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Finite di�erence methods for waves on a string

Waves on a string can be modeled by the wave equation

∂2u

∂t2
= c2

∂2u

∂x2

u(x , t) is the displacement of the string

Demo of waves on a string.

http://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string_en.html


The complete initial-boundary value problem

∂2u

∂t2
= c2

∂2u

∂x2
, x ∈ (0, L), t ∈ (0,T ] (1)

u(x , 0) = I (x), x ∈ [0, L] (2)

∂

∂t
u(x , 0) = 0, x ∈ [0, L] (3)

u(0, t) = 0, t ∈ (0,T ] (4)

u(L, t) = 0, t ∈ (0,T ] (5)



Input data in the problem

Initial condition u(x , 0) = I (x): initial string shape

Initial condition ut(x , 0) = 0: string starts from rest

c =
√

T/%: velocity of waves on the string

(T is the tension in the string, % is density of the string)

Two boundary conditions on u: u = 0 means �xed ends (no
displacement)

Rule for number of initial and boundary conditions:

utt in the PDE: two initial conditions, on u and ut

ut (and no utt) in the PDE: one initial conditions, on u

uxx in the PDE: one boundary condition on u at each
boundary point



Demo of a vibrating string (C = 0.8)

Our numerical method is sometimes exact (!)

Our numerical method is sometimes subject to serious
non-physical e�ects



Demo of a vibrating string (C = 1.0012)

Ooops!



Step 1: Discretizing the domain

Mesh in time:

0 = t0 < t1 < t2 < · · · < tNt−1 < tNt
= T (6)

Mesh in space:

0 = x0 < x1 < x2 < · · · < xNx−1 < xNx
= L (7)

Uniform mesh with constant mesh spacings ∆t and ∆x :

xi = i∆x , i = 0, . . . ,Nx , ti = n∆t, n = 0, . . . ,Nt (8)



The discrete solution

The numerical solution is a mesh function: uni ≈ ue(xi , tn)
Finite di�erence stencil (or scheme): equation for uni involving
neighboring space-time points
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Step 2: Ful�lling the equation at the mesh points

Let the PDE be satis�ed at all interior mesh points:

∂2

∂t2
u(xi , tn) = c2

∂2

∂x2
u(xi , tn), (9)

for i = 1, . . . ,Nx − 1 and n = 1, . . . ,Nt − 1.

For n = 0 we have the initial conditions u = I (x) and ut = 0, and
at the boundaries i = 0,Nx we have the boundary condition u = 0.



Step 3: Replacing derivatives by �nite di�erences

Widely used �nite di�erence formula for the second-order derivative:

∂2

∂t2
u(xi , tn) ≈

un+1
i − 2uni + un−1i

∆t2
= [DtDtu]ni

and

∂2

∂x2
u(xi , tn) ≈

uni+1 − 2uni + uni−1
∆x2

= [DxDxu]ni



Step 3: Algebraic version of the PDE

Replace derivatives by di�erences:

un+1
i − 2uni + un−1i

∆t2
= c2

uni+1 − 2uni + uni−1
∆x2

, (10)

In operator notation:

[DtDtu = c2DxDx ]ni (11)



Step 3: Algebraic version of the initial conditions

Need to replace the derivative in the initial condition
ut(x , 0) = 0 by a �nite di�erence approximation

The di�erences for utt and uxx have second-order accuracy

Use a centered di�erence for ut(x , 0)

[D2tu]ni = 0, n = 0 ⇒ un−1i = un+1
i , i = 0, . . . ,Nx

The other initial condition u(x , 0) = I (x) can be computed by

u0i = I (xi ), i = 0, . . . ,Nx



Step 4: Formulating a recursive algorithm

Nature of the algorithm: compute u in space at
t = ∆t, 2∆t, 3∆t, ...

Three time levels are involved in the general discrete equation:
n + 1, n, n − 1

uni and un−1i are then already computed for i = 0, . . . ,Nx , and
un+1
i is the unknown quantity

Write out [DtDtu = c2DxDx ]ni and solve for un+1
i ,

un+1
i = −un−1i + 2uni + C 2

(
uni+1 − 2uni + uni−1

)
(12)



The Courant number

C = c
∆t

∆x
, (13)

is known as the (dimensionless) Courant number

Observe

There is only one parameter, C , in the discrete model: C lumps
mesh parameters ∆t and ∆x with the only physical parameter, the
wave velocity c . The value C and the smoothness of I (x) govern
the quality of the numerical solution.



The �nite di�erence stencil
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The stencil for the �rst time level

Problem: the stencil for n = 1 involves u−1i , but time
t = −∆t is outside the mesh

Remedy: use the initial condition ut = 0 together with the
stencil to eliminate u−1i

Initial condition:

[D2tu = 0]0i ⇒ u−1i = u1i

Insert in stencil [DtDtu = c2DxDx ]0i to get

u1i = u0i −
1

2
C 2
(
uni+1 − 2uni + uni−1

)
(14)



The algorithm

1 Compute u0i = I (xi ) for i = 0, . . . ,Nx

2 Compute u1i by (14) and set u1i = 0 for the boundary points
i = 0 and i = Nx , for n = 1, 2, . . . ,N − 1,

3 For each time level n = 1, 2, . . . ,Nt − 1
1 apply (12) to �nd un+1

i for i = 1, . . . ,Nx − 1
2 set un+1

i = 0 for the boundary points i = 0, i = Nx .



Moving �nite di�erence stencil

web page or a movie �le.

http://tinyurl.com/opdfafk/pub/mov-wave/wave1D_PDE_Dirichlet_stencil_gpl/index.html
http://tinyurl.com/opdfafk/pub/mov-wave/wave1D_PDE_Dirichlet_stencil_gpl/movie.ogg


Sketch of an implementation (1)

Arrays:

u[i] stores un+1

i

u_1[i] stores un
i

u_2[i] stores un−1

i

Naming convention

u is the unknown to be computed (a spatial mesh function), u_k is
the computed spatial mesh function k time steps back in time.



PDE solvers should save memory

Important to minimize the memory usage

The algorithm only needs to access the three most recent time

levels, so we need only three arrays for un+1
i , uni , and un−1i ,

i = 0, . . . ,Nx . Storing all the solutions in a two-dimensional array
of size (Nx + 1)× (Nt + 1) would be possible in this simple
one-dimensional PDE problem, but not in large 2D problems and
not even in small 3D problems.



Sketch of an implementation (2)

# Given mesh points as arrays x and t (x[i], t[n])
dx = x[1] - x[0]
dt = t[1] - t[0]
C = c*dt/dx # Courant number
Nt = len(t)-1
C2 = C**2 # Help variable in the scheme

# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_1[i] = I(x[i])

# Apply special formula for first step, incorporating du/dt=0
for i in range(1, Nx):

u[i] = u_1[i] - 0.5*C**2(u_1[i+1] - 2*u_1[i] + u_1[i-1])
u[0] = 0; u[Nx] = 0 # Enforce boundary conditions

# Switch variables before next step
u_2[:], u_1[:] = u_1, u

for n in range(1, Nt):
# Update all inner mesh points at time t[n+1]
for i in range(1, Nx):

u[i] = 2u_1[i] - u_2[i] - \
C**2(u_1[i+1] - 2*u_1[i] + u_1[i-1])

# Insert boundary conditions
u[0] = 0; u[Nx] = 0

# Switch variables before next step
u_2[:], u_1[:] = u_1, u
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Veri�cation

Think about testing and veri�cation before you start
implementing the algorithm!

Powerful testing tool: method of manufactured solutions and
computation of convergence rates

Will need a source term in the PDE and ut(x , 0) 6= 0

Even more powerful method: exact solution of the scheme



A slightly generalized model problem

Add source term f and nonzero initial condition ut(x , 0):

utt = c2uxx + f (x , t), (15)

u(x , 0) = I (x), x ∈ [0, L] (16)

ut(x , 0) = V (x), x ∈ [0, L] (17)

u(0, t) = 0, t > 0, (18)

u(L, t) = 0, t > 0 (19)



Discrete model for the generalized model problem

[DtDtu = c2DxDx + f ]ni (20)

Writing out and solving for the unknown un+1
i :

un+1
i = −un−1i + 2uni + C 2(uni+1 − 2uni + uni−1) + ∆t2f ni (21)



Modi�ed equation for the �rst time level

Centered di�erence for ut(x , 0) = V (x):

[D2tu = V ]0i ⇒ u−1i = u1i − 2∆tVi ,

Inserting this in the stencil (21) for n = 0 leads to

u1i = u0i −∆tVi +
1

2
C 2
(
uni+1 − 2uni + uni−1

)
+

1

2
∆t2f ni (22)



Using an analytical solution of physical signi�cance

Standing waves occur in real life on a string

Can be analyzed mathematically (known exact solution)

ue(x , y , t)) = A sin
(π
L
x
)
cos
(π
L
ct
)

(23)

PDE data: f = 0, boundary conditions ue(0, t) = ue(L, 0) = 0,
initial conditions I (x) = A sin

(
π
L
x
)
and V = 0

Note: un+1
i 6= ue(xi , tn+1, and we do not know the error, so

testing must aim at reproducing the expected convergence
rates



Manufactured solution: principles

Disadvantage with the previous physical solution: it does not
test V 6= 0 and f 6= 0

Method of manufactured solution:

Choose some ue(x , t)
Insert in PDE and �t f

Set boundary and initial conditions compatible with the chosen
ue(x , t)



Manufactured solution: example

ue(x , t) = x(L− x) sin t

PDE utt = c2uxx + f :

−x(L− x) sin t = −2 sin t + f ⇒ f = (2− x(L− x)) sin t

Implied initial conditions:

u(x , 0) = I (x) = 0

ut(x , 0) = V (x) = −x(L− x)

Boundary conditions:

u(x , 0) = u(x , L) = 0



Testing a manufactured solution

Introduce common mesh parameter: h = ∆t, ∆x = ch/C

This h keeps C and ∆t/∆x constant

Select coarse mesh h: h0

Run experiments with hi = 2−ih0 (halving the cell size),
i = 0, . . . ,m

Record the error Ei and hi in each experiment

Compute pariwise convergence rates ri = lnEi+1/Ei/ ln hi+1/hi

Veri�cation: ri → 2 as i increases



Constructing an exact solution of the discrete equations

Manufactured solution with computation of convergence rates:
much manual work

Simpler and more powerful: use an exact solution for uni
A linear or quadratic ue in x and t is often a good candidate



Analytical work with the PDE problem

Here, choose ue such that ue(x , 0) = ue(L, 0) = 0:

ue(x , t) = x(L− x)(1 +
1

2
t),

Insert in the PDE and �nd f :

f (x , t) = 2(1 + t)c2

Initial conditions:

I (x) = x(L− x), V (x) =
1

2
x(L− x)



Analytical work with the discrete equations (1)

We want to show that ue also solves the discrete equations!

Useful preliminary result:

[DtDtt
2]n =

t2n+1 − 2t2n + t2n−1
∆t2

= (n + 1)2 − n2 + (n − 1)2 = 2

(24)

[DtDtt]n =
tn+1 − 2tn + tn−1

∆t2
=

((n + 1)− n + (n − 1))∆t

∆t2
= 0

(25)

Hence,

[DtDtue]ni = xi (L− xi )[DtDt(1 +
1

2
t)]n = xi (L− xi )

1

2
[DtDtt]n = 0



Analytical work with the discrete equations (1)

[DxDxue]ni = (1 +
1

2
tn)[DxDx(xL− x2)]i = (1 +

1

2
tn)[LDxDxx − DxDxx

2]i

= −2(1 +
1

2
tn)

Now, f ni = 2(1 + 1
2 tn)c2 and we get

[DtDtue−c2DxDxue−f ]ni = 0−c2(−1)2(1+
1

2
tn+2(1+

1

2
tn)c2 = 0

Moreover, ue(xi , 0) = I (xi ), ∂ue/∂t = V (xi ) at t = 0, and
ue(x0, t) = ue(xNx

, 0) = 0. Also the modi�ed scheme for the �rst
time step is ful�lled by ue(xi , tn).



Testing with the exact discrete solution

We have established that
un+1
i = ue(xi , tn+1) = xi (L− xi )(1 + tn+1/2)

Run one simulation with one choice of c , ∆t, and ∆x

Check that maxi |un+1
i − ue(xi , tn+1)| < ε, ε ∼ 10−14 (machine

precision + some round-o� errors)

This is the simplest and best veri�cation test

Later we show that the exact solution of the discrete equations can
be obtained by C = 1 (!)
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Implementation



The algorithm

1 Compute u0i = I (xi ) for i = 0, . . . ,Nx

2 Compute u1i by (14) and set u1i = 0 for the boundary points
i = 0 and i = Nx , for n = 1, 2, . . . ,N − 1,

3 For each time level n = 1, 2, . . . ,Nt − 1
1 apply (12) to �nd un+1

i for i = 1, . . . ,Nx − 1
2 set un+1

i = 0 for the boundary points i = 0, i = Nx .



What do to with the solution?

Di�erent problem settings demand di�erent actions with the
computed un+1

i at each time step

Solution: let the solver function make a callback to a user
function where the user can do whatever is desired with the
solution

Advantage: solver just solves and user uses the solution

def user_action(u, x, t, n):
# u[i] at spatial mesh points x[i] at time t[n]
# plot u
# or store u



Making a solver function (1)
We specify ∆t and C , and let the solver function compute
∆x = c∆t/C .

def solver(I, V, f, c, L, dt, C, T, user_action=None):
"""Solve u_tt=c^2*u_xx + f on (0,L)x(0,T]."""
Nt = int(round(T/dt))
t = linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = dt*c/float(C)
Nx = int(round(L/dx))
x = linspace(0, L, Nx+1) # Mesh points in space
dx = x[1] - x[0]
C2 = C**2 # Help variable in the scheme
if f is None or f == 0 :

f = lambda x, t: 0
if V is None or V == 0:

V = lambda x: 0

u = zeros(Nx+1) # Solution array at new time level
u_1 = zeros(Nx+1) # Solution at 1 time level back
u_2 = zeros(Nx+1) # Solution at 2 time levels back

import time; t0 = time.clock() # for measuring CPU time

# Load initial condition into u_1
for i in range(0,Nx+1):

u_1[i] = I(x[i])

if user_action is not None:
user_action(u_1, x, t, 0)



Making a solver function (2)

def solver(I, V, f, c, L, dt, C, T, user_action=None):
...
# Special formula for first time step
n = 0
for i in range(1, Nx):

u[i] = u_1[i] + dt*V(x[i]) + \
0.5*C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + \
0.5*dt**2*f(x[i], t[n])

u[0] = 0; u[Nx] = 0

if user_action is not None:
user_action(u, x, t, 1)

# Switch variables before next step
u_2[:], u_1[:] = u_1, u

def solver(I, V, f, c, L, Nx, C, T, user_action=None):
...
# Time loop

for n in range(1, Nt):
# Update all inner points at time t[n+1]
for i in range(1, Nx):

u[i] = - u_2[i] + 2*u_1[i] + \
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1]) + \
dt**2*f(x[i], t[n])

# Insert boundary conditions
u[0] = 0; u[Nx] = 0
if user_action is not None:

if user_action(u, x, t, n+1):
break

# Switch variables before next step
u_2[:], u_1[:] = u_1, u

cpu_time = t0 - time.clock()
return u, x, t, cpu_time



Veri�cation: exact quadratic solution
Exact solution of the PDE problem and the discrete equations:
ue(x , t) = x(L− x)(1 + 1

2 t)

import nose.tools as nt

def test_quadratic():
"""Check that u(x,t)=x(L-x)(1+t/2) is exactly reproduced."""
def u_exact(x, t):

return x*(L-x)*(1 + 0.5*t)

def I(x):
return u_exact(x, 0)

def V(x):
return 0.5*u_exact(x, 0)

def f(x, t):
return 2*(1 + 0.5*t)*c**2

L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18

u, x, t, cpu = solver(I, V, f, c, L, dt, C, T)
u_e = u_exact(x, t[-1])
diff = abs(u - u_e).max()
nt.assert_almost_equal(diff, 0, places=14)



Visualization: animating u(x , t)
Make a viz function for animating the curve, with plotting in a
user_action function plot_u:

def viz(I, V, f, c, L, dt, C, T, umin, umax, animate=True):
"""Run solver and visualize u at each time level."""
import scitools.std as plt
import time, glob, os

def plot_u(u, x, t, n):
"""user_action function for solver."""
plt.plot(x, u, 'r-',

xlabel='x', ylabel='u',
axis=[0, L, umin, umax],
title='t=%f' % t[n], show=True)

# Let the initial condition stay on the screen for 2
# seconds, else insert a pause of 0.2 s between each plot
time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig('frame_%04d.png' % n) # for movie making

# Clean up old movie frames
for filename in glob.glob('frame_*.png'):

os.remove(filename)

user_action = plot_u if animate else None
u, x, t, cpu = solver(I, V, f, c, L, dt, C, T, user_action)

# Make movie files
fps = 4 # Frames per second
plt.movie('frame_*.png', encoder='html', fps=fps,

output_file='movie.html')
codec2ext = dict(flv='flv', libx264='mp4', libvpx='webm',

libtheora='ogg')
filespec = 'frame_%04d.png'
movie_program = 'avconv' # or 'ffmpeg'
for codec in codec2ext:

ext = codec2ext[codec]
cmd = '%(movie_program)s -r %(fps)d -i %(filespec)s '\

'-vcodec %(codec)s movie.%(ext)s' % vars()
os.system(cmd)

Note: plot_u is function inside function and remembers the local
variables in viz (known as a closure).



Making movie �les

Store spatial curve in a �le, for each time level

Name �les like 'something_%04d.png' % frame_counter

Combine �les to a movie

Terminal> scitools movie encoder=html output_file=movie.html \
fps=4 frame_*.png # web page with a player

Terminal> avconv -r 4 -i frame_%04d.png -c:v flv movie.flv
Terminal> avconv -r 4 -i frame_%04d.png -c:v libtheora movie.ogg
Terminal> avconv -r 4 -i frame_%04d.png -c:v libx264 movie.mp4
Terminal> avconv -r 4 -i frame_%04d.png -c:v libpvx movie.webm

Important

Zero padding (%04d) is essential for correct sequence of frames
in something_*.png (Unix alphanumeric sort)

Remove old frame_*.png �les before making a new movie



Running a case

Vibrations of a guitar string

Triangular initial shape (at rest)

I (x) =

{
ax/x0, x < x0
a(L− x)/(L− x0), otherwise

(26)

Appropriate data:

L = 75 cm, x0 = 0.8L, a = 5 mm, time frequency ν = 440 Hz



Implementation of the case

def guitar(C):
"""Triangular wave (pulled guitar string)."""
L = 0.75
x0 = 0.8*L
a = 0.005
freq = 440
wavelength = 2*L
c = freq*wavelength
omega = 2*pi*freq
num_periods = 1
T = 2*pi/omega*num_periods
# Choose dt the same as the stability limit for Nx=50
dt = L/50./c

def I(x):
return a*x/x0 if x < x0 else a/(L-x0)*(L-x)

umin = -1.2*a; umax = -umin
cpu = viz(I, 0, 0, c, L, dt, C, T, umin, umax, animate=True)

Program: wave1D_u0.py.

http://tinyurl.com/nm5587k/wave/wave1D/wave1D_u0.py


Resulting movie for C = 0.8

Movie of the vibrating string

http://tinyurl.com/opdfafk/pub/mov-wave/guitar_C0.8/index.html


The bene�ts of scaling

It is di�cult to �gure out all the physical parameters of a case

And it is not necessary because of a powerful: scaling

Introduce new x , t, and u without dimension:

x̄ =
x

L
, t̄ =

c

L
t, ū =

u

a

Insert this in the PDE (with f = 0) and dropping bars

utt = uxx

Initial condition: set a = 1, L = 1, and x0 ∈ [0, 1] in (26).

In the code: set a=c=L=1, x0=0.8, and there is no need to
calculate with wavelengths and frequencies to estimate c!

Just one challenge: determine the period of the waves and an
appropriate end time (see the text for details).
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Vectorization

Problem: Python loops over long arrays are slow

One remedy: use vectorized (numpy) code instead of explicit
loops

Other remedies: use Cython, port spatial loops to Fortran or C

Speedup: 100-1000 (varies with Nx)

Next: vectorized loops



Operations on slices of arrays

Introductory example: compute di = ui+1 − ui

n = u.size
for i in range(0, n-1):

d[i] = u[i+1] - u[i]

Note: all the di�erences here are independent of each other.

Therefore d = (u1, u2, . . . , un)− (u0, u1, . . . , un−1)

In numpy code: u[1:n] - u[0:n-1] or just u[1:] - u[:-1]
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Test the understanding

Newcomers to vectorization are encouraged to choose a small array
u, say with �ve elements, and simulate with pen and paper both
the loop version and the vectorized version.



Vectorization of �nite di�erence schemes (1)

Finite di�erence schemes basically contains di�erences between
array elements with shifted indices. Consider the updating formula

for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1]

The vectorization consists of replacing the loop by arithmetics on
slices of arrays of length n-2:

u2 = u[:-2] - 2*u[1:-1] + u[2:]
u2 = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative

Note: u2 gets length n-2.

If u2 is already an array of length n, do update on "inner" elements

u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:]
u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative



Vectorization of �nite di�erence schemes (2)

Include a function evaluation too:

def f(x):
return x**2 + 1

# Scalar version
for i in range(1, n-1):

u2[i] = u[i-1] - 2*u[i] + u[i+1] + f(x[i])

# Vectorized version
u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:] + f(x[1:-1])



Vectorized implementation in the solver function

Scalar loop:

for i in range(1, Nx):
u[i] = 2*u_1[i] - u_2[i] + \

C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])

Vectorized loop:

u[1:-1] = - u_2[1:-1] + 2*u_1[1:-1] + \
C2*(u_1[:-2] - 2*u_1[1:-1] + u_1[2:])

or

u[1:Nx] = 2*u_1[1:Nx]- u_2[1:Nx] + \
C2*(u_1[0:Nx-1] - 2*u_1[1:Nx] + u_1[2:Nx+1])

Program: wave1D_u0v.py

http://tinyurl.com/nm5587k/wave/wave1D/wave1D_u0v.py


Veri�cation of the vectorized version

def test_quadratic():
"""
Check the scalar and vectorized versions work for
a quadratic u(x,t)=x(L-x)(1+t/2) that is exactly reproduced.
"""
# The following function must work for x as array or scalar
u_exact = lambda x, t: x*(L - x)*(1 + 0.5*t)
I = lambda x: u_exact(x, 0)
V = lambda x: 0.5*u_exact(x, 0)
# f is a scalar (zeros_like(x) works for scalar x too)
f = lambda x, t: zeros_like(x) + 2*c**2*(1 + 0.5*t)

L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = abs(u - u_e).max()
nt.assert_almost_equal(diff, 0, places=13)

solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error, version='scalar')

solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error, version='vectorized')

Note:

Compact code with lambda functions
The scalar f value needs careful coding: return constant array
if vectorized code, else number



E�ciency measurements

Run wave1D_u0v.py for Nx as 50,100,200,400,800 and
measuring the CPU time

Observe substantial speed-up: vectorized version is about
Nx/5 times faster

Much bigger improvements for 2D and 3D codes!
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Generalization: re�ecting boundaries

Boundary condition u = 0: u changes sign

Boundary condition ux = 0: wave is perfectly re�ected

How can we implement ux? (more complicated than u = 0)

Demo of boundary conditions

http://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string_en.html


Neumann boundary condition

∂u

∂n
≡ n · ∇u = 0 (27)

For a 1D domain [0, L]:

∂

∂n

∣∣∣∣
x=L

=
∂

∂x
,

∂

∂n

∣∣∣∣
x=0

= − ∂

∂x

Boundary condition terminology:

ux speci�ed: Neumann condition

u speci�ed: Dirichlet condition

http://en.wikipedia.org/wiki/Neumann_boundary_condition
http://en.wikipedia.org/wiki/Dirichlet_conditions


Discretization of derivatives at the boundary (1)

How can we incorporate the condition ux = 0 in the �nite
di�erence scheme?

We used centeral di�erences for utt and uxx : O(∆t2,∆x2)
accuracy

Also for ut(x , 0)

Should use central di�erence for ux to preserve second order
accuracy

un−1 − un1
2∆x

= 0 (28)



Discretization of derivatives at the boundary (2)

un−1 − un1
2∆x

= 0

Problem: un−1 is outside the mesh (�ctitious value)

Remedy: use the stencil at the boundary to eliminate un−1; just
replace un−1 by un1

un+1
i = −un−1i + 2uni + 2C 2

(
uni+1 − uni

)
, i = 0 (29)



Visualization of modi�ed boundary stencil

Discrete equation for computing u30 in terms of u20 , u
1
0 , and u21 :

Animation in a web page or a movie �le.

http://tinyurl.com/opdfafk/pub/mov-wave/wave1D_PDE_Neumann_stencil_gpl/index.html
http://tinyurl.com/opdfafk/pub/mov-wave/wave1D_PDE_Neumann_stencil_gpl/movie.ogg


Implementation of Neumann conditions

Use the general stencil for interior points also on the boundary

Replace uni−1 by uni+1 for i = 0

Replace uni+1 by uni−1 for i = Nx

i = 0
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])

i = Nx
im1 = i-1
ip1 = im1 # i+1 -> i-1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])

# Or just one loop over all points

for i in range(0, Nx+1):
ip1 = i+1 if i < Nx else i-1
im1 = i-1 if i > 0 else i+1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])

Program wave1D_dn0.py

http://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn0.py


Moving �nite di�erence stencil

web page or a movie �le.

http://tinyurl.com/opdfafk/pub/mov-wave/wave1D_PDE_Neumann_stencil_gpl/index.html
http://tinyurl.com/opdfafk/pub/mov-wave/wave1D_PDE_Neumann_stencil_gpl/movie.ogg


Index set notation

Tedious to write index sets like i = 0, . . . ,Nx and
n = 0, . . . ,Nt

Notation not valid if i or n starts at 1 instead...

Both in math and code it is advantageous to use index sets

i ∈ Ix instead of i = 0, . . . ,Nx

De�nition: Ix = {0, . . . ,Nx}
The �rst index: i = I0x
The last index: i = I−1x

All interior points: i ∈ I ix , I ix = {1, . . . ,Nx − 1}
I−x means {0, . . . ,Nx − 1}
I+
x means {1, . . . ,Nx}



Index set notation in code

Notation Python

Ix Ix

I0

x Ix[0]

I−1

x Ix[-1]

I−
x Ix[1:]

I+
x Ix[:-1]

I i
x Ix[1:-1]



Index sets in action (1)

Index sets for a problem in the x , t plane:

Ix = {0, . . . ,Nx}, It = {0, . . . ,Nt}, (30)

Implemented in Python as

Ix = range(0, Nx+1)
It = range(0, Nt+1)



Index sets in action (2)

A �nite di�erence scheme can with the index set notation be
speci�ed as

un+1
i = −un−1i + 2uni + C 2

(
uni+1 − 2uni + uni−1

)
, i ∈ I ix , n ∈ I it

ui = 0, i = I0x , n ∈ I it
ui = 0, i = I−1x , n ∈ I it

Corresponding implementation:

for n in It[1:-1]:
for i in Ix[1:-1]:

u[i] = - u_2[i] + 2*u_1[i] + \
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])

i = Ix[0]; u[i] = 0
i = Ix[-1]; u[i] = 0

Program wave1D_dn.py

http://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn.py


Alternative implementation via ghost cells

Instead of modifying the stencil at the boundary, we extend
the mesh to cover un−1 and unNx+1

The extra left and right cell are called ghost cells

The extra points are called ghost points

The un−1 and unNx+1 values are called ghost values

Update ghost values as uni−1 = uni+1 for i = 0 and i = Nx

Then the stencil becomes right at the boundary



Implementation of ghost cells (1)

Add ghost points:

u = zeros(Nx+3)
u_1 = zeros(Nx+3)
u_2 = zeros(Nx+3)

x = linspace(0, L, Nx+1) # Mesh points without ghost points

A major indexing problem arises with ghost cells since Python
indices must start at 0.

u[-1] will always mean the last element in u

Math indexing: −1, 0, 1, 2, . . . ,Nx + 1

Python indexing: 0,..,Nx+2

Remedy: use index sets



Implementation of ghost cells (2)

u = zeros(Nx+3)
Ix = range(1, u.shape[0]-1)

# Boundary values: u[Ix[0]], u[Ix[-1]]

# Set initial conditions
for i in Ix:

u_1[i] = I(x[i-Ix[0]]) # Note i-Ix[0]

# Loop over all physical mesh points
for i in Ix:

u[i] = - u_2[i] + 2*u_1[i] + \
C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])

# Update ghost values
i = Ix[0] # x=0 boundary
u[i-1] = u[i+1]
i = Ix[-1] # x=L boundary
u[i-1] = u[i+1]

Program: wave1D_dn0_ghost.py.

http://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn0_ghost.py
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Generalization: variable wave velocity

Heterogeneous media: varying c = c(x)



The model PDE with a variable coe�cient

∂2u

∂t2
=

∂

∂x

(
q(x)

∂u

∂x

)
+ f (x , t) (31)

This equation sampled at a mesh point (xi , tn):

∂2

∂t2
u(xi , tn) =

∂

∂x

(
q(xi )

∂

∂x
u(xi , tn)

)
+ f (xi , tn),



Discretizing the variable coe�cient (1)

The principal idea is to �rst discretize the outer derivative.

De�ne

φ = q(x)
∂u

∂x

Then use a centered derivative around x = xi for the derivative of
φ:

[
∂φ

∂x

]n
i

≈
φi+ 1

2

− φi− 1

2

∆x
= [Dxφ]ni



Discretizing the variable coe�cient (2)

Then discretize the inner operators:

φi+ 1

2

= qi+ 1

2

[
∂u

∂x

]n
i+ 1

2

≈ qi+ 1

2

uni+1 − uni
∆x

= [qDxu]n
i+ 1

2

Similarly,

φi− 1

2

= qi− 1

2

[
∂u

∂x

]n
i− 1

2

≈ qi− 1

2

uni − uni−1
∆x

= [qDxu]n
i− 1

2



Discretizing the variable coe�cient (3)

These intermediate results are now combined to

[
∂

∂x

(
q(x)

∂u

∂x

)]n
i

≈ 1

∆x2

(
qi+ 1

2

(
uni+1 − uni

)
− qi− 1

2

(
uni − uni−1

))
(32)

In operator notation:[
∂

∂x

(
q(x)

∂u

∂x

)]n
i

≈ [DxqDxu]ni (33)

Remark

Many are tempted to use the chain rule on the term ∂
∂x

(
q(x)∂u∂x

)
,

but this is not a good idea!



Computing the coe�cient between mesh points

Given q(x): compute qi+ 1

2

as q(xi+ 1

2

)

Given q at the mesh points: qi , use an average

qi+ 1

2

≈ 1

2
(qi + qi+1) = [qx ]i (arithmetic mean) (34)

qi+ 1

2

≈ 2

(
1

qi
+

1

qi+1

)−1
(harmonic mean) (35)

qi+ 1

2

≈ (qiqi+1)1/2 (geometric mean) (36)

The arithmetic mean in (34) is by far the most used averaging
technique.



Discretization of variable-coe�cient wave equation in
operator notation

[DtDtu = Dxq
xDxu + f ]ni (37)

We clearly see the type of �nite di�erences and averaging!

Write out and solve wrt un+1
i :

un+1
i = −un−1i + 2uni +

(
∆x

∆t

)2

×(
1

2
(qi + qi+1)(uni+1 − uni )− 1

2
(qi + qi−1)(uni − uni−1)

)
+

∆t2f ni (38)



Neumann condition and a variable coe�cient

Consider ∂u/∂x = 0 at x = L = Nx∆x :

uni+1 − uni−1
2∆x

= 0 uni+1 = uni−1, i = Nx

Insert uni+1 = uni−1 in the stencil (38) for i = Nx and obtain

un+1
i ≈ −un−1i + 2uni +

(
∆x

∆t

)2

2qi (u
n
i−1 − uni ) + ∆t2f ni

(We have used qi+ 1

2

+ qi− 1

2

≈ 2qi .)

Alternative: assume dq/dx = 0 (simpler).



Implementation of variable coe�cients

Assume c[i] holds ci the spatial mesh points

for i in range(1, Nx):
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(0.5*(q[i] + q[i+1])*(u_1[i+1] - u_1[i]) - \
0.5*(q[i] + q[i-1])*(u_1[i] - u_1[i-1])) + \

dt2*f(x[i], t[n])

Here: C2=(dt/dx)**2

Vectorized version:

u[1:-1] = - u_2[1:-1] + 2*u_1[1:-1] + \
C2*(0.5*(q[1:-1] + q[2:])*(u_1[2:] - u_1[1:-1]) -

0.5*(q[1:-1] + q[:-2])*(u_1[1:-1] - u_1[:-2])) + \
dt2*f(x[1:-1], t[n])

Neumann condition ux = 0: same ideas as in 1D (modi�ed stencil
or ghost cells).



A more general model PDE with variable coe�cients

%(x)
∂2u

∂t2
=

∂

∂x

(
q(x)

∂u

∂x

)
+ f (x , t) (39)

A natural scheme is

[%DtDtu = Dxq
xDxu + f ]ni (40)

Or

[DtDtu = %−1Dxq
xDxu + f ]ni (41)

No need to average %, just sample at i



Generalization: damping
Why do waves die out?

Damping (non-elastic e�ects, air resistance)
2D/3D: conservation of energy makes an amplitude reduction
by 1/

√
r (2D) or 1/r (3D)

Simplest damping model (for physical behavior, see demo):

∂2u

∂t2
+ b

∂u

∂t
= c2

∂2u

∂x2
+ f (x , t), (42)

b ≥ 0: prescribed damping coe�cient.

Discretization via centered di�erences to ensure O(∆t2) error:

[DtDtu + bD2tu = c2DxDxu + f ]ni (43)

Need special formula for u1i + special stencil (or ghost cells) for
Neumann conditions.

http://phet.colorado.edu/sims/wave-on-a-string/wave-on-a-string_en.html
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Building a general 1D wave equation solver

The program wave1D_dn_vc.py solves a fairly general 1D wave
equation:

ut = (c2(x)ux)x + f (x , t), x ∈ (0, L), t ∈ (0,T ] (44)

u(x , 0) = I (x), x ∈ [0, L] (45)

ut(x , 0) = V (t), x ∈ [0, L] (46)

u(0, t) = U0(t) or ux(0, t) = 0, t ∈ (0,T ] (47)

u(L, t) = UL(t) or ux(L, t) = 0, t ∈ (0,T ] (48)

Can be adapted to many needs.

http://tinyurl.com/nm5587k/wave/wave1D/wave1D_dn_vc.py


Collection of initial conditions

The function pulse in wave1D_dn_vc.py o�ers four initial
conditions:

1 a rectangular pulse ("plug")

2 a Gaussian function (gaussian)

3 a "cosine hat": one period of 1 + cos(πx , x ∈ [−1, 1]

4 half a "cosine hat": half a period of cosπx , x ∈ [−1
2 ,

1
2 ]

Can locate the initial pulse at x = 0 or in the middle

>>> import wave1D_dn_vc as w
>>> w.pulse(loc='left', pulse_tp='cosinehat', Nx=50, every_frame=10)
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Finite di�erence methods for 2D and 3D wave equations

Constant wave velocity c :

∂2u

∂t2
= c2∇2u for x ∈ Ω ⊂ Rd , t ∈ (0,T ] (49)

Variable wave velocity:

%
∂2u

∂t2
= ∇ · (q∇u) + f for x ∈ Ω ⊂ Rd , t ∈ (0,T ] (50)



Examples on wave equations written out in 2D/3D

3D, constant c :

∇2u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

2D, variable c :

%(x , y)
∂2u

∂t2
=

∂

∂x

(
q(x , y)

∂u

∂x

)
+

∂

∂y

(
q(x , y)

∂u

∂y

)
+ f (x , y , t)

(51)

Compact notation:

utt = c2(uxx + uyy + uzz) + f , (52)

%utt = (qux)x + (quz)z + (quz)z + f (53)



Boundary and initial conditions

We need one boundary condition at each point on ∂Ω:

1 u is prescribed (u = 0 or known incoming wave)

2 ∂u/∂n = n · ∇u prescribed (= 0: re�ecting boundary)

3 open boundary (radiation) condition: ut + c · ∇u = 0 (let
waves travel undisturbed out of the domain)

PDEs with second-order time derivative need two initial conditions:

1 u = I ,

2 ut = V .



Mesh

Mesh point: (xi , yj , zk , tn)

x direction: x0 < x1 < · · · < xNx

y direction: y0 < y1 < · · · < yNy

z direction: z0 < z1 < · · · < zNz

uni ,j ,k ≈ ue(xi , yj , zk , tn)



Discretization

[DtDtu = c2(DxDxu + DyDyu) + f ]ni ,j ,k ,

Written out in detail:

un+1
i ,j − 2uni ,j + un−1i ,j

∆t2
= c2

uni+1,j − 2uni ,j + uni−1,j
∆x2

+

c2
uni ,j+1 − 2uni ,j + uni ,j−1

∆y2
+ f ni ,j ,

un−1i ,j and uni ,j are known, solve for un+1
i ,j :

un+1
i ,j = 2uni ,j + un−1i ,j + c2∆t2[DxDxu + DyDyu]ni ,j



Special stencil for the �rst time step

The stencil for u1i ,j (n = 0) involves u−1i ,j which is outside the
time mesh

Remedy: use discretized ut(x , 0) = V and the stencil for n = 0
to develop a special stencil (as in the 1D case)

[D2tu = V ]0i ,j ⇒ u−1i ,j = u1i ,j − 2∆tVi ,j

un+1
i ,j = uni ,j − 2∆Vi ,j +

1

2
c2∆t2[DxDxu + DyDyu]ni ,j



Variable coe�cients (1)

3D wave equation:

%utt = (qux)x + (quy )y + (quz)z + f (x , y , z , t)

Just apply the 1D discretization for each term:

[%DtDtu = (Dxq
xDxu + Dyq

yDyu + Dzq
zDzu) + f ]ni ,j ,k (54)

Need special formula for u1i ,j ,k (use [D2tu = V ]0 and stencil for
n = 0).



Variable coe�cients (2)
Written out:

un+1
i ,j ,k = −un−1i ,j ,k + 2uni ,j ,k+

=
1

%i ,j ,k

1

∆x2
(
1

2
(qi ,j ,k + qi+1,j ,k)(uni+1,j ,k − uni ,j ,k)−

1

2
(qi−1,j ,k + qi ,j ,k)(uni ,j ,k − uni−1,j ,k))+

=
1

%i ,j ,k

1

∆x2
(
1

2
(qi ,j ,k + qi ,j+1,k)(uni ,j+1,k − uni ,j ,k)−

1

2
(qi ,j−1,k + qi ,j ,k)(uni ,j ,k − uni ,j−1,k))+

=
1

%i ,j ,k

1

∆x2
(
1

2
(qi ,j ,k + qi ,j ,k+1)(uni ,j ,k+1 − uni ,j ,k)−

1

2
(qi ,j ,k−1 + qi ,j ,k)(uni ,j ,k − uni ,j ,k−1))+

+ ∆t2f ni ,j ,k



Neumann boundary condition in 2D

Use ideas from 1D! Example: ∂u
∂n at y = 0, ∂u∂n = −∂u

∂y

Boundary condition discretization:

[−D2yu = 0]ni ,0 ⇒
uni ,1 − uni ,−1

2∆y
= 0, i ∈ Ix

Insert uni ,−1 = uni ,1 in the stencil for un+1
i ,j=0 to obtain a modi�ed

stencil on the boundary.

Pattern: use interior stencil also on the bundary, but replace j − 1
by j + 1

Alternative: use ghost cells and ghost values
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Implementation of 2D/3D problems

ut = c2(uxx + uyy ) + f (x , y , t), (x , y) ∈ Ω, t ∈ (0,T ]
(55)

u(x , y , 0) = I (x , y), (x , y) ∈ Ω
(56)

ut(x , y , 0) = V (x , y), (x , y) ∈ Ω
(57)

u = 0, (x , y) ∈ ∂Ω, t ∈ (0,T ]
(58)

Ω = [0, Lx ]× [0, Ly ]

Discretization:

[DtDtu = c2(DxDxu + DyDyu) + f ]ni ,j ,



Algorithm

1 Set initial condition u0i ,j = I (xi , yj)

2 Compute u1i ,j = · · · for i ∈ I ix and j ∈ I iy
3 Set u1i ,j = 0 for the boundaries i = 0,Nx , j = 0,Ny

4 For n = 1, 2, . . . ,Nt :
1 Find un+1

i,j = · · · for i ∈ I ix and j ∈ I iy
2 Set un+1

i,j = 0 for the boundaries i = 0,Nx , j = 0,Ny



Scalar computations: mesh

Program: wave2D_u0.py

def solver(I, V, f, c, Lx, Ly, Nx, Ny, dt, T,
user_action=None, version='scalar'):

Mesh:

x = linspace(0, Lx, Nx+1) # mesh points in x dir
y = linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]
dy = y[1] - y[0]
Nt = int(round(T/float(dt)))
t = linspace(0, N*dt, N+1) # mesh points in time
Cx2 = (c*dt/dx)**2; Cy2 = (c*dt/dy)**2 # help variables
dt2 = dt**2

http://tinyurl.com/nm5587k/wave/wave2D_u0/wave2D_u0.py


Scalar computations: arrays

Store un+1
i ,j , uni ,j , and un−1i ,j in three two-dimensional arrays:

u = zeros((Nx+1,Ny+1)) # solution array
u_1 = zeros((Nx+1,Ny+1)) # solution at t-dt
u_2 = zeros((Nx+1,Ny+1)) # solution at t-2*dt

un+1
i ,j corresponds to u[i,j], etc.



Scalar computations: initial condition

Ix = range(0, u.shape[0])
Iy = range(0, u.shape[1])
It = range(0, t.shape[0])

for i in Ix:
for j in Iy:

u_1[i,j] = I(x[i], y[j])

if user_action is not None:
user_action(u_1, x, xv, y, yv, t, 0)

Arguments xv and yv: for vectorized computations



Scalar computations: primary stencil

def advance_scalar(u, u_1, u_2, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, step1=False):

Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
if step1:

dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

for i in Ix[1:-1]:
for j in Iy[1:-1]:

u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
u[i,j] = D1*u_1[i,j] - D2*u_2[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
if step1:

u[i,j] += dt*V(x[i], y[j])
# Boundary condition u=0
j = Iy[0]
for i in Ix: u[i,j] = 0
j = Iy[-1]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in Iy: u[i,j] = 0
i = Ix[-1]
for j in Iy: u[i,j] = 0
return u

D1 and D2: allow advance_scalar to be used also for u1i ,j :

u = advance_scalar(u, u_1, u_2, f, x, y, t,
n, 0.5*Cx2, 0.5*Cy2, 0.5*dt2, D1=1, D2=0)



Vectorized computations: mesh coordinates

Mesh with 30× 30 cells: vectorization reduces the CPU time by a
factor of 70 (!).

Need special coordinate arrays xv and yv such that I (x , y) and
f (x , y , t) can be vectorized:

from numpy import newaxis
xv = x[:,newaxis]
yv = y[newaxis,:]

u_1[:,:] = I(xv, yv)
f_a[:,:] = f(xv, yv, t)



Vectorized computations: stencil

def advance_vectorized(u, u_1, u_2, f_a, Cx2, Cy2, dt2,
V=None, step1=False):

if step1:
dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

u_xx = u_1[:-2,1:-1] - 2*u_1[1:-1,1:-1] + u_1[2:,1:-1]
u_yy = u_1[1:-1,:-2] - 2*u_1[1:-1,1:-1] + u_1[1:-1,2:]
u[1:-1,1:-1] = D1*u_1[1:-1,1:-1] - D2*u_2[1:-1,1:-1] + \

Cx2*u_xx + Cy2*u_yy + dt2*f_a[1:-1,1:-1]
if step1:

u[1:-1,1:-1] += dt*V[1:-1, 1:-1]
# Boundary condition u=0
j = 0
u[:,j] = 0
j = u.shape[1]-1
u[:,j] = 0
i = 0
u[i,:] = 0
i = u.shape[0]-1
u[i,:] = 0
return u



Veri�cation: quadratic solution (1)

Manufactured solution:

ue(x , y , t) = x(Lx − x)y(Ly − y)(1 +
1

2
t) (59)

Requires f = 2c2(1 + 1
2 t)(y(Ly − y) + x(Lx − x)).

This ue is ideal because it also solves the discrete equations!



Veri�cation: quadratic solution (2)

[DtDt1]n = 0

[DtDtt]n = 0

[DtDtt
2] = 2

DtDt is a linear operator:
[DtDt(au + bv)]n = a[DtDtu]n + b[DtDtv ]n

[DxDxue]ni ,j = [y(Ly − y)(1 +
1

2
t)DxDxx(Lx − x)]ni ,j

= yj(Ly − yj)(1 +
1

2
tn)2

Similar calculations for [DyDyue]ni ,j and [DtDtue]ni ,j terms

Must also check the equation for u1i ,j
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Migrating loops to Cython

Vectorization: 5-10 times slower than pure C or Fortran code

Cython: extension of Python for translating functions to C

Principle: declare variables with type



Declaring variables and annotating the code

Pure Python code:

def advance_scalar(u, u_1, u_2, f, x, y, t,
n, Cx2, Cy2, dt2, D1=2, D2=1):

Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
for i in Ix[1:-1]:

for j in Iy[1:-1]:
u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
u[i,j] = D1*u_1[i,j] - D2*u_2[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])

Copy this function and put it in a �le with .pyx extension.

Add type of variables:

function(a, b) → cpdef function(int a, double b)

v = 1.2 → cdef double v = 1.2

Array declaration:
np.ndarray[np.float64_t, ndim=2, mode='c'] u



Cython version of the functions

import numpy as np
cimport numpy as np
cimport cython
ctypedef np.float64_t DT # data type

@cython.boundscheck(False) # turn off array bounds check
@cython.wraparound(False) # turn off negative indices (u[-1,-1])
cpdef advance(

np.ndarray[DT, ndim=2, mode='c'] u,
np.ndarray[DT, ndim=2, mode='c'] u_1,
np.ndarray[DT, ndim=2, mode='c'] u_2,
np.ndarray[DT, ndim=2, mode='c'] f,
double Cx2, double Cy2, double dt2):

cdef int Nx, Ny, i, j
cdef double u_xx, u_yy
Nx = u.shape[0]-1
Ny = u.shape[1]-1
for i in xrange(1, Nx):

for j in xrange(1, Ny):
u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
u_yy = u_1[i,j-1] - 2*u_1[i,j] + u_1[i,j+1]
u[i,j] = 2*u_1[i,j] - u_2[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f[i,j]

Note: from now in we skip the code for setting boundary values



Visual inspection of the C translation

See how e�ective Cython can translate this code to C:

Terminal> cython -a wave2D_u0_loop_cy.pyx

Load wave2D_u0_loop_cy.html in a browser (white: pure C,
yellow: still Python):

Can click on wave2D_u0_loop_cy.c to see the generated C code...



Building the extension module

Cython code must be translated to C

C code must be compiled

Compiled C code must be linked to Python C libraries

Result: C extension module (.so �le) that can be loaded as a
standard Python module

Use a setup.py script to build the extension module

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

cymodule = 'wave2D_u0_loop_cy'
setup(
name=cymodule
ext_modules=[Extension(cymodule, [cymodule + '.pyx'],)],
cmdclass={'build_ext': build_ext},

)

Terminal> python setup.py build_ext --inplace



Calling the Cython function from Python

import wave2D_u0_loop_cy
advance = wave2D_u0_loop_cy.advance
...
for n in It[1:-1: # time loop

f_a[:,:] = f(xv, yv, t[n]) # precompute, size as u
u = advance(u, u_1, u_2, f_a, x, y, t, Cx2, Cy2, dt2)

E�ciency:

120× 120 cells in space:

Pure Python: 1370 CPU time units
Vectorized numpy: 5.5
Cython: 1

60× 60 cells in space:

Pure Python: 1000 CPU time units
Vectorized numpy: 6
Cython: 1
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Migrating loops to Fortran

Write the advance function in pure Fortran

Use f2py to generate C code for calling Fortran from Python

Full manual control of the translation to Fortran



The Fortran subroutine

subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
integer Nx, Ny
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real*8 f(0:Nx, 0:Ny), Cx2, Cy2, dt2
integer i, j

Cf2py intent(in, out) u

C Scheme at interior points
do j = 1, Ny-1

do i = 1, Nx-1
u(i,j) = 2*u_1(i,j) - u_2(i,j) +

& Cx2*(u_1(i-1,j) - 2*u_1(i,j) + u_1(i+1,j)) +
& Cy2*(u_1(i,j-1) - 2*u_1(i,j) + u_1(i,j+1)) +
& dt2*f(i,j)

end do
end do

Note: Cf2py comment declares u as input argument and return
value back to Python



Building the Fortran module with f2py

Terminal> f2py -m wave2D_u0_loop_f77 -h wave2D_u0_loop_f77.pyf \
--overwrite-signature wave2D_u0_loop_f77.f

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

f2py changes the argument list (!)

>>> import wave2D_u0_loop_f77
>>> print wave2D_u0_loop_f77.__doc__
This module 'wave2D_u0_loop_f77' is auto-generated with f2py....
Functions:
u = advance(u,u_1,u_2,f,cx2,cy2,dt2,

nx=(shape(u,0)-1),ny=(shape(u,1)-1))

Array limits have default values

Examine doc strings from f2py!



How to avoid array copying

Two-dimensional arrays are stored row by row in Python and C

Two-dimensional arrays are stored column by column in Fortran

f2py takes a copy of a numpy (C) array and transposes it
when calling Fortran

Such copies are time and memory consuming

Remedy: declare numpy arrays with Fortran storage

order = 'Fortran' if version == 'f77' else 'C'
u = zeros((Nx+1,Ny+1), order=order)
u_1 = zeros((Nx+1,Ny+1), order=order)
u_2 = zeros((Nx+1,Ny+1), order=order)

Option -DF2PY_REPORT_ON_ARRAY_COPY=1 makes f2py write out
array copying:

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f



E�ciency of translating to Fortran

Same e�ciency (in this example) as Cython and C

About 5 times faster than vectorized numpy code

> 1000 faster than pure Python code
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Migrating loops to C via Cython

Write the advance function in pure C

Use Cython to generate C code for calling C from Python

Full manual control of the translation to C



The C code

numpy arrays transferred to C are one-dimensional in C

Need to translate [i,j] indices to single indices

/* Translate (i,j) index to single array index */
#define idx(i,j) (i)*(Ny+1) + j

void advance(double* u, double* u_1, double* u_2, double* f,
double Cx2, double Cy2, double dt2,
int Nx, int Ny)

{
int i, j;
/* Scheme at interior points */
for (i=1; i<=Nx-1; i++) {
for (j=1; j<=Ny-1; j++) {

u[idx(i,j)] = 2*u_1[idx(i,j)] - u_2[idx(i,j)] +
Cx2*(u_1[idx(i-1,j)] - 2*u_1[idx(i,j)] + u_1[idx(i+1,j)]) +
Cy2*(u_1[idx(i,j-1)] - 2*u_1[idx(i,j)] + u_1[idx(i,j+1)]) +
dt2*f[idx(i,j)];

}
}

}
}



The Cython interface �le

import numpy as np
cimport numpy as np
cimport cython

cdef extern from "wave2D_u0_loop_c.h":
void advance(double* u, double* u_1, double* u_2, double* f,

double Cx2, double Cy2, double dt2,
int Nx, int Ny)

@cython.boundscheck(False)
@cython.wraparound(False)
def advance_cwrap(

np.ndarray[double, ndim=2, mode='c'] u,
np.ndarray[double, ndim=2, mode='c'] u_1,
np.ndarray[double, ndim=2, mode='c'] u_2,
np.ndarray[double, ndim=2, mode='c'] f,
double Cx2, double Cy2, double dt2):
advance(&u[0,0], &u_1[0,0], &u_2[0,0], &f[0,0],

Cx2, Cy2, dt2,
u.shape[0]-1, u.shape[1]-1)

return u



Building the extension module
Compile and link the extension module with a setup.py �le:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

sources = ['wave2D_u0_loop_c.c', 'wave2D_u0_loop_c_cy.pyx']
module = 'wave2D_u0_loop_c_cy'
setup(
name=module,
ext_modules=[Extension(module, sources,

libraries=[], # C libs to link with
)],

cmdclass={'build_ext': build_ext},
)

Terminal> python setup.py build_ext --inplace

In Python:

import wave2D_u0_loop_c_cy
advance = wave2D_u0_loop_c_cy.advance_cwrap
...
f_a[:,:] = f(xv, yv, t[n])
u = advance(u, u_1, u_2, f_a, Cx2, Cy2, dt2)
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Migrating loops to C via f2py

Write the advance function in pure C

Use f2py to generate C code for calling C from Python

Full manual control of the translation to C



The C code and the Fortran interface �le

Write the C function advance as before

Write a Fortran 90 module de�ning the signature of the
advance function

Or: write a Fortran 77 function de�ning the signature and let
f2py generate the Fortran 90 module

Fortran 77 signature (note intent(c)):

subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
Cf2py intent(c) advance

integer Nx, Ny, N
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real*8 f(0:Nx, 0:Ny), Cx2, Cy2, dt2

Cf2py intent(in, out) u
Cf2py intent(c) u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny

return
end



Building the extension module

Generate Fortran 90 module (wave2D_u0_loop_c_f2py.pyf):

Terminal> f2py -m wave2D_u0_loop_c_f2py \
-h wave2D_u0_loop_c_f2py.pyf --overwrite-signature \
wave2D_u0_loop_c_f2py_signature.f

The compile and build step must list the C �les:

Terminal> f2py -c wave2D_u0_loop_c_f2py.pyf \
--build-dir tmp_build_c \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_c.c



Migrating loops to C++ via f2py

C++ can be used as an alternative to C

C++ code often applies sophisticated arrays

Challenge: translate from numpy C arrays to C++ array classes

Can use SWIG to make C++ classes available as Python
classes

Easier (and more e�cient):

Make C API to the C++ code
Wrap C API with f2py

Send numpy arrays to C API and let C translate numpy arrays
into C++ array classes
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Analysis of the di�erence equations



Properties of the solution of the wave equation

∂2u

∂t2
= c2

∂2u

∂x2

Solutions:

u(x , t) = gR(x − ct) + gL(x + ct)

If u(x , 0) = I (x) and ut(x , 0) = 0:

u(x , t) =
1

2
I (x − ct) +

1

2
I (x + ct)

Two waves: one traveling to the right and one to the left



E�ect of variable wave velocity

A wave propagates perfectly (C = 1) and hits a medium with 1/4
of the wave velocity. A part of the wave is re�ected and the rest is
transmitted.



What happens here?

We have just changed the initial condition...



Representation of waves as sum of sine/cosine waves

Build I (x) of wave components e ikx = cos kx + i sin kx :

I (x) ≈
∑
k∈K

bke
ikx

k is the frequency of a component (λ = 2π/k corresponding
wave length)

K is some set of all k needed to approximate I (x) well

bk must be computed (Fourier coe�cients)

Since u(x , t) = 1
2 I (x − ct) + 1

2 I (x + ct):

u(x , t) =
1

2

∑
k∈K

bke
ik(x−ct) +

1

2

∑
k∈K

bke
ik(x+ct)

Our interest: one component e i(kx−ωt), ω = kc



Analysis of the �nite di�erence scheme

A similar discrete unq = e i(kxq−ω̃tn) solves

[DtDtu = c2DxDxu]nq

Note: di�erent frequency ω̃ 6= ω

How accurate is ω̃ compared to ω?

What about the wave amplitude?



Preliminary results

[DtDte
iωt ]n = − 4

∆t2
sin2

(
ω∆t

2

)
e iωn∆t

By ω → k , t → x , n→ q) it follows that

[DxDxe
ikx ]q = − 4

∆x2
sin2

(
k∆x

2

)
e ikq∆x



Numerical wave propagation (1)

Inserting a basic wave component u = e i(kxq−ω̃tn) in the scheme
requires computation of

[DtDte
ikxe−iω̃t ]nq = [DtDte

−iω̃t ]ne ikq∆x

= − 4

∆t2
sin2

(
ω̃∆t

2

)
e−iω̃n∆te ikq∆x

[DxDxe
ikxe−iω̃t ]nq = [DxDxe

ikx ]qe
−iω̃n∆t

= − 4

∆x2
sin2

(
k∆x

2

)
e ikq∆xe−iω̃n∆t



Numerical wave propagation (2)

The complete scheme,

[DtDte
ikxe−iω̃t = c2DxDxe

ikxe−iω̃t ]nq

leads to an equation for ω̃:

sin2
(
ω̃∆t

2

)
= C 2 sin2

(
k∆x

2

)
,

where C = c∆t
∆x

is the Courant number



Numerical wave propagation (3)

Taking the square root:

sin

(
ω̃∆t

2

)
= C sin

(
k∆x

2

)

Exact ω is real

Look for a real solution ω̃ of

Then the sine functions are in [−1, 1]

Lef-hand side in [−1, 1] requires C ≤ 1

Stability criterion

C =
c∆t

∆x
≤ 1



Why C ≤ 1 is a stability criterion

Assume C > 1. Then

sin

(
ω̃∆t

2

)
︸ ︷︷ ︸> 1 = C sin

(
k∆x

2

)

| sin x | > 1 implies complex x

Here: complex ω̃ = ω̃r ± i ω̃i

One ω̃i < 0 gives exp(i · i ω̃i ) = exp(ω̃i ) and exponential growth



Numerical dispersion relation

How close is ω̃ to ω?

Can solve for an explicit formula for ω̃

ω̃ =
2

∆t
sin−1

(
C sin

(
k∆x

2

))

ω = kc is the analytical dispersion relation

ω̃ = ω̃(k , c,∆x ,∆t) is the numerical dispersion relation

Speed of waves: c = ω/k , c̃ = ω̃/k

The numerical wave component has a wrong, mesh-dependent
speed



The special case C = 1

For C = 1, ω̃ = ω

The numerical solution is exact (at the mesh points)!

The only requirement is constant c



Computing the error in wave velocity

Introduce p = k∆x/2
(the important dimensionless spatial discretization parameter)

p measures no of mesh points in space per wave length in
space

Study error in wave velocity through c̃/c as function of p

r(C , p) =
c̃

c
=

1

Cp
sin−1 (C sin p) , C ∈ (0, 1], p ∈ (0, π/2]



Visualizing the error in wave velocity

def r(C, p):
return 2/(C*p)*asin(C*sin(p))

0.2 0.4 0.6 0.8 1.0 1.2 1.4
p

0.6

0.7

0.8

0.9

1.0

1.1
ve

lo
ci

ty
 ra

tio
Numerical divided by exact wave velocity

C=1
C=0.95
C=0.8
C=0.3

Note: the shortest waves have the largest error, and short waves
move too slowly.



Taylor expanding the error in wave velocity

For small p, Taylor expand ω̃ as polynomial in p:

>>> C, p = symbols('C p')
>>> rs = r(C, p).series(p, 0, 7)
>>> print rs
1 - p**2/6 + p**4/120 - p**6/5040 + C**2*p**2/6 -
C**2*p**4/12 + 13*C**2*p**6/720 + 3*C**4*p**4/40 -
C**4*p**6/16 + 5*C**6*p**6/112 + O(p**7)

>>> # Factorize each term and drop the remainder O(...) term
>>> rs_factored = [factor(term) for term in rs.lseries(p)]
>>> rs_factored = sum(rs_factored)
>>> print rs_factored
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040 +
p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120 +
p**2*(C - 1)*(C + 1)/6 + 1

Leading error term is 1
6(C 2 − 1)p2 or

1

6

(
k∆x

2

)2

(C 2 − 1) =
k2

24

(
c2∆t2 −∆x2

)
= O(∆t2,∆x2)



Example on e�ect of wrong wave velocity (1)

Smooth wave, few short waves (large k) in I (x):



Example on e�ect of wrong wave velocity (1)

Not so smooth wave, signi�cant short waves (large k) in I (x):



Extending the analysis to 2D (and 3D)

u(x , y , t) = g(kxx + kyy − ωt)

is a typically solution of

utt = c2(uxx + uyy )

Can build solutions by adding complex Fourier components of the
form

e i(kxx+kyy−ωt)



Discrete wave components in 2D

[DtDtu = c2(DxDxu + DyDyu)]nq,r

This equation admits a Fourier component

unq,r = e i(kxq∆x+ky r∆y−ω̃n∆t)

Inserting the expression and using formulas from the 1D analysis:

sin2
(
ω̃∆t

2

)
= C 2

x sin
2 px + C 2

y sin
2 py

where

Cx =
c2∆t2

∆x2
, Cy =

c2∆t2

∆y2
, px =

kx∆x

2
, py =

ky∆y

2



Stability criterion in 2D

Rreal-valued ω̃ requires

C 2
x + C 2

y ≤ 1

or

∆t ≤ 1

c

(
1

∆x2
+

1

∆y2

)−1/2



Stability criterion in 3D

∆t ≤ 1

c

(
1

∆x2
+

1

∆y2
+

1

∆z2

)−1/2
For c2 = c2(x) we must use the worst-case value
c̄ =

√
maxx∈Ω c2(x) and a safety factor β ≤ 1:

∆t ≤ β 1
c̄

(
1

∆x2
+

1

∆y2
+

1

∆z2

)−1/2



Numerical dispersion relation in 2D (1)

ω̃ =
2

∆t
sin−1

((
C 2
x sin

2 px + C 2
y sin

p
y

) 1
2

)
For visualization, introduce θ:

kx = k sin θ, ky = k cos θ, px =
1

2
kh cos θ, py =

1

2
kh sin θ

Also: ∆x = ∆y = h. Then Cx = Cy = c∆t/h ≡ C .

Now ω̃ depends on

C re�ecting the number cells a wave is displaced during a time
step

kh re�ecting the number of cells per wave length in space

θ expressing the direction of the wave



Numerical dispersion relation in 2D (2)

c̃

c
=

1

Ckh
sin−1

(
C

(
sin2(

1

2
kh cos θ) + sin2(

1

2
kh sin θ)

) 1

2

)

Can make color contour plots of 1− c̃/c in polar coordinates with
θ as the angular coordinate and kh as the radial coordinate.



Numerical dispersion relation in 2D (3)
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