
Finite difference methods for wave motion

Hans Petter Langtangen1,2

1Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

Nov 12, 2014

This is still a preliminary version.

Contents
1 Simulation of waves on a string 5

1.1 Discretizing the domain . 5
1.2 The discrete solution . 6
1.3 Fulfilling the equation at the mesh points . 7
1.4 Replacing derivatives by finite differences . 7
1.5 Formulating a recursive algorithm . 8
1.6 Sketch of an implementation . 9

2 Verification 10
2.1 A slightly generalized model problem . 10
2.2 Using an analytical solution of physical significance 11
2.3 Manufactured solution . 11
2.4 Constructing an exact solution of the discrete equations 12

3 Implementation 14
3.1 Making a solver function . 14
3.2 Verification: exact quadratic solution . 15
3.3 Visualization: animating the solution . 16
3.4 Running a case . 19
3.5 The benefits of scaling . 19

4 Vectorization 20
4.1 Operations on slices of arrays . 20
4.2 Finite difference schemes expressed as slices . 22
4.3 Verification . 23
4.4 Efficiency measurements . 24
4.5 Remark on the updating of arrays . 24

5 Exercises 25

6 Generalization: reflecting boundaries 27
6.1 Neumann boundary condition . 27
6.2 Discretization of derivatives at the boundary . 28
6.3 Implementation of Neumann conditions . 29
6.4 Index set notation . 29
6.5 Alternative implementation via ghost cells . 31

7 Generalization: variable wave velocity 33
7.1 The model PDE with a variable coefficient . 34
7.2 Discretizing the variable coefficient . 34
7.3 Computing the coefficient between mesh points 35
7.4 How a variable coefficient affects the stability . 35
7.5 Neumann condition and a variable coefficient . 36
7.6 Implementation of variable coefficients . 37
7.7 A more general model PDE with variable coefficients 37
7.8 Generalization: damping . 38

8 Building a general 1D wave equation solver 38
8.1 User action function as a class . 39
8.2 Pulse propagation in two media . 40

9 Exercises 41

10 Analysis of the difference equations 46
10.1 Properties of the solution of the wave equation 46
10.2 More precise definition of Fourier representations 47
10.3 Stability . 48
10.4 Numerical dispersion relation . 50
10.5 Extending the analysis to 2D and 3D . 53

11 Finite difference methods for 2D and 3D wave equations 56
11.1 Multi-dimensional wave equations . 56
11.2 Mesh . 57
11.3 Discretization . 58

12 Implementation 60
12.1 Scalar computations . 61
12.2 Vectorized computations . 63
12.3 Verification . 64

13 Migrating loops to Cython 65
13.1 Declaring variables and annotating the code . 65
13.2 Visual inspection of the C translation . 67
13.3 Building the extension module . 67
13.4 Calling the Cython function from Python . 69

14 Migrating loops to Fortran 69
14.1 The Fortran subroutine . 69
14.2 Building the Fortran module with f2py . 71
14.3 How to avoid array copying . 72

2

15 Migrating loops to C via Cython 73
15.1 Translating index pairs to single indices . 73
15.2 The complete C code . 74
15.3 The Cython interface file . 74
15.4 Building the extension module . 75

16 Migrating loops to C via f2py 76
16.1 Migrating loops to C++ via f2py . 77

17 Using classes to implement a simulator 77

18 Exercises 78

19 Applications of wave equations 79
19.1 Waves on a string . 79
19.2 Waves on a membrane . 82
19.3 Elastic waves in a rod . 82
19.4 The acoustic model for seismic waves . 82
19.5 Sound waves in liquids and gases . 84
19.6 Spherical waves . 85
19.7 The linear shallow water equations . 86
19.8 Waves in blood vessels . 88
19.9 Electromagnetic waves . 89

20 Exercises 90

3

List of Exercises, Problems, and Projects
Exercise 1 Simulate a standing wave p. 25
Exercise 2 Add storage of solution in a user action function ... p. 25
Exercise 3 Use a class for the user action function p. 26
Exercise 4 Compare several Courant numbers in one movie p. 26
Project 5 Calculus with 1D mesh functions p. 26
Exercise 6 Find the analytical solution to a damped wave ... p. 41
Problem 7 Explore symmetry boundary conditions p. 42
Exercise 8 Send pulse waves through a layered medium p. 42
Exercise 9 Compare discretizations of a Neumann condition ...
Exercise 10 Verification by a cubic polynomial in space p. 43
Exercise 11 Check that a solution fulfills the discrete ... p. 78
Project 12 Calculus with 2D/3D mesh functions p. 78
Exercise 13 Implement Neumann conditions in 2D p. 78
Exercise 14 Test the efficiency of compiled loops in 3D p. 79
Exercise 15 Simulate waves on a non-homogeneous string p. 90
Exercise 16 Simulate damped waves on a string p. 90
Exercise 17 Simulate elastic waves in a rod p. 90
Exercise 18 Simulate spherical waves p. 91
Exercise 19 Explain why numerical noise occurs p. 91
Exercise 20 Investigate harmonic averaging in a 1D model p. 91
Problem 21 Implement open boundary conditions p. 91
Exercise 22 Implement periodic boundary conditions p. 93
Problem 23 Earthquake-generated tsunami over a subsea ... p. 93
Problem 24 Earthquake-generated tsunami over a 3D hill p. 96
Problem 25 Investigate Matplotlib for visualization p. 97
Problem 26 Investigate visualization packages p. 97
Problem 27 Implement loops in compiled languages p. 97
Exercise 28 Simulate seismic waves in 2D p. 97
Project 29 Model 3D acoustic waves in a room p. 98
Project 30 Solve a 1D transport equation p. 98
Problem 31 General analytical solution of a 1D damped ... p. 101
Problem 32 General analytical solution of a 2D damped ... p. 102

4

A very wide range of physical processes lead to wave motion, where signals are propagated
through a medium in space and time, normally with little or no permanent movement of the
medium itself. The shape of the signals may undergo changes as they travel through matter, but
usually not so much that the signals cannot be recognized at some later point in space and time.
Many types of wave motion can be described by the equation utt = ∇ · (c2∇u) + f , which we will
solve in the forthcoming text by finite difference methods.

1 Simulation of waves on a string
We begin our study of wave equations by simulating one-dimensional waves on a string, say on a
guitar or violin string. Let the string in the deformed state coincide with the interval [0, L] on
the x axis, and let u(x, t) be the displacement at time t in the y direction of a point initially at x.
The displacement function u is governed by the mathematical model

∂2u

∂t2
= c2

∂2u

∂x2 , x ∈ (0, L), t ∈ (0, T] (1)

u(x, 0) = I(x), x ∈ [0, L] (2)
∂

∂t
u(x, 0) = 0, x ∈ [0, L] (3)

u(0, t) = 0, t ∈ (0, T] (4)
u(L, t) = 0, t ∈ (0, T] (5)

The constant c and the function I(x) must be prescribed.
Equation (1) is known as the one-dimensional wave equation. Since this PDE contains a

second-order derivative in time, we need two initial conditions, here (2) specifying the initial
shape of the string, I(x), and (3) reflecting that the initial velocity of the string is zero. In
addition, PDEs need boundary conditions, here (4) and (5), specifying that the string is fixed at
the ends, i.e., that the displacement u is zero.

The solution u(x, t) varies in space and time and describes waves that are moving with velocity
c to the left and right.

Sometimes we will use a more compact notation for the partial derivatives to save space:

ut = ∂u

∂t
, utt = ∂2u

∂t2
, (6)

and similar expressions for derivatives with respect to other variables. Then the wave equation
can be written compactly as utt = c2uxx.

The PDE problem (1)-(5) will now be discretized in space and time by a finite difference
method.

1.1 Discretizing the domain
The temporal domain [0, T] is represented by a finite number of mesh points

0 = t0 < t1 < t2 < · · · < tNt−1 < tNt
= T . (7)

Similarly, the spatial domain [0, L] is replaced by a set of mesh points

0 = x0 < x1 < x2 < · · · < xNx−1 < xNx
= L . (8)

5

One may view the mesh as two-dimensional in the x, t plane, consisting of points (xi, tn), with
i = 0, . . . , Nx and n = 0, . . . , Nt.

Uniform meshes. For uniformly distributed mesh points we can introduce the constant mesh
spacings ∆t and ∆x. We have that

xi = i∆x, i = 0, . . . , Nx, ti = n∆t, n = 0, . . . , Nt . (9)

We also have that ∆x = xi − xi−1, i = 1, . . . , Nx, and ∆t = tn − tn−1, n = 1, . . . , Nt. Figure 1
displays a mesh in the x, t plane with Nt = 5, Nx = 5, and constant mesh spacings.

1.2 The discrete solution
The solution u(x, t) is sought at the mesh points. We introduce the mesh function uni , which
approximates the exact solution at the mesh point (xi, tn) for i = 0, . . . , Nx and n = 0, . . . , Nt.
Using the finite difference method, we shall develop algebraic equations for computing the mesh
function. The circles in Figure 1 illustrate neighboring mesh points where values of uni are
connected through an algebraic equation. In this particular case, u1

2, u2
1, u2

2, u2
3, and u3

2 are
connected in an algebraic equation associated with the center point (2, 2). The term stencil is
often used about the algebraic equation at a mesh point, and the geometry of a typical stencil
is illustrated in Figure 1. One also often refers to the algebraic equations as discrete equations,
(finite) difference equations or a finite difference scheme.

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

in
de

x
n

index i

Stencil at interior point

Figure 1: Mesh in space and time for a 1D wave equation.

6

1.3 Fulfilling the equation at the mesh points
For a numerical solution by the finite difference method, we relax the condition that (1) holds at
all points in the space-time domain (0, L)× (0, T] to the requirement that the PDE is fulfilled at
the interior mesh points:

∂2

∂t2
u(xi, tn) = c2

∂2

∂x2u(xi, tn), (10)

for i = 1, . . . , Nx − 1 and n = 1, . . . , Nt − 1. For n = 0 we have the initial conditions u = I(x)
and ut = 0, and at the boundaries i = 0, Nx we have the boundary condition u = 0.

1.4 Replacing derivatives by finite differences
The second-order derivatives can be replaced by central differences. The most widely used
difference approximation of the second-order derivative is

∂2

∂t2
u(xi, tn) ≈ un+1

i − 2uni + un−1
i

∆t2 .

It is convenient to introduce the finite difference operator notation

[DtDtu]ni = un+1
i − 2uni + un−1

i

∆t2 .

A similar approximation of the second-order derivative in the x direction reads

∂2

∂x2u(xi, tn) ≈ uni+1 − 2uni + uni−1
∆x2 = [DxDxu]ni .

Algebraic version of the PDE. We can now replace the derivatives in (10) and get

un+1
i − 2uni + un−1

i

∆t2 = c2
uni+1 − 2uni + uni−1

∆x2 , (11)

or written more compactly using the operator notation:

[DtDtu = c2DxDx]ni . (12)

Algebraic version of the initial conditions. We also need to replace the derivative in the
initial condition (3) by a finite difference approximation. A centered difference of the type

∂

∂t
u(xi, tn) ≈ u1

i − u−1
i

2∆t = [D2tu]0i ,

seems appropriate. In operator notation the initial condition is written as

[D2tu]ni = 0, n = 0 .

Writing out this equation and ordering the terms give

un−1
i = un+1

i , i = 0, . . . , Nx, n = 0 . (13)

The other initial condition can be computed by

u0
i = I(xi), i = 0, . . . , Nx .

7

1.5 Formulating a recursive algorithm
We assume that uni and un−1

i are already computed for i = 0, . . . , Nx. The only unknown quantity
in (11) is therefore un+1

i , which we can solve for:

un+1
i = −un−1

i + 2uni + C2 (uni+1 − 2uni + uni−1
)
, (14)

where we have introduced the parameter

C = c
∆t
∆x, (15)

known as the Courant number.

C is the key parameter in the discrete diffusion equation.

We see that the discrete version of the PDE features only one parameter, C, which is therefore
the key parameter that governs the quality of the numerical solution (see Section 10 for
details). Both the primary physical parameter c and the numerical parameters ∆x and ∆t
are lumped together in C. Note that C is a dimensionless parameter.

Given that un−1
i and uni are computed for i = 0, . . . , Nx, we find new values at the next time

level by applying the formula (14) for i = 1, . . . , Nx − 1. Figure 1 illustrates the points that
are used to compute u3

2. For the boundary points, i = 0 and i = Nx, we apply the boundary
conditions un+1

i = 0.
A problem with (14) arises when n = 0 since the formula for u1

i involves u−1
i , which is an

undefined quantity outside the time mesh (and the time domain). However, we can use the initial
condition (13) in combination with (14) when n = 0 to arrive at a special formula for u1

i :

u1
i = u0

i −
1
2C

2 (uni+1 − 2uni + uni−1
)
. (16)

Figure 2 illustrates how (16) connects four instead of five points: u1
2, u0

1, u0
2, and u0

3.
We can now summarize the computational algorithm:

1. Compute u0
i = I(xi) for i = 0, . . . , Nx

2. Compute u1
i by (16) and set u1

i = 0 for the boundary points i = 0 and i = Nx, for
n = 1, 2, . . . , N − 1,

3. For each time level n = 1, 2, . . . , Nt − 1

(a) apply (14) to find un+1
i for i = 1, . . . , Nx − 1

(b) set un+1
i = 0 for the boundary points i = 0, i = Nx.

The algorithm essentially consists of moving a finite difference stencil through all the mesh points,
which is illustrated by an animation in a web page1 or a movie file2.

1http://tinyurl.com/opdfafk/pub/mov-wave/wave1D_PDE_Dirichlet_stencil_gpl/index.html
2http://tinyurl.com/opdfafk/pub/mov-wave/wave1D_PDE_Dirichlet_stencil_gpl/movie.ogg

8

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

in
de

x
n

index i

Stencil at interior point

Figure 2: Modified stencil for the first time step.

1.6 Sketch of an implementation
In a Python implementation of this algorithm, we use the array elements u[i] to store un+1

i ,
u_1[i] to store uni , and u_2[i] to store un−1

i . Our naming convention is use u for the unknown
new spatial field to be computed, u_1 as the solution at one time step back in time, u_2 as the
solution two time steps back in time and so forth.

The algorithm only needs to access the three most recent time levels, so we need only three
arrays for un+1

i , uni , and un−1
i , i = 0, . . . , Nx. Storing all the solutions in a two-dimensional array

of size (Nx + 1)× (Nt + 1) would be possible in this simple one-dimensional PDE problem, but is
normally out of the question in three-dimensional (3D) and large two-dimensional (2D) problems.
We shall therefore in all our programs for solving PDEs have the unknown in memory at as few
time levels as possible.

The following Python snippet realizes the steps in the computational algorithm.

Given mesh points as arrays x and t (x[i], t[n])
dx = x[1] - x[0]
dt = t[1] - t[0]
C = c*dt/dx # Courant number
Nt = len(t)-1
C2 = C**2 # Help variable in the scheme

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_1[i] = I(x[i])

Apply special formula for first step, incorporating du/dt=0
for i in range(1, Nx):

9

u[i] = u_1[i] - 0.5*C**2(u_1[i+1] - 2*u_1[i] + u_1[i-1])
u[0] = 0; u[Nx] = 0 # Enforce boundary conditions

Switch variables before next step
u_2[:], u_1[:] = u_1, u

for n in range(1, Nt):
Update all inner mesh points at time t[n+1]
for i in range(1, Nx):

u[i] = 2u_1[i] - u_2[i] - \
C**2(u_1[i+1] - 2*u_1[i] + u_1[i-1])

Insert boundary conditions
u[0] = 0; u[Nx] = 0

Switch variables before next step
u_2[:], u_1[:] = u_1, u

2 Verification
Before implementing the algorithm, it is convenient to add a source term to the PDE (1) since
it gives us more freedom in finding test problems for verification. In particular, the source
term allows us to use manufactured solutions for software testing, where we simply choose some
function as solution, fit the corresponding source term, and define boundary and initial conditions
consistent with the chosen solution. Such solutions will seldom fulfill the initial condition (3) so
we need to generalize this condition to ut = V (x).

2.1 A slightly generalized model problem
We now address the following extended initial-boundary value problem for one-dimensional wave
phenomena:

utt = c2uxx + f(x, t), x ∈ (0, L), t ∈ (0, T] (17)
u(x, 0) = I(x), x ∈ [0, L] (18)
ut(x, 0) = V (x), x ∈ [0, L] (19)
u(0, t) = 0, t > 0 (20)
u(L, t) = 0, t > 0 (21)

Sampling the PDE at (xi, tn) and using the same finite difference approximations as above,
yields

[DtDtu = c2DxDx + f]ni . (22)

Writing this out and solving for the unknown un+1
i results in

un+1
i = −un−1

i + 2uni + C2(uni+1 − 2uni + uni−1) + ∆t2fni . (23)

The equation for the first time step must be rederived. The discretization of the initial
condition ut = V (x) at t = 0 becomes

[D2tu = V]0i ⇒ u−1
i = u1

i − 2∆tVi,

10

which, when inserted in (23) for n = 0, gives the special formula

u1
i = u0

i −∆tVi + 1
2C

2 (uni+1 − 2uni + uni−1
)

+ 1
2∆t2fni . (24)

2.2 Using an analytical solution of physical significance
Many wave problems feature sinusoidal oscillations in time and space. For example, the original
PDE problem (1)-(5) allows a solution

ue(x, y, t)) = A sin
(π
L
x
)

cos
(π
L
ct
)
. (25)

This ue fulfills the PDE with f = 0, boundary conditions ue(0, t) = ue(L, 0) = 0, as well as initial
conditions I(x) = A sin

(
π
Lx
)
and V = 0.

It is common to use such exact solutions of physical interest to verify implementations.
However, the numerical solution uni will only be an approximation to ue(xi, tn). We no have
knowledge of the precise size of the error in this approximation, and therefore we can never know if
discrepancies between the computed uni and ue(xi, tn) are caused by mathematical approximations
or programming errors. In particular, if a plot of the computed solution uni and the exact one
(25) looks similar, many are attempted to claim that the implementation works, but there can
still be serious programming errors although color plots look nice.

The only way to use exact physical solutions like (25) for serious and thorough verification is
to run a series of finer and finer meshes, measure the integrated error in each mesh, and from
this information estimate the convergence rate. If these rates are very close to 2, we have strong
evidence that the implementation works.

2.3 Manufactured solution
One problem with the exact solution (25) is that it requires a simplification (V = 0, f = 0) of the
implemented problem (17)-(21). An advantage of using a manufactured solution is that we can
test all terms in the PDE problem. The idea of this approach is to set up some chosen solution and
fit the source term, boundary conditions, and initial conditions to be compatible with the chosen
solution. Given that our boundary conditions in the implementation are u(0, t) = u(L, t) = 0, we
must choose a solution that fulfills these conditions. One example is

ue(x, t) = x(L− x) sin t .
Inserted in the PDE utt = c2uxx + f we get

−x(L− x) sin t = −2 sin t+ f ⇒ f = (2− x(L− x)) sin t .
The initial conditions become

u(x, 0) =I(x) = 0,
ut(x, 0) = V (x) = −x(L− x) .

To verify the code, we run a series of refined meshes and compute the convergence rates.
Such tests rely on an assumption that some measure E of the numerical error is related to the
discretization parameters through

E = Ct∆tr + Cx∆xp,

11

where Ct, Cx, r, and p are constants. The constants r and p are known as the convergence rates
in time and space, respectively. From the accuracy in the finite difference approximations, we
expect r = p = 2. This is confirmed by truncation error analysis and other types of analysis.
By using an exact solution of the PDE problem, we can empirically compute the error measure
E on a sequence of refined meshes and see if the rates r = p = 2 are obtained. We will not be
concerned with estimating the constants Ct and Cx.

It is advantageous to introduce a single discretization parameter h = ∆t = ĉ∆x for some
constant ĉ (the idea is to keep ∆tr/∆xp constant). Since ∆t and ∆x are related through the
Courant number, ∆t = C∆x/c, we set h = ∆t, and then ∆x = hc/C. Now the expression for the
error measure is greatly simplified:

E = Ct∆tr + Cx∆xr = Cth
r + Cxc

C
hr = Ĉhr, Ĉ = Ct + Cxc

C
.

We choose an initial discretization parameter h0 and run experiments with decreasing h:
hi = 2−ih0, i = 1, 2, . . . ,m. Halving h in each experiment is not necessary, but a common choice.
For each experiment we must record E and h. A standard choice of error measure is the `2 or `∞
norm of the error mesh function eni :

E = ||eni ||`2 =
(

∆t∆x
Nt∑

n=0

Nx∑

i=0
(eni)2

) 1
2

, eni = ue(xi, tn)− uni , (26)

E = ||eni ||`∞ = max
i,n
|ein| . (27)

In Python, one can compute
∑
i(e

n+1
i)2 at each time step and accumulate the value in some sum

variable, say e2_sum. At the final time step one can do sqrt(dt*dx*e2_sum). For the `∞ norm
one must compare the maximum error at a time level (e.max()) with the global maximum over
the time domain: e_max = max(e_max, e.max()).

An alternative error measure is to use a spatial norm at one time step only, e.g., the end time
T :

E = ||eni ||`2 =
(

∆x
Nx∑

i=0
(eni)2

) 1
2

, eni = ue(xi, tn)− uni , (28)

E = ||eni ||`∞ = max
0≤i≤Nx

|ein| . (29)

Let Ei be the error measure in experiment (mesh) number i and let hi be the corresponding
discretization parameter (h). With the error model Ei = Ĉhri , we can estimate r by comparing
two consecutive experiments: Ei+1 = Ĉhri+1 and Ei = Ĉhri . Dividing the two equations eliminates
Ĉ and solving for ri yields

ri = lnEi+1/Ei
ln hi+1/hi

, i = 0, . . . ,m− 1 .

We should for the present discretization method observe that ri approaches 2 as i increases.

2.4 Constructing an exact solution of the discrete equations
With a manufactured or known analytical solution, as outlined above, we can estimate convergence
rates and see if they have the correct asymptotic behavior. Experience shows that this is a quite

12

good verification technique in that many common bugs will destroy the convergence rates. A
significantly better test would be to check that the numerical solution is exactly what it should
be. This will in general require knowledge of the numerical error, which we do not have. However,
it is possible to look for solutions where we can show that the numerical error vanishes, i.e., the
solution of the PDE problem is also a solution of the discrete equations. This property often
arises if the exact solution is a lower-order polynomial. (Truncation error analysis leads to error
measures that involve derivatives of the exact solution. In the present problem, the truncation
error involves 4th-order derivatives of u in space and time. Choosing u as a polynomial of degree
three or less will therefore lead to vanishing error.)

We shall now illustrate the construction of an exact solution of the PDE problem and the
discrete equations. Our choice of manufactured solution is quadratic in space and linear in time.
More specifically, we set

ue(x, t) = x(L− x)(1 + 1
2 t), (30)

which by insertion in the PDE leads to f(x, t) = 2(1+t)c2. This ue fulfills the boundary conditions
u = 0 and demands I(x) = x(L− x) and V (x) = 1

2x(L− x).
To realize that the chosen ue is that it is also an exact solution of the discrete equations, we

first establish the results

[DtDtt
2]n =

t2n+1 − 2t2n + t2n−1
∆t2 = (n+ 1)2 − n2 + (n− 1)2 = 2, (31)

[DtDtt]n = tn+1 − 2tn + tn−1
∆t2 = ((n+ 1)− n+ (n− 1))∆t

∆t2 = 0 . (32)

Hence,
[DtDtue]ni = xi(L− xi)[DtDt(1 + 1

2 t)]
n = xi(L− xi)

1
2 [DtDtt]n = 0,

and

[DxDxue]ni = (1 + 1
2 tn)[DxDx(xL− x2)]i = (1 + 1

2 tn)[LDxDxx−DxDxx
2]i

= −2(1 + 1
2 tn) .

Now, fni = 2(1 + 1
2 tn)c2 and we get

[DtDtue − c2DxDxue − f]ni = 0− c2(−1)2(1 + 1
2 tn + 2(1 + 1

2 tn)c2 = 0 .

Moreover, ue(xi, 0) = I(xi), ∂ue/∂t = V (xi) at t = 0, and ue(x0, t) = ue(xNx
, 0) = 0. Also

the modified scheme for the first time step is fulfilled by ue(xi, tn).
Therefore, the exact solution ue(x, t) = x(L− x)(1 + t/2) of the PDE problem is also an exact

solution of the discrete problem. We can use this result to check that the computed uni vales from
an implementation equals ue(xi, tn) within machine precision, regardless of the mesh spacings ∆x
and ∆t! Nevertheless, there might be stability restrictions on ∆x and ∆t, so the test can only be
run for a mesh that is compatible with the stability criterion (which in the present case is C ≤ 1,
to be derived later).

13

Notice.
A product of quadratic or linear expressions in the various independent variables, as shown
above, will often fulfill both the continuous and discrete PDE problem and can therefore
be very useful solutions for verifying implementations. However, for 1D wave equations of
the type ut = c2uxx we shall see that there is always another much more powerful way of
generating exact solutions (just set C = 1).

3 Implementation
This section present the complete computational algorithm, its implementation in Python code,
animation of the solution, and verification of the implementation.

A real implementation of the basic computational algorithm from Sections 1.5 and 1.6 can
be encapsulated in a function, taking all the input data for the problem as arguments. The
physical input data consists of c, I(x), V (x), f(x, t), L, and T . The numerical input is the mesh
parameters ∆t and ∆x.

Instead of specifying ∆t and ∆x, we can specify one of them and the Courant number C
instead, since having explicit control of the Courant number is convenient when investigating
the numerical method. Many find it natural to prescribe the resolution of the spatial grid and
set Nx. The solver function can then compute ∆t = CL/(cNx). However, for comparing u(x, t)
curves (as functions of x) for various Courant numbers, especially in animations in time, it is
more convenient to keep ∆t fixed for all C and let ∆x vary according to ∆x = c∆t/C. (With
∆t fixed, all frames correspond to the same time t, and plotting curves with different spatial
resolution is trivial.)

The solution at all spatial points at a new time level is stored in an array u (of length Nx + 1).
We need to decide what do to with this solution, e.g., visualize the curve, analyze the values,
or write the array to file for later use. The decision what to do is left to the user in a suppled
function

def user_action(u, x, t, n):

where u is the solution at the spatial points x at time t[n].

3.1 Making a solver function
A first attempt at a solver function is listed below.

from numpy import *

def solver(I, V, f, c, L, dt, C, T, user_action=None):
"""Solve u_tt=c^2*u_xx + f on (0,L)x(0,T]."""
Nt = int(round(T/dt))
t = linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = dt*c/float(C)
Nx = int(round(L/dx))
x = linspace(0, L, Nx+1) # Mesh points in space
C2 = C**2 # Help variable in the scheme
if f is None or f == 0 :

f = lambda x, t: 0
if V is None or V == 0:

V = lambda x: 0

14

u = zeros(Nx+1) # Solution array at new time level
u_1 = zeros(Nx+1) # Solution at 1 time level back
u_2 = zeros(Nx+1) # Solution at 2 time levels back

import time; t0 = time.clock() # for measuring CPU time

Load initial condition into u_1
for i in range(0,Nx+1):

u_1[i] = I(x[i])

if user_action is not None:
user_action(u_1, x, t, 0)

Special formula for first time step
n = 0
for i in range(1, Nx):

u[i] = u_1[i] + dt*V(x[i]) + \
0.5*C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + \
0.5*dt**2*f(x[i], t[n])

u[0] = 0; u[Nx] = 0

if user_action is not None:
user_action(u, x, t, 1)

Switch variables before next step
u_2[:] = u_1; u_1[:] = u

for n in range(1, Nt):
Update all inner points at time t[n+1]
for i in range(1, Nx):

u[i] = - u_2[i] + 2*u_1[i] + \
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + \
dt**2*f(x[i], t[n])

Insert boundary conditions
u[0] = 0; u[Nx] = 0
if user_action is not None:

if user_action(u, x, t, n+1):
break

Switch variables before next step
u_2[:] = u_1; u_1[:] = u

cpu_time = t0 - time.clock()
return u, x, t, cpu_time

3.2 Verification: exact quadratic solution
We use the test problem derived in Section 2.1 for verification. Here is a function realizing this
verification as a nose test:

import nose.tools as nt

def test_quadratic():
"""Check that u(x,t)=x(L-x)(1+t/2) is exactly reproduced."""
def u_exact(x, t):

return x*(L-x)*(1 + 0.5*t)

def I(x):
return u_exact(x, 0)

def V(x):

15

return 0.5*u_exact(x, 0)

def f(x, t):
return 2*(1 + 0.5*t)*c**2

L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18

u, x, t, cpu = solver(I, V, f, c, L, dt, C, T)
u_e = u_exact(x, t[-1])
diff = abs(u - u_e).max()
nt.assert_almost_equal(diff, 0, places=14)

3.3 Visualization: animating the solution
Now that we have verified the implementation it is time to do a real computation where we also
display the evolution of the waves on the screen.

Visualization via SciTools. The following viz function defines a user_action callback
function for plotting the solution at each time level:

def viz(I, V, f, c, L, dt, C, T, umin, umax, animate=True):
"""Run solver and visualize u at each time level."""
import scitools.std as plt
import time, glob, os

def plot_u(u, x, t, n):
"""user_action function for solver."""
plt.plot(x, u, ’r-’,

xlabel=’x’, ylabel=’u’,
axis=[0, L, umin, umax],
title=’t=%f’ % t[n], show=True)

Let the initial condition stay on the screen for 2
seconds, else insert a pause of 0.2 s between each plot
time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig(’frame_%04d.png’ % n) # for movie making

Clean up old movie frames
for filename in glob.glob(’frame_*.png’):

os.remove(filename)

user_action = plot_u if animate else None
u, x, t, cpu = solver(I, V, f, c, L, dt, C, T, user_action)

Make movie files
fps = 4 # Frames per second
plt.movie(’frame_*.png’, encoder=’html’, fps=fps,

output_file=’movie.html’)
codec2ext = dict(flv=’flv’, libx264=’mp4’, libvpx=’webm’,

libtheora=’ogg’)
filespec = ’frame_%04d.png’
movie_program = ’avconv’ # or ’ffmpeg’
for codec in codec2ext:

ext = codec2ext[codec]
cmd = ’%(movie_program)s -r %(fps)d -i %(filespec)s ’\

’-vcodec %(codec)s movie.%(ext)s’ % vars()
os.system(cmd)

16

A function inside another function, like plot_u in the above code segment, has access to and
remembers all the local variables in the surrounding code inside the viz function (!). This is
known in computer science as a closure and is very convenient to program with. For example,
the plt and time modules defined outside plot_u are accessible for plot_u when the function is
called (as user_action) in the solver function. Some may think, however, that a class instead
of a closure is a cleaner and easier-to-understand implementation of the user action function, see
Section 8.

Making movie files. Several hardcopies of the animation are made from the frame_*.png
files. We use the avconv (or ffmpeg) programs to combine individual plot files to movies in
modern formats: Flash, MP4, Webm, and Ogg. A typical avconv (or ffmpeg) command for
creating a movie file in Ogg format with 4 frames per second built from a collection of plot files
with names generated by frame_%04d.png, look like

Terminal> avconv -r 4 -i frame_%04d.png -c:v libtheora movie.ogg

The different formats require different video encoders (-c:v) to be installed: Flash applies flv,
WebM applies libvpx, and MP4 applies libx264:

Terminal> avconv -r 4 -i frame_%04d.png -c:v flv movie.flv
Terminal> avconv -r 4 -i frame_%04d.png -c:v libvpx movie.webm
Terminal> avconv -r 4 -i frame_%04d.png -c:v libx264 movie.mp4

Players like vlc, mplayer, gxine, and totem can be used to play these movie files.
Note that padding the frame counter with zeros in the frame_*.png files, as specified by the

%04d format, is essential so that the wildcard notation frame_*.png expands to the correct set
of files.

The plt.movie function also creates a movie.html file with a movie player for displaying the
frame_*.png files in a web browser. This movie player can be generated from the command line
too

Terminal> scitools movie encoder=html output_file=movie.html \
fps=4 frame_*.png

Skipping frames for animation speed. Sometimes the time step is small and T is large,
leading to an inconveniently large number of plot files and a slow animation on the screen. The
solution to such a problem is to decide on a total number of frames in the animation, num_frames,
and plot the solution only at every every frame. The total number of time levels (i.e., maximum
possible number of frames) is the length of t, t.size, and if we want num_frames, we need to
plot every t.size/num_frames frame:

every = int(t.size/float(num_frames))
if n % every == 0 or n == t.size-1:

st.plot(x, u, ’r-’, ...)

17

The initial condition (n=0) is natural to include, and as n % every == 0 will very seldom be
true for the very final frame, we also ensure that n == t.size-1 and hence the final frame is
included.

A simple choice of numbers may illustrate the formulas: say we have 801 frames in total
(t.size) and we allow only 60 frames to be plotted. Then we need to plot every 801/60 frame,
which with integer division yields 13 as every. Using the mod function, n % every, this operation
is zero every time n can be divided by 13 without a remainder. That is, the if test is true when
n equals 0, 13, 26, 39, ..., 780, 801. The associated code is included in the plot_u function in the
file wave1D_u0v.py3.

Visualization via Matplotlib. The previous code based on the plot interface from scitools.std
can be run with Matplotlib as the visualization backend, but if one desires to program directly
with Matplotlib, quite different code is needed. Matplotlib’s interactive mode must be turned on:

import matplotlib.pyplot as plt
plt.ion() # interactive mode on

The most commonly used animation technique with Matplotlib is to update the data in the plot
at each time level:

Make a first plot
lines = plt.plot(t, u)
call plt.axis, plt.xlabel, plt.ylabel, etc. as desired

At later time levels
lines[0].set_ydata(u)
plt.legend(’t=%g’ % t[n])
plt.draw() # make updated plot
plt.savefig(...)

An alternative is to rebuild the plot at every time level:

plt.clf() # delete any previous curve(s)
plt.axis([...])
plt.plot(t, u)
plt.xlabel, plt.legend and other decorations
plt.draw()
plt.savefig(...)

Many prefer to work with figure and axis objects as in MATLAB:

fig = plt.figure()
...
fig.clf()
ax = fig.gca()
ax.axis(...)
ax.plot(t, u)
ax.set_xlabel, ax.legend and other decorations
plt.draw()
fig.savefig(...)

3http://tinyurl.com/nm5587k/wave/wave1D/wave1D_u0v.py

18

3.4 Running a case
The first demo of our 1D wave equation solver concerns vibrations of a string that is initially
deformed to a triangular shape, like when picking a guitar string:

I(x) =
{
ax/x0, x < x0,
a(L− x)/(L− x0), otherwise (33)

We choose L = 75 cm, x0 = 0.8L, a = 5 mm, and a time frequency ν = 440 Hz. The relation
between the wave speed c and ν is c = νλ, where λ is the wavelength, taken as 2L because the
longest wave on the string form half a wavelength. There is no external force, so f = 0, and the
string is at rest initially so that V = 0.

Regarding numerical parameters, we need to specify a ∆t. Sometimes it is more natural to
think of a spatial resolution instead of a time step. A natural semi-coarse spatial resolution
in the present problem is Nx = 50. We can then choose the associated ∆t (as required by
the viz and solver functions) as the stability limit: ∆t = L/(Nxc). This is the ∆t to be
specified, but notice that if C < 1, the actual ∆x computed in solver gets larger than L/Nx:
∆x = c∆t/C = L/(NxC). (The reason is that we fix ∆t and adjust ∆x, so if C gets smaller, the
code implements this effect in terms of a larger ∆x.)

A function for setting the physical and numerical parameters and calling viz in this application
goes as follows:

def guitar(C):
"""Triangular wave (pulled guitar string)."""
L = 0.75
x0 = 0.8*L
a = 0.005
freq = 440
wavelength = 2*L
c = freq*wavelength
omega = 2*pi*freq
num_periods = 1
T = 2*pi/omega*num_periods
Choose dt the same as the stability limit for Nx=50
dt = L/50./c

def I(x):
return a*x/x0 if x < x0 else a/(L-x0)*(L-x)

umin = -1.2*a; umax = -umin
cpu = viz(I, 0, 0, c, L, dt, C, T, umin, umax, animate=True)

The associated program has the name wave1D_u0.py4. Run the program and watch the movie of
the vibrating string5.

3.5 The benefits of scaling
The previous example demonstrated that quite some work is needed with establishing relevant
physical parameters for a case. By scaling the mathematical problem we can often reduce the need
to estimate physical parameters dramatically. A scaling consists of introducing new independent
and dependent variables, with the aim that the absolute value of these vary between 0 and 1:

x̄ = x

L
, t̄ = c

L
t, ū = u

a
.

4http://tinyurl.com/nm5587k/wave/wave1D/wave1D_u0.py
5http://tinyurl.com/opdfafk/pub/mov-wave/guitar_C0.8/index.html

19

Replacing old by new variables in the PDE, using f = 0, and dropping the bars, results in the
scaled equation utt = uxx. This equation has no physical parameter (!).

If we have a program implemented for the physical wave equation with dimensions, we can
obtain the dimensionless, scaled version by setting c = 1. The initial condition corresponds to
(185), but with setting a = 1, L = 1, and x0 ∈ [0, 1]. This means that we only need to decide
on the x0 value as a fraction of unity, because the scaled problem corresponds to setting all
other parameters to unity! In the code we can just set a=c=L=1, x0=0.8, and there is no need to
calculate with wavelengths and frequencies to estimate c.

The only non-trivial parameter to estimate in the scaled problem is the final end time of the
simulation, or more precisely, how it relates to periods in periodic solutions in time, since we often
want to express the end time as a certain number of periods. Suppose as u behaves as sin(ωt)
in time in variables with dimension. The corresponding period is P = 2π/ω. The frequency ω
is related to the wavelength λ of the waves through the relations ω = kc and k = 2π/λ, giving
ω = 2πc/λ and P = λ/c. It remains to estimate λ. With u(x, t) = F (x) sinωt we find from
utt = c2uxx that c2F ′′ + ω2F = 0, and the boundary conditions demand F (0) = F (L) = 0. The
solution is F (x) = sin(xπ/L), which has wavelength λ = 2π/(π/L) = 2L. One period is therefore
given by P = 2L/c. The dimensionless period is P̄ = Pc/L = 2.

4 Vectorization
The computational algorithm for solving the wave equation visits one mesh point at a time and
evaluates a formula for the new value un+1

i at that point. Technically, this is implemented by
a loop over array elements in a program. Such loops may run slowly in Python (and similar
interpreted languages such as R and MATLAB). One technique for speeding up loops is to perform
operations on entire arrays instead of working with one element at a time. This is referred to as
vectorization, vector computing, or array computing. Operations on whole arrays are possible if
the computations involving each element is independent of each other and therefore can, at least
in principle, be performed simultaneously. Vectorization not only speeds up the code on serial
computers, but it also makes it easy to exploit parallel computing.

4.1 Operations on slices of arrays
Efficient computing with numpy arrays demands that we avoid loops and compute with entire
arrays at once (or at least large portions of them). Consider this calculation of differences
di = ui+1 − ui:

n = u.size
for i in range(0, n-1):

d[i] = u[i+1] - u[i]

All the differences here are independent of each other. The computation of d can therefore
alternatively be done by subtracting the array (u0, u1, . . . , un−1) from the array where the
elements are shifted one index upwards: (u1, u2, . . . , un), see Figure 3. The former subset of the
array can be expressed by u[0:n-1], u[0:-1], or just u[:-1], meaning from index 0 up to, but
not including, the last element (-1). The latter subset is obtained by u[1:n] or u[1:], meaning
from index 1 and the rest of the array. The computation of d can now be done without an explicit
Python loop:

20

d = u[1:] - u[:-1]

or with explicit limits if desired:

d = u[1:n] - u[0:n-1]

Indices with a colon, going from an index to (but not including) another index are called slices.
With numpy arrays, the computations are still done by loops, but in efficient, compiled, highly
optimized code in C or Fortran. Such array operations can also easily be distributed among many
processors on parallel computers. We say that the scalar code above, working on an element (a
scalar) at a time, has been replaced by an equivalent vectorized code. The process of vectorizing
code is called vectorization.

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

− −−−

0 1 2 3 4

0 1 2 3 4

Figure 3: Illustration of subtracting two slices of two arrays.

Test the understanding.

Newcomers to vectorization are encouraged to choose a small array u, say with five elements,
and simulate with pen and paper both the loop version and the vectorized version.

Finite difference schemes basically contains differences between array elements with shifted
indices. Consider the updating formula

for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1]

The vectorization consists of replacing the loop by arithmetics on slices of arrays of length n-2:

u2 = u[:-2] - 2*u[1:-1] + u[2:]
u2 = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative

Note that u2 here gets length n-2. If u2 is already an array of length n and we want to use the
formula to update all the “inner” elements of u2, as we will when solving a 1D wave equation, we
can write

21

u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:]
u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative

Pen and paper calculations with a small array will demonstrate what is actually going on. The
expression on the right-hand side are done in the following steps, involving temporary arrays with
intermediate results, since we can only work with two arrays at a time in arithmetic expressions:

temp1 = 2*u[1:-1]
temp2 = u[0:-2] - temp1
temp3 = temp2 + u[2:]
u2[1:-1] = temp3

We can extend the previous example to a formula with an additional term computed by calling
a function:

def f(x):
return x**2 + 1

for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1] + f(x[i])

Assuming u2, u, and x all have length n, the vectorized version becomes

u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:] + f(x[1:-1])

4.2 Finite difference schemes expressed as slices
We now have the necessary tools to vectorize the algorithm for the wave equation. There are
three loops: one for the initial condition, one for the first time step, and finally the loop that
is repeated for all subsequent time levels. Since only the latter is repeated a potentially large
number of times, we limit the efforts of vectorizing the code to this loop:

for i in range(1, Nx):
u[i] = 2*u_1[i] - u_2[i] + \

C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])

The vectorized version becomes

u[1:-1] = - u_2[1:-1] + 2*u_1[1:-1] + \
C2*(u_1[:-2] - 2*u_1[1:-1] + u_1[2:])

or

u[1:Nx] = 2*u_1[1:Nx]- u_2[1:Nx] + \
C2*(u_1[0:Nx-1] - 2*u_1[1:Nx] + u_1[2:Nx+1])

The program wave1D_u0v.py6 contains a new version of the function solver where both
the scalar and the vectorized loops are included (the argument version is set to scalar or
vectorized, respectively).

6http://tinyurl.com/nm5587k/wave/wave1D/wave1D_u0v.py

22

4.3 Verification
We may reuse the quadratic solution ue(x, t) = x(L− x)(1 + 1

2 t) for verifying also the vectorized
code. A nose test can now test both the scalar and the vectorized version. Moreover, we may use
a user_action function that compares the computed and exact solution at each time level and
performs a test:

def test_quadratic():
"""
Check the scalar and vectorized versions work for
a quadratic u(x,t)=x(L-x)(1+t/2) that is exactly reproduced.
"""
The following function must work for x as array or scalar
u_exact = lambda x, t: x*(L - x)*(1 + 0.5*t)
I = lambda x: u_exact(x, 0)
V = lambda x: 0.5*u_exact(x, 0)
f is a scalar (zeros_like(x) works for scalar x too)
f = lambda x, t: zeros_like(x) + 2*c**2*(1 + 0.5*t)

L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = abs(u - u_e).max()
nt.assert_almost_equal(diff, 0, places=13)

solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error, version=’scalar’)

solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error, version=’vectorized’)

Lambda functions.
The code segment above demonstrates how to achieve very compact code with the use
of lambda functions for the various input parameters that require a Python function. In
essence,

f = lambda x, t: L*(x-t)**2

is equivalent to

def f(x, t):
return L(x-t)**2

Note that lambda functions can just contain a single expression and no statements.
One advantage with lambda functions is that they can be used directly in calls:

solver(I=lambda x: sin(pi*x/L), V=0, f=0, ...)

23

4.4 Efficiency measurements
Running the wave1D_u0v.py code with the previous string vibration example forNx = 50, 100, 200, 400, 800,
and measuring the CPU time (see the run_efficiency_experiments function), shows that the
vectorized code runs substantially faster: the scalar code uses approximately a factor Nx/5 more
time!

4.5 Remark on the updating of arrays
At the end of each time step we need to update the u_2 and u_1 arrays such that they have the
right content for the next time step:

u_2[:] = u_1
u_1[:] = u

The order here is important! (Updating u_1 first, makes u_2 equal to u, which is wrong.)
The assignment u_1[:] = u copies the content of the u array into the elements of the u_1

array. Such copying takes time, but little compared to computing u from the finite difference
formula, even when the formula has a vectorized implementation. However, efficiency of program
code is a key topic when solving PDEs numerically, so it must be mentioned that there exists a
much more efficient way of making the arrays u_2 and u_1 ready for the next time step. The
idea is based on switching references and explained below.

A Python variable is actually a reference to some object (C programmers may think of
pointers). Instead of copying data, we can let u_2 refer to the u_1 object and u_1 refer to the u
object. A naive implementation like

u_2 = u_1
u_1 = u

will fail, however, because now u_1 and u refers to the same object and the update of u from
the finite difference formula at the next time step will overwrite u_1 and lead to erroneous
computations. Also, with the suggested change of references, the reference to the u_2 array is
lost, and we have in fact only two arrays. The solution to this problem is to ensure that u points
to the u_2 array. This is mathematically wrong, but new correct values will be filled into u at the
next time step.

The correct switch of references is then

tmp = u_2
u_2 = u_1
u_1 = u
u = tmp

We can get rid of the temporary reference tmp by writing

u_2, u_1, u = u_1, u, u_2

This update will be used in later implementations.

Caution:
The update u_2, u_1, u = u_1, u, u_2 leaves wrong content in u at the final time step.
This means that if we return u, as we do in the example codes here, we actually return u_2,

24

which is obviously wrong. It is therefore important to adjust the content of u to u = u_1
before returning u.

5 Exercises
Exercise 1: Simulate a standing wave
The purpose of this exercise is to simulate standing waves on [0, L] and illustrate the error in the
simulation. Standing waves arise from an initial condition

u(x, 0) = A sin
(π
L
mx
)
,

where m is an integer and A is a freely chosen amplitude. The corresponding exact solution can
be computed and reads

ue(x, t) = A sin
(π
L
mx
)

cos
(π
L
mct

)
.

a) Explain that for a function sin kx cosωt the wave length in space is λ = 2π/k and the period
in time is P = 2π/ω. Use these expressions to find the wave length in space and period in time
of ue above.

b) Import the solver function wave1D_u0.py into a new file where the viz function is reimple-
mented such that it plots either the numerical and the exact solution, or the error.

c) Make animations where you illustrate how the error eni = ue(xi, tn)−uni develops and increases
in time. Also make animations of u and ue simultaneously.

Hint 1. Quite long time simulations are needed in order to display significant discrepancies
between the numerical and exact solution.

Hint 2. A possible set of parameters is L = 12, m = 9, c = 2, A = 1, Nx = 80, C = 0.8. The
error mesh function en can be simulated for 10 periods, while 20-30 periods are needed to show
significant differences between the curves for the numerical and exact solution.
Filename: wave_standing.py.

Remarks. The important parameters for numerical quality are C and k∆x, where C = c∆t/∆x
is the Courant number and k is defined above (k∆x is proportional to how many mesh points we
have per wave length in space, see Section 10.4 for explanation).

Exercise 2: Add storage of solution in a user action function
Extend the plot_u function in the file wave1D_u0.py to also store the solutions u in a list.
To this end, declare all_u as an empty list in the viz function, outside plot_u, and perform
an append operation inside the plot_u function. Note that a function, like plot_u, inside
another function, like viz, remembers all local variables in viz function, including all_u, even
when plot_u is called (as user_action) in the solver function. Test both all_u.append(u)
and all_u.append(u.copy()). Why does one of these constructions fail to store the solution
correctly? Let the viz function return the all_u list converted to a two-dimensional numpy array.
Filename: wave1D_u0_s_store.py.

25

Exercise 3: Use a class for the user action function
Redo Exercise 2 using a class for the user action function. That is, define a class Action where
the all_u list is an attribute, and implement the user action function as a method (the special
method __call__ is a natural choice). The class versions avoids that the user action function
depends on parameters defined outside the function (such as all_u in Exercise 2). Filename:
wave1D_u0_s2c.py.

Exercise 4: Compare several Courant numbers in one movie
The goal of this exercise is to make movies where several curves, corresponding to different
Courant numbers, are visualized. Import the solver function from the wave1D_u0_s movie in a
new file wave_compare.py. Reimplement the viz function such that it can take a list of C values
as argument and create a movie with solutions corresponding to the given C values. The plot_u
function must be changed to store the solution in an array (see Exercise 2 or 3 for details), solver
must be computed for each value of the Courant number, and finally one must run through each
time step and plot all the spatial solution curves in one figure and store it in a file.

The challenge in such a visualization is to ensure that the curves in one plot corresponds to the
same time point. The easiest remedy is to keep the time and space resolution constant and change
the wave velocity c to change the Courant number. Filename: wave_numerics_comparison.py.

Project 5: Calculus with 1D mesh functions
This project explores integration and differentiation of mesh functions, both with scalar and
vectorized implementations. We are given a mesh function fi on a spatial one-dimensional mesh
xi = i∆x, i = 0, . . . , Nx, over the interval [a, b].

a) Define the discrete derivative of fi by using centered differences at internal mesh points and
one-sided differences at the end points. Implement a scalar version of the computation in a
Python function and supply a nose test for the linear case f(x) = 4x− 2.5 where the discrete
derivative should be exact.

b) Vectorize the implementation of the discrete derivative. Extend the nose test to check the
validity of the implementation.

c) To compute the discrete integral Fi of fi, we assume that the mesh function fi varies linearly
between the mesh points. Let f(x) be such a linear interpolant of fi. We then have

Fi =
∫ xi

x0

f(x)dx .

The exact integral of a piecewise linear function f(x) is given by the Trapezoidal rule. S how
that if Fi is already computed, we can find Fi+1 from

Fi+1 = Fi + 1
2(fi + fi+1)∆x .

Make a function for a scalar implementation of the discrete integral as a mesh function. That
is, the function should return Fi for i = 0, . . . , Nx. For a nose test one can use the fact that the
above defined discrete integral of a linear function (say f(x) = 4x− 2.5) is exact.

d) Vectorize the implementation of the discrete integral. Extend the nose test to check the
validity of the implementation.

26

Hint. Interpret the recursive formula for Fi+1 as a sum. Make an array with each element of
the sum and use the "cumsum" (numpy.cumsum) operation to compute the accumulative sum:
numpy.cumsum([1,3,5]) is [1,4,9].

e) Create a class MeshCalculus that can integrate and differentiate mesh functions. The class
can just define some methods that call the previously implemented Python functions. Here is an
example on the usage:

import numpy as np
calc = MeshCalculus(vectorized=True)
x = np.linspace(0, 1, 11) # mesh
f = np.exp(x) # mesh function
df = calc.differentiate(f, x) # discrete derivative
F = calc.integrate(f, x) # discrete anti-derivative

Filename: mesh_calculus_1D.py.

6 Generalization: reflecting boundaries
The boundary condition u = 0 makes u change sign at the boundary, while the condition ux = 0
perfectly reflects the wave, see a web page7 or a movie file8 for demonstration. Our next task
is to explain how to implement the boundary condition ux = 0, which is more complicated to
express numerically and also to implement than a given value of u. We shall present two methods
for implementing ux = 0 in a finite difference scheme, one based on deriving a modified stencil at
the boundary, and another one based on extending the mesh with ghost cells and ghost points.

6.1 Neumann boundary condition
When a wave hits a boundary and is to be reflected back, one applies the condition

∂u

∂n
≡ n · ∇u = 0 . (34)

The derivative ∂/∂n is in the outward normal direction from a general boundary. For a 1D
domain [0, L], we have that

∂

∂n

∣∣∣∣
x=L

= ∂

∂x
,

∂

∂n

∣∣∣∣
x=0

= − ∂

∂x
.

Boundary condition terminology.

Boundary conditions that specify the value of ∂u/∂n, or shorter un, are known as Neumanna

conditions, while Dirichlet conditionsb refer to specifications of u. When the values are zero
(∂u/∂n = 0 or u = 0) we speak about homogeneous Neumann or Dirichlet conditions.

ahttp://en.wikipedia.org/wiki/Neumann_boundary_condition
bhttp://en.wikipedia.org/wiki/Dirichlet_conditions

7http://tinyurl.com/opdfafk/pub/mov-wave/demo_BC_gaussian/index.html
8http://tinyurl.com/opdfafk/pub/mov-wave/demo_BC_gaussian/movie.flv

27

6.2 Discretization of derivatives at the boundary
How can we incorporate the condition (34) in the finite difference scheme? Since we have used
central differences in all the other approximations to derivatives in the scheme, it is tempting to
implement (34) at x = 0 and t = tn by the difference

un−1 − un1
2∆x = 0 . (35)

The problem is that un−1 is not a u value that is being computed since the point is outside the
mesh. However, if we combine (35) with the scheme for i = 0,

un+1
i = −un−1

i + 2uni + C2 (uni+1 − 2uni + uni−1
)
, (36)

we can eliminate the fictitious value un−1. We see that un−1 = un1 from (35), which can be used in
(36) to arrive at a modified scheme for the boundary point un+1

0 :

un+1
i = −un−1

i + 2uni + 2C2 (uni+1 − uni
)
, i = 0 . (37)

Figure 4 visualizes this equation for computing u3
0 in terms of u2

0, u1
0, and u2

1.

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

in
de

x
n

index i

Stencil at boundary point

Figure 4: Modified stencil at a boundary with a Neumann condition.

Similarly, (34) applied at x = L is discretized by a central difference

unNx+1 − unNx−1
2∆x = 0 . (38)

Combined with the scheme for i = Nx we get a modified scheme for the boundary value un+1
Nx

:

28

un+1
i = −un−1

i + 2uni + 2C2 (uni−1 − uni
)
, i = Nx . (39)

The modification of the scheme at the boundary is also required for the special formula for
the first time step. How the stencil moves through the mesh and is modified at the boundary can
be illustrated by an animation in a web page9 or a movie file10.

6.3 Implementation of Neumann conditions
The implementation of the special formulas for the boundary points can benefit from using the
general formula for the interior points also at the boundaries, but replacing uni−1 by uni+1 when
computing un+1

i for i = 0 and uni+1 by uni−1 for i = Nx. This is achieved by just replacing the
index i− 1 by i+ 1 for i = 0 and i+ 1 by i− 1 for i = Nx. In a program, we introduce variables
to hold the value of the offset indices: im1 for i-1 and ip1 for i+1. It is now just a manner of
defining im1 and ip1 properly for the internal points and the boundary points. The coding for
the latter reads

i = 0
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])

i = Nx
im1 = i-1
ip1 = im1 # i+1 -> i-1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])

We can in fact create one loop over both the internal and boundary points and use only one
updating formula:

for i in range(0, Nx+1):
ip1 = i+1 if i < Nx else i-1
im1 = i-1 if i > 0 else i+1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])

The program wave1D_n0.py11 contains a complete implementation of the 1D wave equation
with boundary conditions ux = 0 at x = 0 and x = L.

It would be nice to modify the test_quadratic test case from the wave1D_u0.py with
Dirichlet conditions, described in Section 4.3. However, the Neumann conditions requires the
polynomial variation in x directory to be of third degree, which causes challenging problems with
designing a test where the numerical solution is known exactly. Exercise 10 outlines ideas and
code for this purpose. The only test in wave1D_n0.py is to start with a plug wave at rest and see
that the initial condition is reached again perfectly after one period of motion, if C = 1.

6.4 Index set notation
We shall introduce a special notation for index sets, consisting of writing xi, i ∈ Ix, instead of
i = 0, . . . , Nx. Obviously, Ix must be the set Ix = {0, . . . , Nx}, but it is often advantageous to
have a symbol for this set rather than specifying all its elements. This saves writing and makes
specification of algorithms and implementation of computer code easier.

9http://tinyurl.com/opdfafk/pub/mov-wave/wave1D_PDE_Neumann_stencil_gpl/index.html
10http://tinyurl.com/opdfafk/pub/mov-wave/wave1D_PDE_Neumann_stencil_gpl/movie.ogg
11http://tinyurl.com/nm5587k/wave/wave1D/wave1D_n0.py

29

The first index in the set will be denoted I0
x and the last I−1

x . Sometimes we need to count
from the second element in the set, and the notation I+

x is then used. Correspondingly, I−x means
{0, . . . , Nx − 1}. All the indices corresponding to inner grid points are Iix = {1, . . . , Nx − 1}.
For the time domain we find it natural to explicitly use 0 as the first index, so we will usually
write n = 0 and t0 rather than n = I0

t . We also avoid notation like xI−1
x

and will instead use xi,
i = I−1

x .
The Python code associated with index sets applies the following conventions:

Notation Python
Ix Ix
I0
x Ix[0]
I−1
x Ix[-1]
I−x Ix[:-1]
I+
x Ix[1:]
Iix Ix[1:-1]

An important feature of the index set notation is that it keeps our formulas and code independent
of how we count mesh points. For example, the notation i ∈ Ix or i = I0

x remains the same
whether Ix is defined as above or as starting at 1, i.e., Ix = {1, . . . , Q}. Similarly, we can in
the code define Ix=range(Nx+1) or Ix=range(1,Q), and expressions like Ix[0] and Ix[1:-1]
remain correct. One application where the index set notation is convenient is conversion of code
from a language where arrays has base index 0 (e.g., Python and C) to languages where the base
index is 1 (e.g., MATLAB and Fortran). Another important application is implementation of
Neumann conditions via ghost points (see next section).

For the current problem setting in the x, t plane, we work with the index sets

Ix = {0, . . . , Nx}, It = {0, . . . , Nt}, (40)

defined in Python as

Ix = range(0, Nx+1)
It = range(0, Nt+1)

A finite difference scheme can with the index set notation be specified as

un+1
i = −un−1

i + 2uni + C2 (uni+1 − 2uni + uni−1
)
, i ∈ Iix, n ∈ Iit ,

ui = 0, i = I0
x, n ∈ Iit ,

ui = 0, i = I−1
x , n ∈ Iit ,

and implemented by code like

for n in It[1:-1]:
for i in Ix[1:-1]:

u[i] = - u_2[i] + 2*u_1[i] + \
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])

i = Ix[0]; u[i] = 0
i = Ix[-1]; u[i] = 0

30

Notice.
The program wave1D_dn.pya applies the index set notation and solves the 1D wave equation
utt = c2uxx + f(x, t) with quite general boundary and initial conditions:

• x = 0: u = U0(t) or ux = 0

• x = L: u = UL(t) or ux = 0

• t = 0: u = I(x)

• t = 0: ut = I(x)

The program combines Dirichlet and Neumann conditions, scalar and vectorized implemen-
tation of schemes, and the index notation into one piece of code. A lot of test examples are
also included in the program:

• A rectangular plug profile as initial condition (easy to use as test example as the
rectangle should jump one cell per time step when C = 1, without any numerical
errors).

• A Gaussian function as initial condition.

• A triangular profile as initial condition, which resembles the typical initial shape of a
guitar string.

• A sinusoidal variation of u at x = 0 and either u = 0 or ux = 0 at x = L.

• An exact analytical solution u(x, t) = cos(mπt/L) sin(1
2mπx/L), which can be used

for convergence rate tests.

ahttp://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn.py

6.5 Alternative implementation via ghost cells
Idea. Instead of modifying the scheme at the boundary, we can introduce extra points outside
the domain such that the fictitious values un−1 and unNx+1 are defined in the mesh. Adding the
intervals [−∆x, 0] and [L,L+ ∆x], often referred to as ghost cells, to the mesh gives us all the
needed mesh points, corresponding to i = −1, 0, . . . , Nx, Nx + 1. The extra points i = −1 and
i = Nx + 1 are known as ghost points, and values at these points, un−1 and unNx+1, are called ghost
values.

The important idea is to ensure that we always have

un−1 = un1 and unNx+1 = unNx−1,

because then the application of the standard scheme at a boundary point i = 0 or i = Nx will be
correct and guarantee that the solution is compatible with the boundary condition ux = 0.

Implementation. The u array now needs extra elements corresponding to the ghost cells and
points. Two new point values are needed:

31

u = zeros(Nx+3)

The arrays u_1 and u_2 must be defined accordingly.
Unfortunately, a major indexing problem arises with ghost cells. The reason is that Python

indices must start at 0 and u[-1] will always mean the last element in u. This fact gives,
apparently, a mismatch between the mathematical indices i = −1, 0, . . . , Nx + 1 and the Python
indices running over u: 0,..,Nx+2. One remedy is to change the mathematical notation of the
scheme, as in

un+1
i = · · · , i = 1, . . . , Nx + 1,

meaning that the ghost points correspond to i = 0 and i = Nx + 1. A better solution is to use
the ideas of Section 6.4: we hide the specific index value in an index set and operate with inner
and boundary points using the index set notation.

To this end, we define u with proper length and Ix to be the corresponding indices for the
real physical points (1, 2, . . . , Nx + 1):

u = zeros(Nx+3)
Ix = range(1, u.shape[0]-1)

That is, the boundary points have indices Ix[0] and Ix[-1] (as before). We first update the
solution at all physical mesh points (i.e., interior points in the mesh extended with ghost cells):

for i in Ix:
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])

It remains to update the ghost points. For a boundary condition ux = 0, the ghost value must
equal to the value at the associated inner mesh point. Computer code makes this statement
precise:

i = Ix[0] # x=0 boundary
u[i-1] = u[i+1]
i = Ix[-1] # x=L boundary
u[i+1] = u[i-1]

The physical solution to be plotted is now in u[1:-1], or equivalently u[Ix[0]:Ix[-1]+1],
so this slice is the quantity to be returned from a solver function. A complete implementation
appears in the program wave1D_n0_ghost.py12.

Warning.

We have to be careful with how the spatial and temporal mesh points are stored. Say we
let x be the physical mesh points,

x = linspace(0, L, Nx+1)

"Standard coding" of the initial condition,

for i in Ix:
u_1[i] = I(x[i])

12http://tinyurl.com/nm5587k/wave/wave1D/wave1D_n0_ghost.py

32

becomes wrong, since u_1 and x have different lengths and the index i corresponds to two
different mesh points. In fact, x[i] corresponds to u[1+i]. A correct implementation is

for i in Ix:
u_1[i] = I(x[i-Ix[0]])

Similarly, a source term usually coded as f(x[i], t[n]) is incorrect if x is defined to be
the physical points, so x[i] must be replaced by x[i-Ix[0]].

An alternative remedy is to let x also cover the ghost points such that u[i] is the value
at x[i].

The ghost cell is only added to the boundary where we have a Neumann condition. Suppose we
have a Dirichlet condition at x = L and a homogeneous Neumann condition at x = 0. One ghost
cell [−∆x, 0] is added to the mesh, so the index set for the physical points becomes {1, . . . , Nx+1}.
A relevant implementation is

u = zeros(Nx+2)
Ix = range(1, u.shape[0])
...
for i in Ix[:-1]:

u[i] = - u_2[i] + 2*u_1[i] + \
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + \
dt2*f(x[i-Ix[0]], t[n])

i = Ix[-1]
u[i] = U_0 # set Dirichlet value
i = Ix[0]
u[i-1] = u[i+1] # update ghost value

The physical solution to be plotted is now in u[1:] or (as always) u[Ix[0]:Ix[-1]+1].

7 Generalization: variable wave velocity
Our next generalization of the 1D wave equation (1) or (17) is to allow for a variable wave velocity
c: c = c(x), usually motivated by wave motion in a domain composed of different physical media
with different properties for propagating waves and hence different wave velocities c. Figure

Figure 5: Left: wave entering another medium; right: transmitted and reflected wave .

33

7.1 The model PDE with a variable coefficient
Instead of working with the squared quantity c2(x) we shall for notational convenience introduce
q(x) = c2(x). A 1D wave equation with variable wave velocity often takes the form

∂2u

∂t2
= ∂

∂x

(
q(x)∂u

∂x

)
+ f(x, t) . (41)

This equation sampled at a mesh point (xi, tn) reads

∂2

∂t2
u(xi, tn) = ∂

∂x

(
q(xi)

∂

∂x
u(xi, tn)

)
+ f(xi, tn),

where the only new term is

∂

∂x

(
q(xi)

∂

∂x
u(xi, tn)

)
=
[
∂

∂x

(
q(x)∂u

∂x

)]n

i

.

7.2 Discretizing the variable coefficient
The principal idea is to first discretize the outer derivative. Define

φ = q(x)∂u
∂x
,

and use a centered derivative around x = xi for the derivative of φ:
[
∂φ

∂x

]n

i

≈
φi+ 1

2
− φi− 1

2

∆x = [Dxφ]ni .

Then discretize
φi+ 1

2
= qi+ 1

2

[
∂u

∂x

]n

i+ 1
2

≈ qi+ 1
2

uni+1 − uni
∆x = [qDxu]ni+ 1

2
.

Similarly,

φi− 1
2

= qi− 1
2

[
∂u

∂x

]n

i− 1
2

≈ qi− 1
2

uni − uni−1
∆x = [qDxu]ni− 1

2
.

These intermediate results are now combined to
[
∂

∂x

(
q(x)∂u

∂x

)]n

i

≈ 1
∆x2

(
qi+ 1

2

(
uni+1 − uni

)
− qi− 1

2

(
uni − uni−1

))
. (42)

With operator notation we can write the discretization as
[
∂

∂x

(
q(x)∂u

∂x

)]n

i

≈ [DxqDxu]ni . (43)

Remark.

Many are tempted to use the chain rule on the term ∂
∂x

(
q(x)∂u∂x

)
, but this is not a good

idea when discretizing such a term.

34

7.3 Computing the coefficient between mesh points
If q is a known function of x, we can easily evaluate qi+ 1

2
simply as q(xi+ 1

2
) with xi+ 1

2
= xi+ 1

2∆x.
However, in many cases c, and hence q, is only known as a discrete function, often at the mesh
points xi. Evaluating q between two mesh points xi and xi+1 can then be done by averaging in
three ways:

qi+ 1
2
≈ 1

2 (qi + qi+1) = [qx]i, (arithmetic mean) (44)

qi+ 1
2
≈ 2

(
1
qi

+ 1
qi+1

)−1
, (harmonic mean) (45)

qi+ 1
2
≈ (qiqi+1)1/2

, (geometric mean) (46)

The arithmetic mean in (44) is by far the most commonly used averaging technique.
With the operator notation from (44) we can specify the discretization of the complete

variable-coefficient wave equation in a compact way:

[DtDtu = Dxq
xDxu+ f]ni . (47)

From this notation we immediately see what kind of differences that each term is approximated
with. The notation qx also specifies that the variable coefficient is approximated by an arithmetic
mean, the definition being [qx]i+ 1

2
= (qi + qi+1)/2. With the notation [DxqDxu]ni , we specify

that q is evaluated directly, as a function, between the mesh points: q(xi− 1
2
) and q(xi+ 1

2
).

Before any implementation, it remains to solve (47) with respect to un+1
i :

un+1
i = −un−1

i + 2uni +
(

∆x
∆t

)2(1
2(qi + qi+1)(uni+1 − uni)− 1

2(qi + qi−1)(uni − uni−1)
)

+

∆t2fni . (48)

7.4 How a variable coefficient affects the stability
The stability criterion derived in Section 10.3 reads ∆t ≤ ∆x/c. If c = c(x), the criterion will
depend on the spatial location. We must therefore choose a ∆t that is small enough such that no
mesh cell has ∆x/c(x) > ∆t. That is, we must use the largest c value in the criterion:

∆t ≤ β ∆x
maxx∈[0,L] c(x) . (49)

The parameter β is included as a safety factor: in some problems with a significantly varying c it
turns out that one must choose β < 1 to have stable solutions (β = 0.9 may act as an all-round
value).

35

7.5 Neumann condition and a variable coefficient
Consider a Neumann condition ∂u/∂x = 0 at x = L = Nx∆x, discretized as

uni+1 − uni−1
2∆x = 0 uni+1 = uni−1,

for i = Nx. Using the scheme (48) at the end point i = Nx with uni+1 = uni−1 results in

un+1
i = −un−1

i + 2uni +
(

∆x
∆t

)2 (
qi+ 1

2
(uni−1 − uni)− qi− 1

2
(uni − uni−1)

)
+

∆t2fni (50)

= −un−1
i + 2uni +

(
∆x
∆t

)2
(qi+ 1

2
+ qi− 1

2
)(uni−1 − uni) + ∆t2fni (51)

≈ −un−1
i + 2uni +

(
∆x
∆t

)2
2qi(uni−1 − uni) + ∆t2fni . (52)

Here we used the approximation

qi+ 1
2

+ qi− 1
2

= qi +
(
dq

dx

)

i

∆x+
(
d2q

dx2

)

i

∆x2 + · · ·+

qi −
(
dq

dx

)

i

∆x+
(
d2q

dx2

)

i

∆x2 + · · ·

= 2qi + 2
(
d2q

dx2

)

i

∆x2 +O(∆x4)

≈ 2qi . (53)

An alternative derivation may apply the arithmetic mean of q in (48), leading to the term

(qi + 1
2(qi+1 + qi−1))(uni−1 − uni) .

Since 1
2 (qi+1 + qi−1) = qi +O(∆x2), we end up with 2qi(uni−1 − uni) for i = Nx as we did above.

A common technique in implementations of ∂u/∂x = 0 boundary conditions is to assume
dq/dx = 0 as well. This implies qi+1 = qi−1 and qi+1/2 = qi−1/2 for i = Nx. The implications for
the scheme are

un+1
i = −un−1

i + 2uni +
(

∆x
∆t

)2 (
qi+ 1

2
(uni−1 − uni)− qi− 1

2
(uni − uni−1)

)
+

∆t2fni (54)

= −un−1
i + 2uni +

(
∆x
∆t

)2
2qi− 1

2
(uni−1 − uni) + ∆t2fni . (55)

36

7.6 Implementation of variable coefficients
The implementation of the scheme with a variable wave velocity may assume that c is available as
an array c[i] at the spatial mesh points. The following loop is a straightforward implementation
of the scheme (48):

for i in range(1, Nx):
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(0.5*(q[i] + q[i+1])*(u_1[i+1] - u_1[i]) - \
0.5*(q[i] + q[i-1])*(u_1[i] - u_1[i-1])) + \

dt2*f(x[i], t[n])

The coefficient C2 is now defined as (dt/dx)**2 and not as the squared Courant number since
the wave velocity is variable and appears inside the parenthesis.

With Neumann conditions ux = 0 at the boundary, we need to combine this scheme with the
discrete version of the boundary condition, as shown in Section 7.5. Nevertheless, it would be
convenient to reuse the formula for the interior points and just modify the indices ip1=i+1 and
im1=i-1 as we did in Section 6.3. Assuming dq/dx = 0 at the boundaries, we can implement the
scheme at the boundary with the following code.

i = 0
ip1 = i+1
im1 = ip1
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_1[ip1] - u_1[i]) - \
0.5*(q[i] + q[im1])*(u_1[i] - u_1[im1])) + \

dt2*f(x[i], t[n])

With ghost cells we can just reuse the formula for the interior points also at the boundary,
provided that the ghost values of both u and q are correctly updated to ensure ux = 0 and qx = 0.

A vectorized version of the scheme with a variable coefficient at internal points in the mesh
becomes

u[1:-1] = - u_2[1:-1] + 2*u_1[1:-1] + \
C2*(0.5*(q[1:-1] + q[2:])*(u_1[2:] - u_1[1:-1]) -

0.5*(q[1:-1] + q[:-2])*(u_1[1:-1] - u_1[:-2])) + \
dt2*f(x[1:-1], t[n])

7.7 A more general model PDE with variable coefficients
Sometimes a wave PDE has a variable coefficient also in front of the time-derivative term:

%(x)∂
2u

∂t2
= ∂

∂x

(
q(x)∂u

∂x

)
+ f(x, t) . (56)

A natural scheme is

[%DtDtu = Dxq
xDxu+ f]ni . (57)

We realize that the % coefficient poses no particular difficulty because the only value %ni enters
the formula above (when written out). There is hence no need for any averaging of %. Often, %
will be moved to the right-hand side, also without any difficulty:

[DtDtu = %−1Dxq
xDxu+ f]ni . (58)

37

7.8 Generalization: damping
Waves die out by two mechanisms. In 2D and 3D the energy of the wave spreads out in space,
and energy conservation then requires the amplitude to decrease. This effect is not present in 1D.
Damping is another cause of amplitude reduction. For example, the vibrations of a string die out
because of damping due to air resistance and non-elastic effects in the string.

The simplest way of including damping is to add a first-order derivative to the equation (in
the same way as friction forces enter a vibrating mechanical system):

∂2u

∂t2
+ b

∂u

∂t
= c2

∂2u

∂x2 + f(x, t), (59)

where b ≥ 0 is a prescribed damping coefficient.
A typical discretization of (59) in terms of centered differences reads

[DtDtu+ bD2tu = c2DxDxu+ f]ni . (60)
Writing out the equation and solving for the unknown un+1

i gives the scheme

un+1
i = (1 + 1

2b∆t)
−1((1

2b∆t− 1)un−1
i + 2uni + C2 (uni+1 − 2uni + uni−1

)
+ ∆t2fni), (61)

for i ∈ Iix and n ≥ 1. New equations must be derived for u1
i , and for boundary points in case of

Neumann conditions.
The damping is very small in many wave phenomena and then only evident for very long

time simulations. This makes the standard wave equation without damping relevant for a lot of
applications.

8 Building a general 1D wave equation solver
The program wave1D_dn_vc.py13 is a fairly general code for 1D wave propagation problems that
targets the following initial-boundary value problem

ut = (c2(x)ux)x + f(x, t), x ∈ (0, L), t ∈ (0, T] (62)
u(x, 0) = I(x), x ∈ [0, L] (63)
ut(x, 0) = V (t), x ∈ [0, L] (64)
u(0, t) = U0(t) or ux(0, t) = 0, t ∈ (0, T] (65)
u(L, t) = UL(t) or ux(L, t) = 0, t ∈ (0, T] (66)

The solver function is a natural extension of the simplest solver function in the initial
wave1D_u0.py program, extended with Neumann boundary conditions (ux = 0), a possibly
time-varying boundary condition on u (U0(t), UL(t)), and a variable wave velocity. The different
code segments needed to make these extensions are shown and commented upon in the preceding
text.

The vectorization is only applied inside the time loop, not for the initial condition or the first
time steps, since this initial work is negligible for long time simulations in 1D problems.

The following sections explain various more advanced programming techniques applied in the
general 1D wave equation solver.

13http://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn_vc.py

38

8.1 User action function as a class
A useful feature in the wave1D_dn_vc.py program is the specification of the user_action function
as a class. Although the plot_u function in the viz function of previous wave1D*.py programs
remembers the local variables in the viz function, it is a cleaner solution to store the needed
variables together with the function, which is exactly what a class offers.

A class for flexible plotting, cleaning up files, and making a movie files like function viz and
plot_u did can be coded as follows:

class PlotSolution:
"""
Class for the user_action function in solver.
Visualizes the solution only.
"""
def __init__(self,

casename=’tmp’, # Prefix in filenames
umin=-1, umax=1, # Fixed range of y axis
pause_between_frames=None, # Movie speed
backend=’matplotlib’, # or ’gnuplot’
screen_movie=True, # Show movie on screen?
title=’’, # Extra message in title
every_frame=1): # Show every_frame frame

self.casename = casename
self.yaxis = [umin, umax]
self.pause = pause_between_frames
module = ’scitools.easyviz.’ + backend + ’_’
exec(’import %s as plt’ % module)
self.plt = plt
self.screen_movie = screen_movie
self.title = title
self.every_frame = every_frame

Clean up old movie frames
for filename in glob(’frame_*.png’):

os.remove(filename)

def __call__(self, u, x, t, n):
if n % self.every_frame != 0:

return
title = ’t=%.3g’ % t[n]
if self.title:

title = self.title + ’ ’ + title
self.plt.plot(x, u, ’r-’,

xlabel=’x’, ylabel=’u’,
axis=[x[0], x[-1],

self.yaxis[0], self.yaxis[1]],
title=title,
show=self.screen_movie)

pause
if t[n] == 0:

time.sleep(2) # let initial condition stay 2 s
else:

if self.pause is None:
pause = 0.2 if u.size < 100 else 0

time.sleep(pause)

self.plt.savefig(’%s_frame_%04d.png’ % (self.casename, n))

Understanding this class requires quite some familiarity with Python in general and class pro-
gramming in particular.

The constructor shows how we can flexibly import the plotting engine as (typically) scitools.easyviz.gnuplot_
or scitools.easyviz.matplotlib_ (note the trailing underscore). With the screen_movie pa-

39

rameter we can suppress displaying each movie frame on the screen. Alternatively, for slow movies
associated with fine meshes, one can set every_frame to, e.g., 10, causing every 10 frames to be
shown.

The __call__ method makes PlotSolution instances behave like functions, so we can just
pass an instance, say p, as the user_action argument in the solver function, and any call to
user_action will be a call to p.__call__.

8.2 Pulse propagation in two media
The function pulse in wave1D_dn_vc.py demonstrates wave motion in heterogeneous media
where c varies. One can specify an interval where the wave velocity is decreased by a factor
slowness_factor (or increased by making this factor less than one). Four types of initial
conditions are available: a rectangular pulse (plug), a Gaussian function (gaussian), a "cosine
hat" consisting of one period of the cosine function (cosinehat), and half a period of a "cosine
hat" (half-cosinehat). These peak-shaped initial conditions can be placed in the middle
(loc=’center’) or at the left end (loc=’left’) of the domain. The pulse function is a flexible
tool for playing around with various wave shapes and location of a medium with a different wave
velocity:

def pulse(C=1, Nx=200, animate=True, version=’vectorized’, T=2,
loc=’center’, pulse_tp=’gaussian’, slowness_factor=2,
medium=[0.7, 0.9], every_frame=1, sigma=0.05):

"""
Various peaked-shaped initial conditions on [0,1].
Wave velocity is decreased by the slowness_factor inside
medium. The loc parameter can be ’center’ or ’left’,
depending on where the initial pulse is to be located.
The sigma parameter governs the width of the pulse.
"""
Use scaled parameters: L=1 for domain length, c_0=1
for wave velocity outside the domain.
L = 1.0
c_0 = 1.0
if loc == ’center’:

xc = L/2
elif loc == ’left’:

xc = 0

if pulse_tp in (’gaussian’,’Gaussian’):
def I(x):

return exp(-0.5*((x-xc)/sigma)**2)
elif pulse_tp == ’plug’:

def I(x):
return 0 if abs(x-xc) > sigma else 1

elif pulse_tp == ’cosinehat’:
def I(x):

One period of a cosine
w = 2
a = w*sigma
return 0.5*(1 + cos(pi*(x-xc)/a)) \

if xc - a <= x <= xc + a else 0

elif pulse_tp == ’half-cosinehat’:
def I(x):

Half a period of a cosine
w = 4
a = w*sigma
return cos(pi*(x-xc)/a) \

if xc - 0.5*a <= x <= xc + 0.5*a else 0

40

else:
raise ValueError(’Wrong pulse_tp="%s"’ % pulse_tp)

def c(x):
return c_0/slowness_factor \

if medium[0] <= x <= medium[1] else c_0

umin=-0.5; umax=1.5*I(xc)
casename = ’%s_Nx%s_sf%s’ % \

(pulse_tp, Nx, slowness_factor)
action = PlotMediumAndSolution(

medium, casename=casename, umin=umin, umax=umax,
every_frame=every_frame, screen_movie=animate)

dt = (L/Nx)/c # choose the stability limit with given Nx
Lower C will then use this dt, but smaller Nx
solver(I=I, V=None, f=None, c=c, U_0=None, U_L=None,

L=L, dt=dt, C=C, T=T,
user_action=action, version=version,
stability_safety_factor=1)

The PlotMediumAndSolution class used here is a subclass of PlotSolution where the medium
with reduced c value, as specified by the medium interval, is visualized in the plots.

Notice.
The argument Nx in the pulse function does not correspond to the actual spatial resolution
of C < 1, since the solver function takes a fixed ∆t and C, and adjusts ∆x accordingly.
As seen in the pulse function, the specified ∆t is chosen according to the limit C = 1, so
if C < 1, ∆t remains the same, but the solver function operates with a larger ∆x and
smaller Nx than was specified in the call to pulse. The practical reason is that we always
want to keep ∆t fixed such that plot frames and movies are synchronized in time regardless
of the value of C (i.e., ∆x is varies when the Courant number varies).

The reader is encouraged to play around with the pulse function:

>>> import wave1D_dn_vc as w
>>> w.pulse(loc=’left’, pulse_tp=’cosinehat’, Nx=50, every_frame=10)

To easily kill the graphics by Ctrl-C and restart a new simulation it might be easier to run the
above two statements from the command line with

Terminal> python -c ’import wave1D_dn_vc as w; w.pulse(...)’

9 Exercises
Exercise 6: Find the analytical solution to a damped wave equation
Consider the wave equation with damping (59). The goal is to find an exact solution to a wave
problem with damping. A starting point is the standing wave solution from Exercise 1. It becomes
necessary to include a damping term e−ct and also have both a sine and cosine component in
time:

41

ue(x, t) = e−βt sin kx (A cosωt+B sinωt) .

Find k from the boundary conditions u(0, t) = u(L, t) = 0. Then use the PDE to find constraints
on β, ω, A, and B. Set up a complete initial-boundary value problem and its solution. Filename:
damped_waves.pdf.

Problem 7: Explore symmetry boundary conditions
Consider the simple "plug" wave where Ω = [−L,L] and

I(x) =
{

1, x ∈ [−δ, δ],
0, otherwise

for some number 0 < δ < L. The other initial condition is ut(x, 0) = 0 and there is no source
term f . The boundary conditions can be set to u = 0. The solution to this problem is symmetric
around x = 0. This means that we can simulate the wave process in only the half of the domain
[0, L].

a) Argue why the symmetry boundary condition is ux = 0 at x = 0.

Hint. Symmetry of a function about x = x0 means that f(x0 + h) = f(x0 − h).

b) Perform simulations of the complete wave problem from on [−L,L]. Thereafter, utilize the
symmetry of the solution and run a simulation in half of the domain [0, L], using a boundary
condition at x = 0. Compare the two solutions and make sure that they are the same.

c) Prove the symmetry property of the solution by setting up the complete initial-boundary
value problem and showing that if u(x, t) is a solution, then also u(−x, t) is a solution.
Filename: wave1D_symmetric.

Exercise 8: Send pulse waves through a layered medium
Use the pulse function in wave1D_dn_vc.py to investigate sending a pulse, located with its peak
at x = 0, through the medium to the right where it hits another medium for x ∈ [0.7, 0.9] where
the wave velocity is decreased by a factor sf . Report what happens with a Gaussian pulse, a
"cosine hat" pulse, half a "cosine hat" pulse, and a plug pulse for resolutions Nx = 40, 80, 160,
and sf = 2, 4. Use C = 1 in the medium outside [0.7, 0.9]. Simulate until T = 2. Filename:
pulse1D.py.

Exercise 9: Compare discretizations of a Neumann condition
We have a 1D wave equation with variable wave velocity: ut = (qux)x. A Neumann condition ux
at x = 0, L can be discretized as shown in (52) and (55).

The aim of this exercise is to examine the rate of the numerical error when using different
ways of discretizing the Neumann condition. As test problem, q = 1 + (x− L/2)4 can be used,
with f(x, t) adapted such that the solution has a simple form, say u(x, t) = cos(πx/L) cos(ωt) for
some ω = √qπ/L.
a) Perform numerical experiments and find the convergence rate of the error using the approxi-
mation and (55).

42

b) Switch to q(x) = cos(πx/L), which is symmetric at x = 0, L, and check the convergence rate
of the scheme (55). Now, qi−1/2 is a 2nd-order approximation to qi, qi−1/2 = qi+0.25q′′i ∆x2 + · · · ,
because q′i = 0 for i = Nx (a similar argument can be applied to the case i = 0).

c) A third discretization can be based on a simple and convenient, but less accurate, one-sided
difference: ui − ui−1 = 0 at i = Nx and ui+1 − ui = 0 at i = 0. Derive the resulting scheme in
detail and implement it. Run experiments to establish the rate of convergence.

d) A fourth technique is to view the scheme as

[DtDtu]ni = 1
∆x

(
[qDxu]ni+ 1

2
− [qDxu]ni− 1

2

)
+ [f]ni ,

and place the boundary at xi+ 1
2
, i = Nx, instead of exactly at the physical boundary. With

this idea, we can just set [qDxu]n
i+ 1

2
= 0. Derive the complete scheme using this technique. The

implementation of the boundary condition at L−∆x/2 is O(∆x2) accurate, but the interesting
question is what impact the movement of the boundary has on the convergence rate (compute
the errors as usual over the entire mesh).

Exercise 10: Verification by a cubic polynomial in space
The purpose of this exercise is to verify the implementation of the solver function in the program
wave1D_n0.py14 by using an exact numerical solution for the wave equation utt = c2uxx + f with
Neumann boundary conditions ux(0, t) = ux(L, t) = 0.

A similar verification is used in the file wave1D_u0.py15, which solves the same PDE, but
with Dirichlet boundary conditions u(0, t) = u(L, t) = 0. The idea of the verification test in
function test_quadratic in wave1D_u0.py is to a solution that is a lower-order polynomial such
that both the PDE problem, the boundary conditions, and all the discrete equations are exactly
fulfilled. Then the solver function should reproduce this exact solution to machine precision.
More precisely, we seek u = X(x)T (t), with T (t) as a linear function and X(x) as a parabola
that fulfills the boundary conditions. Inserting this u in the PDE determines f . It tuns out that
u also fulfills the discrete equations, because the truncation error of the discretized PDE has
derivatives in x and t of order four and higher. These derivatives all vanish for a quadratic X(x)
and linear T (t).

It would be attractive to use a similar approach in the case of Neumann conditions. We set
u = X(x)T (t) and seek lower-order polynomials X and T . To force ux to vanish at the boundary,
we let Xx be a parabola. Then X is a cubic polynomial. The fourth-order derivative of a cubic
polynomial vanishes, so u = X(x)T (t) will fulfill the discretized PDE also in this case, if f is
adjusted such that u fulfills the PDE.

However, the discrete boundary condition is not exactly fulfilled by this choice of u. The
reason is that

[D2xu]ni = ux(xi, tn) + 1
6uxxx(xi, tn)∆x2 +O(∆x4) . (67)

At the boundary two boundary points, Xx(x) = 0 such that ux = 0. However, uxxx is a constant
and not zero when X(x) is a cubic polynomial. Therefore, our u = X(x)T (t) fulfills

[D2xu]ni = 1
6uxxx(xi, tn)∆x2,

14http://tinyurl.com/nm5587k/wave/wave1D/wave1D_n0.py
15http://tinyurl.com/nm5587k/wave/wave1D/wave1D_u0.py

43

and not

[D2xu]ni = 0, quadi = 0, Nx,

as it should. (Note that all the higher-order terms O(∆x4) also have higher-order derivatives that
vanish for a cubic polynomial.) So to summarize, the fundamental problem is that u as a product
of a cubic polynomial and a linear or quadratic polynomial in time is not an exact solution of the
discrete boundary conditions.

To make progress, we assume that u = X(x)T (t), where T for simplicity is taken as a prescribed
linear function 1 + 1

2 t, and X(x) is taken as an unknown cubic polynomial
∑3
j=0 ajx

j . There are
two different ways of determining the coefficients a0, . . . , a3 such that both the discretized PDE
and the discretized boundary conditions are fulfilled, under the constraint that we can specify a
function f(x, t) for the PDE to feed to the solver function in wave1D_n0.py. Both approaches
are explained in the subexercises.

a) One can insert u in the discretized PDE and find the corresponding f . Then one can insert u in
the discretized boundary conditions. This yields two equations for the four coefficients a0, . . . , a3.
To find the coefficients, one can set a0 = 0 and a1 = 1 for simplicity and then determine a2 and
a3. This approach will make a2 and a3 depend on ∆x and f will depend on both ∆x and ∆t.

Use sympy to perform analytical computations. A starting point is to define u as follows:

def test_cubic1():
import sympy as sm
x, t, c, L, dx, dt = sm.symbols(’x t c L dx dt’)
i, n = sm.symbols(’i n’, integer=True)

Assume discrete solution is a polynomial of degree 3 in x
T = lambda t: 1 + sm.Rational(1,2)*t # Temporal term
a = sm.symbols(’a_0 a_1 a_2 a_3’)
X = lambda x: sum(a[q]*x**q for q in range(4)) # Spatial term
u = lambda x, t: X(x)*T(t)

The symbolic expression for u is reached by calling u(x,t) with x and t as sympy symbols.
Define DxDx(u, i, n), DtDt(u, i, n), and D2x(u, i, n) as Python functions for returning

the difference approximations [DxDxu]ni , [DtDtu]ni , and [D2xu]ni . The next step is to set up the
residuals for the equations [D2xu]n0 = 0 and [D2xu]nNx

= 0, where Nx = L/∆x. Call the residuals
R_0 and R_L. Substitute a0 and a1 by 0 and 1, respectively, in R_0, R_L, and a:

R_0 = R_0.subs(a[0], 0).subs(a[1], 1)
R_L = R_L.subs(a[0], 0).subs(a[1], 1)
a = list(a) # enable in-place assignment
a[0:2] = 0, 1

Determining a2 and a3 from the discretized boundary conditions is then about solving two
equations with respect to a2 and a3, i.e., a[2:]:

s = sm.solve([R_0, R_L], a[2:])
s is dictionary with the unknowns a[2] and a[3] as keys
a[2:] = s[a[2]], s[a[3]]

Now, a contains computed values and u will automatically use these new values since X accesses a.
Compute the source term f from the discretized PDE: fni = [DtDtu− c2DxDxu]ni . Turn u,

the time derivative ut (needed for the initial condition V (x)), and f into Python functions. Set
numerical values for L, Nx, C, and c. Prescribe the time interval as ∆t = CL/(Nxc), which

44

imply ∆x = c∆t/C = L/Nx. Define new functions I(x), V(x), and f(x,t) as wrappers of the
ones made above, where fixed values of L, c, ∆x, and ∆t are inserted, such that I, V, and f can
be passed on to the solver function. Finally, call solver with a user_action function that
compares the numerical solution to this exact solution u of the discrete PDE problem.

Hint. To turn a sympy expression e, depending on a series of symbols, say x, t, dx, dt, L, and
c, into plain Python function e_exact(x,t,L,dx,dt,c), one can write

e_exact = sm.lambdify([x,t,L,dx,dt,c], e, ’numpy’)

The ’numpy’ argument is a good habit as the e_exact function will then work with array
arguments if it contains mathematical functions (but here we only do plain arithmetics, which
automatically work with arrays).

b) An alternative way of determining a0, . . . , a3 is to reason as follows. We first construct X(x)
such that the boundary conditions are fulfilled: X = x(L− x). However, to compensate for the
fact that this choice of X does not fulfill the discrete boundary condition, we seek u such that

ux = ∂

∂x
x(L− x)T (t)− 1

6uxxx∆x2,

since this u will fit the discrete boundary condition. Assuming u = T (t)
∑3
j=0 ajx

j , we can use
the above equation to determine the coefficients a1, a2, a3. A value, e.g., 1 can be used for a0.
The following sumpy code computes this u:

def test_cubic2():
import sympy as sm
x, t, c, L, dx = sm.symbols(’x t c L dx’)
T = lambda t: 1 + sm.Rational(1,2)*t # Temporal term
Set u as a 3rd-degree polynomial in space
X = lambda x: sum(a[i]*x**i for i in range(4))
a = sm.symbols(’a_0 a_1 a_2 a_3’)
u = lambda x, t: X(x)*T(t)
Force discrete boundary condition to be zero by adding
a correction term the analytical suggestion x*(L-x)*T
u_x = x*(L-x)*T(t) - 1/6*u_xxx*dx**2
R = sm.diff(u(x,t), x) - (

x*(L-x) - sm.Rational(1,6)*sm.diff(u(x,t), x, x, x)*dx**2)
R is a polynomial: force all coefficients to vanish.
Turn R to Poly to extract coefficients:
R = sm.poly(R, x)
coeff = R.all_coeffs()
s = sm.solve(coeff, a[1:]) # a[0] is not present in R
s is dictionary with a[i] as keys
Fix a[0] as 1
s[a[0]] = 1
X = lambda x: sm.simplify(sum(s[a[i]]*x**i for i in range(4)))
u = lambda x, t: X(x)*T(t)
print ’u:’, u(x,t)

The next step is to find the source term f_e by inserting u_e in the PDE. Thereafter, turn u,
f, and the time derivative of u into plain Python functions as in a), and then wrap these functions
in new functions I, V, and f, with the right signature as required by the solver function. Set
parameters as in a) and check that the solution is exact to machine precision at each time level
using an appropriate user_action function.
Filename: wave1D_n0_test_cubic.py.

45

10 Analysis of the difference equations
10.1 Properties of the solution of the wave equation
The wave equation

∂2u

∂t2
= c2

∂2u

∂x2

has solutions of the form

u(x, t) = gR(x− ct) + gL(x+ ct), (68)

for any functions gR and gL sufficiently smooth to be differentiated twice. The result follows
from inserting (68) in the wave equation. A function of the form gR(x− ct) represents a signal
moving to the right in time with constant velocity c. This feature can be explained as follows. At
time t = 0 the signal looks like gR(x). Introducing a moving x axis with coordinates ξ = x− ct,
we see the function gR(ξ) is "at rest" in the ξ coordinate system, and the shape is always the
same. Say the gR(ξ) function has a peak at ξ = 0. This peak is located at x = ct, which means
that it moves with the velocity dx/dt = c in the x coordinate system. Similarly, gL(x+ ct) is a
function initially with shape gL(x) that moves in the negative x direction with constant velocity
c (introduce ξ = x+ ct, look at the point ξ = 0, x = −ct, which has velocity dx/dt = −c).

With the particular initial conditions

u(x, 0) = I(x), ∂

∂t
u(x, 0) = 0,

we get, with u as in (68),

gR(x) + gL(x) = I(x), −cg′R(x) + cg′L(x) = 0,

which have the solution gR = gL = I/2, and consequently

u(x, t) = 1
2I(x− ct) + 1

2I(x+ ct) . (69)

The interpretation of (69) is that the initial shape of u is split into two parts, each with the same
shape as I but half of the initial amplitude. One part is traveling to the left and the other one to
the right.

The solution has two important physical features: constant amplitude of the left and right
wave, and constant velocity of these two waves. It turns out that the numerical solution will also
preserve the constant amplitude, but the velocity depends on the mesh parameters ∆t and ∆x.

The solution (69) will be influenced by boundary conditions when the parts 1
2I(x− ct) and

1
2I(x+ ct) hit the boundaries and get, e.g., reflected back into the domain. However, when I(x)
is nonzero only in a small part in the middle of the spatial domain [0, L], which means that the
boundaries are placed far away from the initial disturbance of u, the solution (69) is very clearly
observed in a simulation.

A useful representation of solutions of wave equations is a linear combination of sine and/or
cosine waves. Such a sum of waves is a solution if the governing PDE is linear and each sine
or cosine wave fulfills the equation. To ease analytical calculations by hand we shall work with
complex exponential functions instead of real-valued sine or cosine functions. The real part of
complex expressions will typically be taken as the physical relevant quantity (whenever a physical

46

relevant quantity is strictly needed). The idea now is to build I(x) of complex wave components
eikx:

I(x) ≈
∑

k∈K
bke

ikx . (70)

Here, k is the frequency of a component, K is some set of all the discrete k values needed to
approximate I(x) well, and bk are constants that must be determined. We will very seldom need
to compute the bk coefficients: most of the insight we look for and the understanding of the
numerical methods we want to establish, come from investigating how the PDE and the scheme
treat a single component eikx wave.

Letting the number of k values in K tend to infinity makes the sum (70) converge to I(x),
and this sum is known as a Fourier series representation of I(x). Looking at (69), we see that
the solution u(x, t), when I(x) is represented as in (70), is also built of basic complex exponential
wave components of the form eik(x±ct) according to

u(x, t) = 1
2
∑

k∈K
bke

ik(x−ct) + 1
2
∑

k∈K
bke

ik(x+ct) . (71)

It is common to introduce the frequency in time ω = kc and assume that u(x, t) is a sum of
basic wave components written as eikx−ωt. (Observe that inserting such a wave component in
the governing PDE reveals that ω2 = k2c2, or ω ± kc, reflecting the two solutions: one (+kc)
traveling to the right and the other (−kc) traveling to the left.)

10.2 More precise definition of Fourier representations
The quick intuitive introduction above to representing a function by a sum of sine and cosine
waves suffices as background for the forthcoming material on analyzing a single wave component.
However, to understand all details of how different wave components sum up to the analytical and
numerical solution, a more precise mathematical treatment is helpful and therefore summarized
below.

It is well known that periodic functions can be represented by Fourier series. A generalization
of the Fourier series idea to non-periodic functions defined on the real line is the Fourier transform:

I(x) =
∫ ∞

−∞
A(k)eikxdk, (72)

A(k) =
∫ ∞

−∞
I(x)e−ikxdx . (73)

The function A(k) reflects the weight of each wave component eikx in an infinite sum of such
wave components. That is, A(k) reflects the frequency content in the function I(x). Fourier
transforms are particularly fundamental for analyzing and understanding time-varying signals.

The solution of the linear 1D wave PDE can be expressed as

u(x, t) =
∫ ∞

−∞
A(k)ei(kx−ω(k)t)dx .

In a finite difference method, we represent u by a mesh function unq , where n counts temporal
mesh points and q counts the spatial ones (the usual counter for spatial points, i, is here already
used as imaginary unit). Similarly, I(x) is approximated by the mesh function Iq, q = 0, . . . , Nx.
On a mesh, it does not make sense to work with wave components eikx for very large k, because
the shortest possible sine or cosine wave that can be represented on a mesh with spacing ∆x is

47

the wave with wavelength 2∆x (the sine/cosine signal jumps up and down between each mesh
point). The corresponding k value is k = 2π/(2∆x) = π/∆x, known as the Nyquist frequency.
Within the range of relevant frequencies (0, π/∆x] one defines the discrete Fourier transform16,
using Nx + 1 discrete frequencies:

Iq = 1
Nx + 1

Nx∑

k=0
Ake

i2πkj/(Nx+1), i = 0, . . . , Nx, (74)

Ak =
Nx∑

q=0
Iqe
−i2πkq/(Nx+1), k = 0, . . . , Nx + 1 . (75)

The Ak values is the discrete Fourier transform of the Iq values, and the latter are the inverse
discrete Fourier transform of the Ak values.

The discrete Fourier transform is efficiently computed by the Fast Fourier transform algorithm.
For a real function I(x) the relevant Python code for computing and plotting the discrete Fourier
transform appears in the example below.

import numpy as np
from numpy import sin

def I(x):
return sin(2*pi*x) + 0.5*sin(4*pi*x) + 0.1*sin(6*pi*x)

Mesh
L = 10; Nx = 100
x = np.linspace(0, L, Nx+1)
dx = L/float(Nx)

Discrete Fourier transform
A = np.fft.rfft(I(x))
A_amplitude = np.abs(A)

Compute the corresponding frequencies
freqs = np.linspace(0, pi/dx, A_amplitude.size)

import matplotlib.pyplot as plt
plt.plot(freqs, A_amplitude)
plt.show()

10.3 Stability
The scheme

[DtDtu = c2DxDxu]nq (76)

for the wave equation ut = c2uxx allows basic wave components

unq = ei(kxq−ω̃tn)

as solution, but it turns out that the frequency in time, ω̃, is not equal to the exact ω = kc. The
idea now is to study how the scheme treats an arbitrary wave component with a given k. We ask
two key questions:

16http://en.wikipedia.org/wiki/Discrete_Fourier_transform

48

• How accurate is ω̃ compared to ω?

• Does the amplitude of such a wave component preserve its (unit) amplitude, as it should,
or does it get amplified or damped in time (due to a complex ω̃)?

The following analysis will answer these questions. Note the need for using q as counter for the
mesh point in x direction since i is already used as the imaginary unit (in this analysis).

Preliminary results. A key result needed in the investigations is the finite difference approxi-
mation of a second-order derivative acting on a complex wave component:

[DtDte
iωt]n = − 4

∆t2 sin2
(
ω∆t

2

)
eiωn∆t .

By just changing symbols (ω → k, t→ x, n→ q) it follows that

[DxDxe
ikx]q = − 4

∆x2 sin2
(
k∆x

2

)
eikq∆x .

Numerical wave propagation. Inserting a basic wave component unq = ei(kxq−ω̃tn) in (76)
results in the need to evaluate two expressions:

[DtDte
ikxe−iω̃t]nq = [DtDte

−iω̃t]neikq∆x

= − 4
∆t2 sin2

(
ω̃∆t

2

)
e−iω̃n∆teikq∆x (77)

[DxDxe
ikxe−iω̃t]nq = [DxDxe

ikx]qe−iω̃n∆t

= − 4
∆x2 sin2

(
k∆x

2

)
eikq∆xe−iω̃n∆t . (78)

Then the complete scheme,

[DtDte
ikxe−iω̃t = c2DxDxe

ikxe−iω̃t]nq
leads to the following equation for the unknown numerical frequency ω̃ (after dividing by
−eikxe−iω̃t):

4
∆t2 sin2

(
ω̃∆t

2

)
= c2

4
∆x2 sin2

(
k∆x

2

)
,

or

sin2
(
ω̃∆t

2

)
= C2 sin2

(
k∆x

2

)
, (79)

where

C = c∆t
∆x (80)

is the Courant number. Taking the square root of (79) yields

sin
(
ω̃∆t

2

)
= C sin

(
k∆x

2

)
, (81)

49

Since the exact ω is real it is reasonable to look for a real solution ω̃ of (81). The right-hand
side of (81) must then be in [−1, 1] because the sine function on the left-hand side has values in
[−1, 1] for real ω̃. The sine function on the right-hand side can attain the value 1 when

k∆x
2 = m

π

2 , m ∈ Z .

With m = 1 we have k∆x = π, which means that the wavelength λ = 2π/k becomes 2∆x. This
is the absolutely shortest wavelength that can be represented on the mesh: the wave jumps up
and down between each mesh point. Larger values of |m| are irrelevant since these correspond
to k values whose waves are too short to be represented on a mesh with spacing ∆x. For the
shortest possible wave in the mesh, sin (k∆x/2) = 1, and we must require

C ≤ 1 . (82)

Consider a right-hand side in (81) of magnitude larger than unity. The solution ω̃ of (81)
must then be a complex number ω̃ = ω̃r + iω̃i because the sine function is larger than unity for a
complex argument. One can show that for any ωi there will also be a corresponding solution with
−ωi. The component with ωi > 0 gives an amplification factor eωit that grows exponentially in
time. We cannot allow this and must therefore require C ≤ 1 as a stability criterion.

Remark.
For smoother wave components with longer wave lengths per length ∆x, (82) can in theory
be relaxed. However, small round-off errors are always present in a numerical solution and
these vary arbitrarily from mesh point to mesh point and can be viewed as unavoidable
noise with wavelength 2∆x. As explained, C > 1 will for this very small noise lead to
exponential growth of the shortest possible wave component in the mesh. This noise will
therefore grow with time and destroy the whole solution.

10.4 Numerical dispersion relation
Equation (81) can be solved with respect to ω̃:

ω̃ = 2
∆t sin−1

(
C sin

(
k∆x

2

))
. (83)

The relation between the numerical frequency ω̃ and the other parameters k, c, ∆x, and ∆t
is called a numerical dispersion relation. Correspondingly, ω = kc is the analytical dispersion
relation.

The special case C = 1 deserves attention since then the right-hand side of (83) reduces to

2
∆t

k∆x
2 = 1

∆t
ω∆x
c

= ω

C
= ω .

That is, ω̃ = ω and the numerical solution is exact at all mesh points regardless of ∆x and ∆t!
This implies that the numerical solution method is also an analytical solution method, at least
for computing u at discrete points (the numerical method says nothing about the variation of
u between the mesh points, and employing the common linear interpolation for extending the
discrete solution gives a curve that deviates from the exact one).

50

For a closer examination of the error in the numerical dispersion relation when C < 1, we can
study ω̃ − ω, ω̃/ω, or the similar error measures in wave velocity: c̃− c and c̃/c, where c = ω/k
and c̃ = ω̃/k. It appears that the most convenient expression to work with is c̃/c:

c̃

c
= 1
Cp

sin−1 (C sin p) ,

with p = k∆x/2 as a non-dimensional measure of the spatial frequency. In essence, p tells
how many spatial mesh points we have per wave length in space of the wave component with
frequency k (the wave length is 2π/k). That is, p reflects how well the spatial variation of the
wave component is resolved in the mesh. Wave components with wave length less than 2∆x
(2π/k < 2∆x) are not visible in the mesh, so it does not make sense to have p > π/2.

We may introduce the function r(C, p) = c̃/c for further investigation of numerical errors in
the wave velocity:

r(C, p) = 1
Cp

sin−1 (C sin p) , C ∈ (0, 1], p ∈ (0, π/2] . (84)

This function is very well suited for plotting since it combines several parameters in the problem
into a dependence on two non-dimensional numbers, C and p.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
p

0.6

0.7

0.8

0.9

1.0

1.1

ve
lo

ci
ty

 ra
tio

Numerical divided by exact wave velocity

C=1
C=0.95
C=0.8
C=0.3

Figure 6: The fractional error in the wave velocity for different Courant numbers.

Defining

51

def r(C, p):
return 2/(C*p)*asin(C*sin(p))

we can plot r(C, p) as a function of p for various values of C, see Figure 6. Note that the shortest
waves have the most erroneous velocity, and that short waves move more slowly than they should.

With sympy we can also easily make a Taylor series expansion in the discretization parameter
p:

>>> C, p = symbols(’C p’)
>>> # Compute the 7 first terms around p=0 with no O() term
>>> rs = r(C, p).series(p, 0, 7).removeO()
>>> rs
p**6*(5*C**6/112 - C**4/16 + 13*C**2/720 - 1/5040) +
p**4*(3*C**4/40 - C**2/12 + 1/120) +
p**2*(C**2/6 - 1/6) + 1
>>> rs_error_leading_order = (rs - 1).extract_leading_order(p)
>>> rs_error_leading_order
p**2*(C**2/6 - 1/6)
>>> # Turn the series expansion into a Python function
>>> rs_pyfunc = lambdify([C, p], rs, modules=’numpy’)
>>> # Check: rs_pyfunc is exact (=1) for C=1
>>> rs_pyfunc(1, 0.1)
1.0

Without the .removeO() call the series get an O(x**7) term that makes it impossible to convert
the series to a Python function (for, e.g., plotting).

From the rs_error_leading_order expression above we see that the leading order term in
the error of this series expansion is

1
6

(
k∆x

2

)2
(C2 − 1) = k2

24
(
c2∆t2 −∆x2) , (85)

pointing to an error O(∆t2,∆x2), which is compatible with the errors in the difference approxi-
mations (DtDt and DxDx).

Here is an alternative way of performing a series expansion: we use the lseries method,
which returns an iterator over all the terms in the expansion, and ask for the 4 first terms (via
itertools.islice, which can slice an iterator). Collecting the terms in a list makes it possible
to factor each term individually. Summing up the terms results in a nicer expression:

>>> import itertools
>>> rs = [t for t in itertools.islice(r(C, p).lseries(p), 4)]
>>> rs
[1, C**2*p**2/6 - p**2/6,
3*C**4*p**4/40 - C**2*p**4/12 + p**4/120,
5*C**6*p**6/112 - C**4*p**6/16 + 13*C**2*p**6/720 - p**6/5040]

>>> rs = [factor(t) for t in rs]
>>> rs
[1, p**2*(C - 1)*(C + 1)/6,
p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120,
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040]

>>> rs = sum(rs) # Python’s sum function
>>> rs
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040 +
p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120 +
p**2*(C - 1)*(C + 1)/6 + 1

We see from the last expression that C = 1 makes all the terms in rs vanish. Since we already
know that the numerical solution is exact for C = 1, the remaining terms in the Taylor series
expansion will also contain factors of C − 1 and cancel for C = 1.

52

10.5 Extending the analysis to 2D and 3D
The typical analytical solution of a 2D wave equation

utt = c2(uxx + uyy),

is a wave traveling in the direction of k = kxi+ kyj, where i and j are unit vectors in the x and
y directions, respectively. Such a wave can be expressed by

u(x, y, t) = g(kxx+ kyy − kct)
for some twice differentiable function g, or with ω = kc, k = |k|:

u(x, y, t) = g(kxx+ kyy − ωt) .
We can in particular build a solution by adding complex Fourier components of the form

exp (i(kxx+ kyy − ωt)) .
A discrete 2D wave equation can be written as

[DtDtu = c2(DxDxu+DyDyu)]nq,r . (86)

This equation admits a Fourier component

unq,r = exp (i(kxq∆x+ kyr∆y − ω̃n∆t)), (87)

as solution. Letting the operators DtDt, DxDx, and DyDy act on unq,r from (87) transforms (86)
to

4
∆t2 sin2

(
ω̃∆t

2

)
= c2

4
∆x2 sin2

(
kx∆x

2

)
+ c2

4
∆y2 sin2

(
ky∆y

2

)
. (88)

or
sin2

(
ω̃∆t

2

)
= C2

x sin2 px + C2
y sin2 py, (89)

where we have eliminated the factor 4 and introduced the symbols

Cx = c2∆t2
∆x2 , Cy = c2∆t2

∆y2 , px = kx∆x
2 , py = ky∆y

2 .

For a real-valued ω̃ the right-hand side must be less than or equal to unity in absolute value,
requiring in general that

C2
x + C2

y ≤ 1 . (90)

This gives the stability criterion, more commonly expressed directly in an inequality for the time
step:

∆t ≤ 1
c

(
1

∆x2 + 1
∆y2

)−1/2
(91)

A similar, straightforward analysis for the 3D case leads to

∆t ≤ 1
c

(
1

∆x2 + 1
∆y2 + 1

∆z2

)−1/2
(92)

53

In the case of a variable coefficient c2 = c2(x), we must use the worst-case value

c̄ =
√

max
x∈Ω

c2(x) (93)

in the stability criteria. Often, especially in the variable wave velocity case, it is wise to introduce
a safety factor β ∈ (0, 1] too:

∆t ≤ β 1
c̄

(
1

∆x2 + 1
∆y2 + 1

∆z2

)−1/2
(94)

The exact numerical dispersion relations in 2D and 3D becomes, for constant c,

ω̃ = 2
∆t sin−1

((
C2
x sin2 px + C2

y sinpy
) 1

2
)
, (95)

ω̃ = 2
∆t sin−1

((
C2
x sin2 px + C2

y sinpy +C2
z sinpz

) 1
2
)
. (96)

We can visualize the numerical dispersion error in 2D much like we did in 1D. To this end, we
need to reduce the number of parameters in ω̃. The direction of the wave is parameterized by the
polar angle θ, which means that

kx = k sin θ, ky = k cos θ .
A simplification is to set ∆x = ∆y = h. Then Cx = Cy = c∆t/h, which we call C. Also,

px = 1
2kh cos θ, py = 1

2kh sin θ .

The numerical frequency ω̃ is now a function of three parameters:

• C reflecting the number cells a wave is displaced during a time step

• kh reflecting the number of cells per wave length in space

• θ expressing the direction of the wave

We want to visualize the error in the numerical frequency. To avoid having ∆t as a free parameter
in ω̃, we work with c̃/c, because the fraction 2/∆t is then rewritten as

2
kc∆t = 2

2kc∆th/h = 1
Ckh

,

and

c̃

c
= 1
Ckh

sin−1

(
C

(
sin2(1

2kh cos θ) + sin2(1
2kh sin θ)

) 1
2
)
.

We want to visualize this quantity as a function of kh and θ for some values of C ≤ 1. It is
instructive to make color contour plots of 1 − c̃/c in polar coordinates with θ as the angular
coordinate and kh as the radial coordinate.

The stability criterion (90) becomes C ≤ Cmax = 1/
√

2 in the present 2D case with the C
defined above. Let us plot 1− c̃/c in polar coordinates for Cmax, 0.9Cmax, 0.5Cmax, 0.2Cmax. The
program below does the somewhat tricky work in Matplotlib, and the result appears in Figure 7.
From the figure we clearly see that the maximum C value gives the best results, and that waves
whose propagation direction makes an angle of 45 degrees with an axis are the most accurate.

54

def dispersion_relation_2D(kh, theta, C):
arg = C*sqrt(sin(0.5*kh*cos(theta))**2 +

sin(0.5*kh*sin(theta))**2)
c_frac = 2./(C*kh)*arcsin(arg)

return c_frac

from numpy import exp, sin, cos, linspace, \
pi, meshgrid, arcsin, sqrt

r = kh = linspace(0.001, pi, 101)
theta = linspace(0, 2*pi, 51)
r, theta = meshgrid(r, theta)

Make 2x2 filled contour plots for 4 values of C
import matplotlib.pyplot as plt
C_max = 1/sqrt(2)
C = [[C_max, 0.9*C_max], [0.5*C_max, 0.2*C_max]]
fix, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True))
for row in range(2):

for column in range(2):
error = 1 - dispersion_relation_2D(

kh, theta, C[row][column])
print error.min(), error.max()
cax = axes[row][column].contourf(

theta, r, error, 50, vmin=0, vmax=0.36)
axes[row][column].set_xticks([])
axes[row][column].set_yticks([])

Add colorbar to the last plot
cbar = plt.colorbar(cax)
cbar.ax.set_ylabel(’error in wave velocity’)
plt.savefig(’disprel2D.png’)
plt.savefig(’disprel2D.pdf’)
plt.show()

55

0.00
0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36

e
rr

o
r

in
 w

a
v
e
 v

e
lo

ci
ty

Figure 7: Error in numerical dispersion in 2D.

11 Finite difference methods for 2D and 3D wave equa-
tions

A natural next step is to consider extensions of the methods for various variants of the one-
dimensional wave equation to two-dimensional (2D) and three-dimensional (3D) versions of the
wave equation.

11.1 Multi-dimensional wave equations
The general wave equation in d space dimensions, with constant wave velocity c, can be written
in the compact form

∂2u

∂t2
= c2∇2u for x ∈ Ω ⊂ Rd, t ∈ (0, T] . (97)

In a 2D problem (d = 2),

∇2u = ∂2u

∂x2 + ∂2u

∂y2 ,

while in three space dimensions (d = 3),

∇2u = ∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2 .

56

Many applications involve variable coefficients, and the general wave equation in d dimensions
is in this case written as

%
∂2u

∂t2
= ∇ · (q∇u) + f for x ∈ Ω ⊂ Rd, t ∈ (0, T], (98)

which in 2D becomes

%(x, y)∂
2u

∂t2
= ∂

∂x

(
q(x, y)∂u

∂x

)
+ ∂

∂y

(
q(x, y)∂u

∂y

)
+ f(x, y, t) . (99)

To save some writing and space we may use the index notation, where subscript t, x, y, or z
means differentiation with respect to that coordinate. For example,

∂2u

∂t2
= utt,

∂

∂y

(
q(x, y)∂u

∂y

)
= (quy)y .

The 3D versions of the two model PDEs, with and without variable coefficients, can with now
with the aid of the index notation for differentiation be stated as

utt = c2(uxx + uyy + uzz) + f, (100)
%utt = (qux)x + (quz)z + (quz)z + f . (101)

At each point of the boundary ∂Ω of Ω we need one boundary condition involving the unknown
u. The boundary conditions are of three principal types:

1. u is prescribed (u = 0 or a known time variation for an incoming wave),

2. ∂u/∂n = n · ∇u prescribed (zero for reflecting boundaries),

3. an open boundary condition (also called radiation condition) is specified to let waves travel
undisturbed out of the domain, see Exercise ?? for details.

All the listed wave equations with second-order derivatives in time need two initial conditions:

1. u = I,

2. ut = V .

11.2 Mesh
We introduce a mesh in time and in space. The mesh in time consists of time points

t0 = 0 < t1 < · · · < tNt ,

often with a constant spacing ∆t = tn+1 − tn, n ∈ I−t .
Finite difference methods are easy to implement on simple rectangle- or box-shaped domains.

More complicated shapes of the domain require substantially more advanced techniques and

57

implementational efforts. On a rectangle- or box-shaped domain mesh points are introduced
separately in the various space directions:

x0 < x1 < · · · < xNx in x direction,
y0 < y1 < · · · < yNy in y direction,
z0 < z1 < · · · < zNz in z direction .

We can write a general mesh point as (xi, yj , zk, tn), with i ∈ Ix, j ∈ Iy, k ∈ Iz, and n ∈ It.
It is a very common choice to use constant mesh spacings: ∆x = xi+1 − xi, i ∈ I−x ,

∆y = yj+1 − yj , j ∈ I−y , and ∆z = zk+1 − zk, k ∈ I−z . With equal mesh spacings one often
introduces h = ∆x = ∆y = ∆z.

The unknown u at mesh point (xi, yj , zk, tn) is denoted by uni,j,k. In 2D problems we just skip
the z coordinate (by assuming no variation in that direction: ∂/∂z = 0) and write uni,j .

11.3 Discretization
Two- and three-dimensional wave equations are easily discretized by assembling building blocks
for discretization of 1D wave equations, because the multi-dimensional versions just contain terms
of the same type that occurs in 1D.

Discretizing the PDEs. Equation (100) can be discretized as

[DtDtu = c2(DxDxu+DyDyu+DzDzu) + f]ni,j,k . (102)

A 2D version might be instructive to write out in detail:

[DtDtu = c2(DxDxu+DyDyu) + f]ni,j,k,

which becomes

un+1
i,j − 2uni,j + un−1

i,j

∆t2 = c2
uni+1,j − 2uni,j + uni−1,j

∆x2 + c2
uni,j+1 − 2uni,j + uni,j−1

∆y2 + fni,j ,

Assuming as usual that all values at the time levels n and n− 1 are known, we can solve for the
only unknown un+1

i,j . The result can be compactly written as

un+1
i,j = 2uni,j + un−1

i,j + c2∆t2[DxDxu+DyDyu]ni,j . (103)

As in the 1D case, we need to develop a special formula for u1
i,j where we combine the general

scheme for un+1
i,j , when n = 0, with the discretization of the initial condition:

[D2tu = V]0i,j ⇒ u−1
i,j = u1

i,j − 2∆tVi,j .

The result becomes, in compact form,

un+1
i,j = uni,j − 2∆Vi,j + 1

2c
2∆t2[DxDxu+DyDyu]ni,j . (104)

The PDE (101) with variable coefficients is discretized term by term using the corresponding
elements from the 1D case:

58

[%DtDtu = (Dxq
xDxu+Dyq

yDyu+Dzq
zDzu) + f]ni,j,k . (105)

When written out and solved for the unknown un+1
i,j,k, one gets the scheme

un+1
i,j,k = −un−1

i,j,k + 2uni,j,k+

= 1
%i,j,k

1
∆x2 (1

2(qi,j,k + qi+1,j,k)(uni+1,j,k − uni,j,k)−

1
2(qi−1,j,k + qi,j,k)(uni,j,k − uni−1,j,k))+

= 1
%i,j,k

1
∆x2 (1

2(qi,j,k + qi,j+1,k)(uni,j+1,k − uni,j,k)−

1
2(qi,j−1,k + qi,j,k)(uni,j,k − uni,j−1,k))+

= 1
%i,j,k

1
∆x2 (1

2(qi,j,k + qi,j,k+1)(uni,j,k+1 − uni,j,k)−

1
2(qi,j,k−1 + qi,j,k)(uni,j,k − uni,j,k−1))+

+ ∆t2fni,j,k .

Also here we need to develop a special formula for u1
i,j,k by combining the scheme for n = 0

with the discrete initial condition, which is just a matter of inserting u−1
i,j,k = u1

i,j,k − 2∆tVi,j,k in
the scheme and solving for u1

i,j,k.

Handling boundary conditions where is u known. The schemes listed above are valid for
the internal points in the mesh. After updating these, we need to visit all the mesh points at the
boundaries and set the prescribed u value.

Discretizing the Neumann condition. The condition ∂u/∂n = 0 was implemented in 1D
by discretizing it with a D2xu centered difference, and thereafter eliminating the fictitious u point
outside the mesh by using the general scheme at the boundary point. Alternatively, one can
introduce ghost cells and update a ghost value to for use in the Neumann condition. Exactly the
same ideas are reused in multi dimensions.

Consider ∂u/∂n = 0 at a boundary y = 0. The normal direction is then in −y direction, so

∂u

∂n
= −∂u

∂y
,

and we set

[−D2yu = 0]ni,0 ⇒
uni,1 − uni,−1

2∆y = 0 .

From this it follows that uni,−1 = uni,1. The discretized PDE at the boundary point (i, 0) reads

un+1
i,0 − 2uni,0 + un−1

i,0
∆t2 = c2

uni+1,0 − 2uni,0 + uni−1,0
∆x2 + c2

uni,1 − 2uni,0 + uni,−1
∆y2 + fni,j ,

We can then just insert u1
i,1 for uni,−1 in this equation and then solve for the boundary value un+1

i,0
as done in 1D.

59

From these calculations, we see a pattern: the general scheme applies at the boundary j = 0
too if we just replace j − 1 by j + 1. Such a pattern is particularly useful for implementations.
The details follow from the explained 1D case in Section 6.3.

The alternative approach to eliminating fictitious values outside the mesh is to have uni,−1
available as a ghost value. The mesh is extended with one extra line (2D) or plane (3D) of ghost
cells at a Neumann boundary. In the present example it means that we need a line ghost cells
below the y axis. The ghost values must be updated according to un+1

i,−1 = un+1
i,1 .

12 Implementation
We shall now describe in detail various Python implementations for solving a standard 2D, linear
wave equation with constant wave velocity and u = 0 on the boundary. The wave equation is
to be solved in the space-time domain Ω× (0, T], where Ω = (0, Lx)× (0, Ly) is a rectangular
spatial domain. More precisely, the complete initial-boundary value problem is defined by

ut = c2(uxx + uyy) + f(x, y, t), (x, y) ∈ Ω, t ∈ (0, T], (106)
u(x, y, 0) = I(x, y), (x, y) ∈ Ω, (107)
ut(x, y, 0) = V (x, y), (x, y) ∈ Ω, (108)

u = 0, (x, y) ∈ ∂Ω, t ∈ (0, T], (109)

where ∂Ω is the boundary of Ω, in this case the four sides of the rectangle [0, Lx]× [0, Ly]: x = 0,
x = Lx, y = 0, and y = Ly.

The PDE is discretized as

[DtDtu = c2(DxDxu+DyDyu) + f]ni,j ,

which leads to an explicit updating formula to be implemented in a program:

un+1 = −un−1
i,j + 2uni,j+

C2
x(uni+1,j − 2uni,j + uni−1,j) + C2

y(uni,j+1 − 2uni,j + uni,j−1) + ∆t2fni,j , (110)

for all interior mesh points i ∈ Iix and j ∈ Iiy, and for n ∈ I+
t . The constants Cx and Cy are

defined as

Cx = c
∆t
∆x, Cx = c

∆t
∆y .

At the boundary we simply set un+1
i,j = 0 for i = 0, j = 0, . . . , Ny; i = Nx, j = 0, . . . , Ny;

j = 0, i = 0, . . . , Nx; and j = Ny, i = 0, . . . , Nx. For the first step, n = 0, (111) is combined with
the discretization of the initial condition ut = V , [D2tu = V]0i,j to obtain a special formula for
u1
i,j at the interior mesh points:

u1 = u0
i,j + ∆tVi,j+

1
2C

2
x(u0

i+1,j − 2u0
i,j + u0

i−1,j) + 1
2C

2
y(u0

i,j+1 − 2u0
i,j + u0

i,j−1) + 1
2∆t2fni,j , (111)

The algorithm is very similar to the one in 1D:

60

1. Set initial condition u0
i,j = I(xi, yj)

2. Compute u1
i,j from (111)

3. Set u1
i,j = 0 for the boundaries i = 0, Nx, j = 0, Ny

4. For n = 1, 2, . . . , Nt:

(a) Find un+1
i,j from (111) for all internal mesh points, i ∈ Iix, j ∈ Iiy

(b) Set un+1
i,j = 0 for the boundaries i = 0, Nx, j = 0, Ny

12.1 Scalar computations
The solver function for a 2D case with constant wave velocity and u = 0 as boundary condition
follows the setup from the similar function for the 1D case in wave1D_u0.py, but there are a few
necessary extensions. The code is in the program wave2D_u0.py17.

Domain and mesh. The spatial domain is now [0, Lx]× [0, Ly], specified by the arguments Lx
and Ly. Similarly, the number of mesh points in the x and y directions, Nx and Ny, become the
arguments Nx and Ny. In multi-dimensional problems it makes less sense to specify a Courant
number as the wave velocity is a vector and the mesh spacings may differ in the various spatial
directions. We therefore give ∆t explicitly. The signature of the solver function is then

def solver(I, V, f, c, Lx, Ly, Nx, Ny, dt, T,
user_action=None, version=’scalar’):

Key parameters used in the calculations are created as

x = linspace(0, Lx, Nx+1) # mesh points in x dir
y = linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]
dy = y[1] - y[0]
Nt = int(round(T/float(dt)))
t = linspace(0, N*dt, N+1) # mesh points in time
Cx2 = (c*dt/dx)**2; Cy2 = (c*dt/dy)**2 # help variables
dt2 = dt**2

Solution arrays. We store un+1
i,j , uni,j , and un−1

i,j in three two-dimensional arrays,

u = zeros((Nx+1,Ny+1)) # solution array
u_1 = zeros((Nx+1,Ny+1)) # solution at t-dt
u_2 = zeros((Nx+1,Ny+1)) # solution at t-2*dt

where un+1
i,j corresponds to u[i,j], uni,j to u_1[i,j], and un−1

i,j to u_2[i,j]

Index sets. It is also convenient to introduce the index sets (cf. Section 6.4)

17http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0.py

61

Ix = range(0, u.shape[0])
Iy = range(0, u.shape[1])
It = range(0, t.shape[0])

Computing the solution. Inserting the initial condition I in u_1 and making a callback to
the user in terms of the user_action function is a straightforward generalization of the 1D code
from Section 1.6:

for i in Ix:
for j in Iy:

u_1[i,j] = I(x[i], y[j])

if user_action is not None:
user_action(u_1, x, xv, y, yv, t, 0)

The user_action function has additional arguments compared to the 1D case. The arguments
xv and yv fact will be commented upon in Section 12.2.

The key finite difference formula (103) for updating the solution at a time level is implemented
in a separate function as

def advance_scalar(u, u_1, u_2, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, step1=False):

Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
if step1:

dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

for i in Ix[1:-1]:
for j in Iy[1:-1]:

u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
u[i,j] = D1*u_1[i,j] - D2*u_2[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
if step1:

u[i,j] += dt*V(x[i], y[j])
Boundary condition u=0
j = Iy[0]
for i in Ix: u[i,j] = 0
j = Iy[-1]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in Iy: u[i,j] = 0
i = Ix[-1]
for j in Iy: u[i,j] = 0
return u

The step1 variable has been introduced to allow the formula to be reused for first step u1
i,j :

u = advance_scalar(u, u_1, u_2, f, x, y, t,
n, Cx2, Cy2, dt, V, step1=True)

Below, we will make many alternative implementations of the advance_scalar function to speed
up the code since most of the CPU time in simulations is spent in this function.

Finally, we remark that the solver function in the wave2D_u0.py code updates arrays for the
next time step by switching references as described in Section 4.5. If the solution u is return from
solver, which it is not, it is important to set u = u_1 after the time loop, otherwise u actually
contains u_2.

62

12.2 Vectorized computations
The scalar code above turns out to be extremely slow for large 2D meshes, and probably useless in
3D beyond debugging of small test cases. Vectorization is therefore a must for multi-dimensional
finite difference computations in Python. For example, with a mesh consisting of 30× 30 cells,
vectorization brings down the CPU time by a factor of 70 (!).

In the vectorized case we must be able to evaluate user-given functions like I(x, y) and
f(x, y, t), provided as Python functions I(x,y) and f(x,y,t), for the entire mesh in one array
operation. Having the one-dimensional coordinate arrays x and y is not sufficient: these must be
extended to vectorized versions,

from numpy import newaxis
xv = x[:,newaxis]
yv = y[newaxis,:]
or
xv = x.reshape((x.size, 1))
yv = y.reshape((1, y.size))

This is a standard required technique when evaluating functions over a 2D mesh, say sin(xv)*cos(xv),
which then gives a result with shape (Nx+1,Ny+1).

With the xv and yv arrays for vectorized computing, setting the initial condition is just a
matter of

u_1[:,:] = I(xv, yv)

One could also have written u_1 = I(xv, yv) and let u_1 point to a new object, but vectorized
operations often makes use of direct insertion in the original array through u_1[:,:] because
sometimes not all of the array is to be filled by such a function evaluation. This is the case with
the computational scheme for un+1

i,j :

def advance_vectorized(u, u_1, u_2, f_a, Cx2, Cy2, dt2,
V=None, step1=False):

if step1:
dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

u_xx = u_1[:-2,1:-1] - 2*u_1[1:-1,1:-1] + u_1[2:,1:-1]
u_yy = u_1[1:-1,:-2] - 2*u_1[1:-1,1:-1] + u_1[1:-1,2:]
u[1:-1,1:-1] = D1*u_1[1:-1,1:-1] - D2*u_2[1:-1,1:-1] + \

Cx2*u_xx + Cy2*u_yy + dt2*f_a[1:-1,1:-1]
if step1:

u[1:-1,1:-1] += dt*V[1:-1, 1:-1]
Boundary condition u=0
j = 0
u[:,j] = 0
j = u.shape[1]-1
u[:,j] = 0
i = 0
u[i,:] = 0
i = u.shape[0]-1
u[i,:] = 0
return u

Array slices in 2D are more complicated to understand than those in 1D, but the logic from
1D applies to each dimension separately. For example, when doing uni,j − uni−1,j for i ∈ I+

x , we

63

just keep j constant and make a slice in the first index: u_1[1:,j] - u_1[:-1,j], exactly as in
1D. The 1: slice specifies all the indices i = 1, 2, . . . , Nx (up to the last valid index), while :-1
specifies the relevant indices for the second term: 0, 1, . . . , Nx − 1 (up to, but not including the
last index).

In the above code segment, the situation is slightly more complicated, because each displaced
slice in one direction is accompanied by a 1:-1 slice in the other direction. The reason is that we
only work with the internal points for the index that is kept constant in a difference.

The boundary conditions along the four sides makes use of a slice consisting of all indices
along a boundary:

u[: ,0] = 0
u[:,Ny] = 0
u[0 ,:] = 0
u[Nx,:] = 0

The f function is in the above vectorized update of u first computed as an array over all mesh
points:

f_a = f(xv, yv, t[n])

We could, alternatively, used the call f(xv, yv, t[n])[1:-1,1:-1] in the last term of the
update statement, but other implementations in compiled languages benefit from having f
available in an array rather than calling our Python function f(x,y,t) for every point.

Also in the advance_vectorized function we have introduced a boolean step1 to reuse the
formula for the first time step in the same way as we did with advance_scalar. We refer to the
solver function in wave2D_u0.py for the details on how the overall algorithm is implemented.

The callback function now has the arguments u, x, xv, y, yv, t, n. The inclusion of xv
and yv makes it easy to, e.g., compute an exact 2D solution in the callback function and compute
errors, through an expression like u - u_exact(xv, yv, t[n]).

12.3 Verification
Testing a quadratic solution. The 1D solution from Section 2.4 can be generalized to multi-
dimensions and provides a test case where the exact solution also fulfills the discrete equations
such that we know (to machine precision) what numbers the solver function should produce. In
2D we use the following generalization of (30):

ue(x, y, t) = x(Lx − x)y(Ly − y)(1 + 1
2 t) . (112)

This solution fulfills the PDE problem if I(x, y) = ue(x, y, 0), V = 1
2ue(x, y, 0), and f =

2c2(1 + 1
2 t)(y(Ly − y) + x(Lx − x)). To show that ue also solves the discrete equations, we start

with the general results [DtDt1]n = 0, [DtDtt]n = 0, and [DtDtt
2] = 2, and use these to compute

[DxDxue]ni,j = [y(Ly − y)(1 + 1
2 t)DxDxx(Lx − x)]ni,j = yj(Ly − yj)(1 + 1

2 tn)2 .

A similar calculation must be carried out for the [DyDyue]ni,j and [DtDtue]ni,j terms. One must
also show that the quadratic solution fits the special formula for u1

i,j . The details are left as
Exercise 11. The test_quadratic function in the wave2D_u0.py18 program implements this
verification as a nose test.

18http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0.py

64

13 Migrating loops to Cython
Although vectorization can bring down the CPU time dramatically compared with scalar code,
there is still some factor 5-10 to win in these types of applications by implementing the finite
difference scheme in compiled code, typically in Fortran, C, or C++. This can quite easily be done
by adding a little extra code to our program. Cython is an extension of Python that offers the
easiest way to nail our Python loops in the scalar code down to machine code and the efficiency
of C.

Cython can be viewed as an extended Python language where variables are declared with
types and where functions are marked to be implemented in C. Migrating Python code to Cython
is done by copying the desired code segments to functions (or classes) and placing them in one or
more separate files with extension .pyx.

13.1 Declaring variables and annotating the code
Our starting point is the plain advance_scalar function for a scalar implementation of the
updating algorithm for new values un+1

i,j :

def advance_scalar(u, u_1, u_2, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, step1=False):

Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
if step1:

dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

for i in Ix[1:-1]:
for j in Iy[1:-1]:

u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
u[i,j] = D1*u_1[i,j] - D2*u_2[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
if step1:

u[i,j] += dt*V(x[i], y[j])
Boundary condition u=0
j = Iy[0]
for i in Ix: u[i,j] = 0
j = Iy[-1]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in Iy: u[i,j] = 0
i = Ix[-1]
for j in Iy: u[i,j] = 0
return u

We simply take a copy of this function and put it in a file wave2D_u0_loop_cy.pyx. The
relevant Cython implementation arises from declaring variables with types and adding some
important annotations to speed up array computing in Cython. Let us first list the complete
code in the .pyx file:

import numpy as np
cimport numpy as np
cimport cython
ctypedef np.float64_t DT # data type

@cython.boundscheck(False) # turn off array bounds check
@cython.wraparound(False) # turn off negative indices (u[-1,-1])

65

cpdef advance(
np.ndarray[DT, ndim=2, mode=’c’] u,
np.ndarray[DT, ndim=2, mode=’c’] u_1,
np.ndarray[DT, ndim=2, mode=’c’] u_2,
np.ndarray[DT, ndim=2, mode=’c’] f,
double Cx2, double Cy2, double dt2):

cdef:
int Ix_start = 0
int Iy_start = 0
int Ix_end = u.shape[0]-1
int Iy_end = u.shape[1]-1
int i, j
double u_xx, u_yy

for i in range(Ix_start+1, Ix_end):
for j in range(Iy_start+1, Iy_end):

u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
u[i,j] = 2*u_1[i,j] - u_2[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f[i,j]
Boundary condition u=0
j = Iy_start
for i in range(Ix_start, Ix_end+1): u[i,j] = 0
j = Iy_end
for i in range(Ix_start, Ix_end+1): u[i,j] = 0
i = Ix_start
for j in range(Iy_start, Iy_end+1): u[i,j] = 0
i = Ix_end
for j in range(Iy_start, Iy_end+1): u[i,j] = 0
return u

This example may act as a recipe on how to transform array-intensive code with loops into
Cython.

1. Variables are declared with types: for example, double v in the argument list instead of
just v, and cdef double v for a variable v in the body of the function. A Python float
object is declared as double for translation to C by Cython, while an int object is declared
by int.

2. Arrays need a comprehensive type declaration involving

• the type np.ndarray,
• the data type of the elements, here 64-bit floats, abbreviated as DT through ctypedef np.float64_t DT
(instead of DT we could use the full name of the data type: np.float64_t, which is a
Cython-defined type),

• the dimensions of the array, here ndim=2 and ndim=1,
• specification of contiguous memory for the array (mode=’c’).

3. Functions declared with cpdef are translated to C but also accessible from Python.

4. In addition to the standard numpy import we also need a special Cython import of numpy:
cimport numpy as np, to appear after the standard import.

5. By default, array indices are checked to be within their legal limits. To speed up the code one
should turn off this feature for a specific function by placing @cython.boundscheck(False)
above the function header.

66

6. Also by default, array indices can be negative (counting from the end), but this feature has a
performance penalty and is therefore here turned off by writing @cython.wraparound(False)
right above the function header.

7. The use of index sets Ix and Iy in the scalar code cannot be successfully translated to C.
One reason is that constructions like Ix[1:-1] involve negative indices, and these are now
turned off. Another reason is that Cython loops must take the form for i in xrange or
for i in range for being translated into efficient C loops. We have therefore introduced
Ix_start as Ix[0] and Ix_end as Ix[-1] to hold the start and end of the values of index
i. Similar variables are introduced for the j index. A loop for i in Ix is with these new
variables written as for i in range(Ix_start, Ix_end+1).

Array declaration syntax in Cython.

We have used the syntax np.ndarray[DT, ndim=2, mode=’c’] to declare numpy arrays in
Cython. There is a simpler, alternative syntax, employing typed memory viewsa, where the
declaration looks like double [:,:]. However, the full support for this functionality is not
yet ready, and in this text we use the full array declaration syntax.

ahttp://docs.cython.org/src/userguide/memoryviews.html

13.2 Visual inspection of the C translation
Cython can visually explain how successfully it can translate a code from Python to C. The
command

Terminal> cython -a wave2D_u0_loop_cy.pyx

produces an HTML file wave2D_u0_loop_cy.html, which can be loaded into a web browser to
illustrate which lines of the code that have been translated to C. Figure 8 shows the illustrated
code. Yellow lines indicate the lines that Cython did not manage to translate to efficient C code
and that remain in Python. For the present code we see that Cython is able to translate all the
loops with array computing to C, which is our primary goal.

You can also inspect the generated C code directly, as it appears in the file wave2D_u0_loop_cy.c.
Nevertheless, understanding this C code requires some familiarity with writing Python extension
modules in C by hand. Deep down in the file we can see in detail how the compute-intensive
statements are translated some complex C code that is quite different from what we a human
would write (at least if a direct correspondence to the mathematics was in mind).

13.3 Building the extension module
Cython code must be translated to C, compiled, and linked to form what is known in the Python
world as a C extension module. This is usually done by making a setup.py script, which is the
standard way of building and installing Python software. For an extension module arising from
Cython code, the following setup.py script is all we need to build and install the module:

67

Figure 8: Visual illustration of Cython’s ability to translate Python to C.

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

cymodule = ’wave2D_u0_loop_cy’
setup(

name=cymodule
ext_modules=[Extension(cymodule, [cymodule + ’.pyx’],)],
cmdclass={’build_ext’: build_ext},

)

We run the script by

Terminal> python setup.py build_ext --inplace

The –inplace option makes the extension module available in the current directory as the file
wave2D_u0_loop_cy.so. This file acts as a normal Python module that can be imported and
inspected:

>>> import wave2D_u0_loop_cy
>>> dir(wave2D_u0_loop_cy)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,
’__package__’, ’__test__’, ’advance’, ’np’]

The important output from the dir function is our Cython function advance (the module also
features the imported numpy module under the name np as well as many standard Python objects
with double underscores in their names).

The setup.py file makes use of the distutils package in Python and Cython’s extension of
this package. These tools know how Python was built on the computer and will use compatible
compiler(s) and options when building other code in Cython, C, or C++. Quite some experience
with building large program systems is needed to do the build process manually, so using a
setup.py script is strongly recommended.

68

Simplified build of a Cython module.

When there is no need to link the C code with special libraries, Cython offers a shortcut for
generating and importing the extension module:

import pyximport; pyximport.install()

This makes the setup.py script redundant. However, in the wave2D_u0.py code we do not
use pyximport and require an explicit build process of this and many other modules.

13.4 Calling the Cython function from Python
The wave2D_u0_loop_cy module contains our advance function, which we now may call from
the Python program for the wave equation:

import wave2D_u0_loop_cy
advance = wave2D_u0_loop_cy.advance
...
for n in It[1:-1: # time loop

f_a[:,:] = f(xv, yv, t[n]) # precompute, size as u
u = advance(u, u_1, u_2, f_a, x, y, t, Cx2, Cy2, dt2)

Efficiency. For a mesh consisting of 120× 120 cells, the scalar Python code require 1370 CPU
time units, the vectorized version requires 5.5, while the Cython version requires only 1! For a
smaller mesh with 60× 60 cells Cython is about 1000 times faster than the scalar Python code,
and the vectorized version is about 6 times slower than the Cython version.

14 Migrating loops to Fortran
Instead of relying on Cython’s (excellent) ability to translate Python to C, we can invoke a
compiled language directly and write the loops ourselves. Let us start with Fortran 77, because
this is a language with more convenient array handling than C (or plain C++). Or more precisely,
we can with ease program with the same multi-dimensional indices in the Fortran code as in the
numpy arrays in the Python code, while in C these arrays are one-dimensional and requires us to
reduce multi-dimensional indices to a single index.

14.1 The Fortran subroutine
We write a Fortran subroutine advance in a file wave2D_u0_loop_f77.f19 for implementing the
updating formula (111) and setting the solution to zero at the boundaries:

subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
integer Nx, Ny
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real*8 f(0:Nx,0:Ny), Cx2, Cy2, dt2
integer i, j
real*8 u_xx, u_yy

Cf2py intent(in, out) u
19http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0_loop_f77.f

69

C Scheme at interior points
do j = 1, Ny-1

do i = 1, Nx-1
u_xx = u_1(i-1,j) - 2*u_1(i,j) + u_1(i+1,j)
u_yy = u_1(i,j-1) - 2*u_1(i,j) + u_1(i,j+1)
u(i,j) = 2*u_1(i,j) - u_2(i,j) + Cx2*u_xx + Cy2*u_yy +

& dt2*f(i,j)
end do

end do

C Boundary conditions
j = 0
do i = 0, Nx

u(i,j) = 0
end do
j = Ny
do i = 0, Nx

u(i,j) = 0
end do
i = 0
do j = 0, Ny

u(i,j) = 0
end do
i = Nx
do j = 0, Ny

u(i,j) = 0
end do
return
end

This code is plain Fortran 77, except for the special Cf2py comment line, which here specifies
that u is both an input argument and an object to be returned from the advance routine. Or
more precisely, Fortran is not able return an array from a function, but we need a wrapper code
in C for the Fortran subroutine to enable calling it from Python, and in this wrapper code one
can return u to the calling Python code.

Remark.
It is not strictly necessary to return u to the calling Python code since the advance function
will modify the elements of u, but the convention in Python is to get all output from a
function as returned values. That is, the right way of calling the above Fortran subroutine
from Python is

u = advance(u, u_1, u_2, f, Cx2, Cy2, dt2)

The less encouraged style, which works and resembles the way the Fortran subroutine is
called from Fortran, reads

advance(u, u_1, u_2, f, Cx2, Cy2, dt2)

70

14.2 Building the Fortran module with f2py
The nice feature of writing loops in Fortran is that the tool f2py can with very little work produce
a C extension module such that we can call the Fortran version of advance from Python. The
necessary commands to run are

Terminal> f2py -m wave2D_u0_loop_f77 -h wave2D_u0_loop_f77.pyf \
--overwrite-signature wave2D_u0_loop_f77.f

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

The first command asks f2py to interpret the Fortran code and make a Fortran 90 specification
of the extension module in the file wave2D_u0_loop_f77.pyf. The second command makes f2py
generate all necessary wrapper code, compile our Fortran file and the wrapper code, and finally
build the module. The build process takes place in the specified subdirectory build_f77 so that
files can be inspected if something goes wrong. The option -DF2PY_REPORT_ON_ARRAY_COPY=1
makes f2py write a message for every array that is copied in the communication between Fortran
and Python, which is very useful for avoiding unnecessary array copying (see below). The name
of the module file is wave2D_u0_loop_f77.so, and this file can be imported and inspected as any
other Python module:

>>> import wave2D_u0_loop_f77
>>> dir(wave2D_u0_loop_f77)
[’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__version__’, ’advance’]

>>> print wave2D_u0_loop_f77.__doc__
This module ’wave2D_u0_loop_f77’ is auto-generated with f2py....
Functions:

u = advance(u,u_1,u_2,f,cx2,cy2,dt2,
nx=(shape(u,0)-1),ny=(shape(u,1)-1))

Examine the doc strings!

Printing the doc strings of the module and its functions is extremely important after having
created a module with f2py, because f2py makes Python interfaces to the Fortran functions
that are different from how the functions are declared in the Fortran code (!). The rationale
for this behavior is that f2py creates Pythonic interfaces such that Fortran routines can be
called in the same way as one calls Python functions. Output data from Python functions
is always returned to the calling code, but this is technically impossible in Fortran. Also,
arrays in Python are passed to Python functions without their dimensions because that
information is packed with the array data in the array objects, but this is not possible in
Fortran. Therefore, f2py removes array dimensions from the argument list, and f2py makes
it possible to return objects back to Python.

Let us follow the advice of examining the doc strings and take a close look at the documentation
f2py has generated for our Fortran advance subroutine:

>>> print wave2D_u0_loop_f77.advance.__doc__
This module ’wave2D_u0_loop_f77’ is auto-generated with f2py
Functions:

71

u = advance(u,u_1,u_2,f,cx2,cy2,dt2,
nx=(shape(u,0)-1),ny=(shape(u,1)-1))

.
advance - Function signature:

u = advance(u,u_1,u_2,f,cx2,cy2,dt2,[nx,ny])
Required arguments:

u : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_1 : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_2 : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
f : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
cx2 : input float
cy2 : input float
dt2 : input float

Optional arguments:
nx := (shape(u,0)-1) input int
ny := (shape(u,1)-1) input int

Return objects:
u : rank-2 array(’d’) with bounds (nx + 1,ny + 1)

Here we see that the nx and ny parameters declared in Fortran are optional arguments that can
be omitted when calling advance from Python.

We strongly recommend to print out the documentation of every Fortran function to be called
from Python and make sure the call syntax is exactly as listed in the documentation.

14.3 How to avoid array copying
Multi-dimensional arrays are stored as a stream of numbers in memory. For a two-dimensional
array consisting of rows and columns there are two ways of creating such a stream: row-major
ordering, which means that rows are stored consecutively in memory, or column-major ordering,
which means that the columns are stored one after each other. All programming languages
inherited from C, including Python, apply the row-major ordering, but Fortran uses column-major
storage. Thinking of a two-dimensional array in Python or C as a matrix, it means that Fortran
works with the transposed matrix.

Fortunately, f2py creates extra code so that accessing u(i,j) in the Fortran subroutine
corresponds to the element u[i,j] in the underlying numpy array (without the extra code, u(i,j)
in Fortran would access u[j,i] in the numpy array). Technically, f2py takes a copy of our numpy
array and reorders the data before sending the array to Fortran. Such copying can be costly. For
2D wave simulations on a 60× 60 grid the overhead of copying is a factor of 5, which means that
almost the whole performance gain of Fortran over vectorized numpy code is lost!

To avoid having f2py to copy arrays with C storage to the corresponding Fortran storage, we
declare the arrays with Fortran storage:

order = ’Fortran’ if version == ’f77’ else ’C’
u = zeros((Nx+1,Ny+1), order=order) # solution array
u_1 = zeros((Nx+1,Ny+1), order=order) # solution at t-dt
u_2 = zeros((Nx+1,Ny+1), order=order) # solution at t-2*dt

In the compile and build step of using f2py, it is recommended to add an extra option for
making f2py report on array copying:

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

72

It can sometimes be a challenge to track down which array that causes a copying. There are
two principal reasons for copying array data: either the array does not have Fortran storage or
the element types do not match those declared in the Fortran code. The latter cause is usually
effectively eliminated by using real*8 data in the Fortran code and float64 (the default float
type in numpy) in the arrays on the Python side. The former reason is more common, and to
check whether an array before a Fortran call has the right storage one can print the result of
isfortran(a), which is True if the array a has Fortran storage.

Let us look at an example where we face problems with array storage. A typical problem in
the wave2D_u0.py code is to set

f_a = f(xv, yv, t[n])

before the call to the Fortran advance routine. This computation creates a new array with C
storage. An undesired copy of f_a will be produced when sending f_a to a Fortran routine. There
are two remedies, either direct insertion of data in an array with Fortran storage,

f_a = zeros((Nx+1, Ny+1), order=’Fortran’)
...
f_a[:,:] = f(xv, yv, t[n])

or remaking the f(xv, yv, t[n]) array,

f_a = asarray(f(xv, yv, t[n]), order=’Fortran’)

The former remedy is most efficient if the asarray operation is to be performed a large number
of times.

Efficiency. The efficiency of this Fortran code is very similar to the Cython code. There is
usually nothing more to gain, from a computational efficiency point of view, by implementing the
complete Python program in Fortran or C. That will just be a lot more code for all administering
work that is needed in scientific software, especially if we extend our sample program wave2D_u0.py
to handle a real scientific problem. Then only a small portion will consist of loops with intensive
array calculations. These can be migrated to Cython or Fortran as explained, while the rest of
the programming can be more conveniently done in Python.

15 Migrating loops to C via Cython
The computationally intensive loops can alternatively be implemented in C code. Just as Fortran
calls for care regarding the storage of two-dimensional arrays, working with two-dimensional
arrays in C is a bit tricky. The reason is that numpy arrays are viewed as one-dimensional arrays
when transferred to C, while C programmers will think of u, u_1, and u_2 as two dimensional
arrays and index them like u[i][j]. The C code must declare u as double* u and translate an
index pair [i][j] to a corresponding single index when u is viewed as one-dimensional. This
translation requires knowledge of how the numbers in u are stored in memory.

15.1 Translating index pairs to single indices
Two-dimensional numpy arrays with the default C storage are stored row by row. In general,
multi-dimensional arrays with C storage are stored such that the last index has the fastest
variation, then the next last index, and so on, ending up with the slowest variation in the first

73

index. For a two-dimensional u declared as zeros((Nx+1,Ny+1)) in Python, the individual
elements are stored in the following order:

u[0,0], u[0,1], u[0,2], ..., u[0,Ny], u[1,0], u[1,1], ...,
u[1,Ny], u[2,0], ..., u[Nx,0], u[Nx,1], ..., u[Nx, Ny]

Viewing u as one-dimensional, the index pair (i, j) translates to i(Ny + 1) + j. So, where a C
programmer would naturally write an index u[i][j], the indexing must read u[i*(Ny+1) + j].
This is tedious to write, so it can be handy to define a C macro,

#define idx(i,j) (i)*(Ny+1) + j

so that we can write u[idx(i,j)], which reads much better and is easier to debug.

Be careful with macro definitions.
Macros just perform simple text substitutions: idx(hello,world) is expanded to (hello)*(Ny+1)
+ world. The parenthesis in (i) are essential - using the natural mathematical formula
i*(Ny+1) + j in the macro definition, idx(i-1,j) would expand to i-1*(Ny+1) + j,
which is the wrong formula. Macros are handy, but requires careful use. In C++, inline
functions are safer and replace the need for macros.

15.2 The complete C code
The C version of our function advance can be coded as follows.

#define idx(i,j) (i)*(Ny+1) + j

void advance(double* u, double* u_1, double* u_2, double* f,
double Cx2, double Cy2, double dt2, int Nx, int Ny)

{
int i, j;
double u_xx, u_yy;
/* Scheme at interior points */
for (i=1; i<=Nx-1; i++) {

for (j=1; j<=Ny-1; j++) {
u_xx = u_1[idx(i-1,j)] - 2*u_1[idx(i,j)] + u_1[idx(i+1,j)];
u_yy = u_1[idx(i,j-1)] - 2*u_1[idx(i,j)] + u_1[idx(i,j+1)];
u[idx(i,j)] = 2*u_1[idx(i,j)] - u_2[idx(i,j)] +

Cx2*u_xx + Cy2*u_yy + dt2*f[idx(i,j)];
}

}
/* Boundary conditions */
j = 0; for (i=0; i<=Nx; i++) u[idx(i,j)] = 0;
j = Ny; for (i=0; i<=Nx; i++) u[idx(i,j)] = 0;
i = 0; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0;
i = Nx; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0;

}

15.3 The Cython interface file
All the code above appears in a file wave2D_u0_loop_c.c20. We need to compile this file together
with C wrapper code such that advance can be called from Python. Cython can be used to

20http://tinyurl.com/nm5587k/wave//wave2D_u0/wave2D_u0_loop_c.c

74

generate appropriate wrapper code. The relevant Cython code for interfacing C is placed in a file
with extension .pyx. Here this file, called wave2D_u0_loop_c_cy.pyx21, looks like

import numpy as np
cimport numpy as np
cimport cython

cdef extern from "wave2D_u0_loop_c.h":
void advance(double* u, double* u_1, double* u_2, double* f,

double Cx2, double Cy2, double dt2,
int Nx, int Ny)

@cython.boundscheck(False)
@cython.wraparound(False)
def advance_cwrap(

np.ndarray[double, ndim=2, mode=’c’] u,
np.ndarray[double, ndim=2, mode=’c’] u_1,
np.ndarray[double, ndim=2, mode=’c’] u_2,
np.ndarray[double, ndim=2, mode=’c’] f,
double Cx2, double Cy2, double dt2):
advance(&u[0,0], &u_1[0,0], &u_2[0,0], &f[0,0],

Cx2, Cy2, dt2,
u.shape[0]-1, u.shape[1]-1)

return u

We first declare the C functions to be interfaced. These must also appear in a C header file,
wave2D_u0_loop_c.h22,

extern void advance(double* u, double* u_1, double* u_2, double* f,
double Cx2, double Cy2, double dt2,
int Nx, int Ny);

The next step is to write a Cython function with Python objects as arguments. The name
advance is already used for the C function so the function to be called from Python is named
advance_cwrap. The contents of this function is simply a call to the advance version in C. To
this end, the right information from the Python objects must be passed on as arguments to
advance. Arrays are sent with their C pointers to the first element, obtained in Cython as
&u[0,0] (the & takes the address of a C variable). The Nx and Ny arguments in advance are
easily obtained from the shape of the numpy array u. Finally, u must be returned such that we
can set u = advance(...) in Python.

15.4 Building the extension module
It remains to build the extension module. An appropriate setup.py file is

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

sources = [’wave2D_u0_loop_c.c’, ’wave2D_u0_loop_c_cy.pyx’]
module = ’wave2D_u0_loop_c_cy’
setup(

name=module,
ext_modules=[Extension(module, sources,

libraries=[], # C libs to link with
)],

21http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0_loop_c_cy.pyx
22http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0_loop_c.h

75

cmdclass={’build_ext’: build_ext},
)

All we need to specify is the .c file(s) and the .pyx interface file. Cython is automatically run
to generate the necessary wrapper code. Files are then compiled and linked to an extension
module residing in the file wave2D_u0_loop_c_cy.so. Here is a session with running setup.py
and examining the resulting module in Python

Terminal> python setup.py build_ext --inplace
Terminal> python
>>> import wave2D_u0_loop_c_cy as m
>>> dir(m)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__test__’, ’advance_cwrap’, ’np’]

The call to the C version of advance can go like this in Python:

import wave2D_u0_loop_c_cy
advance = wave2D_u0_loop_c_cy.advance_cwrap
...
f_a[:,:] = f(xv, yv, t[n])
u = advance(u, u_1, u_2, f_a, Cx2, Cy2, dt2)

Efficiency. In this example, the C and Fortran code runs at the same speed, and there are
no significant differences in the efficiency of the wrapper code. The overhead implied by the
wrapper code is negligible as long as we do not work with very small meshes and consequently
little numerical work in the advance function.

16 Migrating loops to C via f2py
An alternative to using Cython for interfacing C code is to apply f2py. The C code is the same,
just the details of specifying how it is to be called from Python differ. The f2py tool requires the
call specification to be a Fortran 90 module defined in a .pyf file. This file was automatically
generated when we interfaced a Fortran subroutine. With a C function we need to write this
module ourselves, or we can use a trick and let f2py generate it for us. The trick consists in
writing the signature of the C function with Fortran syntax and place it in a Fortran file, here
wave2D_u0_loop_c_f2py_signature.f:

subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
Cf2py intent(c) advance

integer Nx, Ny, N
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real*8 f(0:Nx, 0:Ny), Cx2, Cy2, dt2

Cf2py intent(in, out) u
Cf2py intent(c) u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny

return
end

Note that we need a special f2py instruction, through a Cf2py comment line, for telling that all
the function arguments are C variables. We also need to specify that the function is actually in
C: intent(c) advance.

76

Since f2py is just concerned with the function signature and not the complete contents of
the function body, it can easily generate the Fortran 90 module specification based solely on the
signature above:

Terminal> f2py -m wave2D_u0_loop_c_f2py \
-h wave2D_u0_loop_c_f2py.pyf --overwrite-signature \
wave2D_u0_loop_c_f2py_signature.f

The compile and build step is as for the Fortran code, except that we list C files instead of Fortran
files:

Terminal> f2py -c wave2D_u0_loop_c_f2py.pyf \
--build-dir tmp_build_c \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_c.c

As when interfacing Fortran code with f2py, we need to print out the doc string to see the exact
call syntax from the Python side. This doc string is identical for the C and Fortran versions of
advance.

16.1 Migrating loops to C++ via f2py
C++ is a much more versatile language than C or Fortran and has over the last two decades
become very popular for numerical computing. Many will therefore prefer to migrate compute-
intensive Python code to C++. This is, in principle, easy: just write the desired C++ code and
use some tool for interfacing it from Python. A tool like SWIG23 can interpret the C++ code
and generate interfaces for a wide range of languages, including Python, Perl, Ruby, and Java.
However, SWIG is a comprehensive tool with a correspondingly steep learning curve. Alternative
tools, such as Boost Python24, SIP25, and Shiboken26 are similarly comprehensive. Simpler tools
include PyBindGen27,

A technically much easier way of interfacing C++ code is to drop the possibility to use C++
classes directly from Python, but instead make a C interface to the C++ code. The C interface
can be handled by f2py as shown in the example with pure C code. Such a solution means that
classes in Python and C++ cannot be mixed and that only primitive data types like numbers,
strings, and arrays can be transferred between Python and C++. Actually, this is often a very
good solution because it forces the C++ code to work on array data, which usually gives faster
code than if fancy data structures with classes are used. The arrays coming from Python, and
looking like plain C/C++ arrays, can be efficiently wrapped in more user-friendly C++ array
classes in the C++ code, if desired.

17 Using classes to implement a simulator
• Introduce classes Mesh, Function, Problem, Solver, Visualizer, File

23http://swig.org/
24http://www.boost.org/doc/libs/1_51_0/libs/python/doc/index.html
25http://riverbankcomputing.co.uk/software/sip/intro
26http://qt-project.org/wiki/Category:LanguageBindings::PySide::Shiboken
27http://code.google.com/p/pybindgen/

77

18 Exercises
Exercise 11: Check that a solution fulfills the discrete model
Carry out all mathematical details to show that (112) is indeed a solution of the discrete model
for a 2D wave equation with u = 0 on the boundary. One must check the boundary conditions,
the initial conditions, the general discrete equation at a time level and the special version of this
equation for the first time level. Filename: check_quadratic_solution.pdf.

Project 12: Calculus with 2D/3D mesh functions
The goal of this project is to redo Project 5 with 2D and 3D mesh functions (fi,j and fi,j,k).

Differentiation. The differentiation results in a discrete gradient function, which in the 2D
case can be represented by a three-dimensional array df[d,i,j] where d represents the direction
of the derivative, and i,j is a mesh point in 2D (the 3D counterpart is df[d,i,j,k]).

Integration. The integral of a 2D mesh function fi,j is defined as

Fi,j =
∫ yj

y0

∫ xi

x0

f(x, y)dxdy,

where f(x, y) is a function that takes on the values of the discrete mesh function fi,j at the
mesh points, but can also be evaluated in between the mesh points. The particular variation
between mesh points can be taken as bilinear, but this is not important as we will use a product
Trapezoidal rule to approximate the integral over a cell in the mesh and then we only need to
evaluate f(x, y) at the mesh points.

Suppose Fi,j is computed. The calculation of Fi+1,j is then

Fi+1,j = Fi,j +
∫ xi+1

xi

∫ yj

y0

f(x, y)dydx

≈ ∆x
∫ yj

y0

f(xi+ 1
2
, y)dy

≈ ∆x1
2

(∫ yj

y0

f(xi, y)dy +
∫ yj

y0

f(xi+1, y)dy
)

The integrals in the y direction can be approximated by a Trapezoidal rule. A similar idea can
be used to compute Fi,j+1. Thereafter, Fi+1,j+1 can be computed by adding the integral over
the final corner cell to Fi+1,j + Fi,j+1 − Fi,j . Carry out the details of these computations and
extend the ideas to 3D. Filename: mesh_calculus_3D.py.

Exercise 13: Implement Neumann conditions in 2D
Modify the wave2D_u0.py28 program, which solves the 2D wave equation utt = c2(uxx + uyy)
with constant wave velocity c and u = 0 on the boundary, to have Neumann boundary conditions:
∂u/∂n = 0. Include both scalar code (for debugging and reference) and vectorized code (for
speed).

28http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0.py

78

To test the code, use u = 1.2 as solution (I(x, y) = 1.2, V = f = 0, and c arbitrary),
which should be exactly reproduced with any mesh as long as the stability criterion is satisfied.
Another test is to use the plug-shaped pulse in the pulse function from Section 8 and the
wave1D_dn_vc.py29 program. This pulse is exactly propagated in 1D if c∆t/∆x = 1. Check that
also the 2D program can propagate this pulse exactly in x direction (c∆t/∆x = 1, ∆y arbitrary)
and y direction (c∆t/∆y = 1, ∆x arbitrary). Filename: wave2D_dn.py.

Exercise 14: Test the efficiency of compiled loops in 3D
Extend the wave2D_u0.py code and the Cython, Fortran, and C versions to 3D. Set up an
efficiency experiment to determine the relative efficiency of pure scalar Python code, vectorized
code, Cython-compiled loops, Fortran-compiled loops, and C-compiled loops. Normalize the CPU
time for each mesh by the fastest version. Filename: wave3D_u0.py.

19 Applications of wave equations
This section presents a range of wave equation models for different physical phenomena. Although
many wave motion problems in physics can be modeled by the standard linear wave equation, or a
similar formulation with a system of first-order equations, there are some exceptions. Perhaps the
most important is water waves: these are modeled by the Laplace equation with time-dependent
boundary conditions at the water surface (long water waves, however, can be approximated by
a standard wave equation, see Section 19.7). Quantum mechanical waves constitute another
example where the waves are governed by the Schrödinger equation and not a standard wave
equation. Many wave phenomena also need to take nonlinear effects into account when the wave
amplitude is significant. Shock waves in the air is a primary example.

The derivations in the following are very brief. Those with a firm background in continuum
mechanics will probably have enough information to fill in the details, while other readers will
hopefully get some impression of the physics and approximations involved when establishing wave
equation models.

19.1 Waves on a string
Figure 9 shows a model we may use to derive the equation for waves on a string. The string
is modeled as a set of discrete point masses (at mesh points) with elastic strings in between.
The strings are at a high constant tension T . We let the mass at mesh point xi be mi. The
displacement of this mass point in y direction is denoted by ui(t).

The motion of mass mi is governed by Newton’s second law of motion. The position of the
mass at time t is xii+ui(t)j, where i and j are unit vectors in the x and y direction, respectively.
The acceleration is then u′′i (t)j. Two forces are acting on the mass as indicated in Figure 9. The
force T− acting toward the point xi−1 can be decomposed as

T− = −T sinφi− T cosφj,

where φ is the angle between the force and the line x = xi. Let ∆ui = ui − ui−1 and let
∆si =

√
∆u2

i + (xi − xi−1)2 be the distance from mass mi−1 to mass mi. It is seen that
cosφ = ∆ui/∆si and sinφ = (xi − xi−1)/∆s or ∆x/∆si if we introduce a constant mesh spacing
∆x = xi − xi−1. The force can then be written

29http://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn_vc.py

79

ui

ui−1

ui+1

xi xi+1xi−1

T
T

Figure 9: Discrete string model with point masses connected by elastic strings.

T− = −T ∆x
∆si

i− T ∆ui
∆si

j .

The force T+ acting toward xi+1 can be calculated in a similar way:

T+ = T
∆x

∆si+1
i+ T

∆ui+1
∆si+1

j .

Newton’s second law becomes

miu
′′
i (t)j = T+ + T−,

80

which gives the component equations

T
∆x
∆si

= T
∆x

∆si+1
, (113)

miu
′′
i (t) = T

∆ui+1
∆si+1

− T ∆ui
∆si

. (114)

A basic reasonable assumption for a string is small displacements ui and small displacement
gradients ∆ui/∆x. For small g = ∆ui/∆x we have that

∆si =
√

∆u2
i + ∆x2 = ∆x

√
1 + g2 + ∆x(1 + 1

2g
2 +O(g4) ≈ ∆x .

Equation (113) is then simply the identity T = T , while (114) can be written as

miu
′′
i (t) = T

∆ui+1
∆x − T ∆ui

∆x ,

which upon division by ∆x and introducing the density %i = mi/∆x becomes

%iu
′′
i (t) = T

1
∆x2 (ui+1 − 2ui + ui−1) . (115)

We can now choose to approximate u′′i by a finite difference in time and get the discretized wave
equation,

%i
1

∆t2
(
un+1
i − 2uni − un−1

i

)
= T

1
∆x2 (ui+1 − 2ui + ui−1) . (116)

On the other hand, we may go to the continuum limit ∆x→ 0 and replace ui(t) by u(x, t), %i by
%(x), and recognize that the right-hand side of (115) approaches ∂2u/∂x2 as ∆x→ 0. We end up
with the continuous model for waves on a string:

%
∂2u

∂t2
= T

∂2u

∂x2 . (117)

Note that the density % may change along the string, while the tension T is a constant. With
variable wave velocity c(x) =

√
T/%(x) we can write the wave equation in the more standard

form

∂2u

∂t2
= c2(x)∂

2u

∂x2 . (118)

Because of the way % enters the equations, the variable wave velocity does not appear inside the
derivatives as in many other versions of the wave equation. However, most strings of interest
have constant %.

The end point of a string are fixed so that the displacement u is zero. The boundary conditions
are therefore u = 0.

Damping. Air resistance and non-elastic effects in the string will contribute to reduce the
amplitudes of the waves so that the motion dies out after some time. This damping effect can be
modeled by a term but on the left-hand side of the equation

%
∂2u

∂t2
+ b

∂u

∂t
= T

∂2u

∂x2 . (119)

The parameter b must normally be determined from physical experiments.

81

External forcing. It is easy to include an external force acting on the string. Say we have a
vertical force f̃ij acting on mass mi. This force affects the vertical component of Newton’s law
and gives rise to an extra term f̃(x, t) on the right-hand side of (117). In the model (118) we
would add a term f(x, t) = f̃(x, y)/%(x).

Modeling the tension via springs. We assumed, in the derivation above, that the tension in
the string, T , was constant. It is easy to check this assumption by modeling the string segments
between the masses as standard springs, where the force (tension T) is proportional to the
elongation of the spring segment. Let k be the spring constant, and set Ti = k∆` for the tension
in the spring segment between xi−1 and xi, where ∆` is the elongation of this segment from
the tension-free state. A basic feature of a string is that it has high tension in the equilibrium
position u = 0. Let the string segment have an elongation ∆`0 in the equilibrium position. After
deformation of the string, the elongation is ∆` = ∆`0 + ∆si: Ti = k(∆`0 + ∆si) ≈ k(∆`0 + ∆x).
This shows that Ti is independent of i. Moreover, the extra approximate elongation ∆x is very
small compared to ∆`0, so we may well set Ti = T = k∆`0. This means that the tension is
completely dominated by the initial tension determined by the tuning of the string. The additional
deformations of the spring during the vibrations do not introduce significant changes in the
tension.

19.2 Waves on a membrane
19.3 Elastic waves in a rod
Consider an elastic rod subject to a hammer impact at the end. This experiment will give rise to
an elastic deformation pulse that travels through the rod. A mathematical model for longitudinal
waves along an elastic rod starts with the general equation for deformations and stresses in an
elastic medium,

%utt = ∇ · σ + %f , (120)

where % is the density, u the displacement field, σ the stress tensor, and f body forces. The
latter has normally no impact on elastic waves.

For stationary deformation of an elastic rod, one has that σxx = Eux, with all other stress
components being zero. Moreover, u = u(x)i. The parameter E is known as Young’s modulus.
Assuming that this simple stress and deformation field, which is exact in the stationary case, is a
good approximation in the transient case with wave motion, (120) simplifies to

%
∂2u

∂t2
= ∂

∂x

(
E
∂u

∂x

)
. (121)

The associated boundary conditions are u or σxx = Eux known, typically u = 0 for a clamped
end and σxx = 0 for a free end.

19.4 The acoustic model for seismic waves
Seismic waves are used to infer properties of subsurface geological structures. The physical model
is a heterogeneous elastic medium where sound is propagated by small elastic vibrations. The
general mathematical model for deformations in an elastic medium is based on Newton’s second
law,

%utt = ∇ · σ + %f , (122)

82

and a constitutive law relating σ to u, often Hooke’s generalized law,

σ = K∇ · uI +G(∇u+ (∇u)T − 2
3∇ · uI) . (123)

Here, u is the displacement field, σ is the stress tensor, I is the identity tensor, % is the medium’s
density, f are body forces (such as gravity), K is the medium’s bulk modulus and G is the
shear modulus. All these quantities may vary in space, while u and σ will also show significant
variation in time during wave motion.

The acoustic approximation to elastic waves arises from a basic assumption that the second
term in Hooke’s law, representing the deformations that give rise to shear stresses, can be
neglected. This assumption can be interpreted as approximating the geological medium by a
fluid. Neglecting also the body forces f , (122) becomes

%utt = ∇(K∇ · u) (124)

Introducing p as a pressure via

p = −K∇ · u, (125)

and dividing (124) by %, we get

utt = −1
%
∇p . (126)

Taking the divergence of this equation, using ∇ · u = −p/K from (125), gives the acoustic
approximation to elastic waves:

ptt = K∇ ·
(

1
%
∇p
)
. (127)

This is a standard, linear wave equation with variable coefficients. It is common to add a source
term s(x, y, z, t) to model the generation of sound waves:

ptt = K∇ ·
(

1
%
∇p
)

+ s . (128)

A common additional approximation of (128) is based on using the chain rule on the right-hand
side,

K∇ ·
(

1
%
∇p
)

= K

%
∇2p+K∇

(
1
%

)
· ∇p ≈ K

%
∇2p,

under the assumption that the relative spatial gradient ∇%−1 = −%−2∇% is small. This approxi-
mation results in the simplified equation

ptt = K

%
∇2p+ s . (129)

The acoustic approximations to seismic waves are used for sound waves in the ground, and
the Earth’s surface is then a boundary where p equals the atmospheric pressure p0 such that the
boundary condition becomes p = p0.

83

Anisotropy. Quite often in geological materials, the effective wave velocity c =
√
K/% is

different in different spatial directions because geological layers are compacted such that the
properties in the horizontal and vertical direction differ. With z as the vertical coordinate, we can
introduce a vertical wave velocity cz and a horizontal wave velocity ch, and generalize (129) to

ptt = c2zpzz + c2h(pxx + pyy) + s . (130)

19.5 Sound waves in liquids and gases
Sound waves arise from pressure and density variations in fluids. The starting point of modeling
sound waves is the basic equations for a compressible fluid where we omit viscous (frictional)
forces, body forces (gravity, for instance), and temperature effects:

%t +∇ · (%u) = 0, (131)
%ut + %u · ∇u = −∇p, (132)

% = %(p) . (133)

These equations are often referred to as the Euler equations for the motion of a fluid. The
parameters involved are the density %, the velocity u, and the pressure p. Equation (132) reflects
mass balance, (131) is Newton’s second law for a fluid, with frictional and body forces omitted,
and (133) is a constitutive law relating density to pressure by thermodynamics considerations. A
typical model for (133) is the so-called isentropic relation30, valid for adiabatic processes where
there is no heat transfer:

% = %0

(
p

p0

)1/γ
. (134)

Here, p0 and %0 are references values for p and % when the fluid is at rest, and γ is the ratio of
specific heat at constant pressure and constant volume (γ = 5/3 for air).

The key approximation in a mathematical model for sound waves is to assume that these
waves are small perturbations to the density, pressure, and velocity. We therefore write

p = p0 + p̂,

% = %0 + %̂,

u = û,

where we have decomposed the fields in a constant equilibrium value, corresponding to u = 0, and
a small perturbation marked with a hat symbol. By inserting these decompositions in (131) and
(132), neglecting all product terms of small perturbations and/or their derivatives, and dropping
the hat symbols, one gets the following linearized PDE system for the small perturbations in
density, pressure, and velocity:

%t + %0∇ · u = 0, (135)
%0ut = −∇p . (136)

Now we can eliminate %t by differentiating the relation %(p),
30http://en.wikipedia.org/wiki/Isentropic_process

84

%t = %0
1
γ

(
p

p0

)1/γ−1 1
p0
pt = %0

γp0

(
p

p0

)1/γ−1
pt .

The product term p1/γ−1pt can be linearized as p1/γ−1
0 pt, resulting in

%t ≈
%0
γp0

pt .

We then get

pt + γp0∇ · u = 0, (137)

ut = − 1
%0
∇p, . (138)

Taking the divergence of (138) and differentiating (137) with respect to time gives the possibility
to easily eliminate ∇ · ut and arrive at a standard, linear wave equation for p:

ptt = c2∇2p, (139)

where c =
√
γp0/%0 is the speed of sound in the fluid.

19.6 Spherical waves
Spherically symmetric three-dimensional waves propagate in the radial direction r only so that
u = u(r, t). The fully three-dimensional wave equation

∂2u

∂t2
= ∇ · (c2∇u) + f

then reduces to the spherically symmetric wave equation

∂2u

∂t2
= 1
r2

∂

∂r

(
c2(r)r2 ∂u

∂t

)
+ f(r, t), r ∈ (0, R), t > 0 . (140)

One can easily show that the function v(r, t) = ru(r, t) fulfills a standard wave equation in
Cartesian coordinates if c is constant. To this end, insert u = v/r in

1
r2

∂

∂r

(
c2(r)r2 ∂u

∂t

)

to obtain

r

(
dc2

dr

∂v

∂r
+ c2

∂2v

∂r2

)
− dc2

dr
v .

The two terms in the parenthesis can be combined to

r
∂

∂r

(
c2
∂v

∂r

)
,

which is recognized as the variable-coefficient Laplace operator in one Cartesian coordinate. The
spherically symmetric wave equation in terms of v(r, t) now becomes

85

∂2v

∂t2
= ∂

∂r

(
c2(r)∂v

∂r

)
− 1
r

dc2

dr
v + rf(r, t), r ∈ (0, R), t > 0 . (141)

In the case of constant wave velocity c, this equation reduces to the wave equation in a single
Cartesian coordinate called r:

∂2v

∂t2
= c2

∂2v

∂r2 + rf(r, t), r ∈ (0, R), t > 0 . (142)

That is, any program for solving the one-dimensional wave equation in a Cartesian coordinate
system can be used to solve (142), provided the source term is multiplied by the coordinate,
and that we divide the Cartesian mesh solution by r to get the spherically symmetric solution.
Moreover, if r = 0 is included in the domain, spherical symmetry demands that ∂u/∂r = 0 at
r = 0, which means that

∂u

∂r
= 1
r2

(
r
∂v

∂r
− v
)

= 0, r = 0,

implying v(0, t) = 0 as a necessary condition. For practical applications, we exclude r = 0 from
the domain and assume that some boundary condition is assigned at r = ε, for some ε > 0.

19.7 The linear shallow water equations
The next example considers water waves whose wavelengths are much lager than the depth
and whose wave amplitudes are small. This class of waves may be generated by catastrophic
geophysical events, such as earthquakes at the sea bottom, landslides moving into water, or
underwater slides (or a combination, as earthquakes frequently release avalanches of masses). For
example, a subsea earthquake will normally have an extension of many kilometers but lift the
water only a few meters. The wave length will have a size dictated by the earthquake area, which
is much lager than the water depth, and compared to this wave length, an amplitude of a few
meters is very small. The water is essentially a thin film, and mathematically we can average
the problem in the vertical direction and approximate the 3D wave phenomenon by 2D PDEs.
Instead of a moving water domain in three space dimensions, we get a horizontal 2D domain with
an unknown function for the surface elevation and the water depth as a variable coefficient in the
PDEs.

Let η(x, y, t) be the elevation of the water surface, H(x, y) the water depth corresponding
to a flat surface (η = 0), u(x, y, t) and v(x, y, t) the depth-averaged horizontal velocities of the
water. Mass and momentum balance of the water volume give rise to the PDEs involving these
quantities:

ηt = −(Hu)x − (Hv)x (143)
ut = −gηx, (144)
vt = −gηy, (145)

where g is the acceleration of gravity. Equation (143) corresponds to mass balance while the
other two are derived from momentum balance (Newton’s second law).

The initial conditions associated with (143)-(145) are η, u, and v prescribed at t = 0. A
common condition is to have some water elevation η = I(x, y) and assume that the surface is at
rest: u = v = 0. A subsea earthquake usually means a sufficiently rapid motion of the bottom

86

and the water volume to say that the bottom deformation is mirrored at the water surface as an
initial lift I(x, y) and that u = v = 0.

Boundary conditions may be η prescribed for incoming, known waves, or zero normal velocity
at reflecting boundaries (steep mountains, for instance): unx + vny = 0, where (nx, ny) is the
outward unit normal to the boundary. More sophisticated boundary conditions are needed
when waves run up at the shore, and at open boundaries where we want the waves to leave the
computational domain undisturbed.

Equations (143), (144), and (145) can be transformed to a standard, linear wave equation.
First, multiply (144) and (145) by H, differentiate (144)) with respect to x and (145) with
respect to y. Second, differentiate (143) with respect to t and use that (Hu)xt = (Hut)x and
(Hv)yt = (Hvt)y when H is independent of t. Third, eliminate (Hut)x and (Hvt)y with the aid
of the other two differentiated equations. These manipulations results in a standard, linear wave
equation for η:

ηtt = (gHηx)x + (gHηy)y = ∇ · (gH∇η) . (146)

In the case we have an initial non-flat water surface at rest, the initial conditions become
η = I(x, y) and ηt = 0. The latter follows from (143) if u = v = 0, or simply from the fact that
the vertical velocity of the surface is ηt, which is zero for a surface at rest.

The system (143)-(145) can be extended to handle a time-varying bottom topography, which
is relevant for modeling long waves generated by underwater slides. In such cases the water depth
function H is also a function of t, due to the moving slide, and one must add a time-derivative
term Ht to the left-hand side of (143). A moving bottom is best described by introducing z = H0
as the still-water level, z = B(x, y, t) as the time- and space-varying bottom topography, so that
H = H0 −B(x, y, t). In the elimination of u and v one may assume that the dependence of H on
t can be neglected in the terms (Hu)xt and (Hv)yt. We then end up with a source term in (146),
because of the moving (accelerating) bottom:

ηtt = ∇ · (gH∇η) +Btt . (147)

The reduction of (147) to 1D, for long waves in a straight channel, or for approximately plane
waves in the ocean, is trivial by assuming no change in y direction (∂/∂y = 0):

ηt = (gHηx)x +Btt . (148)

Wind drag on the surface. Surface waves are influenced by the drag of the wind, and if
the wind velocity some meters above the surface is (U, V), the wind drag gives contributions
CV
√
U2 + V 2U and CV

√
U2 + V 2V to (144) and (145), respectively, on the right-hand sides.

Bottom drag. The waves will experience a drag from the bottom, often roughly modeled by a
term similar to the wind drag: CB

√
u2 + v2u on the right-hand side of (144) and CB

√
u2 + v2v

on the right-hand side of (145). Note that in this case the PDEs (144) and (145) become nonlinear
and the elimination of u and v to arrive at a 2nd-order wave equation for η is not possible
anymore.

Effect of the Earth’s rotation. Long geophysical waves will often be affected by the rotation
of the Earth because of the Coriolis force. This force gives rise to a term fv on the right-hand
side of (144) and −fu on the right-hand side of (145). Also in this case one cannot eliminate u
and v to work with a single equation for η. The Coriolis parameter is f = 2Ω sinφ, where Ω is
the angular velocity of the earth and φ is the latitude.

87

19.8 Waves in blood vessels
The flow of blood in our bodies is basically fluid flow in a network of pipes. Unlike rigid pipes,
the walls in the blood vessels are elastic and will increase their diameter when the pressure rises.
The elastic forces will then push the wall back and accelerate the fluid. This interaction between
the flow of blood and the deformation of the vessel wall results in waves traveling along our blood
vessels.

A model for one-dimensional waves along blood vessels can be derived from averaging the
fluid flow over the cross section of the blood vessels. Let x be a coordinate along the blood vessel
and assume that all cross sections are circular, though with different radius R(x, t). The main
quantities to compute is the cross section area A(x, t), the averaged pressure P (x, t), and the
total volume flux Q(x, t). The area of this cross section is

A(x, t) = 2π
∫ R(x,t)

0
rdr, (149)

Let vx(x, t) be the velocity of blood averaged over the cross section at point x. The volume flux,
being the total volume of blood passing a cross section per time unit, becomes

Q(x, t) = A(x, t)vx(x, t) (150)

Mass balance and Newton’s second law lead to the PDEs

∂A

∂t
+ ∂Q

∂x
= 0, (151)

∂Q

∂t
+ γ + 2
γ + 1

∂

∂x

(
Q2

A

)
+ A

%

∂P

∂x
= −2π(γ + 2)µ

%

Q

A
, (152)

where γ is a parameter related to the velocity profile, % is the density of blood, and µ is the
dynamic viscosity of blood.

We have three unknowns A, Q, and P , and two equations (151) and (152). A third equation
is needed to relate the flow to the deformations of the wall. A common form for this equation is

∂P

∂t
+ 1
C

∂Q

∂x
= 0, (153)

where C is the compliance of the wall, given by the constitutive relation

C = ∂A

∂P
+ ∂A

∂t
, (154)

which require a relationship between A and P . One common model is to view the vessel wall,
locally, as a thin elastic tube subject to an internal pressure. This gives the relation

P = P0 + πhE

(1− ν2)A0
(
√
A−

√
A0),

where P0 and A0 are corresponding reference values when the wall is not deformed, h is the
thickness of the wall, and E and ν are Young’s modulus and Poisson’s ratio of the elastic material
in the wall. The derivative becomes

C = ∂A

∂P
= 2(1− ν2)A0

πhE

√
A0 + 2

(
(1− ν2)A0

πhE

)2

(P − P0) . (155)

88

Another (nonlinear) deformation model of the wall, which has a better fit with experiments, is

P = P0 exp (β(A/A0 − 1)),

where β is some parameter to be estimated. This law leads to

C = ∂A

∂P
= A0
βP

. (156)

Reduction to standard wave equation. It is not uncommon to neglect the viscous term
on the right-hand side of (152) and also the quadratic term with Q2 on the left-hand side. The
reduced equations (152) and (153) form a first-order linear wave equation system:

C
∂P

∂t
= −∂Q

∂x
, (157)

∂Q

∂t
= −A

%

∂P

∂x
. (158)

These can be combined into standard 1D wave equation PDE by differentiating the first equation
with respect t and the second with respect to x,

∂

∂t

(
CC

∂P

∂t

)
= ∂

∂x

(
A

%

∂P

∂x

)
,

which can be approximated by

∂2Q

∂t2
= c2

∂2Q

∂x2 , c =

√
A

%C
, (159)

where the A and C in the expression for c are taken as constant reference values.

19.9 Electromagnetic waves
Light and radio waves are governed by standard wave equations arising from Maxwell’s general
equations. When there are no charges and no currents, as in a vacuum, Maxwell’s equations take
the form

∇ ·EEE = 0,
∇ ·BBB = 0,

∇×EEE = −∂BBB
∂t
,

∇×BBB = µ0ε0
∂EEE

∂t
,

where ε0 = 8.854187817620 · 10−12 (F/m) is the permittivity of free space, also known as the
electric constant, and µ0 = 1.2566370614 · 10−6 (H/m) is the permeability of free space, also
known as the magnetic constant. Taking the curl of the two last equations and using the identity

∇× (∇×EEE) = ∇(∇ ·EEE)−∇2EEE = −∇2EEE when ∇ ·EEE = 0,

89

immediately gives the wave equation governing the electric and magnetic field:

∂2EEE

∂t2
= c2

∂2EEE

∂x2 , (160)

∂2EEE

∂t2
= c2

∂2EEE

∂x2 , (161)

with c = 1/√µ0ε0 as the velocity of light. Each component of EEE and BBB fulfills a wave equation
and can hence be solved independently.

20 Exercises
Exercise 15: Simulate waves on a non-homogeneous string
Simulate waves on a string that consists of two materials with different density. The tension in
the string is constant, but the density has a jump at the middle of the string. Experiment with
different sizes of the jump and produce animations that visualize the effect of the jump on the
wave motion.

Hint. According to Section 19.1, the density enters the mathematical model as % in %utt = Tuxx,
where T is the string tension. Modify, e.g., the wave1D_u0v.py code to incorporate the tension
and two density values. Make a mesh function rho with density values at each spatial mesh point.
A value for the tension may be 150 N. Corresponding density values can be computed from the
wave velocity estimations in the guitar function in the wave1D_u0v.py file.
Filename: wave1D_u0_sv_discont.py.

Exercise 16: Simulate damped waves on a string
Formulate a mathematical model for damped waves on a string. Use data from Section 3.4, and
tune the damping parameter so that the string is very close to the rest state after 15 s. Make a
movie of the wave motion. Filename: wave1D_u0_sv_damping.py.

Exercise 17: Simulate elastic waves in a rod
A hammer hits the end of an elastic rod. The exercise is to simulate the resulting wave motion
using the model (121) from Section 19.3. Let the rod have length L and let the boundary x = L
be stress free so that σxx = 0, implying that ∂u/∂x = 0. The left end x = 0 is subject to a strong
stress pulse (the hammer), modeled as

σxx(t) =
{
S, 0 < t ≤ ts,
0, t > ts

The corresponding condition on u becomes ux = S/E for t ≤ ts and zero afterwards (recall that
σxx = Eux). This is a non-homogeneous Neumann condition, and you will need to approximate
this condition and combine it with the scheme (the ideas and manipulations follow closely the
handling of a non-zero initial condition ut = V in wave PDEs or the corresponding second-order
ODEs for vibrations). Filename: wave_rod.py.

90

Exercise 18: Simulate spherical waves
Implement a model for spherically symmetric waves using the method described in Section 19.6.
The boundary condition at r = 0 must be ∂u/∂r = 0, while the condition at r = R can either be
u = 0 or a radiation condition as described in Problem 21. The u = 0 condition is sufficient if R
is so large that the amplitude of the spherical wave has become insignificant. Make movie(s) of
the case where the source term is located around r = 0 and sends out pulses

f(r, t) =
{
Q exp (− r2

2∆r2) sinωt, sinωt ≥ 0
0, sinωt < 0

Here, Q and ω are constants to be chosen.

Hint. Use the program wave1D_u0v.py as a starting point. Let solver compute the v function
and then set u = v/r. However, u = v/r for r = 0 requires special treatment. One possibility is
to compute u[1:] = v[1:]/r[1:] and then set u[0]=u[1]. The latter makes it evident that
∂u/∂r = 0 in a plot.
Filename: wave1D_spherical.py.

Exercise 19: Explain why numerical noise occurs
The experiments performed in Exercise 8 shows considerable numerical noise in the form of
non-physical waves, especially for sf = 4 and the plug pulse or the half a "cosinehat" pulse. The
noise is much less visible for a Gaussian pulse. Run the case with the plug and half a "cosinehat"
pulses for sf = 1, C = 0.9, 0.25, and Nx = 40, 80, 160. Use the numerical dispersion relation to
explain the observations. Filename: pulse1D_analysis.pdf.

Exercise 20: Investigate harmonic averaging in a 1D model
Harmonic means are often used if the wave velocity is non-smooth or discontinuous. Will
harmonic averaging of the wave velocity give less numerical noise for the case sf = 4 in Exercise 8?
Filenames: pulse1D_harmonic.pdf, pulse1D_harmonic.py.

Problem 21: Implement open boundary conditions
To enable a wave to leave the computational domain and travel undisturbed through the boundary
x = L, one can in a one-dimensional problem impose the following condition, called a radiation
condition or open boundary condition:

∂u

∂t
+ c

∂u

∂x
= 0 . (162)

The parameter c is the wave velocity.
Show that (162) accepts a solution u = gR(x− ct) (right-going wave), but not u = gL(x+ ct)

(left-going wave). This means that (162) will allow any right-going wave gR(x − ct) to pass
through the boundary undisturbed.

A corresponding open boundary condition for a left-going wave through x = 0 is

∂u

∂t
− c∂u

∂x
= 0 . (163)

91

a) A natural idea for discretizing the condition (162) at the spatial end point i = Nx is to apply
centered differences in time and space:

[D2tu+ cD2xu = 0]ni , i = Nx . (164)

Eliminate the fictitious value unNx+1 by using the discrete equation at the same point.
The equation for the first step, u1

i , is in principle also affected, but we can then use the
condition uNx

= 0 since the wave has not yet reached the right boundary.

b) A much more convenient implementation of the open boundary condition at x = L can be
based on an explicit discretization

[D+
t u+ cD−x u = 0]ni , i = Nx . (165)

From this equation, one can solve for un+1
Nx

and apply the formula as a Dirichlet condition at the
boundary point. However, the finite difference approximations involved are of first order.

Implement this scheme for a wave equation utt = c2uxx in a domain [0, L], where you have
ux = 0 at x = 0, the condition (162) at x = L, and an initial disturbance in the middle of the
domain, e.g., a plug profile like

u(x, 0) =
{

1, L/2− ` ≤ x ≤ L/2 + `,
0, otherwise

Observe that the initial wave is split in two, the left-going wave is reflected at x = 0, and both
waves travel out of x = L, leaving the solution as u = 0 in [0, L]. Use a unit Courant number
such that the numerical solution is exact. Make a movie to illustrate what happens.

Because this simplified implementation of the open boundary condition works, there is no
need to pursue the more complicated discretization in a).

Hint. Modify the solver function in wave1D_dn.py31.

c) Add the possibility to have either ux = 0 or an open boundary condition at the left boundary.
The latter condition is discretized as

[D+
t u− cD+

x u = 0]ni , i = 0, (166)

leading to an explicit update of the boundary value un+1
0 .

The implementation can be tested with a Gaussian function as initial condition:

g(x;m, s) = 1√
2πs

e−
(x−m)2

2s2 .

Run two tests:

1. Disturbance in the middle of the domain, I(x) = g(x;L/2, s), and open boundary condition
at the left end.

2. Disturbance at the left end, I(x) = g(x; 0, s), and ux = 0 as symmetry boundary condition
at this end.

Make nose tests for both cases, testing that the solution is zero after the waves have left the
domain.

31http://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn.py

92

d) In 2D and 3D it is difficult to compute the correct wave velocity normal to the boundary,
which is needed in generalizations of the open boundary conditions in higher dimensions. Test
the effect of having a slightly wrong wave velocity in (165). Make a movies to illustrate what
happens.
Filename: wave1D_open_BC.py.

Remarks. The condition (162) works perfectly in 1D when c is known. In 2D and 3D, however,
the condition reads ut + cxux + cyuy = 0, where cx and cy are the wave speeds in the x and y
directions. Estimating these components (i.e., the direction of the wave) is often challenging.
Other methods are normally used in 2D and 3D to let waves move out of a computational domain.

Exercise 22: Implement periodic boundary conditions
It is frequently of interest to follow wave motion over large distances and long times. A straight-
forward approach is to work with a very large domain, but might lead to a lot of computations in
areas of the domain where the waves cannot be noticed. A more efficient approach is to let a
right-going wave out of the domain and at the same time let it enter the domain on the left. This
is called a periodic boundary condition.

The boundary condition at the right end x = L is an open boundary condition (see Exercise 21)
to let a right-going wave out of the domain. At the left end, x = 0, we apply, in the beginning
of the simulation, either a symmetry boundary condition (see Exercise 7) ux = 0, or an open
boundary condition.

This initial wave will split in two and either reflected or transported out of the domain at
x = 0. The purpose of the exercise is to follow the right-going wave. We can do that with a
periodic boundary condition. This means that when the right-going wave hits the boundary x = L,
the open boundary condition lets the wave out of the domain, but at the same time we use a
boundary condition on the left end x = 0 that feeds the outgoing wave into the domain again.
This periodic condition is simply u(0) = u(L). The switch from ux = 0 or an open boundary
condition at the left end to a periodic condition can happen when u(L, t) > ε, where ε = 10−4

might be an appropriate value for determining when the right-going wave hits the boundary
x = L.

The open boundary conditions can conveniently be discretized as explained in Exercise 21.
Implement the described type of boundary conditions and test them on two different initial
shapes: a plug u(x, 0) = 1 for x ≤ 0.1, u(x, 0) = 0 for x > 0.1, and a Gaussian function in the
middle of the domain: u(x, 0) = exp (− 1

2 (x− 0.5)2/0.05). The domain is the unit interval [0, 1].
Run these two shapes for Courant numbers 1 and 0.5. Assume constant wave velocity. Make
movies of the four cases. Reason why the solutions are correct. Filename: periodic.py.

Problem 23: Earthquake-generated tsunami over a subsea hill
A subsea earthquake leads to an immediate lift of the water surface, see Figure 10. The lifted
water surface splits into two tsunamis, one traveling to the right and one to the left, as depicted
in Figure 11. Since tsunamis are normally very long waves, compared to the depth, with a small
amplitude, compared to the wave length, the wave equation model described in Section 19.7 is
relevant:

ηtt = (gH(x)ηx)x,

where g is the acceleration of gravity, and H(x) is the still water depth.

93

I(x)

x=0

H0

Figure 10: Sketch of initial water surface due to a subsea earthquake.

x=0

H0

Figure 11: An initial surface elevation is split into two waves.

To simulate the right-going tsunami, we can impose a symmetry boundary at x = 0: ∂η ∂x = 0.
We then simulate the wave motion in [0, L]. Unless the ocean ends at x = L, the waves should
travel undisturbed through the boundary x = L. A radiation condition as explained in Problem 21
can be used for this purpose. Alternatively, one can just stop the simulations before the wave
hits the boundary at x = L. In that case it does not matter what kind of boundary condition
we use at x = L. Imposing η = 0 and stopping the simulations when |ηni | > ε, i = Nx − 1, is a
possibility (ε is a small parameter).

The shape of the initial surface can be taken as a Gaussian function,

94

I(x; I0, Ia, Im, Is) = I0 + Ia exp
(
−
(
x− Im
Is

)2
)
, (167)

with Im = 0 reflecting the location of the peak of I(x) and Is being a measure of the width of the
function I(x) (Is is

√
2 times the standard deviation of the familiar normal distribution curve).

Now we extend the problem with a hill at the sea bottom, see Figure 12. The wave speed
c =

√
gH(x) =

√
g(H0 −B(x)) will then be reduced in the shallow water above the hill.

I(x)

x=0

H0

B(x)

Ba

4mBsBm

Figure 12: Sketch of an earthquake-generated tsunami passing over a subsea hill.

One possible form of the hill is a Gaussian function,

B(x;B0, Ba, Bm, Bs) = B0 +Ba exp
(
−
(
x−Bm
Bs

)2
)
, (168)

but many other shapes are also possible, e.g., a "cosine hat" where

B(x;B0, Ba, Bm, Bs) = B0 +Ba cos
(
π
x−Bm

2Bs

)
, (169)

when x ∈ [Bm −Bs, Bm +Bs] while B = B0 outside this interval.
Also an abrupt construction may be tried:

B(x;B0, Ba, Bm, Bs) = B0 +Ba, (170)

for x ∈ [Bm −Bs, Bm +Bs] while B = B0 outside this interval.
The wave1D_dn_vc.py32 program can be used as starting point for the implementation.

Visualize both the bottom topography and the water surface elevation in the same plot. Allow
for a flexible choice of bottom shape: (168), (169), (170), or B(x) = B0 (flat).

The purpose of this problem is to explore the quality of the numerical solution ηni for different
shapes of the bottom obstruction. The "cosine hat" and the box-shaped hills have abrupt

32http://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn_vc.py

95

changes in the derivative of H(x) and are more likely to generate numerical noise than the
smooth Gaussian shape of the hill. Investigate if this is true. Filenames: tsunami1D_hill.py,
tsunami1D_hill.pdf.

Problem 24: Earthquake-generated tsunami over a 3D hill
This problem extends Problem 23 to a three-dimensional wave phenomenon, governed by the
2D PDE (146). We assume that the earthquake arise from a fault along the line x = 0 in the
xy-plane so that the initial lift of the surface can be taken as I(x) in Problem 23. That is, a
plane wave is propagating to the right, but will experience bending because of the bottom.

The bottom shape is now a function of x and y. An "elliptic" Gaussian function in two
dimensions, with its peak at (Bmx, Bmy), generalizes (168):

B(x;B0, Ba, Bmx, Bmy, Bs, b) = B0 +Ba exp
(
−
(
x−Bmx
Bs

)2
−
(
y −Bmy
bBs

)2
)
, (171)

where b is a scaling parameter: b = 1 gives a circular Gaussian function with circular contour
lines, while b 6= 1 gives an elliptic shape with elliptic contour lines.

The "cosine hat" (169) can also be generalized to

B(x;B0, Ba, Bmx, Bmy, Bs) = B0 +Ba cos
(
π
x−Bmx

2Bs

)
cos
(
π
y −Bmy

2Bs

)
, (172)

when 0 ≤
√
x2 + y2 ≤ Bs and B = B0 outside this circle.

A box-shaped obstacle means that

B(x;B0, Ba, Bm, Bs, b) = B0 +Ba (173)

for x and y inside a rectangle

Bmx −Bs ≤ x ≤ Bmx +Bs, Bmy − bBs ≤ y ≤ Bmy + bBs,

and B = B0 outside this rectangle. The b parameter controls the rectangular shape of the cross
section of the box.

Note that the initial condition and the listed bottom shapes are symmetric around the line
y = Bmy. We therefore expect the surface elevation also to be symmetric with respect to this
line. This means that we can halve the computational domain by working with [0, Lx]× [0, Bmy].
Along the upper boundary, y = Bmy, we must impose the symmetry condition ∂η/∂n = 0.
Such a symmetry condition (−ηx = 0) is also needed at the x = 0 boundary because the initial
condition has a symmetry here. At the lower boundary y = 0 we also set a Neumann condition
(which becomes −ηy = 0). The wave motion is to be simulated until the wave hits the reflecting
boundaries where ∂η/∂n = ηx = 0 (one can also set η = 0 - the particular condition does
not matter as long as the simulation is stopped before the wave is influenced by the boundary
condition).

Visualize the surface elevation. Investigate how different hill shapes, different sizes of the
water gap above the hill, and different resolutions ∆x = ∆y = h and ∆t influence the numerical
quality of the solution. Filenames: tsunami2D_hill.py, tsunami2D_hill.pdf.

96

Problem 25: Investigate Matplotlib for visualization
Play with native Matplotlib code for visualizing 2D solutions of the wave equation with variable
wave velocity. See if there are effective ways to visualize both the solution and the wave velocity.
Filename: tsunami2D_hill_mpl.py.

Problem 26: Investigate visualization packages
Create some fancy 3D visualization of the water waves and the subsea hill in Problem 24. Try to
make the hill transparent. Possible visualization tools are

• Mayavi33

• Paraview34

• OpenDX35

Filename: tsunami2D_hill_viz.py.

Problem 27: Implement loops in compiled languages
Extend the program from Problem 24 such that the loops over mesh points, inside the time
loop, are implemented in compiled languages. Consider implementations in Cython, Fortran via
f2py, C via Cython, C via f2py, C/C++ via Instant, and C/C++ via scipy.weave. Perform
efficiency experiments to investigate the relative performance of the various implementations. It
is often advantageous to normalize CPU times by the fastest method on a given mesh. Filename:
tsunami2D_hill_compiled.py.

Exercise 28: Simulate seismic waves in 2D
The goal of this exercise is to simulate seismic waves using the PDE model (130) in a 2D xz
domain with geological layers. Introduce m horizontal layers of thickness hi, i = 0, . . . ,m − 1.
Inside layer number i we have a vertical wave velocity cz,i and a horizontal wave velocity ch,i.
Make a program for simulating such 2D waves. Test it on a case with 3 layers where

cz,0 = cz,1 = cz,2, ch,0 = ch,2, ch,1 � ch,0 .

Let s be a localized point source at the middle of the Earth’s surface (the upper boundary) and
investigate how the resulting wave travels through the medium. The source can be a localized
Gaussian peak that oscillates in time for some time interval. Place the boundaries far enough
from the expanding wave so that the boundary conditions do not disturb the wave. Then the type
of boundary condition does not matter, except that we physically need to have p = p0, where p0
is the atmospheric pressure, at the upper boundary. Filename: seismic2D.py.

33http://code.enthought.com/projects/mayavi/
34http://www.paraview.org/
35http://www.opendx.org/

97

Project 29: Model 3D acoustic waves in a room
The equation for sound waves in air is derived in Section 19.5 and reads

ptt = c2∇2p,

where p(x, y, z, t) is the pressure and c is the speed of sound, taken as 340 m/s. However, sound
is absorbed in the air due to relaxation of molecules in the gas. A model for simple relaxation,
valid for gases consisting only of one type of molecules, is a term c2τs∇2pt in the PDE, where τs
is the relaxation time. If we generate sound from, e.g., a loudspeaker in the room, this sound
source must also be added to the governing equation.

The PDE with the mentioned type of damping and source then becomes

ptt = c2∇p + c2τs∇2pt + f, (174)
where f(x, y, z, t) is the source term.

The walls can absorb some sound. A possible model is to have a "wall layer" (thicker than the
physical wall) outside the room where c is changed such that some of the wave energy is reflected
and some is absorbed in the wall. The absorption of energy can be taken care of by adding a
damping term bpt in the equation:

ptt+ bpt = c2∇p + c2τs∇2pt + f . (175)
Typically, b = 0 in the room and b > 0 in the wall. A discontinuity in b or c will give rise to
reflections. It can be wise to use a constant c in the wall to control reflections because of the
discontinuity between c in the air and in the wall, while b is gradually increased as we go into
the wall to avoid reflections because of rapid changes in b. At the outer boundary of the wall
the condition p = 0 or ∂p/∂n = 0 can be imposed. The waves should anyway be approximately
dampened to p = 0 this far out in the wall layer.

There are two strategies for discretizing the ∇2pt term: using a center difference between
times n+ 1 and n− 1 (if the equation is sampled at level n), or use a one-sided difference based
on levels n and n− 1. The latter has the advantage of not leading to any equation system, while
the former is second-order accurate as the scheme for the simple wave equation ptt = c2∇2p. To
avoid an equation system, go for the one-sided difference such that the overall scheme becomes
explicit and only of first order in time.

Develop a 3D solver for the specified PDE and introduce a wall layer. Test the solver with
the method of manufactured solutions. Make some demonstrations where the wall reflects and
absorbs the waves (reflection because of discontinuity in b and absorption because of growing b).
Experiment with the impact of the τs parameter. Filename: acoustics.py.

Project 30: Solve a 1D transport equation
We shall study the wave equation

ut + cux = 0, x ∈ (0, L], t ∈ (0, T], (176)
with initial condition

u(x, 0) = I(x), x ∈ [0, L], (177)
and one periodic boundary condition

u(0, t) = u(L, t) . (178)

98

This boundary condition means that what goes out of the domain at x = L comes in at x = 0.
Roughly speaking, we need only one boundary condition because of the spatial derivative is of
first order only.

Physical interpretation. The parameter c can be constant or variable, c = c(x). The equation
(176) arises in transport problems where a quantity u, which could be temperature or concentration
of some contaminant, is transported with the velocity c of a fluid. In addition to the transport
imposed by "travelling with the fluid", u may also be transported by diffusion (such as heat
conduction or Fickian diffusion), but we have in the model ut + cux assumed that diffusion effects
are negligible, which they often are.

A widely used numerical scheme for (176) applies a forward difference in time and a backward
difference in space when c > 0:

[D+
t u+ cD−x u = 0]ni . (179)

For c < 0 we use a forward difference in space: [cD+
x u]ni .

We shall hereafter assume that = c(x) > 0.
To compute (184) we need to integrate 1/c to obtain C and then compute the inverse of C.
The inverse function computation can be easily done if we first think discretely. Say we have

some function y = g(x) and seeks its inverse. Plotting (xi, yi), where yi = g(xi) for some mesh
points xi, displays g as a function of x. The inverse function is simply x as a function of g,
i.e., the curve with points (yi, xi). We can therefore quickly compute points at the curve of the
inverse function. One way of extending these points to a continuous function is to assume a
linear variation (known as linear interpolation) between the points (which actually means to draw
straight lines between the points, exactly as done by a plotting program).

The function wrap2callable in scitools.std can take a set of points and return a continuous
function that corresponds to linear variation between the points. The computation of the inverse
of a function g on [0, L] can then be done by

def inverse(g, domain, resolution=101):
x = linspace(domain[0], domain[L], resolution)
y = g(x)
from scitools.std import wrap2callable
g_inverse = wrap2callable((y, x))
return g_inverse

To compute C(x) we need to integrate 1/c, which can be done by a Trapezoidal rule. Suppose
we have computed C(xi) and need to compute C(xi+1). Using the Trapezoidal rule with m
subintervals over the integration domain [xi, xi+1] gives

C(xi+1) = C(xi) +
∫ xi+1

xi

dx

c
≈ h

1

2
1

c(xi)
+ 1

2
1

c(xi+1) +
m−1∑

j=1

1
c(xi + jh)

 , (180)

where h = (xi+1 − xi)/m is the length of the subintervals used for the integral over [xi, xi+1]. We
observe that (180) is a difference equation which we can solve by repeatedly applying (180) for
i = 0, 1, . . . , Nx − 1 if a mesh x0, x, . . . , xNx

is prescribed. Note that C(0) = 0.

a) Show that under the assumption of a = const,

u(x, t) = I(x− ct) (181)
fulfills the PDE as well as the initial and boundary condition (provided I(0) = I(L)).

99

b) Set up a computational algorithm and implement it in a function. Assume a is constant and
positive.

c) Test implementation by using the remarkable property that the numerical solution is exact at
the mesh points if ∆t = c−1∆x.

d) Make a movie comparing the numerical and exact solution for the following two choices of
initial conditions:

I(x) =
[
sin
(
π
x

L

)]2n
(182)

where n is an integer, typically n = 5, and

I(x) = exp
(
− (x− L/2)2

2σ2

)
. (183)

Choose ∆t = c−1∆x, 0.9c−1∆x, 0.5c−1∆x.

e) The performance of the suggested numerical scheme can be investigated by analyzing the
numerical dispersion relation. Analytically, we have that the Fourier component

u(x, t) = ei(kx−ωt),

is a solution of the PDE if ω = kc. This is the analytical dispersion relation. A complete solution
of the PDE can be built by adding up such Fourier components with different amplitudes, where
the initial condition I determines the amplitudes. The solution u is then represented by a Fourier
series.

A similar discrete Fourier component at (xp, tn) is

uqp = ei(kp∆x−ω̃n∆t),

where in general ω̃ is a function of k, ∆t, and ∆x, and differs from the exact ω = kc.
Insert the discrete Fourier component in the numerical scheme and derive an expression for ω̃,

i.e., the discrete dispersion relation. Show in particular that if the ∆t/(c∆x) = 1, the discrete
solution coincides with the exact solution at the mesh points, regardless of the mesh resolution
(!). Show that if the stability condition

∆t
c∆x ≤ 1,

the discrete Fourier component cannot grow (i.e., ω̃ is real).

f) Write a test for your implementation where you try to use information from the numerical
dispersion relation.

g) Set up a computational algorithm for the variable coefficient case and implement it in a
function. Make a test that the function works for constant a.

100

h) It can be shown that for an observer moving with velocity c(x), u is constant. This can be
used to derive an exact solution when a varies with x. Show first that

u(x, t) = f(C(x)− t), (184)

where

C ′(x) = 1
c(x) ,

is a solution of (176) for any differentiable function f .

i) Use the initial condition to show that an exact solution is

u(x, t) = I(C−1(C(x)− t)),
with C−1 being the inverse function of C =

∫
c1dx. Since C(x) is an integral

∫ x
0 (1/c)dx, C(x) is

monotonically increasing and there exists hence an inverse function C−1 with values in [0, L].

j) Implement a function for computing C(xi) and one for computing C−1(x) for any x. Use
these two functions for computing the exact solution I(C−1(C(x)− t)). End up with a function
u_exact_variable_c(x, n, c, I) that returns the value of I(C−1(C(x)− tn)).

k) Make movies showing a comparison of the numerical and exact solutions for the two initial
conditions (182) and (30). Choose ∆t = ∆x/max0,L c(x) and the velocity of the medium as

1. c(x) = 1 + ε sin(kπx/L), ε < 1,

2. c(x) = 1 + I(x), where I is given by (182) or (30).

The PDE ut + cux = 0 expresses that the initial condition I(x) is transported with velocity c(x).
Filename: advec1D.py.

Problem 31: General analytical solution of a 1D damped wave equation
We consider an initial-boundary value problem for the damped wave equation:

utt + but = c2uxx, x ∈ (0, L), t ∈ (0, T]
u(0, t) = 0,
u(L, t) = 0,
u(x, 0) = I(x),
ut(x, 0) = V (x) .

Here, b ≥ 0 and c are given constants. The aim is to derive a general analytical solution of this
problem. Familiarity with the method of separation of variables for solving PDEs will be assumed.

a) Seek a solution on the form u(x, t) = X(x)T (t). Insert this solution in the PDE and show
that it leads to two differential equations for X and T :

T ′′ + bT ′ + λT = 0, c2X ′′ + λX = 0,

with X(0) = X(L) = 0 as boundary conditions, and λ as a constant to be determined.

101

b) Show that X(x) is on the form

Xn(x) = Cn sin kx, k = nπ

L
, n = 1, 2, . . .

where Cn is an arbitrary constant.

c) Under the assumption that (b/2)2 < k2, show that T (t) is on the form

Tn(t) = e−
1
2 bt(an cosωt+ bn sinωt), ω =

√
k2 − 1

4b
2, n = 1, 2, . . .

The complete solution is then

u(x, t) =
∞∑

n=1
sin kxe− 1

2 bt(An cosωt+Bn sinωt),

where the constants An and Bn must be computed from the initial conditions.

d) Derive a formula for An from u(x, 0) = I(x) and developing I(x) as a sine Fourier series on
[0, L].

e) Derive a formula for Bn from ut(x, 0) = V (x) and developing V (x) as a sine Fourier series on
[0, L].

f) Calculate An and Bn from vibrations of a string where V (x) = 0 and

I(x) =
{
ax/x0, x < x0,
a(L− x)/(L− x0), otherwise (185)

g) Implement the series for u(x, t) in a function u_series(x, t, tol=1E-10), where tol is a
tolerance for truncating the series. Simply sum the terms until |an| and |bb| both are less than
tol.

h) What will change in the derivation of the analytical solution if we have ux(0, t) = ux(L, t) = 0
as boundary conditions? And how will you solve the problem with u(0, t) = 0 and ux(L, t) = 0?
Filename: damped_wave1D.pdf.

Problem 32: General analytical solution of a 2D damped wave equation
Carry out Problem 31 in the 2D case: utt + but = c2(uxx + uyy), where (x, y) ∈ (0, Lx)× (0, Ly).
Assume a solution on the form u(x, y, t) = X(x)Y (y)T (t). Filename: damped_wave2D.pdf.

102

Index
arithmetic mean, 33
array slices, 18
averaging

arithmetic, 33
geometric, 33
harmonic, 33

boundary condition
open (radiation), 89

boundary conditions
Dirichlet, 25
Neumann, 25
periodic, 91

C extension module, 65
C/Python array storage, 70
column-major ordering, 70
Courant number, 47
Cython, 63
cython -a (Python-C translation in HTML),

65

declaration of variables in Cython, 64
Dirichlet conditions, 25
discrete Fourier transform, 45
distutils, 65

Fortran array storage, 70
Fortran subroutine, 67
Fourier series, 45
Fourier transform, 45

geometric mean, 33

harmonic average, 33
homogeneous Dirichlet conditions, 25
homogeneous Neumann conditions, 25

index set notation, 27, 59

lambda function (Python), 21

mesh
finite differences, 3

mesh function, 4

Neumann conditions, 25
nose tests, 13

open boundary condition, 89

periodic boundary conditions, 91

radiation condition, 89
row-major ordering, 70

scalar code, 18
setup.py, 65
slice, 18
software testing

nose, 13
stability criterion, 48
stencil

1D wave equation, 4
Neumann boundary, 26

unit testing, 13

vectorization, 18

wave equation
1D, 3
1D, analytical properties, 44
1D, exact numerical solution, 46
1D, finite difference method, 3
1D, implementation, 12
1D, stability, 48
2D, implementation, 58

waves
on a string, 3

wrapper code, 67

103

