), \quad u(0)=I, \tag{34}
\end{equation*}
$$

Method:

$$
\begin{equation*}
u^{n+1}=\frac{1-(1-\theta) a \Delta t}{1+\theta a \Delta t} u^{n} \tag{35}
\end{equation*}
$$

Problem setting.

How good is this method? Is it safe to use it?

Encouraging numerical solutions

$$
I=1, a=2, \theta=1,0.5,0, \Delta t=1.25,0.75,0.5,0.1
$$

Discouraging numerical solutions; Crank-Nicolson

Discouraging numerical solutions; Forward Euler

The characteristics of the displayed curves can be summarized as follows:

- The Backward Euler scheme always gives a monotone solution, lying above the exact curve.
- The Crank-Nicolson scheme gives the most accurate results, but for $\Delta t=1.25$ the solution oscillates.
- The Forward Euler scheme gives a growing, oscillating solution for $\Delta t=1.25$; a decaying, oscillating solution for $\Delta t=0.75$; a strange solution $u^{n}=0$ for $n \geq 1$ when $\Delta t=0.5$; and a solution seemingly as accurate as the one by the Backward Euler scheme for $\Delta t=0.1$, but the curve lies below the exact solution.

Goal.

We ask the question

- Under what circumstances, i.e., values of the input data I, a, and Δt will the Forward Euler and Crank-Nicolson schemes result in undesired oscillatory solutions?

Techniques of investigation:

- Numerical experiments
- Mathematical analysis

Another question to be raised is

- How does Δt impact the error in the numerical solution?

Experimental investigation of oscillatory solutions

The solution is oscillatory if

$$
u^{n}>u^{n-1}
$$

Starting with $u^{0}=I$, the simple recursion (35) can be applied repeatedly n times, with the result that

$$
\begin{equation*}
u^{n}=I A^{n}, \quad A=\frac{1-(1-\theta) a \Delta t}{1+\theta a \Delta t} \tag{36}
\end{equation*}
$$

Such an exact discrete solution is unusual, but very handy for analysis.

Since $u^{n} \sim A^{n}$,

- $A<0$ gives a factor $(-1)^{n}$ and oscillatory solutions
- $|A|>1$ gives growing solutions
- Recall: the exact solution is monotone and decaying
- If these qualitative properties are not met, we say that the numerical solution is unstable

Computation of stability in this problem

$A<0$ if

$$
\frac{1-(1-\theta) a \Delta t}{1+\theta a \Delta t}<0
$$

To avoid oscillatory solutions we must have $A>0$ and

$$
\begin{equation*}
\Delta t<\frac{1}{(1-\theta) a} . \tag{37}
\end{equation*}
$$

- Always fulfilled for Backward Euler
- $\Delta t \leq 1 /$ a for Forward Euler
- $\Delta t \leq 2 / a$ for Crank-Nicolson

Computation of stability in this problem

$$
\left.\begin{array}{rl}
|A| \leq 1 \text { means }-1 & \leq A
\end{array}\right)=1 .
$$

-1 is the critical limit:

$$
\begin{array}{ll}
\Delta t \leq \frac{2}{(1-2 \theta) a}, & \theta<\frac{1}{2} \\
\Delta t \geq \frac{2}{(1-2 \theta) a}, & \theta>\frac{1}{2}
\end{array}
$$

- Always fulfilled for Backward Euler and Crank-Nicolson
- $\Delta t \leq 2 / a$ for Forward Euler

Explanation of problems with Forward Euler

Explanation of problems with Crank-Nicolson

(1) Forward Euler is conditionally stable

- $\Delta t<2 / a$ for avoiding growth
- $\Delta t \leq 1$ /a for avoiding oscillations
(2) The Crank-Nicolson is unconditionally stable wrt growth and conditionally stable wrt oscillations
- $\Delta t<2 / a$ for avoiding oscillations
(3) Backward Euler is unconditionally stable

Comparing amplification factors

u^{n+1} is an amplification A of u^{n} :

$$
u^{n+1}=A u^{n}, \quad A=\frac{1-(1-\theta) a \Delta t}{1+\theta a \Delta t}
$$

The exact solution is also an amplification:

$$
u\left(t_{n+1}\right)=A_{\mathrm{e}} u\left(t_{n}\right), \quad A_{\mathrm{e}}=e^{-a \Delta t}
$$

A possible measure of accuracy: $A_{\mathrm{e}}-A$

To investigate $A_{\mathrm{e}}-A$ mathematically, we can Taylor expand the expression, using $p=a \Delta t$ as variable.

```
>>> from sympy import *
>>> # Create p as a mathematical symbol with name 'p'
>>> p = Symbol('p')
>>> # Create a mathematical expression with p
>>> A_e = exp(-p)
>>>
>>> # Find the first 6 terms of the Taylor series of A_e
>>> A_e.series(p, 0, 6)
1 + (1/2)*p**2 - p - 1/6*p**3 - 1/120*p**5 + (1/24)*p**4 + O(p**6)
>>> theta = Symbol('theta')
>>> A = (1-(1-theta)*p)/(1+theta*p)
>>> FE = A_e.series(p, 0, 4) - A.subs(theta, 0).series(p, 0, 4)
>>> BE = A_e.series(p, 0, 4) - A.subs(theta, 1).series(p, 0, 4)
>>> half = Rational(1,2) # exact fraction 1/2
>>> CN = A_e.series(p, 0, 4) - A.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*p**2 - 1/6*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (5/6)*p**3 + 0(p**4)
>>> CN
(1/12)*p**3 + O(p**4)
```


Error in amplification factors

Focus: the error measure $A-A_{\mathrm{e}}$ as function of Δt (recall that $p=a \Delta t)$:

$$
A-A_{e}= \begin{cases}\mathcal{O}\left(\Delta t^{2}\right), & \text { Forward and Backward Euler, } \tag{39}\\ \mathcal{O}\left(\Delta t^{3}\right), & \text { Crank-Nicolson }\end{cases}
$$

Focus: the error measure $1-A / A_{\mathrm{e}}$ as function of $p=a \Delta t$:

```
>>> FE = 1 - (A.subs(theta, 0)/A_e).series(p, 0, 4)
>>> BE = 1 - (A.subs(theta, 1)/A_e).series(p, 0, 4)
>>> CN = 1 - (A.subs(theta, half)/A_e).series(p, 0, 4)
>>> FE
(1/2)*p**2 + (1/3)*p**3 + O(p**4)
>>> BE
-1/2*p**2 + (1/3)*p**3 + O(p**4)
>>> CN
(1/12)*p**3 + O(p**4)
```

Same leading-order terms as for the error measure $A-A_{\mathrm{e}}$.

The true/global error at a point

- The error in A reflects the local error when going from one time step to the next
- What is the global (true) error at t_{n} ?
$e^{n}=u_{\mathrm{e}}\left(t_{n}\right)-u^{n}=I e^{-a t_{n}}-I A^{n}$
- Taylor series expansions of e^{n} simplify the expression

Computing the global error at a point

```
>>> n = Symbol('n')
>>> u_e = exp(-p*n) # I=1
>>> u_n = A**n # I=1
>>> FE = u_e.series(p, 0, 4) - u_n.subs(theta, 0).series(p, 0, 4)
>>> BE = u_e.series(p, 0, 4) - u_n.subs(theta, 1).series(p, 0, 4)
>>> CN = u_e.series(p, 0, 4) - u_n.subs(theta, half).series(p, 0, 4)
>>> FE
(1/2)*n*p**2 - 1/2*n**2*p**3 + (1/3)*n*p**3 + O(p**4)
>>> BE
(1/2)*n**2*p**3 - 1/2*n*p**2 + (1/3)*n*p**3 + O(p**4)
>>> CN
(1/12)*n*p**3 + O(p**4)
```

Substitute n by $t / \Delta t$:

- Forward and Backward Euler: leading order term $\frac{1}{2} \operatorname{ta}^{2} \Delta t$
- Crank-Nicolson: leading order term $\frac{1}{12} t a^{3} \Delta t^{2}$

Convergence

The numerical scheme is convergent if the global error $e^{n} \rightarrow 0$ as $\Delta t \rightarrow 0$. If the error has a leading order term Δt^{r}, the convergence rate is of order r.

Integrated errors

Focus: norm of the numerical error

$$
\left\|e^{n}\right\|_{\ell^{2}}=\sqrt{\Delta t \sum_{n=0}^{N_{t}}\left(u_{\mathrm{e}}\left(t_{n}\right)-u^{n}\right)^{2}}
$$

Forward and Backward Euler:

$$
\left\|e^{n}\right\|_{\ell^{2}}=\frac{1}{4} \sqrt{\frac{T^{3}}{3}} a^{2} \Delta t
$$

Crank-Nicolson:

$$
\left\|e^{n}\right\|_{\ell^{2}}=\frac{1}{12} \sqrt{\frac{T^{3}}{3}} a^{3} \Delta t^{2}
$$

Summary of errors.

Analysis of both the pointwise and the time-integrated true errors:

- 1st order for Forward and Backward Euler
- 2nd order for Crank-Nicolson
- How good is the discrete equation?
- Possible answer: see how well u_{e} fits the discrete equation

$$
\left[D_{t} u=-a u\right]^{n},
$$

i.e.,

$$
\frac{u^{n+1}-u^{n}}{\Delta t}=-a u^{n}
$$

Insert u_{e} (which does not in general fulfill this equation):

$$
\begin{equation*}
\frac{u_{\mathrm{e}}\left(t_{n+1}\right)-u_{\mathrm{e}}\left(t_{n}\right)}{\Delta t}+a u_{\mathrm{e}}\left(t_{n}\right)=R^{n} \neq 0 . \tag{40}
\end{equation*}
$$

- The residual R^{n} is the truncation error.
- How does R^{n} vary with Δt ?

Tool: Taylor expand u_{e} around the point where the ODE is sampled (here t_{n})

$$
u_{\mathrm{e}}\left(t_{n+1}\right)=u_{\mathrm{e}}\left(t_{n}\right)+u_{\mathrm{e}}^{\prime}\left(t_{n}\right) \Delta t+\frac{1}{2} u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right) \Delta t^{2}+\cdots
$$

Inserting this Taylor series in (40) gives

$$
R^{n}=u_{\mathrm{e}}^{\prime}\left(t_{n}\right)+\frac{1}{2} u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right) \Delta t+\ldots+a u_{\mathrm{e}}\left(t_{n}\right)
$$

Now, u_{e} solves the ODE $u_{\mathrm{e}}^{\prime}=-a u_{\mathrm{e}}$, and then

$$
R^{n} \approx \frac{1}{2} u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right) \Delta t
$$

This is a mathematical expression for the truncation error.

Backward Euler:

$$
R^{n} \approx-\frac{1}{2} u_{\mathrm{e}}^{\prime \prime}\left(t_{n}\right) \Delta t
$$

Crank-Nicolson:

$$
R^{n+\frac{1}{2}} \approx \frac{1}{24} u_{e}^{\prime \prime \prime}\left(t_{n+\frac{1}{2}}\right) \Delta t^{2}
$$

Consistency, stability, and convergence

- Truncation error measures the residual in the difference equations. The scheme is consistent if the truncation error goes to 0 as $\Delta t \rightarrow 0$. Importance: the difference equations approaches the differential equation as $\Delta t \rightarrow 0$.
- Stability means that the numerical solution exhibits the same qualitative properties as the exact solution. Here: monotone, decaying function.
- Convergence implies that the true (global) error $e^{n}=u_{\mathrm{e}}\left(t_{n}\right)-u^{n} \rightarrow 0$ as $\Delta t \rightarrow 0$. This is really what we want!

The Lax equivalence theorem for linear differential equations: consistency + stability is equivalent with convergence.
(Consistency and stability is in most problems much easier to establish than convergence.)

Model extensions

Extension to a variable coefficient; Forward and Backward

Euler

$$
\begin{equation*}
u^{\prime}(t)=-a(t) u(t), \quad t \in(0, T], \quad u(0)=I \tag{41}
\end{equation*}
$$

The Forward Euler scheme:

$$
\begin{equation*}
\frac{u^{n+1}-u^{n}}{\Delta t}=-a\left(t_{n}\right) u^{n} \tag{42}
\end{equation*}
$$

The Backward Euler scheme:

$$
\begin{equation*}
\frac{u^{n}-u^{n-1}}{\Delta t}=-a\left(t_{n}\right) u^{n} \tag{43}
\end{equation*}
$$

Eevaluting $a\left(t_{n+\frac{1}{2}}\right)$ and using an average for u :

$$
\begin{equation*}
\frac{u^{n+1}-u^{n}}{\Delta t}=-a\left(t_{n+\frac{1}{2}}\right) \frac{1}{2}\left(u^{n}+u^{n+1}\right) \tag{44}
\end{equation*}
$$

Using an average for a and u :

$$
\begin{equation*}
\frac{u^{n+1}-u^{n}}{\Delta t}=-\frac{1}{2}\left(a\left(t_{n}\right) u^{n}+a\left(t_{n+1}\right) u^{n+1}\right) \tag{45}
\end{equation*}
$$

Extension to a variable coefficient; θ-rule

The θ-rule unifies the three mentioned schemes,

$$
\begin{equation*}
\frac{u^{n+1}-u^{n}}{\Delta t}=-a\left((1-\theta) t_{n}+\theta t_{n+1}\right)\left((1-\theta) u^{n}+\theta u^{n+1}\right) \tag{46}
\end{equation*}
$$

or,

$$
\begin{equation*}
\frac{u^{n+1}-u^{n}}{\Delta t}=-(1-\theta) a\left(t_{n}\right) u^{n}-\theta a\left(t_{n+1}\right) u^{n+1} \tag{47}
\end{equation*}
$$

Extension to a variable coefficient; operator notation

$$
\begin{aligned}
& {\left[D_{t}^{+} u=-a u\right]^{n},} \\
& {\left[D_{t}^{-} u=-a u\right]^{n},} \\
& {\left[D_{t} u=-a \bar{u}^{t}\right]^{n \frac{1}{2}},} \\
& \left.\left[D_{t} u=-\bar{a} \bar{t}\right]^{t}\right]^{n \frac{1}{2}},
\end{aligned}
$$

Extension to a source term

$$
\begin{equation*}
u^{\prime}(t)=-a(t) u(t)+b(t), \quad t \in(0, T], \quad u(0)=1 . \tag{48}
\end{equation*}
$$

$$
\begin{aligned}
{\left[D_{t}^{+} u\right.} & =-a u+b]^{n}, \\
{\left[D_{t}^{-} u\right.} & =-a u+b]^{n}, \\
{\left[D_{t} u\right.} & \left.=-a \bar{u}^{t}+b\right]^{n+\frac{1}{2}}, \\
{\left[D_{t} u\right.} & \left.=-a u+b^{t}\right]^{n+\frac{1}{2}} .
\end{aligned}
$$

$u^{n+1}=\left(\left(1-\Delta t(1-\theta) a^{n}\right) u^{n}+\Delta t\left(\theta b^{n+1}+(1-\theta) b^{n}\right)\right)\left(1+\Delta t \theta a^{n+1}\right)^{-1}$.
Implementation where $a(t)$ and $b(t)$ are given as Python functions (see file decay_vc.py):

```
def solver(I, a, b, T, dt, theta):
    | | |
```

```
Solve u'=-a(t)*u + b (t), u(0)=I,
```

Solve u'=-a(t)*u + b (t), u(0)=I,
for t in (O,T] with steps of dt.
for t in (O,T] with steps of dt.
a and b are Python functions of t.
a and b are Python functions of t.
dt = float(dt)
dt = float(dt)
Nt = int(round(T/dt)) \# no of time intervals
Nt = int(round(T/dt)) \# no of time intervals
T = Nt*dt \# adjust T to fit time step dt
T = Nt*dt \# adjust T to fit time step dt
u = zeros(Nt+1) \# array of u[n] values
u = zeros(Nt+1) \# array of u[n] values
t = linspace(0, T, Nt+1) \# time mesh
t = linspace(0, T, Nt+1) \# time mesh
u[0] = I \# assign initial condition
u[0] = I \# assign initial condition
for n in range(0, Nt): \# n=0,1,···..Nt-1
for n in range(0, Nt): \# n=0,1,···..Nt-1
u[n+1] = ((1 - dt*(1-theta)*a(t[n]))*u[n] + \
u[n+1] = ((1 - dt*(1-theta)*a(t[n]))*u[n] + \
dt*(theta*b(t[n+1]) + (1-theta)*b(t[n])))/\
dt*(theta*b(t[n+1]) + (1-theta)*b(t[n])))/\
(1 + dt*theta*a(t[n+1]))
(1 + dt*theta*a(t[n+1]))
return u, t

```
return u, t
```

Plain functions:

```
    def a(t):
    return a_0 if t < tp else k*a_0
    def b(t):
        return 1
```


Implementations of variable coefficients; classes

Better implementation: class with the parameters a 0 , tp , and k as attributes and a special method __call__ for evaluating $a(t)$:

```
    class A:
        def __init__(self, a0=1, k=2):
            self.a0, self.k = a0, k
        def __call__(self, t):
        return self.a0 if t < self.tp else self.k*self.a0
    a}=\textrm{A}(\textrm{aO}=2,\textrm{k}=1) # a behaves as a function a(t
```


Implementations of variable coefficients; lambda function

Quick writing: a one-liner lambda function

$$
\mathrm{a}=\text { lambda } \mathrm{t}: \mathrm{a} \text { _0 if } \mathrm{t}<\mathrm{tp} \text { else } \mathrm{k} * \mathrm{a} _0
$$

In general,
f = lambda arg1, arg2, ...: expressin
is equivalent to

$$
\begin{gathered}
\text { def } \underset{\text { return }(\arg 1, \arg 2, \ldots):}{ } \begin{aligned}
\text { expression }
\end{aligned}
\end{gathered}
$$

One can use lambda functions directly in calls:

$$
\mathrm{u}, \mathrm{t}=\operatorname{solver}(1, \mathrm{lambda} \mathrm{t}: 1, \mathrm{lambda} \mathrm{t}: 1, \mathrm{~T}, \mathrm{dt}, \mathrm{theta})
$$

for a problem $u^{\prime}=-u+1, u(0)=1$.
A lambda function can appear anywhere where a variable can appear.

- Start debugging of a new code with trying a problem where $u=$ const $\neq 0$.
- Choose $u=C$ (a constant). Choose any $a(t)$ and set $b=a(t) C$ and $I=C$.
- "All" numerical methods will reproduce $u=$ const exactly (machine precision).
- Often $u=C$ eases debugging.
- In this example: any error in the formula for u^{n+1} make $u \neq C$!

Verification via trivial solutions; nose test

```
import nose.tools as nt
def test_constant_solution():
    """
    Test problem where u=u_const is the exact solution, to be
    reproduced (to machine precision) by any relevant method.
    """
    def exact_solution(t):
        return u_const
    def a(t):
        return 2.5*(1+t**3) # can be arbitrary
    def b(t):
        return a(t)*u_const
    u_const = 2.15
    theta = 0.4; I = u_const; dt = 4
    Nt = 4 # enough with a few steps
    u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
    print u
    u_e = exact_solution(t)
    difference = abs(u_e - u).max() # max deviation
    nt.assert_almost_equal(difference, 0, places=14)
```

- Choose any formula for $u(t)$.
- Fit $I, a(t)$, and $b(t)$ in $u^{\prime}=-a u+b, u(0)=I$, to make the chosen formula a solution of the ODE problem.
- Then we can always have an analytical solution (!).
- Ideal for verification: testing convergence rates.
- Called the method of manufactured solutions (MMS)
- Special case: u linear in t, because all sound numerical methods will reproduce a linear u exactly (machine precision).
- $u(t)=c t+d . u(0)=0$ means $d=l$.
- ODE implies $c=-a(t) u+b(t)$.
- Choose $a(t)$ and c, and set $b(t)=c+a(t)(c t+I)$.
- Any error in the formula for u^{n+1} makes $u \neq c t+l$!

Linear manufactured solution

$u^{n}=c t_{n}+l$ fulfills the discrete equations!
First,

$$
\begin{align*}
{\left[D_{t}^{+} t\right]^{n} } & =\frac{t_{n+1}-t_{n}}{\Delta t}=1, \tag{50}\\
{\left[D_{t}^{-} t\right]^{n} } & =\frac{t_{n}-t_{n-1}}{\Delta t}=1, \tag{51}\\
{\left[D_{t} t\right]^{n} } & =\frac{t_{n+\frac{1}{2}}-t_{n-\frac{1}{2}}}{\Delta t}=\frac{\left(n+\frac{1}{2}\right) \Delta t-\left(n-\frac{1}{2}\right) \Delta t}{\Delta t}=1 . \tag{52}
\end{align*}
$$

Forward Euler:

$$
\begin{gathered}
{\left[D^{+} u=-a u+b\right]^{n},} \\
a^{n}=a\left(t_{n}\right), b^{n}=c+a\left(t_{n}\right)\left(c t_{n}+I\right), \text { and } u^{n}=c t_{n}+I \text { results in } \\
c=-a\left(t_{n}\right)\left(c t_{n}+I\right)+c+a\left(t_{n}\right)\left(c t_{n}+I\right)=c
\end{gathered}
$$

```
def test_linear_solution():
    """
    Test problem where u=c*t+I is the exact solution, to be
    reproduced (to machine precision) by any relevant method.
    """
    def exact_solution(t):
        return c*t + I
    def a(t):
        return t**0.5 # can be arbitrary
    def b(t):
        return c + a(t)*exact_solution(t)
    theta = 0.4; I = 0.1; dt = 0.1; c = -0.5
    T = 4
    Nt = int(T/dt) # no of steps
    u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
    u_e = exact_solution(t)
    difference = abs(u_e - u).max() # max deviation
    print difference
    # No of decimal places for comparison depend on size of c
    nt.assert_almost_equal(difference, 0, places=14)
```


Extension to systems of ODEs

Sample system:

$$
\begin{align*}
u^{\prime} & =a u+b v, \tag{53}\\
v^{\prime} & =c u+d v, \tag{54}
\end{align*}
$$

The Forward Euler method:

$$
\begin{align*}
& u^{n+1}=u^{n}+\Delta t\left(a u^{n}+b v^{n}\right), \tag{55}\\
& v^{n+1}=u^{n}+\Delta t\left(c u^{n}+d v^{n}\right) . \tag{56}
\end{align*}
$$

The Backward Euler method gives a system of algebraic equations

The Backward Euler scheme:

$$
\begin{align*}
& u^{n+1}=u^{n}+\Delta t\left(a u^{n+1}+b v^{n+1}\right) \tag{57}\\
& v^{n+1}=v^{n}+\Delta t\left(c u^{n+1}+d v^{n+1}\right) \tag{58}
\end{align*}
$$

which is a 2×2 linear system:

$$
\begin{align*}
& (1-\Delta t a) u^{n+1}+b v^{n+1}=u^{n} \tag{59}\\
& c u^{n+1}+(1-\Delta t d) v^{n+1}=v^{n} \tag{60}
\end{align*}
$$

Crank-Nicolson also gives a 2×2 linear system.

General first-order ODEs

Generic form

The standard form for ODEs:

$$
\begin{equation*}
u^{\prime}=f(u, t), \quad u(0)=I \tag{61}
\end{equation*}
$$

u and f : scalar or vector.
Vectors in case of ODE systems:

$$
\begin{aligned}
u(t)= & \left(u^{(0)}(t), u^{(1)}(t), \ldots, u^{(m-1)}(t)\right) \\
f(u, t)= & \left(f^{(0)}\left(u^{(0)}, \ldots, u^{(m-1)}\right)\right. \\
& f^{(1)}\left(u^{(0)}, \ldots, u^{(m-1)}\right) \\
& \vdots \\
& \left.f^{(m-1)}\left(u^{(0)}(t), \ldots, u^{(m-1)}(t)\right)\right)
\end{aligned}
$$

$$
\begin{equation*}
\frac{u^{n+1}-u^{n}}{\Delta t}=\theta f\left(u^{n+1}, t_{n+1}\right)+(1-\theta) f\left(u^{n}, t_{n}\right) . \tag{62}
\end{equation*}
$$

Bringing the unknown u^{n+1} to the left-hand side and the known terms on the right-hand side gives

$$
\begin{equation*}
u^{n+1}-\Delta t \theta f\left(u^{n+1}, t_{n+1}\right)=u^{n}+\Delta t(1-\theta) f\left(u^{n}, t_{n}\right) . \tag{63}
\end{equation*}
$$

This is a nonlinear equation in u^{n+1} (unless f is linear in u)!

Implicit 2-step backward scheme

$$
u^{\prime}\left(t_{n+1}\right) \approx \frac{3 u^{n+1}-4 u^{n}+u^{n-1}}{2 \Delta t}
$$

Scheme:

$$
u^{n+1}=\frac{4}{3} u^{n}-\frac{1}{3} u^{n-1}+\frac{2}{3} \Delta t f\left(u^{n+1}, t_{n+1}\right)
$$

Nonlinear equation for u^{n+1}.

The Leapfrog scheme

Idea:

$$
\begin{equation*}
u^{\prime}\left(t_{n}\right) \approx \frac{u^{n+1}-u^{n-1}}{2 \Delta t}=\left[D_{2 t} u\right]^{n} \tag{64}
\end{equation*}
$$

Scheme:

$$
\left[D_{2 t} u=f(u, t)\right]^{n}
$$

or written out,

$$
\begin{equation*}
u^{n+1}=u^{n-1}+\Delta t f\left(u^{n}, t_{n}\right) \tag{65}
\end{equation*}
$$

- Some other scheme must be used as starter $\left(u^{1}\right)$.
- Explicit scheme - a nonlinear $f($ in $u)$ is trivial to handle.
- Downside: Leapfrog is always unstable after some time.

After computing u^{n+1}, stabilize Leapfrog by

$$
\begin{equation*}
u^{n} \leftarrow u^{n}+\gamma\left(u^{n-1}-2 u^{n}+u^{n+1}\right) . \tag{66}
\end{equation*}
$$

2nd-order Runge-Kutta scheme

Forward-Euler + approximate Crank-Nicolson:

$$
\begin{align*}
u^{*} & =u^{n}+\Delta t f\left(u^{n}, t_{n}\right), \tag{67}\\
u^{n+1} & =u^{n}+\Delta t \frac{1}{2}\left(f\left(u^{n}, t_{n}\right)+f\left(u^{*}, t_{n+1}\right)\right) \tag{68}
\end{align*}
$$

4th-order Runge-Kutta scheme

- The most famous and widely used ODE method
- 4 evaluations of f per time step
- Its derivation is a very good illustration of numerical thinking!

2nd-order Adams-Bashforth scheme

$$
\begin{equation*}
u^{n+1}=u^{n}+\frac{1}{2} \Delta t\left(3 f\left(u^{n}, t_{n}\right)-f\left(u^{n-1}, t_{n-1}\right)\right) . \tag{69}
\end{equation*}
$$

$$
\begin{equation*}
u^{n+1}=u^{n}+\frac{1}{12}\left(23 f\left(u^{n}, t_{n}\right)-16 f\left(u^{n-1}, t_{n-1}\right)+5 f\left(u^{n-2}, t_{n-2}\right)\right) . \tag{70}
\end{equation*}
$$

The Odespy software

Odespy features simple Python implementations of the most fundamental schemes as well as Python interfaces to several famous packages for solving ODEs: ODEPACK, Vode, rkc.f, rkf45.f, Radau5, as well as the ODE solvers in SciPy, SymPy, and odelab.
Typical usage:
\# Define right-hand side of ODE def $f(u, t)$: return -a*u

```
import odespy
import numpy as np
# Set parameters and time mesh
I = 1; a = 2; T = 6; dt = 1.0
Nt = int(round(T/dt))
t_mesh = np.linspace(0, T, Nt+1)
# Use a 4th-order Runge-Kutta method
solver = odespy.RK4(f)
solver.set_initial_condition(I)
u, t = solver.solve(t_mesh)
```


Example: Runge-Kutta methods

```
solvers = [odespy.RK2(f),
    odespy.RK3(f),
    odespy.RK4(f),
    odespy.BackwardEuler(f, nonlinear_solver='Newton')]
for solver in solvers:
    solver.set_initial_condition(I)
    u, t = solver.solve(t)
# + lots of plot code...
```


Plots from the experiments

The 4-th order Runge-Kutta method (RK4) is the method of

Example: Adaptive Runge-Kutta methods

- Adaptive methods find "optimal" locations of the mesh points to ensure that the error is less than a given tolerance.
- Downside: approximate error estimation, not always optimal location of points.
- "Industry standard ODE solver": Dormand-Prince 4/5-th order Runge-Kutta (MATLAB's famous ode45).

