Finite difference methods for wave

motion

Hans Petter Langtangen'?

!Center for Biomedical Computing, Simula Research Laboratory
2Department of Informatics, University of Oslo

Nov 12, 2014

This is still a preliminary version.

Jontents

Simulation of waves on a string

1.1 Discretizing the domain
1.2 The discrete solution
1.3 Fulfilling the equation at the mesh points
1.4 Replacing derivatives by finite differences
1.5 Formulating a recursive algorithm
1.6 Sketch of an implementation.

Verification

2.1 A slightly generalized model problem
2.2 Using an analytical solution of physical significance
2.3 Manufactured solution L oL
2.4 Constructing an exact solution of the discrete equations

Implementation

3.1 Making a solver function 0oL
3.2 Verification: exact quadratic solution
3.3 Visualization: animating the solution
3.4 Runningacase oo
3.5 The benefits of scaling

Vectorization

4.1 Operations on slices of arrays
4.2 Finite difference schemes expressed as slices
4.3 Verification Lo
4.4 Efficiency measurementso
4.5 Remark on the updating of arrays

0 3O O U W

10
11
12

14
14
15
16
19
20

5 Exercises

6 Generalization: reflecting boundaries
6.1 Neumann boundary condition
6.2 Discretization of derivatives at the boundary
6.3 Implementation of Neumann conditions
6.4 Index set notation
6.5 Alternative implementation via ghost cells

7 Generalization: variable wave velocity
7.1 The model PDE with a variable coefficient
7.2 Discretizing the variable coefficient
7.3 Computing the coefficient between mesh points
7.4 How a variable coefficient affects the stability
7.5 Neumann condition and a variable coefficient
7.6 Implementation of variable coefficients
7.7 A more general model PDE with variable coefficients
7.8 Generalization: damping

8 Building a general 1D wave equation solver
8.1 User action function asaclass.
8.2 Pulse propagation in two media L

9 Exercises

10 Analysis of the difference equations
10.1 Properties of the solution of the wave equation
10.2 More precise definition of Fourier representations
10.3 Stability
10.4 Numerical dispersion relation
10.5 Extending the analysisto2Dand 3D

11 Finite difference methods for 2D and 3D wave equations
11.1 Multi-dimensional wave equations
11.2 Mesh o o
11.3 Discretization o o

12 Implementation
12.1 Scalar computations L.
12.2 Vectorized computations
12.3 Verification

13 Migrating loops to Cython
13.1 Declaring variables and annotating the code
13.2 Visual inspection of the C translation
13.3 Building the extension module
13.4 Calling the Cython function from Python

4 Migrating loops to Fortran 77
14.1 The Fortran subroutine 77
14.2 Building the Fortran module with f2py 79
14.3 How to avoid array copying 80

5 Migrating loops to C via Cython 82
15.1 Translating index pairs to single indices 82
15.2 The complete Ccode 83
15.3 The Cython interface file. 83
15.4 Building the extension module 84

6 Migrating loops to C via f2py 85
16.1 Migrating loops to C++ viaf2py 86

7 Using classes to implement a simulator 87

8 Exercises 87

9 Applications of wave equations 88
19.1 Wavesonastring. 89
19.2 Waves on a membrane oL 92
19.3 Elastic wavesinarod 92
19.4 The acoustic model for seismic waves 92
19.5 Sound waves in liquids and gases 94
19.6 Spherical waves L o 95
19.7 The linear shallow water equations 96
19.8 Waves in blood vessels Lo L. 98
19.9 Electromagnetic waves 100

0 Exercises 101

A very wide range of physical processes lead to wave motion, where signals
re propagated through a medium in space and time, normally with little or
o permanent movement of the medium itself. The shape of the signals may
ndergo changes as they travel through matter, but usually not so much that
1e signals cannot be recognized at some later point in space and time. Many
pes of wave motion can be described by the equation uy = V - (¢2Vu) + f,
hich we will solve in the forthcoming text by finite difference methods.

Simulation of waves on a string

/e begin our study of wave equations by simulating one-dimensional waves on
string, say on a guitar or violin string. Let the string in the deformed state
sincide with the interval [0, L] on the z axis, and let u(x,t) be the displacement

at time ¢ in the y direction of a point initially at x. The displacement 1
u is governed by the mathematical model

Pu ,0%u

wzc w7 I'E(O,L), ﬁE(O,T]
u(z,0) = I(x), x €10, L]

0
au(x,O) =0, x €0, L]
u(0,t) =0, te (0,7
u(L,t) =0, te(0,7]

The constant ¢ and the function I(z) must be prescribed.

Equation (1) is known as the one-dimensional wave equation. Since t]
contains a second-order derivative in time, we need two initial conditio
(2) specifying the initial shape of the string, I(x), and (3) reflecting t
initial velocity of the string is zero. In addition, PDEs need boundary co
here (4) and (5), specifying that the string is fixed at the ends, i.e., t
displacement u is zero.

The solution u(z,t) varies in space and time and describes waves 1
moving with velocity ¢ to the left and right.

Sometimes we will use a more compact notation for the partial derive
save space:

du _ 0%u
ot Utt = R
and similar expressions for derivatives with respect to other variables. T
wave equation can be written compactly as sy = c2Ugpg.

The PDE problem (1)-(5) will now be discretized in space and ti1
finite difference method.

Ut =

1.1 Discretizing the domain

The temporal domain [0, 7] is represented by a finite number of mesh |

O=t<ti<ta<- - <itn-_1<tn, =T.

Similarly, the spatial domain [0, L] is replaced by a set of mesh points

O=2g<z1<Z2<--<2N,_1<2ZN,=0L.

One may view the mesh as two-dimensional in the x, ¢ plane, consisting ¢
(z4,tn), withi=10,...,N, and n =0,..., Ng.

Iniform meshes. For uniformly distributed mesh points we can introduce
1e constant mesh spacings At and Azx. We have that

xi:iAx,i:(),...,Nz, ti:TLAt,n:O,...,Nt. (9)

/e also have that Ax = z; —x;_1,1=1,...,N,, and At =t, —t,_1, n =
..., N¢. Figure 1 displays a mesh in the z,¢ plane with N; =5, N, = 5, and
»nstant mesh spacings.

.2 The discrete solution

he solution u(z,t) is sought at the mesh points. We introduce the mesh
inction ', which approximates the exact solution at the mesh point (z;,t,)
ri=0,...,N, and n =0,..., N;. Using the finite difference method, we shall
evelop algebraic equations for computing the mesh function. The circles in
igure 1 illustrate neighboring mesh points where values of u} are connected
wough an algebraic equation. In this particular case, ui, u3, u2, v, and u3 are
»nnected in an algebraic equation associated with the center point (2,2). The
rm stencil is often used about the algebraic equation at a mesh point, and the
sometry of a typical stencil is illustrated in Figure 1. One also often refers to
1e algebraic equations as discrete equations, (finite) difference equations or a
nite difference scheme.

Stencil at interior point

5
4
s
c 3 1O
x
[]
2
£, 0 0 0
S © ©
0
1 &)
0
0 1 2 3 4 5

index i

Figure 1: Mesh in space and time for a 1D wave equation.

1.3 Fulfilling the equation at the mesh points

For a numerical solution by the finite difference method, we relax the c
that (1) holds at all points in the space-time domain (0,L) x (0,T
requirement that the PDE is fulfilled at the interior mesh points:
2 2
B uteit) =@ 2 ute),

fore=1,....N, —landn =1,...,N; — 1. For n = 0 we have th
conditions v = I(z) and u; = 0, and at the boundaries i = 0, N, we I
boundary condition v = 0.

1.4 Replacing derivatives by finite differences

The second-order derivatives can be replaced by central differences. T
widely used difference approximation of the second-order derivative is

0? RS ul Tt — 2uP !
gz (@i tn) = At? :

It is convenient to introduce the finite difference operator notation

n uttt — 2l + y? !
[DiDyu]it = — At2 —

A similar approximation of the second-order derivative in the x directic

82
dx?

n n n
uih g — 2w gty
Ax?

U(CCi,tn) ~ = [DTDTU];L

Algebraic version of the PDE. We can now replace the derivative:
and get

n+1 n—1 n n n
w; = 2ul +ul T 2 ui'py — 2u +ug
At? Az? ’
or written more compactly using the operator notation:

[DyDyu = 2D, D,]7 .

Algebraic version of the initial conditions. We also need to rep
derivative in the initial condition (3) by a finite difference approxima
centered difference of the type

0 ul — !
i, ty) ~ ———1— = [Dyyu]?,
gi (@i tn) AL [Darul;

seems appropriate. In operator notation the initial condition is written

[Dou]l =0, n=0.

/riting out this equation and ordering the terms give
ul ' =ut, i=0,...,N;, n=0. (13)
he other initial condition can be computed by

ud =1I(x;), i=0,...,N,.

K2

.5 Formulating a recursive algorithm

/e assume that u] and u;%l are already computed for i =0,..., N,. The only
nknown quantity in (11) is therefore u”*!, which we can solve for:

i

up™h = —uf T 4 2uf + O (uiyr = 2uf +uiy), (14)
here we have introduced the parameter
At
C=c—, 15
e (15)

nown as the Courant number.

C is the key parameter in the discrete diffusion equation.

We see that the discrete version of the PDE features only one parameter,
C, which is therefore the key parameter that governs the quality of the
numerical solution (see Section 10 for details). Both the primary physical
parameter ¢ and the numerical parameters Az and At are lumped together
in C. Note that C is a dimensionless parameter.

Given that u?fl and u}* are computed for ¢ =0, ..., N,, we find new values
t the next time level by applying the formula (14) for i = 1,..., N, — 1. Figure 1
lustrates the points that are used to compute u3. For the boundary points,
=0 and 7 = N,, we apply the boundary conditions u?“ =0.

A problem with (14) arises when n = 0 since the formula for u} involves u;
hich is an undefined quantity outside the time mesh (and the time domain).
‘owever, we can use the initial condition (13) in combination with (14) when
= 0 to arrive at a special formula for u}:

1

I

1
u’} = ’U/? — 502 (U;:_l — 2'[1/;1 + U?_l) . (16)

igure 2 illustrates how (16) connects four instead of five points: ul, u?, u9, and
0
5.

We can now summarize the computational algorithm:

1. Compute u) = I(z;) for i =0,..., N,

Stencil at interior point

index n

index i

Figure 2: Modified stencil for the first time step.

2. Compute u} by (16) and set u} = 0 for the boundary points i -
i= N, forn=1,2,...,N —1,
3. For each time level n =1,2,...,N; — 1
(a) apply (14) to find u** fori=1,..., N, — 1
(b) set u]t* = 0 for the boundary points i = 0, i = N,.
The algorithm essentially consists of moving a finite difference stencil

all the mesh points, which is illustrated by an animation in a web pa;
movie file?.

1.6 Sketch of an implementation

In a Python implementation of this algorithm, we use the array elemer
to store u?"'l, u_1[i] to store v}, and u_2[i] to store u?_l. Our
convention is use u for the unknown new spatial field to be computed
the solution at one time step back in time, u_2 as the solution two tin
back in time and so forth.

The algorithm only needs to access the three most recent time level
need only three arrays for « ™', u?, and u}~', i = 0,..., N,. Storing
solutions in a two-dimensional array of size (N, +1) x (N;+ 1) would be

Ihttp://tinyurl.com/opdfafk/pub/mov-wave/wavelD_PDE_Dirichlet_stencil g
2http://tinyurl.com/opdfafk/pub/mov-wave/wavelD_PDE_Dirichlet_stencil_g

1 this simple one-dimensional PDE problem, but is normally out of the question
1 three-dimensional (3D) and large two-dimensional (2D) problems. We shall
1erefore in all our programs for solving PDEs have the unknown in memory at
5 few time levels as possible.

The following Python snippet realizes the steps in the computational algo-
thm.

t Given mesh points as arrays x and t (x[i], t[n])

ix = x[1] - x[0]

it = t[1] - t[o]

3 = cxdt/dx # Courant number

it = len(t)-1

32 = C**2 # Help variable in the scheme

t Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_1[i] = I(x[i])

t Apply special formula for first step, incorporating du/dt=0
for 1 in range(1, Nx):

uli] = uw_1[i] - 0.5*C**2(u_1[i+1] - 2%u_1[i] + u_1[i-1])
1[0] = 0; ulNx] = 0 # Enforce boundary conditions

t Switch variables before next step
1.20:1, w_1l:] =u_l, u

‘or n in range(l, Nt):
Update all inner mesh points at time t[n+1]
for i in range(1l, Nx):
ulil = 2u_1[i] - uw_2[i] - \
Ck*2(u_1[i+1] - 2%u_1[i] + u_1[i-1])

Insert boundary conditions
ul0] = 0; wulNx] =0

Switch variables before next step
u_2[:], u_1l:] =u_1, u

' Verification

efore implementing the algorithm, it is convenient to add a source term to the
DE (1) since it gives us more freedom in finding test problems for verification.
1 particular, the source term allows us to use manufactured solutions for software
ssting, where we simply choose some function as solution, fit the corresponding
urce term, and define boundary and initial conditions consistent with the
10sen solution. Such solutions will seldom fulfill the initial condition (3) so we
eed to generalize this condition to u; = V(z).

.1 A slightly generalized model problem

/e now address the following extended initial-boundary value problem for
ne-dimensional wave phenomena:

gt = gy + f(2,1), z€(0,L), t € (0,T]
u(z,0) = I(z), z €[0,L]
ut(z,0) = V(x), z € [0,L]
u(0,t) =0, t>0
u(L,t) =0, t>0

Sampling the PDE at (x;,¢,) and using the same finite difference apj
tions as above, yields

[D;Dyu = c¢*D, D, + f]7.
n+1

Writing this out and solving for the unknown u; ™" results in

uf Tt = T 2ul + CQ(u?+1 —2ul +ul)+ AP
The equation for the first time step must be rederived. The discretiz
the initial condition u; = V() at ¢ = 0 becomes

[Doyu = V]Q = u;l =u} — 2AtV;,

K3

which, when inserted in (23) for n = 0, gives the special formula
1_ .0 AtV 102 n 2 n n 1At2 n
up = up = AtV + 5 (ufyy — 24 +ui—1)+§ fit

2.2 Using an analytical solution of physical signific:

Many wave problems feature sinusoidal oscillations in time and spa
example, the original PDE problem (1)-(5) allows a solution

ue(x,y,t)) = Asin (%x) Cos (%ct) .

This ue fulfills the PDE with f = 0, boundary conditions ue(0,t) = ue(L
as well as initial conditions I(z) = Asin (Tz) and V = 0.

It is common to use such exact solutions of physical interest to verif
mentations. However, the numerical solution «]* will only be an approx
to ue(x;, t,). We no have knowledge of the precise size of the error in this
imation, and therefore we can never know if discrepancies between the cc
ul and we(z;,t,) are caused by mathematical approximations or progr.
errors. In particular, if a plot of the computed solution u} and the ex
(25) looks similar, many are attempted to claim that the implementatio
but there can still be serious programming errors although color plots I¢

The only way to use exact physical solutions like (25) for serious and t
verification is to run a series of finer and finer meshes, measure the int
error in each mesh, and from this information estimate the convergence
these rates are very close to 2, we have strong evidence that the implem:
works.

10

.3 Manufactured solution

me problem with the exact solution (25) is that it requires a simplification
7 =0, f =0) of the implemented problem (17)-(21). An advantage of using
manufactured solution is that we can test all terms in the PDE problem.
he idea of this approach is to set up some chosen solution and fit the source
rm, boundary conditions, and initial conditions to be compatible with the
10sen solution. Given that our boundary conditions in the implementation are
(0,t) = u(L,t) = 0, we must choose a solution that fulfills these conditions.
me example is

ue(x,t) = x(L — x)sint.
1serted in the PDE uy = gy + f we get

—z(L—z)sint = —2sint+ f = f=(2—x(L—x))sint.

he initial conditions become

u(z,0) =I(x) =0,
u(z,0) =V(z) = —z(L —z).

To verify the code, we run a series of refined meshes and compute the
»nvergence rates. Such tests rely on an assumption that some measure E of
1e numerical error is related to the discretization parameters through

E = C.At" + CyAx?,

here Cy, C,, r, and p are constants. The constants r and p are known as the
muvergence rates in time and space, respectively. From the accuracy in the finite
ifference approximations, we expect r = p = 2. This is confirmed by truncation
ror analysis and other types of analysis. By using an exact solution of the
DE problem, we can empirically compute the error measure FE on a sequence
f refined meshes and see if the rates r = p = 2 are obtained. We will not be
cerned with estimating the constants Cy and C.

It is advantageous to introduce a single discretization parameter h = At =
Az for some constant ¢ (the idea is to keep At"/AxP constant). Since At and
2 are related through the Courant number, At = CAz/c, we set h = At, and
1en Az = he/C. Now the expression for the error measure is greatly simplified:

Cyc

. N Cc
c KM =Ch", C=Ci+

C

E = CiAt" + C,Ax" = Cih"™ +
We choose an initial discretization parameter hy and run experiments with

ecreasing h: h; =2 *hg, 1 = 1,2,...,m. Halving h in each experiment is not
ecessary, but a common choice. For each experiment we must record E and

11

h. A standard choice of error measure is the £2 or £ norm of the err:
function e}

1
N¢; N, 2
E = |le}]le = (AmeZ@?)Z) , el = ue(wy, ty) — ul,

n=0 =0
E = ||ef'|[ee = maxe;,|.
,m

In Python, one can compute 3, (e ™)? at each time step and accumu
value in some sum variable, say e2_sum. At the final time step one
sqrt (dt*dx*e2_sum). For the £*° norm one must compare the maximu
at a time level (e.max()) with the global maximum over the time
e_max = max(e_max, e.max()).

An alternative error measure is to use a spatial norm at one time st
e.g., the end time T

2

N
E=leflle = (Ar Z(E?V) » € = Ue(wis tn) — uf,
i=0

E =|le}||¢~ = max |e

i
0<i<N, nl-

Let E; be the error measure in experiment (mesh) number ¢ and 1
the corresponding discretization parameter (h). With the error model E,
we can estimate r by comparing two consecutive experiments: E;;q =
and E; = C'h: Dividing the two equations eliminates C' and solving for

o lnEi+1/Ei
o lnhi+1/hi ’

We should for the present discretization method observe that r; approac
1 increases.

T 1=0,....m—1.

2.4 Constructing an exact solution of the discrete
tions

With a manufactured or known analytical solution, as outlined above,
estimate convergence rates and see if they have the correct asymptotic t
Experience shows that this is a quite good verification technique in th:
common bugs will destroy the convergence rates. A significantly bet
would be to check that the numerical solution is exactly what it sh
This will in general require knowledge of the numerical error, which we
have. However, it is possible to look for solutions where we can show 1
numerical error vanishes, i.e., the solution of the PDE problem is also a
of the discrete equations. This property often arises if the exact solut

12

wer-order polynomial. (Truncation error analysis leads to error measures that
wolve derivatives of the exact solution. In the present problem, the truncation
ror involves 4th-order derivatives of w in space and time. Choosing u as a
olynomial of degree three or less will therefore lead to vanishing error.)

We shall now illustrate the construction of an exact solution of the PDE
roblem and the discrete equations. Our choice of manufactured solution is
uadratic in space and linear in time. More specifically, we set

ue(x,t) = x(L —z)(1 + %t), (30)

hich by insertion in the PDE leads to f(z,t) = 2(1 + t)c?. This u, fulfills the
oundary conditions u = 0 and demands I(z) = z(L —z) and V(z) = 2(L —).

To realize that the chosen wue is that it is also an exact solution of the discrete
juations, we first establish the results

2 — 262+ 82

[DeDit?]" = =) et e (-2 =2, (31
n tny1 _2tn+tn—1 ((TL+1) —n+ (TL— 1))At
[D;Dyt]" = =+ INE = INE =0. (32
ence,

, 1. 1
[DtDtue]l'-L = $1(L — .T,)[Dth(l + Etﬂn = l’Z(L — Ii)i[DtDtt]n = 07
nd

1 1
[DyDyuel? = (1 + 5tn)[DIDI(:L»L —2%));i =1+ 5tn)[LDIDIgc — D, D,2?);

1
—2(14 =ty).
(1+ 5tn)

ow, fi' =2(1+ %tn)c2 and we get

K

[DyDyue — 2Dy Dy — fI7F =0 — c2(—1)2(1 + %tn +2(1+ %tn)& =0.

Moreover, ue(z;,0) = I(x;), Que/0t = V(z;) at t = 0, and ue(zo,t) =
e(zn,,0) = 0. Also the modified scheme for the first time step is fulfilled by
e ((Ei, tn) .

Therefore, the exact solution ue(x,t) = 2(L —x)(1+t/2) of the PDE problem
also an exact solution of the discrete problem. We can use this result to check
1at the computed ul vales from an implementation equals ue(x;,t,) within
1achine precision, regardless of the mesh spacings Ax and At! Nevertheless,
1ere might be stability restrictions on Az and At, so the test can only be run
v a mesh that is compatible with the stability criterion (which in the present
ase is C' < 1, to be derived later).

13

Notice.

A product of quadratic or linear expressions in the various indeper
variables, as shown above, will often fulfill both the continuous and dis
PDE problem and can therefore be very useful solutions for veri
implementations. However, for 1D wave equations of the type u; = «
we shall see that there is always another much more powerful w.
generating exact solutions (just set C' = 1).

3 Implementation

This section present the complete computational algorithm, its implement
Python code, animation of the solution, and verification of the impleme

A real implementation of the basic computational algorithm from Sect
and 1.6 can be encapsulated in a function, taking all the input data
problem as arguments. The physical input data consists of ¢, I(z), V(z)
L, and T. The numerical input is the mesh parameters At and Azx.

Instead of specifying At and Ax, we can specify one of them and the
number C' instead, since having explicit control of the Courant nu
convenient when investigating the numerical method. Many find it na
prescribe the resolution of the spatial grid and set N,. The solver {
can then compute At = CL/(cN,). However, for comparing u(z,t) cu
functions of x) for various Courant numbers, especially in animations
it is more convenient to keep At fixed for all C' and let Az vary acco
Az = cAt/C. (With At fixed, all frames correspond to the same tim
plotting curves with different spatial resolution is trivial.)

The solution at all spatial points at a new time level is stored in ¢
u (of length N, + 1). We need to decide what do to with this soluti
visualize the curve, analyze the values, or write the array to file for I
The decision what to do is left to the user in a suppled function

def user_action(u, x, t, n):

where u is the solution at the spatial points x at time t [n].

3.1 Making a solver function

A first attempt at a solver function is listed below.

from numpy import *

def solver(I, V, f, ¢, L, dt, C, T, user_action=None):
"""Solve u_tt=c"2*u_xx + f on (0,L)x(0,T]."""
Nt = int(round(T/dt))
t = linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = dtxc/float(C)

14

Nx = int(round(L/dx))
x = linspace(0, L, Nx+1) # Mesh points in space

C2 = Cx*x2 # Help variable in the scheme

if f is None or £ == 0 :
f = lambda x, t: O
if V is None or V == O:
0

V = lambda x:
u = zeros(Nx+1) # Solution array at new time level
u_1 = zeros(Nx+1) # Solution at 1 time level back
u_2 = zeros(Nx+1) # Solution at 2 time levels back

import time; tO = time.clock() # for measuring CPU time

Load initial condition into u_1
for i in range(0,Nx+1):
u_1[i] = I(x[i])

if user_action is not None:
user_action(u_1, x, t, 0)

Special formula for first time step
n=20
for i in range(1l, Nx):
ulil = uw_1[i] + at*V(x[i]) + \
0.5%C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + \
0.5xdt**x2xf (x[i], t[n])
ul0] = 0; ulNx] =0

if user_action is not None:
user_action(u, x, t, 1)

Switch variables before next step
u 2[:] =u_1; u.i1l:] =u

for n in range(1l, Nt):
Update all inner points at time t[n+1]
for i in range(1l, Nx):
uli] = - u_2[i] + 2*%u_1[i] + \
C2*(u_1[i-1] - 2%u_1[i] + u_1[i+1]) + \
dtxx2*f (x[i], t[n])

Insert boundary conditions
ul0] = 0; ulNx] =0
if user_action is not None:
if user_action(u, x, t, n+l):
break

Switch variables before next step
u 2[:] =u_1; u.1[:] =u

cpu_time = t0 - time.clock()
return u, x, t, cpu_time

.2 Verification: exact quadratic solution

/e use the test problem derived in Section 2.1 for verification. Here is a function

salizing this verification as a nose test:

import nose.tools as nt

def test_quadratic():
"""Check that u(x,t)=x(L-x)(1+t/2) is exactly reproduced."""
def u_exact(x, t):
return x*(L-x)*(1 + 0.5%t)

def I(x):

return u_exact(x, 0)
def V(x):

return 0.5%u_exact(x, 0)
def f(x, t):

return 2*(1 + 0.5%t)*cx*2
L =2.5
c=1.5
C=0.75
Nx = 3 # Very coarse mesh for this exact test
dt = Cx(L/Nx)/c
T =18

u, x, t, cpu = solver(I, V, f, ¢, L, dt, C, T)
u_e = u_exact(x, t[-1])

diff = abs(u - u_e).max()
nt.assert_almost_equal(diff, O, places=14)

3.3 Visualization: animating the solution

Now that we have verified the implementation it is time to do a real com;
where we also display the evolution of the waves on the screen.

Visualization via SciTools. The following viz function defines a uses
callback function for plotting the solution at each time level:

def viz(I, V, f, ¢, L, dt, C, T, umin, umax, animate=True):
"""Run solver and visualize u at each time level."""
import scitools.std as plt
import time, glob, os

def plot_u(u, x, t, n):
"""user_action function for solver."""
plt.plot(x, u, ’r-’,
xlabel=’x’, ylabel=’u’,
axis=[0, L, umin, umax],
title=’t=f’ % t[n], show=True)
Let the initial condition stay on the screen for 2
seconds, else insert a pause of 0.2 s between each plot
time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig(’frame_%04d.png’ % n) # for movie making

Clean up old movie frames

for filename in glob.glob(’frame_*.png’):
os.remove (filename)

16

user_action = plot_u if animate else None
u, x, t, cpu = solver(I, V, f, ¢, L, dt, C, T, user_action)

Make movie files
fps = 4 # Frames per second
plt.movie(’frame_x.png’, encoder=’html’, fps=fps,
output_file=’movie.html’)
codec2ext = dict(flv="flv’, 1ibx264=’mp4’, libvpx=’webm’,
libtheora=’ogg’)
filespec = ’frame_}%04d.png’
movie_program = ’avconv’ # or ’ffmpeg’
for codec in codec2ext:
ext = codec2ext[codec]
cmd = ’%(movie_program)s -r %(fps)d -i %(filespec)s ’\
’-yvcodec %(codec)s movie.%(ext)s’ % vars()
os.system(cmd)

function inside another function, like plot_u in the above code segment, has
zcess to and remembers all the local variables in the surrounding code inside
1e viz function (!). This is known in computer science as a closure and is
ary convenient to program with. For example, the plt and time modules
efined outside plot_u are accessible for plot_u when the function is called (as
ser_action) in the solver function. Some may think, however, that a class
istead of a closure is a cleaner and easier-to-understand implementation of the
ser action function, see Section 8.

Taking movie files. Several hardcopies of the animation are made from
1e frame_*.png files. We use the avconv (or ffmpeg) programs to combine
idividual plot files to movies in modern formats: Flash, MP4, Webm, and
igg. A typical avconv (or ffmpeg) command for creating a movie file in Ogg
rmat with 4 frames per second built from a collection of plot files with names
snerated by frame_%04d.png, look like

srminal> avconv -r 4 -i frame_%04d.png -c:v libtheora movie.ogg

he different formats require different video encoders (-c:v) to be installed:
lash applies £1v, WebM applies 1ibvpx, and MP4 applies 1ibx264:

srminal> avconv -r 4 -i frame_%04d.png -c:v flv movie.flv
srminal> avconv -r 4 -i frame_%04d.png -c:v libvpx movie.webm
srminal> avconv -r 4 -i frame_%04d.png -c:v 1ibx264 movie.mp4

Players like vlc, mplayer, gxine, and totem can be used to play these movie
les.

Note that padding the frame counter with zeros in the frame_x*.png files,
3 specified by the %04d format, is essential so that the wildcard notation
rame_*.png expands to the correct set of files.

17

The plt.movie function also creates a movie.html file with a movi
for displaying the frame_x.png files in a web browser. This movie playe
generated from the command line too

Terminal> scitools movie encoder=html output_file=movie.html \
fps=4 frame_x.png

Skipping frames for animation speed. Sometimes the time step
and T is large, leading to an inconveniently large number of plot files an
animation on the screen. The solution to such a problem is to decide or
number of frames in the animation, num_frames, and plot the solution
every every frame. The total number of time levels (i.e., maximum

number of frames) is the length of t, t.size, and if we want num_fra
need to plot every t.size/num_frames frame:

every = int(t.size/float (num_frames))
if n % every == 0 or n == t.size-1:
st.plot(x, u, ’r-’, ...)

The initial condition (n=0) is natural to include, and as n % every =
very seldom be true for the very final frame, we also ensure that n ==
and hence the final frame is included.

A simple choice of numbers may illustrate the formulas: say we &
frames in total (t.size) and we allow only 60 frames to be plotted. 1
need to plot every 801/60 frame, which with integer division yields 13 a
Using the mod function, n % every, this operation is zero every time r
divided by 13 without a remainder. That is, the if test is true when 1
0,13,26,39,...,780,801. The associated code is included in the plot_u:
in the file wave1D_uOv.py>.

Visualization via Matplotlib. The previous code based on the plot i
from scitools.std can be run with Matplotlib as the visualization t
but if one desires to program directly with Matplotlib, quite different
needed. Matplotlib’s interactive mode must be turned on:

import matplotlib.pyplot as plt
plt.ion() # interactive mode on

The most commonly used animation technique with Matplotlib is to up:
data in the plot at each time level:

Make a first plot
lines = plt.plot(t, w)
call plt.axis, plt.xlabel, plt.ylabel, etc. as desired

Shttp://tinyurl.com/nm5587k/wave/wave1D/wave1D_uOv.py

18

t At later time levels

lines[0] .set_ydata(u)
>1t.legend (’t=%g’ % t[nl)
»lt.draw() # make updated plot
>1t.savefig(...)

An alternative is to rebuild the plot at every time level:

»1t.clf () # delete any previous curve(s)
>lt.axis([...])

>1t.plot(t, u)

t plt.xlabel, plt.legend and other decoratiomns
)1t .draw()

>1t.savefig(...)

[any prefer to work with figure and axis objects as in MATLAB:

*ig = plt.figure()

tig.clf ()

1x = fig.gca(Q)

ix.axis(...)

1x.plot(t, u)

t ax.set_xlabel, ax.legend and other decorations
»1t.draw()

‘ig.savefig(...)

.4 Running a case

he first demo of our 1D wave equation solver concerns vibrations of a string
1at is initially deformed to a triangular shape, like when picking a guitar string:

ax/xg, T < o,

() = { a(L —x)/(L —x0), otherwise (33)
/e choose L = 75 cm, o = 0.8L, a = 5 mm, and a time frequency v = 440
z. The relation between the wave speed ¢ and v is ¢ = v, where A is the
avelength, taken as 2L because the longest wave on the string form half a
avelength. There is no external force, so f = 0, and the string is at rest initially
> that V = 0.

Regarding numerical parameters, we need to specify a At. Sometimes it is
1ore natural to think of a spatial resolution instead of a time step. A natural
»mi-coarse spatial resolution in the present problem is N, = 50. We can then
100se the associated At (as required by the viz and solver functions) as
1e stability limit: At = L/(Nzc). This is the A¢ to be specified, but notice
wat if C < 1, the actual Az computed in solver gets larger than L/N,:
x =cAt/C = L/(N,C). (The reason is that we fix At and adjust Az, so if C
ats smaller, the code implements this effect in terms of a larger Az.)

A function for setting the physical and numerical parameters and calling viz
1 this application goes as follows:

19

def guitar(C):
""'Triangular wave (pulled guitar string)."""

L=0.75

x0 = 0.8%L
a = 0.005
freq = 440

wavelength = 2xL

c = freg*wavelength

omega = 2¥pixfreq

num_periods = 1

T = 2xpi/omega*num_periods

Choose dt the same as the stability limit for Nx=50
dt = L/50./c

def I(x):
return a*x/x0 if x < x0 else a/(L-x0)*(L-x)

umin = -1.2%a; umax = -umin
cpu = viz(I, 0, 0, ¢, L, dt, C, T, umin, umax, animate=True)

The associated program has the name wave1D_u0.py*. Run the progr
watch the movie of the vibrating string®.

3.5 The benefits of scaling

The previous example demonstrated that quite some work is needed
tablishing relevant physical parameters for a case. By scaling the mathe
problem we can often reduce the need to estimate physical parameters «
cally. A scaling consists of introducing new independent and dependent v
with the aim that the absolute value of these vary between 0 and 1:
% g, o_u
z=7, =7t u=_.
Replacing old by new variables in the PDE, using f = 0, and dropping t
results in the scaled equation uyy = ugz,. This equation has no physical pa
M.

If we have a program implemented for the physical wave equati
dimensions, we can obtain the dimensionless, scaled version by settin
The initial condition corresponds to (185), but with setting a =1, L =
xo € [0,1]. This means that we only need to decide on the z(value as a
of unity, because the scaled problem corresponds to setting all other par
to unity! In the code we can just set a=c=L=1, x0=0.8, and there is no
calculate with wavelengths and frequencies to estimate c.

The only non-trivial parameter to estimate in the scaled problem is
end time of the simulation, or more precisely, how it relates to periods in
solutions in time, since we often want to express the end time as a
number of periods. Suppose as u behaves as sin(wt) in time in variab
dimension. The corresponding period is P = 27 /w. The frequency w is re

4nttp://tinyurl.com/nm5587k/wave/wave1D/wavelD_u0.py
Shttp://tinyurl.com/opdfafk/pub/mov-wave/guitar_C0.8/index.html

20

1e wavelength A of the waves through the relations w = kc and k = 27/, giving

= 2mw¢/A and P = \/c. It remains to estimate A\. With u(z,t) = F(z)sinwt
e find from uy; = c?ug, that c2F” + w?F = 0, and the boundary conditions
emand F(0) = F(L) = 0. The solution is F(z) = sin(zn/L), which has
avelength A = 27 /(w/L) = 2L. One period is therefore given by P = 2L/c.
he dimensionless period is P = Pc/L = 2.

Vectorization

he computational algorithm for solving the wave equation visits one mesh
oint at a time and evaluates a formula for the new value uf*l at that point.
echnically, this is implemented by a loop over array elements in a program.
uch loops may run slowly in Python (and similar interpreted languages such as
,and MATLAB). One technique for speeding up loops is to perform operations
an entire arrays instead of working with one element at a time. This is referred
y as vectorization, vector computing, or array computing. Operations on whole
crays are possible if the computations involving each element is independent of
aich other and therefore can, at least in principle, be performed simultaneously.
ectorization not only speeds up the code on serial computers, but it also makes
easy to exploit parallel computing.

.1 Operations on slices of arrays

fficient computing with numpy arrays demands that we avoid loops and compute
ith entire arrays at once (or at least large portions of them). Consider this
alculation of differences d; = u;+1 — u;:

1 = u.size
‘or i in range(0, n-1):
d[il = uli+1] - u[i]

1l the differences here are independent of each other. The computation of d can
1erefore alternatively be done by subtracting the array (ug, u1,...,u,—1) from
1e array where the elements are shifted one index upwards: (u1,usa,...,u,),
e Figure 3. The former subset of the array can be expressed by u[0:n-1],
[0:-1], or just u[:-1], meaning from index 0 up to, but not including, the
ist element (-1). The latter subset is obtained by ul1:n] or ul[1:], meaning
om index 1 and the rest of the array. The computation of d can now be done
ithout an explicit Python loop:

1=nul1:] - ul:-1]
¢ with explicit limits if desired:

1 =ul1:n] - ul0:n-1]

21

Indices with a colon, going from an index to (but not including) anoth
are called slices. With numpy arrays, the computations are still done
but in efficient, compiled, highly optimized code in C or Fortran. Suc
operations can also easily be distributed among many processors on
computers. We say that the scalar code above, working on an element (i
at a time, has been replaced by an equivalent vectorized code. The pr
vectorizing code is called wvectorization.

0 1 2 3 4

0 1 2 3 4

Figure 3: Illustration of subtracting two slices of two arrays.

Test the understanding.

Newcomers to vectorization are encouraged to choose a small array 1
with five elements, and simulate with pen and paper both the loop ve
and the vectorized version.

Finite difference schemes basically contains differences between array ¢
with shifted indices. Consider the updating formula

for i in range(l, n-1):
u2[i] = uli-1]1 - 2*uli] + uli+1]

The vectorization consists of replacing the loop by arithmetics on slices ¢
of length n-2:

u2
u2

ul:-2] - 2xuf1:-1] + u[2:]
ul[0:n-2] - 2+ul[1:n-1] + u[2:n] # alternative

Note that u2 here gets length n-2. If u2 is already an array of lengt
we want to use the formula to update all the “inner” elements of u2, as
when solving a 1D wave equation, we can write

u2([1:-1]
u2[1:n-1]

ul:-2] - 2*u[1:-1] + u[2:]
ul0:n-2] - 2*ul1:n-1] + u[2:n] # alternative

Pen and paper calculations with a small array will demonstrate what is
going on. The expression on the right-hand side are done in the followir

22

wolving temporary arrays with intermediate results, since we can only work
ith two arrays at a time in arithmetic expressions:

sempl = 2#u[1:-1]

semp2 = u[0:-2] - templ
semp3 = temp2 + ul[2:]
12[1:-1] = temp3

We can extend the previous example to a formula with an additional term
»mputed by calling a function:

lef f(x):
return x**2 + 1

‘or i in range(l, n-1):
u2[i] = uli-1] - 2*uli]l + uli+1] + £(x[i])

ssuming u2, u, and x all have length n, the vectorized version becomes

12[1:-1] = ul:-2] - 2*uf[1:-1] + u[2:] + £(x[1:-1])

.2 Finite difference schemes expressed as slices

/e now have the necessary tools to vectorize the algorithm for the wave equation.

here are three loops: one for the initial condition, one for the first time step,
nd finally the loop that is repeated for all subsequent time levels. Since only
1e latter is repeated a potentially large number of times, we limit the efforts of
sctorizing the code to this loop:

‘or i in range(l, Nx):
ulil = 2%u_1[i] - u_2[i] + \
C2x(u_1[i-1] - 2%u_1[i] + u_1[i+1])

he vectorized version becomes

1[1:-1]

- u_2[1:-1] + 2*u_1[1:-1] + \
C2x(u_1[:-2] - 2%u_1[1:-1] + u_1[2:])

1[1:Nx] = 2%u_1[1:Nx]- u_2[1:Nx] + \
C2%(u_1[0:Nx-1] - 2%u_1[1:Nx] + u_1[2:Nx+1])

The program wavelD_uOv.py® contains a new version of the function solver
here both the scalar and the vectorized loops are included (the argument
ersion is set to scalar or vectorized, respectively).

Shttp://tinyurl.com/nm5587k/wave/wavelD/wavelD_uOv.py

23

4.3 Verification

We may reuse the quadratic solution ue(z, t) = x(L —z)(1+ 4t) for verify
the vectorized code. A nose test can now test both the scalar and the ve
version. Moreover, we may use a user_action function that comp:
computed and exact solution at each time level and performs a test:

def test_quadratic():

Check the scalar and vectorized versions work for
a quadratic u(x,t)=x(L-x) (1+t/2) that is exactly reproduced.

The following function must work for x as array or scalar

u_exact = lambda x, t: x*(L - x)*(1 + 0.5%t)

I = lambda x: u_exact(x, 0)

V = lambda x: 0.5%u_exact(x, 0)

f is a scalar (zeros_like(x) works for scalar x too)
f = lambda x, t: zeros_like(x) + 2%c*x*2x(1 + 0.5%t)
L=2.5

c=1.5

C=0.75

Nx = 3 # Very coarse mesh for this exact test

dt = C*(L/Nx)/c

T=1

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = abs(u - u_e).max()
nt.assert_almost_equal(diff, 0, places=13)

solver(I, V, f, ¢, L, dt, C, T,
user_action=assert_no_error, version=’scalar’)

solver(I, V, £, ¢, L, dt, C, T,
user_action=assert_no_error, version=’vectorized’)

Lambda functions.

The code segment above demonstrates how to achieve very compact
with the use of lambda functions for the various input parameters
require a Python function. In essence,

f = lambda x, t: L*(x-t)**2
is equivalent to

def f(x, t):
return L(x-t)**2

Note that lambda functions can just contain a single expression ar
statements.

24

One advantage with lambda functions is that they can be used directly
in calls:

solver (I=lambda x: sin(pi*x/L), V=0, £=0, ...)

.4 Efficiency measurements

unning the wavelD_uOv.py code with the previous string vibration exam-
le for N, = 50,100,200,400,800, and measuring the CPU time (see the
un_efficiency_experiments function), shows that the vectorized code runs
1bstantially faster: the scalar code uses approximately a factor N, /5 more
me!

.5 Remark on the updating of arrays

t the end of each time step we need to update the u_2 and u_1 arrays such
1at they have the right content for the next time step:

1.2[:]
1.1[:]

u_1l
u

he order here is important! (Updating u_1 first, makes u_2 equal to u, which
wrong.)

The assignment u_1[:] = u copies the content of the u array into the
ements of the u_1 array. Such copying takes time, but little compared to
>mputing u from the finite difference formula, even when the formula has a
actorized implementation. However, efficiency of program code is a key topic
hen solving PDEs numerically, so it must be mentioned that there exists a
wch more efficient way of making the arrays u_2 and u_1 ready for the next
me step. The idea is based on switching references and explained below.

A Python variable is actually a reference to some object (C programmers
1ay think of pointers). Instead of copying data, we can let u_2 refer to the u_1
bject and u_1 refer to the u object. A naive implementation like

u_1

1.2
1.1 u

ill fail, however, because now u_1 and u refers to the same object and the
pdate of u from the finite difference formula at the next time step will overwrite
_1 and lead to erroneous computations. Also, with the suggested change of
sferences, the reference to the u_2 array is lost, and we have in fact only two
crays. The solution to this problem is to ensure that u points to the u_2 array.
his is mathematically wrong, but new correct values will be filled into u at the
ext time step.

25

The correct switch of references is then

tmp = u_2
u 2 =u_1l
ul=u
u = tmp

We can get rid of the temporary reference tmp by writing
u 2, ul, u=ul, u, u?2

This update will be used in later implementations.

Caution:

The updateu_2, u_1, u = u_1, u, u_2 leaves wrong content in u ¢
final time step. This means that if we return u, as we do in the exa
codes here, we actually return u_2, which is obviously wrong. It is ther
important to adjust the content of u to u = u_1 before returning u.

5 Exercises

Exercise 1: Simulate a standing wave

The purpose of this exercise is to simulate standing waves on [0, L] and i
the error in the simulation. Standing waves arise from an initial condit

u(z,0) = Asin (%mm) ,

where m is an integer and A is a freely chosen amplitude. The corres)
exact solution can be computed and reads

ue(x,t) = Asin (%mm) Cos (%mct) .

a) Explain that for a function sin kz cos wt the wave length in space is A
and the period in time is P = 27/w. Use these expressions to find t!
length in space and period in time of ue above.

b) Import the solver function wavelD_u0.py into a new file where
function is reimplemented such that it plots either the numerical and tl
solution, or the error.

¢) Make animations where you illustrate how the error e’ = wue(x;,t
develops and increases in time. Also make animations of u and ue simulte

Hint 1. Quite long time simulations are needed in order to display sig
discrepancies between the numerical and exact solution.

26

[int 2. A possible set of parameters is L =12, m=9,¢c=2, A=1, N, = 80,
"= 0.8. The error mesh function e” can be simulated for 10 periods, while
)-30 periods are needed to show significant differences between the curves for
1e numerical and exact solution.

ilename: wave_standing.py.

temarks. The important parameters for numerical quality are C' and kAxz,
here C' = cAt/Ax is the Courant number and k is defined above (kAz is
roportional to how many mesh points we have per wave length in space, see
ection 10.4 for explanation).

xercise 2: Add storage of solution in a user action function

xtend the plot_u function in the file wave1D_u0.py to also store the solutions
in a list. To this end, declare all_u as an empty list in the viz function,
utside plot_u, and perform an append operation inside the plot_u function.
‘ote that a function, like plot_u, inside another function, like viz, remembers
[l local variables in viz function, including all_u, even when plot_u is called
s user_action) in the solver function. Test both all_u.append(u) and
11_u.append(u.copy()). Why does one of these constructions fail to store
1e solution correctly? Let the viz function return the all_u list converted to a
vo-dimensional numpy array. Filename: wavelD_u0_s_store.py.

xercise 3: Use a class for the user action function

edo Exercise 2 using a class for the user action function. That is, define a class
ction where the all_u list is an attribute, and implement the user action func-
on as a method (the special method __call__ is a natural choice). The class
arsions avoids that the user action function depends on parameters defined out-
de the function (such as all_u in Exercise 2). Filename: wave1D_u0_s2c.py.

xercise 4: Compare several Courant numbers in one movie

he goal of this exercise is to make movies where several curves, corresponding
» different Courant numbers, are visualized. Import the solver function from
1e wavelD_uO_s movie in a new file wave_compare.py. Reimplement the viz
mction such that it can take a list of C values as argument and create a movie
ith solutions corresponding to the given C values. The plot_u function must
e changed to store the solution in an array (see Exercise 2 or 3 for details),
olver must be computed for each value of the Courant number, and finally
ne must run through each time step and plot all the spatial solution curves in
ne figure and store it in a file.

The challenge in such a visualization is to ensure that the curves in one plot
yrresponds to the same time point. The easiest remedy is to keep the time and
»ace resolution constant and change the wave velocity ¢ to change the Courant
umber. Filename: wave_numerics_comparison.py.

27

Project 5: Calculus with 1D mesh functions

This project explores integration and differentiation of mesh functions, bc
scalar and vectorized implementations. We are given a mesh function
spatial one-dimensional mesh xz; = iAz, i =0, ..., N, over the interval

a) Define the discrete derivative of f; by using centered differences at
mesh points and one-sided differences at the end points. Implement
version of the computation in a Python function and supply a nose test
linear case f(z) = 4z — 2.5 where the discrete derivative should be exa

b) Vectorize the implementation of the discrete derivative. Extend the 1
to check the validity of the implementation.

¢) To compute the discrete integral F; of f;, we assume that the mesh :
fi varies linearly between the mesh points. Let f(z) be such a linear int
of f;. We then have

- " fayds

The exact integral of a piecewise linear function f(z) is given by the Tra
rule. S how that if F; is already computed, we can find Fj;; from

1
Fiy.=F+ i(fz + fit1)Ax.

Make a function for a scalar implementation of the discrete integral as
function. That is, the function should return F; for ¢ =0,..., N,. Fo
test one can use the fact that the above defined discrete integral of
function (say f(x) = 4z — 2.5) is exact.

d) Vectorize the implementation of the discrete integral. Extend the v
to check the validity of the implementation.

Hint. Interpret the recursive formula for F;;; as a sum. Make an ar
each element of the sum and use the "cumsum' (numpy.cumsum) oper:
compute the accumulative sum: numpy.cumsum([1,3,5]) is [1,4,9].

e) Create a class MeshCalculus that can integrate and differentiate me
tions. The class can just define some methods that call the previousl:
mented Python functions. Here is an example on the usage:

import numpy as np
calc = MeshCalculus(vectorized=True)

x = np.linspace(0, 1, 11) # mesh

f = np.exp(x) # mesh function

df = calc.differentiate(f, x) # discrete derivative

F = calc.integrate(f, x) # discrete anti-derivative

Filename: mesh_calculus_1D.py.

28

» Generalization: reflecting boundaries

he boundary condition u = 0 makes u change sign at the boundary, while
1e condition u, = 0 perfectly reflects the wave, see a web page” or a movie
le® for demonstration. Our next task is to explain how to implement the
oundary condition u, = 0, which is more complicated to express numerically
nd also to implement than a given value of u. We shall present two methods
r implementing u, = 0 in a finite difference scheme, one based on deriving a
1odified stencil at the boundary, and another one based on extending the mesh
ith ghost cells and ghost points.

.1 Neumann boundary condition

/hen a wave hits a boundary and is to be reflected back, one applies the
»ndition

ou B

he derivative 9/9n is in the outward normal direction from a general boundary.

or a 1D domain [0, L], we have that

0 7] 0 0

%I:L:%’ 8711:0_ oz’

Boundary condition terminology.

Boundary conditions that specify the value of du/dn, or shorter u,, are
known as Neumann® conditions, while Dirichlet conditions® refer to speci-
fications of u. When the values are zero (Ju/0n = 0 or u = 0) we speak
about homogeneous Neumann or Dirichlet conditions.

%http://en.wikipedia.org/wiki/Neumann_boundary_condition
http://en.wikipedia.org/wiki/Dirichlet_conditions

.2 Discretization of derivatives at the boundary

ow can we incorporate the condition (34) in the finite difference scheme? Since
e have used central differences in all the other approximations to derivatives
1 the scheme, it is tempting to implement (34) at = 0 and ¢t = ¢,, by the
ifference

n n
U_y — Uy
2Ax

“http://tinyurl.com/opdfafk/pub/mov-wave/demo_BC_gaussian/index.html
8http://tinyurl.com/opdfafk/pub/mov-wave/demo_BC_gaussian/movie.flv

=0. (35)

29

The problem is that «™; is not a u value that is being computed since t
is outside the mesh. However, if we combine (35) with the scheme for i

ul Tt = T 4 2ul 4 CP (u?_H —2u +ul),
we can eliminate the fictitious value u™,. We see that u™; = u} from (35
can be used in (36) to arrive at a modified scheme for the boundary poi

ntl _ _ n—1 2 L
ul Tt =l 4 2u) 4+ 207 (uly —ul}), i=0.

Figure 4 visualizes this equation for computing uj in terms of u, uj, a

Stencil at boundary point

N

index n
\ V4

A A A
o
e
)

U

o

index i

Figure 4: Modified stencil at a boundary with a Neumann conditi
Similarly, (34) applied at = L is discretized by a central difference

UN, 41— UN, 1 —0
2Ax o
Combined with the scheme for i = N, we get a modified scheme for the b
value u”Nerl:

ul Tt = T 4 2ul 4207 (uy —u}), i=N,.

The modification of the scheme at the boundary is also required
special formula for the first time step. How the stencil moves through t
and is modified at the boundary can be illustrated by an animation i
page? or a movie file'©.

9http://tinyurl.com/opdfafk/pub/mov-wave/wavelD_PDE_Neumann_stencil_gp]
Onttp://tinyurl.com/opdfafk/pub/mov-wave/wavelD_PDE_Neumann_stencil_gpl

30

.3 Implementation of Neumann conditions

he implementation of the special formulas for the boundary points can benefit
om using the general formula for the interior points also at the boundaries,
ut replacing u’_; by uj,; when computing u;L'H for i = 0 and w3, ; by uj' ; for
= N,. This is achieved by just replacing the index ¢ — 1 by i + 1 for ¢ = 0 and
+1byi—1fori= N,. Ina program, we introduce variables to hold the value
f the offset indices: im1 for i-1 and ip1l for i+1. It is now just a manner of
efining im1 and ipl properly for the internal points and the boundary points.

he coding for the latter reads

=
ipl = i+1

im1 ipl # i-1 -> i+l

1[i] = u_1[i] + C2*(u_1[im1] - 2xu_1[i] + u_1[ip1l)

nmno

L = Nx

iml = i-1

ipl = iml1 # i+1 -> i-1

1[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1l)

We can in fact create one loop over both the internal and boundary points
nd use only one updating formula:

for i in range(0, Nx+1):

ipl = i+1 if i < Nx else i-1

iml = i-1 if 1 > 0 else i+l

ulil = uw_1[i] + C2*(u_1[im1] - 2%u_1[i] + u_1[ip1])

The program wavelD_nO.py'! contains a complete implementation of the
D wave equation with boundary conditions u, =0 at x =0 and z = L.

It would be nice to modify the test_quadratic test case from the wavel1D_u0.py
ith Dirichlet conditions, described in Section 4.3. However, the Neumann con-
itions requires the polynomial variation in x directory to be of third degree,
hich causes challenging problems with designing a test where the numerical
>lution is known exactly. Exercise 10 outlines ideas and code for this purpose.
he only test in wavelD_nO.py is to start with a plug wave at rest and see that
1e initial condition is reached again perfectly after one period of motion, if
=1

.4 Index set notation

/e shall introduce a special notation for index sets, consisting of writing x;,
€ Z,, instead of i = 0,..., N,.. Obviously, Z, must be the set Z, = {0,..., N, },
ut it is often advantageous to have a symbol for this set rather than specifying
[l its elements. This saves writing and makes specification of algorithms and
nplementation of computer code easier.

Mhttp://tinyurl.com/nm5587k/wave/wavelD/wavelD_n0.py

31

The first index in the set will be denoted ZU and the last Z,!. Somet
need to count from the second element in the set, and the notation Z;
used. Correspondingly, Z, means {0,..., N, —1}. All the indices corres
to inner grid points are Z¢ = {1,..., N, — 1}. For the time domain w:
natural to explicitly use 0 as the first index, so we will usually write n
to rather than n = I?. We also avoid notation like Tz and will insteac
i=17;"

The Python code associated with index sets applies the following cons

Notation Python

Ts Ix

70 Ix[0]
1 Ix[-1]
I, Ix[:-1]
r Ix[1:]
Ti Ix[1:-1]

An important feature of the index set notation is that it keeps our form
code independent of how we count mesh points. For example, the notatio
or i = 70 remains the same whether T, is defined as above or as starti
ie, I, ={1,...,Q}. Similarly, we can in the code define Ix=range (N
Ix=range(1,Q), and expressions like Ix[0] and Ix[1:-1] remain corre
application where the index set notation is convenient is conversion of cc
a language where arrays has base index 0 (e.g., Python and C) to la
where the base index is 1 (e.g., MATLAB and Fortran). Another im
application is implementation of Neumann conditions via ghost points (
section).

For the current problem setting in the x, ¢ plane, we work with the in

Iz:{O,...,Nx}, It:{O,...7Nt},
defined in Python as

Ix
It

range (0, Nx+1)
range(0, Nt+1)

A finite difference scheme can with the index set notation be specifi
uftt = —ul T 20 4+ O (ufyy - 2ul +uly), i€l neT,

u =0, i=1I° nell,
u =0, i=ZI;' nelj

and implemented by code like

32

‘or n in It[1:-1]:
for i in Ix[1:-1]:

ulil = - uw_2[i] + 2xu_1[i] + \
C2x(u_1[i-1] - 2%u_1[i] + u_1[i+1])
i = Ix[0]; ul[i]l =0
i = Ix[-1]; u[i] =0
Notice.

The program wavelD_dn.py® applies the index set notation and solves the
1D wave equation uy = cug, + f(2,t) with quite general boundary and
initial conditions:

The program combines Dirichlet and Neumann conditions, scalar and
vectorized implementation of schemes, and the index notation into one
piece of code. A lot of test examples are also included in the program:

%http://tinyurl.com/nm5587k/wave/wavelD/wavelD_dn.py

x=0: u=Uy(t) or up =0
x=L u=Ug(t) or uy =0
t=0:u=1I(x)
t=0: ur = I(z)

A rectangular plug profile as initial condition (easy to use as test
example as the rectangle should jump one cell per time step when
C =1, without any numerical errors).

A Gaussian function as initial condition.

A triangular profile as initial condition, which resembles the typical
initial shape of a guitar string.

A sinusoidal variation of u at x = 0 and either u = 0 or u, = 0 at
z=L.

An exact analytical solution u(z,t) = cos(mnt/L)sin(3mrxz/L),
which can be used for convergence rate tests.

.5 Alternative implementation via ghost cells

lea.
oints outside the domain such that the fictitious values u”, and uf, ,, are

Instead of modifying the scheme at the boundary, we can introduce extra

33

defined in the mesh. Adding the intervals [—Ax, 0] and [L, L+ Axz], often
to as ghost cells, to the mesh gives us all the needed mesh points, corres
toi=—-1,0,...,N,, N+ 1. The extra points i = —1 and i = N, + 1 an
as ghost points, and values at these points, u”; and uy ., are calle
values.

The important idea is to ensure that we always have

n __.n n . .n
u”y =wuy and uy 1 = un, 1,

because then the application of the standard scheme at a boundary poi
or i = N, will be correct and guarantee that the solution is compatible
boundary condition u, = 0.

Implementation. The u array now needs extra elements correspor
the ghost cells and points. Two new point values are needed:

u = zeros(Nx+3)

The arrays u_1 and u_2 must be defined accordingly.

Unfortunately, a major indexing problem arises with ghost cells. Th
is that Python indices must start at 0 and u[-1] will always mean
element in u. This fact gives, apparently, a mismatch between the mathe
indices ¢ = —1,0,..., N, + 1 and the Python indices running over u: 0, .
One remedy is to change the mathematical notation of the scheme, as :

utt = i=1,.. N, +1,

meaning that the ghost points correspond to ¢ = 0 and i = N, + 1. /
solution is to use the ideas of Section 6.4: we hide the specific index -
an index set and operate with inner and boundary points using the i1
notation.

To this end, we define u with proper length and Ix to be the corres
indices for the real physical points (1,2,..., N, + 1):

u = zeros (Nx+3)
Ix = range(1l, u.shape[0]-1)

That is, the boundary points have indices Ix[0] and Ix[-1] (as befo
first update the solution at all physical mesh points (i.e., interior point
mesh extended with ghost cells):

for i in Ix:
ulil = - u_2[i] + 2*%u_1[i] + \
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])

It remains to update the ghost points. For a boundary condition u, -
ghost value must equal to the value at the associated inner mesh point. Ci
code makes this statement precise:

34

L = Ix[0] # x=0 boundary
1[i-1] = u[i+1]
L= Ix[-1] # x=L boundary

1[i+1] = uli-1]

The physical solution to be plotted is now in ul[1:-1], or equivalently
[Ix[0]:Ix[-1]+1], so this slice is the quantity to be returned from a solver

inction. A complete implementation appears in the program wave1D_n0O_ghost.

le'

Warning.

We have to be careful with how the spatial and temporal mesh points are
stored. Say we let x be the physical mesh points,

x = linspace(0, L, Nx+1)
"Standard coding" of the initial condition,

for i in Ix:
u_1[i] = I(x[i])

becomes wrong, since u_1 and x have different lengths and the index i
corresponds to two different mesh points. In fact, x[i] corresponds to
ul[1+i]. A correct implementation is

for i in Ix:
u_1[i] = I(x[i-Ix[0]11)

Similarly, a source term usually coded as £ (x[i], t[n]) is incorrect if x is
defined to be the physical points, so x[1] must be replaced by x[i-Ix[0]].

An alternative remedy is to let x also cover the ghost points such that
uli] is the value at x[i].

The ghost cell is only added to the boundary where we have a Neumann
»ndition. Suppose we have a Dirichlet condition at x = L and a homogeneous
‘eumann condition at x = 0. One ghost cell [-Az,0] is added to the mesh,
> the index set for the physical points becomes {1,..., N, + 1}. A relevant
nplementation is

1 = zeros (Nx+2)
[x = range(1, u.shape[0])

‘or i in Ix[:-1]:
ulil = - uw_2[i] + 2*%u_1[i] + \
C2+(u_1[i-1] - 2%u_1[i] + u_1[i+1]) + \
dt2*f (x[i-Ix[0]], t[mnl)

12http://tinyurl.com/nm5587k/wave/wavelD/wavelD_nO_ghost.py

35

i = Ix[-1]
ul[i] = U_0 # set Dirichlet value
i = 1x[0]
uli-1] = uli+1] # update ghost value

The physical solution to be plotted is now inu[1:] or (as always) u[Ix[0]

7 Generalization: variable wave velocity

Our next generalization of the 1D wave equation (1) or (17) is to allc
variable wave velocity ¢: ¢ = ¢(x), usually motivated by wave motion in a
composed of different physical media with different properties for prog
waves and hence different wave velocities ¢. Figure

15 Nx=80, t=0.375000 15 Nx=80, t=1.250000
' I

o)
A o LN A

00— — 0.0 ——
i i i

030 02 0.4 06 08 10 030 02 04 06 08
x x

Figure 5: Left: wave entering another medium; right: transmitted and 1
wave .

7.1 The model PDE with a variable coefficient

Instead of working with the squared quantity c?(x) we shall for no
convenience introduce ¢(z) = c?(x). A 1D wave equation with variat
velocity often takes the form

0? 0 0
5 = s (1052) + F@).

This equation sampled at a mesh point (z;,t,) reads

0?2 0 0
@u(%tn) =3 (q(ﬂci)%u(mmtn)) + f(zi, tn),

where the only new term is

% (q(wi)ggu("fz‘vtnv = [aax (Q(x)gz)r '

36

.2 Discretizing the variable coefficient

he principal idea is to first discretize the outer derivative. Define
ou
= €Tr)—
¢=4q(@)5
nd use a centered derivative around x = z; for the derivative of ¢:
{&br Piry — by

i

hen discretize

oul” ul —ul
_ r~ +1 i n

imilarly,
oul"” ul' —ul
g L LS
=3

hese intermediate results are now combined to
Iz q(m)% AR (%4—% (ufyr —ui) — i1 (ui — uifl)) - (42)
(]
/ith operator notation we can write the discretization as

[aax (q@)gz)f ~ [DoqDul? (43)

Remark.

Many are tempted to use the chain rule on the term % (q(m)%), but this

is not a good idea when discretizing such a term.

.3 Computing the coefficient between mesh points

"q is a known function of x, we can easily evaluate g, 1 simply as g(x;, 1) with
it =T+ %Am. However, in many cases ¢, and hence ¢, is only known as a
iscrete function, often at the mesh points x;. Evaluating ¢ between two mesh
oints z; and x;41 can then be done by averaging in three ways:

1 _ . .
Uy ™ 5 (i + ¢it1) = [T°)s, (arithmetic mean) (44)
11\
Qi1 2 (* +) , (harmonic mean) (45)
2 4G Git1
ditl = (%‘%‘+1)U2) (geometric mean) (46)

37

The arithmetic mean in (44) is by far the most commonly used ax
technique.

With the operator notation from (44) we can specify the discretiz
the complete variable-coefficient wave equation in a compact way:

[DtDtU = D,q"Dyu + f]:l .

From this notation we immediately see what kind of differences that eack
approximated with. The notation g” also specifies that the variable coefl
approximated by an arithmetic mean, the definition being [GZ]H% = (qi+
With the notation [D,qD,u], we specify that ¢ is evaluated direct
function, between the mesh points: q(xi_%) and q(xi+%).

Before any implementation, it remains to solve (47) with respect to

u;”l = fu;“l + 2ul+

Ax 2 1 n n 1 n n A
AL 5((11 + qiv1)(uihy —ui') — 5(‘]7 +qio1)(uf —uiq)

A2

7.4 How a variable coefficient affects the stability

The stability criterion derived in Section 10.3 reads At < Azx/e. If ¢
the criterion will depend on the spatial location. We must therefore ¢
At that is small enough such that no mesh cell has Az /c(z) > At. The
must use the largest ¢ value in the criterion:

Az

At<f—m— .
maXge(o,L] c(x)

The parameter § is included as a safety factor: in some problems
significantly varying c it turns out that one must choose S < 1 to hav
solutions (5 = 0.9 may act as an all-round value).

7.5 Neumann condition and a variable coefficient
Consider a Neumann condition du/0z = 0 at = L = N, Az, discretiz

Uity — Uiy
2Azx
for i = N,. Using the scheme (48) at the end point i = N, with uj,,
results in

— n _ n
=0 ulyy =y,

38

ul Tt = T 2ul

Az 2
(E) (qi‘*‘% (uiy —uif) = Qi—%(ui - Uiq)) +
AL (50)

Az\? ,
= "1+2u"+(5 ey o - AR (D

Az 2
~—ur 2ul + (Af) 2q;(ul_ g —ul) + Athin. (52)

‘ere we used the approximation

q 2
qi+%+Qi—% (d) (d)iAﬂc 4+
d2
(% a~q 2
0 (), 2+ () 207+

=92 +2 (dq> Az 4+ O(Az?)

An alternative derivation may apply the arithmetic mean of ¢ in (48), leading
) the term

1
(q; + *(qz'+1 + qi-1))(uiy —uy).

ince 3(gi+1 + ¢i—1) = ¢; + O(Az?), we end up with 2¢;(uf_; — u?) for i = N,
5 we dld above.

A common technique in implementations of du/dx = 0 boundary conditions
to assume dg/dx = 0 as well. This implies ;11 = ¢;—1 and g;1/2 = ;12 for
= N,. The implications for the scheme are

uf Tt = T 2ul
(E) (Qi-l—%(ui—l —u) — qi—%(ui - ui—l)) +
N (54)
Az\?
a4 (50) 2y) ARRL (59)

39

7.6 Implementation of variable coefficients

The implementation of the scheme with a variable wave velocity may
that c is available as an array c[i] at the spatial mesh points. The fc
loop is a straightforward implementation of the scheme (48):

for i in range(1l, Nx):
ulil = - w_2[i] + 2*%u_1[i] + \
C2%(0.5%x(q[1] + ql[i+1])*(u_1[i+1] - u_1[i]) - \
0.5%(q[i] + q[i-11)*(u_1[i] - u_1[i-11)) + \
dt2*f (x[i], t[mn])

The coeflicient C2 is now defined as (dt/dx)**2 and not as the squared
number since the wave velocity is variable and appears inside the parer

With Neumann conditions u, = 0 at the boundary, we need to ¢
this scheme with the discrete version of the boundary condition, as sl
Section 7.5. Nevertheless, it would be convenient to reuse the formula
interior points and just modify the indices ip1=i+1 and iml=i-1 as w
Section 6.3. Assuming dg/dx = 0 at the boundaries, we can implen
scheme at the boundary with the following code.

i=0

ipl = i+l

iml = ipl

ulil = - u_2[i] + 2*%u_1[i] + \

C2%(0.5%(q[i] + qlip1l)*(u_1[ip1] - u_1[i]) - \
0.5%(q[i] + qlim11)*(u_1[i] - u_1[im1]1)) + \
dt2xf(x[i], t[nl)

With ghost cells we can just reuse the formula for the interior poi
at the boundary, provided that the ghost values of both u and ¢ are ¢
updated to ensure u, = 0 and ¢, = 0.

A vectorized version of the scheme with a variable coefficient at
points in the mesh becomes

ul1:-1] = - u_2[1:-1] + 2*u_1[1:-1] + \
C2%(0.5%(q[1:-1] + q[2:1)*(u_1[2:] - u_1[1:-1]1) -
0.5%(ql1:-1] + ql[:-2D)*(u_1[1:-1] - u_1[:-2])) + \
dt2*f(x[1:-1]1, t[nl)

7.7 A more general model PDE with variable coefh

Sometimes a wave PDE has a variable coefficient also in front of tl
derivative term:

o) 5t = 55 (a1 52) + 10t

A natural scheme is

40

[oD:Diu = D" Dyu + f7 . (57)

/e realize that the o coefficient poses no particular difficulty because the only
ilue o enters the formula above (when written out). There is hence no need for
ny averaging of p. Often, ¢ will be moved to the right-hand side, also without
ny difficulty:

[DyDyu = 0" D,g" Dyu + f]1. (58)

.8 Generalization: damping

laves die out by two mechanisms. In 2D and 3D the energy of the wave spreads

ut in space, and energy conservation then requires the amplitude to decrease.
his effect is not present in 1D. Damping is another cause of amplitude reduction.

or example, the vibrations of a string die out because of damping due to air
ssistance and non-elastic effects in the string.

The simplest way of including damping is to add a first-order derivative to
1e equation (in the same way as friction forces enter a vibrating mechanical
/stem):

2 2
% + b% - 02% + f(x, 1), (59)
here b > 0 is a prescribed damping coefficient.

A typical discretization of (59) in terms of centered differences reads

[D;Dyu + bDoyu = ¢ Dy Dyu + 7. (60)

/riting out the equation and solving for the unknown u?“ gives the scheme

?H =1+ %bAt)_l((%bAtf 1)u?71 +2u? +C? (u?+1 —2uj + u?,l) +AL [,
(61)
i € Z. and n > 1. New equations must be derived for u}, and for boundary
oints in case of Neumann conditions.
The damping is very small in many wave phenomena and then only evident
v very long time simulations. This makes the standard wave equation without
amping relevant for a lot of applications.

Building a general 1D wave equation solver

he program wave1D_dn_vc.py'? is a fairly general code for 1D wave propagation
roblems that targets the following initial-boundary value problem

Bhttp://tinyurl.com/nm5587k/wave/wavelD/wavelD_dn_vc.py

41

up = (A(@)ug), + f(2,1), x€(0,L), te (0,7
u(z,0) = I(z), xz €10,L]
ut(x,0) =V (t), x €10, L]
u(0,t) = Up(t) or u.(0,t) =0, te (0,7
u(L,t) = UL(t) or uy(L,t) =0, t e (0,7

The solver function is a natural extension of the simplest solver fur
the initial wave1D_u0.py program, extended with Neumann boundary co
(uz = 0), a possibly time-varying boundary condition on u (Uy(t), UL(
a variable wave velocity. The different code segments needed to mal
extensions are shown and commented upon in the preceding text.

The vectorization is only applied inside the time loop, not for th
condition or the first time steps, since this initial work is negligible for lc
simulations in 1D problems.

The following sections explain various more advanced programming tec
applied in the general 1D wave equation solver.

8.1 User action function as a class

A useful feature in the wavelD_dn_vc.py program is the specificatios
user_action function as a class. Although the plot_u function in
function of previous wavelD#.py programs remembers the local variable
viz function, it is a cleaner solution to store the needed variables togetl
the function, which is exactly what a class offers.

A class for flexible plotting, cleaning up files, and making a movie
function viz and plot_u did can be coded as follows:

class PlotSolution:
nnn
Class for the user_action function in solver.
Visualizes the solution only.
nnn

def __init__(self,

casename=’tmp’, # Prefix in filenames
umin=-1, umax=1, # Fixed range of y axis
pause_between_frames=None, # Movie speed
backend=’matplotlib’, # or ’gnuplot’
screen_movie=True, # Show movie on screen?
title=’"’, # Extra message in title
every_frame=1): # Show every_frame frame

self.casename = casename

self.yaxis = [umin, umax]

self.pause = pause_between_frames

module = ’scitools.easyviz.’ + backend + ’_°
exec(’import %s as plt’ 7% module)

self.plt = plt

self.screen_movie = screen_movie

self.title = title

self.every_frame = every_frame

42

Clean up old movie frames
for filename in glob(’frame_x.png’):
os.remove (filename)

def __call__(self, u, x, t, n):
if n % self.every_frame != 0:
return
title = ’t=%.3g’ % tln]
if self.title:
title = self.title + ’ ’ + title
self.plt.plot(x, u, ’r-’,
xlabel=’"x’, ylabel=’u’,
axis=[x[0], x[-1],
self .yaxis[0], self.yaxis[1]],
title=title,
show=self.screen_movie)
pause
if t[n] == 0:
time.sleep(2) # let initial condition stay 2 s
else:
if self.pause is None:
pause = 0.2 if u.size < 100 else O
time.sleep(pause)

self .plt.savefig(’Y%s_frame_%04d.png’ % (self.casename, n))

nderstanding this class requires quite some familiarity with Python in general
nd class programming in particular.

The constructor shows how we can flexibly import the plotting engine as
ypically) scitools.easyviz.gnuplot_ or scitools.easyviz.matplotlib_
1ote the trailing underscore). With the screen_movie parameter we can
1ppress displaying each movie frame on the screen. Alternatively, for slow
1ovies associated with fine meshes, one can set every_frame to, e.g., 10, causing
very 10 frames to be shown.

The __call__ method makes PlotSolution instances behave like functions,
) we can just pass an instance, say p, as the user_action argument in the
olver function, and any call to user_action will be a call to p.__call__.

.2 Pulse propagation in two media

he function pulse in wavelD_dn_vc.py demonstrates wave motion in heteroge-
sous media where ¢ varies. One can specify an interval where the wave velocity
decreased by a factor slowness_factor (or increased by making this factor
iss than one). Four types of initial conditions are available: a rectangular
ulse (plug), a Gaussian function (gaussian), a "cosine hat" consisting of one
eriod of the cosine function (cosinehat), and half a period of a "cosine hat'
1alf-cosinehat). These peak-shaped initial conditions can be placed in the
iiddle (loc=’center’) or at the left end (loc=’1left’) of the domain. The
ulse function is a flexible tool for playing around with various wave shapes
nd location of a medium with a different wave velocity:

43

def pulse(C=1, Nx=200, animate=True, version=’vectorized’, T=2,

loc=’center’, pulse_tp=’gaussian’, slowness_factor=2,
medium=[0.7, 0.9], every_frame=1, sigma=0.05):

nnn

Various peaked-shaped initial conditions on [0,1].

Wave velocity is decreased by the slowness_factor inside

medium. The loc parameter can be ’center’ or ’left’,

depending on where the initial pulse is to be located.

The sigma parameter governs the width of the pulse.

Use scaled parameters: L=1 for domain length, c_0=1

for wave velocity outside the domain.

L=1.0

c 0=1.0

if loc == ’center’:
xc = L/2

elif loc == ’left’:
xc =0

if pulse_tp in (’gaussian’,’Gaussian’):

def I(x):
return exp(-0.5*%((x-xc)/sigma)**2)
elif pulse_tp == ’plug’:
def I(x):
return O if abs(x-xc) > sigma else 1
elif pulse_tp == ’cosinehat’:
def I(x):
One period of a cosine
w =2

a = wxsigma
return 0.5%(1 + cos(pi*(x-xc)/a)) \
if xc - a <= x <= xc + a else O

elif pulse_tp == ’half-cosinehat’:
def I(x):
Half a period of a cosine
w=4

a = wxsigma
return cos(pi*(x-xc)/a) \
if xc - 0.5%a <= x <= xc + 0.5*%a else O
else:
raise ValueError(’Wrong pulse_tp="%s"’ % pulse_tp)

def c(x):
return c_0/slowness_factor \
if medium[0] <= x <= medium[1] else c_O

umin=-0.5; umax=1.5%I(xc)
casename = ’%s_Nx¥/s_sf¥%s’ % \
(pulse_tp, Nx, slowness_factor)
action = PlotMediumAndSolution(
medium, casename=casename, umin=umin, umax=umax,
every_frame=every_frame, screen_movie=animate)

dt = (L/Nx)/c # choose the stability limit with given Nx
Lower C will then use this dt, but smaller Nx
solver (I=I, V=None, f=None, c=c, U_0O=None, U_L=None,
L=L, dt=dt, C=C, T=T,
user_action=action, version=version,
stability_safety_factor=1)

44

he PlotMediumAndSolution class used here is a subclass of PlotSolution
here the medium with reduced ¢ value, as specified by the medium interval, is
isualized in the plots.

Notice.

The argument NV, in the pulse function does not correspond to the actual
spatial resolution of C' < 1, since the solver function takes a fixed At
and C, and adjusts Az accordingly. As seen in the pulse function, the
specified At is chosen according to the limit C' = 1, so if C' < 1, At remains
the same, but the solver function operates with a larger Az and smaller
N, than was specified in the call to pulse. The practical reason is that
we always want to keep At fixed such that plot frames and movies are
synchronized in time regardless of the value of C (i.e., Az is varies when
the Courant number varies).

The reader is encouraged to play around with the pulse function:

>>> import wavelD_dn_vc as w
»>> w.pulse(loc=’left’, pulse_tp=’cosinehat’, Nx=50, every_frame=10)

o easily kill the graphics by Ctrl-C and restart a new simulation it might be
asier to run the above two statements from the command line with

srminal> python -c ’import wavelD_dn_vc as w; w.pulse(...)’

) Exercises

xercise 6: Find the analytical solution to a damped wave
quation

'onsider the wave equation with damping (59). The goal is to find an exact
slution to a wave problem with damping. A starting point is the standing wave
slution from Exercise 1. It becomes necessary to include a damping term e=¢*
nd also have both a sine and cosine component in time:

Ue(x,t) = e Psinka (Acoswt + Bsinwt) .

ind k from the boundary conditions u(0,t) = u(L,¢) = 0. Then use the PDE
» find constraints on 3, w, A, and B. Set up a complete initial-boundary value
roblem and its solution. Filename: damped_waves.pdf.

45

Problem 7: Explore symmetry boundary conditions

Consider the simple "plug" wave where 2 = [-L, L] and

_ 17 S [767 5]7
I(z) = { 0, otherwise

for some number 0 < § < L. The other initial condition is u¢(x,0) = 0 a
is no source term f. The boundary conditions can be set to u = 0. The
to this problem is symmetric around z = 0. This means that we can ¢
the wave process in only the half of the domain [0, L].

a) Argue why the symmetry boundary condition is u, =0 at z = 0.

Hint. Symmetry of a function about x = xg means that f(zo+h) = f

b) Perform simulations of the complete wave problem from on [—L, L]
after, utilize the symmetry of the solution and run a simulation in ha
domain [0, L], using a boundary condition at = 0. Compare the two s
and make sure that they are the same.

c) Prove the symmetry property of the solution by setting up the c
initial-boundary value problem and showing that if u(z,t) is a solutic
also u(—=z,t) is a solution.

Filename: wavelD_symmetric.

Exercise 8: Send pulse waves through a layered med

Use the pulse function in wavelD_dn_vc.py to investigate sending
located with its peak at « = 0, through the medium to the right wher
another medium for z € [0.7,0.9] where the wave velocity is decreas
factor s;. Report what happens with a Gaussian pulse, a "cosine hai
half a "cosine hat" pulse, and a plug pulse for resolutions N, = 40, 80, 1
sy =2,4. Use C =1 in the medium outside [0.7,0.9]. Simulate unti
Filename: pulselD.py.

Exercise 9: Compare discretizations of a Neumann
tion

We have a 1D wave equation with variable wave velocity: u; = (qt
Neumann condition u, at =0, L can be discretized as shown in (52) s

The aim of this exercise is to examine the rate of the numerical err:
using different ways of discretizing the Neumann condition. As test 1
q¢ =1+ (z — L/2)* can be used, with f(z,t) adapted such that the solu
a simple form, say u(z,t) = cos(mz/L) cos(wt) for some w = ,/qm/L.

a) Perform numerical experiments and find the convergence rate of t
using the approximation and (55).

46

) Switch to q(z) = cos(wz/L), which is symmetric at x = 0, L, and check the
mvergence rate of the scheme (55). Now, ¢;_1 /2 is a 2nd-order approximation to
5 Qim172 = ¢ +0.25¢) Aa? + - - - | because ¢} = 0 for i = N, (a similar argument
an be applied to the case i = 0).

) A third discretization can be based on a simple and convenient, but less
ccurate, one-sided difference: u; — u;—1 = 0 at ¢ = N, and u;41 —u; = 0 at
= 0. Derive the resulting scheme in detail and implement it. Run experiments
» establish the rate of convergence.

) A fourth technique is to view the scheme as

1
(DeDeuly = - (laDsulfy — laDoully) + (117

nd place the boundary at Til, i = N, instead of exactly at the physical
oundary. With this idea, we can just set [quu}?+ 1= 0. Derive the complete
‘heme using this technique. The implementation of the boundary condition at
— Az /2 is O(Az?) accurate, but the interesting question is what impact the
1ovement of the boundary has on the convergence rate (compute the errors as
sual over the entire mesh).

xercise 10: Verification by a cubic polynomial in space

he purpose of this exercise is to verify the implementation of the solver
inction in the program waveiD_n0.py'* by using an exact numerical solution
v the wave equation uy = cug, + f with Neumann boundary conditions
x(ovt) = ux(Lvt) =0.

A similar verification is used in the file wave1D_u0.py'®, which solves the
une PDE, but with Dirichlet boundary conditions w(0,t) = u(L,t) = 0. The
lea of the verification test in function test_quadratic in wavelD_u0.py is to
solution that is a lower-order polynomial such that both the PDE problem, the
oundary conditions, and all the discrete equations are exactly fulfilled. Then

1e solver function should reproduce this exact solution to machine precision.

[ore precisely, we seek u = X (2)T'(t), with T'(t) as a linear function and X (x)
3 a parabola that fulfills the boundary conditions. Inserting this u in the PDE
etermines f. It tuns out that u also fulfills the discrete equations, because the
‘uncation error of the discretized PDE has derivatives in z and t of order four
nd higher. These derivatives all vanish for a quadratic X (x) and linear T'(¢).
It would be attractive to use a similar approach in the case of Neumann

»nditions. We set u = X (x)7T'(¢) and seek lower-order polynomials X and 7.

o force u; to vanish at the boundary, we let X, be a parabola. Then X is a
1bic polynomial. The fourth-order derivative of a cubic polynomial vanishes, so
= X(2)T(t) will fulfill the discretized PDE also in this case, if f is adjusted
1ch that u fulfills the PDE.

Mhttp://tinyurl.com/nm5587k/wave/wavelD/wavelD_n0.py
Shttp://tinyurl.com/nm5587k/wave/wavelD/wavelD_u0.py

47

However, the discrete boundary condition is not exactly fulfilled
choice of u. The reason is that

1
[DZwu];n = uz(xi: tn) + guwzz(xi: tn)Ax2 + O(AxA) .

At the boundary two boundary points, X, (z) = 0 such that u, =0. F
Ugzs 1S & constant and not zero when X (z) is a cubic polynomial. Tl
our v = X (z)T'(¢) fulfills

1
[DQLU]? = EU.L.LL(:L.L7 t'rL)Ava

and not

[Dazu]? =0, quadi = 0, N,

as it should. (Note that all the higher-order terms O(Az?) also have
order derivatives that vanish for a cubic polynomial.) So to summar
fundamental problem is that u as a product of a cubic polynomial and
or quadratic polynomial in time is not an exact solution of the discrete b
conditions.

To make progress, we assume that u = X (x)7T'(t), where T for simy
taken as a prescribed linear function 1 + %t, and X (z) is taken as an

cubic polynomial Z?:o ajz’. There are two different ways of determi
coefficients ag, ..., a3 such that both the discretized PDE and the dis
boundary conditions are fulfilled, under the constraint that we can s
function f(z,t) for the PDE to feed to the solver function in wavell
Both approaches are explained in the subexercises.

a) One can insert u in the discretized PDE and find the corresponding |
one can insert u in the discretized boundary conditions. This yields two ec
for the four coefficients aq, ..., as. To find the coefficients, one can set
and a; = 1 for simplicity and then determine as and az. This appro
make as and a3 depend on Az and f will depend on both Az and At.

Use sympy to perform analytical computations. A starting point is t
u as follows:

def test_cubicl():
import sympy as sm
x, t, ¢, L, dx, dt = sm.symbols(’x t ¢ L dx dt’)
i, n = sm.symbols(’i n’, integer=True)

Assume discrete solution is a polynomial of degree 3 in x
lambda t: 1 + sm.Rational(1l,2)*t # Temporal term
sm.symbols(’a_0 a_1 a_2 a_3’)

lambda x: sum(al[ql*x**q for q in range(4)) # Spatial ter
lambda x, t: X(x)*T(t)

e Mo AH

The symbolic expression for u is reached by calling u(x,t) with x a
sympy symbols.

48

Define DxDx(u, i, n), DtDt(u, i, n), and D2x(u, i, n) as Python func-
ons for returning the difference approximations [D;Dju]?, [DyDu]?, and
J2,u]?. The next step is to set up the residuals for the equations [Da,ulf =0
ad [Dagu], = 0, where N, = L/Axz. Call the residuals R_0 and R_L. Substi-
1te ap and ay by 0 and 1, respectively, in R_0O, R_L, and a:

3_0 = R_O.subs(a[0], 0).subs(a[1], 1)

i_L = R_L.subs(a[0], 0).subs(al[1], 1)

1 = list(a) # enable in-place assignment
1[0:2] = 0, 1

letermining as and ag from the discretized boundary conditions is then about
slving two equations with respect to as and as, i.e., a[2:]:

= sm.solve([R_O, R_L], a[2:])
s is dictionary with the unknowns a[2] and a[3] as keys
[2:1 = s[a[2]], s[a[3]]

ow, a contains computed values and u will automatically use these new values
nce X accesses a.

Compute the source term f from the discretized PDE: f* = [D;Dyu —
*D,Dyu]?. Turn u, the time derivative u; (needed for the initial condition V'(z)),
ad f into Python functions. Set numerical values for L, N,, C, and c. Prescribe
1e time interval as At = C'L/(N,c), which imply Az = ¢At/C = L/N,. Define
ew functions I(x), V(x), and f(x,t) as wrappers of the ones made above,
here fixed values of L, ¢, Az, and At are inserted, such that I, V, and f can
e passed on to the solver function. Finally, call solver with a user_action
inction that compares the numerical solution to this exact solution u of the
iscrete PDE problem.

[int. To turn a sympy expression e, depending on a series of symbols, say x,
, dx, dt, L, and c, into plain Python function e_exact(x,t,L,dx,dt,c), one
an write

3_exact = sm.lambdify([x,t,L,dx,dt,c], e, ’numpy’)

he *numpy’ argument is a good habit as the e_exact function will then work
ith array arguments if it contains mathematical functions (but here we only do
lain arithmetics, which automatically work with arrays).

) An alternative way of determining ag, . .., as is to reason as follows. We first
»nstruct X (x) such that the boundary conditions are fulfilled: X = z(L — x).
owever, to compensate for the fact that this choice of X does not fulfill the
iscrete boundary condition, we seek u such that

1
Uy = —x(L —x)T(t) — EUMMA.TQ,

49

since this v will fit the discrete boundary condition. Assuming u = T'(¢)
we can use the above equation to determine the coefficients a1, as, as.
e.g., 1 can be used for ag. The following sumpy code computes this u:

def test_cubic2():
import sympy as sm
X, t, ¢, L, dx = sm.symbols(’x t ¢ L dx’)
= lambda t: 1 + sm.Rational(1,2)*t # Temporal term
Set u as a 3rd-degree polynomial in space
lambda x: sum(al[i]*x**i for i in range(4))
sm.symbols(’a_0 a_1 a_2 a_3?)
lambda x, t: X(x)*T(t)
Force discrete boundary condition to be zero by adding
a correction term the analytical suggestion x*(L-x)*T
u_x = x*x(L-x)*T(t) - 1/6%u_xxx*dx**2
= sm.diff (u(x,t), x) - (
x*(L-x) - sm.Rational(1,6)*sm.diff(u(x,t), x, x, x)*dx**2
R is a polynomial: force all coefficients to vanish.
Turn R to Poly to extract coefficients:
= sm.poly(R, x)
coeff = R.all_coeffs()
s = sm.solve(coeff, a[1:]) # a[0] is not present in R
s is dictionary with a[i] as keys
Fix a[0] as 1
s[af0]] =1
X = lambda x: sm.simplify(sum(s[a[i]]*x**i for i in range(4))
u = lambda x, t: X(x)*T(t)
print ’u:’, u(x,t)

DHHFEHS O NEA

o HH

The next step is to find the source term f_e by inserting u_e in tl
Thereafter, turn u, £, and the time derivative of u into plain Python fu
as in a), and then wrap these functions in new functions I, V, and £, v
right signature as required by the solver function. Set parameters as i1
check that the solution is exact to machine precision at each time level 1
appropriate user_action function.

Filename: wavelD_nO_test_cubic.py.

10 Analysis of the difference equations

10.1 Properties of the solution of the wave equatio:

The wave equation

u ,0%

o2~ o2

has solutions of the form

u(z,t) = gr(x — ct) + gr(x + ct),

for any functions gr and g sufficiently smooth to be differentiated twi
result follows from inserting (68) in the wave equation. A function of t
gr(x — ct) represents a signal moving to the right in time with constant

50

This feature can be explained as follows. At time ¢ = 0 the signal looks like
r(z). Introducing a moving x axis with coordinates £ = = — ct, we see the
inction gr(§) is "at rest” in the £ coordinate system, and the shape is always the
ume. Say the gr(€) function has a peak at £ = 0. This peak is located at z = ct,
hich means that it moves with the velocity dx/dt = ¢ in the x coordinate
sstem. Similarly, gy (z + ct) is a function initially with shape gy (z) that moves
1 the negative x direction with constant velocity ¢ (introduce £ = z + ct, look
t the point £ = 0, x = —ct, which has velocity dz/dt = —c).

With the particular initial conditions

gu($7 O) =0,

u(z,0) = I(x), o

e get, with u as in (68),

gr(z) +gr(x) = I(z), —cgp(z)+cgp(z) =0,
hich have the solution gr = g1, = I/2, and consequently

u(w,t) = %I(m —ct)+ %I(w +ct). (69)

he interpretation of (69) is that the initial shape of is split into two parts,
ach with the same shape as I but half of the initial amplitude. One part is
-aveling to the left and the other one to the right.

The solution has two important physical features: constant amplitude of the
ft and right wave, and constant velocity of these two waves. It turns out that
1e numerical solution will also preserve the constant amplitude, but the velocity
epends on the mesh parameters At and Az.

The solution (69) will be influenced by boundary conditions when the parts
I(z — ct) and 1I(z + ct) hit the boundaries and get, e.g., reflected back into
1e domain. However, when I(z) is nonzero only in a small part in the middle of
1e spatial domain [0, L], which means that the boundaries are placed far away
om the initial disturbance of u, the solution (69) is very clearly observed in a
mulation.

A useful representation of solutions of wave equations is a linear combination
f sine and/or cosine waves. Such a sum of waves is a solution if the governing
DE is linear and each sine or cosine wave fulfills the equation. To ease analytical
ilculations by hand we shall work with complex exponential functions instead
f real-valued sine or cosine functions. The real part of complex expressions
ill typically be taken as the physical relevant quantity (whenever a physical
slevant quantity is strictly needed). The idea now is to build I(z) of complex
ave components e**?:

I(z)~) by, (70)

keK
ere, k is the frequency of a component, K is some set of all the discrete k values
eeded to approximate I(z) well, and by are constants that must be determined.
e will very seldom need to compute the by coefficients: most of the insight we

51

look for and the understanding of the numerical methods we want to e
come from investigating how the PDE and the scheme treat a single cor
et wave.

Letting the number of k values in K tend to infinity makes the s
converge to I(x), and this sum is known as a Fourier series represent
I(x). Looking at (69), we see that the solution u(x,t), when I(x) is rep:
as in (70), is also built of basic complex exponential wave component
form e**(#£<t) according to

1 . 1 .
u(z,t) = 3 Z bkezk(z—ct) + 3 Z bkezk(x+ct))

keK keK

It is common to introduce the frequency in time w = ke and assume tha
is a sum of basic wave components written as e’**~“*. (Observe that i
such a wave component in the governing PDE reveals that w? = k?c?, o1
reflecting the two solutions: one (+kc) traveling to the right and the oth

traveling to the left.)

10.2 More precise definition of Fourier representati

The quick intuitive introduction above to representing a function by a
sine and cosine waves suffices as background for the forthcoming mat
analyzing a single wave component. However, to understand all details
different wave components sum up to the analytical and numerical sol
more precise mathematical treatment is helpful and therefore summarize

It is well known that periodic functions can be represented by Fouris
A generalization of the Fourier series idea to non-periodic functions de
the real line is the Fourier transform:

I(z) = /OC A(k)e* dk,

—0o0

A(k) = /_ " I@)e Ty

The function A(k) reflects the weight of each wave component ¢?** in an
sum of such wave components. That is, A(k) reflects the frequency co
the function I(z). Fourier transforms are particularly fundamental for a;
and understanding time-varying signals.

The solution of the linear 1D wave PDE can be expressed as

u(z,t) = / A(k)etke=w k)t ga.

In a finite difference method, we represent u by a mesh function wuy,
counts temporal mesh points and ¢ counts the spatial ones (the usual

for spatial points, 7, is here already used as imaginary unit). Simila

52

approximated by the mesh function I, ¢ = 0,...,N,. On a mesh, it does
ot make sense to work with wave components e*** for very large k, because
1e shortest possible sine or cosine wave that can be represented on a mesh
ith spacing Az is the wave with wavelength 2Axz (the sine/cosine signal
mmps up and down between each mesh point). The corresponding k value is
=27 /(2Ax) = w/Ax, known as the Nyquist frequency. Within the range of

slevant frequencies (0, 7/Ax] one defines the discrete Fourier transform!6, using
. + 1 discrete frequencies:
1
_ i27kj/(Nz+1) -
Iq—NT+1ZAke , i=0,...,N,, (74)
k=0
N
Ap =Y Tpemmha/ (Nt =0, N, + 1. (75)
q=0

he Aj, values is the discrete Fourier transform of the I, values, and the latter
re the inverse discrete Fourier transform of the A; values.

The discrete Fourier transform is efficiently computed by the Fast Fourier
ansform algorithm. For a real function I(x) the relevant Python code for
»mputing and plotting the discrete Fourier transform appears in the example
elow.

import numpy as np
from numpy import sin

def I(x):
return sin(2*pi*x) + 0.5*sin(4*pi*x) + 0.1xsin(6xpi*x)

esh

10; Nx = 100
np.linspace(0, L, Nx+1)
= L/float (Nx)

nmn=

#
L
X
dx
Discrete Fourier transform
A = np.fft.rfft(I(x))
A_amplitude = np.abs(A)

Compute the corresponding frequencies
freqs = np.linspace(0, pi/dx, A_amplitude.size)

import matplotlib.pyplot as plt

plt.plot(freqs, A_amplitude)
plt.show()

0.3 Stability

he scheme

16http://en.wikipedia.org/wiki/Discrete_Fourier_transform

53

[D¢Dyu = ¢* Dy Dyuly
for the wave equation u; = c®u,, allows basic wave components

ug, — ei(kxq —@ty)

as solution, but it turns out that the frequency in time, @, is not equa
exact w = kc. The idea now is to study how the scheme treats an arbitra
component with a given k. We ask two key questions:

e How accurate is @ compared to w?

e Does the amplitude of such a wave component preserve its (unit) an
as it should, or does it get amplified or damped in time (due to a
)?

The following analysis will answer these questions. Note the need for us
counter for the mesh point in x direction since i is already used as the in
unit (in this analysis).

Preliminary results. A key result needed in the investigations is tl
difference approximation of a second-order derivative acting on a compl
component:

. 4 wAtY
iwtin __ .2 iwnAt
[DiDye*t " = — e Sin (—2) e .
By just changing symbols (w — k, t — x, n — q) it follows that
) 4 kAz\
ko _ 2 kgA
[DzDzel Z’]q = _TI’Q sin <2> erIsT

Numerical wave propagation. Inserting a basic wave componer
¢!(kzq=@tn) in (76) results in the need to evaluate two expressions:

[DtDteikze—ith];rlz [DtDte—ith]neikqu

4 o (WAL _iznat ikga
————sin" [—— e etkala
[DxDmeikxefiwt]Z — [Dszeikx]qefianAt

_ 7% sin? (kgx) pikaAz ,—idnAt
T

Then the complete scheme,

[DtDtezkze—zwt — CQDwaezkze—uut];L

54

rads to the following equation for the unknown numerical frequency @ (after
ividing by —e?F®e=i%t);

i'2 WAL\ 5 4, (kAx
AL sin 2 =c A2 sin 3 ,

sin? (UJ2A15> = (C?%sin? (k2x> , (79)

cAt
C = An (80)

the Courant number. Taking the square root of (79) yields

sin <UJ2At) = (C'sin <Iw;$> , (81)

here

ince the exact w is real it is reasonable to look for a real solution @ of (81).

he right-hand side of (81) must then be in [—1, 1] because the sine function
n the left-hand side has values in [—1, 1] for real @. The sine function on the
ght-hand side can attain the value 1 when

kAzx 7 7

T = mg, m € .
Jith m = 1 we have kAz = 7, which means that the wavelength A\ = 27/k
ecomes 2Axz. This is the absolutely shortest wavelength that can be represented
n the mesh: the wave jumps up and down between each mesh point. Larger
alues of |m| are irrelevant since these correspond to k values whose waves are
»o short to be represented on a mesh with spacing Ax. For the shortest possible

ave in the mesh, sin (kAx/2) = 1, and we must require

c<1. (82)

Consider a right-hand side in (81) of magnitude larger than unity. The
>lution @ of (81) must then be a complex number & = &, + iw; because the
ne function is larger than unity for a complex argument. One can show that
r any w; there will also be a corresponding solution with —w;. The component

ith w; > 0 gives an amplification factor e¥:! that grows exponentially in time.

/e cannot allow this and must therefore require C' < 1 as a stability criterion.

Remark.

For smoother wave components with longer wave lengths per length Az,
(82) can in theory be relaxed. However, small round-off errors are always
present in a numerical solution and these vary arbitrarily from mesh point
to mesh point and can be viewed as unavoidable noise with wavelength

55

2Ax. As explained, C' > 1 will for this very small noise lead to expont
growth of the shortest possible wave component in the mesh. This
will therefore grow with time and destroy the whole solution.

10.4 Numerical dispersion relation

Equation (81) can be solved with respect to @:

2y . [kAz
= Ebm (Cbln (T)) .

The relation between the numerical frequency @ and the other paramet
Ax, and At is called a numerical dispersion relation. Correspondingly, w
the analytical dispersion relation.

The special case C' = 1 deserves attention since then the right-hanc
(83) reduces to

&

2 kAx 1 wAr w
At 2 At ¢ C

That is, @ = w and the numerical solution is exact at all mesh points rega
Az and At! This implies that the numerical solution method is also an a1
solution method, at least for computing u at discrete points (the nu
method says nothing about the variation of u between the mesh poir
employing the common linear interpolation for extending the discrete
gives a curve that deviates from the exact one).

For a closer examination of the error in the numerical dispersion
when C < 1, we can study & — w, @/w, or the similar error measures
velocity: ¢ — ¢ and é&/c¢, where ¢ = w/k and é = ©/k. It appears that t
convenient expression to work with is é/c:

E = Cipsin_1 (Csinp),

with p = kAz/2 as a non-dimensional measure of the spatial freque
essence, p tells how many spatial mesh points we have per wave length
of the wave component with frequency k (the wave length is 27 /k). Tl
reflects how well the spatial variation of the wave component is resolve
mesh. Wave components with wave length less than 2Ax (27/k < 2Ax)
visible in the mesh, so it does not make sense to have p > 7 /2.

We may introduce the function r(C,p) = é/c for further investig
numerical errors in the wave velocity:

(C,p) = Cipsm*l (Csinp), Ce(0,1], pe(0,7/2.

This function is very well suited for plotting since it combines several par
in the problem into a dependence on two non-dimensional numbers, C'

56

11 Numerical divided by exact wave velocity

1.0F

velocity ratio
o
O

o
©
T

o—e (C=1
0.7t 1
v (C=0.95
m—a C=0.8
&2 C=0.3
0.6 n L L L L L L
0.2 0.4 0.6 0.8 1.0 1.2 1.4
p

igure 6: The fractional error in the wave velocity for different Courant numbers.

Defining

lef r(C, p):
return 2/(C*p)*asin(Cxsin(p))

e can plot 7(C, p) as a function of p for various values of C, see Figure 6. Note
1at the shortest waves have the most erroneous velocity, and that short waves
1ove more slowly than they should.

With sympy we can also easily make a Taylor series expansion in the dis-
-etization parameter p:

»>> C, p = symbols(’°C p’)

»>> # Compute the 7 first terms around p=0 with no 0() term
»>> rs = r(C, p).series(p, 0, 7).remove0()

»>> rs

»*6x (6%Cx*6/112 - C*k*x4/16 + 13%C*x2/720 - 1/5040) +

yxkdx (3xCxx4/40 - Cxx2/12 + 1/120) +

»*2x (Cx*2/6 - 1/6) + 1

»>> rs_error_leading_order = (rs - 1).extract_leading_order(p)
»>> rs_error_leading_order

»*2% (C**2/6 - 1/6)

>>> # Turn the series expansion into a Python function

»>> rs_pyfunc = lambdify([C, p], rs, modules=’numpy’)

»>> # Check: rs_pyfunc is exact (=1) for C=1

»>> rs_pyfunc(l, 0.1)

L.0

57

Without the .remove0() call the series get an 0(x**7) term that r
impossible to convert the series to a Python function (for, e.g., plotting

From the rs_error_leading_order expression above we see that the
order term in the error of this series expansion is

2 2
é <%) (C*—1) = % (A — Az?)

pointing to an error O(At?, Ax?), which is compatible with the error
difference approximations (D:D; and D, D,,).

Here is an alternative way of performing a series expansion: we
lseries method, which returns an iterator over all the terms in the ex
and ask for the 4 first terms (via itertools.islice, which can slice an i
Collecting the terms in a list makes it possible to factor each term indi
Summing up the terms results in a nicer expression:

>>> import itertools

>>> rs = [t for t in itertools.islice(r(C, p).lseries(p), 4)]
>>> rs

[1, Cx*2*px*2/6 - p**2/6,

3kCHk*A*p**4/40 — Cxx2xp**x4/12 + px*4/120,

BxCx*xB*p**6/112 — Ck*4xp*x*6/16 + 13*C**2xpx*6/720 - p**6/5040]
>>> rs = [factor(t) for t in rs]

>>> rs

[1, pxx2x(C - 1)*(C + 1)/86,

px*4x(C - 1)*(C + 1)*(3*C - 1)*(3*%C + 1)/120,

px*6x(C - 1)*(C + 1)*(225*%C**4 — 90xC**2 + 1)/5040]

>>> rs = sum(rs) # Python’s sum function

>>> rs
p*x*¥6x(C - 1)*(C + 1)*(226%C**4 - 90*Cx*2 + 1)/5040 +
p*x*4x(C - 1)*(C + 1)*(3*xC - 1)*(3*xC + 1)/120 +
pr*2*%(C - 1)*(C + 1)/6 + 1

We see from the last expression that C' = 1 makes all the terms in rs
Since we already know that the numerical solution is exact for C' =
remaining terms in the Taylor series expansion will also contain factors «
and cancel for C = 1.

10.5 Extending the analysis to 2D and 3D

The typical analytical solution of a 2D wave equation

Uy = (Ugy + Uyy),

is a wave traveling in the direction of k = k% + k,j, where ¢ and j :
vectors in the x and y directions, respectively. Such a wave can be expr

w(z,y,t) = g(kzx + kyy — ket)

for some twice differentiable function g, or with w = ke, k = |k|:

w(z,y,t) = g(kzx + kyy — wt) .

58

/e can in particular build a solution by adding complex Fourier components of
1e form

exp (i(kgx + kyy — wt)) .
A discrete 2D wave equation can be written as
[DiDyu = (DyDyu+ DyDyu)]? .. (86)
his equation admits a Fourier component

ug . = exp (i(keqAx + kyrAy — @nAt)), (87)

s solution. Letting the operators Dy Dy, D, D,, and D,D, act on Ug from (87)
-ansforms (86) to

isin2 (LAt> = 02—4 sin? <kIAx> +62—4 sin? (LyAy) . (88)

At? 2 Ax? 2 Ay? 2
WAt
sin? <T> = C?sin’p, + Cj sin® p,,, (89)
here we have eliminated the factor 4 and introduced the symbols
2 AL? 2 At? ke Ax kyAy
m:m7 Cy:TyQa Pz = 5 Dy = 5

or a real-valued @ the right-hand side must be less than or equal to unity in
bsolute value, requiring in general that

C24+C2<1. (90)

his gives the stability criterion, more commonly expressed directly in an
iequality for the time step:

1/ 1 1\
At< = | — +— 1
“c (Am2 * AyQ) (01)
similar, straightforward analysis for the 3D case leads to
1/ 1 1 1\
At — | —+ —5 +— 2
_C<Ax2+Ay2+A22> (92)

1 the case of a variable coefficient ¢? = c2(x), we must use the worst-case value

G 2
¢=,/maxc (x) (93)

1 the stability criteria. Often, especially in the variable wave velocity case, it is
ise to introduce a safety factor 8 € (0, 1] too:

59

¢ \ Ax? + Ay? + Az2

The exact numerical dispersion relations in 2D and 3D becomes, for «

—1/2
At<ﬂ{< 1 1 1 >

¢,

2 1
= gin7! ((Cg sin? p, + Cj Sinz) 2) ,

YT A
2 1
o= sin~! ((Cﬁ sin® p, + C; sin? +C7 sin?) 2) .

We can visualize the numerical dispersion error in 2D much like we di
To this end, we need to reduce the number of parameters in @. The dire
the wave is parameterized by the polar angle 6, which means that

ky = ksin®, ky, = Fkcosf.
A simplification is to set Az = Ay = h. Then C, = C, = cAt/h, which
C. Also,
1 1 .
Pr = 5khcos€7 Dy = ikhsmﬁ.
The numerical frequency @ is now a function of three parameters:
e (C reflecting the number cells a wave is displaced during a time st
e kh reflecting the number of cells per wave length in space

e O expressing the direction of the wave

We want to visualize the error in the numerical frequency. To avoid ha
as a free parameter in @, we work with ¢/c, because the fraction 2/At
rewritten as

2 2 1
keAt — 2keAth/h ~ Ckh’

and

[e

3
= C;h sin~! (C <sin2(;kzh cosf) + sing(%kh sin 9)>) .
We want to visualize this quantity as a function of kh and 6 for some v
C < 1. It is instructive to make color contour plots of 1 —¢é/c in polar coo
with 6 as the angular coordinate and kh as the radial coordinate.
The stability criterion (90) becomes C' < Cyax = 1/v/2 in the pre
case with the C defined above. Let us plot 1 — &/c in polar coordin
Chax; 0.9CHhax, 0.5C 1ax, 0.2Chax. The program below does the somewh:

60

ork in Matplotlib, and the result appears in Figure 7. From the figure we
early see that the maximum C' value gives the best results, and that waves
hose propagation direction makes an angle of 45 degrees with an axis are the
108t accurate.

lef dispersion_relation_2D(kh, theta, C):
arg = Cxsqrt(sin(0.5*kh*cos(theta))**2 +
sin(0.5xkh*sin(theta))**2)
c_frac = 2./(Cxkh)*arcsin(arg)

return c_frac

‘rom numpy import exp, sin, cos, linspace, \
pi, meshgrid, arcsin, sqrt

: = kh = linspace(0.001, pi, 101)

cheta = linspace(0, 2*pi, 51)

:, theta = meshgrid(r, theta)

t Make 2x2 filled contour plots for 4 values of C
import matplotlib.pyplot as plt
J_max = 1/sqrt(2)
> = [[C_max, 0.9%C_max], [0.5%C_max, 0.2*C_max]]
!ix, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True))
‘or row in range(2):
for column in range(2):
error = 1 - dispersion_relation_2D(
kh, theta, C[row] [column])
print error.min(), error.max()
cax = axes[row] [column] .contourf (
theta, r, error, 50, vmin=0, vmax=0.36)
axes [row] [column] .set_xticks([])
axes [row] [column] .set_yticks([])

t Add colorbar to the last plot

sbar = plt.colorbar(cax)
bar.ax.set_ylabel(’error in wave velocity’)
>1t.savefig(’disprel2D.png’)
>1t.savefig(’disprel2D.pdf’)

>1t . show ()

61

0.36
0322

Ho0.28 8
0.24 %
0202
0.16 S

40.12
0.08 &
0.04 ©
0.00

Figure 7: Error in numerical dispersion in 2D.

11 Finite difference methods for 2D and 3D
equations

A natural next step is to consider extensions of the methods for varic
ants of the one-dimensional wave equation to two-dimensional (2D) an
dimensional (3D) versions of the wave equation.

11.1 Multi-dimensional wave equations

The general wave equation in d space dimensions, with constant wave ve
can be written in the compact form

> u 272 d
— =cVuforz e QCR? te(0,T].
ot?
In a 2D problem (d = 2),
u 0%
2, _
vu_8x2+8y2’

while in three space dimensions (d = 3),

0%u 0*u O*u

2 —_—— — —
Vu_8x2+8y2+822'

62

Many applications involve variable coefficients, and the general wave equation
1 d dimensions is in this case written as

g@:V(qVU)—i-fforweQCRd, t € (0,77, (98)

hich in 2D becomes

Pu 0 ou 0 ou
oGt = o (s 32) + o (st Ge) + 10, (@0

o save some writing and space we may use the index notation, where subscript
x, y, or z means differentiation with respect to that coordinate. For example,

o
ot?
15} ou

2 (s 22) = am

he 3D versions of the two model PDEs, with and without variable coefficients,
an with now with the aid of the index notation for differentiation be stated as

= Utt,

Ut = c? (uacac + Uyy + uzz) + f, (100)
Ut (quaz)w + (quz)z + (quz)z + f . (101)

At each point of the boundary 92 of 2 we need one boundary condition
wolving the unknown u. The boundary conditions are of three principal types:

1. u is prescribed (u = 0 or a known time variation for an incoming wave),
2. Ou/On = n - Vu prescribed (zero for reflecting boundaries),

3. an open boundary condition (also called radiation condition) is specified to
let waves travel undisturbed out of the domain, see Exercise 77 for details.

1 the listed wave equations with second-order derivatives in time need two
iitial conditions:

1l.u=1,

2. Ut = V.

63

11.2 Mesh

We introduce a mesh in time and in space. The mesh in time consists
points

t0:0<t1<"’<tNt,

often with a constant spacing At =t,41 —t,, n €Z; .

Finite difference methods are easy to implement on simple rectangle-
shaped domains. More complicated shapes of the domain require subst
more advanced techniques and implementational efforts. On a recta
box-shaped domain mesh points are introduced separately in the varion
directions:

xp <1 < --- < xp, in x direction,
Yo < y1 < -+ <yp, in y direction,

2o < 21 < -+- < zn, in z direction.

We can write a general mesh point as (x;,y;, 2k, tn), With i € I, j € Z,
and n € Z;.

It is a very common choice to use constant mesh spacings: Ax = z;
i €T, Ay=yjt1—vyj, J €L, and Az = 241 — 2, k € I . With equ
spacings one often introduces h = Az = Ay = Az.

The unknown u at mesh point (z;,y;, zx,tn) is denoted by ul; g
problems we just skip the z coordinate (by assuming no variation

direction: 0/9z = 0) and write u';.

11.3 Discretization

Two- and three-dimensional wave equations are easily discretized by ass
building blocks for discretization of 1D wave equations, because th
dimensional versions just contain terms of the same type that occurs ir

Discretizing the PDEs. Equation (100) can be discretized as

[DyDyu = (DyDyu + DyDyu+ D,D,u)+ f}%k .

A 2D version might be instructive to write out in detail:

[DtDtU = 02 (Dl'Dl'u + Dy-Dyu) + f]Z]~k7

which becomes

n+1l n n—1 n _ n n n _ n n
Ui =2 Fup 2t 2ui; Uity L2t 2ug; + g,

At? Azx? Ay?

64

ssuming as usual that all values at the time levels n and n — 1 are known, we

an solve for the only unknown u"j'l The result can be compactly written as
ul Tt =2ul; +ul Tt + CAP Dy Dyu+ DyDyul? ;. (103)

As in the 1D case, we need to develop a special formula for u} o where we

n+1

»mbine the general scheme for '], when n = 0, with the discretization of the

iitial condition:

[Dyu=V]?. = wut= uzlj —2AtV; ;.

5] 2Y)

he result becomes, in compact form,

” 1
u; 3‘1 =ui; — 24V, ; + ECQAt2[DIDIu + DyDyul ;. (104)

The PDE (101) with variable coefficients is discretized term by term using
1e corresponding elements from the 1D case:

[oDiDyu = (D,q" Dyu+ Dyg’Dyu+ D.g*Dou) + 17, (105)
/hen written out and solved for the unknown u?;r}c, one gets the scheme
1
U?jk =—u;; L 2ui; p+
1 1 1
= I AxQ((@i gk + Qiv1,4.0) (Wi e — Uiy i) —
i3,
1
§(Qi_1’j’k + i k) (Ui e = wile i)+
1 1 .
= oion ALEQ((qm kTt Qi j+1, k) (ul Ui — U’i,j,lc)_
1 . .
5 @i+) (e — i)+
1 1 .
- 03,5,k sz((@igk + i her1) (U kg — Ui) —
1
Gt +)0 — o)
2
+ AN
Also here we need to develop a special formula for u} ., by combining the

heme for n = 0 with the discrete initial condition, Wthh is just a matter of
iserting u;jlk = ullj i — 2AtV; ;1 in the scheme and solving for u}j K
[andling boundary conditions where is © known. The schemes listed
bove are valid for the internal points in the mesh. After updating these, we
eed to visit all the mesh points at the boundaries and set the prescribed u
ilue.

65

Discretizing the Neumann condition. The condition du/on =0
plemented in 1D by discretizing it with a D, u centered difference, and tt
eliminating the fictitious u point outside the mesh by using the general
at the boundary point. Alternatively, one can introduce ghost cells and
a ghost value to for use in the Neumann condition. Exactly the same i
reused in multi dimensions.

Consider du/On = 0 at a boundary y = 0. The normal direction is
—y direction, so

ou_ o
on Oy’
and we set
ul, —ul g
[=D2yu =03, = T =0.

From this it follows that uy_; = u;. The discretized PDE at the b
point (4,0) reads

n+1 n—1 n n n n n
Ugg = 2o+ Uiy 2 Uity 0 — 2uip +Uiq o n czu e
At? Ax? Ay?
We can then just insert u}, for u?’_; in this equation and then solve

boundary value u?{l as done in 1D.

From these calculations, we see a pattern: the general scheme af
the boundary j = 0 too if we just replace j — 1 by j7 + 1. Such a pa
particularly useful for implementations. The details follow from the e>
1D case in Section 6.3.

The alternative approach to eliminating fictitious values outside the
to have u}'_; available as a ghost value. The mesh is extended with o1
line (2D) or plane (3D) of ghost cells at a Neumann boundary. In the
example it means that we need a line ghost cells below the y axis. Tt

values must be updated according to u”ﬂ = uffl

12 Implementation

We shall now describe in detail various Python implementations for s
standard 2D, linear wave equation with constant wave velocity and u = |
boundary. The wave equation is to be solved in the space-time domain 2
where Q = (0, Lg) x (0, L) is a rectangular spatial domain. More preci:
complete initial-boundary value problem is defined by

wp = 2 (Uge + Uyy) + f2,9,1), (z,y) € Q, t € (0,T),
u(x7y:0) = I(x7y)7 (‘rv) €
Ut(iﬂ,y,O) = V(:an)’ (Z‘,) €Q
u=0, (z,y) € 09, t € (0,]
66

here 02 is the boundary of €2, in this case the four sides of the rectangle
L] x[0,Ly]: 2=0,2=L,,y=0,andy=L
The PDE is discretized as
[D¢Dyu = CZ(DocDmu + DyDyu) + f]:LJa
hich leads to an explicit updating formula to be implemented in a program:

u = —uf;l + 2w+
0.720(“?+1,j Zj+u7 1])+C('L]+1 1]+u1j 1)+At2 7,70
(110)

v all interior mesh points i € Z% and j € Iy7 and for n € Z;". The constants
'+ and Oy are defined as

At At
Cz = CF:L‘, Cz c?y
At the boundary we simply set u"}'l =0fori=0,j=0,...,Ny; i = N,

=0,...,Ny;;5=0,1=0,...,Ny;and j = Ny, i = 0,...,Nx For the first
ep, n = 0, (111) is combined with the discretization of the initial condition
t =V, [Dau = V}O to obtain a special formula for u ; at the interior mesh
oints:

u' =, + ALV i+
03(Uiy — 2up ;g 1]>+ y (W en = 2ug; g 0) + At2 T
(111)
The algorithm is very similar to the one in 1D:
1. Set initial condition u?’j =I(zs,y;)
2. Compute u ; from (111)
3. Set uzlj = 0 for the boundaries i = 0, N, j = 0, N,
4. Forn=1,2,..., N
(a) Find u?jl from (111) for all internal mesh points, i € T, j € Z;
(b) Set u?jl = 0 for the boundaries ¢ = 0, N, j =0, N,

2.1 Scalar computations

he solver function for a 2D case with constant wave velocity and v = 0 as
oundary condition follows the setup from the similar function for the 1D case
1 wavelD_u0.py, but there are a few necessary extensions. The code is in the
rogram wave2D_u0.py'”

http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0.py

67

Domain and mesh. The spatial domain is now [0, L] x [0, L,], spec
the arguments Lx and Ly. Similarly, the number of mesh points in the
directions, N, and N,, become the arguments Nx and Ny. In multi-dim
problems it makes less sense to specify a Courant number as the wave
is a vector and the mesh spacings may differ in the various spatial di
We therefore give At explicitly. The signature of the solver function i

def solver(I, V, f, ¢, Lx, Ly, Nx, Ny, dt, T,
user_action=None, version=’scalar’):

Key parameters used in the calculations are created as

x = linspace(0, Lx, Nx+1) # mesh points in x dir
y = linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]

dy = y[1]1 - y[o]

Nt = int(round(T/float(dt)))

t = linspace(0, N*xdt, N+1) # mesh points in time
Cx2 = (c*dt/dx)**2; Cy2 = (c*xdt/dy)**2 # help variables

dt2 = dt*x*2

n+1 n

ii s upy, and ul~" in three two-dime

Solution arrays. We store u; T ig

arrays,

zeros((Nx+1,Ny+1)) # solution array
zeros ((Nx+1,Ny+1)) # solution at t-dt
zeros ((Nx+1,Ny+1)) # solution at t-2+*dt

(SN =T~]

1
2

+

where u;'] ! corresponds to uli, j1, ui; tou_1[1,3], and w;'; Ytou_2

Index sets. It is also convenient to introduce the index sets (cf. Sect

Ix = range(0, u.shape[0])
Iy = range(0, u.shape[1])
It = range(0, t.shape[0])

Computing the solution. Inserting the initial condition I in u_1 and
a callback to the user in terms of the user_action function is a straight
generalization of the 1D code from Section 1.6:

for i in Ix:
for j in Iy
u_1[i, J] = I(x[i], y[jD

if user_action is not None:
user_action(u_1, x, xv, y, yv, t, 0)

68

he user_action function has additional arguments compared to the 1D case.

he arguments xv and yv fact will be commented upon in Section 12.2.
The key finite difference formula (103) for updating the solution at a time
wel is implemented in a separate function as

lef advance_scalar(u, u_1, u_2, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, stepl=False):
Ix = range(0, u.shape[0]); Iy = range(O, u.shape[1])
if stepil:
dt = sqrt(dt2) # save
Cx2 = 0.5%Cx2; Cy2 = 0.5%Cy2; dt2 = 0.5*%dt2 # redefine
D1 =1; D2 =0
else:
D1 =2; D2=1
for i in Ix[1:-1]:
for j in Iy[1:-1]:
u_xx = u_1[i-1,j] - 2xu_1[i,j] + u_1[i+1,]]
u_yy = u_1[i,j-1] - 2xu_1[i,j] + u_1[i,j+1]
uli,jl = Dixu_1[i,j] - D2*u_2[i,j] + \
Cx2%u_xx + Cy2+*u_yy + dt2*f(x[il, y[jl, t[n])
if stepil:
uli,jl += dt*V(x[i], y[3jD)
Boundary condition u=0
j = Iylo]
for i in Ix: uli,jl =0
j = Iy[-1]
for i in Ix: uli,j]
i = 1x[0]
for j in Iy: uli,j]
i = Ix[-1]
for j in Iy: uli,j]
return u

0

0

0

he stepl variable has been introduced to allow the formula to be reused for
rst step u}yj:

1 = advance_scalar(u, u_1, u_2, £, x, y, t,
n, Cx2, Cy2, dt, V, stepil=True)

elow, we will make many alternative implementations of the advance_scalar
mction to speed up the code since most of the CPU time in simulations is spent
1 this function.

Finally, we remark that the solver function in the wave2D_u0.py code
pdates arrays for the next time step by switching references as described in
ection 4.5. If the solution u is return from solver, which it is not, it is important
yset u = u_1 after the time loop, otherwise u actually contains u_2.

2.2 Vectorized computations

he scalar code above turns out to be extremely slow for large 2D meshes, and
robably useless in 3D beyond debugging of small test cases. Vectorization is

1erefore a must for multi-dimensional finite difference computations in Python.

or example, with a mesh consisting of 30 x 30 cells, vectorization brings down
1e CPU time by a factor of 70 (!).

69

In the vectorized case we must be able to evaluate user-given functi
I(z,y) and f(z,y,t), provided as Python functions I(x,y) and f(x,y
the entire mesh in one array operation. Having the one-dimensional coc
arrays x and y is not sufficient: these must be extended to vectorized v

from numpy import newaxis
xv = x[:,newaxis]
yv = ylnewaxis,:]

= x.reshape((x.size, 1))
yv = y.reshape((1, y.size))

This is a standard required technique when evaluating functions over a 2
say sin(xv)*cos(xv), which then gives a result with shape (Nx+1,Ny+

With the xv and yv arrays for vectorized computing, setting thi
condition is just a matter of

u_1[:,:1 = I(xv, yv)

One could also have writtenu_1 = I(xv, yv) and let u_1 point to a nev
but vectorized operations often makes use of direct insertion in the origir
through u_1T[:,:] because sometimes not all of the array is to be filled
a function evaluation. This is the case with the computational scheme f

def advance_vectorized(u, u_1, u_2, f_a, Cx2, Cy2, dt2,
V=None, stepl=False):
if stepl:
dt = sqrt(dt2) # save
Cx2 = 0.5%Cx2; Cy2 = 0.5%Cy2; dt2 = 0.5*%dt2 # redefine
D1 =1; D2=0
else:
D1 2; D2 =1
uxx =u_1[:-2,1:-1] - 2*u_1[1:-1,1:-1] + u_1[2:,1:-1]
uyy = u_1[1:-1,:-2] - 2%u_1[1:-1,1:-1] + u_1[1:-1,2:]
ul1:-1,1:-1] = Di*u_1[1:-1,1:-1] - D2*u_2[1:-1,1:-1] + \
Cx2*u_xx + Cy2*u_yy + dt2*f_a[l:-1,1:-1]

if stepl:
ull:-1,1:-1] += dt*V[1:-1, 1:-1]
Boundary condition u=0
j=o
ul:,j1 =0
j = u.shape[1]-1
ul:,j1 =0
i=0
uli,:] =0
i = u.shape[0]-1
uli,:] =0
return u

Array slices in 2D are more complicated to understand than those in
the logic from 1D applies to each dimension separately. For example, whe
uil; —ugt g ; for i € T}, we just keep j constant and make a slice in -
index: u_1[1:,j] - u_1[:-1,j], exactly as in 1D. The 1: slice spe«
the indices i = 1,2,..., N, (up to the last valid index), while : -1 spec

70

slevant indices for the second term: 0,1,..., N, — 1 (up to, but not including
1e last index).

In the above code segment, the situation is slightly more complicated, because
ach displaced slice in one direction is accompanied by a 1:-1 slice in the other
irection. The reason is that we only work with the internal points for the index
1at is kept constant in a difference.

The boundary conditions along the four sides makes use of a slice consisting
f all indices along a boundary:

1[: ,0] =0
1[:,Ny] =0
1[0 ,:] =0
1[Nx,:] = 0

The f function is in the above vectorized update of u first computed as an
cray over all mesh points:

f_a = f(xv, yv, tlnl)

le could, alternatively, used the call £ (xv, yv, t[n])[1:-1,1:-1] in the last
rm of the update statement, but other implementations in compiled languages
enefit from having f available in an array rather than calling our Python
mction f (x,y,t) for every point.

Also in the advance_vectorized function we have introduced a boolean
tepl to reuse the formula for the first time step in the same way as we did
ith advance_scalar. We refer to the solver function in wave2D_u0.py for
1e details on how the overall algorithm is implemented.

The callback function now has the arguments u, x, xv, y, yv, t, n.
he inclusion of xv and yv makes it easy to, e.g., compute an exact 2D so-
ttion in the callback function and compute errors, through an expression like

- u_exact(xv, yv, t[nl).

2.3 Verification

‘esting a quadratic solution. The 1D solution from Section 2.4 can be
aneralized to multi-dimensions and provides a test case where the exact solution
lso fulfills the discrete equations such that we know (to machine precision)
hat numbers the solver function should produce. In 2D we use the following
sneralization of (30):

el y, 1) = #(Ly — D)y~ p)(1+ 1) (112)

his solution fulfills the PDE problem if I(z,y) = ue(x,y,0), V = %ue(w, y,0),
nd f = 2¢3(1+ 3t)(y(Ly — y) + 2(Ly — 2)). To show that ue also solves the
iscrete equations, we start with the general results [D;D;1]" = 0, [D;Dyt]™ = 0,
nd [DyD¢t?] = 2, and use these to compute

1 1
DxDmue];l,j = [y(Ly - y)(l + §t)Da:Docx(La: - 1‘)}2] = yj(Ly - yj)(l + §tn)2'

71

A similar calculation must be carried out for the [D, Dyue]}; and [D;
terms. One must also show that the quadratic solution fits the special
for uz{j. The details are left as Exercise 11. The test_quadratic fun
the wave2D_u0.py'® program implements this verification as a nose tes

13 Migrating loops to Cython

Although vectorization can bring down the CPU time dramatically compa
scalar code, there is still some factor 5-10 to win in these types of applica
implementing the finite difference scheme in compiled code, typically in
C, or C++. This can quite easily be done by adding a little extra cod
program. Cython is an extension of Python that offers the easiest way
our Python loops in the scalar code down to machine code and the effic
C.

Cython can be viewed as an extended Python language where varia
declared with types and where functions are marked to be implement
Migrating Python code to Cython is done by copying the desired code s
to functions (or classes) and placing them in one or more separate fi
extension .pyx.

13.1 Declaring variables and annotating the code

Our starting point is the plain advance_scalar function for a scalar in
tation of the updating algorithm for new values ufjl

def advance_scalar(u, u_1, u_2, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, stepl=False):

Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])

if stepl:
dt = sqrt(dt2) # save
Cx2 = 0.5%Cx2; Cy2 = 0.5%Cy2; dt2 = 0.5%dt2 # redefine
D1 =1; D2 =0

else:
D1 =2; D2=1

for i in Ix[1:-1]:
for j in Iy[1:-1]:

u_xx = u_1[i-1,j] - 2%u_1[i,j] + u_1[i+1,]]
u_yy = u_1[i,j-1]1 - 2*u_1[i,j] + u_1[i,j+1]
uli,j] = Dixu_1[i,j] - D2*u_2[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2xf(x[i], y[j], t[n]
if stepl:
uli,jl += dexv(x[il, y[jD)
Boundary condition u=0

j = Iylo]

for i in Ix: uli,jl =0
j = Iyl-1]

for i in Ix: uli,jl =0
i = Ix[0]

for j in Iy: uli,jl =0
i = Ix[-1]

18http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0.py

72

for j in Iy: uli,jl =0
return u

We simply take a copy of this function and put it in a file wave2D_u0_loop_cy.pyx.
he relevant Cython implementation arises from declaring variables with types
ad adding some important annotations to speed up array computing in Cython.
et us first list the complete code in the .pyx file:

import numpy as np

cimport numpy as np

cimport cython

ctypedef np.float64_t DT # data type

@cython.boundscheck(False) # turn off array bounds check
@cython.wraparound(False) # turn off negative indices (ul[-1,-1])
cpdef advance(

np.ndarray [DT, ndim=2, mode=’c’] u,

np.ndarray[DT, ndim=2, mode=’c’] u_1,

np.ndarray [DT, ndim=2, mode=’c’] u_2,

np.ndarray [DT, ndim=2, mode=’c’] f,

double Cx2, double Cy2, double dt2):

cdef:
int Ix_start = 0
int Iy_start = 0
int Ix_end = u.shape[0]-1
int Iy_end = u.shape[1]-1
int i, j

double u_xx, u_yy

for i in range(Ix_start+1l, Ix_end):
for j in range(Iy_start+1, Iy_end):
u_xx = u_1[i-1,3j] - 2*u_1[i,j] + u_1[i+1,]]
u_yy = u_1[i,j-11 - 2xu_1[i,j] + u_1[i,j+1]
uli,jl = 2%xu_1[i,j] - w_2[i,j] + \
Cx2*u_xx + Cy2*u_yy + dt2*f[i,j]
Boundary condition u=0
j = Iy_start
for i in range(Ix_start, Ix_end+1): uli,j]
j = Iy_end
for i in range(Ix_start, Ix_end+1): ul[i,j]l =0
i = Ix_start

]
o

for j in range(Iy_start, Iy_end+1): u[i,j]l = 0
i = Ix_end
for j in range(Iy_start, Iy_end+1): ul[i,j]l =0

return u

This example may act as a recipe on how to transform array-intensive code
ith loops into Cython.

1. Variables are declared with types: for example, double v in the argument
list instead of just v, and cdef double v for a variable v in the body of
the function. A Python float object is declared as double for translation
to C by Cython, while an int object is declared by int.

2. Arrays need a comprehensive type declaration involving

73

e the type np.ndarray,

e the data type of the elements, here 64-bit floats, abbreviate
through ctypedef np.float64_t DT (instead of DT we could
full name of the data type: np.float64_t, which is a Cython
type),

e the dimensions of the array, here ndim=2 and ndim=1,

e specification of contiguous memory for the array (mode=’c’)

3. Functions declared with cpdef are translated to C but also accessi
Python.

4. In addition to the standard numpy import we also need a special
import of numpy: cimport numpy as np, to appear after the s
import.

5. By default, array indices are checked to be within their legal lin
speed up the code one should turn off this feature for a specific 1
by placing @cython.boundscheck(False) above the function he:

6. Also by default, array indices can be negative (counting from the e
this feature has a performance penalty and is therefore here turne
writing @cython.wraparound(False) right above the function he

7. The use of index sets Ix and Iy in the scalar code cannot be
fully translated to C. One reason is that constructions like Iz
involve negative indices, and these are now turned off. Another
is that Cython loops must take the form for i in xrange or f¢
range for being translated into efficient C loops. We have ther
troduced Ix_start as Ix[0] and Ix_end as Ix[-1] to hold t!
and end of the values of index ¢. Similar variables are introdt
the j index. A loop for i in Ix is with these new variables wr
for i in range(Ix_start, Ix_end+1).

Array declaration syntax in Cython.

We have used the syntax np.ndarray[DT, ndim=2, mode=’c’] to de
numpy arrays in Cython. There is a simpler, alternative syntax, empl
typed memory views?, where the declaration looks like double [
However, the full support for this functionality is not yet ready, and i1
text we use the full array declaration syntax.

%http://docs.cython.org/src/userguide/memoryviews.html

74

3.2 Visual inspection of the C translation

ython can visually explain how successfully it can translate a code from Python
» C. The command

arminal> cython -a wave2D_uO_loop_cy.pyx

roduces an HTML file wave2D_u0_loop_cy.html, which can be loaded into a
eb browser to illustrate which lines of the code that have been translated to C.
igure 8 shows the illustrated code. Yellow lines indicate the lines that Cython
id not manage to translate to efficient C code and that remain in Python. For
1e present code we see that Cython is able to translate all the loops with array
»mputing to C, which is our primary goal.

Raw output: waveD u0 leop cv.c

1: import numpy as np

2: cimport nunpy as np

3: cimport cython

4 ctypedef np.float6d_t DT # data type
5.

&

7

+ ecython.boundscheck (False) # turn off array bounds check

: ecython.wraparound (False) # turn off negative indices (ul-1,-11)
8: cpdef advance(

o np.ndarray[DT, ndin=2, mode="c'] u,
10; np.ndarray[DT, ndin=2, mode=
11 np.ndarray[DT, ndin=2, mode='c
12 np.ndarray[DT, ndin=2, mode="c'] f,
13 double Cx2, double Cy2, double dt2):

15 cdef int Ix_start = 0

16 cdef int Ty start = 0

17 cdef int Ix_end = u.shapel0]-1
18 cdef int Tyend = u.shapel1]-1
19 cdef int i,

20, cdef double u_xx, u_yy

2 for i in range(Ix_start+1, Ix_end)

23 for j in range(Iy_start+l, Iy_end)

24, uixx:ulll—l,]] 24 1T3,3] + w1 [i+1, §]
25 uyy = u1lij-1] - 2u 103.3] + w13 34]
26 uli,j] = 200 10i,9] - u2[i,]] + \

27 SO s By A1)
28 # Boundary condition u=0

j = Iy_star

30: foriin range(I_start, Ix_endsl): uli.jl =
31 j = Iy_end

2 for i in range(Ix_start, Ix_endsl): uli.jl =
33 i = Ix_start

34 for j in range(Iy_start, Iy_end+l): uli,jl =
35: i=Iyen

36: for j in range(Iy_start, Iy end+l): uli,jl =
37 return u

Figure 8: Visual illustration of Cython’s ability to translate Python to C.

You can also inspect the generated C code directly, as it appears in the file
ave2D_u0_loop_cy.c. Nevertheless, understanding this C code requires some
uniliarity with writing Python extension modules in C by hand. Deep down in
1e file we can see in detail how the compute-intensive statements are translated
»me complex C code that is quite different from what we a human would write
it least if a direct correspondence to the mathematics was in mind).

3.3 Building the extension module

ython code must be translated to C, compiled, and linked to form what is known
1 the Python world as a C' extension module. This is usually done by making a
etup.py script, which is the standard way of building and installing Python
ftware. For an extension module arising from Cython code, the following
etup.py script is all we need to build and install the module:

75

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

cymodule = ’wave2D_uO_loop_cy’

setup (
name=cymodule
ext_modules=[Extension(cymodule, [cymodule + ’.pyx’],)],
cmdclass={’build_ext’: build_ext},

)

We run the script by

Terminal> python setup.py build_ext --inplace

The -inplace option makes the extension module available in the
directory as the file wave2D_u0_loop_cy.so. This file acts as a normal
module that can be imported and inspected:

>>> import wave2D_uO_loop_cy
>>> dir(wave2D_u0_loop_cy)
[°__builtins__’, ’__doc__’, ’__file__’, ’__name__’

= 0 - = 0

> __package__’, ’__test__’, ’advance’, ’np’]

The important output from the dir function is our Cython function &
(the module also features the imported numpy module under the name ny
as many standard Python objects with double underscores in their nan

The setup.py file makes use of the distutils package in Pytl
Cython’s extension of this package. These tools know how Python was
the computer and will use compatible compiler(s) and options when]
other code in Cython, C, or C++. Quite some experience with buildi
program systems is needed to do the build process manually, so using a s¢
script is strongly recommended.

Simplified build of a Cython module.

When there is no need to link the C code with special libraries, Cy
offers a shortcut for generating and importing the extension module

import pyximport; pyximport.install()

This makes the setup.py script redundant. However, in the wave2D_u
code we do not use pyximport and require an explicit build process o

and many other modules.

76

3.4 Calling the Cython function from Python

he wave2D_u0_loop_cy module contains our advance function, which we now
1ay call from the Python program for the wave equation:

import wave2D_uO_loop_cy
idvance = wave2D_uO_loop_cy.advance

‘or n in It[1:-1: # time loop
f_al:,:] = £(xv, yv, tlnl) # precompute, size as u
u = advance(u, u_1, u_2, f_a, x, y, t, Cx2, Cy2, dt2)

fficiency. For a mesh consisting of 120 x 120 cells, the scalar Python code
xquire 1370 CPU time units, the vectorized version requires 5.5, while the
ython version requires only 1! For a smaller mesh with 60 x 60 cells Cython is
bout 1000 times faster than the scalar Python code, and the vectorized version
about 6 times slower than the Cython version.

4 Migrating loops to Fortran

1stead of relying on Cython’s (excellent) ability to translate Python to C, we
an invoke a compiled language directly and write the loops ourselves. Let us
sart with Fortran 77, because this is a language with more convenient array
andling than C (or plain C++4). Or more precisely, we can with ease program
ith the same multi-dimensional indices in the Fortran code as in the numpy
rrays in the Python code, while in C these arrays are one-dimensional and
:quires us to reduce multi-dimensional indices to a single index.

4.1 The Fortran subroutine

/e write a Fortran subroutine advance in a file wave2D_u0_loop_£77.f'9 for
nplementing the updating formula (111) and setting the solution to zero at the
oundaries:

subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
integer Nx, Ny
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real*8 £(0:Nx,0:Ny), Cx2, Cy2, dt2
integer i, j
real*8 u_xx, u_yy

Cf2py intent(in, out) u

C Scheme at interior points
do j =1, Ny-1
do i =1, Nx-1
u_xx = u_1(i-1,3j) - 2*xu_1(i,j) + u_1(i+1,j)
=u_1(i,j-1) - 2*u_1(i,j) + u_1(i,j+1)

LAY
u(i,j) = 2%u_1(i,j) - u_2(i,j) + Cx2*u_xx + Cy2*u_yy +

19http://tinyurl.com/nm5587k/wave/waveQD_uO/wave2D_uO_loop_f77.f

7

& dt2*f (1, 3)
end do
end do

C Boundary conditions

j=0

do i = 0, Nx
u(i,j) =0

end do

j=ny

do i = 0, Nx
u(i,j) =0

end do

i=0

do j = 0, Ny
u(i,j) =0

end do

i = Nx

do j = 0, Ny
u(i,j) =0

end do

return

end

This code is plain Fortran 77, except for the special C£2py comment lin:
here specifies that u is both an input argument and an object to be r
from the advance routine. Or more precisely, Fortran is not able return :
from a function, but we need a wrapper code in C for the Fortran subro
enable calling it from Python, and in this wrapper code one can return
calling Python code.

Remark.

It is not strictly necessary to return u to the calling Python code
the advance function will modify the elements of u, but the conventi
Python is to get all output from a function as returned values. Th
the right way of calling the above Fortran subroutine from Python i

u = advance(u, u_1, u_2, f, Cx2, Cy2, dt2)

The less encouraged style, which works and resembles the way the Fo
subroutine is called from Fortran, reads

advance(u, u_1, u_2, f, Cx2, Cy2, dt2)

78

4.2 Building the Fortran module with f2py

he nice feature of writing loops in Fortran is that the tool £2py can with very
ttle work produce a C extension module such that we can call the Fortran
arsion of advance from Python. The necessary commands to run are

srminal> f2py -m wave2D_uO_loop_£77 -h wave2D_uO_loop_£77.pyf \
--overwrite-signature wave2D_uO_loop_f£77.f

srminal> f2py -c wave2D_u0O_loop_£f77.pyf --build-dir build_£77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0O_loop_£f77.f

he first command asks £2py to interpret the Fortran code and make a Fortran 90
secification of the extension module in the file wave2D_u0_loop_£77.pyf. The
scond command makes £2py generate all necessary wrapper code, compile our
ortran file and the wrapper code, and finally build the module. The build process
ikes place in the specified subdirectory build_£77 so that files can be inspected
something goes wrong. The option ~-DF2PY_REPORT_ON_ARRAY_COPY=1 makes
2py write a message for every array that is copied in the communication between
ortran and Python, which is very useful for avoiding unnecessary array copying
ee below). The name of the module file is wave2D_u0_loop_£77.so, and this
le can be imported and inspected as any other Python module:

>>> import wave2D_uO_loop_£77
»>> dir(wave2D_u0_loop_£77)
[’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__version__’, ’advance’]
>>> print wave2D_uO_loop_£77.__doc__
This module ’wave2D_uO_loop_f77’ is auto-generated with f2py....
‘unctions:

u = advance(u,u_1,u_2,f,cx2,cy2,dt2,

nx=(shape (u,0)-1) ,ny=(shape(u,1)-1))

Examine the doc strings!

Printing the doc strings of the module and its functions is extremely
important after having created a module with £2py, because f2py makes
Python interfaces to the Fortran functions that are different from how
the functions are declared in the Fortran code (!). The rationale for this
behavior is that £2py creates Pythonic interfaces such that Fortran routines
can be called in the same way as one calls Python functions. Output data
from Python functions is always returned to the calling code, but this is
technically impossible in Fortran. Also, arrays in Python are passed to
Python functions without their dimensions because that information is
packed with the array data in the array objects, but this is not possible
in Fortran. Therefore, £2py removes array dimensions from the argument
list, and £2py makes it possible to return objects back to Python.

79

Let us follow the advice of examining the doc strings and take a cl
at the documentation £2py has generated for our Fortran advance sub

>>> print wave2D_uO_loop_£77.advance.__doc__
This module ’wave2D_uO_loop_£77’ is auto-generated with f2py
Functions:
u = advance(u,u_1,u_2,f,cx2,cy2,dt2,
nx=(shape (u,0)-1) ,ny=(shape (u,1)-1))

advance - Function signature:
u = advance(u,u_1,u_2,f,cx2,cy2,dt2, [nx,ny])

Required arguments:
u : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_1 : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_2 : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
f : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
cx2 : input float
cy2 : input float
dt2 : input float

Optional arguments:
nx := (shape(u,0)-1) input int
ny := (shape(u,1)-1) input int

Return objects:
u : rank-2 array(’d’) with bounds (nx + 1,ny + 1)

Here we see that the nx and ny parameters declared in Fortran are «
arguments that can be omitted when calling advance from Python.

We strongly recommend to print out the documentation of every
function to be called from Python and make sure the call syntax is ex
listed in the documentation.

14.3 How to avoid array copying

Multi-dimensional arrays are stored as a stream of numbers in memc
a two-dimensional array consisting of rows and columns there are tv
of creating such a stream: row-major ordering, which means that r
stored consecutively in memory, or column-magjor ordering, which means
columns are stored one after each other. All programming languages i
from C, including Python, apply the row-major ordering, but Fortr
column-major storage. Thinking of a two-dimensional array in Python o
matrix, it means that Fortran works with the transposed matrix.

Fortunately, £2py creates extra code so that accessing u(i,j) in the
subroutine corresponds to the element u[i, j] in the underlying numg
(without the extra code, u(i,j) in Fortran would access ulj,i] in th
array). Technically, £2py takes a copy of our numpy array and reorders 1
before sending the array to Fortran. Such copying can be costly. For 2
simulations on a 60 x 60 grid the overhead of copying is a factor of £
means that almost the whole performance gain of Fortran over vectorize
code is lost!

To avoid having £2py to copy arrays with C storage to the corres;
Fortran storage, we declare the arrays with Fortran storage:

80

>rder = ’Fortran’ if version == ’f77’ else ’C’

1 = zeros((Nx+1,Ny+1), order=order) # solution array

1_1 = zeros((Nx+1,Ny+1), order=order) # solution at t-dt
1_2 = zeros((Nx+1,Ny+1), order=order) # solution at t-2xdt

In the compile and build step of using f2py, it is recommended to add an
xtra option for making f2py report on array copying:

srminal> f2py -c wave2D_u0O_loop_f77.pyf --build-dir build_£77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_uO_loop_£77.f

It can sometimes be a challenge to track down which array that causes a
»pying. There are two principal reasons for copying array data: either the array
oes not have Fortran storage or the element types do not match those declared
1 the Fortran code. The latter cause is usually effectively eliminated by using
eal*8 data in the Fortran code and float64 (the default float type in numpy)
1 the arrays on the Python side. The former reason is more common, and to
1eck whether an array before a Fortran call has the right storage one can print
1e result of isfortran(a), which is True if the array a has Fortran storage.

Let us look at an example where we face problems with array storage. A
rpical problem in the wave2D_u0.py code is to set

*a = f(xv, yv, t[nl)

efore the call to the Fortran advance routine. This computation creates a new
cray with C storage. An undesired copy of f_a will be produced when sending
_a to a Fortran routine. There are two remedies, either direct insertion of data

1 an array with Fortran storage,

:_a = zeros((Nx+1, Ny+1), order=’Fortran’)

%;é[: ,:] = £(xv, yv, tln])
r remaking the f(xv, yv, t[n]) array,
I_a = asarray(f(xv, yv, t[n]), order=’Fortran’)

he former remedy is most efficient if the asarray operation is to be performed
large number of times.

fficiency. The efficiency of this Fortran code is very similar to the Cython
sde. There is usually nothing more to gain, from a computational efficiency

oint of view, by implementing the complete Python program in Fortran or C.

hat will just be a lot more code for all administering work that is needed in
sientific software, especially if we extend our sample program wave2D_u0.py to
andle a real scientific problem. Then only a small portion will consist of loops

81

with intensive array calculations. These can be migrated to Cython or
as explained, while the rest of the programming can be more convenien
in Python.

15 Migrating loops to C via Cython

The computationally intensive loops can alternatively be implement
code. Just as Fortran calls for care regarding the storage of two-dim
arrays, working with two-dimensional arrays in C is a bit tricky. The r
that numpy arrays are viewed as one-dimensional arrays when transferr
while C programmers will think of u, u_1, and u_2 as two dimensiona
and index them like u[i] [j]. The C code must declare u as double:
translate an index pair [i] [j] to a corresponding single index when u i
as one-dimensional. This translation requires knowledge of how the nur
u are stored in memory.

15.1 Translating index pairs to single indices

Two-dimensional numpy arrays with the default C storage are stored row
In general, multi-dimensional arrays with C storage are stored such that
index has the fastest variation, then the next last index, and so on, en
with the slowest variation in the first index. For a two-dimensional u ¢
as zeros ((Nx+1,Ny+1)) in Python, the individual elements are store
following order:

ul0,0], ul0,1], ul[0,2], ..., ulO,Ny]l, ul[1,0], u[1,1], ...,
ul1l,Ny], ul[2,0], ..., ulNx,0], ulNx,1], ..., u[Nx, Nyl

Viewing u as one-dimensional, the index pair (7, j) translates to i(N,
So, where a C programmer would naturally write an index u[i] [j1, the i
must read u[i*(Ny+1) + j]. This is tedious to write, so it can be h
define a C macro,

#define idx(i,j) (i)*(Ny+1) + j

so that we can write ulidx(i,j)], which reads much better and is €
debug.

Be careful with macro definitions.

Macros just perform simple text substitutions: idx(hello,world)
panded to (hello)*(Ny+1) + world. The parenthesis in (i) are esst
- using the natural mathematical formula i*(Ny+1) + j in the n
definition, idx(i-1,j) would expand to i-1*(Ny+1) + j, which i

82

wrong formula. Macros are handy, but requires careful use. In C++, inline
functions are safer and replace the need for macros.

5.2 The complete C code

he C version of our function advance can be coded as follows.

#define idx(i,j) (i)*(Ny+1) + j

void advance(double* u, double* u_1, double* u_2, doublex f,
double Cx2, double Cy2, double dt2, int Nx, int Ny)
{

int i, j;
double u_xx, u_yy;
/* Scheme at interior points */
for (i=1; i<=Nx-1; i++) {
for (j=1; j<=Ny-1; j++) {
u_xx = u_1[idx(i-1,3j)] - 2*u_1[idx(i,j)] + u_1[idx(i+1,j)];
u_yy = u_1[idx(i,j-1)] - 2*u_1[idx(i,j)] + u_1[idx(i,j+1)];
ulidx(i,j)] = 2*u_1[idx(i,j)] - u_2[idx(i,j)] +
Cx2*u_xx + Cy2+%u_yy + dt2x*f[idx(i,j)];
}
}

/* Boundary conditions */

j = 0; for (i=0; i<=Nx; i++) ulidx(i,j)] = 0;
j = Ny; for (i=0; i<=Nx; i++) ulidx(i,j)] = 0;
i =0; for (j=0; j<=Ny; j++) ulidx(i,j)] = O;
i = Nx; for (j=0; j<=Ny; j++) ulidx(i,j)] = 0;

5.3 The Cython interface file

11 the code above appears in a file wave2D_u0_loop_c.c2?. We need to compile
1is file together with C wrapper code such that advance can be called from
ython. Cython can be used to generate appropriate wrapper code. The relevant
'ython code for interfacing C is placed in a file with extension .pyx. Here this
le, called wave2D_u0_loop_c_cy.pyx2!, looks like

import numpy as np
cimport numpy as np
cimport cython

cdef extern from "wave2D_uO_loop_c.h":
void advance(double* u, double* u_1, double* u_2, doublex f,
double Cx2, double Cy2, double dt2,
int Nx, int Ny)

@cython.boundscheck(False)
@cython.wraparound (False)
def advance_cwrap(

20http://tinyurl.com/nm5587k/wave//waveQD_uO/waveQD_uO_loop_c.c
2lhttp://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0_loop_c_cy.pyx

83

np.ndarray [double, ndim=2, mode=’c’] u,
np.ndarray [double, ndim=2, mode=’c’] u_1,
np.ndarray[double, ndim=2, mode=’c’] u_2,
np.ndarray[double, ndim=2, mode=’c’] f,

double Cx2, double Cy2, double dt2):

advance (&u[0,0], &u_1[0,0], &u_2[0,0], &f[0,0],
Cx2, Cy2, dt2,
u.shape[0]-1, u.shape[1]-1)

return u

We first declare the C functions to be interfaced. These must also appea
header file, wave2D_u0_loop_c.h?2,

extern void advance(double* u, double* u_1, double* u_2, doublex*
double Cx2, double Cy2, double dt2,
int Nx, int Ny);

The next step is to write a Cython function with Python objects as arg
The name advance is already used for the C function so the function to t
from Python is named advance_cwrap. The contents of this function i
a call to the advance version in C. To this end, the right information f
Python objects must be passed on as arguments to advance. Arrays
with their C pointers to the first element, obtained in Cython as &u[O0,
& takes the address of a C variable). The Nx and Ny arguments in adve
easily obtained from the shape of the numpy array u. Finally, u must be 1
such that we can set u = advance(...) in Python.

15.4 Building the extension module

It remains to build the extension module. An appropriate setup.py fil

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

sources = [’wave2D_u0O_loop_c.c’, ’wave2D_uO_loop_c_cy.pyx’]
module = ’wave2D_uO_loop_c_cy’
setup(

name=module,
ext_modules=[Extension(module, sources,
libraries=[], # C libs to link with

)1,
cmdclass={’build_ext’: build_ext},

All we need to specify is the .c file(s) and the .pyx interface file. Cythe
tomatically run to generate the necessary wrapper code. Files are then c
and linked to an extension module residing in the file wave2D_u0_loop_c
Here is a session with running setup.py and examining the resulting m
Python

22http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_uO_loop_c.h

84

srminal> python setup.py build_ext --inplace
srminal> python
>> import wave2D_uO_loop_c_cy as m

>> dir(m)
’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__test__’, ’advance_cwrap’, ’np’]

he call to the C version of advance can go like this in Python:

import wave2D_uO_loop_c_cy
idvance = wave2D_uO_loop_c_cy.advance_cwrap

*al:,:] = £(xv, yv, t[n])
1 = advance(u, u_1, u_2, f_a, Cx2, Cy2, dt2)

fficiency. In this example, the C and Fortran code runs at the same speed,
ad there are no significant differences in the efficiency of the wrapper code. The
verhead implied by the wrapper code is negligible as long as we do not work
ith very small meshes and consequently little numerical work in the advance
inction.

6 Migrating loops to C via f2py

n alternative to using Cython for interfacing C code is to apply £2py. The C
yde is the same, just the details of specifying how it is to be called from Python
iffer. The £2py tool requires the call specification to be a Fortran 90 module
efined in a .pyf file. This file was automatically generated when we interfaced
Fortran subroutine. With a C function we need to write this module ourselves,
¢ we can use a trick and let £2py generate it for us. The trick consists in writing
1e signature of the C function with Fortran syntax and place it in a Fortran
le, here wave2D_u0_loop_c_f2py_signature.f:

subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
Cf2py intent(c) advance
integer Nx, Ny, N
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real*8 £(0:Nx, 0:Ny), Cx2, Cy2, dt2
Cf2py intent(in, out) u
Cf2py intent(c) u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny
return
end

ote that we need a special £2py instruction, through a C£2py comment line, for
slling that all the function arguments are C variables. We also need to specify
1at the function is actually in C: intent(c) advance.

Since £2py is just concerned with the function signature and not the complete
ontents of the function body, it can easily generate the Fortran 90 module
secification based solely on the signature above:

85

Terminal> f2py -m wave2D_uO_loop_c_f2py \
-h wave2D_u0_loop_c_f2py.pyf --overwrite-signature \
wave2D_u0_loop_c_f2py_signature.f

The compile and build step is as for the Fortran code, except that we lis
instead of Fortran files:

Terminal> f2py -c wave2D_u0O_loop_c_f2py.pyf \
--build-dir tmp_build_c \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_uO_loop_c.c

As when interfacing Fortran code with £2py, we need to print out the dc
to see the exact call syntax from the Python side. This doc string is i
for the C and Fortran versions of advance.

16.1 Migrating loops to C++ via f2py

C++ is a much more versatile language than C or Fortran and has over
two decades become very popular for numerical computing. Many will t
prefer to migrate compute-intensive Python code to C++. This is, in p
easy: just write the desired C++ code and use some tool for interf
from Python. A tool like SWIG?3 can interpret the C4++ code and ¢
interfaces for a wide range of languages, including Python, Perl, Ruby, a
However, SWIG is a comprehensive tool with a correspondingly steep -
curve. Alternative tools, such as Boost Python??, SIP?® and Shibok
similarly comprehensive. Simpler tools include PyBindGen?7,

A technically much easier way of interfacing C++ code is to d
possibility to use C++ classes directly from Python, but instead m:
interface to the C++ code. The C interface can be handled by £2py a
in the example with pure C code. Such a solution means that classes in
and C++ cannot be mixed and that only primitive data types like n
strings, and arrays can be transferred between Python and C++. Actus
is often a very good solution because it forces the C++ code to work ¢
data, which usually gives faster code than if fancy data structures witl
are used. The arrays coming from Python, and looking like plain C/C+
can be efficiently wrapped in more user-friendly C++ array classes in t
code, if desired.

23http://swig.org/

24nttp://wuw.boost .org/doc/1ibs/1_61_0/libs/python/doc/index.html
25nttp://riverbankcomputing.co.uk/software/sip/intro
26http://qt—project.org/wiki/Category:LanguageBindings::PySide::Shiboke1
2"http://code.google.com/p/pybindgen/

86

7 Using classes to implement a simulator

e Introduce classes Mesh, Function, Problem, Solver, Visualizer, File

8 Exercises

xercise 11: Check that a solution fulfills the discrete model

rarry out all mathematical details to show that (112) is indeed a solution of
1e discrete model for a 2D wave equation with u = 0 on the boundary. One
st check the boundary conditions, the initial conditions, the general discrete
juation at a time level and the special version of this equation for the first time
wel. Filename: check_quadratic_solution.pdf.

'roject 12: Calculus with 2D /3D mesh functions

he goal of this project is to redo Project 5 with 2D and 3D mesh functions
2J and,f@$k).

lifferentiation. The differentiation results in a discrete gradient function,
hich in the 2D case can be represented by a three-dimensional array df [d,1, j]
here d represents the direction of the derivative, and i, j is a mesh point in 2D
he 3D counterpart is df [d,1,j,k]).

ategration. The integral of a 2D mesh function f; ; is defined as

Yj ZT;
F, = / / f(@,y)dudy,
Yo xo

here f(x,y) is a function that takes on the values of the discrete mesh function
i,; at the mesh points, but can also be evaluated in between the mesh points.
he particular variation between mesh points can be taken as bilinear, but this
not important as we will use a product Trapezoidal rule to approximate the
itegral over a cell in the mesh and then we only need to evaluate f(z,y) at the
iesh points.
Suppose F; ; is computed. The calculation of Fj; ; is then

Tit1 Yj
Fip1,=F; +/ / f(z,y)dydx

T Yo

Y
~Az | flzip,y)dy
Yo

~ Azt < . f(xi,y)der/‘J f($i+17y)dy>

2 Yo Yo

87

The integrals in the y direction can be approximated by a Trapezoidal
similar idea can be used to compute Fj ;1. Thereafter, Fj 1 ;11 can be cc
by adding the integral over the final corner cell to Fiy1 ; + Fj j4+1 — Fi,
out the details of these computations and extend the ideas to 3D. F:
mesh_calculus_3D.py.

Exercise 13: Implement Neumann conditions in 2D

Modify the wave2D_u0.py?® program, which solves the 2D wave equatic
c(Ugy + uyy) With constant wave velocity ¢ and u = 0 on the boun
have Neumann boundary conditions: du/0n = 0. Include both scalar ¢
debugging and reference) and vectorized code (for speed).

To test the code, use u = 1.2 as solution (I(z,y) =1.2, V = f =
arbitrary), which should be exactly reproduced with any mesh as lon,
stability criterion is satisfied. Another test is to use the plug-shaped puls
pulse function from Section 8 and the wave1D_dn_vc.py?” program. Tt
is exactly propagated in 1D if ¢At/Az = 1. Check that also the 2D
can propagate this pulse exactly in = direction (cAt/Ax =1, Ay arbitre
y direction (cAt/Ay =1, Az arbitrary). Filename: wave2D_dn.py.

Exercise 14: Test the efficiency of compiled loops in

Extend the wave2D_u0.py code and the Cython, Fortran, and C versior
Set up an efficiency experiment to determine the relative efficiency of pw
Python code, vectorized code, Cython-compiled loops, Fortran-compile
and C-compiled loops. Normalize the CPU time for each mesh by the
version. Filename: wave3D_u0.py.

19 Applications of wave equations

This section presents a range of wave equation models for different
phenomena. Although many wave motion problems in physics can be mo
the standard linear wave equation, or a similar formulation with a systen
order equations, there are some exceptions. Perhaps the most important
waves: these are modeled by the Laplace equation with time-dependent b
conditions at the water surface (long water waves, however, can be appro
by a standard wave equation, see Section 19.7). Quantum mechanice
constitute another example where the waves are governed by the Schr
equation and not a standard wave equation. Many wave phenomena a.
to take nonlinear effects into account when the wave amplitude is sig
Shock waves in the air is a primary example.

The derivations in the following are very brief. Those with a firm bac
in continuum mechanics will probably have enough information to fil

28nttp://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0.py
29nttp://tinyurl. com/nm5587k/wave/wavelD/wavelD_dn_vc.py

88

atails, while other readers will hopefully get some impression of the physics and
pproximations involved when establishing wave equation models.

9.1 Waves on a string

igure 9: Discrete string model with point masses connected by elastic strings.

Figure 9 shows a model we may use to derive the equation for waves on a
ring. The string is modeled as a set of discrete point masses (at mesh points)

ith elastic strings in between. The strings are at a high constant tension 7.

/e let the mass at mesh point z; be m;. The displacement of this mass point in
direction is denoted by w;(t).

The motion of mass m; is governed by Newton’s second law of motion. The
osition of the mass at time ¢ is x;4 + u;(t)j, where ¢ and j are unit vectors in
1e z and y direction, respectively. The acceleration is then u} (¢)j. Two forces

89

are acting on the mass as indicated in Figure 9. The force T'~ acting tov
point z;_1 can be decomposed as

T~ = —Tsin ¢t — T cos ¢g,

where ¢ is the angle between the force and the line z = z;. Let Au; = u
and let As; = \/Au? + (z; — x;_1)? be the distance from mass m;_;

m;. It is seen that cos¢ = Au;/As; and sing = (v; — x;-1)/As or A:
we introduce a constant mesh spacing Az = x; — z;_1. The force can
written

T =-T i — T j .
ASZ' ¢ ASi J
The force T acting toward ;1 can be calculated in a similar way:
Az Au;iq
TH=T i+ T
A8i+1 A8i+1 J

Newton’s second law becomes

miuf(t)j =T+ +T",

which gives the component equations

Az Ax
Asi o A8i+17
JANTENRY Auy;
al(t) =T+ ="
it () ASiJrl Asl

A basic reasonable assumption for a string is small displacements
small displacement gradients Au;/Az. For small ¢ = Au;/Axz we have

1
As; = \/Au? + Az? = Ax/1+ ¢g? + Az(1 + §g2 +0(g") =~ Ax
Equation (113) is then simply the identity 7' = T', while (114) can be w

Auipy
Ax Ax’
which upon division by Az and introducing the density g; = m;/Ax be

miul (t) =T

K2

1
Qiu;/(t) = T@ (Ui+1 — 2u; + ui,l) .

We can now choose to approximate] by a finite difference in time and
discretized wave equation,

Qii (uptt —2u —ul) =T

AL 5 (i1 — 2u; + i) .

Az

90

m the other hand, we may go to the continuum limit Az — 0 and replace u;(t)
y u(z,t), o; by o(x), and recognize that the right-hand side of (115) approaches
2u/0x? as Ax — 0. We end up with the continuous model for waves on a
ring:
0%u 0%u

0% = T8x2 . (117)
‘ote that the density ¢ may change along the string, while the tension 7' is a
onstant. With variable wave velocity c¢(z) = /T/o(z) we can write the wave
juation in the more standard form

Pu

ecause of the way p enters the equations, the variable wave velocity does not

ppear inside the derivatives as in many other versions of the wave equation.

owever, most strings of interest have constant o.
The end point of a string are fixed so that the displacement u is zero. The
oundary conditions are therefore u = 0.

Jamping. Air resistance and non-elastic effects in the string will contribute
» reduce the amplitudes of the waves so that the motion dies out after some
me. This damping effect can be modeled by a term bu; on the left-hand side of
1e equation

0%u ou 0%u
he parameter b must normally be determined from physical experiments.

(119)

xternal forcing. It is easy to include an external force acting on the string.

ay we have a vertical force f;j acting on mass m;. This force affects the
artical component of Newton’s law and gives rise to an extra term f(x,t)
n the right-hand side of (117). In the model (118) we would add a term

(x7t) = f(x,y)/g(as)

Todeling the tension via springs. We assumed, in the derivation above,
1at the tension in the string, T, was constant. It is easy to check this assumption
y modeling the string segments between the masses as standard springs, where

1e force (tension T') is proportional to the elongation of the spring segment.

et k be the spring constant, and set T; = kA/ for the tension in the spring
sgment between x;_1 and x;, where A/ is the elongation of this segment from
1e tension-free state. A basic feature of a string is that it has high tension in
1e equilibrium position u = 0. Let the string segment have an elongation A/
1 the equilibrium position. After deformation of the string, the elongation is
idependent of i. Moreover, the extra approximate elongation Ax is very small

91

compared to Ay, so we may well set T; = T = kAly. This means t
tension is completely dominated by the initial tension determined by the
of the string. The additional deformations of the spring during the vil
do not introduce significant changes in the tension.

19.2 Waves on a membrane

19.3 Elastic waves in a rod

Consider an elastic rod subject to a hammer impact at the end. This exg
will give rise to an elastic deformation pulse that travels through the
mathematical model for longitudinal waves along an elastic rod starts s
general equation for deformations and stresses in an elastic medium,

ouy =V -o+of,

where o is the density, u the displacement field, o the stress tensor, and
forces. The latter has normally no impact on elastic waves.

For stationary deformation of an elastic rod, one has that o,, = Fn
all other stress components being zero. Moreover, u = u(x)i. The parai
is known as Young’s modulus. Assuming that this simple stress and defo
field, which is exact in the stationary case, is a good approximatior
transient case with wave motion, (120) simplifies to

Pu_ 9 (0u
9 T ox oz)

The associated boundary conditions are u or o,, = Fu, known, t
u = 0 for a clamped end and o,, = 0 for a free end.

19.4 The acoustic model for seismic waves

Seismic waves are used to infer properties of subsurface geological str
The physical model is a heterogeneous elastic medium where sound is pro
by small elastic vibrations. The general mathematical model for deforms
an elastic medium is based on Newton’s second law,

ouy =V -o+of,

and a constitutive law relating o to u, often Hooke’s generalized law,

2
U:KV~uI+G(Vu+(Vu)T—§V~uI).

Here, u is the displacement field, o is the stress tensor, I is the identity t
is the medium’s density, f are body forces (such as gravity), K is the m
bulk modulus and G is the shear modulus. All these quantities may
space, while u and o will also show significant variation in time duri
motion.

92

The acoustic approximation to elastic waves arises from a basic assumption
1at the second term in Hooke’s law, representing the deformations that give
se to shear stresses, can be neglected. This assumption can be interpreted as
pproximating the geological medium by a fluid. Neglecting also the body forces
, (122) becomes

ouy = V(KV - u) (124)

1troducing p as a pressure via

p=—-KV-u, (125)
nd dividing (124) by o, we get
1
0
aking the divergence of this equation, using V- u = —p/K from (125), gives
1e acoustic approximation to elastic waves:
1
pu =KV - EVp . (127)

his is a standard, linear wave equation with variable coefficients. It is common
» add a source term s(z,y, z,t) to model the generation of sound waves:

1

A common additional approximation of (128) is based on using the chain
1le on the right-hand side,

1 K 1 K
KV - <7Vp> =—V?p+ KV <7> -Vp~ —V?p,
0 o o o
nder the assumption that the relative spatial gradient Vo'
his approximation results in the simplified equation

K
Pt = ZV% +s. (129)

The acoustic approximations to seismic waves are used for sound waves in
1e ground, and the Earth’s surface is then a boundary where p equals the
tmospheric pressure pg such that the boundary condition becomes p = pyg.

.nisotropy. Quite often in geological materials, the effective wave velocity
= /K /o is different in different spatial directions because geological layers are

»mpacted such that the properties in the horizontal and vertical direction differ.

/ith z as the vertical coordinate, we can introduce a vertical wave velocity c,
nd a horizontal wave velocity ¢, and generalize (129) to

Dit = Cgpzz + C%(pmm + pyy) +s. (130)

93

= —07 2V is small.

19.5 Sound waves in liquids and gases

Sound waves arise from pressure and density variations in fluids. The
point of modeling sound waves is the basic equations for a compressil
where we omit viscous (frictional) forces, body forces (gravity, for instan
temperature effects:

Qt+V-(gu) :07
ous + ou - Vu = —Vp,
o=o(p).

These equations are often referred to as the Euler equations for the mot
fluid. The parameters involved are the density o, the velocity w, and the
p. Equation (132) reflects mass balance, (131) is Newton’s second law fo:
with frictional and body forces omitted, and (133) is a constitutive law
density to pressure by thermodynamics considerations. A typical model 1
is the so-called isentropic relation3?, valid for adiabatic processes where

no heat transfer:
B P 1/~
Q=00 | — .
Po

Here, pg and gq are references values for p and ¢ when the fluid is at res
is the ratio of specific heat at constant pressure and constant volume (
for air).

The key approximation in a mathematical model for sound waves is tc
that these waves are small perturbations to the density, pressure, and
We therefore write

p=Dpo+p,
0= 00+t 0,
u =1,

where we have decomposed the fields in a constant equilibrium valu
sponding to u = 0, and a small perturbation marked with a hat sym
inserting these decompositions in (131) and (132), neglecting all produc
of small perturbations and/or their derivatives, and dropping the hat ¢
one gets the following linearized PDE system for the small perturba
density, pressure, and velocity:

0t + 00V -u=0,
oour = —Vp.

30nttp://en.wikipedia.org/wiki/Isentropic_process

94

‘ow we can eliminate g; by differentiating the relation o(p),

1/y—1 1/y—1
1 <p) /=14 oo (p) /v
Ot =00—_ | — —Pt=_—\ Dt -
Y \Po Po YPo \ Po

he product term p!/7~p, can be linearized as p(l)/vflpt, resulting in
90
0t~ —DPt-
YPo
/e then get
pe+poV - u=0, (137)
1
u =——Vp, . (138)
Q0

aking the divergence of (138) and differentiating (137) with respect to time
ives the possibility to easily eliminate V - u; and arrive at a standard, linear
ave equation for p:

pu = V7, (139)
here ¢ = \/ypo/ 0o is the speed of sound in the fluid.

9.6 Spherical waves

pherically symmetric three-dimensional waves propagate in the radial direction
only so that u = u(r,t). The fully three-dimensional wave equation

0%u 9
1en reduces to the spherically symmetric wave equation
Pu 10 (4, . ,0u
52 = 2o (c (r)r E) + f(r,t), r€(0,R), t>0. (140)

me can easily show that the function v(r,t) = ru(r,t) fulfills a standard wave
juation in Cartesian coordinates if ¢ is constant. To this end, insert u = v/r in

10 (4, | ,0u
or < (r)r a)

dr or or? dr

he two terms in the parenthesis can be combined to
., ad 2 v
or or)’

95

) obtain

which is recognized as the variable-coefficient Laplace operator in one C
coordinate. The spherically symmetric wave equation in terms of v(r
becomes

v 9 [, v 1dc?
52 = (c (T)ar) - ;Wv—i—rf(r,t), re(0,R), t>0.

In the case of constant wave velocity ¢, this equation reduces to the wave ¢
in a single Cartesian coordinate called 7:

v 0%

o2~ o
That is, any program for solving the one-dimensional wave equation in a C
coordinate system can be used to solve (142), provided the source
multiplied by the coordinate, and that we divide the Cartesian mesh sol
r to get the spherically symmetric solution. Moreover, if 7 = 0 is include
domain, spherical symmetry demands that Ou/dr = 0 at r = 0, whicl

that
ou 1 ov
87’:7.2(7“87"—’0):0, TZO,

implying v(0,t) = 0 as a necessary condition. For practical applicati
exclude r = 0 from the domain and assume that some boundary conc
assigned at r = ¢, for some € > 0.

+rf(r,t), re(0,R), t>0.

19.7 The linear shallow water equations

The next example considers water waves whose wavelengths are much lay
the depth and whose wave amplitudes are small. This class of waves
generated by catastrophic geophysical events, such as earthquakes at
bottom, landslides moving into water, or underwater slides (or a comt
as earthquakes frequently release avalanches of masses). For example, ¢
earthquake will normally have an extension of many kilometers but lift tl
only a few meters. The wave length will have a size dictated by the ear
area, which is much lager than the water depth, and compared to tt
length, an amplitude of a few meters is very small. The water is essentiall
film, and mathematically we can average the problem in the vertical d
and approximate the 3D wave phenomenon by 2D PDEs. Instead of a
water domain in three space dimensions, we get a horizontal 2D domain
unknown function for the surface elevation and the water depth as a

coefficient in the PDEs.

Let n(x,y,t) be the elevation of the water surface, H(z,y) the wate
corresponding to a flat surface (n = 0), u(x,y,t) and v(x, y,t) the depth-¢
horizontal velocities of the water. Mass and momentum balance of tk
volume give rise to the PDEs involving these quantities:

96

ne = —(Hu), — (Hv), (143)
U = — g, (144)
vy = =gy, (145)

here ¢ is the acceleration of gravity. Equation (143) corresponds to mass
alance while the other two are derived from momentum balance (Newton’s
scond law).

The initial conditions associated with (143)-(145) are 7, u, and v prescribed
t ¢ =0. A common condition is to have some water elevation n = I(z,y) and
ssume that the surface is at rest: w = v = 0. A subsea earthquake usually
1eans a sufficiently rapid motion of the bottom and the water volume to say
1at the bottom deformation is mirrored at the water surface as an initial lift
(z,y) and that u =v = 0.

Boundary conditions may be 7 prescribed for incoming, known waves, or
sro normal velocity at reflecting boundaries (steep mountains, for instance):
nz+wvn, = 0, where (ng,n,) is the outward unit normal to the boundary. More
»phisticated boundary conditions are needed when waves run up at the shore,
nd at open boundaries where we want the waves to leave the computational
omain undisturbed.

Equations (143), (144), and (145) can be transformed to a standard, linear
ave equation. First, multiply (144) and (145) by H, differentiate (144)) with
sspect to z and (145) with respect to y. Second, differentiate (143) with
sspect to t and use that (Hu)g: = (Hut), and (Hv)y: = (Hve)y when H is
idependent of ¢. Third, eliminate (Hu,), and (Hv;), with the aid of the other
vo differentiated equations. These manipulations results in a standard, linear
ave equation for 7:

Mt = (9H1)e + (9Hny)y = V - (9H V7). (146)

In the case we have an initial non-flat water surface at rest, the initial
»nditions become n = I(z,y) and 7, = 0. The latter follows from (143) if
= v =0, or simply from the fact that the vertical velocity of the surface is 7y,
hich is zero for a surface at rest.

The system (143)-(145) can be extended to handle a time-varying bottom
ypography, which is relevant for modeling long waves generated by underwater
ides. In such cases the water depth function H is also a function of ¢, due to
1e moving slide, and one must add a time-derivative term H; to the left-hand
de of (143). A moving bottom is best described by introducing z = Hy as the
ill-water level, z = B(z,y,t) as the time- and space-varying bottom topography,
» that H = Hy — B(x,y,t). In the elimination of u and v one may assume that
1e dependence of H on ¢ can be neglected in the terms (Hu)g; and (Hv)y:. We
1en end up with a source term in (146), because of the moving (accelerating)
ottom:

nie = V- (gHVn) + By . (147)

97

The reduction of (147) to 1D, for long waves in a straight channe
approximately plane waves in the ocean, is trivial by assuming no cha:
direction (9/0y = 0):

ne = (9HNg)w + Bt -

Wind drag on the surface. Surface waves are influenced by the dra
wind, and if the wind velocity some meters above the surface is (U, V), t
drag gives contributions CyvU? + V2U and CyvVU? + V2V to (144) ar
respectively, on the right-hand sides.

Bottom drag. The waves will experience a drag from the botton
roughly modeled by a term similar to the wind drag: Cpvu2 + v2u
right-hand side of (144) and Cpv/u? + v2v on the right-hand side of (14!
that in this case the PDEs (144) and (145) become nonlinear and the elir
of u and v to arrive at a 2nd-order wave equation for 7 is not possible &

Effect of the Earth’s rotation. Long geophysical waves will often be
by the rotation of the Earth because of the Coriolis force. This force g
to a term fv on the right-hand side of (144) and — fu on the right-he
of (145). Also in this case one cannot eliminate v and v to work with
equation for n. The Coriolis parameter is f = 2{)sin ¢, where (2 is the
velocity of the earth and ¢ is the latitude.

19.8 Waves in blood vessels

The flow of blood in our bodies is basically fluid flow in a network «
Unlike rigid pipes, the walls in the blood vessels are elastic and will
their diameter when the pressure rises. The elastic forces will then push
back and accelerate the fluid. This interaction between the flow of blood
deformation of the vessel wall results in waves traveling along our blooc

A model for one-dimensional waves along blood vessels can be deriv
averaging the fluid flow over the cross section of the blood vessels. Le
coordinate along the blood vessel and assume that all cross sections are
though with different radius R(z,t). The main quantities to comput
cross section area A(x,t), the averaged pressure P(z,t), and the total
flux Q(z,t). The area of this cross section is

R(z,t)
Az, t) = 271'/ rdr,
0

Let v, (x,t) be the velocity of blood averaged over the cross section at
The volume flux, being the total volume of blood passing a cross seci
time unit, becomes

Qz,t) = Az, t)vy(x, 1)

Mass balance and Newton’s second law lead to the PDEs

98

A 9Q

ot or =0 (151)
9Q v+20 (Q*) , AdP 1Q
6t+v+18x< >+95 27r(7+2)gA7 (152)

here « is a parameter related to the velocity profile, ¢ is the density of blood,

ad p is the dynamic viscosity of blood.

We have three unknowns A, @, and P, and two equations (151) and (152).

third equation is needed to relate the flow to the deformations of the wall. A
»mmon form for this equation is

aP 10Q

—+=—=0 153
ot " Cor (153)
here C' is the compliance of the wall, given by the constitutive relation
0A 8A
C= 154
op "ot (154)

hich require a relationship between A and P. One common model is to view

1e vessel wall, locally, as a thin elastic tube subject to an internal pressure.

his gives the relation

(VA - /Ag),

P = Po+(1)

here Py and A are corresponding reference values when the wall is not deformed,

is the thickness of the wall, and F and v are Young’s modulus and Poisson’s
itio of the elastic material in the wall. The derivative becomes

ng—ﬁ 2(1_1’ A°f+2(;:E)AO> (P—Py). (155)

nother (nonlinear) deformation model of the wall, which has a better fit with
xperiments, is

P= PO exp (ﬁ(A/AO - 1)),
here (8 is some parameter to be estimated. This law leads to

0A Ao

¢= oP P’

(156)

teduction to standard wave equation. It is not uncommon to neglect the
iscous term on the right-hand side of (152) and also the quadratic term with Q2
n the left-hand side. The reduced equations (152) and (153) form a first-order
near wave equation system:

99

o0 _ %

ot oz’
9Q _ _Aop
ot~ ooz’

These can be combined into standard 1D wave equation PDE by differe
the first equation with respect ¢ and the second with respect to x,

0 oP o (AOP
ot (Ccﬁ) o (,Q 81)
which can be approximated by

2Q ,0%Q A
==, c=

o2 0x?’ oC’

where the A and C' in the expression for ¢ are taken as constant referenc

19.9 Electromagnetic waves

Light and radio waves are governed by standard wave equations arisi
Maxwell’s general equations. When there are no charges and no curren
a vacuum, Maxwell’s equations take the form

V.E=0,
V.-B=0,
OB
VXE——E,
OF
VXB*M0€0§,

where €y = 8.854187817620 - 10712 (F/m) is the permittivity of free spe
known as the electric constant, and py = 1.2566370614 - 10~¢ (H/m
permeability of free space, also known as the magnetic constant. Taking
of the two last equations and using the identity

Vx(VxE)=V(V-E)-V?E=-V?E when V- E =0,

immediately gives the wave equation governing the electric and magnet

PE _ ,0°E
ot? Ox2?’
PE ,0%E
g2 _»29=
ot? Ox2’

with ¢ = 1/,/110€o as the velocity of light. Each component of E and B
wave equation and can hence be solved independently.

100

'0 Exercises

xercise 15: Simulate waves on a non-homogeneous string

imulate waves on a string that consists of two materials with different density.
he tension in the string is constant, but the density has a jump at the middle of
1e string. Experiment with different sizes of the jump and produce animations
1at visualize the effect of the jump on the wave motion.

[int. According to Section 19.1, the density enters the mathematical model as
in puy = TUyy, where T is the string tension. Modify, e.g., the wave1D_uOv.py
yde to incorporate the tension and two density values. Make a mesh function
ho with density values at each spatial mesh point. A value for the tension may
e 150 N. Corresponding density values can be computed from the wave velocity
stimations in the guitar function in the wavelD_uOv.py file.

ilename: wavelD_uO_sv_discont.py.

xercise 16: Simulate damped waves on a string

ormulate a mathematical model for damped waves on a string. Use data from
ection 3.4, and tune the damping parameter so that the string is very close
> the rest state after 15 s. Make a movie of the wave motion. Filename:
avelD_uO_sv_damping.py.

xercise 17: Simulate elastic waves in a rod

hammer hits the end of an elastic rod. The exercise is to simulate the resulting
ave motion using the model (121) from Section 19.3. Let the rod have length
and let the boundary x = L be stress free so that o,, = 0, implying that
u/Ox = 0. The left end = = 0 is subject to a strong stress pulse (the hammer),
10deled as

S, 0<t<t,,
T (t) = { 0, t>t,
he corresponding condition on u becomes u, = S/E for t < ts and zero

fterwards (recall that o,, = Fu,). This is a non-homogeneous Neumann
»ndition, and you will need to approximate this condition and combine it with
1e scheme (the ideas and manipulations follow closely the handling of a non-zero
iitial condition u; = V' in wave PDEs or the corresponding second-order ODEs
v vibrations). Filename: wave_rod.py.

xercise 18: Simulate spherical waves

nplement a model for spherically symmetric waves using the method described
t Section 19.6. The boundary condition at » = 0 must be du/0r = 0, while the
»ndition at r = R can either be u = 0 or a radiation condition as described in

101

Problem 21. The u = 0 condition is sufficient if R is so large that the ar
of the spherical wave has become insignificant. Make movie(s) of the cas
the source term is located around » = 0 and sends out pulses

Flrt) = Qexp(—%)sinwt7 sinwt > 0
' 0, sinwt < 0

Here, @ and w are constants to be chosen.

Hint. Use the program wavelD_uOv.py as a starting point. Let solv
pute the v function and then set u = v/r. However, u = v/r for r =0
special treatment. One possibility is to compute u[1:] = v[1:]1/r[:
then set u[0]=ul1]. The latter makes it evident that Ju/Or =0 in a g
Filename: wavelD_spherical.py.

Exercise 19: Explain why numerical noise occurs

The experiments performed in Exercise 8 shows considerable numeric
in the form of non-physical waves, especially for s; = 4 and the pl
or the half a "cosinehat" pulse. The noise is much less visible for a G
pulse. Run the case with the plug and half a "cosinehat" pulses for
C =0.9,0.25, and N, = 40,80,160. Use the numerical dispersion rel:
explain the observations. Filename: pulselD_analysis.pdf.

Exercise 20: Investigate harmonic averaging in a 1D :

Harmonic means are often used if the wave velocity is non-smooth or
tinuous. Will harmonic averaging of the wave velocity give less nt
noise for the case sy = 4 in Exercise 87 Filenames: pulselD_harmon
pulselD_harmonic.py.

Problem 21: Implement open boundary conditions

To enable a wave to leave the computational domain and travel undi
through the boundary = L, one can in a one-dimensional problem im;
following condition, called a radiation condition or open boundary cond

ou ou
ot * “or

The parameter c is the wave velocity.
Show that (162) accepts a solution u = ggr(x — ct) (right-going wa
not u = gr(z + ct) (left-going wave). This means that (162) will al
right-going wave gr(x — ct) to pass through the boundary undisturbed
A corresponding open boundary condition for a left-going wave throug

=0.

is

102

ou ou

— —c— =0. 163
ot “ox (163)

) A natural idea for discretizing the condition (162) at the spatial end point

= N, is to apply centered differences in time and space:

[Datu + cDoyu =0}, i=N,. (164)

liminate the fictitious value ul;_,; by using the discrete equation at the same
oint.

The equation for the first step, u}, is in principle also affected, but we can
1en use the condition uy, = 0 since the wave has not yet reached the right
oundary.

) A much more convenient implementation of the open boundary condition at
= L can be based on an explicit discretization

[Dfu+cDu=0]", i=N,. (165)
rom this equation, one can solve for u?{,‘fl and apply the formula as a Dirichlet
dition at the boundary point. However, the finite difference approximations
wolved are of first order.

Implement this scheme for a wave equation uy = c*ug, in a domain [0, L],
here you have u, = 0 at = 0, the condition (162) at x = L, and an initial
isturbance in the middle of the domain, e.g., a plug profile like

1, L/2—¢<x<L/2+¢,
0, otherwise

u(z,0) = {

'bserve that the initial wave is split in two, the left-going wave is reflected at
=0, and both waves travel out of x = L, leaving the solution as v = 0 in [0, L].
'se a unit Courant number such that the numerical solution is exact. Make a
ovie to illustrate what happens.

Because this simplified implementation of the open boundary condition works,
1ere is no need to pursue the more complicated discretization in a).

[int. Modify the solver function in wavel1D_dn.py®>.

) Add the possibility to have either u, = 0 or an open boundary condition at
1e left boundary. The latter condition is discretized as

[Dfu—cDfu=0]", i=0, (166)
:ading to an explicit update of the boundary value ugH.
The implementation can be tested with a Gaussian function as initial condi-

on:

31http://tinyurl.com/nm5587k/wave/wavelD/wavelD_dn.py

103

Run two tests:

1. Disturbance in the middle of the domain, I(x) = g(z; L/2,s), a
boundary condition at the left end.

2. Disturbance at the left end, I(z) = g(x;0,s), and u, = 0 as sy
boundary condition at this end.

Make nose tests for both cases, testing that the solution is zero after tk
have left the domain.

d) In 2D and 3D it is difficult to compute the correct wave velocity nc
the boundary, which is needed in generalizations of the open boundary co
in higher dimensions. Test the effect of having a slightly wrong wave ve.
(165). Make a movies to illustrate what happens.

Filename: wavelD_open_BC.py.

Remarks. The condition (162) works perfectly in 1D when c¢ is knowr
and 3D, however, the condition reads us 4+ czuy + cyu, = 0, where ¢,
are the wave speeds in the z and y directions. Estimating these com
(i.e., the direction of the wave) is often challenging. Other methods are 1
used in 2D and 3D to let waves move out of a computational domain.

Exercise 22: Implement periodic boundary condition

It is frequently of interest to follow wave motion over large distances a
times. A straightforward approach is to work with a very large dom:
might lead to a lot of computations in areas of the domain where th
cannot be noticed. A more efficient approach is to let a right-going w
of the domain and at the same time let it enter the domain on the left.
called a periodic boundary condition.

The boundary condition at the right end x = L is an open boundary c
(see Exercise 21) to let a right-going wave out of the domain. At the
x = 0, we apply, in the beginning of the simulation, either a symmetry b
condition (see Exercise 7) u, = 0, or an open boundary condition.

This initial wave will split in two and either reflected or transporte
the domain at x = 0. The purpose of the exercise is to follow the rigl
wave. We can do that with a periodic boundary condition. This means th
the right-going wave hits the boundary x = L, the open boundary condi
the wave out of the domain, but at the same time we use a boundary c
on the left end x = 0 that feeds the outgoing wave into the domain aga
periodic condition is simply «(0) = w(L). The switch from u, = 0 or
boundary condition at the left end to a periodic condition can happe

104

(L,t) > €, where ¢ = 10~% might be an appropriate value for determining when
1e right-going wave hits the boundary x = L.

The open boundary conditions can conveniently be discretized as explained
1 Exercise 21. Implement the described type of boundary conditions and
st them on two different initial shapes: a plug u(z,0) = 1 for < 0.1,
(2,0) = 0 for z > 0.1, and a Gaussian function in the middle of the domain:
(z,0) = exp (—3(z — 0.5)2/0.05). The domain is the unit interval [0,1]. Run
1ese two shapes for Courant numbers 1 and 0.5. Assume constant wave velocity.
[ake movies of the four cases. Reason why the solutions are correct. Filename:
eriodic.py.

'roblem 23: Earthquake-generated tsunami over a subsea
ill

subsea earthquake leads to an immediate lift of the water surface, see Figure 10.
he lifted water surface splits into two tsunamis, one traveling to the right and
ne to the left, as depicted in Figure 11. Since tsunamis are normally very long
aves, compared to the depth, with a small amplitude, compared to the wave
mgth, the wave equation model described in Section 19.7 is relevant:

Nee = (9H (2)N2) s
here g is the acceleration of gravity, and H(x) is the still water depth.

Figure 10: Sketch of initial water surface due to a subsea earthquake.

To simulate the right-going tsunami, we can impose a symmetry boundary
b = 0: 9n 0z = 0. We then simulate the wave motion in [0, L]. Unless the
cean ends at z = L, the waves should travel undisturbed through the boundary
= L. A radiation condition as explained in Problem 21 can be used for this
urpose. Alternatively, one can just stop the simulations before the wave hits

105

Figure 11: An initial surface elevation is split into two waves.

the boundary at = L. In that case it does not matter what kind of b
condition we use at x = L. Imposing 7 = 0 and stopping the simulatio
[n*| > €, i = N, — 1, is a possibility (e is a small parameter).

The shape of the initial surface can be taken as a Gaussian functior

—1,,\?
I(x;-[07IaaIm7]S) :Io‘I'Ianp <_ (I. I > >7

with I,, = 0 reflecting the location of the peak of I(x) and I being a
of the width of the function I(x) (I, is v/2 times the standard deviatio
familiar normal distribution curve).

Now we extend the problem with a hill at the sea bottom, see Figure
wave speed ¢ = \/gH (z) = \/g(Ho — B(z)) will then be reduced in the
water above the hill.

One possible form of the hill is a Gaussian function,

—Bn\?
B(x;BO,BCHBWMBS) = BO +Ba exp <_ <x B > >7

but many other shapes are also possible, e.g., a "cosine hat" where

_B
B(w; By, Ba, By, Bs) = By + Ba cos [me—2m),
2B,

when z € [B,, — Bs, B,,, + Bs| while B = By outside this interval.
Also an abrupt construction may be tried:

B(ZI}', BO) Baa Bm7 Bé) = BO + Ba7

for x € [B,, — Bs, B;, + Bs] while B = By outside this interval.

106

/
A
v

B 4mB,

igure 12: Sketch of an earthquake-generated tsunami passing over a subsea
ill.

The wavelD_dn_vc.py®? program can be used as starting point for the
nplementation. Visualize both the bottom topography and the water surface
evation in the same plot. Allow for a flexible choice of bottom shape: (168),
69), (170), or B(x) = By (flat).

The purpose of this problem is to explore the quality of the numerical solution
P for different shapes of the bottom obstruction. The "cosine hat" and the box-
1aped hills have abrupt changes in the derivative of H(z) and are more likely to
snerate numerical noise than the smooth Gaussian shape of the hill. Investigate
this is true. Filenames: tsunamiiD_hill.py, tsunamilD_hill.pdf.

'roblem 24: Earthquake-generated tsunami over a 3D hill

his problem extends Problem 23 to a three-dimensional wave phenomenon,
overned by the 2D PDE (146). We assume that the earthquake arise from a
wlt along the line £ = 0 in the xy-plane so that the initial lift of the surface
wn be taken as I(x) in Problem 23. That is, a plane wave is propagating to the
ght, but will experience bending because of the bottom.

The bottom shape is now a function of z and y. An "elliptic" Gaussian
inction in two dimensions, with its peak at (Bp,z, Bmy), generalizes (168):

) €r — Bmm ? y— Bm1 ?
'(x;BOaBaaBmmaBmyaBsyb) = BO+Banp (< Bs) - (st J>)a
(171)

32http://tinyurl.com/nm5587k/wave/wave1D/wavelD_dn_vc.py

107

where b is a scaling parameter: b = 1 gives a circular Gaussian functi
circular contour lines, while b # 1 gives an elliptic shape with elliptic
lines.

The "cosine hat" (169) can also be generalized to

y— L
2B

S

- Bmz
B(x; Bo, Ba, Bma, Bmy, Bs) = By + Bg cos <7r3623> cos <7r

when 0 < /22 + y2 < B, and B = By outside this circle.
A box-shaped obstacle means that

B(.CI]; BO: Ba: Bma Bsa b) = BO + Ba
for « and y inside a rectangle
Bmz_BsgngmI'i_st Bmy_bBSSySBmy+stv

and B = By outside this rectangle. The b parameter controls the rect
shape of the cross section of the box.

Note that the initial condition and the listed bottom shapes are sy1
around the line y = B,,,. We therefore expect the surface elevation
be symmetric with respect to this line. This means that we can h:
computational domain by working with [0, L;] x [0, By,,]. Along th
boundary, y = By, we must impose the symmetry condition dn/0n =
a symmetry condition (—n, = 0) is also needed at the x = 0 boundary
the initial condition has a symmetry here. At the lower boundary y = 0
set a Neumann condition (which becomes —n, = 0). The wave motion
simulated until the wave hits the reflecting boundaries where 9n/0n =
(one can also set 7 = 0 - the particular condition does not matter as lon
simulation is stopped before the wave is influenced by the boundary co

Visualize the surface elevation. Investigate how different hill sha
ferent sizes of the water gap above the hill, and different resolution
Ay = h and At influence the numerical quality of the solution. Fil
tsunami2D_hill.py, tsunami2D_hill.pdf.

Problem 25: Investigate Matplotlib for visualization
Play with native Matplotlib code for visualizing 2D solutions of the wave ¢
with variable wave velocity. See if there are effective ways to visualize 1
solution and the wave velocity. Filename: tsunami2D_hill_mpl.py.
Problem 26: Investigate visualization packages

Create some fancy 3D visualization of the water waves and the subse
Problem 24. Try to make the hill transparent. Possible visualization tc

108

o Mayavi®?

o Paraview3?

e OpenDX3®

ilename: tsunami2D_hill_viz.py.

'roblem 27: Implement loops in compiled languages

xtend the program from Problem 24 such that the loops over mesh points, inside
1e time loop, are implemented in compiled languages. Consider implementations
1 Cython, Fortran via £2py, C via Cython, C via £2py, C/C++ via Instant,
nd C/C++ via scipy.weave. Perform efficiency experiments to investigate the
slative performance of the various implementations. It is often advantageous
> normalize CPU times by the fastest method on a given mesh. Filename:
sunami2D_hill_compiled.py.

xercise 28: Simulate seismic waves in 2D

he goal of this exercise is to simulate seismic waves using the PDE model
30) in a 2D zz domain with geological layers. Introduce m horizontal layers
f thickness h;, i = 0,...,m — 1. Inside layer number i we have a vertical wave
slocity c.,; and a horizontal wave velocity cp, ;. Make a program for simulating
1ich 2D waves. Test it on a case with 3 layers where

Cz,0 =Cz1 =Cz2, Cho=Ch2, Chl<KCho-

et s be a localized point source at the middle of the Earth’s surface (the
pper boundary) and investigate how the resulting wave travels through the
iedium. The source can be a localized Gaussian peak that oscillates in time
r some time interval. Place the boundaries far enough from the expanding
ave so that the boundary conditions do not disturb the wave. Then the type
f boundary condition does not matter, except that we physically need to have
= pg, where pg is the atmospheric pressure, at the upper boundary. Filename:
eismic2D.py.

'roject 29: Model 3D acoustic waves in a room
he equation for sound waves in air is derived in Section 19.5 and reads
P = CQVQP’

here p(z,y, z,t) is the pressure and ¢ is the speed of sound, taken as 340 m/s.
owever, sound is absorbed in the air due to relaxation of molecules in the gas.

33http://code.enthought . com/projects/mayavi/
34nttp: //www.paraview.org/
35http://www.opendx.org/

109

A model for simple relaxation, valid for gases consisting only of one
molecules, is a term c?7,V2p, in the PDE, where 7, is the relaxation tin
generate sound from, e.g., a loudspeaker in the room, this sound sour
also be added to the governing equation.

The PDE with the mentioned type of damping and source then bec

pit = AEVP + A1, V3p, + f,

where f(z,y, 2,t) is the source term.

The walls can absorb some sound. A possible model is to have a "ws
(thicker than the physical wall) outside the room where ¢ is changed st
some of the wave energy is reflected and some is absorbed in the ws
absorption of energy can be taken care of by adding a damping term by
equation:

pet + bpy = AVP + CQTSV2pt + f.

Typically, b = 0 in the room and b > 0 in the wall. A discontinuity i
will give rise to reflections. It can be wise to use a constant ¢ in the
control reflections because of the discontinuity between ¢ in the air an
wall, while b is gradually increased as we go into the wall to avoid ref
because of rapid changes in b. At the outer boundary of the wall the cc
p =0 or dp/dn = 0 can be imposed. The waves should anyway be appro:
dampened to p = 0 this far out in the wall layer.

There are two strategies for discretizing the V?2p; term: using :
difference between times n + 1 and n — 1 (if the equation is sampled at
or use a one-sided difference based on levels n and n — 1. The latter
advantage of not leading to any equation system, while the former is seco1
accurate as the scheme for the simple wave equation p;t = 2V?p. To ¢
equation system, go for the one-sided difference such that the overall
becomes explicit and only of first order in time.

Develop a 3D solver for the specified PDE and introduce a wall layer.
solver with the method of manufactured solutions. Make some demons
where the wall reflects and absorbs the waves (reflection because of disco
in b and absorption because of growing b). Experiment with the impac
Ts parameter. Filename: acoustics.py.

Project 30: Solve a 1D transport equation
We shall study the wave equation

us+cuy, =0, xe€(0,L], t e (0,T],

with initial condition

u(z,0) =1I(z), =z€]l0,L],

and one periodic boundary condition

110

u(0,t) = u(L,t). (178)

his boundary condition means that what goes out of the domain at z = L
omes in at z = 0. Roughly speaking, we need only one boundary condition
ecause of the spatial derivative is of first order only.

'hysical interpretation. The parameter ¢ can be constant or variable, ¢ =
‘). The equation (176) arises in transport problems where a quantity u, which
»uld be temperature or concentration of some contaminant, is transported with
1e velocity ¢ of a fluid. In addition to the transport imposed by "travelling with
1e fluid", v may also be transported by diffusion (such as heat conduction or
ickian diffusion), but we have in the model u; + cu, assumed that diffusion
fects are negligible, which they often are.

A widely used numerical scheme for (176) applies a forward difference in
me and a backward difference in space when ¢ > 0:

[Dffu+ eDyu=0]". (179)

or ¢ < 0 we use a forward difference in space: [cD}u]?.

We shall hereafter assume that = ¢(z) > 0.

To compute (184) we need to integrate 1/c to obtain C' and then compute
1e inverse of C.

The inverse function computation can be easily done if we first think discretely.

ay we have some function y = g(z) and seeks its inverse. Plotting (z;,y;),
here y; = g(x;) for some mesh points x;, displays g as a function of . The

wverse function is simply x as a function of g, i.e., the curve with points (y;, z;).
/e can therefore quickly compute points at the curve of the inverse function.

me way of extending these points to a continuous function is to assume a linear
ariation (known as linear interpolation) between the points (which actually
leans to draw straight lines between the points, exactly as done by a plotting
rogram).

The function wrap2callable in scitools.std can take a set of points and
sturn a continuous function that corresponds to linear variation between the
oints. The computation of the inverse of a function g on [0, L] can then be
one by

lef inverse(g, domain, resolution=101):
x = linspace(domain[0], domain[L], resolution)
y = gx)
from scitools.std import wrap2callable
g_inverse = wrap2callable((y, x))
return g_inverse

To compute C'(x) we need to integrate 1/¢, which can be done by a Trapezoidal
1le. Suppose we have computed C(z;) and need to compute C(z;41). Using
1e Trapezoidal rule with m subintervals over the integration domain [x;, z;41]
ives

111

Titl o m—1

Claiar) = Cla) +/ L)

T4

1
+
c(ipr) o el

1
2

where h = (z;41 — 2;)/m is the length of the subintervals used for the
over [z;,x;+1]. We observe that (180) is a difference equation which we c
by repeatedly applying (180) for ¢ = 0,1,..., Ny — 1 if a mesh =g,z ...
prescribed. Note that C'(0) = 0.

a) Show that under the assumption of a = const,

u(x,t) = I(z — ct)
fulfills the PDE as well as the initial and boundary condition (providec
I(L)).

b) Set up a computational algorithm and implement it in a function. A
is constant and positive.

c) Test implementation by using the remarkable property that the nu
solution is exact at the mesh points if At = ¢ 'Az.

d) Make a movie comparing the numerical and exact solution for the fi
two choices of initial conditions:

I(x) = {sin (ﬁ%)}%

where n is an integer, typically n = 5, and

(x— L/2)2) .

202

I(z) = exp <—

Choose At = ¢ 'Az,0.9¢ Az, 0.5¢ ' Ax.

e) The performance of the suggested numerical scheme can be inve
by analyzing the numerical dispersion relation. Analytically, we have f
Fourier component

u(:r, t) _ ei(km—wt)7

is a solution of the PDE if w = kec. This is the analytical dispersion rel
complete solution of the PDE can be built by adding up such Fourier com
with different amplitudes, where the initial condition I determines the am
The solution u is then represented by a Fourier series.

A similar discrete Fourier component at (x,t,) is

ug — ez(kpAanfwnAt) 7

112

here in general @ is a function of k, At, and Az, and differs from the exact
= kec.

Insert the discrete Fourier component in the numerical scheme and derive an
xpression for @, i.e., the discrete dispersion relation. Show in particular that
the At/(cAx) = 1, the discrete solution coincides with the exact solution at
1e mesh points, regardless of the mesh resolution (!). Show that if the stability
mdition

At
—— <1
cAzx

1e discrete Fourier component cannot grow (i.e., @ is real).

) Write a test for your implementation where you try to use information from
1e numerical dispersion relation.

) Set up a computational algorithm for the variable coefficient case and im-
lement it in a function. Make a test that the function works for constant

) It can be shown that for an observer moving with velocity ¢(z), u is constant.
his can be used to derive an exact solution when a varies with x. Show first
1at

u(z,t) = f(C(x) — 1), (184)

here

a solution of (176) for any differentiable function f.

- Use the initial condition to show that an exact solution is

u(w,t) = I(C™H(C(x) — 1)),

ith C~' being the inverse function of C' = [c'dz. Since C(z) is an integral
)z (1/¢)dz, C(x) is monotonically increasing and there exists hence an inverse
mction C~1 with values in [0, L].

i Implement a function for computing C(x;) and one for computing C~1(x) for
ay z. Use these two functions for computing the exact solution I(C~(C(z)—t)).
nd up with a function u_exact_variable_c(x, n, c, I) that returns the

aue of I(C~H(CO(x) —t,)).

113

k) Make movies showing a comparison of the numerical and exact solut
the two initial conditions (182) and (30). Choose At = Az/maxg, f, ¢(x)
velocity of the medium as

1. ¢(x) =1+ esin(krz/L), e < 1,
2. ¢(xz) =1+ I(x), where I is given by (182) or (30).

The PDE u; + cu, = 0 expresses that the initial condition I(z) is tran
with velocity ¢(z).
Filename: adveciD.py.

Problem 31: General analytical solution of a 1D da
wave equation

We consider an initial-boundary value problem for the damped wave ec

Upt + bug = gy, z € (0,L), te (0,T]
u(0,t) =0,
u(L,t) =0,
u(z,0) = I(z),
ug(z,0) = V(z)

Here, b > 0 and c are given constants. The aim is to derive a general ar
solution of this problem. Familiarity with the method of separation of +
for solving PDEs will be assumed.

a) Seek a solution on the form u(x,t) = X (x)T(¢). Insert this solutio
PDE and show that it leads to two differential equations for X and 7'
T +bT"+XT=0, AX"+AX=0,

with X(0) = X(L) = 0 as boundary conditions, and A as a constar
determined.

b) Show that X(z) is on the form

Xn(z) = Cpsinkx, k= %, n=12...

where C,, is an arbitrary constant.

¢) Under the assumption that (b/2)? < k2, show that T'(t) is on the fo

1
To(t) = e~ 2% (ay, coswt + by sinwt), w = 1\ k% — 1b2’ n=1,2,

The complete solution is then

114

oo
u(z,t) = Z sin kze ™ 2% (A, coswt + By, sinwt),
n=1

here the constants A, and B, must be computed from the initial conditions.

) Derive a formula for A,, from u(x,0) = I(z) and developing I(x) as a sine
ourier series on [0, L].

) Derive a formula for B,, from u(z,0) = V(x) and developing V (x) as a sine
ourier series on [0, L].

) Calculate A,, and B, from vibrations of a string where V(z) = 0 and

_ ax/x B r < I,
Iw) = { o(L— 2 /(L — o), otherwise (185)

) Implement the series for u(z,t) in a function u_series(x, t, tol=1E-10),
here tol is a tolerance for truncating the series. Simply sum the terms until
1| and |bp| both are less than tol.

) What will change in the derivation of the analytical solution if we have
+(0,t) = uy(L,t) = 0 as boundary conditions? And how will you solve the
roblem with u(0,¢) = 0 and wu,(L,t) = 07

ilename: damped_wavelD.pdf.

'roblem 32: General analytical solution of a 2D damped
rave equation

arry out Problem 31 in the 2D case: us + bus = ¢(Ugy + Uy), Where (z,y) €
),L;) x (0,L,). Assume a solution on the form u(z,y,t) = X ()Y (y)T(t).
ilename: damped_wave2D.pdf.

115

Index

arithmetic mean, 37 mesh function, 5

array slices, 21

averaging Neumann conditions, 29
arithmetic, 37 nose tests, 15

geometric, 37

harmonic. 37 open boundary condition, 102

boundary condition periodic boundary conditions,

open (radiation), 102
boundary conditions
Dirichlet, 29
Neumann, 29
periodic, 104

radiation condition, 102
row-major ordering, 80

scalar code, 21

setup.py, 75
C extension module, 75 ifct‘i;fjrle testin
C/Python array storage, 80 nose. 15 &
column-major ordering, 80 e

stability criterion, 55
Courant number, 55 stencil
Cython, 72 .

L 1D wave equation, 5
cython -a (Python-C translation in
HTML), 75 Neumann boundary, 30

declaration of variables in Cython, 73 unit testing, 15

Dirichlet conditions, 29

; ; vectorization, 21
discrete Fourier transform, 52

distutils, 75 wave equation

1D, 3
Fortran array st'orage, 80 1D, analytical properties,
FOl“tItaIl sul?routlne, 77 1D, exact numerical solut:
Four%er series, 52 1D, finite difference methc
Fourier transform, 52 1D, implementation, 14

1D, stability, 55

2D, implementation, 66
waves

on a string, 3
wrapper code, 77

geometric mean, 37

harmonic average, 37
homogeneous Dirichlet conditions, 29
homogeneous Neumann conditions, 29

index set notation, 31, 68
lambda function (Python), 24

mesh
finite differences, 4

116

