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A very wide range of physical processes lead to wave motion, where signals
are propagated through a medium in space and time, normally with little or
no permanent movement of the medium itself. The shape of the signals may
undergo changes as they travel through matter, but usually not so much that
the signals cannot be recognized at some later point in space and time. Many
types of wave motion can be described by the equation utt = ∇ · (c2∇u) + f ,
which we will solve in the forthcoming text by finite difference methods.

1 Simulation of waves on a string
We begin our study of wave equations by simulating one-dimensional waves on
a string, say on a guitar or violin string. Let the string in the deformed state
coincide with the interval [0, L] on the x axis, and let u(x, t) be the displacement
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at time t in the y direction of a point initially at x. The displacement function
u is governed by the mathematical model

∂2u

∂t2
= c2

∂2u

∂x2 , x ∈ (0, L), t ∈ (0, T ] (1)

u(x, 0) = I(x), x ∈ [0, L] (2)
∂

∂t
u(x, 0) = 0, x ∈ [0, L] (3)

u(0, t) = 0, t ∈ (0, T ] (4)
u(L, t) = 0, t ∈ (0, T ] (5)

The constant c and the function I(x) must be prescribed.
Equation (1) is known as the one-dimensional wave equation. Since this PDE

contains a second-order derivative in time, we need two initial conditions, here
(2) specifying the initial shape of the string, I(x), and (3) reflecting that the
initial velocity of the string is zero. In addition, PDEs need boundary conditions,
here (4) and (5), specifying that the string is fixed at the ends, i.e., that the
displacement u is zero.

The solution u(x, t) varies in space and time and describes waves that are
moving with velocity c to the left and right.

Sometimes we will use a more compact notation for the partial derivatives to
save space:

ut = ∂u

∂t
, utt = ∂2u

∂t2
, (6)

and similar expressions for derivatives with respect to other variables. Then the
wave equation can be written compactly as utt = c2uxx.

The PDE problem (1)-(5) will now be discretized in space and time by a
finite difference method.

1.1 Discretizing the domain
The temporal domain [0, T ] is represented by a finite number of mesh points

0 = t0 < t1 < t2 < · · · < tNt−1 < tNt = T . (7)

Similarly, the spatial domain [0, L] is replaced by a set of mesh points

0 = x0 < x1 < x2 < · · · < xNx−1 < xNx = L . (8)

One may view the mesh as two-dimensional in the x, t plane, consisting of points
(xi, tn), with i = 0, . . . , Nx and n = 0, . . . , Nt.
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Uniform meshes. For uniformly distributed mesh points we can introduce
the constant mesh spacings ∆t and ∆x. We have that

xi = i∆x, i = 0, . . . , Nx, ti = n∆t, n = 0, . . . , Nt . (9)

We also have that ∆x = xi − xi−1, i = 1, . . . , Nx, and ∆t = tn − tn−1, n =
1, . . . , Nt. Figure 1 displays a mesh in the x, t plane with Nt = 5, Nx = 5, and
constant mesh spacings.

1.2 The discrete solution
The solution u(x, t) is sought at the mesh points. We introduce the mesh
function uni , which approximates the exact solution at the mesh point (xi, tn)
for i = 0, . . . , Nx and n = 0, . . . , Nt. Using the finite difference method, we shall
develop algebraic equations for computing the mesh function. The circles in
Figure 1 illustrate neighboring mesh points where values of uni are connected
through an algebraic equation. In this particular case, u1

2, u2
1, u2

2, u2
3, and u3

2 are
connected in an algebraic equation associated with the center point (2, 2). The
term stencil is often used about the algebraic equation at a mesh point, and the
geometry of a typical stencil is illustrated in Figure 1. One also often refers to
the algebraic equations as discrete equations, (finite) difference equations or a
finite difference scheme.
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Stencil at interior point

Figure 1: Mesh in space and time for a 1D wave equation.
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1.3 Fulfilling the equation at the mesh points
For a numerical solution by the finite difference method, we relax the condition
that (1) holds at all points in the space-time domain (0, L) × (0, T ] to the
requirement that the PDE is fulfilled at the interior mesh points:

∂2

∂t2
u(xi, tn) = c2

∂2

∂x2u(xi, tn), (10)

for i = 1, . . . , Nx − 1 and n = 1, . . . , Nt − 1. For n = 0 we have the initial
conditions u = I(x) and ut = 0, and at the boundaries i = 0, Nx we have the
boundary condition u = 0.

1.4 Replacing derivatives by finite differences
The second-order derivatives can be replaced by central differences. The most
widely used difference approximation of the second-order derivative is

∂2

∂t2
u(xi, tn) ≈ un+1

i − 2uni + un−1
i

∆t2 .

It is convenient to introduce the finite difference operator notation

[DtDtu]ni = un+1
i − 2uni + un−1

i

∆t2 .

A similar approximation of the second-order derivative in the x direction reads

∂2

∂x2u(xi, tn) ≈
uni+1 − 2uni + uni−1

∆x2 = [DxDxu]ni .

Algebraic version of the PDE. We can now replace the derivatives in (10)
and get

un+1
i − 2uni + un−1

i

∆t2 = c2
uni+1 − 2uni + uni−1

∆x2 , (11)

or written more compactly using the operator notation:

[DtDtu = c2DxDx]ni . (12)

Algebraic version of the initial conditions. We also need to replace the
derivative in the initial condition (3) by a finite difference approximation. A
centered difference of the type

∂

∂t
u(xi, tn) ≈ u1

i − u
−1
i

2∆t = [D2tu]0i ,

seems appropriate. In operator notation the initial condition is written as

[D2tu]ni = 0, n = 0 .
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Writing out this equation and ordering the terms give

un−1
i = un+1

i , i = 0, . . . , Nx, n = 0 . (13)

The other initial condition can be computed by

u0
i = I(xi), i = 0, . . . , Nx .

1.5 Formulating a recursive algorithm
We assume that uni and un−1

i are already computed for i = 0, . . . , Nx. The only
unknown quantity in (11) is therefore un+1

i , which we can solve for:

un+1
i = −un−1

i + 2uni + C2 (uni+1 − 2uni + uni−1
)
, (14)

where we have introduced the parameter

C = c
∆t
∆x, (15)

known as the Courant number.

C is the key parameter in the discrete diffusion equation.

We see that the discrete version of the PDE features only one parameter,
C, which is therefore the key parameter that governs the quality of the
numerical solution (see Section 10 for details). Both the primary physical
parameter c and the numerical parameters ∆x and ∆t are lumped together
in C. Note that C is a dimensionless parameter.

Given that un−1
i and uni are computed for i = 0, . . . , Nx, we find new values

at the next time level by applying the formula (14) for i = 1, . . . , Nx−1. Figure 1
illustrates the points that are used to compute u3

2. For the boundary points,
i = 0 and i = Nx, we apply the boundary conditions un+1

i = 0.
A problem with (14) arises when n = 0 since the formula for u1

i involves u−1
i ,

which is an undefined quantity outside the time mesh (and the time domain).
However, we can use the initial condition (13) in combination with (14) when
n = 0 to arrive at a special formula for u1

i :

u1
i = u0

i −
1
2C

2 (uni+1 − 2uni + uni−1
)
. (16)

Figure 2 illustrates how (16) connects four instead of five points: u1
2, u0

1, u0
2, and

u0
3.
We can now summarize the computational algorithm:

1. Compute u0
i = I(xi) for i = 0, . . . , Nx
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Figure 2: Modified stencil for the first time step.

2. Compute u1
i by (16) and set u1

i = 0 for the boundary points i = 0 and
i = Nx, for n = 1, 2, . . . , N − 1,

3. For each time level n = 1, 2, . . . , Nt − 1

(a) apply (14) to find un+1
i for i = 1, . . . , Nx − 1

(b) set un+1
i = 0 for the boundary points i = 0, i = Nx.

The algorithm essentially consists of moving a finite difference stencil through
all the mesh points, which is illustrated by an animation in a web page1 or a
movie file2.

1.6 Sketch of an implementation
In a Python implementation of this algorithm, we use the array elements u[i]
to store un+1

i , u_1[i] to store uni , and u_2[i] to store un−1
i . Our naming

convention is use u for the unknown new spatial field to be computed, u_1 as
the solution at one time step back in time, u_2 as the solution two time steps
back in time and so forth.

The algorithm only needs to access the three most recent time levels, so we
need only three arrays for un+1

i , uni , and un−1
i , i = 0, . . . , Nx. Storing all the

solutions in a two-dimensional array of size (Nx+ 1)× (Nt+ 1) would be possible
1http://tinyurl.com/opdfafk/pub/mov-wave/wave1D_PDE_Dirichlet_stencil_gpl/index.html
2http://tinyurl.com/opdfafk/pub/mov-wave/wave1D_PDE_Dirichlet_stencil_gpl/movie.ogg
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in this simple one-dimensional PDE problem, but is normally out of the question
in three-dimensional (3D) and large two-dimensional (2D) problems. We shall
therefore in all our programs for solving PDEs have the unknown in memory at
as few time levels as possible.

The following Python snippet realizes the steps in the computational algo-
rithm.

# Given mesh points as arrays x and t (x[i], t[n])
dx = x[1] - x[0]
dt = t[1] - t[0]
C = c*dt/dx # Courant number
Nt = len(t)-1
C2 = C**2 # Help variable in the scheme

# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_1[i] = I(x[i])

# Apply special formula for first step, incorporating du/dt=0
for i in range(1, Nx):

u[i] = u_1[i] - 0.5*C**2(u_1[i+1] - 2*u_1[i] + u_1[i-1])
u[0] = 0; u[Nx] = 0 # Enforce boundary conditions

# Switch variables before next step
u_2[:], u_1[:] = u_1, u

for n in range(1, Nt):
# Update all inner mesh points at time t[n+1]
for i in range(1, Nx):

u[i] = 2u_1[i] - u_2[i] - \
C**2(u_1[i+1] - 2*u_1[i] + u_1[i-1])

# Insert boundary conditions
u[0] = 0; u[Nx] = 0

# Switch variables before next step
u_2[:], u_1[:] = u_1, u

2 Verification
Before implementing the algorithm, it is convenient to add a source term to the
PDE (1) since it gives us more freedom in finding test problems for verification.
In particular, the source term allows us to use manufactured solutions for software
testing, where we simply choose some function as solution, fit the corresponding
source term, and define boundary and initial conditions consistent with the
chosen solution. Such solutions will seldom fulfill the initial condition (3) so we
need to generalize this condition to ut = V (x).

2.1 A slightly generalized model problem
We now address the following extended initial-boundary value problem for
one-dimensional wave phenomena:
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utt = c2uxx + f(x, t), x ∈ (0, L), t ∈ (0, T ] (17)
u(x, 0) = I(x), x ∈ [0, L] (18)
ut(x, 0) = V (x), x ∈ [0, L] (19)
u(0, t) = 0, t > 0 (20)
u(L, t) = 0, t > 0 (21)

Sampling the PDE at (xi, tn) and using the same finite difference approxima-
tions as above, yields

[DtDtu = c2DxDx + f ]ni . (22)
Writing this out and solving for the unknown un+1

i results in

un+1
i = −un−1

i + 2uni + C2(uni+1 − 2uni + uni−1) + ∆t2fni . (23)
The equation for the first time step must be rederived. The discretization of

the initial condition ut = V (x) at t = 0 becomes

[D2tu = V ]0i ⇒ u−1
i = u1

i − 2∆tVi,
which, when inserted in (23) for n = 0, gives the special formula

u1
i = u0

i −∆tVi + 1
2C

2 (uni+1 − 2uni + uni−1
)

+ 1
2∆t2fni . (24)

2.2 Using an analytical solution of physical significance
Many wave problems feature sinusoidal oscillations in time and space. For
example, the original PDE problem (1)-(5) allows a solution

ue(x, y, t)) = A sin
(π
L
x
)

cos
(π
L
ct
)
. (25)

This ue fulfills the PDE with f = 0, boundary conditions ue(0, t) = ue(L, 0) = 0,
as well as initial conditions I(x) = A sin

(
π
Lx
)
and V = 0.

It is common to use such exact solutions of physical interest to verify imple-
mentations. However, the numerical solution uni will only be an approximation
to ue(xi, tn). We no have knowledge of the precise size of the error in this approx-
imation, and therefore we can never know if discrepancies between the computed
uni and ue(xi, tn) are caused by mathematical approximations or programming
errors. In particular, if a plot of the computed solution uni and the exact one
(25) looks similar, many are attempted to claim that the implementation works,
but there can still be serious programming errors although color plots look nice.

The only way to use exact physical solutions like (25) for serious and thorough
verification is to run a series of finer and finer meshes, measure the integrated
error in each mesh, and from this information estimate the convergence rate. If
these rates are very close to 2, we have strong evidence that the implementation
works.

10



2.3 Manufactured solution
One problem with the exact solution (25) is that it requires a simplification
(V = 0, f = 0) of the implemented problem (17)-(21). An advantage of using
a manufactured solution is that we can test all terms in the PDE problem.
The idea of this approach is to set up some chosen solution and fit the source
term, boundary conditions, and initial conditions to be compatible with the
chosen solution. Given that our boundary conditions in the implementation are
u(0, t) = u(L, t) = 0, we must choose a solution that fulfills these conditions.
One example is

ue(x, t) = x(L− x) sin t .

Inserted in the PDE utt = c2uxx + f we get

−x(L− x) sin t = −2 sin t+ f ⇒ f = (2− x(L− x)) sin t .

The initial conditions become

u(x, 0) =I(x) = 0,
ut(x, 0) = V (x) = −x(L− x) .

To verify the code, we run a series of refined meshes and compute the
convergence rates. Such tests rely on an assumption that some measure E of
the numerical error is related to the discretization parameters through

E = Ct∆tr + Cx∆xp,

where Ct, Cx, r, and p are constants. The constants r and p are known as the
convergence rates in time and space, respectively. From the accuracy in the finite
difference approximations, we expect r = p = 2. This is confirmed by truncation
error analysis and other types of analysis. By using an exact solution of the
PDE problem, we can empirically compute the error measure E on a sequence
of refined meshes and see if the rates r = p = 2 are obtained. We will not be
concerned with estimating the constants Ct and Cx.

It is advantageous to introduce a single discretization parameter h = ∆t =
ĉ∆x for some constant ĉ (the idea is to keep ∆tr/∆xp constant). Since ∆t and
∆x are related through the Courant number, ∆t = C∆x/c, we set h = ∆t, and
then ∆x = hc/C. Now the expression for the error measure is greatly simplified:

E = Ct∆tr + Cx∆xr = Cth
r + Cxc

C
hr = Ĉhr, Ĉ = Ct + Cxc

C
.

We choose an initial discretization parameter h0 and run experiments with
decreasing h: hi = 2−ih0, i = 1, 2, . . . ,m. Halving h in each experiment is not
necessary, but a common choice. For each experiment we must record E and
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h. A standard choice of error measure is the `2 or `∞ norm of the error mesh
function eni :

E = ||eni ||`2 =
(

∆t∆x
Nt∑
n=0

Nx∑
i=0

(eni )2

) 1
2

, eni = ue(xi, tn)− uni , (26)

E = ||eni ||`∞ = max
i,n
|ein| . (27)

In Python, one can compute
∑
i(e

n+1
i )2 at each time step and accumulate the

value in some sum variable, say e2_sum. At the final time step one can do
sqrt(dt*dx*e2_sum). For the `∞ norm one must compare the maximum error
at a time level (e.max()) with the global maximum over the time domain:
e_max = max(e_max, e.max()).

An alternative error measure is to use a spatial norm at one time step only,
e.g., the end time T :

E = ||eni ||`2 =
(

∆x
Nx∑
i=0

(eni )2

) 1
2

, eni = ue(xi, tn)− uni , (28)

E = ||eni ||`∞ = max
0≤i≤Nx

|ein| . (29)

Let Ei be the error measure in experiment (mesh) number i and let hi be
the corresponding discretization parameter (h). With the error model Ei = Ĉhri ,
we can estimate r by comparing two consecutive experiments: Ei+1 = Ĉhri+1
and Ei = Ĉhri . Dividing the two equations eliminates Ĉ and solving for ri yields

ri = lnEi+1/Ei
ln hi+1/hi

, i = 0, . . . ,m− 1 .

We should for the present discretization method observe that ri approaches 2 as
i increases.

2.4 Constructing an exact solution of the discrete equa-
tions

With a manufactured or known analytical solution, as outlined above, we can
estimate convergence rates and see if they have the correct asymptotic behavior.
Experience shows that this is a quite good verification technique in that many
common bugs will destroy the convergence rates. A significantly better test
would be to check that the numerical solution is exactly what it should be.
This will in general require knowledge of the numerical error, which we do not
have. However, it is possible to look for solutions where we can show that the
numerical error vanishes, i.e., the solution of the PDE problem is also a solution
of the discrete equations. This property often arises if the exact solution is a
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lower-order polynomial. (Truncation error analysis leads to error measures that
involve derivatives of the exact solution. In the present problem, the truncation
error involves 4th-order derivatives of u in space and time. Choosing u as a
polynomial of degree three or less will therefore lead to vanishing error.)

We shall now illustrate the construction of an exact solution of the PDE
problem and the discrete equations. Our choice of manufactured solution is
quadratic in space and linear in time. More specifically, we set

ue(x, t) = x(L− x)(1 + 1
2 t), (30)

which by insertion in the PDE leads to f(x, t) = 2(1 + t)c2. This ue fulfills the
boundary conditions u = 0 and demands I(x) = x(L−x) and V (x) = 1

2x(L−x).
To realize that the chosen ue is that it is also an exact solution of the discrete

equations, we first establish the results

[DtDtt
2]n =

t2n+1 − 2t2n + t2n−1
∆t2 = (n+ 1)2 − n2 + (n− 1)2 = 2, (31)

[DtDtt]n = tn+1 − 2tn + tn−1

∆t2 = ((n+ 1)− n+ (n− 1))∆t
∆t2 = 0 . (32)

Hence,

[DtDtue]ni = xi(L− xi)[DtDt(1 + 1
2 t)]

n = xi(L− xi)
1
2 [DtDtt]n = 0,

and

[DxDxue]ni = (1 + 1
2 tn)[DxDx(xL− x2)]i = (1 + 1

2 tn)[LDxDxx−DxDxx
2]i

= −2(1 + 1
2 tn) .

Now, fni = 2(1 + 1
2 tn)c2 and we get

[DtDtue − c2DxDxue − f ]ni = 0− c2(−1)2(1 + 1
2 tn + 2(1 + 1

2 tn)c2 = 0 .

Moreover, ue(xi, 0) = I(xi), ∂ue/∂t = V (xi) at t = 0, and ue(x0, t) =
ue(xNx

, 0) = 0. Also the modified scheme for the first time step is fulfilled by
ue(xi, tn).

Therefore, the exact solution ue(x, t) = x(L−x)(1+ t/2) of the PDE problem
is also an exact solution of the discrete problem. We can use this result to check
that the computed uni vales from an implementation equals ue(xi, tn) within
machine precision, regardless of the mesh spacings ∆x and ∆t! Nevertheless,
there might be stability restrictions on ∆x and ∆t, so the test can only be run
for a mesh that is compatible with the stability criterion (which in the present
case is C ≤ 1, to be derived later).
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Notice.
A product of quadratic or linear expressions in the various independent
variables, as shown above, will often fulfill both the continuous and discrete
PDE problem and can therefore be very useful solutions for verifying
implementations. However, for 1D wave equations of the type ut = c2uxx
we shall see that there is always another much more powerful way of
generating exact solutions (just set C = 1).

3 Implementation
This section present the complete computational algorithm, its implementation in
Python code, animation of the solution, and verification of the implementation.

A real implementation of the basic computational algorithm from Sections 1.5
and 1.6 can be encapsulated in a function, taking all the input data for the
problem as arguments. The physical input data consists of c, I(x), V (x), f(x, t),
L, and T . The numerical input is the mesh parameters ∆t and ∆x.

Instead of specifying ∆t and ∆x, we can specify one of them and the Courant
number C instead, since having explicit control of the Courant number is
convenient when investigating the numerical method. Many find it natural to
prescribe the resolution of the spatial grid and set Nx. The solver function
can then compute ∆t = CL/(cNx). However, for comparing u(x, t) curves (as
functions of x) for various Courant numbers, especially in animations in time,
it is more convenient to keep ∆t fixed for all C and let ∆x vary according to
∆x = c∆t/C. (With ∆t fixed, all frames correspond to the same time t, and
plotting curves with different spatial resolution is trivial.)

The solution at all spatial points at a new time level is stored in an array
u (of length Nx + 1). We need to decide what do to with this solution, e.g.,
visualize the curve, analyze the values, or write the array to file for later use.
The decision what to do is left to the user in a suppled function

def user_action(u, x, t, n):

where u is the solution at the spatial points x at time t[n].

3.1 Making a solver function
A first attempt at a solver function is listed below.

from numpy import *

def solver(I, V, f, c, L, dt, C, T, user_action=None):
"""Solve u_tt=c^2*u_xx + f on (0,L)x(0,T]."""
Nt = int(round(T/dt))
t = linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = dt*c/float(C)
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Nx = int(round(L/dx))
x = linspace(0, L, Nx+1) # Mesh points in space
C2 = C**2 # Help variable in the scheme
if f is None or f == 0 :

f = lambda x, t: 0
if V is None or V == 0:

V = lambda x: 0

u = zeros(Nx+1) # Solution array at new time level
u_1 = zeros(Nx+1) # Solution at 1 time level back
u_2 = zeros(Nx+1) # Solution at 2 time levels back

import time; t0 = time.clock() # for measuring CPU time

# Load initial condition into u_1
for i in range(0,Nx+1):

u_1[i] = I(x[i])

if user_action is not None:
user_action(u_1, x, t, 0)

# Special formula for first time step
n = 0
for i in range(1, Nx):

u[i] = u_1[i] + dt*V(x[i]) + \
0.5*C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + \
0.5*dt**2*f(x[i], t[n])

u[0] = 0; u[Nx] = 0

if user_action is not None:
user_action(u, x, t, 1)

# Switch variables before next step
u_2[:] = u_1; u_1[:] = u

for n in range(1, Nt):
# Update all inner points at time t[n+1]
for i in range(1, Nx):

u[i] = - u_2[i] + 2*u_1[i] + \
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + \
dt**2*f(x[i], t[n])

# Insert boundary conditions
u[0] = 0; u[Nx] = 0
if user_action is not None:

if user_action(u, x, t, n+1):
break

# Switch variables before next step
u_2[:] = u_1; u_1[:] = u

cpu_time = t0 - time.clock()
return u, x, t, cpu_time

3.2 Verification: exact quadratic solution
We use the test problem derived in Section 2.1 for verification. Here is a function
realizing this verification as a nose test:
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import nose.tools as nt

def test_quadratic():
"""Check that u(x,t)=x(L-x)(1+t/2) is exactly reproduced."""
def u_exact(x, t):

return x*(L-x)*(1 + 0.5*t)

def I(x):
return u_exact(x, 0)

def V(x):
return 0.5*u_exact(x, 0)

def f(x, t):
return 2*(1 + 0.5*t)*c**2

L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18

u, x, t, cpu = solver(I, V, f, c, L, dt, C, T)
u_e = u_exact(x, t[-1])
diff = abs(u - u_e).max()
nt.assert_almost_equal(diff, 0, places=14)

3.3 Visualization: animating the solution
Now that we have verified the implementation it is time to do a real computation
where we also display the evolution of the waves on the screen.

Visualization via SciTools. The following viz function defines a user_action
callback function for plotting the solution at each time level:

def viz(I, V, f, c, L, dt, C, T, umin, umax, animate=True):
"""Run solver and visualize u at each time level."""
import scitools.std as plt
import time, glob, os

def plot_u(u, x, t, n):
"""user_action function for solver."""
plt.plot(x, u, ’r-’,

xlabel=’x’, ylabel=’u’,
axis=[0, L, umin, umax],
title=’t=%f’ % t[n], show=True)

# Let the initial condition stay on the screen for 2
# seconds, else insert a pause of 0.2 s between each plot
time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig(’frame_%04d.png’ % n) # for movie making

# Clean up old movie frames
for filename in glob.glob(’frame_*.png’):

os.remove(filename)
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user_action = plot_u if animate else None
u, x, t, cpu = solver(I, V, f, c, L, dt, C, T, user_action)

# Make movie files
fps = 4 # Frames per second
plt.movie(’frame_*.png’, encoder=’html’, fps=fps,

output_file=’movie.html’)
codec2ext = dict(flv=’flv’, libx264=’mp4’, libvpx=’webm’,

libtheora=’ogg’)
filespec = ’frame_%04d.png’
movie_program = ’avconv’ # or ’ffmpeg’
for codec in codec2ext:

ext = codec2ext[codec]
cmd = ’%(movie_program)s -r %(fps)d -i %(filespec)s ’\

’-vcodec %(codec)s movie.%(ext)s’ % vars()
os.system(cmd)

A function inside another function, like plot_u in the above code segment, has
access to and remembers all the local variables in the surrounding code inside
the viz function (!). This is known in computer science as a closure and is
very convenient to program with. For example, the plt and time modules
defined outside plot_u are accessible for plot_u when the function is called (as
user_action) in the solver function. Some may think, however, that a class
instead of a closure is a cleaner and easier-to-understand implementation of the
user action function, see Section 8.

Making movie files. Several hardcopies of the animation are made from
the frame_*.png files. We use the avconv (or ffmpeg) programs to combine
individual plot files to movies in modern formats: Flash, MP4, Webm, and
Ogg. A typical avconv (or ffmpeg) command for creating a movie file in Ogg
format with 4 frames per second built from a collection of plot files with names
generated by frame_%04d.png, look like

Terminal> avconv -r 4 -i frame_%04d.png -c:v libtheora movie.ogg

The different formats require different video encoders (-c:v) to be installed:
Flash applies flv, WebM applies libvpx, and MP4 applies libx264:

Terminal> avconv -r 4 -i frame_%04d.png -c:v flv movie.flv
Terminal> avconv -r 4 -i frame_%04d.png -c:v libvpx movie.webm
Terminal> avconv -r 4 -i frame_%04d.png -c:v libx264 movie.mp4

Players like vlc, mplayer, gxine, and totem can be used to play these movie
files.

Note that padding the frame counter with zeros in the frame_*.png files,
as specified by the %04d format, is essential so that the wildcard notation
frame_*.png expands to the correct set of files.
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The plt.movie function also creates a movie.html file with a movie player
for displaying the frame_*.png files in a web browser. This movie player can be
generated from the command line too

Terminal> scitools movie encoder=html output_file=movie.html \
fps=4 frame_*.png

Skipping frames for animation speed. Sometimes the time step is small
and T is large, leading to an inconveniently large number of plot files and a slow
animation on the screen. The solution to such a problem is to decide on a total
number of frames in the animation, num_frames, and plot the solution only at
every every frame. The total number of time levels (i.e., maximum possible
number of frames) is the length of t, t.size, and if we want num_frames, we
need to plot every t.size/num_frames frame:

every = int(t.size/float(num_frames))
if n % every == 0 or n == t.size-1:

st.plot(x, u, ’r-’, ...)

The initial condition (n=0) is natural to include, and as n % every == 0 will
very seldom be true for the very final frame, we also ensure that n == t.size-1
and hence the final frame is included.

A simple choice of numbers may illustrate the formulas: say we have 801
frames in total (t.size) and we allow only 60 frames to be plotted. Then we
need to plot every 801/60 frame, which with integer division yields 13 as every.
Using the mod function, n % every, this operation is zero every time n can be
divided by 13 without a remainder. That is, the if test is true when n equals
0, 13, 26, 39, ..., 780, 801. The associated code is included in the plot_u function
in the file wave1D_u0v.py3.

Visualization via Matplotlib. The previous code based on the plot interface
from scitools.std can be run with Matplotlib as the visualization backend,
but if one desires to program directly with Matplotlib, quite different code is
needed. Matplotlib’s interactive mode must be turned on:

import matplotlib.pyplot as plt
plt.ion() # interactive mode on

The most commonly used animation technique with Matplotlib is to update the
data in the plot at each time level:

# Make a first plot
lines = plt.plot(t, u)
# call plt.axis, plt.xlabel, plt.ylabel, etc. as desired

3http://tinyurl.com/nm5587k/wave/wave1D/wave1D_u0v.py
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# At later time levels
lines[0].set_ydata(u)
plt.legend(’t=%g’ % t[n])
plt.draw() # make updated plot
plt.savefig(...)

An alternative is to rebuild the plot at every time level:

plt.clf() # delete any previous curve(s)
plt.axis([...])
plt.plot(t, u)
# plt.xlabel, plt.legend and other decorations
plt.draw()
plt.savefig(...)

Many prefer to work with figure and axis objects as in MATLAB:

fig = plt.figure()
...
fig.clf()
ax = fig.gca()
ax.axis(...)
ax.plot(t, u)
# ax.set_xlabel, ax.legend and other decorations
plt.draw()
fig.savefig(...)

3.4 Running a case
The first demo of our 1D wave equation solver concerns vibrations of a string
that is initially deformed to a triangular shape, like when picking a guitar string:

I(x) =
{
ax/x0, x < x0,
a(L− x)/(L− x0), otherwise (33)

We choose L = 75 cm, x0 = 0.8L, a = 5 mm, and a time frequency ν = 440
Hz. The relation between the wave speed c and ν is c = νλ, where λ is the
wavelength, taken as 2L because the longest wave on the string form half a
wavelength. There is no external force, so f = 0, and the string is at rest initially
so that V = 0.

Regarding numerical parameters, we need to specify a ∆t. Sometimes it is
more natural to think of a spatial resolution instead of a time step. A natural
semi-coarse spatial resolution in the present problem is Nx = 50. We can then
choose the associated ∆t (as required by the viz and solver functions) as
the stability limit: ∆t = L/(Nxc). This is the ∆t to be specified, but notice
that if C < 1, the actual ∆x computed in solver gets larger than L/Nx:
∆x = c∆t/C = L/(NxC). (The reason is that we fix ∆t and adjust ∆x, so if C
gets smaller, the code implements this effect in terms of a larger ∆x.)

A function for setting the physical and numerical parameters and calling viz
in this application goes as follows:

19



def guitar(C):
"""Triangular wave (pulled guitar string)."""
L = 0.75
x0 = 0.8*L
a = 0.005
freq = 440
wavelength = 2*L
c = freq*wavelength
omega = 2*pi*freq
num_periods = 1
T = 2*pi/omega*num_periods
# Choose dt the same as the stability limit for Nx=50
dt = L/50./c

def I(x):
return a*x/x0 if x < x0 else a/(L-x0)*(L-x)

umin = -1.2*a; umax = -umin
cpu = viz(I, 0, 0, c, L, dt, C, T, umin, umax, animate=True)

The associated program has the name wave1D_u0.py4. Run the program and
watch the movie of the vibrating string5.

3.5 The benefits of scaling
The previous example demonstrated that quite some work is needed with es-
tablishing relevant physical parameters for a case. By scaling the mathematical
problem we can often reduce the need to estimate physical parameters dramati-
cally. A scaling consists of introducing new independent and dependent variables,
with the aim that the absolute value of these vary between 0 and 1:

x̄ = x

L
, t̄ = c

L
t, ū = u

a
.

Replacing old by new variables in the PDE, using f = 0, and dropping the bars,
results in the scaled equation utt = uxx. This equation has no physical parameter
(!).

If we have a program implemented for the physical wave equation with
dimensions, we can obtain the dimensionless, scaled version by setting c = 1.
The initial condition corresponds to (185), but with setting a = 1, L = 1, and
x0 ∈ [0, 1]. This means that we only need to decide on the x0 value as a fraction
of unity, because the scaled problem corresponds to setting all other parameters
to unity! In the code we can just set a=c=L=1, x0=0.8, and there is no need to
calculate with wavelengths and frequencies to estimate c.

The only non-trivial parameter to estimate in the scaled problem is the final
end time of the simulation, or more precisely, how it relates to periods in periodic
solutions in time, since we often want to express the end time as a certain
number of periods. Suppose as u behaves as sin(ωt) in time in variables with
dimension. The corresponding period is P = 2π/ω. The frequency ω is related to

4http://tinyurl.com/nm5587k/wave/wave1D/wave1D_u0.py
5http://tinyurl.com/opdfafk/pub/mov-wave/guitar_C0.8/index.html
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the wavelength λ of the waves through the relations ω = kc and k = 2π/λ, giving
ω = 2πc/λ and P = λ/c. It remains to estimate λ. With u(x, t) = F (x) sinωt
we find from utt = c2uxx that c2F ′′ + ω2F = 0, and the boundary conditions
demand F (0) = F (L) = 0. The solution is F (x) = sin(xπ/L), which has
wavelength λ = 2π/(π/L) = 2L. One period is therefore given by P = 2L/c.
The dimensionless period is P̄ = Pc/L = 2.

4 Vectorization
The computational algorithm for solving the wave equation visits one mesh
point at a time and evaluates a formula for the new value un+1

i at that point.
Technically, this is implemented by a loop over array elements in a program.
Such loops may run slowly in Python (and similar interpreted languages such as
R and MATLAB). One technique for speeding up loops is to perform operations
on entire arrays instead of working with one element at a time. This is referred
to as vectorization, vector computing, or array computing. Operations on whole
arrays are possible if the computations involving each element is independent of
each other and therefore can, at least in principle, be performed simultaneously.
Vectorization not only speeds up the code on serial computers, but it also makes
it easy to exploit parallel computing.

4.1 Operations on slices of arrays
Efficient computing with numpy arrays demands that we avoid loops and compute
with entire arrays at once (or at least large portions of them). Consider this
calculation of differences di = ui+1 − ui:

n = u.size
for i in range(0, n-1):

d[i] = u[i+1] - u[i]

All the differences here are independent of each other. The computation of d can
therefore alternatively be done by subtracting the array (u0, u1, . . . , un−1) from
the array where the elements are shifted one index upwards: (u1, u2, . . . , un),
see Figure 3. The former subset of the array can be expressed by u[0:n-1],
u[0:-1], or just u[:-1], meaning from index 0 up to, but not including, the
last element (-1). The latter subset is obtained by u[1:n] or u[1:], meaning
from index 1 and the rest of the array. The computation of d can now be done
without an explicit Python loop:

d = u[1:] - u[:-1]

or with explicit limits if desired:

d = u[1:n] - u[0:n-1]
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Indices with a colon, going from an index to (but not including) another index
are called slices. With numpy arrays, the computations are still done by loops,
but in efficient, compiled, highly optimized code in C or Fortran. Such array
operations can also easily be distributed among many processors on parallel
computers. We say that the scalar code above, working on an element (a scalar)
at a time, has been replaced by an equivalent vectorized code. The process of
vectorizing code is called vectorization.
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Figure 3: Illustration of subtracting two slices of two arrays.

Test the understanding.

Newcomers to vectorization are encouraged to choose a small array u, say
with five elements, and simulate with pen and paper both the loop version
and the vectorized version.

Finite difference schemes basically contains differences between array elements
with shifted indices. Consider the updating formula

for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1]

The vectorization consists of replacing the loop by arithmetics on slices of arrays
of length n-2:

u2 = u[:-2] - 2*u[1:-1] + u[2:]
u2 = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative

Note that u2 here gets length n-2. If u2 is already an array of length n and
we want to use the formula to update all the “inner” elements of u2, as we will
when solving a 1D wave equation, we can write

u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:]
u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative

Pen and paper calculations with a small array will demonstrate what is actually
going on. The expression on the right-hand side are done in the following steps,
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involving temporary arrays with intermediate results, since we can only work
with two arrays at a time in arithmetic expressions:

temp1 = 2*u[1:-1]
temp2 = u[0:-2] - temp1
temp3 = temp2 + u[2:]
u2[1:-1] = temp3

We can extend the previous example to a formula with an additional term
computed by calling a function:

def f(x):
return x**2 + 1

for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1] + f(x[i])

Assuming u2, u, and x all have length n, the vectorized version becomes

u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:] + f(x[1:-1])

4.2 Finite difference schemes expressed as slices
We now have the necessary tools to vectorize the algorithm for the wave equation.
There are three loops: one for the initial condition, one for the first time step,
and finally the loop that is repeated for all subsequent time levels. Since only
the latter is repeated a potentially large number of times, we limit the efforts of
vectorizing the code to this loop:

for i in range(1, Nx):
u[i] = 2*u_1[i] - u_2[i] + \

C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])

The vectorized version becomes

u[1:-1] = - u_2[1:-1] + 2*u_1[1:-1] + \
C2*(u_1[:-2] - 2*u_1[1:-1] + u_1[2:])

or

u[1:Nx] = 2*u_1[1:Nx]- u_2[1:Nx] + \
C2*(u_1[0:Nx-1] - 2*u_1[1:Nx] + u_1[2:Nx+1])

The program wave1D_u0v.py6 contains a new version of the function solver
where both the scalar and the vectorized loops are included (the argument
version is set to scalar or vectorized, respectively).

6http://tinyurl.com/nm5587k/wave/wave1D/wave1D_u0v.py
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4.3 Verification
We may reuse the quadratic solution ue(x, t) = x(L−x)(1+ 1

2 t) for verifying also
the vectorized code. A nose test can now test both the scalar and the vectorized
version. Moreover, we may use a user_action function that compares the
computed and exact solution at each time level and performs a test:

def test_quadratic():
"""
Check the scalar and vectorized versions work for
a quadratic u(x,t)=x(L-x)(1+t/2) that is exactly reproduced.
"""
# The following function must work for x as array or scalar
u_exact = lambda x, t: x*(L - x)*(1 + 0.5*t)
I = lambda x: u_exact(x, 0)
V = lambda x: 0.5*u_exact(x, 0)
# f is a scalar (zeros_like(x) works for scalar x too)
f = lambda x, t: zeros_like(x) + 2*c**2*(1 + 0.5*t)

L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = abs(u - u_e).max()
nt.assert_almost_equal(diff, 0, places=13)

solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error, version=’scalar’)

solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error, version=’vectorized’)

Lambda functions.
The code segment above demonstrates how to achieve very compact code
with the use of lambda functions for the various input parameters that
require a Python function. In essence,

f = lambda x, t: L*(x-t)**2

is equivalent to

def f(x, t):
return L(x-t)**2

Note that lambda functions can just contain a single expression and no
statements.
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One advantage with lambda functions is that they can be used directly
in calls:

solver(I=lambda x: sin(pi*x/L), V=0, f=0, ...)

4.4 Efficiency measurements
Running the wave1D_u0v.py code with the previous string vibration exam-
ple for Nx = 50, 100, 200, 400, 800, and measuring the CPU time (see the
run_efficiency_experiments function), shows that the vectorized code runs
substantially faster: the scalar code uses approximately a factor Nx/5 more
time!

4.5 Remark on the updating of arrays
At the end of each time step we need to update the u_2 and u_1 arrays such
that they have the right content for the next time step:

u_2[:] = u_1
u_1[:] = u

The order here is important! (Updating u_1 first, makes u_2 equal to u, which
is wrong.)

The assignment u_1[:] = u copies the content of the u array into the
elements of the u_1 array. Such copying takes time, but little compared to
computing u from the finite difference formula, even when the formula has a
vectorized implementation. However, efficiency of program code is a key topic
when solving PDEs numerically, so it must be mentioned that there exists a
much more efficient way of making the arrays u_2 and u_1 ready for the next
time step. The idea is based on switching references and explained below.

A Python variable is actually a reference to some object (C programmers
may think of pointers). Instead of copying data, we can let u_2 refer to the u_1
object and u_1 refer to the u object. A naive implementation like

u_2 = u_1
u_1 = u

will fail, however, because now u_1 and u refers to the same object and the
update of u from the finite difference formula at the next time step will overwrite
u_1 and lead to erroneous computations. Also, with the suggested change of
references, the reference to the u_2 array is lost, and we have in fact only two
arrays. The solution to this problem is to ensure that u points to the u_2 array.
This is mathematically wrong, but new correct values will be filled into u at the
next time step.
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The correct switch of references is then

tmp = u_2
u_2 = u_1
u_1 = u
u = tmp

We can get rid of the temporary reference tmp by writing

u_2, u_1, u = u_1, u, u_2

This update will be used in later implementations.

Caution:
The update u_2, u_1, u = u_1, u, u_2 leaves wrong content in u at the
final time step. This means that if we return u, as we do in the example
codes here, we actually return u_2, which is obviously wrong. It is therefore
important to adjust the content of u to u = u_1 before returning u.

5 Exercises
Exercise 1: Simulate a standing wave
The purpose of this exercise is to simulate standing waves on [0, L] and illustrate
the error in the simulation. Standing waves arise from an initial condition

u(x, 0) = A sin
(π
L
mx
)
,

where m is an integer and A is a freely chosen amplitude. The corresponding
exact solution can be computed and reads

ue(x, t) = A sin
(π
L
mx
)

cos
(π
L
mct

)
.

a) Explain that for a function sin kx cosωt the wave length in space is λ = 2π/k
and the period in time is P = 2π/ω. Use these expressions to find the wave
length in space and period in time of ue above.

b) Import the solver function wave1D_u0.py into a new file where the viz
function is reimplemented such that it plots either the numerical and the exact
solution, or the error.

c) Make animations where you illustrate how the error eni = ue(xi, tn) − uni
develops and increases in time. Also make animations of u and ue simultaneously.

Hint 1. Quite long time simulations are needed in order to display significant
discrepancies between the numerical and exact solution.
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Hint 2. A possible set of parameters is L = 12, m = 9, c = 2, A = 1, Nx = 80,
C = 0.8. The error mesh function en can be simulated for 10 periods, while
20-30 periods are needed to show significant differences between the curves for
the numerical and exact solution.
Filename: wave_standing.py.

Remarks. The important parameters for numerical quality are C and k∆x,
where C = c∆t/∆x is the Courant number and k is defined above (k∆x is
proportional to how many mesh points we have per wave length in space, see
Section 10.4 for explanation).

Exercise 2: Add storage of solution in a user action function
Extend the plot_u function in the file wave1D_u0.py to also store the solutions
u in a list. To this end, declare all_u as an empty list in the viz function,
outside plot_u, and perform an append operation inside the plot_u function.
Note that a function, like plot_u, inside another function, like viz, remembers
all local variables in viz function, including all_u, even when plot_u is called
(as user_action) in the solver function. Test both all_u.append(u) and
all_u.append(u.copy()). Why does one of these constructions fail to store
the solution correctly? Let the viz function return the all_u list converted to a
two-dimensional numpy array. Filename: wave1D_u0_s_store.py.

Exercise 3: Use a class for the user action function
Redo Exercise 2 using a class for the user action function. That is, define a class
Action where the all_u list is an attribute, and implement the user action func-
tion as a method (the special method __call__ is a natural choice). The class
versions avoids that the user action function depends on parameters defined out-
side the function (such as all_u in Exercise 2). Filename: wave1D_u0_s2c.py.

Exercise 4: Compare several Courant numbers in one movie
The goal of this exercise is to make movies where several curves, corresponding
to different Courant numbers, are visualized. Import the solver function from
the wave1D_u0_s movie in a new file wave_compare.py. Reimplement the viz
function such that it can take a list of C values as argument and create a movie
with solutions corresponding to the given C values. The plot_u function must
be changed to store the solution in an array (see Exercise 2 or 3 for details),
solver must be computed for each value of the Courant number, and finally
one must run through each time step and plot all the spatial solution curves in
one figure and store it in a file.

The challenge in such a visualization is to ensure that the curves in one plot
corresponds to the same time point. The easiest remedy is to keep the time and
space resolution constant and change the wave velocity c to change the Courant
number. Filename: wave_numerics_comparison.py.
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Project 5: Calculus with 1D mesh functions
This project explores integration and differentiation of mesh functions, both with
scalar and vectorized implementations. We are given a mesh function fi on a
spatial one-dimensional mesh xi = i∆x, i = 0, . . . , Nx, over the interval [a, b].

a) Define the discrete derivative of fi by using centered differences at internal
mesh points and one-sided differences at the end points. Implement a scalar
version of the computation in a Python function and supply a nose test for the
linear case f(x) = 4x− 2.5 where the discrete derivative should be exact.

b) Vectorize the implementation of the discrete derivative. Extend the nose test
to check the validity of the implementation.

c) To compute the discrete integral Fi of fi, we assume that the mesh function
fi varies linearly between the mesh points. Let f(x) be such a linear interpolant
of fi. We then have

Fi =
∫ xi

x0

f(x)dx .

The exact integral of a piecewise linear function f(x) is given by the Trapezoidal
rule. S how that if Fi is already computed, we can find Fi+1 from

Fi+1 = Fi + 1
2(fi + fi+1)∆x .

Make a function for a scalar implementation of the discrete integral as a mesh
function. That is, the function should return Fi for i = 0, . . . , Nx. For a nose
test one can use the fact that the above defined discrete integral of a linear
function (say f(x) = 4x− 2.5) is exact.

d) Vectorize the implementation of the discrete integral. Extend the nose test
to check the validity of the implementation.

Hint. Interpret the recursive formula for Fi+1 as a sum. Make an array with
each element of the sum and use the "cumsum" (numpy.cumsum) operation to
compute the accumulative sum: numpy.cumsum([1,3,5]) is [1,4,9].

e) Create a class MeshCalculus that can integrate and differentiate mesh func-
tions. The class can just define some methods that call the previously imple-
mented Python functions. Here is an example on the usage:

import numpy as np
calc = MeshCalculus(vectorized=True)
x = np.linspace(0, 1, 11) # mesh
f = np.exp(x) # mesh function
df = calc.differentiate(f, x) # discrete derivative
F = calc.integrate(f, x) # discrete anti-derivative

Filename: mesh_calculus_1D.py.
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6 Generalization: reflecting boundaries
The boundary condition u = 0 makes u change sign at the boundary, while
the condition ux = 0 perfectly reflects the wave, see a web page7 or a movie
file8 for demonstration. Our next task is to explain how to implement the
boundary condition ux = 0, which is more complicated to express numerically
and also to implement than a given value of u. We shall present two methods
for implementing ux = 0 in a finite difference scheme, one based on deriving a
modified stencil at the boundary, and another one based on extending the mesh
with ghost cells and ghost points.

6.1 Neumann boundary condition
When a wave hits a boundary and is to be reflected back, one applies the
condition

∂u

∂n
≡ n · ∇u = 0 . (34)

The derivative ∂/∂n is in the outward normal direction from a general boundary.
For a 1D domain [0, L], we have that

∂

∂n

∣∣∣∣
x=L

= ∂

∂x
,

∂

∂n

∣∣∣∣
x=0

= − ∂

∂x
.

Boundary condition terminology.

Boundary conditions that specify the value of ∂u/∂n, or shorter un, are
known as Neumanna conditions, while Dirichlet conditionsb refer to speci-
fications of u. When the values are zero (∂u/∂n = 0 or u = 0) we speak
about homogeneous Neumann or Dirichlet conditions.

ahttp://en.wikipedia.org/wiki/Neumann_boundary_condition
bhttp://en.wikipedia.org/wiki/Dirichlet_conditions

6.2 Discretization of derivatives at the boundary
How can we incorporate the condition (34) in the finite difference scheme? Since
we have used central differences in all the other approximations to derivatives
in the scheme, it is tempting to implement (34) at x = 0 and t = tn by the
difference

un−1 − un1
2∆x = 0 . (35)

7http://tinyurl.com/opdfafk/pub/mov-wave/demo_BC_gaussian/index.html
8http://tinyurl.com/opdfafk/pub/mov-wave/demo_BC_gaussian/movie.flv
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The problem is that un−1 is not a u value that is being computed since the point
is outside the mesh. However, if we combine (35) with the scheme for i = 0,

un+1
i = −un−1

i + 2uni + C2 (uni+1 − 2uni + uni−1
)
, (36)

we can eliminate the fictitious value un−1. We see that un−1 = un1 from (35), which
can be used in (36) to arrive at a modified scheme for the boundary point un+1

0 :

un+1
i = −un−1

i + 2uni + 2C2 (uni+1 − uni
)
, i = 0 . (37)

Figure 4 visualizes this equation for computing u3
0 in terms of u2

0, u1
0, and u2

1.

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5

in
de

x 
n

index i

Stencil at boundary point

Figure 4: Modified stencil at a boundary with a Neumann condition.

Similarly, (34) applied at x = L is discretized by a central difference

unNx+1 − unNx−1
2∆x = 0 . (38)

Combined with the scheme for i = Nx we get a modified scheme for the boundary
value un+1

Nx
:

un+1
i = −un−1

i + 2uni + 2C2 (uni−1 − uni
)
, i = Nx . (39)

The modification of the scheme at the boundary is also required for the
special formula for the first time step. How the stencil moves through the mesh
and is modified at the boundary can be illustrated by an animation in a web
page9 or a movie file10.

9http://tinyurl.com/opdfafk/pub/mov-wave/wave1D_PDE_Neumann_stencil_gpl/index.html
10http://tinyurl.com/opdfafk/pub/mov-wave/wave1D_PDE_Neumann_stencil_gpl/movie.ogg
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6.3 Implementation of Neumann conditions
The implementation of the special formulas for the boundary points can benefit
from using the general formula for the interior points also at the boundaries,
but replacing uni−1 by uni+1 when computing un+1

i for i = 0 and uni+1 by uni−1 for
i = Nx. This is achieved by just replacing the index i− 1 by i+ 1 for i = 0 and
i+ 1 by i− 1 for i = Nx. In a program, we introduce variables to hold the value
of the offset indices: im1 for i-1 and ip1 for i+1. It is now just a manner of
defining im1 and ip1 properly for the internal points and the boundary points.
The coding for the latter reads

i = 0
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])

i = Nx
im1 = i-1
ip1 = im1 # i+1 -> i-1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])

We can in fact create one loop over both the internal and boundary points
and use only one updating formula:

for i in range(0, Nx+1):
ip1 = i+1 if i < Nx else i-1
im1 = i-1 if i > 0 else i+1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])

The program wave1D_n0.py11 contains a complete implementation of the
1D wave equation with boundary conditions ux = 0 at x = 0 and x = L.

It would be nice to modify the test_quadratic test case from the wave1D_u0.py
with Dirichlet conditions, described in Section 4.3. However, the Neumann con-
ditions requires the polynomial variation in x directory to be of third degree,
which causes challenging problems with designing a test where the numerical
solution is known exactly. Exercise 10 outlines ideas and code for this purpose.
The only test in wave1D_n0.py is to start with a plug wave at rest and see that
the initial condition is reached again perfectly after one period of motion, if
C = 1.

6.4 Index set notation
We shall introduce a special notation for index sets, consisting of writing xi,
i ∈ Ix, instead of i = 0, . . . , Nx. Obviously, Ix must be the set Ix = {0, . . . , Nx},
but it is often advantageous to have a symbol for this set rather than specifying
all its elements. This saves writing and makes specification of algorithms and
implementation of computer code easier.

11http://tinyurl.com/nm5587k/wave/wave1D/wave1D_n0.py
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The first index in the set will be denoted I0
x and the last I−1

x . Sometimes we
need to count from the second element in the set, and the notation I+

x is then
used. Correspondingly, I−x means {0, . . . , Nx− 1}. All the indices corresponding
to inner grid points are Iix = {1, . . . , Nx − 1}. For the time domain we find it
natural to explicitly use 0 as the first index, so we will usually write n = 0 and
t0 rather than n = I0

t . We also avoid notation like xI−1
x

and will instead use xi,
i = I−1

x .
The Python code associated with index sets applies the following conventions:

Notation Python
Ix Ix
I0
x Ix[0]
I−1
x Ix[-1]
I−x Ix[:-1]
I+
x Ix[1:]
Iix Ix[1:-1]

An important feature of the index set notation is that it keeps our formulas and
code independent of how we count mesh points. For example, the notation i ∈ Ix
or i = I0

x remains the same whether Ix is defined as above or as starting at 1,
i.e., Ix = {1, . . . , Q}. Similarly, we can in the code define Ix=range(Nx+1) or
Ix=range(1,Q), and expressions like Ix[0] and Ix[1:-1] remain correct. One
application where the index set notation is convenient is conversion of code from
a language where arrays has base index 0 (e.g., Python and C) to languages
where the base index is 1 (e.g., MATLAB and Fortran). Another important
application is implementation of Neumann conditions via ghost points (see next
section).

For the current problem setting in the x, t plane, we work with the index sets

Ix = {0, . . . , Nx}, It = {0, . . . , Nt}, (40)

defined in Python as

Ix = range(0, Nx+1)
It = range(0, Nt+1)

A finite difference scheme can with the index set notation be specified as

un+1
i = −un−1

i + 2uni + C2 (uni+1 − 2uni + uni−1
)
, i ∈ Iix, n ∈ Iit ,

ui = 0, i = I0
x, n ∈ Iit ,

ui = 0, i = I−1
x , n ∈ Iit ,

and implemented by code like
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for n in It[1:-1]:
for i in Ix[1:-1]:

u[i] = - u_2[i] + 2*u_1[i] + \
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])

i = Ix[0]; u[i] = 0
i = Ix[-1]; u[i] = 0

Notice.
The program wave1D_dn.pya applies the index set notation and solves the
1D wave equation utt = c2uxx + f(x, t) with quite general boundary and
initial conditions:

• x = 0: u = U0(t) or ux = 0

• x = L: u = UL(t) or ux = 0

• t = 0: u = I(x)

• t = 0: ut = I(x)

The program combines Dirichlet and Neumann conditions, scalar and
vectorized implementation of schemes, and the index notation into one
piece of code. A lot of test examples are also included in the program:

• A rectangular plug profile as initial condition (easy to use as test
example as the rectangle should jump one cell per time step when
C = 1, without any numerical errors).

• A Gaussian function as initial condition.

• A triangular profile as initial condition, which resembles the typical
initial shape of a guitar string.

• A sinusoidal variation of u at x = 0 and either u = 0 or ux = 0 at
x = L.

• An exact analytical solution u(x, t) = cos(mπt/L) sin( 1
2mπx/L),

which can be used for convergence rate tests.

ahttp://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn.py

6.5 Alternative implementation via ghost cells
Idea. Instead of modifying the scheme at the boundary, we can introduce extra
points outside the domain such that the fictitious values un−1 and unNx+1 are
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defined in the mesh. Adding the intervals [−∆x, 0] and [L,L+∆x], often referred
to as ghost cells, to the mesh gives us all the needed mesh points, corresponding
to i = −1, 0, . . . , Nx, Nx + 1. The extra points i = −1 and i = Nx + 1 are known
as ghost points, and values at these points, un−1 and unNx+1, are called ghost
values.

The important idea is to ensure that we always have

un−1 = un1 and unNx+1 = unNx−1,

because then the application of the standard scheme at a boundary point i = 0
or i = Nx will be correct and guarantee that the solution is compatible with the
boundary condition ux = 0.

Implementation. The u array now needs extra elements corresponding to
the ghost cells and points. Two new point values are needed:

u = zeros(Nx+3)

The arrays u_1 and u_2 must be defined accordingly.
Unfortunately, a major indexing problem arises with ghost cells. The reason

is that Python indices must start at 0 and u[-1] will always mean the last
element in u. This fact gives, apparently, a mismatch between the mathematical
indices i = −1, 0, . . . , Nx + 1 and the Python indices running over u: 0,..,Nx+2.
One remedy is to change the mathematical notation of the scheme, as in

un+1
i = · · · , i = 1, . . . , Nx + 1,

meaning that the ghost points correspond to i = 0 and i = Nx + 1. A better
solution is to use the ideas of Section 6.4: we hide the specific index value in
an index set and operate with inner and boundary points using the index set
notation.

To this end, we define u with proper length and Ix to be the corresponding
indices for the real physical points (1, 2, . . . , Nx + 1):

u = zeros(Nx+3)
Ix = range(1, u.shape[0]-1)

That is, the boundary points have indices Ix[0] and Ix[-1] (as before). We
first update the solution at all physical mesh points (i.e., interior points in the
mesh extended with ghost cells):

for i in Ix:
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])

It remains to update the ghost points. For a boundary condition ux = 0, the
ghost value must equal to the value at the associated inner mesh point. Computer
code makes this statement precise:
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i = Ix[0] # x=0 boundary
u[i-1] = u[i+1]
i = Ix[-1] # x=L boundary
u[i+1] = u[i-1]

The physical solution to be plotted is now in u[1:-1], or equivalently
u[Ix[0]:Ix[-1]+1], so this slice is the quantity to be returned from a solver
function. A complete implementation appears in the program wave1D_n0_ghost.
py12.

Warning.

We have to be careful with how the spatial and temporal mesh points are
stored. Say we let x be the physical mesh points,

x = linspace(0, L, Nx+1)

"Standard coding" of the initial condition,

for i in Ix:
u_1[i] = I(x[i])

becomes wrong, since u_1 and x have different lengths and the index i
corresponds to two different mesh points. In fact, x[i] corresponds to
u[1+i]. A correct implementation is

for i in Ix:
u_1[i] = I(x[i-Ix[0]])

Similarly, a source term usually coded as f(x[i], t[n]) is incorrect if x is
defined to be the physical points, so x[i] must be replaced by x[i-Ix[0]].

An alternative remedy is to let x also cover the ghost points such that
u[i] is the value at x[i].

The ghost cell is only added to the boundary where we have a Neumann
condition. Suppose we have a Dirichlet condition at x = L and a homogeneous
Neumann condition at x = 0. One ghost cell [−∆x, 0] is added to the mesh,
so the index set for the physical points becomes {1, . . . , Nx + 1}. A relevant
implementation is

u = zeros(Nx+2)
Ix = range(1, u.shape[0])
...
for i in Ix[:-1]:

u[i] = - u_2[i] + 2*u_1[i] + \
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + \
dt2*f(x[i-Ix[0]], t[n])

12http://tinyurl.com/nm5587k/wave/wave1D/wave1D_n0_ghost.py
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i = Ix[-1]
u[i] = U_0 # set Dirichlet value
i = Ix[0]
u[i-1] = u[i+1] # update ghost value

The physical solution to be plotted is now in u[1:] or (as always) u[Ix[0]:Ix[-1]+1].

7 Generalization: variable wave velocity
Our next generalization of the 1D wave equation (1) or (17) is to allow for a
variable wave velocity c: c = c(x), usually motivated by wave motion in a domain
composed of different physical media with different properties for propagating
waves and hence different wave velocities c. Figure

Figure 5: Left: wave entering another medium; right: transmitted and reflected
wave .

7.1 The model PDE with a variable coefficient
Instead of working with the squared quantity c2(x) we shall for notational
convenience introduce q(x) = c2(x). A 1D wave equation with variable wave
velocity often takes the form

∂2u

∂t2
= ∂

∂x

(
q(x)∂u

∂x

)
+ f(x, t) . (41)

This equation sampled at a mesh point (xi, tn) reads

∂2

∂t2
u(xi, tn) = ∂

∂x

(
q(xi)

∂

∂x
u(xi, tn)

)
+ f(xi, tn),

where the only new term is

∂

∂x

(
q(xi)

∂

∂x
u(xi, tn)

)
=
[
∂

∂x

(
q(x)∂u

∂x

)]n
i

.
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7.2 Discretizing the variable coefficient
The principal idea is to first discretize the outer derivative. Define

φ = q(x)∂u
∂x
,

and use a centered derivative around x = xi for the derivative of φ:[
∂φ

∂x

]n
i

≈
φi+ 1

2
− φi− 1

2

∆x = [Dxφ]ni .

Then discretize

φi+ 1
2

= qi+ 1
2

[
∂u

∂x

]n
i+ 1

2

≈ qi+ 1
2

uni+1 − uni
∆x = [qDxu]ni+ 1

2
.

Similarly,

φi− 1
2

= qi− 1
2

[
∂u

∂x

]n
i− 1

2

≈ qi− 1
2

uni − uni−1
∆x = [qDxu]ni− 1

2
.

These intermediate results are now combined to[
∂

∂x

(
q(x)∂u

∂x

)]n
i

≈ 1
∆x2

(
qi+ 1

2

(
uni+1 − uni

)
− qi− 1

2

(
uni − uni−1

))
. (42)

With operator notation we can write the discretization as[
∂

∂x

(
q(x)∂u

∂x

)]n
i

≈ [DxqDxu]ni . (43)

Remark.

Many are tempted to use the chain rule on the term ∂
∂x

(
q(x)∂u∂x

)
, but this

is not a good idea when discretizing such a term.

7.3 Computing the coefficient between mesh points
If q is a known function of x, we can easily evaluate qi+ 1

2
simply as q(xi+ 1

2
) with

xi+ 1
2

= xi + 1
2∆x. However, in many cases c, and hence q, is only known as a

discrete function, often at the mesh points xi. Evaluating q between two mesh
points xi and xi+1 can then be done by averaging in three ways:

qi+ 1
2
≈ 1

2 (qi + qi+1) = [qx]i, (arithmetic mean) (44)

qi+ 1
2
≈ 2

(
1
qi

+ 1
qi+1

)−1
, (harmonic mean) (45)

qi+ 1
2
≈ (qiqi+1)1/2

, (geometric mean) (46)
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The arithmetic mean in (44) is by far the most commonly used averaging
technique.

With the operator notation from (44) we can specify the discretization of
the complete variable-coefficient wave equation in a compact way:

[DtDtu = Dxq
xDxu+ f ]ni . (47)

From this notation we immediately see what kind of differences that each term is
approximated with. The notation qx also specifies that the variable coefficient is
approximated by an arithmetic mean, the definition being [qx]i+ 1

2
= (qi+qi+1)/2.

With the notation [DxqDxu]ni , we specify that q is evaluated directly, as a
function, between the mesh points: q(xi− 1

2
) and q(xi+ 1

2
).

Before any implementation, it remains to solve (47) with respect to un+1
i :

un+1
i = −un−1

i + 2uni +(
∆x
∆t

)2(1
2(qi + qi+1)(uni+1 − uni )− 1

2(qi + qi−1)(uni − uni−1)
)

+

∆t2fni . (48)

7.4 How a variable coefficient affects the stability
The stability criterion derived in Section 10.3 reads ∆t ≤ ∆x/c. If c = c(x),
the criterion will depend on the spatial location. We must therefore choose a
∆t that is small enough such that no mesh cell has ∆x/c(x) > ∆t. That is, we
must use the largest c value in the criterion:

∆t ≤ β ∆x
maxx∈[0,L] c(x) . (49)

The parameter β is included as a safety factor: in some problems with a
significantly varying c it turns out that one must choose β < 1 to have stable
solutions (β = 0.9 may act as an all-round value).

7.5 Neumann condition and a variable coefficient
Consider a Neumann condition ∂u/∂x = 0 at x = L = Nx∆x, discretized as

uni+1 − uni−1
2∆x = 0 uni+1 = uni−1,

for i = Nx. Using the scheme (48) at the end point i = Nx with uni+1 = uni−1
results in
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un+1
i = −un−1

i + 2uni +(
∆x
∆t

)2 (
qi+ 1

2
(uni−1 − uni )− qi− 1

2
(uni − uni−1)

)
+

∆t2fni (50)

= −un−1
i + 2uni +

(
∆x
∆t

)2
(qi+ 1

2
+ qi− 1

2
)(uni−1 − uni ) + ∆t2fni (51)

≈ −un−1
i + 2uni +

(
∆x
∆t

)2
2qi(uni−1 − uni ) + ∆t2fni . (52)

Here we used the approximation

qi+ 1
2

+ qi− 1
2

= qi +
(
dq

dx

)
i

∆x+
(
d2q

dx2

)
i

∆x2 + · · ·+

qi −
(
dq

dx

)
i

∆x+
(
d2q

dx2

)
i

∆x2 + · · ·

= 2qi + 2
(
d2q

dx2

)
i

∆x2 +O(∆x4)

≈ 2qi . (53)

An alternative derivation may apply the arithmetic mean of q in (48), leading
to the term

(qi + 1
2(qi+1 + qi−1))(uni−1 − uni ) .

Since 1
2 (qi+1 + qi−1) = qi +O(∆x2), we end up with 2qi(uni−1 − uni ) for i = Nx

as we did above.
A common technique in implementations of ∂u/∂x = 0 boundary conditions

is to assume dq/dx = 0 as well. This implies qi+1 = qi−1 and qi+1/2 = qi−1/2 for
i = Nx. The implications for the scheme are

un+1
i = −un−1

i + 2uni +(
∆x
∆t

)2 (
qi+ 1

2
(uni−1 − uni )− qi− 1

2
(uni − uni−1)

)
+

∆t2fni (54)

= −un−1
i + 2uni +

(
∆x
∆t

)2
2qi− 1

2
(uni−1 − uni ) + ∆t2fni . (55)
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7.6 Implementation of variable coefficients
The implementation of the scheme with a variable wave velocity may assume
that c is available as an array c[i] at the spatial mesh points. The following
loop is a straightforward implementation of the scheme (48):

for i in range(1, Nx):
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(0.5*(q[i] + q[i+1])*(u_1[i+1] - u_1[i]) - \
0.5*(q[i] + q[i-1])*(u_1[i] - u_1[i-1])) + \

dt2*f(x[i], t[n])

The coefficient C2 is now defined as (dt/dx)**2 and not as the squared Courant
number since the wave velocity is variable and appears inside the parenthesis.

With Neumann conditions ux = 0 at the boundary, we need to combine
this scheme with the discrete version of the boundary condition, as shown in
Section 7.5. Nevertheless, it would be convenient to reuse the formula for the
interior points and just modify the indices ip1=i+1 and im1=i-1 as we did in
Section 6.3. Assuming dq/dx = 0 at the boundaries, we can implement the
scheme at the boundary with the following code.

i = 0
ip1 = i+1
im1 = ip1
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_1[ip1] - u_1[i]) - \
0.5*(q[i] + q[im1])*(u_1[i] - u_1[im1])) + \

dt2*f(x[i], t[n])

With ghost cells we can just reuse the formula for the interior points also
at the boundary, provided that the ghost values of both u and q are correctly
updated to ensure ux = 0 and qx = 0.

A vectorized version of the scheme with a variable coefficient at internal
points in the mesh becomes

u[1:-1] = - u_2[1:-1] + 2*u_1[1:-1] + \
C2*(0.5*(q[1:-1] + q[2:])*(u_1[2:] - u_1[1:-1]) -

0.5*(q[1:-1] + q[:-2])*(u_1[1:-1] - u_1[:-2])) + \
dt2*f(x[1:-1], t[n])

7.7 A more general model PDE with variable coefficients
Sometimes a wave PDE has a variable coefficient also in front of the time-
derivative term:

%(x)∂
2u

∂t2
= ∂

∂x

(
q(x)∂u

∂x

)
+ f(x, t) . (56)

A natural scheme is
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[%DtDtu = Dxq
xDxu+ f ]ni . (57)

We realize that the % coefficient poses no particular difficulty because the only
value %ni enters the formula above (when written out). There is hence no need for
any averaging of %. Often, % will be moved to the right-hand side, also without
any difficulty:

[DtDtu = %−1Dxq
xDxu+ f ]ni . (58)

7.8 Generalization: damping
Waves die out by two mechanisms. In 2D and 3D the energy of the wave spreads
out in space, and energy conservation then requires the amplitude to decrease.
This effect is not present in 1D. Damping is another cause of amplitude reduction.
For example, the vibrations of a string die out because of damping due to air
resistance and non-elastic effects in the string.

The simplest way of including damping is to add a first-order derivative to
the equation (in the same way as friction forces enter a vibrating mechanical
system):

∂2u

∂t2
+ b

∂u

∂t
= c2

∂2u

∂x2 + f(x, t), (59)

where b ≥ 0 is a prescribed damping coefficient.
A typical discretization of (59) in terms of centered differences reads

[DtDtu+ bD2tu = c2DxDxu+ f ]ni . (60)

Writing out the equation and solving for the unknown un+1
i gives the scheme

un+1
i = (1+ 1

2b∆t)
−1((1

2b∆t−1)un−1
i +2uni +C2 (uni+1 − 2uni + uni−1

)
+∆t2fni ),

(61)
for i ∈ Iix and n ≥ 1. New equations must be derived for u1

i , and for boundary
points in case of Neumann conditions.

The damping is very small in many wave phenomena and then only evident
for very long time simulations. This makes the standard wave equation without
damping relevant for a lot of applications.

8 Building a general 1D wave equation solver
The program wave1D_dn_vc.py13 is a fairly general code for 1D wave propagation
problems that targets the following initial-boundary value problem

13http://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn_vc.py
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ut = (c2(x)ux)x + f(x, t), x ∈ (0, L), t ∈ (0, T ] (62)
u(x, 0) = I(x), x ∈ [0, L] (63)
ut(x, 0) = V (t), x ∈ [0, L] (64)
u(0, t) = U0(t) or ux(0, t) = 0, t ∈ (0, T ] (65)
u(L, t) = UL(t) or ux(L, t) = 0, t ∈ (0, T ] (66)

The solver function is a natural extension of the simplest solver function in
the initial wave1D_u0.py program, extended with Neumann boundary conditions
(ux = 0), a possibly time-varying boundary condition on u (U0(t), UL(t)), and
a variable wave velocity. The different code segments needed to make these
extensions are shown and commented upon in the preceding text.

The vectorization is only applied inside the time loop, not for the initial
condition or the first time steps, since this initial work is negligible for long time
simulations in 1D problems.

The following sections explain various more advanced programming techniques
applied in the general 1D wave equation solver.

8.1 User action function as a class
A useful feature in the wave1D_dn_vc.py program is the specification of the
user_action function as a class. Although the plot_u function in the viz
function of previous wave1D*.py programs remembers the local variables in the
viz function, it is a cleaner solution to store the needed variables together with
the function, which is exactly what a class offers.

A class for flexible plotting, cleaning up files, and making a movie files like
function viz and plot_u did can be coded as follows:

class PlotSolution:
"""
Class for the user_action function in solver.
Visualizes the solution only.
"""
def __init__(self,

casename=’tmp’, # Prefix in filenames
umin=-1, umax=1, # Fixed range of y axis
pause_between_frames=None, # Movie speed
backend=’matplotlib’, # or ’gnuplot’
screen_movie=True, # Show movie on screen?
title=’’, # Extra message in title
every_frame=1): # Show every_frame frame

self.casename = casename
self.yaxis = [umin, umax]
self.pause = pause_between_frames
module = ’scitools.easyviz.’ + backend + ’_’
exec(’import %s as plt’ % module)
self.plt = plt
self.screen_movie = screen_movie
self.title = title
self.every_frame = every_frame
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# Clean up old movie frames
for filename in glob(’frame_*.png’):

os.remove(filename)

def __call__(self, u, x, t, n):
if n % self.every_frame != 0:

return
title = ’t=%.3g’ % t[n]
if self.title:

title = self.title + ’ ’ + title
self.plt.plot(x, u, ’r-’,

xlabel=’x’, ylabel=’u’,
axis=[x[0], x[-1],

self.yaxis[0], self.yaxis[1]],
title=title,
show=self.screen_movie)

# pause
if t[n] == 0:

time.sleep(2) # let initial condition stay 2 s
else:

if self.pause is None:
pause = 0.2 if u.size < 100 else 0

time.sleep(pause)

self.plt.savefig(’%s_frame_%04d.png’ % (self.casename, n))

Understanding this class requires quite some familiarity with Python in general
and class programming in particular.

The constructor shows how we can flexibly import the plotting engine as
(typically) scitools.easyviz.gnuplot_ or scitools.easyviz.matplotlib_
(note the trailing underscore). With the screen_movie parameter we can
suppress displaying each movie frame on the screen. Alternatively, for slow
movies associated with fine meshes, one can set every_frame to, e.g., 10, causing
every 10 frames to be shown.

The __call__ method makes PlotSolution instances behave like functions,
so we can just pass an instance, say p, as the user_action argument in the
solver function, and any call to user_action will be a call to p.__call__.

8.2 Pulse propagation in two media
The function pulse in wave1D_dn_vc.py demonstrates wave motion in heteroge-
neous media where c varies. One can specify an interval where the wave velocity
is decreased by a factor slowness_factor (or increased by making this factor
less than one). Four types of initial conditions are available: a rectangular
pulse (plug), a Gaussian function (gaussian), a "cosine hat" consisting of one
period of the cosine function (cosinehat), and half a period of a "cosine hat"
(half-cosinehat). These peak-shaped initial conditions can be placed in the
middle (loc=’center’) or at the left end (loc=’left’) of the domain. The
pulse function is a flexible tool for playing around with various wave shapes
and location of a medium with a different wave velocity:
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def pulse(C=1, Nx=200, animate=True, version=’vectorized’, T=2,
loc=’center’, pulse_tp=’gaussian’, slowness_factor=2,
medium=[0.7, 0.9], every_frame=1, sigma=0.05):

"""
Various peaked-shaped initial conditions on [0,1].
Wave velocity is decreased by the slowness_factor inside
medium. The loc parameter can be ’center’ or ’left’,
depending on where the initial pulse is to be located.
The sigma parameter governs the width of the pulse.
"""
# Use scaled parameters: L=1 for domain length, c_0=1
# for wave velocity outside the domain.
L = 1.0
c_0 = 1.0
if loc == ’center’:

xc = L/2
elif loc == ’left’:

xc = 0

if pulse_tp in (’gaussian’,’Gaussian’):
def I(x):

return exp(-0.5*((x-xc)/sigma)**2)
elif pulse_tp == ’plug’:

def I(x):
return 0 if abs(x-xc) > sigma else 1

elif pulse_tp == ’cosinehat’:
def I(x):

# One period of a cosine
w = 2
a = w*sigma
return 0.5*(1 + cos(pi*(x-xc)/a)) \

if xc - a <= x <= xc + a else 0

elif pulse_tp == ’half-cosinehat’:
def I(x):

# Half a period of a cosine
w = 4
a = w*sigma
return cos(pi*(x-xc)/a) \

if xc - 0.5*a <= x <= xc + 0.5*a else 0
else:

raise ValueError(’Wrong pulse_tp="%s"’ % pulse_tp)

def c(x):
return c_0/slowness_factor \

if medium[0] <= x <= medium[1] else c_0

umin=-0.5; umax=1.5*I(xc)
casename = ’%s_Nx%s_sf%s’ % \

(pulse_tp, Nx, slowness_factor)
action = PlotMediumAndSolution(

medium, casename=casename, umin=umin, umax=umax,
every_frame=every_frame, screen_movie=animate)

dt = (L/Nx)/c # choose the stability limit with given Nx
# Lower C will then use this dt, but smaller Nx
solver(I=I, V=None, f=None, c=c, U_0=None, U_L=None,

L=L, dt=dt, C=C, T=T,
user_action=action, version=version,
stability_safety_factor=1)
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The PlotMediumAndSolution class used here is a subclass of PlotSolution
where the medium with reduced c value, as specified by the medium interval, is
visualized in the plots.

Notice.
The argument Nx in the pulse function does not correspond to the actual
spatial resolution of C < 1, since the solver function takes a fixed ∆t
and C, and adjusts ∆x accordingly. As seen in the pulse function, the
specified ∆t is chosen according to the limit C = 1, so if C < 1, ∆t remains
the same, but the solver function operates with a larger ∆x and smaller
Nx than was specified in the call to pulse. The practical reason is that
we always want to keep ∆t fixed such that plot frames and movies are
synchronized in time regardless of the value of C (i.e., ∆x is varies when
the Courant number varies).

The reader is encouraged to play around with the pulse function:

>>> import wave1D_dn_vc as w
>>> w.pulse(loc=’left’, pulse_tp=’cosinehat’, Nx=50, every_frame=10)

To easily kill the graphics by Ctrl-C and restart a new simulation it might be
easier to run the above two statements from the command line with

Terminal> python -c ’import wave1D_dn_vc as w; w.pulse(...)’

9 Exercises
Exercise 6: Find the analytical solution to a damped wave
equation
Consider the wave equation with damping (59). The goal is to find an exact
solution to a wave problem with damping. A starting point is the standing wave
solution from Exercise 1. It becomes necessary to include a damping term e−ct

and also have both a sine and cosine component in time:

ue(x, t) = e−βt sin kx (A cosωt+B sinωt) .

Find k from the boundary conditions u(0, t) = u(L, t) = 0. Then use the PDE
to find constraints on β, ω, A, and B. Set up a complete initial-boundary value
problem and its solution. Filename: damped_waves.pdf.
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Problem 7: Explore symmetry boundary conditions
Consider the simple "plug" wave where Ω = [−L,L] and

I(x) =
{

1, x ∈ [−δ, δ],
0, otherwise

for some number 0 < δ < L. The other initial condition is ut(x, 0) = 0 and there
is no source term f . The boundary conditions can be set to u = 0. The solution
to this problem is symmetric around x = 0. This means that we can simulate
the wave process in only the half of the domain [0, L].

a) Argue why the symmetry boundary condition is ux = 0 at x = 0.

Hint. Symmetry of a function about x = x0 means that f(x0 +h) = f(x0−h).

b) Perform simulations of the complete wave problem from on [−L,L]. There-
after, utilize the symmetry of the solution and run a simulation in half of the
domain [0, L], using a boundary condition at x = 0. Compare the two solutions
and make sure that they are the same.

c) Prove the symmetry property of the solution by setting up the complete
initial-boundary value problem and showing that if u(x, t) is a solution, then
also u(−x, t) is a solution.
Filename: wave1D_symmetric.

Exercise 8: Send pulse waves through a layered medium
Use the pulse function in wave1D_dn_vc.py to investigate sending a pulse,
located with its peak at x = 0, through the medium to the right where it hits
another medium for x ∈ [0.7, 0.9] where the wave velocity is decreased by a
factor sf . Report what happens with a Gaussian pulse, a "cosine hat" pulse,
half a "cosine hat" pulse, and a plug pulse for resolutions Nx = 40, 80, 160, and
sf = 2, 4. Use C = 1 in the medium outside [0.7, 0.9]. Simulate until T = 2.
Filename: pulse1D.py.

Exercise 9: Compare discretizations of a Neumann condi-
tion
We have a 1D wave equation with variable wave velocity: ut = (qux)x. A
Neumann condition ux at x = 0, L can be discretized as shown in (52) and (55).

The aim of this exercise is to examine the rate of the numerical error when
using different ways of discretizing the Neumann condition. As test problem,
q = 1 + (x− L/2)4 can be used, with f(x, t) adapted such that the solution has
a simple form, say u(x, t) = cos(πx/L) cos(ωt) for some ω = √qπ/L.

a) Perform numerical experiments and find the convergence rate of the error
using the approximation and (55).

46



b) Switch to q(x) = cos(πx/L), which is symmetric at x = 0, L, and check the
convergence rate of the scheme (55). Now, qi−1/2 is a 2nd-order approximation to
qi, qi−1/2 = qi + 0.25q′′i ∆x2 + · · · , because q′i = 0 for i = Nx (a similar argument
can be applied to the case i = 0).

c) A third discretization can be based on a simple and convenient, but less
accurate, one-sided difference: ui − ui−1 = 0 at i = Nx and ui+1 − ui = 0 at
i = 0. Derive the resulting scheme in detail and implement it. Run experiments
to establish the rate of convergence.

d) A fourth technique is to view the scheme as

[DtDtu]ni = 1
∆x

(
[qDxu]ni+ 1

2
− [qDxu]ni− 1

2

)
+ [f ]ni ,

and place the boundary at xi+ 1
2
, i = Nx, instead of exactly at the physical

boundary. With this idea, we can just set [qDxu]n
i+ 1

2
= 0. Derive the complete

scheme using this technique. The implementation of the boundary condition at
L−∆x/2 is O(∆x2) accurate, but the interesting question is what impact the
movement of the boundary has on the convergence rate (compute the errors as
usual over the entire mesh).

Exercise 10: Verification by a cubic polynomial in space
The purpose of this exercise is to verify the implementation of the solver
function in the program wave1D_n0.py14 by using an exact numerical solution
for the wave equation utt = c2uxx + f with Neumann boundary conditions
ux(0, t) = ux(L, t) = 0.

A similar verification is used in the file wave1D_u0.py15, which solves the
same PDE, but with Dirichlet boundary conditions u(0, t) = u(L, t) = 0. The
idea of the verification test in function test_quadratic in wave1D_u0.py is to
a solution that is a lower-order polynomial such that both the PDE problem, the
boundary conditions, and all the discrete equations are exactly fulfilled. Then
the solver function should reproduce this exact solution to machine precision.
More precisely, we seek u = X(x)T (t), with T (t) as a linear function and X(x)
as a parabola that fulfills the boundary conditions. Inserting this u in the PDE
determines f . It tuns out that u also fulfills the discrete equations, because the
truncation error of the discretized PDE has derivatives in x and t of order four
and higher. These derivatives all vanish for a quadratic X(x) and linear T (t).

It would be attractive to use a similar approach in the case of Neumann
conditions. We set u = X(x)T (t) and seek lower-order polynomials X and T .
To force ux to vanish at the boundary, we let Xx be a parabola. Then X is a
cubic polynomial. The fourth-order derivative of a cubic polynomial vanishes, so
u = X(x)T (t) will fulfill the discretized PDE also in this case, if f is adjusted
such that u fulfills the PDE.

14http://tinyurl.com/nm5587k/wave/wave1D/wave1D_n0.py
15http://tinyurl.com/nm5587k/wave/wave1D/wave1D_u0.py
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However, the discrete boundary condition is not exactly fulfilled by this
choice of u. The reason is that

[D2xu]ni = ux(xi, tn) + 1
6uxxx(xi, tn)∆x2 +O(∆x4) . (67)

At the boundary two boundary points, Xx(x) = 0 such that ux = 0. However,
uxxx is a constant and not zero when X(x) is a cubic polynomial. Therefore,
our u = X(x)T (t) fulfills

[D2xu]ni = 1
6uxxx(xi, tn)∆x2,

and not

[D2xu]ni = 0, quadi = 0, Nx,

as it should. (Note that all the higher-order terms O(∆x4) also have higher-
order derivatives that vanish for a cubic polynomial.) So to summarize, the
fundamental problem is that u as a product of a cubic polynomial and a linear
or quadratic polynomial in time is not an exact solution of the discrete boundary
conditions.

To make progress, we assume that u = X(x)T (t), where T for simplicity is
taken as a prescribed linear function 1 + 1

2 t, and X(x) is taken as an unknown
cubic polynomial

∑3
j=0 ajx

j . There are two different ways of determining the
coefficients a0, . . . , a3 such that both the discretized PDE and the discretized
boundary conditions are fulfilled, under the constraint that we can specify a
function f(x, t) for the PDE to feed to the solver function in wave1D_n0.py.
Both approaches are explained in the subexercises.

a) One can insert u in the discretized PDE and find the corresponding f . Then
one can insert u in the discretized boundary conditions. This yields two equations
for the four coefficients a0, . . . , a3. To find the coefficients, one can set a0 = 0
and a1 = 1 for simplicity and then determine a2 and a3. This approach will
make a2 and a3 depend on ∆x and f will depend on both ∆x and ∆t.

Use sympy to perform analytical computations. A starting point is to define
u as follows:

def test_cubic1():
import sympy as sm
x, t, c, L, dx, dt = sm.symbols(’x t c L dx dt’)
i, n = sm.symbols(’i n’, integer=True)

# Assume discrete solution is a polynomial of degree 3 in x
T = lambda t: 1 + sm.Rational(1,2)*t # Temporal term
a = sm.symbols(’a_0 a_1 a_2 a_3’)
X = lambda x: sum(a[q]*x**q for q in range(4)) # Spatial term
u = lambda x, t: X(x)*T(t)

The symbolic expression for u is reached by calling u(x,t) with x and t as
sympy symbols.
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Define DxDx(u, i, n), DtDt(u, i, n), and D2x(u, i, n) as Python func-
tions for returning the difference approximations [DxDxu]ni , [DtDtu]ni , and
[D2xu]ni . The next step is to set up the residuals for the equations [D2xu]n0 = 0
and [D2xu]nNx

= 0, where Nx = L/∆x. Call the residuals R_0 and R_L. Substi-
tute a0 and a1 by 0 and 1, respectively, in R_0, R_L, and a:

R_0 = R_0.subs(a[0], 0).subs(a[1], 1)
R_L = R_L.subs(a[0], 0).subs(a[1], 1)
a = list(a) # enable in-place assignment
a[0:2] = 0, 1

Determining a2 and a3 from the discretized boundary conditions is then about
solving two equations with respect to a2 and a3, i.e., a[2:]:

s = sm.solve([R_0, R_L], a[2:])
# s is dictionary with the unknowns a[2] and a[3] as keys
a[2:] = s[a[2]], s[a[3]]

Now, a contains computed values and u will automatically use these new values
since X accesses a.

Compute the source term f from the discretized PDE: fni = [DtDtu −
c2DxDxu]ni . Turn u, the time derivative ut (needed for the initial condition V (x)),
and f into Python functions. Set numerical values for L, Nx, C, and c. Prescribe
the time interval as ∆t = CL/(Nxc), which imply ∆x = c∆t/C = L/Nx. Define
new functions I(x), V(x), and f(x,t) as wrappers of the ones made above,
where fixed values of L, c, ∆x, and ∆t are inserted, such that I, V, and f can
be passed on to the solver function. Finally, call solver with a user_action
function that compares the numerical solution to this exact solution u of the
discrete PDE problem.

Hint. To turn a sympy expression e, depending on a series of symbols, say x,
t, dx, dt, L, and c, into plain Python function e_exact(x,t,L,dx,dt,c), one
can write

e_exact = sm.lambdify([x,t,L,dx,dt,c], e, ’numpy’)

The ’numpy’ argument is a good habit as the e_exact function will then work
with array arguments if it contains mathematical functions (but here we only do
plain arithmetics, which automatically work with arrays).

b) An alternative way of determining a0, . . . , a3 is to reason as follows. We first
construct X(x) such that the boundary conditions are fulfilled: X = x(L− x).
However, to compensate for the fact that this choice of X does not fulfill the
discrete boundary condition, we seek u such that

ux = ∂

∂x
x(L− x)T (t)− 1

6uxxx∆x2,

49



since this u will fit the discrete boundary condition. Assuming u = T (t)
∑3
j=0 ajx

j ,
we can use the above equation to determine the coefficients a1, a2, a3. A value,
e.g., 1 can be used for a0. The following sumpy code computes this u:

def test_cubic2():
import sympy as sm
x, t, c, L, dx = sm.symbols(’x t c L dx’)
T = lambda t: 1 + sm.Rational(1,2)*t # Temporal term
# Set u as a 3rd-degree polynomial in space
X = lambda x: sum(a[i]*x**i for i in range(4))
a = sm.symbols(’a_0 a_1 a_2 a_3’)
u = lambda x, t: X(x)*T(t)
# Force discrete boundary condition to be zero by adding
# a correction term the analytical suggestion x*(L-x)*T
# u_x = x*(L-x)*T(t) - 1/6*u_xxx*dx**2
R = sm.diff(u(x,t), x) - (

x*(L-x) - sm.Rational(1,6)*sm.diff(u(x,t), x, x, x)*dx**2)
# R is a polynomial: force all coefficients to vanish.
# Turn R to Poly to extract coefficients:
R = sm.poly(R, x)
coeff = R.all_coeffs()
s = sm.solve(coeff, a[1:]) # a[0] is not present in R
# s is dictionary with a[i] as keys
# Fix a[0] as 1
s[a[0]] = 1
X = lambda x: sm.simplify(sum(s[a[i]]*x**i for i in range(4)))
u = lambda x, t: X(x)*T(t)
print ’u:’, u(x,t)

The next step is to find the source term f_e by inserting u_e in the PDE.
Thereafter, turn u, f, and the time derivative of u into plain Python functions
as in a), and then wrap these functions in new functions I, V, and f, with the
right signature as required by the solver function. Set parameters as in a) and
check that the solution is exact to machine precision at each time level using an
appropriate user_action function.
Filename: wave1D_n0_test_cubic.py.

10 Analysis of the difference equations
10.1 Properties of the solution of the wave equation
The wave equation

∂2u

∂t2
= c2

∂2u

∂x2

has solutions of the form

u(x, t) = gR(x− ct) + gL(x+ ct), (68)

for any functions gR and gL sufficiently smooth to be differentiated twice. The
result follows from inserting (68) in the wave equation. A function of the form
gR(x− ct) represents a signal moving to the right in time with constant velocity
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c. This feature can be explained as follows. At time t = 0 the signal looks like
gR(x). Introducing a moving x axis with coordinates ξ = x − ct, we see the
function gR(ξ) is "at rest" in the ξ coordinate system, and the shape is always the
same. Say the gR(ξ) function has a peak at ξ = 0. This peak is located at x = ct,
which means that it moves with the velocity dx/dt = c in the x coordinate
system. Similarly, gL(x+ ct) is a function initially with shape gL(x) that moves
in the negative x direction with constant velocity c (introduce ξ = x+ ct, look
at the point ξ = 0, x = −ct, which has velocity dx/dt = −c).

With the particular initial conditions

u(x, 0) = I(x), ∂

∂t
u(x, 0) = 0,

we get, with u as in (68),

gR(x) + gL(x) = I(x), −cg′R(x) + cg′L(x) = 0,

which have the solution gR = gL = I/2, and consequently

u(x, t) = 1
2I(x− ct) + 1

2I(x+ ct) . (69)

The interpretation of (69) is that the initial shape of u is split into two parts,
each with the same shape as I but half of the initial amplitude. One part is
traveling to the left and the other one to the right.

The solution has two important physical features: constant amplitude of the
left and right wave, and constant velocity of these two waves. It turns out that
the numerical solution will also preserve the constant amplitude, but the velocity
depends on the mesh parameters ∆t and ∆x.

The solution (69) will be influenced by boundary conditions when the parts
1
2I(x− ct) and 1

2I(x+ ct) hit the boundaries and get, e.g., reflected back into
the domain. However, when I(x) is nonzero only in a small part in the middle of
the spatial domain [0, L], which means that the boundaries are placed far away
from the initial disturbance of u, the solution (69) is very clearly observed in a
simulation.

A useful representation of solutions of wave equations is a linear combination
of sine and/or cosine waves. Such a sum of waves is a solution if the governing
PDE is linear and each sine or cosine wave fulfills the equation. To ease analytical
calculations by hand we shall work with complex exponential functions instead
of real-valued sine or cosine functions. The real part of complex expressions
will typically be taken as the physical relevant quantity (whenever a physical
relevant quantity is strictly needed). The idea now is to build I(x) of complex
wave components eikx:

I(x) ≈
∑
k∈K

bke
ikx . (70)

Here, k is the frequency of a component, K is some set of all the discrete k values
needed to approximate I(x) well, and bk are constants that must be determined.
We will very seldom need to compute the bk coefficients: most of the insight we
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look for and the understanding of the numerical methods we want to establish,
come from investigating how the PDE and the scheme treat a single component
eikx wave.

Letting the number of k values in K tend to infinity makes the sum (70)
converge to I(x), and this sum is known as a Fourier series representation of
I(x). Looking at (69), we see that the solution u(x, t), when I(x) is represented
as in (70), is also built of basic complex exponential wave components of the
form eik(x±ct) according to

u(x, t) = 1
2
∑
k∈K

bke
ik(x−ct) + 1

2
∑
k∈K

bke
ik(x+ct) . (71)

It is common to introduce the frequency in time ω = kc and assume that u(x, t)
is a sum of basic wave components written as eikx−ωt. (Observe that inserting
such a wave component in the governing PDE reveals that ω2 = k2c2, or ω ± kc,
reflecting the two solutions: one (+kc) traveling to the right and the other (−kc)
traveling to the left.)

10.2 More precise definition of Fourier representations
The quick intuitive introduction above to representing a function by a sum of
sine and cosine waves suffices as background for the forthcoming material on
analyzing a single wave component. However, to understand all details of how
different wave components sum up to the analytical and numerical solution, a
more precise mathematical treatment is helpful and therefore summarized below.

It is well known that periodic functions can be represented by Fourier series.
A generalization of the Fourier series idea to non-periodic functions defined on
the real line is the Fourier transform:

I(x) =
∫ ∞
−∞

A(k)eikxdk, (72)

A(k) =
∫ ∞
−∞

I(x)e−ikxdx . (73)

The function A(k) reflects the weight of each wave component eikx in an infinite
sum of such wave components. That is, A(k) reflects the frequency content in
the function I(x). Fourier transforms are particularly fundamental for analyzing
and understanding time-varying signals.

The solution of the linear 1D wave PDE can be expressed as

u(x, t) =
∫ ∞
−∞

A(k)ei(kx−ω(k)t)dx .

In a finite difference method, we represent u by a mesh function unq , where n
counts temporal mesh points and q counts the spatial ones (the usual counter
for spatial points, i, is here already used as imaginary unit). Similarly, I(x)

52



is approximated by the mesh function Iq, q = 0, . . . , Nx. On a mesh, it does
not make sense to work with wave components eikx for very large k, because
the shortest possible sine or cosine wave that can be represented on a mesh
with spacing ∆x is the wave with wavelength 2∆x (the sine/cosine signal
jumps up and down between each mesh point). The corresponding k value is
k = 2π/(2∆x) = π/∆x, known as the Nyquist frequency. Within the range of
relevant frequencies (0, π/∆x] one defines the discrete Fourier transform16, using
Nx + 1 discrete frequencies:

Iq = 1
Nx + 1

Nx∑
k=0

Ake
i2πkj/(Nx+1), i = 0, . . . , Nx, (74)

Ak =
Nx∑
q=0

Iqe
−i2πkq/(Nx+1), k = 0, . . . , Nx + 1 . (75)

The Ak values is the discrete Fourier transform of the Iq values, and the latter
are the inverse discrete Fourier transform of the Ak values.

The discrete Fourier transform is efficiently computed by the Fast Fourier
transform algorithm. For a real function I(x) the relevant Python code for
computing and plotting the discrete Fourier transform appears in the example
below.

import numpy as np
from numpy import sin

def I(x):
return sin(2*pi*x) + 0.5*sin(4*pi*x) + 0.1*sin(6*pi*x)

# Mesh
L = 10; Nx = 100
x = np.linspace(0, L, Nx+1)
dx = L/float(Nx)

# Discrete Fourier transform
A = np.fft.rfft(I(x))
A_amplitude = np.abs(A)

# Compute the corresponding frequencies
freqs = np.linspace(0, pi/dx, A_amplitude.size)

import matplotlib.pyplot as plt
plt.plot(freqs, A_amplitude)
plt.show()

10.3 Stability
The scheme

16http://en.wikipedia.org/wiki/Discrete_Fourier_transform
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[DtDtu = c2DxDxu]nq (76)

for the wave equation ut = c2uxx allows basic wave components

unq = ei(kxq−ω̃tn)

as solution, but it turns out that the frequency in time, ω̃, is not equal to the
exact ω = kc. The idea now is to study how the scheme treats an arbitrary wave
component with a given k. We ask two key questions:

• How accurate is ω̃ compared to ω?

• Does the amplitude of such a wave component preserve its (unit) amplitude,
as it should, or does it get amplified or damped in time (due to a complex
ω̃)?

The following analysis will answer these questions. Note the need for using q as
counter for the mesh point in x direction since i is already used as the imaginary
unit (in this analysis).

Preliminary results. A key result needed in the investigations is the finite
difference approximation of a second-order derivative acting on a complex wave
component:

[DtDte
iωt]n = − 4

∆t2 sin2
(
ω∆t

2

)
eiωn∆t .

By just changing symbols (ω → k, t→ x, n→ q) it follows that

[DxDxe
ikx]q = − 4

∆x2 sin2
(
k∆x

2

)
eikq∆x .

Numerical wave propagation. Inserting a basic wave component unq =
ei(kxq−ω̃tn) in (76) results in the need to evaluate two expressions:

[DtDte
ikxe−iω̃t]nq = [DtDte

−iω̃t]neikq∆x

= − 4
∆t2 sin2

(
ω̃∆t

2

)
e−iω̃n∆teikq∆x (77)

[DxDxe
ikxe−iω̃t]nq = [DxDxe

ikx]qe−iω̃n∆t

= − 4
∆x2 sin2

(
k∆x

2

)
eikq∆xe−iω̃n∆t . (78)

Then the complete scheme,

[DtDte
ikxe−iω̃t = c2DxDxe

ikxe−iω̃t]nq
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leads to the following equation for the unknown numerical frequency ω̃ (after
dividing by −eikxe−iω̃t):

4
∆t2 sin2

(
ω̃∆t

2

)
= c2

4
∆x2 sin2

(
k∆x

2

)
,

or

sin2
(
ω̃∆t

2

)
= C2 sin2

(
k∆x

2

)
, (79)

where

C = c∆t
∆x (80)

is the Courant number. Taking the square root of (79) yields

sin
(
ω̃∆t

2

)
= C sin

(
k∆x

2

)
, (81)

Since the exact ω is real it is reasonable to look for a real solution ω̃ of (81).
The right-hand side of (81) must then be in [−1, 1] because the sine function
on the left-hand side has values in [−1, 1] for real ω̃. The sine function on the
right-hand side can attain the value 1 when

k∆x
2 = m

π

2 , m ∈ Z .

With m = 1 we have k∆x = π, which means that the wavelength λ = 2π/k
becomes 2∆x. This is the absolutely shortest wavelength that can be represented
on the mesh: the wave jumps up and down between each mesh point. Larger
values of |m| are irrelevant since these correspond to k values whose waves are
too short to be represented on a mesh with spacing ∆x. For the shortest possible
wave in the mesh, sin (k∆x/2) = 1, and we must require

C ≤ 1 . (82)
Consider a right-hand side in (81) of magnitude larger than unity. The

solution ω̃ of (81) must then be a complex number ω̃ = ω̃r + iω̃i because the
sine function is larger than unity for a complex argument. One can show that
for any ωi there will also be a corresponding solution with −ωi. The component
with ωi > 0 gives an amplification factor eωit that grows exponentially in time.
We cannot allow this and must therefore require C ≤ 1 as a stability criterion.

Remark.
For smoother wave components with longer wave lengths per length ∆x,
(82) can in theory be relaxed. However, small round-off errors are always
present in a numerical solution and these vary arbitrarily from mesh point
to mesh point and can be viewed as unavoidable noise with wavelength
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2∆x. As explained, C > 1 will for this very small noise lead to exponential
growth of the shortest possible wave component in the mesh. This noise
will therefore grow with time and destroy the whole solution.

10.4 Numerical dispersion relation
Equation (81) can be solved with respect to ω̃:

ω̃ = 2
∆t sin−1

(
C sin

(
k∆x

2

))
. (83)

The relation between the numerical frequency ω̃ and the other parameters k, c,
∆x, and ∆t is called a numerical dispersion relation. Correspondingly, ω = kc is
the analytical dispersion relation.

The special case C = 1 deserves attention since then the right-hand side of
(83) reduces to

2
∆t

k∆x
2 = 1

∆t
ω∆x
c

= ω

C
= ω .

That is, ω̃ = ω and the numerical solution is exact at all mesh points regardless of
∆x and ∆t! This implies that the numerical solution method is also an analytical
solution method, at least for computing u at discrete points (the numerical
method says nothing about the variation of u between the mesh points, and
employing the common linear interpolation for extending the discrete solution
gives a curve that deviates from the exact one).

For a closer examination of the error in the numerical dispersion relation
when C < 1, we can study ω̃ − ω, ω̃/ω, or the similar error measures in wave
velocity: c̃− c and c̃/c, where c = ω/k and c̃ = ω̃/k. It appears that the most
convenient expression to work with is c̃/c:

c̃

c
= 1
Cp

sin−1 (C sin p) ,

with p = k∆x/2 as a non-dimensional measure of the spatial frequency. In
essence, p tells how many spatial mesh points we have per wave length in space
of the wave component with frequency k (the wave length is 2π/k). That is, p
reflects how well the spatial variation of the wave component is resolved in the
mesh. Wave components with wave length less than 2∆x (2π/k < 2∆x) are not
visible in the mesh, so it does not make sense to have p > π/2.

We may introduce the function r(C, p) = c̃/c for further investigation of
numerical errors in the wave velocity:

r(C, p) = 1
Cp

sin−1 (C sin p) , C ∈ (0, 1], p ∈ (0, π/2] . (84)

This function is very well suited for plotting since it combines several parameters
in the problem into a dependence on two non-dimensional numbers, C and p.
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Figure 6: The fractional error in the wave velocity for different Courant numbers.

Defining

def r(C, p):
return 2/(C*p)*asin(C*sin(p))

we can plot r(C, p) as a function of p for various values of C, see Figure 6. Note
that the shortest waves have the most erroneous velocity, and that short waves
move more slowly than they should.

With sympy we can also easily make a Taylor series expansion in the dis-
cretization parameter p:

>>> C, p = symbols(’C p’)
>>> # Compute the 7 first terms around p=0 with no O() term
>>> rs = r(C, p).series(p, 0, 7).removeO()
>>> rs
p**6*(5*C**6/112 - C**4/16 + 13*C**2/720 - 1/5040) +
p**4*(3*C**4/40 - C**2/12 + 1/120) +
p**2*(C**2/6 - 1/6) + 1
>>> rs_error_leading_order = (rs - 1).extract_leading_order(p)
>>> rs_error_leading_order
p**2*(C**2/6 - 1/6)
>>> # Turn the series expansion into a Python function
>>> rs_pyfunc = lambdify([C, p], rs, modules=’numpy’)
>>> # Check: rs_pyfunc is exact (=1) for C=1
>>> rs_pyfunc(1, 0.1)
1.0
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Without the .removeO() call the series get an O(x**7) term that makes it
impossible to convert the series to a Python function (for, e.g., plotting).

From the rs_error_leading_order expression above we see that the leading
order term in the error of this series expansion is

1
6

(
k∆x

2

)2
(C2 − 1) = k2

24
(
c2∆t2 −∆x2) , (85)

pointing to an error O(∆t2,∆x2), which is compatible with the errors in the
difference approximations (DtDt and DxDx).

Here is an alternative way of performing a series expansion: we use the
lseries method, which returns an iterator over all the terms in the expansion,
and ask for the 4 first terms (via itertools.islice, which can slice an iterator).
Collecting the terms in a list makes it possible to factor each term individually.
Summing up the terms results in a nicer expression:

>>> import itertools
>>> rs = [t for t in itertools.islice(r(C, p).lseries(p), 4)]
>>> rs
[1, C**2*p**2/6 - p**2/6,
3*C**4*p**4/40 - C**2*p**4/12 + p**4/120,
5*C**6*p**6/112 - C**4*p**6/16 + 13*C**2*p**6/720 - p**6/5040]

>>> rs = [factor(t) for t in rs]
>>> rs
[1, p**2*(C - 1)*(C + 1)/6,
p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120,
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040]

>>> rs = sum(rs) # Python’s sum function
>>> rs
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040 +
p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120 +
p**2*(C - 1)*(C + 1)/6 + 1

We see from the last expression that C = 1 makes all the terms in rs vanish.
Since we already know that the numerical solution is exact for C = 1, the
remaining terms in the Taylor series expansion will also contain factors of C − 1
and cancel for C = 1.

10.5 Extending the analysis to 2D and 3D
The typical analytical solution of a 2D wave equation

utt = c2(uxx + uyy),
is a wave traveling in the direction of k = kxi + kyj, where i and j are unit
vectors in the x and y directions, respectively. Such a wave can be expressed by

u(x, y, t) = g(kxx+ kyy − kct)
for some twice differentiable function g, or with ω = kc, k = |k|:

u(x, y, t) = g(kxx+ kyy − ωt) .
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We can in particular build a solution by adding complex Fourier components of
the form

exp (i(kxx+ kyy − ωt)) .

A discrete 2D wave equation can be written as

[DtDtu = c2(DxDxu+DyDyu)]nq,r . (86)

This equation admits a Fourier component

unq,r = exp (i(kxq∆x+ kyr∆y − ω̃n∆t)), (87)

as solution. Letting the operators DtDt, DxDx, and DyDy act on unq,r from (87)
transforms (86) to

4
∆t2 sin2

(
ω̃∆t

2

)
= c2

4
∆x2 sin2

(
kx∆x

2

)
+ c2

4
∆y2 sin2

(
ky∆y

2

)
. (88)

or
sin2

(
ω̃∆t

2

)
= C2

x sin2 px + C2
y sin2 py, (89)

where we have eliminated the factor 4 and introduced the symbols

Cx = c2∆t2

∆x2 , Cy = c2∆t2

∆y2 , px = kx∆x
2 , py = ky∆y

2 .

For a real-valued ω̃ the right-hand side must be less than or equal to unity in
absolute value, requiring in general that

C2
x + C2

y ≤ 1 . (90)

This gives the stability criterion, more commonly expressed directly in an
inequality for the time step:

∆t ≤ 1
c

(
1

∆x2 + 1
∆y2

)−1/2
(91)

A similar, straightforward analysis for the 3D case leads to

∆t ≤ 1
c

(
1

∆x2 + 1
∆y2 + 1

∆z2

)−1/2
(92)

In the case of a variable coefficient c2 = c2(x), we must use the worst-case value

c̄ =
√

max
x∈Ω

c2(x) (93)

in the stability criteria. Often, especially in the variable wave velocity case, it is
wise to introduce a safety factor β ∈ (0, 1] too:
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∆t ≤ β 1
c̄

(
1

∆x2 + 1
∆y2 + 1

∆z2

)−1/2
(94)

The exact numerical dispersion relations in 2D and 3D becomes, for constant
c,

ω̃ = 2
∆t sin−1

((
C2
x sin2 px + C2

y sinpy
) 1

2
)
, (95)

ω̃ = 2
∆t sin−1

((
C2
x sin2 px + C2

y sinpy +C2
z sinpz

) 1
2
)
. (96)

We can visualize the numerical dispersion error in 2D much like we did in 1D.
To this end, we need to reduce the number of parameters in ω̃. The direction of
the wave is parameterized by the polar angle θ, which means that

kx = k sin θ, ky = k cos θ .

A simplification is to set ∆x = ∆y = h. Then Cx = Cy = c∆t/h, which we call
C. Also,

px = 1
2kh cos θ, py = 1

2kh sin θ .

The numerical frequency ω̃ is now a function of three parameters:

• C reflecting the number cells a wave is displaced during a time step

• kh reflecting the number of cells per wave length in space

• θ expressing the direction of the wave

We want to visualize the error in the numerical frequency. To avoid having ∆t
as a free parameter in ω̃, we work with c̃/c, because the fraction 2/∆t is then
rewritten as

2
kc∆t = 2

2kc∆th/h = 1
Ckh

,

and

c̃

c
= 1
Ckh

sin−1

(
C

(
sin2(1

2kh cos θ) + sin2(1
2kh sin θ)

) 1
2
)
.

We want to visualize this quantity as a function of kh and θ for some values of
C ≤ 1. It is instructive to make color contour plots of 1− c̃/c in polar coordinates
with θ as the angular coordinate and kh as the radial coordinate.

The stability criterion (90) becomes C ≤ Cmax = 1/
√

2 in the present 2D
case with the C defined above. Let us plot 1 − c̃/c in polar coordinates for
Cmax, 0.9Cmax, 0.5Cmax, 0.2Cmax. The program below does the somewhat tricky
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work in Matplotlib, and the result appears in Figure 7. From the figure we
clearly see that the maximum C value gives the best results, and that waves
whose propagation direction makes an angle of 45 degrees with an axis are the
most accurate.

def dispersion_relation_2D(kh, theta, C):
arg = C*sqrt(sin(0.5*kh*cos(theta))**2 +

sin(0.5*kh*sin(theta))**2)
c_frac = 2./(C*kh)*arcsin(arg)

return c_frac

from numpy import exp, sin, cos, linspace, \
pi, meshgrid, arcsin, sqrt

r = kh = linspace(0.001, pi, 101)
theta = linspace(0, 2*pi, 51)
r, theta = meshgrid(r, theta)

# Make 2x2 filled contour plots for 4 values of C
import matplotlib.pyplot as plt
C_max = 1/sqrt(2)
C = [[C_max, 0.9*C_max], [0.5*C_max, 0.2*C_max]]
fix, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True))
for row in range(2):

for column in range(2):
error = 1 - dispersion_relation_2D(

kh, theta, C[row][column])
print error.min(), error.max()
cax = axes[row][column].contourf(

theta, r, error, 50, vmin=0, vmax=0.36)
axes[row][column].set_xticks([])
axes[row][column].set_yticks([])

# Add colorbar to the last plot
cbar = plt.colorbar(cax)
cbar.ax.set_ylabel(’error in wave velocity’)
plt.savefig(’disprel2D.png’)
plt.savefig(’disprel2D.pdf’)
plt.show()
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Figure 7: Error in numerical dispersion in 2D.

11 Finite difference methods for 2D and 3D wave
equations

A natural next step is to consider extensions of the methods for various vari-
ants of the one-dimensional wave equation to two-dimensional (2D) and three-
dimensional (3D) versions of the wave equation.

11.1 Multi-dimensional wave equations
The general wave equation in d space dimensions, with constant wave velocity c,
can be written in the compact form

∂2u

∂t2
= c2∇2u for x ∈ Ω ⊂ Rd, t ∈ (0, T ] . (97)

In a 2D problem (d = 2),

∇2u = ∂2u

∂x2 + ∂2u

∂y2 ,

while in three space dimensions (d = 3),

∇2u = ∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2 .
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Many applications involve variable coefficients, and the general wave equation
in d dimensions is in this case written as

%
∂2u

∂t2
= ∇ · (q∇u) + f for x ∈ Ω ⊂ Rd, t ∈ (0, T ], (98)

which in 2D becomes

%(x, y)∂
2u

∂t2
= ∂

∂x

(
q(x, y)∂u

∂x

)
+ ∂

∂y

(
q(x, y)∂u

∂y

)
+ f(x, y, t) . (99)

To save some writing and space we may use the index notation, where subscript
t, x, y, or z means differentiation with respect to that coordinate. For example,

∂2u

∂t2
= utt,

∂

∂y

(
q(x, y)∂u

∂y

)
= (quy)y .

The 3D versions of the two model PDEs, with and without variable coefficients,
can with now with the aid of the index notation for differentiation be stated as

utt = c2(uxx + uyy + uzz) + f, (100)
%utt = (qux)x + (quz)z + (quz)z + f . (101)

At each point of the boundary ∂Ω of Ω we need one boundary condition
involving the unknown u. The boundary conditions are of three principal types:

1. u is prescribed (u = 0 or a known time variation for an incoming wave),

2. ∂u/∂n = n · ∇u prescribed (zero for reflecting boundaries),

3. an open boundary condition (also called radiation condition) is specified to
let waves travel undisturbed out of the domain, see Exercise ?? for details.

All the listed wave equations with second-order derivatives in time need two
initial conditions:

1. u = I,

2. ut = V .
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11.2 Mesh
We introduce a mesh in time and in space. The mesh in time consists of time
points

t0 = 0 < t1 < · · · < tNt
,

often with a constant spacing ∆t = tn+1 − tn, n ∈ I−t .
Finite difference methods are easy to implement on simple rectangle- or box-

shaped domains. More complicated shapes of the domain require substantially
more advanced techniques and implementational efforts. On a rectangle- or
box-shaped domain mesh points are introduced separately in the various space
directions:

x0 < x1 < · · · < xNx
in x direction,

y0 < y1 < · · · < yNy
in y direction,

z0 < z1 < · · · < zNz
in z direction .

We can write a general mesh point as (xi, yj , zk, tn), with i ∈ Ix, j ∈ Iy, k ∈ Iz,
and n ∈ It.

It is a very common choice to use constant mesh spacings: ∆x = xi+1 − xi,
i ∈ I−x , ∆y = yj+1− yj , j ∈ I−y , and ∆z = zk+1− zk, k ∈ I−z . With equal mesh
spacings one often introduces h = ∆x = ∆y = ∆z.

The unknown u at mesh point (xi, yj , zk, tn) is denoted by uni,j,k. In 2D
problems we just skip the z coordinate (by assuming no variation in that
direction: ∂/∂z = 0) and write uni,j .

11.3 Discretization
Two- and three-dimensional wave equations are easily discretized by assembling
building blocks for discretization of 1D wave equations, because the multi-
dimensional versions just contain terms of the same type that occurs in 1D.

Discretizing the PDEs. Equation (100) can be discretized as

[DtDtu = c2(DxDxu+DyDyu+DzDzu) + f ]ni,j,k . (102)

A 2D version might be instructive to write out in detail:

[DtDtu = c2(DxDxu+DyDyu) + f ]ni,j,k,

which becomes

un+1
i,j − 2uni,j + un−1

i,j

∆t2 = c2
uni+1,j − 2uni,j + uni−1,j

∆x2 +c2
uni,j+1 − 2uni,j + uni,j−1

∆y2 +fni,j ,
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Assuming as usual that all values at the time levels n and n− 1 are known, we
can solve for the only unknown un+1

i,j . The result can be compactly written as

un+1
i,j = 2uni,j + un−1

i,j + c2∆t2[DxDxu+DyDyu]ni,j . (103)

As in the 1D case, we need to develop a special formula for u1
i,j where we

combine the general scheme for un+1
i,j , when n = 0, with the discretization of the

initial condition:

[D2tu = V ]0i,j ⇒ u−1
i,j = u1

i,j − 2∆tVi,j .

The result becomes, in compact form,

un+1
i,j = uni,j − 2∆Vi,j + 1

2c
2∆t2[DxDxu+DyDyu]ni,j . (104)

The PDE (101) with variable coefficients is discretized term by term using
the corresponding elements from the 1D case:

[%DtDtu = (Dxq
xDxu+Dyq

yDyu+Dzq
zDzu) + f ]ni,j,k . (105)

When written out and solved for the unknown un+1
i,j,k, one gets the scheme

un+1
i,j,k = −un−1

i,j,k + 2uni,j,k+

= 1
%i,j,k

1
∆x2 (1

2(qi,j,k + qi+1,j,k)(uni+1,j,k − uni,j,k)−

1
2(qi−1,j,k + qi,j,k)(uni,j,k − uni−1,j,k))+

= 1
%i,j,k

1
∆x2 (1

2(qi,j,k + qi,j+1,k)(uni,j+1,k − uni,j,k)−

1
2(qi,j−1,k + qi,j,k)(uni,j,k − uni,j−1,k))+

= 1
%i,j,k

1
∆x2 (1

2(qi,j,k + qi,j,k+1)(uni,j,k+1 − uni,j,k)−

1
2(qi,j,k−1 + qi,j,k)(uni,j,k − uni,j,k−1))+

+ ∆t2fni,j,k .

Also here we need to develop a special formula for u1
i,j,k by combining the

scheme for n = 0 with the discrete initial condition, which is just a matter of
inserting u−1

i,j,k = u1
i,j,k − 2∆tVi,j,k in the scheme and solving for u1

i,j,k.

Handling boundary conditions where is u known. The schemes listed
above are valid for the internal points in the mesh. After updating these, we
need to visit all the mesh points at the boundaries and set the prescribed u
value.
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Discretizing the Neumann condition. The condition ∂u/∂n = 0 was im-
plemented in 1D by discretizing it with a D2xu centered difference, and thereafter
eliminating the fictitious u point outside the mesh by using the general scheme
at the boundary point. Alternatively, one can introduce ghost cells and update
a ghost value to for use in the Neumann condition. Exactly the same ideas are
reused in multi dimensions.

Consider ∂u/∂n = 0 at a boundary y = 0. The normal direction is then in
−y direction, so

∂u

∂n
= −∂u

∂y
,

and we set

[−D2yu = 0]ni,0 ⇒
uni,1 − uni,−1

2∆y = 0 .

From this it follows that uni,−1 = uni,1. The discretized PDE at the boundary
point (i, 0) reads

un+1
i,0 − 2uni,0 + un−1

i,0

∆t2 = c2
uni+1,0 − 2uni,0 + uni−1,0

∆x2 + c2
uni,1 − 2uni,0 + uni,−1

∆y2 + fni,j ,

We can then just insert u1
i,1 for uni,−1 in this equation and then solve for the

boundary value un+1
i,0 as done in 1D.

From these calculations, we see a pattern: the general scheme applies at
the boundary j = 0 too if we just replace j − 1 by j + 1. Such a pattern is
particularly useful for implementations. The details follow from the explained
1D case in Section 6.3.

The alternative approach to eliminating fictitious values outside the mesh is
to have uni,−1 available as a ghost value. The mesh is extended with one extra
line (2D) or plane (3D) of ghost cells at a Neumann boundary. In the present
example it means that we need a line ghost cells below the y axis. The ghost
values must be updated according to un+1

i,−1 = un+1
i,1 .

12 Implementation
We shall now describe in detail various Python implementations for solving a
standard 2D, linear wave equation with constant wave velocity and u = 0 on the
boundary. The wave equation is to be solved in the space-time domain Ω× (0, T ],
where Ω = (0, Lx)× (0, Ly) is a rectangular spatial domain. More precisely, the
complete initial-boundary value problem is defined by

ut = c2(uxx + uyy) + f(x, y, t), (x, y) ∈ Ω, t ∈ (0, T ], (106)
u(x, y, 0) = I(x, y), (x, y) ∈ Ω, (107)
ut(x, y, 0) = V (x, y), (x, y) ∈ Ω, (108)

u = 0, (x, y) ∈ ∂Ω, t ∈ (0, T ], (109)
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where ∂Ω is the boundary of Ω, in this case the four sides of the rectangle
[0, Lx]× [0, Ly]: x = 0, x = Lx, y = 0, and y = Ly.

The PDE is discretized as
[DtDtu = c2(DxDxu+DyDyu) + f ]ni,j ,

which leads to an explicit updating formula to be implemented in a program:

un+1 = −un−1
i,j + 2uni,j+

C2
x(uni+1,j − 2uni,j + uni−1,j) + C2

y(uni,j+1 − 2uni,j + uni,j−1) + ∆t2fni,j ,
(110)

for all interior mesh points i ∈ Iix and j ∈ Iiy, and for n ∈ I+
t . The constants

Cx and Cy are defined as

Cx = c
∆t
∆x, Cx = c

∆t
∆y .

At the boundary we simply set un+1
i,j = 0 for i = 0, j = 0, . . . , Ny; i = Nx,

j = 0, . . . , Ny; j = 0, i = 0, . . . , Nx; and j = Ny, i = 0, . . . , Nx. For the first
step, n = 0, (111) is combined with the discretization of the initial condition
ut = V , [D2tu = V ]0i,j to obtain a special formula for u1

i,j at the interior mesh
points:

u1 = u0
i,j + ∆tVi,j+

1
2C

2
x(u0

i+1,j − 2u0
i,j + u0

i−1,j) + 1
2C

2
y(u0

i,j+1 − 2u0
i,j + u0

i,j−1) + 1
2∆t2fni,j ,

(111)
The algorithm is very similar to the one in 1D:
1. Set initial condition u0

i,j = I(xi, yj)

2. Compute u1
i,j from (111)

3. Set u1
i,j = 0 for the boundaries i = 0, Nx, j = 0, Ny

4. For n = 1, 2, . . . , Nt:

(a) Find un+1
i,j from (111) for all internal mesh points, i ∈ Iix, j ∈ Iiy

(b) Set un+1
i,j = 0 for the boundaries i = 0, Nx, j = 0, Ny

12.1 Scalar computations
The solver function for a 2D case with constant wave velocity and u = 0 as
boundary condition follows the setup from the similar function for the 1D case
in wave1D_u0.py, but there are a few necessary extensions. The code is in the
program wave2D_u0.py17.

17http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0.py
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Domain and mesh. The spatial domain is now [0, Lx]× [0, Ly], specified by
the arguments Lx and Ly. Similarly, the number of mesh points in the x and y
directions, Nx and Ny, become the arguments Nx and Ny. In multi-dimensional
problems it makes less sense to specify a Courant number as the wave velocity
is a vector and the mesh spacings may differ in the various spatial directions.
We therefore give ∆t explicitly. The signature of the solver function is then

def solver(I, V, f, c, Lx, Ly, Nx, Ny, dt, T,
user_action=None, version=’scalar’):

Key parameters used in the calculations are created as

x = linspace(0, Lx, Nx+1) # mesh points in x dir
y = linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]
dy = y[1] - y[0]
Nt = int(round(T/float(dt)))
t = linspace(0, N*dt, N+1) # mesh points in time
Cx2 = (c*dt/dx)**2; Cy2 = (c*dt/dy)**2 # help variables
dt2 = dt**2

Solution arrays. We store un+1
i,j , uni,j , and un−1

i,j in three two-dimensional
arrays,

u = zeros((Nx+1,Ny+1)) # solution array
u_1 = zeros((Nx+1,Ny+1)) # solution at t-dt
u_2 = zeros((Nx+1,Ny+1)) # solution at t-2*dt

where un+1
i,j corresponds to u[i,j], uni,j to u_1[i,j], and un−1

i,j to u_2[i,j]

Index sets. It is also convenient to introduce the index sets (cf. Section 6.4)

Ix = range(0, u.shape[0])
Iy = range(0, u.shape[1])
It = range(0, t.shape[0])

Computing the solution. Inserting the initial condition I in u_1 and making
a callback to the user in terms of the user_action function is a straightforward
generalization of the 1D code from Section 1.6:

for i in Ix:
for j in Iy:

u_1[i,j] = I(x[i], y[j])

if user_action is not None:
user_action(u_1, x, xv, y, yv, t, 0)
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The user_action function has additional arguments compared to the 1D case.
The arguments xv and yv fact will be commented upon in Section 12.2.

The key finite difference formula (103) for updating the solution at a time
level is implemented in a separate function as

def advance_scalar(u, u_1, u_2, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, step1=False):

Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
if step1:

dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

for i in Ix[1:-1]:
for j in Iy[1:-1]:

u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
u[i,j] = D1*u_1[i,j] - D2*u_2[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
if step1:

u[i,j] += dt*V(x[i], y[j])
# Boundary condition u=0
j = Iy[0]
for i in Ix: u[i,j] = 0
j = Iy[-1]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in Iy: u[i,j] = 0
i = Ix[-1]
for j in Iy: u[i,j] = 0
return u

The step1 variable has been introduced to allow the formula to be reused for
first step u1

i,j :

u = advance_scalar(u, u_1, u_2, f, x, y, t,
n, Cx2, Cy2, dt, V, step1=True)

Below, we will make many alternative implementations of the advance_scalar
function to speed up the code since most of the CPU time in simulations is spent
in this function.

Finally, we remark that the solver function in the wave2D_u0.py code
updates arrays for the next time step by switching references as described in
Section 4.5. If the solution u is return from solver, which it is not, it is important
to set u = u_1 after the time loop, otherwise u actually contains u_2.

12.2 Vectorized computations
The scalar code above turns out to be extremely slow for large 2D meshes, and
probably useless in 3D beyond debugging of small test cases. Vectorization is
therefore a must for multi-dimensional finite difference computations in Python.
For example, with a mesh consisting of 30× 30 cells, vectorization brings down
the CPU time by a factor of 70 (!).
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In the vectorized case we must be able to evaluate user-given functions like
I(x, y) and f(x, y, t), provided as Python functions I(x,y) and f(x,y,t), for
the entire mesh in one array operation. Having the one-dimensional coordinate
arrays x and y is not sufficient: these must be extended to vectorized versions,

from numpy import newaxis
xv = x[:,newaxis]
yv = y[newaxis,:]
# or
xv = x.reshape((x.size, 1))
yv = y.reshape((1, y.size))

This is a standard required technique when evaluating functions over a 2D mesh,
say sin(xv)*cos(xv), which then gives a result with shape (Nx+1,Ny+1).

With the xv and yv arrays for vectorized computing, setting the initial
condition is just a matter of

u_1[:,:] = I(xv, yv)

One could also have written u_1 = I(xv, yv) and let u_1 point to a new object,
but vectorized operations often makes use of direct insertion in the original array
through u_1[:,:] because sometimes not all of the array is to be filled by such
a function evaluation. This is the case with the computational scheme for un+1

i,j :

def advance_vectorized(u, u_1, u_2, f_a, Cx2, Cy2, dt2,
V=None, step1=False):

if step1:
dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

u_xx = u_1[:-2,1:-1] - 2*u_1[1:-1,1:-1] + u_1[2:,1:-1]
u_yy = u_1[1:-1,:-2] - 2*u_1[1:-1,1:-1] + u_1[1:-1,2:]
u[1:-1,1:-1] = D1*u_1[1:-1,1:-1] - D2*u_2[1:-1,1:-1] + \

Cx2*u_xx + Cy2*u_yy + dt2*f_a[1:-1,1:-1]
if step1:

u[1:-1,1:-1] += dt*V[1:-1, 1:-1]
# Boundary condition u=0
j = 0
u[:,j] = 0
j = u.shape[1]-1
u[:,j] = 0
i = 0
u[i,:] = 0
i = u.shape[0]-1
u[i,:] = 0
return u

Array slices in 2D are more complicated to understand than those in 1D, but
the logic from 1D applies to each dimension separately. For example, when doing
uni,j − uni−1,j for i ∈ I+

x , we just keep j constant and make a slice in the first
index: u_1[1:,j] - u_1[:-1,j], exactly as in 1D. The 1: slice specifies all
the indices i = 1, 2, . . . , Nx (up to the last valid index), while :-1 specifies the
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relevant indices for the second term: 0, 1, . . . , Nx − 1 (up to, but not including
the last index).

In the above code segment, the situation is slightly more complicated, because
each displaced slice in one direction is accompanied by a 1:-1 slice in the other
direction. The reason is that we only work with the internal points for the index
that is kept constant in a difference.

The boundary conditions along the four sides makes use of a slice consisting
of all indices along a boundary:

u[: ,0] = 0
u[:,Ny] = 0
u[0 ,:] = 0
u[Nx,:] = 0

The f function is in the above vectorized update of u first computed as an
array over all mesh points:

f_a = f(xv, yv, t[n])

We could, alternatively, used the call f(xv, yv, t[n])[1:-1,1:-1] in the last
term of the update statement, but other implementations in compiled languages
benefit from having f available in an array rather than calling our Python
function f(x,y,t) for every point.

Also in the advance_vectorized function we have introduced a boolean
step1 to reuse the formula for the first time step in the same way as we did
with advance_scalar. We refer to the solver function in wave2D_u0.py for
the details on how the overall algorithm is implemented.

The callback function now has the arguments u, x, xv, y, yv, t, n.
The inclusion of xv and yv makes it easy to, e.g., compute an exact 2D so-
lution in the callback function and compute errors, through an expression like
u - u_exact(xv, yv, t[n]).

12.3 Verification
Testing a quadratic solution. The 1D solution from Section 2.4 can be
generalized to multi-dimensions and provides a test case where the exact solution
also fulfills the discrete equations such that we know (to machine precision)
what numbers the solver function should produce. In 2D we use the following
generalization of (30):

ue(x, y, t) = x(Lx − x)y(Ly − y)(1 + 1
2 t) . (112)

This solution fulfills the PDE problem if I(x, y) = ue(x, y, 0), V = 1
2ue(x, y, 0),

and f = 2c2(1 + 1
2 t)(y(Ly − y) + x(Lx − x)). To show that ue also solves the

discrete equations, we start with the general results [DtDt1]n = 0, [DtDtt]n = 0,
and [DtDtt

2] = 2, and use these to compute

[DxDxue]ni,j = [y(Ly − y)(1 + 1
2 t)DxDxx(Lx − x)]ni,j = yj(Ly − yj)(1 + 1

2 tn)2 .

71



A similar calculation must be carried out for the [DyDyue]ni,j and [DtDtue]ni,j
terms. One must also show that the quadratic solution fits the special formula
for u1

i,j . The details are left as Exercise 11. The test_quadratic function in
the wave2D_u0.py18 program implements this verification as a nose test.

13 Migrating loops to Cython
Although vectorization can bring down the CPU time dramatically compared with
scalar code, there is still some factor 5-10 to win in these types of applications by
implementing the finite difference scheme in compiled code, typically in Fortran,
C, or C++. This can quite easily be done by adding a little extra code to our
program. Cython is an extension of Python that offers the easiest way to nail
our Python loops in the scalar code down to machine code and the efficiency of
C.

Cython can be viewed as an extended Python language where variables are
declared with types and where functions are marked to be implemented in C.
Migrating Python code to Cython is done by copying the desired code segments
to functions (or classes) and placing them in one or more separate files with
extension .pyx.

13.1 Declaring variables and annotating the code
Our starting point is the plain advance_scalar function for a scalar implemen-
tation of the updating algorithm for new values un+1

i,j :

def advance_scalar(u, u_1, u_2, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, step1=False):

Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
if step1:

dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

for i in Ix[1:-1]:
for j in Iy[1:-1]:

u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
u[i,j] = D1*u_1[i,j] - D2*u_2[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
if step1:

u[i,j] += dt*V(x[i], y[j])
# Boundary condition u=0
j = Iy[0]
for i in Ix: u[i,j] = 0
j = Iy[-1]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in Iy: u[i,j] = 0
i = Ix[-1]

18http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0.py
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for j in Iy: u[i,j] = 0
return u

We simply take a copy of this function and put it in a file wave2D_u0_loop_cy.pyx.
The relevant Cython implementation arises from declaring variables with types
and adding some important annotations to speed up array computing in Cython.
Let us first list the complete code in the .pyx file:

import numpy as np
cimport numpy as np
cimport cython
ctypedef np.float64_t DT # data type

@cython.boundscheck(False) # turn off array bounds check
@cython.wraparound(False) # turn off negative indices (u[-1,-1])
cpdef advance(

np.ndarray[DT, ndim=2, mode=’c’] u,
np.ndarray[DT, ndim=2, mode=’c’] u_1,
np.ndarray[DT, ndim=2, mode=’c’] u_2,
np.ndarray[DT, ndim=2, mode=’c’] f,
double Cx2, double Cy2, double dt2):

cdef:
int Ix_start = 0
int Iy_start = 0
int Ix_end = u.shape[0]-1
int Iy_end = u.shape[1]-1
int i, j
double u_xx, u_yy

for i in range(Ix_start+1, Ix_end):
for j in range(Iy_start+1, Iy_end):

u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
u[i,j] = 2*u_1[i,j] - u_2[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f[i,j]
# Boundary condition u=0
j = Iy_start
for i in range(Ix_start, Ix_end+1): u[i,j] = 0
j = Iy_end
for i in range(Ix_start, Ix_end+1): u[i,j] = 0
i = Ix_start
for j in range(Iy_start, Iy_end+1): u[i,j] = 0
i = Ix_end
for j in range(Iy_start, Iy_end+1): u[i,j] = 0
return u

This example may act as a recipe on how to transform array-intensive code
with loops into Cython.

1. Variables are declared with types: for example, double v in the argument
list instead of just v, and cdef double v for a variable v in the body of
the function. A Python float object is declared as double for translation
to C by Cython, while an int object is declared by int.

2. Arrays need a comprehensive type declaration involving
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• the type np.ndarray,
• the data type of the elements, here 64-bit floats, abbreviated as DT

through ctypedef np.float64_t DT (instead of DT we could use the
full name of the data type: np.float64_t, which is a Cython-defined
type),

• the dimensions of the array, here ndim=2 and ndim=1,
• specification of contiguous memory for the array (mode=’c’).

3. Functions declared with cpdef are translated to C but also accessible from
Python.

4. In addition to the standard numpy import we also need a special Cython
import of numpy: cimport numpy as np, to appear after the standard
import.

5. By default, array indices are checked to be within their legal limits. To
speed up the code one should turn off this feature for a specific function
by placing @cython.boundscheck(False) above the function header.

6. Also by default, array indices can be negative (counting from the end), but
this feature has a performance penalty and is therefore here turned off by
writing @cython.wraparound(False) right above the function header.

7. The use of index sets Ix and Iy in the scalar code cannot be success-
fully translated to C. One reason is that constructions like Ix[1:-1]
involve negative indices, and these are now turned off. Another reason
is that Cython loops must take the form for i in xrange or for i in
range for being translated into efficient C loops. We have therefore in-
troduced Ix_start as Ix[0] and Ix_end as Ix[-1] to hold the start
and end of the values of index i. Similar variables are introduced for
the j index. A loop for i in Ix is with these new variables written as
for i in range(Ix_start, Ix_end+1).

Array declaration syntax in Cython.

We have used the syntax np.ndarray[DT, ndim=2, mode=’c’] to declare
numpy arrays in Cython. There is a simpler, alternative syntax, employing
typed memory viewsa, where the declaration looks like double [:,:].
However, the full support for this functionality is not yet ready, and in this
text we use the full array declaration syntax.

ahttp://docs.cython.org/src/userguide/memoryviews.html
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13.2 Visual inspection of the C translation
Cython can visually explain how successfully it can translate a code from Python
to C. The command

Terminal> cython -a wave2D_u0_loop_cy.pyx

produces an HTML file wave2D_u0_loop_cy.html, which can be loaded into a
web browser to illustrate which lines of the code that have been translated to C.
Figure 8 shows the illustrated code. Yellow lines indicate the lines that Cython
did not manage to translate to efficient C code and that remain in Python. For
the present code we see that Cython is able to translate all the loops with array
computing to C, which is our primary goal.

Figure 8: Visual illustration of Cython’s ability to translate Python to C.

You can also inspect the generated C code directly, as it appears in the file
wave2D_u0_loop_cy.c. Nevertheless, understanding this C code requires some
familiarity with writing Python extension modules in C by hand. Deep down in
the file we can see in detail how the compute-intensive statements are translated
some complex C code that is quite different from what we a human would write
(at least if a direct correspondence to the mathematics was in mind).

13.3 Building the extension module
Cython code must be translated to C, compiled, and linked to form what is known
in the Python world as a C extension module. This is usually done by making a
setup.py script, which is the standard way of building and installing Python
software. For an extension module arising from Cython code, the following
setup.py script is all we need to build and install the module:
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from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

cymodule = ’wave2D_u0_loop_cy’
setup(

name=cymodule
ext_modules=[Extension(cymodule, [cymodule + ’.pyx’],)],
cmdclass={’build_ext’: build_ext},

)

We run the script by

Terminal> python setup.py build_ext --inplace

The –inplace option makes the extension module available in the current
directory as the file wave2D_u0_loop_cy.so. This file acts as a normal Python
module that can be imported and inspected:

>>> import wave2D_u0_loop_cy
>>> dir(wave2D_u0_loop_cy)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,
’__package__’, ’__test__’, ’advance’, ’np’]

The important output from the dir function is our Cython function advance
(the module also features the imported numpy module under the name np as well
as many standard Python objects with double underscores in their names).

The setup.py file makes use of the distutils package in Python and
Cython’s extension of this package. These tools know how Python was built on
the computer and will use compatible compiler(s) and options when building
other code in Cython, C, or C++. Quite some experience with building large
program systems is needed to do the build process manually, so using a setup.py
script is strongly recommended.

Simplified build of a Cython module.

When there is no need to link the C code with special libraries, Cython
offers a shortcut for generating and importing the extension module:

import pyximport; pyximport.install()

This makes the setup.py script redundant. However, in the wave2D_u0.py
code we do not use pyximport and require an explicit build process of this
and many other modules.
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13.4 Calling the Cython function from Python
The wave2D_u0_loop_cy module contains our advance function, which we now
may call from the Python program for the wave equation:

import wave2D_u0_loop_cy
advance = wave2D_u0_loop_cy.advance
...
for n in It[1:-1: # time loop

f_a[:,:] = f(xv, yv, t[n]) # precompute, size as u
u = advance(u, u_1, u_2, f_a, x, y, t, Cx2, Cy2, dt2)

Efficiency. For a mesh consisting of 120× 120 cells, the scalar Python code
require 1370 CPU time units, the vectorized version requires 5.5, while the
Cython version requires only 1! For a smaller mesh with 60× 60 cells Cython is
about 1000 times faster than the scalar Python code, and the vectorized version
is about 6 times slower than the Cython version.

14 Migrating loops to Fortran
Instead of relying on Cython’s (excellent) ability to translate Python to C, we
can invoke a compiled language directly and write the loops ourselves. Let us
start with Fortran 77, because this is a language with more convenient array
handling than C (or plain C++). Or more precisely, we can with ease program
with the same multi-dimensional indices in the Fortran code as in the numpy
arrays in the Python code, while in C these arrays are one-dimensional and
requires us to reduce multi-dimensional indices to a single index.

14.1 The Fortran subroutine
We write a Fortran subroutine advance in a file wave2D_u0_loop_f77.f19 for
implementing the updating formula (111) and setting the solution to zero at the
boundaries:

subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
integer Nx, Ny
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real*8 f(0:Nx,0:Ny), Cx2, Cy2, dt2
integer i, j
real*8 u_xx, u_yy

Cf2py intent(in, out) u

C Scheme at interior points
do j = 1, Ny-1

do i = 1, Nx-1
u_xx = u_1(i-1,j) - 2*u_1(i,j) + u_1(i+1,j)
u_yy = u_1(i,j-1) - 2*u_1(i,j) + u_1(i,j+1)
u(i,j) = 2*u_1(i,j) - u_2(i,j) + Cx2*u_xx + Cy2*u_yy +

19http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0_loop_f77.f
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& dt2*f(i,j)
end do

end do

C Boundary conditions
j = 0
do i = 0, Nx

u(i,j) = 0
end do
j = Ny
do i = 0, Nx

u(i,j) = 0
end do
i = 0
do j = 0, Ny

u(i,j) = 0
end do
i = Nx
do j = 0, Ny

u(i,j) = 0
end do
return
end

This code is plain Fortran 77, except for the special Cf2py comment line, which
here specifies that u is both an input argument and an object to be returned
from the advance routine. Or more precisely, Fortran is not able return an array
from a function, but we need a wrapper code in C for the Fortran subroutine to
enable calling it from Python, and in this wrapper code one can return u to the
calling Python code.

Remark.
It is not strictly necessary to return u to the calling Python code since
the advance function will modify the elements of u, but the convention in
Python is to get all output from a function as returned values. That is,
the right way of calling the above Fortran subroutine from Python is

u = advance(u, u_1, u_2, f, Cx2, Cy2, dt2)

The less encouraged style, which works and resembles the way the Fortran
subroutine is called from Fortran, reads

advance(u, u_1, u_2, f, Cx2, Cy2, dt2)
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14.2 Building the Fortran module with f2py
The nice feature of writing loops in Fortran is that the tool f2py can with very
little work produce a C extension module such that we can call the Fortran
version of advance from Python. The necessary commands to run are

Terminal> f2py -m wave2D_u0_loop_f77 -h wave2D_u0_loop_f77.pyf \
--overwrite-signature wave2D_u0_loop_f77.f

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

The first command asks f2py to interpret the Fortran code and make a Fortran 90
specification of the extension module in the file wave2D_u0_loop_f77.pyf. The
second command makes f2py generate all necessary wrapper code, compile our
Fortran file and the wrapper code, and finally build the module. The build process
takes place in the specified subdirectory build_f77 so that files can be inspected
if something goes wrong. The option -DF2PY_REPORT_ON_ARRAY_COPY=1 makes
f2py write a message for every array that is copied in the communication between
Fortran and Python, which is very useful for avoiding unnecessary array copying
(see below). The name of the module file is wave2D_u0_loop_f77.so, and this
file can be imported and inspected as any other Python module:

>>> import wave2D_u0_loop_f77
>>> dir(wave2D_u0_loop_f77)
[’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__version__’, ’advance’]

>>> print wave2D_u0_loop_f77.__doc__
This module ’wave2D_u0_loop_f77’ is auto-generated with f2py....
Functions:

u = advance(u,u_1,u_2,f,cx2,cy2,dt2,
nx=(shape(u,0)-1),ny=(shape(u,1)-1))

Examine the doc strings!

Printing the doc strings of the module and its functions is extremely
important after having created a module with f2py, because f2py makes
Python interfaces to the Fortran functions that are different from how
the functions are declared in the Fortran code (!). The rationale for this
behavior is that f2py creates Pythonic interfaces such that Fortran routines
can be called in the same way as one calls Python functions. Output data
from Python functions is always returned to the calling code, but this is
technically impossible in Fortran. Also, arrays in Python are passed to
Python functions without their dimensions because that information is
packed with the array data in the array objects, but this is not possible
in Fortran. Therefore, f2py removes array dimensions from the argument
list, and f2py makes it possible to return objects back to Python.
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Let us follow the advice of examining the doc strings and take a close look
at the documentation f2py has generated for our Fortran advance subroutine:

>>> print wave2D_u0_loop_f77.advance.__doc__
This module ’wave2D_u0_loop_f77’ is auto-generated with f2py
Functions:

u = advance(u,u_1,u_2,f,cx2,cy2,dt2,
nx=(shape(u,0)-1),ny=(shape(u,1)-1))

.
advance - Function signature:

u = advance(u,u_1,u_2,f,cx2,cy2,dt2,[nx,ny])
Required arguments:

u : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_1 : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_2 : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
f : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
cx2 : input float
cy2 : input float
dt2 : input float

Optional arguments:
nx := (shape(u,0)-1) input int
ny := (shape(u,1)-1) input int

Return objects:
u : rank-2 array(’d’) with bounds (nx + 1,ny + 1)

Here we see that the nx and ny parameters declared in Fortran are optional
arguments that can be omitted when calling advance from Python.

We strongly recommend to print out the documentation of every Fortran
function to be called from Python and make sure the call syntax is exactly as
listed in the documentation.

14.3 How to avoid array copying
Multi-dimensional arrays are stored as a stream of numbers in memory. For
a two-dimensional array consisting of rows and columns there are two ways
of creating such a stream: row-major ordering, which means that rows are
stored consecutively in memory, or column-major ordering, which means that the
columns are stored one after each other. All programming languages inherited
from C, including Python, apply the row-major ordering, but Fortran uses
column-major storage. Thinking of a two-dimensional array in Python or C as a
matrix, it means that Fortran works with the transposed matrix.

Fortunately, f2py creates extra code so that accessing u(i,j) in the Fortran
subroutine corresponds to the element u[i,j] in the underlying numpy array
(without the extra code, u(i,j) in Fortran would access u[j,i] in the numpy
array). Technically, f2py takes a copy of our numpy array and reorders the data
before sending the array to Fortran. Such copying can be costly. For 2D wave
simulations on a 60 × 60 grid the overhead of copying is a factor of 5, which
means that almost the whole performance gain of Fortran over vectorized numpy
code is lost!

To avoid having f2py to copy arrays with C storage to the corresponding
Fortran storage, we declare the arrays with Fortran storage:
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order = ’Fortran’ if version == ’f77’ else ’C’
u = zeros((Nx+1,Ny+1), order=order) # solution array
u_1 = zeros((Nx+1,Ny+1), order=order) # solution at t-dt
u_2 = zeros((Nx+1,Ny+1), order=order) # solution at t-2*dt

In the compile and build step of using f2py, it is recommended to add an
extra option for making f2py report on array copying:

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

It can sometimes be a challenge to track down which array that causes a
copying. There are two principal reasons for copying array data: either the array
does not have Fortran storage or the element types do not match those declared
in the Fortran code. The latter cause is usually effectively eliminated by using
real*8 data in the Fortran code and float64 (the default float type in numpy)
in the arrays on the Python side. The former reason is more common, and to
check whether an array before a Fortran call has the right storage one can print
the result of isfortran(a), which is True if the array a has Fortran storage.

Let us look at an example where we face problems with array storage. A
typical problem in the wave2D_u0.py code is to set

f_a = f(xv, yv, t[n])

before the call to the Fortran advance routine. This computation creates a new
array with C storage. An undesired copy of f_a will be produced when sending
f_a to a Fortran routine. There are two remedies, either direct insertion of data
in an array with Fortran storage,

f_a = zeros((Nx+1, Ny+1), order=’Fortran’)
...
f_a[:,:] = f(xv, yv, t[n])

or remaking the f(xv, yv, t[n]) array,

f_a = asarray(f(xv, yv, t[n]), order=’Fortran’)

The former remedy is most efficient if the asarray operation is to be performed
a large number of times.

Efficiency. The efficiency of this Fortran code is very similar to the Cython
code. There is usually nothing more to gain, from a computational efficiency
point of view, by implementing the complete Python program in Fortran or C.
That will just be a lot more code for all administering work that is needed in
scientific software, especially if we extend our sample program wave2D_u0.py to
handle a real scientific problem. Then only a small portion will consist of loops
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with intensive array calculations. These can be migrated to Cython or Fortran
as explained, while the rest of the programming can be more conveniently done
in Python.

15 Migrating loops to C via Cython
The computationally intensive loops can alternatively be implemented in C
code. Just as Fortran calls for care regarding the storage of two-dimensional
arrays, working with two-dimensional arrays in C is a bit tricky. The reason is
that numpy arrays are viewed as one-dimensional arrays when transferred to C,
while C programmers will think of u, u_1, and u_2 as two dimensional arrays
and index them like u[i][j]. The C code must declare u as double* u and
translate an index pair [i][j] to a corresponding single index when u is viewed
as one-dimensional. This translation requires knowledge of how the numbers in
u are stored in memory.

15.1 Translating index pairs to single indices
Two-dimensional numpy arrays with the default C storage are stored row by row.
In general, multi-dimensional arrays with C storage are stored such that the last
index has the fastest variation, then the next last index, and so on, ending up
with the slowest variation in the first index. For a two-dimensional u declared
as zeros((Nx+1,Ny+1)) in Python, the individual elements are stored in the
following order:

u[0,0], u[0,1], u[0,2], ..., u[0,Ny], u[1,0], u[1,1], ...,
u[1,Ny], u[2,0], ..., u[Nx,0], u[Nx,1], ..., u[Nx, Ny]

Viewing u as one-dimensional, the index pair (i, j) translates to i(Ny + 1) + j.
So, where a C programmer would naturally write an index u[i][j], the indexing
must read u[i*(Ny+1) + j]. This is tedious to write, so it can be handy to
define a C macro,

#define idx(i,j) (i)*(Ny+1) + j

so that we can write u[idx(i,j)], which reads much better and is easier to
debug.

Be careful with macro definitions.
Macros just perform simple text substitutions: idx(hello,world) is ex-
panded to (hello)*(Ny+1) + world. The parenthesis in (i) are essential
- using the natural mathematical formula i*(Ny+1) + j in the macro
definition, idx(i-1,j) would expand to i-1*(Ny+1) + j, which is the
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wrong formula. Macros are handy, but requires careful use. In C++, inline
functions are safer and replace the need for macros.

15.2 The complete C code
The C version of our function advance can be coded as follows.

#define idx(i,j) (i)*(Ny+1) + j

void advance(double* u, double* u_1, double* u_2, double* f,
double Cx2, double Cy2, double dt2, int Nx, int Ny)

{
int i, j;
double u_xx, u_yy;
/* Scheme at interior points */
for (i=1; i<=Nx-1; i++) {

for (j=1; j<=Ny-1; j++) {
u_xx = u_1[idx(i-1,j)] - 2*u_1[idx(i,j)] + u_1[idx(i+1,j)];
u_yy = u_1[idx(i,j-1)] - 2*u_1[idx(i,j)] + u_1[idx(i,j+1)];
u[idx(i,j)] = 2*u_1[idx(i,j)] - u_2[idx(i,j)] +

Cx2*u_xx + Cy2*u_yy + dt2*f[idx(i,j)];
}

}
/* Boundary conditions */
j = 0; for (i=0; i<=Nx; i++) u[idx(i,j)] = 0;
j = Ny; for (i=0; i<=Nx; i++) u[idx(i,j)] = 0;
i = 0; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0;
i = Nx; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0;

}

15.3 The Cython interface file
All the code above appears in a file wave2D_u0_loop_c.c20. We need to compile
this file together with C wrapper code such that advance can be called from
Python. Cython can be used to generate appropriate wrapper code. The relevant
Cython code for interfacing C is placed in a file with extension .pyx. Here this
file, called wave2D_u0_loop_c_cy.pyx21, looks like

import numpy as np
cimport numpy as np
cimport cython

cdef extern from "wave2D_u0_loop_c.h":
void advance(double* u, double* u_1, double* u_2, double* f,

double Cx2, double Cy2, double dt2,
int Nx, int Ny)

@cython.boundscheck(False)
@cython.wraparound(False)
def advance_cwrap(

20http://tinyurl.com/nm5587k/wave//wave2D_u0/wave2D_u0_loop_c.c
21http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0_loop_c_cy.pyx
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np.ndarray[double, ndim=2, mode=’c’] u,
np.ndarray[double, ndim=2, mode=’c’] u_1,
np.ndarray[double, ndim=2, mode=’c’] u_2,
np.ndarray[double, ndim=2, mode=’c’] f,
double Cx2, double Cy2, double dt2):
advance(&u[0,0], &u_1[0,0], &u_2[0,0], &f[0,0],

Cx2, Cy2, dt2,
u.shape[0]-1, u.shape[1]-1)

return u

We first declare the C functions to be interfaced. These must also appear in a C
header file, wave2D_u0_loop_c.h22,

extern void advance(double* u, double* u_1, double* u_2, double* f,
double Cx2, double Cy2, double dt2,
int Nx, int Ny);

The next step is to write a Cython function with Python objects as arguments.
The name advance is already used for the C function so the function to be called
from Python is named advance_cwrap. The contents of this function is simply
a call to the advance version in C. To this end, the right information from the
Python objects must be passed on as arguments to advance. Arrays are sent
with their C pointers to the first element, obtained in Cython as &u[0,0] (the
& takes the address of a C variable). The Nx and Ny arguments in advance are
easily obtained from the shape of the numpy array u. Finally, u must be returned
such that we can set u = advance(...) in Python.

15.4 Building the extension module
It remains to build the extension module. An appropriate setup.py file is

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

sources = [’wave2D_u0_loop_c.c’, ’wave2D_u0_loop_c_cy.pyx’]
module = ’wave2D_u0_loop_c_cy’
setup(

name=module,
ext_modules=[Extension(module, sources,

libraries=[], # C libs to link with
)],

cmdclass={’build_ext’: build_ext},
)

All we need to specify is the .c file(s) and the .pyx interface file. Cython is au-
tomatically run to generate the necessary wrapper code. Files are then compiled
and linked to an extension module residing in the file wave2D_u0_loop_c_cy.so.
Here is a session with running setup.py and examining the resulting module in
Python

22http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0_loop_c.h
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Terminal> python setup.py build_ext --inplace
Terminal> python
>>> import wave2D_u0_loop_c_cy as m
>>> dir(m)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__test__’, ’advance_cwrap’, ’np’]

The call to the C version of advance can go like this in Python:

import wave2D_u0_loop_c_cy
advance = wave2D_u0_loop_c_cy.advance_cwrap
...
f_a[:,:] = f(xv, yv, t[n])
u = advance(u, u_1, u_2, f_a, Cx2, Cy2, dt2)

Efficiency. In this example, the C and Fortran code runs at the same speed,
and there are no significant differences in the efficiency of the wrapper code. The
overhead implied by the wrapper code is negligible as long as we do not work
with very small meshes and consequently little numerical work in the advance
function.

16 Migrating loops to C via f2py
An alternative to using Cython for interfacing C code is to apply f2py. The C
code is the same, just the details of specifying how it is to be called from Python
differ. The f2py tool requires the call specification to be a Fortran 90 module
defined in a .pyf file. This file was automatically generated when we interfaced
a Fortran subroutine. With a C function we need to write this module ourselves,
or we can use a trick and let f2py generate it for us. The trick consists in writing
the signature of the C function with Fortran syntax and place it in a Fortran
file, here wave2D_u0_loop_c_f2py_signature.f:

subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
Cf2py intent(c) advance

integer Nx, Ny, N
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real*8 f(0:Nx, 0:Ny), Cx2, Cy2, dt2

Cf2py intent(in, out) u
Cf2py intent(c) u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny

return
end

Note that we need a special f2py instruction, through a Cf2py comment line, for
telling that all the function arguments are C variables. We also need to specify
that the function is actually in C: intent(c) advance.

Since f2py is just concerned with the function signature and not the complete
contents of the function body, it can easily generate the Fortran 90 module
specification based solely on the signature above:

85



Terminal> f2py -m wave2D_u0_loop_c_f2py \
-h wave2D_u0_loop_c_f2py.pyf --overwrite-signature \
wave2D_u0_loop_c_f2py_signature.f

The compile and build step is as for the Fortran code, except that we list C files
instead of Fortran files:

Terminal> f2py -c wave2D_u0_loop_c_f2py.pyf \
--build-dir tmp_build_c \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_c.c

As when interfacing Fortran code with f2py, we need to print out the doc string
to see the exact call syntax from the Python side. This doc string is identical
for the C and Fortran versions of advance.

16.1 Migrating loops to C++ via f2py
C++ is a much more versatile language than C or Fortran and has over the last
two decades become very popular for numerical computing. Many will therefore
prefer to migrate compute-intensive Python code to C++. This is, in principle,
easy: just write the desired C++ code and use some tool for interfacing it
from Python. A tool like SWIG23 can interpret the C++ code and generate
interfaces for a wide range of languages, including Python, Perl, Ruby, and Java.
However, SWIG is a comprehensive tool with a correspondingly steep learning
curve. Alternative tools, such as Boost Python24, SIP25, and Shiboken26 are
similarly comprehensive. Simpler tools include PyBindGen27,

A technically much easier way of interfacing C++ code is to drop the
possibility to use C++ classes directly from Python, but instead make a C
interface to the C++ code. The C interface can be handled by f2py as shown
in the example with pure C code. Such a solution means that classes in Python
and C++ cannot be mixed and that only primitive data types like numbers,
strings, and arrays can be transferred between Python and C++. Actually, this
is often a very good solution because it forces the C++ code to work on array
data, which usually gives faster code than if fancy data structures with classes
are used. The arrays coming from Python, and looking like plain C/C++ arrays,
can be efficiently wrapped in more user-friendly C++ array classes in the C++
code, if desired.

23http://swig.org/
24http://www.boost.org/doc/libs/1_51_0/libs/python/doc/index.html
25http://riverbankcomputing.co.uk/software/sip/intro
26http://qt-project.org/wiki/Category:LanguageBindings::PySide::Shiboken
27http://code.google.com/p/pybindgen/
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17 Using classes to implement a simulator
• Introduce classes Mesh, Function, Problem, Solver, Visualizer, File

18 Exercises
Exercise 11: Check that a solution fulfills the discrete model
Carry out all mathematical details to show that (112) is indeed a solution of
the discrete model for a 2D wave equation with u = 0 on the boundary. One
must check the boundary conditions, the initial conditions, the general discrete
equation at a time level and the special version of this equation for the first time
level. Filename: check_quadratic_solution.pdf.

Project 12: Calculus with 2D/3D mesh functions
The goal of this project is to redo Project 5 with 2D and 3D mesh functions
(fi,j and fi,j,k).

Differentiation. The differentiation results in a discrete gradient function,
which in the 2D case can be represented by a three-dimensional array df[d,i,j]
where d represents the direction of the derivative, and i,j is a mesh point in 2D
(the 3D counterpart is df[d,i,j,k]).

Integration. The integral of a 2D mesh function fi,j is defined as

Fi,j =
∫ yj

y0

∫ xi

x0

f(x, y)dxdy,

where f(x, y) is a function that takes on the values of the discrete mesh function
fi,j at the mesh points, but can also be evaluated in between the mesh points.
The particular variation between mesh points can be taken as bilinear, but this
is not important as we will use a product Trapezoidal rule to approximate the
integral over a cell in the mesh and then we only need to evaluate f(x, y) at the
mesh points.

Suppose Fi,j is computed. The calculation of Fi+1,j is then

Fi+1,j = Fi,j +
∫ xi+1

xi

∫ yj

y0

f(x, y)dydx

≈ ∆x
∫ yj

y0

f(xi+ 1
2
, y)dy

≈ ∆x1
2

(∫ yj

y0

f(xi, y)dy +
∫ yj

y0

f(xi+1, y)dy
)
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The integrals in the y direction can be approximated by a Trapezoidal rule. A
similar idea can be used to compute Fi,j+1. Thereafter, Fi+1,j+1 can be computed
by adding the integral over the final corner cell to Fi+1,j + Fi,j+1 − Fi,j . Carry
out the details of these computations and extend the ideas to 3D. Filename:
mesh_calculus_3D.py.

Exercise 13: Implement Neumann conditions in 2D
Modify the wave2D_u0.py28 program, which solves the 2D wave equation utt =
c2(uxx + uyy) with constant wave velocity c and u = 0 on the boundary, to
have Neumann boundary conditions: ∂u/∂n = 0. Include both scalar code (for
debugging and reference) and vectorized code (for speed).

To test the code, use u = 1.2 as solution (I(x, y) = 1.2, V = f = 0, and c
arbitrary), which should be exactly reproduced with any mesh as long as the
stability criterion is satisfied. Another test is to use the plug-shaped pulse in the
pulse function from Section 8 and the wave1D_dn_vc.py29 program. This pulse
is exactly propagated in 1D if c∆t/∆x = 1. Check that also the 2D program
can propagate this pulse exactly in x direction (c∆t/∆x = 1, ∆y arbitrary) and
y direction (c∆t/∆y = 1, ∆x arbitrary). Filename: wave2D_dn.py.

Exercise 14: Test the efficiency of compiled loops in 3D
Extend the wave2D_u0.py code and the Cython, Fortran, and C versions to 3D.
Set up an efficiency experiment to determine the relative efficiency of pure scalar
Python code, vectorized code, Cython-compiled loops, Fortran-compiled loops,
and C-compiled loops. Normalize the CPU time for each mesh by the fastest
version. Filename: wave3D_u0.py.

19 Applications of wave equations
This section presents a range of wave equation models for different physical
phenomena. Although many wave motion problems in physics can be modeled by
the standard linear wave equation, or a similar formulation with a system of first-
order equations, there are some exceptions. Perhaps the most important is water
waves: these are modeled by the Laplace equation with time-dependent boundary
conditions at the water surface (long water waves, however, can be approximated
by a standard wave equation, see Section 19.7). Quantum mechanical waves
constitute another example where the waves are governed by the Schrödinger
equation and not a standard wave equation. Many wave phenomena also need
to take nonlinear effects into account when the wave amplitude is significant.
Shock waves in the air is a primary example.

The derivations in the following are very brief. Those with a firm background
in continuum mechanics will probably have enough information to fill in the

28http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0.py
29http://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn_vc.py
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details, while other readers will hopefully get some impression of the physics and
approximations involved when establishing wave equation models.

19.1 Waves on a string

ui

ui−1

ui+1

xi xi+1xi−1

T
T

Figure 9: Discrete string model with point masses connected by elastic strings.

Figure 9 shows a model we may use to derive the equation for waves on a
string. The string is modeled as a set of discrete point masses (at mesh points)
with elastic strings in between. The strings are at a high constant tension T .
We let the mass at mesh point xi be mi. The displacement of this mass point in
y direction is denoted by ui(t).

The motion of mass mi is governed by Newton’s second law of motion. The
position of the mass at time t is xii+ ui(t)j, where i and j are unit vectors in
the x and y direction, respectively. The acceleration is then u′′i (t)j. Two forces
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are acting on the mass as indicated in Figure 9. The force T− acting toward the
point xi−1 can be decomposed as

T− = −T sinφi− T cosφj,
where φ is the angle between the force and the line x = xi. Let ∆ui = ui − ui−1
and let ∆si =

√
∆u2

i + (xi − xi−1)2 be the distance from mass mi−1 to mass
mi. It is seen that cosφ = ∆ui/∆si and sinφ = (xi − xi−1)/∆s or ∆x/∆si if
we introduce a constant mesh spacing ∆x = xi − xi−1. The force can then be
written

T− = −T ∆x
∆si

i− T ∆ui
∆si

j .

The force T+ acting toward xi+1 can be calculated in a similar way:

T+ = T
∆x

∆si+1
i+ T

∆ui+1

∆si+1
j .

Newton’s second law becomes

miu
′′
i (t)j = T+ + T−,

which gives the component equations

T
∆x
∆si

= T
∆x

∆si+1
, (113)

miu
′′
i (t) = T

∆ui+1

∆si+1
− T ∆ui

∆si
. (114)

A basic reasonable assumption for a string is small displacements ui and
small displacement gradients ∆ui/∆x. For small g = ∆ui/∆x we have that

∆si =
√

∆u2
i + ∆x2 = ∆x

√
1 + g2 + ∆x(1 + 1

2g
2 +O(g4) ≈ ∆x .

Equation (113) is then simply the identity T = T , while (114) can be written as

miu
′′
i (t) = T

∆ui+1

∆x − T ∆ui
∆x ,

which upon division by ∆x and introducing the density %i = mi/∆x becomes

%iu
′′
i (t) = T

1
∆x2 (ui+1 − 2ui + ui−1) . (115)

We can now choose to approximate u′′i by a finite difference in time and get the
discretized wave equation,

%i
1

∆t2
(
un+1
i − 2uni − un−1

i

)
= T

1
∆x2 (ui+1 − 2ui + ui−1) . (116)
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On the other hand, we may go to the continuum limit ∆x→ 0 and replace ui(t)
by u(x, t), %i by %(x), and recognize that the right-hand side of (115) approaches
∂2u/∂x2 as ∆x → 0. We end up with the continuous model for waves on a
string:

%
∂2u

∂t2
= T

∂2u

∂x2 . (117)

Note that the density % may change along the string, while the tension T is a
constant. With variable wave velocity c(x) =

√
T/%(x) we can write the wave

equation in the more standard form

∂2u

∂t2
= c2(x)∂

2u

∂x2 . (118)

Because of the way % enters the equations, the variable wave velocity does not
appear inside the derivatives as in many other versions of the wave equation.
However, most strings of interest have constant %.

The end point of a string are fixed so that the displacement u is zero. The
boundary conditions are therefore u = 0.

Damping. Air resistance and non-elastic effects in the string will contribute
to reduce the amplitudes of the waves so that the motion dies out after some
time. This damping effect can be modeled by a term but on the left-hand side of
the equation

%
∂2u

∂t2
+ b

∂u

∂t
= T

∂2u

∂x2 . (119)

The parameter b must normally be determined from physical experiments.

External forcing. It is easy to include an external force acting on the string.
Say we have a vertical force f̃ij acting on mass mi. This force affects the
vertical component of Newton’s law and gives rise to an extra term f̃(x, t)
on the right-hand side of (117). In the model (118) we would add a term
f(x, t) = f̃(x, y)/%(x).

Modeling the tension via springs. We assumed, in the derivation above,
that the tension in the string, T , was constant. It is easy to check this assumption
by modeling the string segments between the masses as standard springs, where
the force (tension T ) is proportional to the elongation of the spring segment.
Let k be the spring constant, and set Ti = k∆` for the tension in the spring
segment between xi−1 and xi, where ∆` is the elongation of this segment from
the tension-free state. A basic feature of a string is that it has high tension in
the equilibrium position u = 0. Let the string segment have an elongation ∆`0
in the equilibrium position. After deformation of the string, the elongation is
∆` = ∆`0 + ∆si: Ti = k(∆`0 + ∆si) ≈ k(∆`0 + ∆x). This shows that Ti is
independent of i. Moreover, the extra approximate elongation ∆x is very small
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compared to ∆`0, so we may well set Ti = T = k∆`0. This means that the
tension is completely dominated by the initial tension determined by the tuning
of the string. The additional deformations of the spring during the vibrations
do not introduce significant changes in the tension.

19.2 Waves on a membrane
19.3 Elastic waves in a rod
Consider an elastic rod subject to a hammer impact at the end. This experiment
will give rise to an elastic deformation pulse that travels through the rod. A
mathematical model for longitudinal waves along an elastic rod starts with the
general equation for deformations and stresses in an elastic medium,

%utt = ∇ · σ + %f , (120)

where % is the density, u the displacement field, σ the stress tensor, and f body
forces. The latter has normally no impact on elastic waves.

For stationary deformation of an elastic rod, one has that σxx = Eux, with
all other stress components being zero. Moreover, u = u(x)i. The parameter E
is known as Young’s modulus. Assuming that this simple stress and deformation
field, which is exact in the stationary case, is a good approximation in the
transient case with wave motion, (120) simplifies to

%
∂2u

∂t2
= ∂

∂x

(
E
∂u

∂x

)
. (121)

The associated boundary conditions are u or σxx = Eux known, typically
u = 0 for a clamped end and σxx = 0 for a free end.

19.4 The acoustic model for seismic waves
Seismic waves are used to infer properties of subsurface geological structures.
The physical model is a heterogeneous elastic medium where sound is propagated
by small elastic vibrations. The general mathematical model for deformations in
an elastic medium is based on Newton’s second law,

%utt = ∇ · σ + %f , (122)

and a constitutive law relating σ to u, often Hooke’s generalized law,

σ = K∇ · uI +G(∇u+ (∇u)T − 2
3∇ · uI) . (123)

Here, u is the displacement field, σ is the stress tensor, I is the identity tensor, %
is the medium’s density, f are body forces (such as gravity), K is the medium’s
bulk modulus and G is the shear modulus. All these quantities may vary in
space, while u and σ will also show significant variation in time during wave
motion.
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The acoustic approximation to elastic waves arises from a basic assumption
that the second term in Hooke’s law, representing the deformations that give
rise to shear stresses, can be neglected. This assumption can be interpreted as
approximating the geological medium by a fluid. Neglecting also the body forces
f , (122) becomes

%utt = ∇(K∇ · u) (124)
Introducing p as a pressure via

p = −K∇ · u, (125)
and dividing (124) by %, we get

utt = −1
%
∇p . (126)

Taking the divergence of this equation, using ∇ · u = −p/K from (125), gives
the acoustic approximation to elastic waves:

ptt = K∇ ·
(

1
%
∇p
)
. (127)

This is a standard, linear wave equation with variable coefficients. It is common
to add a source term s(x, y, z, t) to model the generation of sound waves:

ptt = K∇ ·
(

1
%
∇p
)

+ s . (128)

A common additional approximation of (128) is based on using the chain
rule on the right-hand side,

K∇ ·
(

1
%
∇p
)

= K

%
∇2p+K∇

(
1
%

)
· ∇p ≈ K

%
∇2p,

under the assumption that the relative spatial gradient ∇%−1 = −%−2∇% is small.
This approximation results in the simplified equation

ptt = K

%
∇2p+ s . (129)

The acoustic approximations to seismic waves are used for sound waves in
the ground, and the Earth’s surface is then a boundary where p equals the
atmospheric pressure p0 such that the boundary condition becomes p = p0.

Anisotropy. Quite often in geological materials, the effective wave velocity
c =

√
K/% is different in different spatial directions because geological layers are

compacted such that the properties in the horizontal and vertical direction differ.
With z as the vertical coordinate, we can introduce a vertical wave velocity cz
and a horizontal wave velocity ch, and generalize (129) to

ptt = c2zpzz + c2h(pxx + pyy) + s . (130)
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19.5 Sound waves in liquids and gases
Sound waves arise from pressure and density variations in fluids. The starting
point of modeling sound waves is the basic equations for a compressible fluid
where we omit viscous (frictional) forces, body forces (gravity, for instance), and
temperature effects:

%t +∇ · (%u) = 0, (131)
%ut + %u · ∇u = −∇p, (132)

% = %(p) . (133)

These equations are often referred to as the Euler equations for the motion of a
fluid. The parameters involved are the density %, the velocity u, and the pressure
p. Equation (132) reflects mass balance, (131) is Newton’s second law for a fluid,
with frictional and body forces omitted, and (133) is a constitutive law relating
density to pressure by thermodynamics considerations. A typical model for (133)
is the so-called isentropic relation30, valid for adiabatic processes where there is
no heat transfer:

% = %0

(
p

p0

)1/γ
. (134)

Here, p0 and %0 are references values for p and % when the fluid is at rest, and γ
is the ratio of specific heat at constant pressure and constant volume (γ = 5/3
for air).

The key approximation in a mathematical model for sound waves is to assume
that these waves are small perturbations to the density, pressure, and velocity.
We therefore write

p = p0 + p̂,

% = %0 + %̂,

u = û,

where we have decomposed the fields in a constant equilibrium value, corre-
sponding to u = 0, and a small perturbation marked with a hat symbol. By
inserting these decompositions in (131) and (132), neglecting all product terms
of small perturbations and/or their derivatives, and dropping the hat symbols,
one gets the following linearized PDE system for the small perturbations in
density, pressure, and velocity:

%t + %0∇ · u = 0, (135)
%0ut = −∇p . (136)

30http://en.wikipedia.org/wiki/Isentropic_process
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Now we can eliminate %t by differentiating the relation %(p),

%t = %0
1
γ

(
p

p0

)1/γ−1 1
p0
pt = %0

γp0

(
p

p0

)1/γ−1
pt .

The product term p1/γ−1pt can be linearized as p1/γ−1
0 pt, resulting in

%t ≈
%0

γp0
pt .

We then get

pt + γp0∇ · u = 0, (137)

ut = − 1
%0
∇p, . (138)

Taking the divergence of (138) and differentiating (137) with respect to time
gives the possibility to easily eliminate ∇ · ut and arrive at a standard, linear
wave equation for p:

ptt = c2∇2p, (139)
where c =

√
γp0/%0 is the speed of sound in the fluid.

19.6 Spherical waves
Spherically symmetric three-dimensional waves propagate in the radial direction
r only so that u = u(r, t). The fully three-dimensional wave equation

∂2u

∂t2
= ∇ · (c2∇u) + f

then reduces to the spherically symmetric wave equation

∂2u

∂t2
= 1
r2

∂

∂r

(
c2(r)r2 ∂u

∂t

)
+ f(r, t), r ∈ (0, R), t > 0 . (140)

One can easily show that the function v(r, t) = ru(r, t) fulfills a standard wave
equation in Cartesian coordinates if c is constant. To this end, insert u = v/r in

1
r2

∂

∂r

(
c2(r)r2 ∂u

∂t

)
to obtain

r

(
dc2

dr

∂v

∂r
+ c2

∂2v

∂r2

)
− dc2

dr
v .

The two terms in the parenthesis can be combined to

r
∂

∂r

(
c2
∂v

∂r

)
,
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which is recognized as the variable-coefficient Laplace operator in one Cartesian
coordinate. The spherically symmetric wave equation in terms of v(r, t) now
becomes

∂2v

∂t2
= ∂

∂r

(
c2(r)∂v

∂r

)
− 1
r

dc2

dr
v + rf(r, t), r ∈ (0, R), t > 0 . (141)

In the case of constant wave velocity c, this equation reduces to the wave equation
in a single Cartesian coordinate called r:

∂2v

∂t2
= c2

∂2v

∂r2 + rf(r, t), r ∈ (0, R), t > 0 . (142)

That is, any program for solving the one-dimensional wave equation in a Cartesian
coordinate system can be used to solve (142), provided the source term is
multiplied by the coordinate, and that we divide the Cartesian mesh solution by
r to get the spherically symmetric solution. Moreover, if r = 0 is included in the
domain, spherical symmetry demands that ∂u/∂r = 0 at r = 0, which means
that

∂u

∂r
= 1
r2

(
r
∂v

∂r
− v
)

= 0, r = 0,

implying v(0, t) = 0 as a necessary condition. For practical applications, we
exclude r = 0 from the domain and assume that some boundary condition is
assigned at r = ε, for some ε > 0.

19.7 The linear shallow water equations
The next example considers water waves whose wavelengths are much lager than
the depth and whose wave amplitudes are small. This class of waves may be
generated by catastrophic geophysical events, such as earthquakes at the sea
bottom, landslides moving into water, or underwater slides (or a combination,
as earthquakes frequently release avalanches of masses). For example, a subsea
earthquake will normally have an extension of many kilometers but lift the water
only a few meters. The wave length will have a size dictated by the earthquake
area, which is much lager than the water depth, and compared to this wave
length, an amplitude of a few meters is very small. The water is essentially a thin
film, and mathematically we can average the problem in the vertical direction
and approximate the 3D wave phenomenon by 2D PDEs. Instead of a moving
water domain in three space dimensions, we get a horizontal 2D domain with an
unknown function for the surface elevation and the water depth as a variable
coefficient in the PDEs.

Let η(x, y, t) be the elevation of the water surface, H(x, y) the water depth
corresponding to a flat surface (η = 0), u(x, y, t) and v(x, y, t) the depth-averaged
horizontal velocities of the water. Mass and momentum balance of the water
volume give rise to the PDEs involving these quantities:
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ηt = −(Hu)x − (Hv)x (143)
ut = −gηx, (144)
vt = −gηy, (145)

where g is the acceleration of gravity. Equation (143) corresponds to mass
balance while the other two are derived from momentum balance (Newton’s
second law).

The initial conditions associated with (143)-(145) are η, u, and v prescribed
at t = 0. A common condition is to have some water elevation η = I(x, y) and
assume that the surface is at rest: u = v = 0. A subsea earthquake usually
means a sufficiently rapid motion of the bottom and the water volume to say
that the bottom deformation is mirrored at the water surface as an initial lift
I(x, y) and that u = v = 0.

Boundary conditions may be η prescribed for incoming, known waves, or
zero normal velocity at reflecting boundaries (steep mountains, for instance):
unx+vny = 0, where (nx, ny) is the outward unit normal to the boundary. More
sophisticated boundary conditions are needed when waves run up at the shore,
and at open boundaries where we want the waves to leave the computational
domain undisturbed.

Equations (143), (144), and (145) can be transformed to a standard, linear
wave equation. First, multiply (144) and (145) by H, differentiate (144)) with
respect to x and (145) with respect to y. Second, differentiate (143) with
respect to t and use that (Hu)xt = (Hut)x and (Hv)yt = (Hvt)y when H is
independent of t. Third, eliminate (Hut)x and (Hvt)y with the aid of the other
two differentiated equations. These manipulations results in a standard, linear
wave equation for η:

ηtt = (gHηx)x + (gHηy)y = ∇ · (gH∇η) . (146)
In the case we have an initial non-flat water surface at rest, the initial

conditions become η = I(x, y) and ηt = 0. The latter follows from (143) if
u = v = 0, or simply from the fact that the vertical velocity of the surface is ηt,
which is zero for a surface at rest.

The system (143)-(145) can be extended to handle a time-varying bottom
topography, which is relevant for modeling long waves generated by underwater
slides. In such cases the water depth function H is also a function of t, due to
the moving slide, and one must add a time-derivative term Ht to the left-hand
side of (143). A moving bottom is best described by introducing z = H0 as the
still-water level, z = B(x, y, t) as the time- and space-varying bottom topography,
so that H = H0 −B(x, y, t). In the elimination of u and v one may assume that
the dependence of H on t can be neglected in the terms (Hu)xt and (Hv)yt. We
then end up with a source term in (146), because of the moving (accelerating)
bottom:

ηtt = ∇ · (gH∇η) +Btt . (147)
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The reduction of (147) to 1D, for long waves in a straight channel, or for
approximately plane waves in the ocean, is trivial by assuming no change in y
direction (∂/∂y = 0):

ηt = (gHηx)x +Btt . (148)

Wind drag on the surface. Surface waves are influenced by the drag of the
wind, and if the wind velocity some meters above the surface is (U, V ), the wind
drag gives contributions CV

√
U2 + V 2U and CV

√
U2 + V 2V to (144) and (145),

respectively, on the right-hand sides.

Bottom drag. The waves will experience a drag from the bottom, often
roughly modeled by a term similar to the wind drag: CB

√
u2 + v2u on the

right-hand side of (144) and CB
√
u2 + v2v on the right-hand side of (145). Note

that in this case the PDEs (144) and (145) become nonlinear and the elimination
of u and v to arrive at a 2nd-order wave equation for η is not possible anymore.

Effect of the Earth’s rotation. Long geophysical waves will often be affected
by the rotation of the Earth because of the Coriolis force. This force gives rise
to a term fv on the right-hand side of (144) and −fu on the right-hand side
of (145). Also in this case one cannot eliminate u and v to work with a single
equation for η. The Coriolis parameter is f = 2Ω sinφ, where Ω is the angular
velocity of the earth and φ is the latitude.

19.8 Waves in blood vessels
The flow of blood in our bodies is basically fluid flow in a network of pipes.
Unlike rigid pipes, the walls in the blood vessels are elastic and will increase
their diameter when the pressure rises. The elastic forces will then push the wall
back and accelerate the fluid. This interaction between the flow of blood and the
deformation of the vessel wall results in waves traveling along our blood vessels.

A model for one-dimensional waves along blood vessels can be derived from
averaging the fluid flow over the cross section of the blood vessels. Let x be a
coordinate along the blood vessel and assume that all cross sections are circular,
though with different radius R(x, t). The main quantities to compute is the
cross section area A(x, t), the averaged pressure P (x, t), and the total volume
flux Q(x, t). The area of this cross section is

A(x, t) = 2π
∫ R(x,t)

0
rdr, (149)

Let vx(x, t) be the velocity of blood averaged over the cross section at point x.
The volume flux, being the total volume of blood passing a cross section per
time unit, becomes

Q(x, t) = A(x, t)vx(x, t) (150)
Mass balance and Newton’s second law lead to the PDEs
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∂A

∂t
+ ∂Q

∂x
= 0, (151)

∂Q

∂t
+ γ + 2
γ + 1

∂

∂x

(
Q2

A

)
+ A

%

∂P

∂x
= −2π(γ + 2)µ

%

Q

A
, (152)

where γ is a parameter related to the velocity profile, % is the density of blood,
and µ is the dynamic viscosity of blood.

We have three unknowns A, Q, and P , and two equations (151) and (152).
A third equation is needed to relate the flow to the deformations of the wall. A
common form for this equation is

∂P

∂t
+ 1
C

∂Q

∂x
= 0, (153)

where C is the compliance of the wall, given by the constitutive relation

C = ∂A

∂P
+ ∂A

∂t
, (154)

which require a relationship between A and P . One common model is to view
the vessel wall, locally, as a thin elastic tube subject to an internal pressure.
This gives the relation

P = P0 + πhE

(1− ν2)A0
(
√
A−

√
A0),

where P0 and A0 are corresponding reference values when the wall is not deformed,
h is the thickness of the wall, and E and ν are Young’s modulus and Poisson’s
ratio of the elastic material in the wall. The derivative becomes

C = ∂A

∂P
= 2(1− ν2)A0

πhE

√
A0 + 2

(
(1− ν2)A0

πhE

)2

(P − P0) . (155)

Another (nonlinear) deformation model of the wall, which has a better fit with
experiments, is

P = P0 exp (β(A/A0 − 1)),

where β is some parameter to be estimated. This law leads to

C = ∂A

∂P
= A0

βP
. (156)

Reduction to standard wave equation. It is not uncommon to neglect the
viscous term on the right-hand side of (152) and also the quadratic term with Q2

on the left-hand side. The reduced equations (152) and (153) form a first-order
linear wave equation system:
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C
∂P

∂t
= −∂Q

∂x
, (157)

∂Q

∂t
= −A

%

∂P

∂x
. (158)

These can be combined into standard 1D wave equation PDE by differentiating
the first equation with respect t and the second with respect to x,

∂

∂t

(
CC

∂P

∂t

)
= ∂

∂x

(
A

%

∂P

∂x

)
,

which can be approximated by

∂2Q

∂t2
= c2

∂2Q

∂x2 , c =

√
A

%C
, (159)

where the A and C in the expression for c are taken as constant reference values.

19.9 Electromagnetic waves
Light and radio waves are governed by standard wave equations arising from
Maxwell’s general equations. When there are no charges and no currents, as in
a vacuum, Maxwell’s equations take the form

∇ ·EEE = 0,
∇ ·BBB = 0,

∇×EEE = −∂B
BB

∂t
,

∇×BBB = µ0ε0
∂EEE

∂t
,

where ε0 = 8.854187817620 · 10−12 (F/m) is the permittivity of free space, also
known as the electric constant, and µ0 = 1.2566370614 · 10−6 (H/m) is the
permeability of free space, also known as the magnetic constant. Taking the curl
of the two last equations and using the identity

∇× (∇×EEE) = ∇(∇ ·EEE)−∇2EEE = −∇2EEE when ∇ ·EEE = 0,

immediately gives the wave equation governing the electric and magnetic field:

∂2EEE

∂t2
= c2

∂2EEE

∂x2 , (160)

∂2EEE

∂t2
= c2

∂2EEE

∂x2 , (161)

with c = 1/√µ0ε0 as the velocity of light. Each component of EEE and BBB fulfills a
wave equation and can hence be solved independently.
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20 Exercises
Exercise 15: Simulate waves on a non-homogeneous string
Simulate waves on a string that consists of two materials with different density.
The tension in the string is constant, but the density has a jump at the middle of
the string. Experiment with different sizes of the jump and produce animations
that visualize the effect of the jump on the wave motion.

Hint. According to Section 19.1, the density enters the mathematical model as
% in %utt = Tuxx, where T is the string tension. Modify, e.g., the wave1D_u0v.py
code to incorporate the tension and two density values. Make a mesh function
rho with density values at each spatial mesh point. A value for the tension may
be 150 N. Corresponding density values can be computed from the wave velocity
estimations in the guitar function in the wave1D_u0v.py file.
Filename: wave1D_u0_sv_discont.py.

Exercise 16: Simulate damped waves on a string
Formulate a mathematical model for damped waves on a string. Use data from
Section 3.4, and tune the damping parameter so that the string is very close
to the rest state after 15 s. Make a movie of the wave motion. Filename:
wave1D_u0_sv_damping.py.

Exercise 17: Simulate elastic waves in a rod
A hammer hits the end of an elastic rod. The exercise is to simulate the resulting
wave motion using the model (121) from Section 19.3. Let the rod have length
L and let the boundary x = L be stress free so that σxx = 0, implying that
∂u/∂x = 0. The left end x = 0 is subject to a strong stress pulse (the hammer),
modeled as

σxx(t) =
{
S, 0 < t ≤ ts,
0, t > ts

The corresponding condition on u becomes ux = S/E for t ≤ ts and zero
afterwards (recall that σxx = Eux). This is a non-homogeneous Neumann
condition, and you will need to approximate this condition and combine it with
the scheme (the ideas and manipulations follow closely the handling of a non-zero
initial condition ut = V in wave PDEs or the corresponding second-order ODEs
for vibrations). Filename: wave_rod.py.

Exercise 18: Simulate spherical waves
Implement a model for spherically symmetric waves using the method described
in Section 19.6. The boundary condition at r = 0 must be ∂u/∂r = 0, while the
condition at r = R can either be u = 0 or a radiation condition as described in
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Problem 21. The u = 0 condition is sufficient if R is so large that the amplitude
of the spherical wave has become insignificant. Make movie(s) of the case where
the source term is located around r = 0 and sends out pulses

f(r, t) =
{
Q exp (− r2

2∆r2 ) sinωt, sinωt ≥ 0
0, sinωt < 0

Here, Q and ω are constants to be chosen.

Hint. Use the program wave1D_u0v.py as a starting point. Let solver com-
pute the v function and then set u = v/r. However, u = v/r for r = 0 requires
special treatment. One possibility is to compute u[1:] = v[1:]/r[1:] and
then set u[0]=u[1]. The latter makes it evident that ∂u/∂r = 0 in a plot.
Filename: wave1D_spherical.py.

Exercise 19: Explain why numerical noise occurs
The experiments performed in Exercise 8 shows considerable numerical noise
in the form of non-physical waves, especially for sf = 4 and the plug pulse
or the half a "cosinehat" pulse. The noise is much less visible for a Gaussian
pulse. Run the case with the plug and half a "cosinehat" pulses for sf = 1,
C = 0.9, 0.25, and Nx = 40, 80, 160. Use the numerical dispersion relation to
explain the observations. Filename: pulse1D_analysis.pdf.

Exercise 20: Investigate harmonic averaging in a 1D model
Harmonic means are often used if the wave velocity is non-smooth or discon-
tinuous. Will harmonic averaging of the wave velocity give less numerical
noise for the case sf = 4 in Exercise 8? Filenames: pulse1D_harmonic.pdf,
pulse1D_harmonic.py.

Problem 21: Implement open boundary conditions
To enable a wave to leave the computational domain and travel undisturbed
through the boundary x = L, one can in a one-dimensional problem impose the
following condition, called a radiation condition or open boundary condition:

∂u

∂t
+ c

∂u

∂x
= 0 . (162)

The parameter c is the wave velocity.
Show that (162) accepts a solution u = gR(x− ct) (right-going wave), but

not u = gL(x + ct) (left-going wave). This means that (162) will allow any
right-going wave gR(x− ct) to pass through the boundary undisturbed.

A corresponding open boundary condition for a left-going wave through x = 0
is
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∂u

∂t
− c∂u

∂x
= 0 . (163)

a) A natural idea for discretizing the condition (162) at the spatial end point
i = Nx is to apply centered differences in time and space:

[D2tu+ cD2xu = 0]ni , i = Nx . (164)

Eliminate the fictitious value unNx+1 by using the discrete equation at the same
point.

The equation for the first step, u1
i , is in principle also affected, but we can

then use the condition uNx
= 0 since the wave has not yet reached the right

boundary.

b) A much more convenient implementation of the open boundary condition at
x = L can be based on an explicit discretization

[D+
t u+ cD−x u = 0]ni , i = Nx . (165)

From this equation, one can solve for un+1
Nx

and apply the formula as a Dirichlet
condition at the boundary point. However, the finite difference approximations
involved are of first order.

Implement this scheme for a wave equation utt = c2uxx in a domain [0, L],
where you have ux = 0 at x = 0, the condition (162) at x = L, and an initial
disturbance in the middle of the domain, e.g., a plug profile like

u(x, 0) =
{

1, L/2− ` ≤ x ≤ L/2 + `,
0, otherwise

Observe that the initial wave is split in two, the left-going wave is reflected at
x = 0, and both waves travel out of x = L, leaving the solution as u = 0 in [0, L].
Use a unit Courant number such that the numerical solution is exact. Make a
movie to illustrate what happens.

Because this simplified implementation of the open boundary condition works,
there is no need to pursue the more complicated discretization in a).

Hint. Modify the solver function in wave1D_dn.py31.

c) Add the possibility to have either ux = 0 or an open boundary condition at
the left boundary. The latter condition is discretized as

[D+
t u− cD+

x u = 0]ni , i = 0, (166)

leading to an explicit update of the boundary value un+1
0 .

The implementation can be tested with a Gaussian function as initial condi-
tion:

31http://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn.py
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g(x;m, s) = 1√
2πs

e−
(x−m)2

2s2 .

Run two tests:

1. Disturbance in the middle of the domain, I(x) = g(x;L/2, s), and open
boundary condition at the left end.

2. Disturbance at the left end, I(x) = g(x; 0, s), and ux = 0 as symmetry
boundary condition at this end.

Make nose tests for both cases, testing that the solution is zero after the waves
have left the domain.

d) In 2D and 3D it is difficult to compute the correct wave velocity normal to
the boundary, which is needed in generalizations of the open boundary conditions
in higher dimensions. Test the effect of having a slightly wrong wave velocity in
(165). Make a movies to illustrate what happens.
Filename: wave1D_open_BC.py.

Remarks. The condition (162) works perfectly in 1D when c is known. In 2D
and 3D, however, the condition reads ut + cxux + cyuy = 0, where cx and cy
are the wave speeds in the x and y directions. Estimating these components
(i.e., the direction of the wave) is often challenging. Other methods are normally
used in 2D and 3D to let waves move out of a computational domain.

Exercise 22: Implement periodic boundary conditions
It is frequently of interest to follow wave motion over large distances and long
times. A straightforward approach is to work with a very large domain, but
might lead to a lot of computations in areas of the domain where the waves
cannot be noticed. A more efficient approach is to let a right-going wave out
of the domain and at the same time let it enter the domain on the left. This is
called a periodic boundary condition.

The boundary condition at the right end x = L is an open boundary condition
(see Exercise 21) to let a right-going wave out of the domain. At the left end,
x = 0, we apply, in the beginning of the simulation, either a symmetry boundary
condition (see Exercise 7) ux = 0, or an open boundary condition.

This initial wave will split in two and either reflected or transported out of
the domain at x = 0. The purpose of the exercise is to follow the right-going
wave. We can do that with a periodic boundary condition. This means that when
the right-going wave hits the boundary x = L, the open boundary condition lets
the wave out of the domain, but at the same time we use a boundary condition
on the left end x = 0 that feeds the outgoing wave into the domain again. This
periodic condition is simply u(0) = u(L). The switch from ux = 0 or an open
boundary condition at the left end to a periodic condition can happen when
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u(L, t) > ε, where ε = 10−4 might be an appropriate value for determining when
the right-going wave hits the boundary x = L.

The open boundary conditions can conveniently be discretized as explained
in Exercise 21. Implement the described type of boundary conditions and
test them on two different initial shapes: a plug u(x, 0) = 1 for x ≤ 0.1,
u(x, 0) = 0 for x > 0.1, and a Gaussian function in the middle of the domain:
u(x, 0) = exp (− 1

2 (x− 0.5)2/0.05). The domain is the unit interval [0, 1]. Run
these two shapes for Courant numbers 1 and 0.5. Assume constant wave velocity.
Make movies of the four cases. Reason why the solutions are correct. Filename:
periodic.py.

Problem 23: Earthquake-generated tsunami over a subsea
hill
A subsea earthquake leads to an immediate lift of the water surface, see Figure 10.
The lifted water surface splits into two tsunamis, one traveling to the right and
one to the left, as depicted in Figure 11. Since tsunamis are normally very long
waves, compared to the depth, with a small amplitude, compared to the wave
length, the wave equation model described in Section 19.7 is relevant:

ηtt = (gH(x)ηx)x,

where g is the acceleration of gravity, and H(x) is the still water depth.

I(x)

x=0

H0

Figure 10: Sketch of initial water surface due to a subsea earthquake.

To simulate the right-going tsunami, we can impose a symmetry boundary
at x = 0: ∂η ∂x = 0. We then simulate the wave motion in [0, L]. Unless the
ocean ends at x = L, the waves should travel undisturbed through the boundary
x = L. A radiation condition as explained in Problem 21 can be used for this
purpose. Alternatively, one can just stop the simulations before the wave hits
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x=0

H0

Figure 11: An initial surface elevation is split into two waves.

the boundary at x = L. In that case it does not matter what kind of boundary
condition we use at x = L. Imposing η = 0 and stopping the simulations when
|ηni | > ε, i = Nx − 1, is a possibility (ε is a small parameter).

The shape of the initial surface can be taken as a Gaussian function,

I(x; I0, Ia, Im, Is) = I0 + Ia exp
(
−
(
x− Im
Is

)2
)
, (167)

with Im = 0 reflecting the location of the peak of I(x) and Is being a measure
of the width of the function I(x) (Is is

√
2 times the standard deviation of the

familiar normal distribution curve).
Now we extend the problem with a hill at the sea bottom, see Figure 12. The

wave speed c =
√
gH(x) =

√
g(H0 −B(x)) will then be reduced in the shallow

water above the hill.
One possible form of the hill is a Gaussian function,

B(x;B0, Ba, Bm, Bs) = B0 +Ba exp
(
−
(
x−Bm
Bs

)2
)
, (168)

but many other shapes are also possible, e.g., a "cosine hat" where

B(x;B0, Ba, Bm, Bs) = B0 +Ba cos
(
π
x−Bm

2Bs

)
, (169)

when x ∈ [Bm −Bs, Bm +Bs] while B = B0 outside this interval.
Also an abrupt construction may be tried:

B(x;B0, Ba, Bm, Bs) = B0 +Ba, (170)

for x ∈ [Bm −Bs, Bm +Bs] while B = B0 outside this interval.
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I(x)

x=0

H0

B(x)

Ba

4mBsBm

Figure 12: Sketch of an earthquake-generated tsunami passing over a subsea
hill.

The wave1D_dn_vc.py32 program can be used as starting point for the
implementation. Visualize both the bottom topography and the water surface
elevation in the same plot. Allow for a flexible choice of bottom shape: (168),
(169), (170), or B(x) = B0 (flat).

The purpose of this problem is to explore the quality of the numerical solution
ηni for different shapes of the bottom obstruction. The "cosine hat" and the box-
shaped hills have abrupt changes in the derivative of H(x) and are more likely to
generate numerical noise than the smooth Gaussian shape of the hill. Investigate
if this is true. Filenames: tsunami1D_hill.py, tsunami1D_hill.pdf.

Problem 24: Earthquake-generated tsunami over a 3D hill
This problem extends Problem 23 to a three-dimensional wave phenomenon,
governed by the 2D PDE (146). We assume that the earthquake arise from a
fault along the line x = 0 in the xy-plane so that the initial lift of the surface
can be taken as I(x) in Problem 23. That is, a plane wave is propagating to the
right, but will experience bending because of the bottom.

The bottom shape is now a function of x and y. An "elliptic" Gaussian
function in two dimensions, with its peak at (Bmx, Bmy), generalizes (168):

B(x;B0, Ba, Bmx, Bmy, Bs, b) = B0+Ba exp
(
−
(
x−Bmx
Bs

)2
−
(
y −Bmy
bBs

)2
)
,

(171)
32http://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn_vc.py

107

http://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn_vc.py


where b is a scaling parameter: b = 1 gives a circular Gaussian function with
circular contour lines, while b 6= 1 gives an elliptic shape with elliptic contour
lines.

The "cosine hat" (169) can also be generalized to

B(x;B0, Ba, Bmx, Bmy, Bs) = B0 +Ba cos
(
π
x−Bmx

2Bs

)
cos
(
π
y −Bmy

2Bs

)
,

(172)
when 0 ≤

√
x2 + y2 ≤ Bs and B = B0 outside this circle.

A box-shaped obstacle means that

B(x;B0, Ba, Bm, Bs, b) = B0 +Ba (173)

for x and y inside a rectangle

Bmx −Bs ≤ x ≤ Bmx +Bs, Bmy − bBs ≤ y ≤ Bmy + bBs,

and B = B0 outside this rectangle. The b parameter controls the rectangular
shape of the cross section of the box.

Note that the initial condition and the listed bottom shapes are symmetric
around the line y = Bmy. We therefore expect the surface elevation also to
be symmetric with respect to this line. This means that we can halve the
computational domain by working with [0, Lx] × [0, Bmy]. Along the upper
boundary, y = Bmy, we must impose the symmetry condition ∂η/∂n = 0. Such
a symmetry condition (−ηx = 0) is also needed at the x = 0 boundary because
the initial condition has a symmetry here. At the lower boundary y = 0 we also
set a Neumann condition (which becomes −ηy = 0). The wave motion is to be
simulated until the wave hits the reflecting boundaries where ∂η/∂n = ηx = 0
(one can also set η = 0 - the particular condition does not matter as long as the
simulation is stopped before the wave is influenced by the boundary condition).

Visualize the surface elevation. Investigate how different hill shapes, dif-
ferent sizes of the water gap above the hill, and different resolutions ∆x =
∆y = h and ∆t influence the numerical quality of the solution. Filenames:
tsunami2D_hill.py, tsunami2D_hill.pdf.

Problem 25: Investigate Matplotlib for visualization
Play with native Matplotlib code for visualizing 2D solutions of the wave equation
with variable wave velocity. See if there are effective ways to visualize both the
solution and the wave velocity. Filename: tsunami2D_hill_mpl.py.

Problem 26: Investigate visualization packages
Create some fancy 3D visualization of the water waves and the subsea hill in
Problem 24. Try to make the hill transparent. Possible visualization tools are
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• Mayavi33

• Paraview34

• OpenDX35

Filename: tsunami2D_hill_viz.py.

Problem 27: Implement loops in compiled languages
Extend the program from Problem 24 such that the loops over mesh points, inside
the time loop, are implemented in compiled languages. Consider implementations
in Cython, Fortran via f2py, C via Cython, C via f2py, C/C++ via Instant,
and C/C++ via scipy.weave. Perform efficiency experiments to investigate the
relative performance of the various implementations. It is often advantageous
to normalize CPU times by the fastest method on a given mesh. Filename:
tsunami2D_hill_compiled.py.

Exercise 28: Simulate seismic waves in 2D
The goal of this exercise is to simulate seismic waves using the PDE model
(130) in a 2D xz domain with geological layers. Introduce m horizontal layers
of thickness hi, i = 0, . . . ,m− 1. Inside layer number i we have a vertical wave
velocity cz,i and a horizontal wave velocity ch,i. Make a program for simulating
such 2D waves. Test it on a case with 3 layers where

cz,0 = cz,1 = cz,2, ch,0 = ch,2, ch,1 � ch,0 .

Let s be a localized point source at the middle of the Earth’s surface (the
upper boundary) and investigate how the resulting wave travels through the
medium. The source can be a localized Gaussian peak that oscillates in time
for some time interval. Place the boundaries far enough from the expanding
wave so that the boundary conditions do not disturb the wave. Then the type
of boundary condition does not matter, except that we physically need to have
p = p0, where p0 is the atmospheric pressure, at the upper boundary. Filename:
seismic2D.py.

Project 29: Model 3D acoustic waves in a room
The equation for sound waves in air is derived in Section 19.5 and reads

ptt = c2∇2p,

where p(x, y, z, t) is the pressure and c is the speed of sound, taken as 340 m/s.
However, sound is absorbed in the air due to relaxation of molecules in the gas.

33http://code.enthought.com/projects/mayavi/
34http://www.paraview.org/
35http://www.opendx.org/
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A model for simple relaxation, valid for gases consisting only of one type of
molecules, is a term c2τs∇2pt in the PDE, where τs is the relaxation time. If we
generate sound from, e.g., a loudspeaker in the room, this sound source must
also be added to the governing equation.

The PDE with the mentioned type of damping and source then becomes

ptt = c2∇p + c2τs∇2pt + f, (174)

where f(x, y, z, t) is the source term.
The walls can absorb some sound. A possible model is to have a "wall layer"

(thicker than the physical wall) outside the room where c is changed such that
some of the wave energy is reflected and some is absorbed in the wall. The
absorption of energy can be taken care of by adding a damping term bpt in the
equation:

ptt+ bpt = c2∇p + c2τs∇2pt + f . (175)

Typically, b = 0 in the room and b > 0 in the wall. A discontinuity in b or c
will give rise to reflections. It can be wise to use a constant c in the wall to
control reflections because of the discontinuity between c in the air and in the
wall, while b is gradually increased as we go into the wall to avoid reflections
because of rapid changes in b. At the outer boundary of the wall the condition
p = 0 or ∂p/∂n = 0 can be imposed. The waves should anyway be approximately
dampened to p = 0 this far out in the wall layer.

There are two strategies for discretizing the ∇2pt term: using a center
difference between times n+ 1 and n− 1 (if the equation is sampled at level n),
or use a one-sided difference based on levels n and n − 1. The latter has the
advantage of not leading to any equation system, while the former is second-order
accurate as the scheme for the simple wave equation ptt = c2∇2p. To avoid an
equation system, go for the one-sided difference such that the overall scheme
becomes explicit and only of first order in time.

Develop a 3D solver for the specified PDE and introduce a wall layer. Test the
solver with the method of manufactured solutions. Make some demonstrations
where the wall reflects and absorbs the waves (reflection because of discontinuity
in b and absorption because of growing b). Experiment with the impact of the
τs parameter. Filename: acoustics.py.

Project 30: Solve a 1D transport equation
We shall study the wave equation

ut + cux = 0, x ∈ (0, L], t ∈ (0, T ], (176)

with initial condition

u(x, 0) = I(x), x ∈ [0, L], (177)

and one periodic boundary condition
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u(0, t) = u(L, t) . (178)

This boundary condition means that what goes out of the domain at x = L
comes in at x = 0. Roughly speaking, we need only one boundary condition
because of the spatial derivative is of first order only.

Physical interpretation. The parameter c can be constant or variable, c =
c(x). The equation (176) arises in transport problems where a quantity u, which
could be temperature or concentration of some contaminant, is transported with
the velocity c of a fluid. In addition to the transport imposed by "travelling with
the fluid", u may also be transported by diffusion (such as heat conduction or
Fickian diffusion), but we have in the model ut + cux assumed that diffusion
effects are negligible, which they often are.

A widely used numerical scheme for (176) applies a forward difference in
time and a backward difference in space when c > 0:

[D+
t u+ cD−x u = 0]ni . (179)

For c < 0 we use a forward difference in space: [cD+
x u]ni .

We shall hereafter assume that = c(x) > 0.
To compute (184) we need to integrate 1/c to obtain C and then compute

the inverse of C.
The inverse function computation can be easily done if we first think discretely.

Say we have some function y = g(x) and seeks its inverse. Plotting (xi, yi),
where yi = g(xi) for some mesh points xi, displays g as a function of x. The
inverse function is simply x as a function of g, i.e., the curve with points (yi, xi).
We can therefore quickly compute points at the curve of the inverse function.
One way of extending these points to a continuous function is to assume a linear
variation (known as linear interpolation) between the points (which actually
means to draw straight lines between the points, exactly as done by a plotting
program).

The function wrap2callable in scitools.std can take a set of points and
return a continuous function that corresponds to linear variation between the
points. The computation of the inverse of a function g on [0, L] can then be
done by

def inverse(g, domain, resolution=101):
x = linspace(domain[0], domain[L], resolution)
y = g(x)
from scitools.std import wrap2callable
g_inverse = wrap2callable((y, x))
return g_inverse

To compute C(x) we need to integrate 1/c, which can be done by a Trapezoidal
rule. Suppose we have computed C(xi) and need to compute C(xi+1). Using
the Trapezoidal rule with m subintervals over the integration domain [xi, xi+1]
gives
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C(xi+1) = C(xi) +
∫ xi+1

xi

dx

c
≈ h

1
2

1
c(xi)

+ 1
2

1
c(xi+1) +

m−1∑
j=1

1
c(xi + jh)

 ,

(180)
where h = (xi+1 − xi)/m is the length of the subintervals used for the integral
over [xi, xi+1]. We observe that (180) is a difference equation which we can solve
by repeatedly applying (180) for i = 0, 1, . . . , Nx − 1 if a mesh x0, x, . . . , xNx

is
prescribed. Note that C(0) = 0.

a) Show that under the assumption of a = const,

u(x, t) = I(x− ct) (181)

fulfills the PDE as well as the initial and boundary condition (provided I(0) =
I(L)).

b) Set up a computational algorithm and implement it in a function. Assume a
is constant and positive.

c) Test implementation by using the remarkable property that the numerical
solution is exact at the mesh points if ∆t = c−1∆x.

d) Make a movie comparing the numerical and exact solution for the following
two choices of initial conditions:

I(x) =
[
sin
(
π
x

L

)]2n
(182)

where n is an integer, typically n = 5, and

I(x) = exp
(
− (x− L/2)2

2σ2

)
. (183)

Choose ∆t = c−1∆x, 0.9c−1∆x, 0.5c−1∆x.

e) The performance of the suggested numerical scheme can be investigated
by analyzing the numerical dispersion relation. Analytically, we have that the
Fourier component

u(x, t) = ei(kx−ωt),

is a solution of the PDE if ω = kc. This is the analytical dispersion relation. A
complete solution of the PDE can be built by adding up such Fourier components
with different amplitudes, where the initial condition I determines the amplitudes.
The solution u is then represented by a Fourier series.

A similar discrete Fourier component at (xp, tn) is

uqp = ei(kp∆x−ω̃n∆t),
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where in general ω̃ is a function of k, ∆t, and ∆x, and differs from the exact
ω = kc.

Insert the discrete Fourier component in the numerical scheme and derive an
expression for ω̃, i.e., the discrete dispersion relation. Show in particular that
if the ∆t/(c∆x) = 1, the discrete solution coincides with the exact solution at
the mesh points, regardless of the mesh resolution (!). Show that if the stability
condition

∆t
c∆x ≤ 1,

the discrete Fourier component cannot grow (i.e., ω̃ is real).

f) Write a test for your implementation where you try to use information from
the numerical dispersion relation.

g) Set up a computational algorithm for the variable coefficient case and im-
plement it in a function. Make a test that the function works for constant
a.

h) It can be shown that for an observer moving with velocity c(x), u is constant.
This can be used to derive an exact solution when a varies with x. Show first
that

u(x, t) = f(C(x)− t), (184)

where

C ′(x) = 1
c(x) ,

is a solution of (176) for any differentiable function f .

i) Use the initial condition to show that an exact solution is

u(x, t) = I(C−1(C(x)− t)),

with C−1 being the inverse function of C =
∫
c1dx. Since C(x) is an integral∫ x

0 (1/c)dx, C(x) is monotonically increasing and there exists hence an inverse
function C−1 with values in [0, L].

j) Implement a function for computing C(xi) and one for computing C−1(x) for
any x. Use these two functions for computing the exact solution I(C−1(C(x)−t)).
End up with a function u_exact_variable_c(x, n, c, I) that returns the
value of I(C−1(C(x)− tn)).
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k) Make movies showing a comparison of the numerical and exact solutions for
the two initial conditions (182) and (30). Choose ∆t = ∆x/max0,L c(x) and the
velocity of the medium as

1. c(x) = 1 + ε sin(kπx/L), ε < 1,

2. c(x) = 1 + I(x), where I is given by (182) or (30).

The PDE ut + cux = 0 expresses that the initial condition I(x) is transported
with velocity c(x).
Filename: advec1D.py.

Problem 31: General analytical solution of a 1D damped
wave equation
We consider an initial-boundary value problem for the damped wave equation:

utt + but = c2uxx, x ∈ (0, L), t ∈ (0, T ]
u(0, t) = 0,
u(L, t) = 0,
u(x, 0) = I(x),
ut(x, 0) = V (x) .

Here, b ≥ 0 and c are given constants. The aim is to derive a general analytical
solution of this problem. Familiarity with the method of separation of variables
for solving PDEs will be assumed.

a) Seek a solution on the form u(x, t) = X(x)T (t). Insert this solution in the
PDE and show that it leads to two differential equations for X and T :

T ′′ + bT ′ + λT = 0, c2X ′′ + λX = 0,

with X(0) = X(L) = 0 as boundary conditions, and λ as a constant to be
determined.

b) Show that X(x) is on the form

Xn(x) = Cn sin kx, k = nπ

L
, n = 1, 2, . . .

where Cn is an arbitrary constant.

c) Under the assumption that (b/2)2 < k2, show that T (t) is on the form

Tn(t) = e−
1
2 bt(an cosωt+ bn sinωt), ω =

√
k2 − 1

4b
2, n = 1, 2, . . .

The complete solution is then
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u(x, t) =
∞∑
n=1

sin kxe− 1
2 bt(An cosωt+Bn sinωt),

where the constants An and Bn must be computed from the initial conditions.

d) Derive a formula for An from u(x, 0) = I(x) and developing I(x) as a sine
Fourier series on [0, L].

e) Derive a formula for Bn from ut(x, 0) = V (x) and developing V (x) as a sine
Fourier series on [0, L].

f) Calculate An and Bn from vibrations of a string where V (x) = 0 and

I(x) =
{
ax/x0, x < x0,
a(L− x)/(L− x0), otherwise (185)

g) Implement the series for u(x, t) in a function u_series(x, t, tol=1E-10),
where tol is a tolerance for truncating the series. Simply sum the terms until
|an| and |bb| both are less than tol.

h) What will change in the derivation of the analytical solution if we have
ux(0, t) = ux(L, t) = 0 as boundary conditions? And how will you solve the
problem with u(0, t) = 0 and ux(L, t) = 0?
Filename: damped_wave1D.pdf.

Problem 32: General analytical solution of a 2D damped
wave equation
Carry out Problem 31 in the 2D case: utt + but = c2(uxx + uyy), where (x, y) ∈
(0, Lx) × (0, Ly). Assume a solution on the form u(x, y, t) = X(x)Y (y)T (t).
Filename: damped_wave2D.pdf.
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