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1 General information
• Deadline: Oct 13

• Each student delivers a set of files, including a project report, in her/his
GitHub repo, but we encourage collaboration.

• Each project will be assessed by a group of three students.

• Make a directory wave_project in the top directory of your INF5620 repo
on GitHub to hold all your files of this project. Make suitable subdirectories.
Include a README file with a short overview of the different files.

• Check that you have a .gitignore file, either in your home directory or
in the root directory of your repo, where you list all redundant files and
all (big) files that can be regenerated and that are not necessary for peer
review of your project.

• Write a short report summarizing the main results. LATEX is probably the
preferred format, but there are several other options1 too. Regardless of
format, the report must be in an easy-to-read format like PDF or HTML.

• Note that the last part of this compulsory project allows you to develop the
project in different directions, including visualization, high-performance
computing, more advanced numerics, etc.

1.1 Check list for peer review
The project will undergo review by your peers, i.e., other students in the course.
More precisely, a group of three students will assess three individual projects
and write a short report for each project. You may use our general checklist2 as
starting point for the assessment.

1http://hplgit.github.io/teamods/writing_reports/index.html
2http://tinyurl.com/opdfafk/pub/web-INF5620/exercise_checklist.html
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Name the feedback file FEEDBACK_NOT_PASSED.txt if the group’s decision
is that the project is not passed, otherwise name the file FEEDBACK.txt. The
teachers will follow up on projects that are considered not passed, and the new
version will be assessed by a teacher.

1.2 Background material

Main document.
The various building blocks needed in this project is found in the text Finite
difference methods for wave motion in the course notesa. Observe that
there are also links to a compact study guide version of this document.

ahttp://tinyurl.com/opdfafk/pub

Depending on your familiarity with finite difference methods before this
course, it might be useful to consult Finite difference methods for vibration
problems in the course notes3 since that text describes the fundamentals of the
time discretization needed in the present project.

Information on how to structure the software in projects like this (and also
use tools for producing reports) is found in Scientific software engineering with
a simple ODE model as example (in the course notes4). Both this document and
the one on vibration problems build on Introduction to computing with finite
difference methods, which was quickly lectured in the beginning of the course.

2 The core parts of the project
2.1 Mathematical problem
The project addresses the two-dimensional, standard, linear wave equation, with
damping,

∂2u

∂t2
+ b

∂u

∂t
= ∂

∂x

(
q(x, y)∂u

∂x

)
+ ∂

∂y

(
q(x, y)∂u

∂y

)
+ f(x, y, t) . (1)

The associated boundary condition is

∂u

∂n
= 0, (2)

in a rectangular spatial domain Ω = [0, Lx]× [0, Ly]. The initial conditions are

u(x, y, 0) = I(x, y), (3)
ut(x, y, 0) = V (x, y) . (4)

3http://tinyurl.com/opdfafk/pub
4http://tinyurl.com/opdfafk/pub
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2.2 Discretization
Derive the discrete set of equations to be implemented in a program:

• the general scheme for computing un+1
i,j at interior spatial mesh points,

• the modified scheme for the first step,

• the modified scheme at boundary points (first step and subsequent steps),
unless you use the interior scheme also at the boundary with extra ghost
cells.

2.3 Implementation
Implement the numerical method for the PDE problem in a program. You may
use wave2D_u0.py5 as a starting point (this program solves the 2D wave equation
with constant wave velocity and u = 0 on the boundary and is explained in the
course notes). You will need to include both scalar (pointwise) computation of
the scheme for debugging and reference as well as a vectorized version for speed.

3 Verification
3.1 Constant solution

1. Construct a test case with constant solution u(x, y, t) = c, where c is a
number, but not 0 or 1 since these are too simple choices in verification
tests. (Hint: Fit the parameters f , b, q, I, and V such that u = c fulfills
the PDE problem.)

2. Show that the constant solution is also a solution of the discrete equations.

3. Make a corresponding nose/pytest test.

4. Invent five types of possible bugs in the implementation of the mathematical
formulas. See how many of them that lead to a wrong non-constant solution.

3.2 Cubic solution (optional)
Assume an exact solution on the form ue(x, y, t) = X(x)Y (y)T (t) where X, Y ,
and T are polynomials of degree three or less. Construct X and Y such that the
normal derivative vanishes at the four boundaries. Fit a corresponding source
term f(x, y, t) in the wave equation.

It would be great if this exact solution also were an exact solution of the
discrete equations when q is constant and b = 0, which is often the case with

5http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0.py
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lower-order polynomials because the truncation errors6 involve higher-order
derivatives (which vanish for lower-order polynomials).

The exact cubic solution fits the discrete equations at all inner mesh points,
but not on the boundary. Add a term in the boundary equation for testing
such that the exact solution also fulfills the boundary equation. Implement a
corresponding nose/pytest test. You will need to introduce a parameter in front
of this extra term so you can easily turn the term on and off (it should, of course,
only be on for verifying a cubic solution, not in physical applications).

Hint. We outline some ideas in 1D. For constant q and b = 0 we have the
scheme [DtDtu − qDxDx = f ]ni at inner points. Because [DxDxx

3]i = 6xi,
[DxDxx

2]i = 2, [DxDxx]i = 0 all are exact, the suggested u also fits the discrete
equation. On the boundary we get a modified scheme, which in operator notation
can be written as

[DtDtu = qDxDxu+ q
2

∆xD2xu+ f ]ni , i = 0,

and

[DtDtu = qDxDx − q
2

∆xD2xu+ f ]ni , i = Nx .

We have the results [D2xx
3]i = 3x2

i + ∆x2, and [D2xx
2]i = 2xi, [D2xx]i = 1.

Consider now [DtDtu = qDxDxu − q 2
∆xD2xu + f ]ni . Inserting u = X(x)T (t)

requires the same f as for the PDE, but with an additional term T (t)2q∆x
because of the D2x operator acting on a cubic polynomial in x.

This test requires the f that fits the PDE to be modified on the boundary. A
possible implementation is to modify the array of f values at the boundary mesh
points directly, or perform tests on the coordinates if a pointwise evaluation of f
is requested:

def f(x, y, t):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):

# Array evaluation
f_a = .... # evaluate the f that fits the PDE
# Modify boundary values
f_a[0,:] = ... # x=0
f_a[-1,:] = ... # x=Lx
f_a[:,0] = ... # y=0
f_a[:,-1] = ... # x=Ly

else:
# Assume pointwise evaluation
tol = 1E-14 # tolerance for float comparison
f_v = ... # evaluate the f that fits the PDE
# Modify boundary values
if abs(x) < tol:

f_v = ... # x=0
if abs(x-Lx) < tol:

f_v = ... # x=Lx
if abs(y) < tol:

f_v = ... # y=0

6http://tinyurl.com/opdfafk/pub/trunc/sphinx/index.html
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if abs(y-Ly) < tol:
f_v = ... # y=Ly

3.3 Exact 1D plug-wave solution in 2D
The program wave1D_dn_vc.py7 has a pulse function for simulating the propa-
gation of a plug wave, where I(x) is constant in some region of the domain and
zero elsewhere. With unit Courant number, the plug is split into two identical
waves, moving in opposite direction, exactly one cell per time step. The discrete
solution is then equal to the exact solution.

Set b = 0 and q to a constant. Test the 2D program using a one-dimensional
plug wave in x direction with c∆t/∆x = 1 (the plug is constant in y direction
and hence compatible with the ∂/∂y = 0 boundary condition). Also propagate a
one-dimensional plug wave in the y direction with c∆t/∆y = 1. Both test cases
are essentially 1D test cases, and the results should as in the 1D case. Implement
a corresponding nose test.

3.4 Standing, undamped waves
With an exact analytical solution of the PDE we can compute the error and
see how the error approaches zero as ∆t,∆x,∆y → 0. (See the a wave equation
example8 or an ODE example9 for how to measure convergence rates in a
corresponding 1D problem). With no damping (b = 0) and constant wave
velocity (c), our wave equation problem without any source term admits a
standing wave solution:

ue(x, y, t) = A cos(kxx) cos(kyy) cos(ωt), kx = mxπ

Lx
, ky = myπ

Ly
, (5)

for arbitrary amplitude A, arbitrary integers mx and my, and a suitable choice
of ω. This solution can be used to test the convergence rate of the numerical
method.

Compute the true error en
i,j = ue(xi, yj , tn)−un

i,j on a series of refined meshes.
The physical parameters (A, mx, my) can be kept at some chosen values. A
suitable error norm can be

E = ||en
i,j ||`∞ = max

i
max

j
max

t
|en

i,j |,

Introduce a common discretization parameter h such that ∆t, ∆x, and ∆y are
proportional to h. This leads to an error model E = Ĉhr for constant Ĉ and
r. Theoretical analysis (e.g., via truncation errors) leads to the convergence
rate r = 2. Compute a sequence of r values by comparing two consecutive
experiments (as shown in the course material) and see if r approaches 2.

7http://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn_vc.py
8http://tinyurl.com/opdfafk/pub/wave/sphinx/._main_wave001.html#manufactured-solution
9http://hplgit.github.io/num-methods-for-PDEs/doc/pub/softeng1/sphinx/._main_softeng1001.html#computing-convergence-rates
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3.5 Standing, damped waves (optional)
Try to find an analytical solution of damped waves using an ansatz of the type

ue(x, y, t) = (A cos(ωt) +B sin(ωt)) e−ct cos(kxx) cos(kyy), kx = mxπ

Lx
, ky = myπ

Ly
.

(6)
That is, find A, B, ω, and c such that (6) solves the PDE with constant q, no
source term, and initial condition ut(x, y, 0) = 0 (as for the undamped standing
waves). Make a corresponding convergence test.

Hint. The algebra can quickly be quite involved. Getting an overview of the
algebra in a 1D version of this problem might be helpful. Start with relating A
and B through the initial conditions (u = A cos kxx cos kyy and ut = 0 as implied
by (5)) and eliminate B. After having inserted u in the PDE, two equations for
ω and c arise from factoring the sine and cosine terms in time. One equation can
be solved for ω =

√
k2

xq + k2
yq − c2, while the other can be solved for c = b/2 by

inserting the found ω expression.

3.6 Manufactured solution
Choose some q(x, y) 6= 0 and find f(x, y, t) such that (6) is a solution to the
general 2D wave equation problem with damping and variable wave velocity.
Find corresponding I and V , and make a convergence test that recovers the
expected convergence rate. Make a corresponding nose test.

Hint. You may explore sympy for automating the analytical work:

>>> from sympy import *
>>> x = Symbol(’x’)
>>> q=x**2
>>> u=sin(x)
>>> r = diff(q*diff(u, x), x) # Derivative: (q*u_x)_x
>>> simplify(r)
x*(-x*sin(x) + 2*cos(x))

4 Investigate a physical problem
The purpose of this part is to explore what happens to a wave that enters a
medium with different wave velocity. A particular physical interpretation can
be wave propagation of a tsunami over a subsea hill. The unknown u(x, y, t) is
then the elevation of the ocean surface, and the boundary condition ∂u/∂n = 0
means that the waves are perfectly reflected, because of a steep hill at the shore,
or the condition expresses symmetry in the solution. The wave velocity is in this
case given by q = gH(x, y), where g is the acceleration of gravity and H(x, y) is
the stillwater depth.
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It can be wise to do Problem 2110, because that 1D program, which corre-
sponds to the present 2D problem, allows for much faster experimentation with
parameters and effects.

The initial surface is taken as a smooth Gaussian function

I(x; I0, Ia, Im, Is) = I0 + Ia exp
(
−
(
x− Im

Is

)2
)
, (7)

with Im = 0 reflecting the location of the peak of I(x) and Is being a measure
of the width of the function I(x) (Is is

√
2 times the standard deviation of the

familiar normal distribution curve).
Three different bottom shapes can be investigated. A 2D Gaussian hill can

be modeled by

B(x;B0, Ba, Bmx, Bmy, Bs, b) = B0+Ba exp
(
−
(
x−Bmx

Bs

)2
−
(
y −Bmy

bBs

)2
)
,

(8)
where b is a scaling parameter: b = 1 gives a circular Gaussian function with
circular contour lines, while b 6= 1 gives an elliptic shape with elliptic contour
lines.

A less smooth hill is modeled by the "cosine hat" function

B(x;B0, Ba, Bmx, Bmy, Bs) = B0+Ba cos
(
π
x−Bmx

2Bs

)
cos
(
π
y −Bmy

2Bs

)
, (9)

when 0 ≤
√
x2 + y2 ≤ Bs and B = B0 outside this circle.

A more dramatic hill shape is a box:

B(x;B0, Ba, Bm, Bs, b) = B0 +Ba (10)

for x and y inside a rectangle

Bmx −Bs ≤ x ≤ Bmx +Bs, Bmy − bBs ≤ y ≤ Bmy + bBs,

and B = B0 outside this rectangle. The b parameter controls the rectangular
shape of the cross section of the box.

Note that the initial condition and the listed bottom shapes are symmetric
around the line y = Bmy. We therefore expect the surface elevation also to
be symmetric with respect to this line. This means that we can halve the
computational domain by working with [0, Lx] × [0, Bmy], which means great
savings in CPU time. Along the upper boundary, y = Bmy, we must impose the
symmetry condition ∂η/∂n = 0. Such a symmetry condition (here −∂η/∂x = 0)
is also needed at the x = 0 boundary because the initial condition has a symmetry
here. At the lower boundary y = 0 we also set a Neumann condition (which

10http://tinyurl.com/opdfafk/pub/wave/sphinx/._main_wave010.html#problem-23-earthquake-generated-tsunami-over-a-subsea-hill
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becomes −∂η/∂y = 0). The wave motion is to be simulated until the wave hits
the reflecting boundaries where ∂η/∂n = ∂η/∂x = 0. As background, you may
look at an exercise11 that asks you to explore the ideas of symmetry boundary
conditions for reducing the size of the domain.

Investigate how different hill shapes, different sizes of the water gap above
the hill, and different resolutions ∆x = ∆y = h and ∆t influence the numerical
quality of the solution. One anticipates that the less smooth hill shapes will
introduce more numerical noise. Presenting the results as movies of the surface
elevation is effective.

5 Optional additional tasks
5.1 Truncation error
Compute the truncation error of the scheme at an arbitrary interior mesh point.
(It easier to start with q = const and then generalize to variable q).

Suitable background material is the writings on Truncation error analysis in
the course notes12.

5.2 Harmonic averaging
Harmonic means are often used if the coefficient q is non-smooth or discontinuous.
Investigate if harmonic averaging of q works better than the arithmetic averging
for the box-shaped subsea hill. The effect might not be big unless the water
gap at the top of the hill is small. It can be wise to test the effect of harmonic
averaging in 1D first.

Remark. With a small gap between the obstruction and the free surface, and
with abrupt changes in the bottom shape, the model PDE does not necessarily
describe the wave motion in an accurate or qualitatively correct way.

5.3 Visualization
Create some fancy 3D visualization of the water waves and the subsea hill. Try
to make the hill transparent. Suitable tools are

• Mayavi13

• Paraview14

• OpenDX15

11http://hplgit.github.io/num-methods-for-PDEs/doc/pub/wave/sphinx/._main_wave003.html#problem-7-explore-symmetry-boundary-conditions
12http://hplgit.github.io/num-methods-for-PDEs/doc/pub
13http://code.enthought.com/projects/mayavi/
14http://www.paraview.org/
15http://www.opendx.org/
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• Matplotlib16

5.4 Open outlet boundary: 1D condition
Implement an open boundary condition at x = Lx, ut+√qux = 0, as suggested in
Problem 2117. This condition is only correct in 1D, but might work satisfactorily
in 2D if the wave is approximately one-dimensional when it hits the boundary.
See how well this condition works in letting the tsunami pass out of the domain.
The distance from the subsea hill (which disturbes the wave) and the outlet
boundary x = Lx is an important parameter.

5.5 Open outlet boundary: absorbing layer
Instead of using a condition ut +√qux = 0, which is exact only for plane waves
propagating in x direction, one can add an artificial domain [Lx, Lx + δ]× [0, Ly]
where waves are sufficiently damped and absorbed. The goal of an open boundary
condition is to avoid waves being reflected back into the domain. Turn on the
damping parameter b in [Lx, Lx + δ]× [0, Ly], and test if it is wise to vary b, say
in a linear or exponential fashion to have a smooth transition from b = 0 in the
physical domain and to some significant (efficient) b value towards the artificial
boundary x = Lx + δ.

5.6 Open outlet boundary: layer with faked damping
To let waves pass out of the boundary, we can extend the domain and damp
the wave as suggested in the section above. However, instead of implementing a
physical relevant damping via the term but, one can simply multiply the solution
by a function that reduces the amplitude of the wave in the extension of the
domain. Such a function should be 1 close to the physical boundary and decrease
towards 0 at the end of the extened domain. The goal is to let waves pass out of
the physical boundary with no reflections back into the physical domain.

5.7 Compiled loops
Extend the program with compiled loops using one or more of the following
techniques:

• Cython code18

• Fortran code19 interfaced via f2py

• C code: interfaced via Cython20 or f2py21

16http://matplotlib.org/
17http://tinyurl.com/opdfafk/pub/wave/sphinx/._main_wave010.html#problem-21-implement-open-boundary-conditions
18http://tinyurl.com/opdfafk/pub/wave/sphinx/._main_wave006.html#migrating-loops-to-cython
19http://tinyurl.com/opdfafk/pub/wave/sphinx/._main_wave006.html#migrating-loops-to-fortran
20http://tinyurl.com/opdfafk/pub/wave/sphinx/._main_wave006.html#migrating-loops-to-c-via-cython
21http://tinyurl.com/opdfafk/pub/wave/sphinx/._main_wave006.html#migrating-loops-to-c-via-f2py
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• C/C++ code interfaced via scipy.weave22

• C/C++ code interfaced via Instant23

Note that Instant comes with FEniCS (sudo apt-get install fenics on
Ubuntu will install Instant) and it is described in the FEniCS book24.

5.8 Parallel computing
Make a parallel version of the program using one (or more) of the following
approaches:

• Automatic OpenMP code in migrated Cython loops using cython.parallel25

• OpenMP in migrated C or Fortran loops

• Automatic parallelization via NumbaPro26

• MPI in migrated C or Fortran loops

• mpi4py MPI programming from Python (distribute vectorized code)

22http://docs.scipy.org/doc/scipy/reference/tutorial/weave.html
23https://launchpad.net/instant
24https://launchpad.net/fenics-book
25http://docs.cython.org/src/userguide/parallelism.html
26http://docs.continuum.io/numbapro/
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