Study guide: Finite difference methods for wave

motion

Hans Petter Langtangen!

Center for Biomedical Computing, Simula Research Laboratory and Department
of Informatics, University of Oslo!

Nov 12, 2014

‘ The complete initial-boundary value problem

27 =52 xe(0,0), te (0, 7] (1)
u(x,0) = I(x), x €0, L] 2)

2]
Eu(x, 0) =0, xeo,1] (3)
u(0,t) =0, te (0, 7] (4)
u(L,t) =0, te(0, 7] (5)

Demo of a vibrating string

o Our numerical method is sometimes exact (!)

@ Our numerical method is sometimes subject to serious
non-physical effects

‘ Finite difference methods for waves on a string

Waves on a string can be modeled by the wave equation

Pu_ e
o2~ ox?
u(x, t) is the displacement of the string

Demo of waves on a string.

‘ Input data in the problem

o Initial condition u(x,0) = I(x): initial string shape

o Initial condition u;(x,0) = 0: string starts from rest

e c =/ T/o: velocity of waves on the string

o (T is the tension in the string, o is density of the string)

o Two boundary conditions on u: u = 0 means fixed ends (no
displacement)

Rule for number of initial and boundary conditions:

@ uy in the PDE: two initial conditions, on v and u;
o u; (and no wy) in the PDE: one initial conditions, on u

@ Uy, in the PDE: one boundary condition on u at each
boundary point

| Demo of a vibrating string (C = 1.0012)

Ooops!

‘ Step 1: Discretizing the domain

Mesh in time:

O=ty<ti<tb< - <ty1<ty=T (6)

Mesh in space:

O0=xp<x1 <Xxp<---<Xxp—1<xn, =1L 7)

Uniform mesh with constant mesh spacings At and Ax:

xi=iAx, i=0,....,Ny, ti=nAt, n=0,...,N; (8)

‘ Step 2: Fulfilling the equation at the mesh points

Let the PDE be satisfied at all interior mesh points:

2 , 0
W“(Xhtn) =c M”(Xhtn)‘ 9
fori=1,...,Ny—landn=1,... Ny — 1.

For n = 0 we have the initial conditions u = /(x) and u; = 0, and
at the boundaries i = 0, N we have the boundary condition u = 0.

Step 3: Algebraic version of the PDE

Replace derivatives by differences:

0t oy gr-l N oun 4y
ul T 2l Uy — 20 Uy
At? Ax? ’

(10)

In operator notation:

[DeDyu = CZDXDX]IIJ (11)

‘ The discrete solution

o The numerical solution is a mesh function: uf ~ ue(x;, t,)
o Finite difference stencil (or scheme): equation for u]" involving
neighboring space-time points
Stencil at interior point
5
4
Fo)
c 3 ©
x
3
3
£, fo 0O fo
© © ©
o)
1 Q
0
0 1 2 3 4 5
index i

‘ Step 3: Replacing derivatives by finite differences

Widely used finite difference formula for the second-order derivative:

02 MmN

3?‘1(&3 tn) ~ # = [D¢Dyu]?
and

52 ufly —2u? 4+ ul

Wu(x,-, ty) ~ % = [DxDyu]?

Step 3: Algebraic version of the initial conditions

o Need to replace the derivative in the initial condition
u(x,0) = 0 by a finite difference approximation

o The differences for uy and uy, have second-order accuracy
o Use a centered difference for u;(x,0)

Dyu]”=0, n=0 = u."’lzu-"Jrl, i=0,...,Ny
i

‘ Step 4: Formulating a recursive algorithm

o Nature of the algorithm: compute v in space at
t = At,2At,3At, ...

o Three time levels are involved in the general discrete equation:
n+1,nn—1

o uf and u;“l are then already computed for i =0,..., Ny, and
u™* is the unknown quantity

Write out [DDyu = c?DxDy]? and solve for u™*?,

uf =yt 20l + C2 (ufyy —2uf +ufy) (12)

i

The finite difference stencil

Stencil at interior point
5
4
o)
c 3 ©
x
3
Ee]
=, 0O 0O 0O
A4 A4 A4
o)
1 ©
0
0 1 2 3 4 5
index i

‘ The algorithm

O Compute u? =1(x;) fori=0,..., Ny
1

@ Compute u} by (14) and set u} = 0 for the boundary points

i

i=0andi= Ny, forn=12_....N—1,

© For each time level n=1,2,... N, — 1
0 apply (12) to find v fori=1,..., N, —1

@ set u*! = 0 for the boundary points i = 0, i = N.

‘ The Courant number

C= “Ax (13)

is known as the (dimensionless) Courant number

There is only one parameter, C, in the discrete model: C lumps
mesh parameters At and Ax with the only physical parameter, the
wave velocity ¢. The value C and the smoothness of /(x) govern
the quality of the numerical solution.

‘ The stencil for the first time level

@ Problem: the stencil for n = 1 involves ufl, but time
t = —At is outside the mesh

o Remedy: use the initial condition u; = 0 together with the
stencil to eliminate u,-’1

Initial condition:

[Dau=0° = ul=u

Insert in stencil [D;Dyu = czDXDX]? to get

1
uf =y — ECZ (ufpy =20 +uy) (14)

‘ Moving finite difference stencil

web page or a movie file.

‘ Sketch of an implementation (1) ‘ PDE solvers should save memory

o Arrays:

o ul1] stores uf"*! Important to minimize the memory usage

o u_1[i] stores uf The algorithm only needs to access the three most recent time

o u_2[i] stores u~* levels, so we need only three arrays for u,f”'l, uf, and u?,
i=0,...,Ny. Storing all the solutions in a two-dimensional array

of size (Nx + 1) x (N; + 1) would be possible in this simple
one-dimensional PDE problem, but not in large 2D problems and
not even in small 3D problems.

Naming convention

u is the unknown to be computed (a spatial mesh function), u_k is
the computed spatial mesh function k time steps back in time.

of an implementation (2) ‘ Verificati

Given mesh points as arrays = and t (z[i], t[n])

dx = x[1] - x[0]

dt = t[1] - t[o]

C = cdt/dx # Courant number

Nt = len(t)-1

C2 = Ck*2 # Help variable in the scheme

Set initial condition u(z,0) = I(z) o Think about testing and verification before you start
for i in range(0, Nxtl): implementing the algorithm!

u 1[i] = I(x[il)

o Powerful testing tool: method of manufactured solutions and
Apply special formula for first step, imcorporating du/dt=0

for i in range(l, Nx): computation of convergence rates
ulil = uw_1[i] - 0.5+#C++2(u_1[i+1] - 2+u_1[i] + u_1[i-11) . .
ul0] = 0; ulNx] = 0 # Enforce boundary conditions o Will need a source term in the PDE and u(x,0) # 0

Switch variables before nest step @ Even more powerful method: exact solution of the scheme

u2[:]1, uwil:] = ui, u

for n in range(l, Nt):
Update all inner mesh points at time t[n+1]
for i in range(1, Nx):
uli]l = 2u_1[i] - uw_2[i] -\
Cx#2(u_1[i+1] - 2%u_1[il + u_1[i-1])

Insert boundary conditions
ul0] = 0; wulNx] =0

‘ A slightly generalized model problem ‘ Discrete model for the generalized model problem

Add source term f and nonzero initial condition u(x,0):

[DeDru = 2D, Dy + 117 (20)
U = Py + F(x, t), (15) Writing out and solving for the unknown u,f’“:
u(x,0) = I(x), xelo,L] (16)
u(x,0) = V(x), x €[0,L] (17) . o ., . i i)
u(0.t) =0, e>0. (19) WP = a2l Cufly — 207 +) + AP (21)
u(L,t)=0, t>0 (19)

‘ Modified equation for the first time level Using an analytical solution of physical significance

. tandi i | life tri
Centered difference for ug(x,0) = V(x): o Standing waves occur in real life on a string

o Can be analyzed mathematically (known exact solution)

[Dau=V)} = u'=ut 24tV — Asin (T T
i i i i ue(x,y, t)) = Asin (Lx) cos (Lct) (23)

Inserting this in the stencil (21) for n = 0 leads to
o PDE data: f =0, boundary conditions ue(0,t) = ue(L,0) =0,
initial conditions /(x) = Asin (x) and V =0

1 1
ut = u? — AtV + 2C? (ufyy — 20 +ufy) + SARF (22) o Note: uf“ # ue(xj, tn+1, and we do not know the error, so
2 2 testing must aim at reproducing the expected convergence
rates

Manufactured solution: principles ‘ Manufactured solution: example

ve(x, t) = x(L — x)sin t
PDE uy = Pup + F:

o Disadvantage with the previous physical solution: it does not

test V#0and f #0 —x(L—x)sint=—-2sint+f =f=(2—x(L—x))sint
o Method of manufactured solution:
o Choose some ue(x, t) Implied initial conditions:

o Insert in PDE and fit f

o Set boundary and initial conditions compatible with the chosen
ue(x, t)

u(x,0)=1(x)=0

u(x,0) = V(x) = —x(L — x)
Boundary conditions:

u(x,0) = u(x,L) =0

‘ Testing a manufactured solution ‘ Constructing an exact solution of the discrete equations

Introduce common mesh parameter: h = At, Ax = ch/C
This h keeps C and At/Ax constant

o Manufactured solution with computation of convergence rates:
Select coarse mesh h: hy

much manual work

Run experiments with h; = 2~7hy (halving the cell size),

o m @ Simpler and more powerful: use an exact solution for uf

o A linear or quadratic ue in x and t is often a good candidate

Record the error E; and h; in each experiment
o Compute pariwise convergence rates r; = In Ej;1/E;/In hiy1/hi
@ Verification: r; — 2 as i increases

‘ Analytical work with the PDE problem

Here, choose ue such that ue(x,0) = ue(L,0) = 0:
1
ue(x,t) = x(L —x)(1+ 51‘)7
Insert in the PDE and find f:

f(x,t) = 2(1 + t)c?

Initial conditions:

1) = x(L—x), V(x)= %X(L —3

| Analytical work with the discrete equations (1)

1 1
[DxDxte]f = (1 + 5ta)[DxDx(xt = x*)]i = (1 + 5 tn)[LDxDx — DxDrx®

1
= =21+ 5tn)

Now, " =2(1 + %1.’,,)c2 and we get

1 1
[D: Dyt — Dy Dytie —f]7 = 0752(71)2(1+Etn+2(1+5t,,)c2 =0

Moreover, ue(xj,0) = I(x;), due/Ot = V(x;) at t =0, and
ue(xo, t) = ue(xn,,0) = 0. Also the modified scheme for the first
time step is fulfilled by ue(x;, tn).

‘ Implementation

| Analytical work with the discrete equations (1)

We want to show that ve also solves the discrete equations!

Useful preliminary result:

2 2 g2
b1 =2t Tty

[Dy Dt = N =(n+1?—n’+(n-12=2
(24)

ot =2ttt ((n+1)—n+(n—1)At
[DeDut]” = Af? - At? =0
(25)

Hence,

1 1
[D¢Dyue]? = xi(L — x;)[De Dy (1 + 51‘)]" =x(L— x,-)E[DtD,t]" =0

‘ Testing with the exact discrete solution

o We have established that

u™ = ve(xi, trs1) = xi(L — xi)(1 + tns1/2)
@ Run one simulation with one choice of ¢, At, and Ax
o Check that max; |u;'4rl — ue(Xiy tny1)| < €, € ~ 10714 (machine
precision + some round-off errors)

@ This is the simplest and best verification test

Later we show that the exact solution of the discrete equations can
be obtained by C =1 (!)

‘ The algorithm

@ Compute uf = I(x;) for i =0,..., Ny

i
@ Compute u} by (14) and set u} = 0 for the boundary points
i=0andi= Ny, forn=12 ... N—-1,
© For each time level n=1,2,... N; — 1
0 apply (12) to find u/™* for i=1,..., Ny — 1
@ set u?*! = 0 for the boundary points i =0, i = N,.

‘ What do to with the solu

o Different problem settings demand different actions with the

computed u,f’+1 at each time step

@ Solution: let the solver function make a callback to a user
function where the user can do whatever is desired with the
solution

o Advantage: solver just solves and user uses the solution

def user_action(u, x, t, n):
ul[i] at spatial mesh points (4] at time t[n]
plot u
or store u

| Making a solver function (2)
def solver(I, V, f, ¢, L, dt, C, T, user_action=None):

Special formula for first time step
n =0
for i in range(1, Nx):
ulil = w_1[i] + de*V(x[i]) + \
0.5%C2% (u_1[i-1] - 2#u_1[i] + u_1[i+11) + \
0.5+dt**2+f (x[i], t[n])
uf0] = 0; wulNx] =0

if user_action is not None:
user_action(u, x, t, 1)

Switch variables before next step
u2l:], uil:]l =ud, u

def solver(I, V, f, c, L, Nx, C, T, user_action=None):
Time loop

for n in range(1, Nt):
Update all inner points at time t[n+1]
for i in range(1, Nx):
ulil = - w_2[i] + 2+u_1[i] + \
C2*(u_1[i-1] - 2%u_1[i] + uw_1[i+1]) + \
dt=*2+f (x[i], t[n])

Make a viz function for animating the curve, with plotting in a
user_action function plot_u:

def viz(I, V, f, ¢, L, dt, C, T, umin, umax, animate=True):
"""Run solver and visualize u at each time level."""
import scitools.std as plt
import time, glob, os

def plot_u(u, x, t, n):
niityser_action function for solver."""
plt.plot(x, u, 'r-’,
xlabel="x’, ylabel=’u’,
axis=[0, L, umin, umax],
title="t=%f’ % t[n], show=True)
Let the initial condition stay on the screen for 2
seconds, else insert a pause of 0.2 s between each plot
time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig(’frame_%04d.png’ % n) # for movie making

Clean up old movie frames
for filename in glob.glob(’frame_*.png’):
os.remove (filename)

user_action = plot_u if animate else None
u, x, t, cpu = solver(I, V, f, c, L, dt, C, T, user_action)

Hake movie files

| Making a solver function (1)

We specify At and C, and let the solver function compute
Ax = cAt/C.

def solver(I, V, f, c, L, dt, C, T, user_action=None):
nnnSolue u_tt=c-2+u_zz + f on (0,1)z(0,T]."""
Nt = int(round(T/dt))
t = linspace(0, Ntxdt, Nt+1) # Hesh points in time
dx = dt*c/float(C)
Nx = int(round(L/dx))
x = linspace(0, L, Nx+1)
dx = x[1] - x[0]
C2 = Cxx2 # Help variable in the scheme
if f is None or f ==
£ = lambda x, t: 0
if V is None or V ==
V = lambda x: 0

Mesh points in space

zeros(Nx+1) # Solution array at new time level
_1 = zeros(Nx+1) # Solution at I time level back
_2 = zeros(Nx+1) # Solution at 2 time levels back

gee

import time; t0 = time.clock() # for measuring CPU time

Load initial condition into u_1
for i in range(0,Nx+1):

u_1[i] = 1(x[il)

‘ Verification: exact quadratic solution
Exact solution of the PDE problem and the discrete equations:
ve(x,t) = x(L — x)(1 + %t)
import nose.tools as nt

def test_quadratic():
mniCheck that u(z,t)=z(L-z)(1+1/2) is exactly reproduced.”""
def u_exact(x, t):
return x*(L-x)*(1 + 0.5%t)

def I(x):

return u_exact(x, 0)
def V(x):

return 0.5%u_exact(x, 0)
def f(x, t):

return 2%(1 + 0.5%t)*xc**2
L=2.5
c=1.5
C=0.75
Nx = 3 # Very coarse mesh for this ewact test
dt = C*(L/Nx)/c
T = 18

u, X, t, cpu = solver(I, V, f, ¢, L, dt, C, T)

@ Store spatial curve in a file, for each time level
o Name files like ’something_%04d.png’ % frame_counter

o Combine files to a movie

Terminal> scitools
fr

o Zero padding (%04d) is essential for correct sequence of frames
in something_#.png (Unix alphanumeric sort)

@ Remove old frame_x.png files before making a new movie

" inplementtion of th coe

def guitar(C):
"muTriangular wave (pulled guitar strimg)."""
L =0.75

.)) X0 = 0.84L

o Vibrations of a guitar string a = 0.005

freq - 440

wavelength = 2+L

c = freq+wavelength

I(x) = { ax/xo, X < xo omega = 2*pi*freq

o Triangular initial shape (at rest)

. (26) num_periods = 1
a(L - X)/(L - XO)’ otherwise T = 2+*pi/omega*num_periods
Choose dt the same as the stability limit for Nz=50
. dt = L/50.
Appropriate data: /80 /e
def I(x):
. 't 0 if < x0 el L-x0 L-
o L =75cm, xg = 0.8L, a=5 mm, time frequency v = 440 Hz return ax/x0 if x < x0 else a/(L-x0)*(L-x)
umin = -1.2*%a; wumax = -umin
cpu = viz(I, 0, 0, ¢, L, dt, C, T, umin, umax, animate=True)

Program: wave1D_u0.py.

‘ The benefits of scaling

o It is difficult to figure out all the physical parameters of a case

o And it is not necessary because of a powerful: scaling
Introduce new x, t, and v without dimension:

s X g€ g_v
X=-, = 0=—
L L’ a

Movie of the vibrating string

Insert this in the PDE (with f = 0) and dropping bars

Ut = Uxx

Initial condition: set a=1, L =1, and xg € [0,1] in (26).

In the code: set a=c=L=1, x0=0.8, and there is no need to
calculate with wavelengths and frequencies to estimate ¢!

Just one challenge: determine the period of the waves and an
appropriate end time (see the text for details).

‘ Vectorizati ‘ Operations on slices of arl

o Introductory example: compute d; = uj1 — uj

n = u.size
for i in range(0, n-1):

o Problem: Python loops over long arrays are slow d[i] = uli+1] - ulil
o One remedy: use vectorized (numpy) code instead of explicit
loops o Note: all the differences here are independent of each other.
o Other remedies: use Cython, port spatial loops to Fortran or C o Therefore d = (u1, up, ..., up) — (uo, u1,. .., Un—1)
o Speedup: 100-1000 (varies with N,) o In numpy code: ul1:n] - ul0:n-11 or just ul1:] - u[:-1]

Next: vectorized loops

‘ Test the understan

Newcomers to vectorization are encouraged to choose a small array
u, say with five elements, and simulate with pen and paper both
the loop version and the vectorized version.

Vectorization of finite difference schemes (2)

Include a function evaluation too:

def f(x):
return x**2 + 1

Scalar version
for i in range(1l, n-1):
u2[il = uli-11 - 2*ulil + uli+1] + £(x[i])

Vectorized version
u2(i:-1] = ul:-2] - 2%u[1:-1] + u[2:] + £(x[1:-1])

‘ Verification of the vectorized versio

def test_quadratic():

Check the scalar and vectorized versions work for

"o

The following function must work for z as array or scalar
u_exact = lambda x, t: x*(L - x)*(1 + 0.5%t)

I = lambda x: u_exact(x, 0)

V = lambda x: 0.5%u_exact(x, 0)

f is a scalar (zeros_like(z) works for scalar © too)
f = lambda x, t: zeros_like(x) + 2#c**2%(1 + 0.5%t)
L=2.5

c 1.5

C=0.75

Nx = 3 # Very coarse mesh for this emact test

d C+(L/Nx)/c

T 8

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = abs(u - u_e).max()
nt.assert_almost_equal (diff, 0, places=13)

solver(I, V, f, ¢, L, dt, C, T,
user_action=assert_no_error, version=’scalar’)
solver(I, V, f, ¢, L, dt, C, T,
+5

,,,,,,, no arror warcionz) izadd)

a quadratic u(z,t)=z(L-z)(1+t/2) that is ewactly reproduced.
i

of fi

‘ Vectorizati ite difference schemes (1)

Finite difference schemes basically contains differences between
array elements with shifted indices. Consider the updating formula

for i in range(1, n-1):
u2l[i] = uli-1] - 2+uli] + uli+1]

The vectorization consists of replacing the loop by arithmetics on
slices of arrays of length n-2:

u2
u2

ul:-2] - 2+ul1:-1] + u[2:]
ul0:n-2] - 2#ull:n-1] + u[2:n] # alternative

Note: u2 gets length n-2.

If u2 is already an array of length n, do update on "inner" elements

u2[1:-1]
u2[1:n-1]

ul:-2] - 2*u[1:-1] + u[2:]
ul0:n-2] - 2#uli:n-1] + ul[2:n] # alternative

‘ Vectorized implementation in the solver function

Scalar loop:
for i in range(l, Nx):

ulil = 2%u_1[i] - u_2[4] + \
C2+(u_1[i-1] - 2*u_1[i] + w_1[i+1])

Vectorized loop:

uli:-1] = - w2[1:-1] + 2%u_1[1:-1] + \
C2%(u_1[:-2] - 2%u_1[1:-1] + u_1[2:])

or

uli1:Nx] = 2+u_1[1:Nx]- u_2[1:Nx] + \
C2+(u_1[0:Nx-1]1 - 2#u_1[1:Nx] + u_1[2:Nx+1])

Program: wavelD_uOv.py

‘ Efficie

measurements

o Run wavel1D_uOv.py for Ny as 50,100,200,400,800 and
measuring the CPU time

o Observe substantial speed-up: vectorized version is about
Ny /5 times faster

Much bigger improvements for 2D and 3D codes!

oundaries

‘ Generalization: reflecti

@ Boundary condition u = 0: u changes sign
o Boundary condition uy = 0: wave is perfectly reflected
o How can we implement uy,? (more complicated than v = 0)

Demo of boundary conditions

‘ Discretization of derivatives at the boundary (1)

@ How can we incorporate the condition uy = 0 in the finite
difference scheme?

o We used centeral differences for g and v, O(At2, Ax?)
accuracy

o Also for u(x,0)

@ Should use central difference for uy to preserve second order
accuracy

n n
uy —uf

“ax O (28)

‘ Visualization of modified ndary stencil

Discrete equation for computing ug in terms of u2, ul, and u?:
o s Yo 1

Animation in a web page or a movie file.

‘ Neumann boundary condition

u -~
So=n-Vu=0 (27)
For a 1D domain [0, L]:
oy _o o) __ 0
on|,_, 0x’ 9n|,_, Ox

Boundary condition terminology:

o uy specified: Neumann condition

o u specified: Dirichlet condition

| Discretization of derivatives at the boundary (2)

n n

u"y —u

1 1_ 0
2Ax

@ Problem: u”, is outside the mesh (fictitious value)

o Remedy: use the stencil at the boundary to eliminate u”;; just
replace u”; by uf

uftt =yt 2w +2C% (ufyy —uf), i=0 (29)

of Neumann conditi

‘ Implementati

o Use the general stencil for interior points also on the boundary
o Replace u ; by uf!,; fori=0
o Replace uf; by uf ; for i = Ny

i=0

ipl = i+l
iml = ipl # i-1 -> i+1

ulil = w_1[i] + C2*(u_1[im1] - 2*u_1[il + u_1[ip1])
i=DNx

iml i-1

ip1 iml # i+l -> i-1
u%i] = u 1[i] + C2x(u_1[im1] - 2*u_1[i] + u_1[ip1])

Or just one loop over all points
for i in range(0, Nx+1):
ipl = i+l if i < Nx else i-1

iml -1 if i > 0 else i+l
ulil = u_1[i] + C2*(u_1[im1] - 2%u_1[il + u_1[ip1])

Program wave1D_dnO.py

‘ Moving finite difference stencil ‘ Index set notation

Tedious to write index sets like i = 0,..., Ny and
n=0,...,N;

o Notation not valid if / or n starts at 1 instead...

o Both in math and code it is advantageous to use index sets
° oy Ny

)

i € Iy instead of i =0
o Definition: Z, = {0,
o The first index: i = 70
o The last index: i = Z;!
o All interior points: i € Z/, T} = {1,..., Ny — 1}
o 7 means {0,..., Nx — 1}
o T, means {1,..., Ny}

web page or a movie file.

| Index set notation in code | Index sets in action (1)

Index sets for a problem in the x, t plane:
Notation Python

I Ix
7° 1x[0] Ic =A{0,..., Ny}, Z,=1{0,..., N, 30
z, o = {0, Ny To= {0 N}, (30)
I. Ix[1:] .
I 1§[;,1] Implemented in Python as
)

Ix = range(0, Nx+1)

It = range(0, Nt+1)

‘ Index sets in action (2) ‘ Alternative implementation via ghost cells

A finite difference scheme can with the index set notation be

specified as
u}'“ _ 7[][{,,1 +oul 4 C? (W — 200 400 y), i€ T neT ° Lﬁit:gsﬁft:ziig:nfnzh:nje;;\:liljlt the boundary, we extend
u=0, i=T nel]) @ The extra left and right cell arxe called ghost cells
ui=0, i=T; ne 7 @ The extra points are called ghost points
o The u”; and ”RIXH values are called ghost values
Corresponding implementation: o Update ghost values as u | = uf,; for i =0 and i = Ny

for n in It[1:-1]: @ Then the stencil becomes right at the boundary

for i in Ix[1:-1]:
ulil = - w_2[i] + 2%u_1[i] + \
C2+(u_1[i-1] - 2+u_1[i] + u_1[i+1])
i = Ix[0]; wulil =0
i = Ix[-11; ulil = 0

o

Program wave1D_dn.py

Implementation of ghost cells (1)

Add ghost points:

u = zeros(Nx+3)
u_l = zeros(Nx+3)
u_2 = zeros(Nx+3)

x = linspace(0, L, Nx+1) # Hesh points without ghost points

@ A major indexing problem arises with ghost cells since Python
indices must start at 0.

o u[-1] will always mean the last element in u

@ Math indexing: —1,0,1,2,... Ny +1

o Python indexing: 0,..,Nx+2

o Remedy: use index sets

. variable wave velocity

‘ Generalizatio

Heterogeneous media: varying ¢ = c(x)

b ar s i ar e N Y

| Discretizing the variable coefficient (1)

The principal idea is to first discretize the outer derivative.

Define s
| u
o= Q(X)g

Then use a centered derivative around x = x; for the derivative of
o:

1" ¢i+% - ¢i7§ N
(5], = " =

| Implementation of ghost cells (2)

u = zeros (Nx+3)
Ix = range(1, u.shape[0]-1)

Boundary values: ul[Ix[0]], ulIx[-11]

Set initial conditions
for i in Ix:
u_1[i] = I(x[i-Ix[011) # Note i-Ix[0]

Loop over all physical mesh points
for i in Ix:
ulil = - uw_2[i] + 2%u_1[i] + \
C2+(u_1[i-11 - 2#u_1[i] + u_1[i+11)

Update ghost values

i = Ix[0] # x=0 boundary
uli-1] = uli+1]
i = Ix[-1] # x=L boundary

uli-1] = uli+1]

Program: wavelD_dn0O_ghost.py.

‘ The model PDE with a variable coefficient

2y o
‘(;7 - % (q(x)%()) (31)

This equation sampled at a mesh point (x;, t,):

0 0
st = o (as) o)) + 1),

| Discretizing the variable coefficient (2)

Then discretize the inner operators:

‘ ou]" Uiy — uf n
Giry = 9iny [a] ST A 1Pl
i+1
Similarly,
oul” Ui — Uiy n
he =g (g, = et = vl

‘ Discretizing the variable coefficient (3) ‘ Computing the coefficient between mesh points

These intermediate results are now combined to

o Given g(x): compute gip1 s q(xH%)

17} ou\1" 1 o Given g at the mesh points: gj, use an average
[(a0952)] = o (st (s = o) =iy 07— ur))
(32) 1 i .
In operator notation: G+l ™5 (qi + qiv1) = [T (arithmetic mean) (34)
11\t

0 ou\1" G 1~2 (7 +) harmonic mean 35

{a (q(x)a)] ~ [DxqDxul} (33) 3 g gip1 ()38

' 9yl ™ (qiq;+1)1/2 (geometric mean) (36)

The arithmetic mean in (34) is by far the most used averaging
technique.

Many are tempted to use the chain rule on the term & (q(x)%),

9
are ! Ix
but this is not a good ideal

Discretization of variable-coefficient wave equation in ‘ Neumann condition and a variable coefficient

operator notation

Consider Ju/0x =0 at x = L = NyAx:
[D:Dru = DG Dyu + f]7 (37)

n n
Ui — Ui

We clearly see the type of finite differences and averaging! Ax =1_g ulyy =iy, P= Ny

Write out and solve wrt u;’“:
Insert uf',; = uf_; in the stencil (38) for i = Ny and obtain

Ax\? Ax\ 2
ot =t 20 + <E) X uftt e —ut 7t 2wl + (E) 2qgi(uly — uf) + AL2£"
1 n n 1 n n
2(Qi + qi1)(ufyy — uf) - E(qi +qi-1)(uf —uly)) + (We have used 91 + 1™ 2q;.)
Af" (38) Alternative: assume dq/dx = 0 (simpler).
‘ Implementation of variable coefficients ‘ A more general model PDE with variable coefficients

Assume c[i] holds ¢; the spatial mesh points

Pu 9 ou
for i in range(l, Nx): Q(X)(j? - 07 <q(X)&) * f(X7 t) (39)
ulil = - u_2[i] + 2*u_1[i] + \
C2#(0.5%(q[i] + q[i+1])*(u_1[i+1] - uw_1[i]) -\
0.5%(q[i] + qli-11)*(u_1[i] - u_1[i-11)) + \ A natural scheme is
dt2+f (x[i], t[n])
Here: C2=(dt/dx)**2 [eD:Dyu = Dxq*Dyu + f]} (40)
Vectorized ion:
ectorized version or
ull:-1] = - w_2[1:-1] + 2%u_1[1:-1] + \
C2#(0.5%(ql1:-1] + q[2:1)*(u_1[2:] - w_1[1:-1]) -
0.5%(q1:-1] + ql:-21)*(u_1[1:-1] - uw_1[:-21)) + \ [D:Dru = QileﬁXDxu‘*' 12 (41)

dt2+f (x[1:-1], t[n])

. . . - . No need to average o, just sample at i
Neumann condition uy = 0: same ideas as in 1D (modified stencil 8¢ & P

or ghost cells).

‘ Generalization: damping ‘ Building a general 1D wave equation solver

Why do waves die out?

o Damping (non-elastic effects, air resistance)

e 2D/3D: conservation of energy makes an amplitude reduction The program wave1D_dn_vc.py solves a fairly general 1D wave
by 1/y/r (2D) or 1/r (3D) equation:

Simplest damping model (for physical behavior, see demo):

a) " ur = ((Xu)x +f(x,t), x€(0,L), te(0,T] (44)
u + Ou _ 20u) (42) (x,0) = I(x) [0,L] (45)

ot? ot~ ox? Xt ulx, V) = Ix), x € [0,
ue(x,0) = V(t), x €[0,L] (46)
b > 0: prescribed damping coefficient. u(0,) = Up(t) or ux(0,t) =0, te(0,T] (47)
Lit)=UL(t x(L,t) =0, te (0, T] (48
Discretization via centered differences to ensure O(At?) error: u(L,t) () or ux(L,2) €07 (48)

» Can be adapted to many needs.
[D¢Dyu + bDpeu = c*DyDyu + f]7] (43)

Need special formula for u} + special stencil (or ghost cells) for
Neumann conditions.

‘ Collection of initial conditions Finite difference methods for 2D and wave equations

The function pulse in wave1D_dn_vc.py offers four initial

conditions: Constant wave velocity c:

Q a rectangular pulse ("plug")

&u
@ a Gaussian function (gaussian) Frrie AV2ufor x e QCRY, te(0,7] (49)
© a "cosine hat": one period of 1+ cos(rx, x € [-1,1]
Q half a "cosine hat": half a period of cosmx, x € [-1,1 Variable wave velocity:
e _ . . 2
Can locate the initial pulse at x = 0 or in the middle Q% V. (qVu) 4 Florx €QCRY, £ (0,T] (50)
G

>>> import wavelD_dn_vc as w
>>> w.pulse(loc="left’, pulse_tp=’cosinehat’, Nx=50, every_frame=10)

Examples on wave equations written out in 2D/3D ‘ Boundary and initial conditions

3D, constant c:

) Py Pu u We need one boundary condition at each point on 0
V= omt sty
Ox2 9y? 0z?) .) .
@ u is prescribed (u = 0 or known incoming wave)
@ 9Ju/dn = n-Vu prescribed (= 0: reflecting boundary)
@ open boundary (radiation) condition: u; + ¢ - Vu =0 (let
waves travel undisturbed out of the domain)

2D, variable c:

%u 0 du 0 Ou
o5 = o (aengf) + o (e e) + it
(51)
Compact notation: Qu=1,

Q u=V.

PDEs with second-order time derivative need two initial conditions:

Uy = cz(uxx +uyy +uz) + 1, (52)
our = (qux)x + (quz)z + (quz)z + f (53)

@ Mesh point: (x;, ;, 2k, ta)

@ x direction: xg < x; < -+ < Xp,
o y direction: yo < y1 <--- <yw,
o z direction: z9 < z1 < --- < zp,
°

ufl; i & Ue(Xi, Yjs Zk, tn)

‘ Special stencil for the first time step

o The stencil for u,-lJ (n = 0) involves ui"/-1 which is outside the
time mesh

o Remedy: use discretized u;(x,0) = V and the stencil for n = 0
to develop a special stencil (as in the 1D case)

Dau=VI; = uj =ul; 20tV

1
uf il = uf; =20V + EczAtZ[DxDxu + Dy Dyul};

| Variable coefficients (2)

Written out:
ul”fi = 7u,"‘;,1 + 2ufj,k+

= ﬁﬁ(%(qu,k + i1k (U 1k — i)~
%(qi—lJ,k + i) (Ui — U1)t

= iﬁ(%(qi‘i,k + i) (U7 1k — Ui a)—
%(Qi‘j—l,k +qij) (U7 k= U1 6))+

= Qi._lj.k ﬁ(%(qu,k +Gijaer1) (U7 e — UTj)~
%(qu.k—l + Qi) (U] = Ul 1))+

+ Atzfi"},k

‘ Discretization

[DeDru = A(DyDyu + DyDyu) + 17},

Written out in detail:

i

n+l n n—1 n _ n n
ull 2”,“,'*”,',]' 7C2u,-+u 2u,-J+u,-71J‘

At? Ax? ‘
2 Unjp1 — 2uf; Ui fn
¥ + £,

n-1 n ntl,
uf’; and uf; are known, solve for uii

u,-"jl =2u}; + u,-";l + AL [DyDyu + Dy Dyul;;

| Variable coefficients (1)

3D wave equation:

our = (qux)x + (quy)y + (quz)z + f(x,y, 2, t)

Just apply the 1D discretization for each term:

[0D:Dru = (D@ Dxu + D@’ Dyu + D,q° Dou) + 17, (54)

Need special formula for ”:‘lJ,k (use [Daru = V]° and stencil for
n=0).

‘ Neumann boundary condition in 2D

Use ideas from 1D! Example: %: aty =0, % = 7%;‘,
Boundary condition discretization:
ut — oyt
[Dyu=0y = —L_L_0 icT,

2Ay
Insert u,-’Ll = uf'y in the stencil for u,-"jzlo to obtain a modified
stencil on the boundary.

Pattern: use interior stencil also on the bundary, but replace j — 1
by j+1

Alternative: use ghost cells and ghost values

problems

‘ Implementati

up = (uxx + uyy) + f(x,y,t), (x,y) e, te(0,T]

(55)

u(x,y,0) = I(x,y), (x,y)eQ
(56)

ug(x,y,0) = V(x,y), (x,y)eQ
(57)

u=0, (x,y) €09, te(0,T]

(58)

Q=1[0,L] % [0,L,]

Discretization:

[D:Dru = A(DxDyu + Dy Dyu) + 17,

‘ Scalar computatio

Program: wave2D_u0.py

def solver(I, V, f, ¢, Lx, Ly, Nx, Ny, dt, T,
user_action=lone, version=’scalar’):

Mesh:
x = linspace(0, Lx, Nx+1) # mesh points in ¢ dir
y = linspace(0, Ly, Ny+1) # mesh points in y dir
= x[1] - x[0]
y[11 - ylo]

Nt = int(round(T/float(dt)))

t = linspace(0, N+dt, N+1) # mesh points in time
Cx2 = (c*dt/dx)*#2; Cy2 = (c*dt/dy)**2 # help varisbles

dt2 = dt#*2

Scalar computatio

Ix = range(0, u.shape[0])
Iy = range(0, u.shape[1])
It = range(0, t.shape[0])
for i in Ix:
for j in Iy
u_1[i, _]] I(x[il, y[jD
if user_action is not Nome:

user_action(u_1, x, xv, y, yv, t, 0)

Arguments xv and yv: for vectorized computations

‘ Algorithm

O Set initial condition u,j (xi,yj)

@ Compute ”iJ:"' ForlEI)’;andjEI}",
O Set u,-l_j = 0 for the boundaries i = 0, Ny, j =0, N,
Q Forn=1,2,... N

© Find o' = fori €Tl and j € T}

@ Set ufjl = 0 for the boundaries i =0, N, j =0, N,

‘ Scalar computations: ar

Store u"“, uij and u in three two-dimensional arrays:
u = zeros((Nx+1,Ny+1)) # solution array

u_1 = zeros((Nx+1,Ny+1)) # solution at t-dt

u_2 = zeros((Nx+1,Ny+1)) # solution at t-2+#dt

1 corresponds to uli,j], etc.

‘ Scalar computations: primary stencil

def advance_scalar(u, u_1, u_2, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, stepl=False):
Ix = range(0, u.shape[0]); Iy = range(0, u.shapel1])
if stepl:
dt = sqrt(dt2) # save
Cx2 = 0.5%Cx2; Cy2 = 0.5+Cy2; dt2 = 0.5+#dt2 # redefine
D1 =1; D2 =20
else:
D1 =2; D2=1
for i in Ix[1:-1]:
for j in Iy[1:-11:
uxx:u1 -1,31 - 2%u_1[i,j] + u_1[i+1,]]
u_ 1[1,_]*1] - 2%xu_1[i,j] + u_ 1[1 j+1l
u[1 j1 = Dixu_1[i,j]l - D2*u_2[i,j] +
Cx2*u_xx + Cy2*u_yy + dtZ*f(x[:L] y[31, tlnl)
if stepl:
uli,jl += dexV(x[il, y[j])
Boundary condition u=0

j = 1ylol
for i in Ix: uli,jl =0
j = Iy[-1]
for i in Ix: uli,jl = 0
i = Ix[0]
for j in Iy: uli,jl =0
i = Ix[-1]

for j in Iy: uli,jl =0
return u

‘ Vectorized computations: mesh coordinates ‘ Vectorized computations: stencil

def advance_vectorized(u, u_1l, u_2, f_a, Cx2, Cy2, dt2,
V=lNone, stepi=False):
if stepl:
dt = sqrt(dt2) # save
Mesh with 30 x 30 cells: vectorization reduces the CPU time by a Cx2 = 0.5%Cx2; Cy2 = 0.5%Cy2; dt2 = 0.5%dt2 # redefine
factor of 70 (1) Dt =1; D2=0
*)- else:
. . DL =2; D2=1
Need special coordinate arrays xv and yv such that /(x,y) and u_xx = u_1[:-2,1:-1] - 2¢u_1[i:-1,1:-1] + u_1[2:,1:-1]
o _yy = u_ili:-1,:-2] - 2%u_1[1:-1,1:-1] + u_1[1:-1,2:]
f(x,y,t) can be vectorized: ulli-1,15-1] = Disu_1[1:-1,1:-1] - D2+u_2[1:-1,1
Cx2*u_xx + Cy2*u_yy + dt2*f_all:-
from numpy import newaxis if stepl:
xv = x[:,newaxis] uli:-1,1:-1] += dt*V[1:-1, 1:-1]
yv = y[neuaxls,A] # Boundary condition u=0
=0
u_tl:,:] = IGxv, yv) \Jx i1 =
fal:,:1 = £@xv, yv, t) j = u.shaj pe[l]—l
ul:,j1 =
i 0
0
i = u.shape[0]-1
uli,:1 =0
return u

ic solution (2)

o [D:Dy1]" =

o [D;Dt]" =0

o [D:Dt?] =2

Manufactured solution: o DD, is a linear operator:

[D¢Dr(au + bv)]" = a[DyDru]” + b[Dy Dyv]"
ey) = XL~ x)y(Ly ~)1+ 50) (59)

1 n
Requires £ = 2¢2(1 + 1t)(y(Ly — y) + x(Le — x)). [BxDxtelf = [(Ly = y)(1 + 3)DxDox(Le =)]

1
This ue is ideal because it also solves the discrete equations! =y(Ly —y) 1+ Et")Z

o Similar calculations for [D, Dyue] and [DtDrue]“ terms

© Must also check the equation for u,‘/-

‘ Migrating loops to Cyt ‘ Declaring variables and annotating the code

Pure Python code:

def advance_scalar(u, u_1, u_2, f,
n, Cx2, Cy2, dt2 D1 2 D2 1):
Tx = range(0, u.shape[01); Iy - range(0, u.shape[1])
for i in Ix[1:-1]:
for j in Iy[1:-1]:
uxx:u1[11_]] - 2%xu_1[i,j] + uw_ 1[i+1,j]
u_1li,j-11 - 2%u_1[i,j]1 + u_ 1[1 j+11
u[1 j1 = Dixu_1[i,j]1 - D2*u_2[i,j] +
Cx2*u_xx + Cy2*u_yy + dtZ*f(X[l] y[3l, t[nD)

o Vectorization: 5-10 times slower than pure C or Fortran code
o Cython: extension of Python for translating functions to C

@ Principle: declare variables with type

o Copy this function and put it in a file with . pyx extension.
o Add type of variables:
o function(a, b) — cpdef function(int a, double b)
= 1.2 — cdef double v = 1.2
o Array declaration:
np.ndarray [np.float64_t, ndim=2, mode=’c’] u

version of the functions

import numpy as np

cimport numpy as np

cimport cython

ctypedef np.float64_t DT # data type

@cython.boundscheck(False) # turn off array bounds check
Qcython.wraparound (False) # turn off negative indices (u[-1,-1])
cpdef advance (

np.ndarray [DT, ndim=2, mode=’c’] u,

np.ndarray [DT, ndii mode=’c’] u_1,

np.ndarray [DT, ndi , mode=’c’] u_2,

np.ndarray [DT, ndim=2, mode=’c’] f,

double Cx2, double Cy2, double dt2):

cdef int Nx, Ny, i, j
cdef double u_xx, u_yy
Nx = u.shape[0]-1
Ny = u.shape[1]-1
for i in xrange(i, Nx):
for j in xrange(1, Ny):

u_xx = u_1[i-1,j] - 2*u_1[i,j] + u_1[i+1,j]
= w1li,j-11 - 2+u_1[i,j] + w_1li,j+1]
1 =2+ _1[i,j] - uw2li,j] +\

Cx2*u_xx + Cy2*u_yy + dt2+f[i,]j]

uyy
uli,j

Note: from now in we skip the code for setting boundary values

‘ Building the extension module

@ Cython code must be translated to C

o C code must be compiled

@ Compiled C code must be linked to Python C libraries

o Result: C extension module (.so file) that can be loaded as a
standard Python module

o Use a setup.py script to build the extension module

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

cymodule = ’wave2D_u0_loop_cy’

setup(
name=cymodule
ext_modules= [Extension(cymodule, [cymodule + ’.pyx’],)],
cmdclass={’build_ext’: build_ext},

minal> python setup.py build_ext --inplace

@ Write the advance function in pure Fortran
o Use f2py to generate C code for calling Fortran from Python

o Full manual control of the translation to Fortran

of the C translation

See how effective Cython can translate this code to C:

Vi

| inspecti

Terminal> cython -a wave2D_u0_loop_cy.pyx

Load wave2D_u0_loop_cy.html in a browser (white: pure C,
yellow: still Python):

import wave2D_u0_loop_c;
advance = wave2D_uO_loop_cy.advance

for m in Tt[i:-1: # time loop
f_al:,:] = £(zv, yv, t[n]) # precompute, size as u
u = advance(u, u_1, u_2, f_a, x, y, t, Cx2, Cy2, dt2)

Efficiency:

@ 120 x 120 cells in space:
o Pure Python: 1370 CPU time units
o Vectorized numpy: 5.5
o Cython: 1

@ 60 x 60 cells in space:
o Pure Python: 1000 CPU time units
o Vectorized numpy: 6
o Cython: 1

| The F

subroutine advance(u, u_1, u_2, £, Cx2, Cy2, dt2, Nx, Ny)
integer Nx, Ny
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real*8 f(0:Nx, 0:Ny), Cx2, Cy2, dt2
integer i, j

Cf2py intent(in, out) u

C Scheme at interior points
do j = 1, Ny-1
do i =1, Nx-1
u(i,j) = 2*u_1(i,j) - u_ 2(i,j) +

¥ Cx2+ (u_1(i-1,§) - 2%u_1(i,§) + u_1(i+1,7)) +
& Cy2#(u_1(i,j-1) - 2%u_1(i,3) + u 1(i,j+1)) +
& dt2x£(i,j)

end do
end do

Note: C£2py comment declares u as input argument and return
value back to Python

I

ing the Fortran module wi

Terminal> f

-m wave2D_u0_loop_f
rite-signature

D_u0_loop_£77.pyf \
p_f77.f

dir build_£77
D_u0_loop_£77.f

£2py changes the argument list (1)

>>> import wave2D_u0_loop_£77
>>> print wave2D_u0_loop_£77.__doc__
This module ’wave2D_uO_loop_f77° is auto-generated with f2py....
Functions:
u = advance (u,u_1,u_2,f,cx2,cy2,dt2,
nx=(shape (u,0)-1) ,ny=(shape (u,1)-1))

@ Array limits have default values
o Examine doc strings from £2py!

‘ How to avi ing

o Two-dimensional arrays are stored row by row in Python and C

o Two-dimensional arrays are stored column by column in Fortran

o f2py takes a copy of a numpy (C) array and transposes it
when calling Fortran

o Such copies are time and memory consuming

o Remedy: declare numpy arrays with Fortran storage

order = ’Fortran’ if version == ’£77’ else ’C’
u = zeros((Nx+1,Ny+1), order=order)
u_1 = zeros((Nx+1,Ny+1), order=order)
u_2 = zeros((Nx+1,Ny+1), order=order)

Option -DF2PY_REPORT_ON_ARRAY_COPY=1 makes £2py write out
array copying:

build-dir build_£77 \
_u0_loop_£77.f

Efficiency of t

o Same efficiency (in this example) as Cython and C
@ About 5 times faster than vectorized numpy code
e > 1000 faster than pure Python code

The C code

o numpy arrays transferred to C are one-dimensional in C

o Need to translate [i,j] indices to single indices

/* Translate (i,j) indez to single array indez */
#define idx(i,j) (i)*(Ny+1) + j

void advance(double* u, double* u_1, double* u_2, double £,
double Cx2, double Cy2, double dt2,
int Nx, int Ny)

int i, j;

/* Scheme at interior points */

for (i=1; i<=Nx-1; i++)

for (j=1; j<=Ny-1; j++) {

ulidx(i,j)] = 2*u_1[idx(i,j)] - u_2[idx(i,j)] +
Cx2*(u_1[idx(i-1,3j)] - 2*u_1[idx(i,j)] + u_1[idx(i+1,j
Cy2+# (u_1[idx(i,j-1)]1 - 2*u_1[idx(i,j)] + u_1[idx(i,j+1
dt2+£[idx(i,1)1;

)+
)+

o Write the advance function in pure C
o Use Cython to generate C code for calling C from Python

o Full manual control of the translation to C

‘ The Cyt interface file

import numpy as np
cimport numpy as np
cimport cython

cdef extern from "wave2D_u0_loop_c.h":
void advance(double* u, double* u_1, double* u_2, double* f,
double Cx2, double Cy2, double dt2,
int Nx, int Ny)

Qcython.boundscheck (False)
Qcython.wraparound(False)
def advance_cwrap(
np.ndarray[double, ndim=2, mode=’c’] u
np.ndarray[double, ndim=2, mode=’c’] u.
np.ndarray[double, ndim=2, mode=’c’] u.
np.ndarray[double, ndim=2, mode=’c’] £
double Cx2, double Cy2, double dt2):
advance (%u[0,0], &u_1[0,0], &u_2[0,0], &£[0,0],
Cx2, Cy2, dt2,
u.shape[0]-1, u.shape[1]-1)
return u

‘ Building the extension module

Compile and link the extension module with a setup.py file:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

sources = [’wave2D_u0_loop_c.c’, ’wave2D_u0_loop_c_cy.pyx’]
module = ’wave2D_u0_loop_c_cy’
setup(

name=module,
ext_modules=[Extension(module, sources,
libraries=[1, # C libs to link with

)1,
cmdclass={’build_ext’: build_ext},

Terminal> python setup.py build_ext --inplace

In Python:

import wave2D_u0_loop_c_cy
advance = wave2D_u0_loop_c_cy.advance_cwrap

:,:1 = f(xv, yv, tlnl)
advance(u, u_1, u_2, f_a, Cx2, Cy2, dt2)

‘ The C code and the Fortran interface file

@ Write the C function advance as before

o Write a Fortran 90 module defining the signature of the
advance function

@ Or: write a Fortran 77 function defining the signature and let
£2py generate the Fortran 90 module

Fortran 77 signature (note intent(c)):

subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
Cf2py intent(c) advance
integer Nx, Ny, N
real*8 u(0:Nx,0:Ny), u_1(0:Nx,0:Ny), u_2(0:Nx,0:Ny)
real#8 £(0:Nx, 0:Ny), Cx2, Cy2, dt2
Cf2py intent(in, out) u
Cf2py intent(c) u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny
return
end

‘ Migrating loops to C++ via f2

C++ can be used as an alternative to C

C++ code often applies sophisticated arrays

Challenge: translate from numpy C arrays to C++ array classes
Can use SWIG to make C++ classes available as Python
classes

o Easier (and more efficient):

o Make C API to the C++ code

o Wrap C API with f2py

o Send numpy arrays to C API and let C translate numpy arrays
into C++ array classes

ing loops to C via f2p

o Write the advance function in pure C
o Use £2py to generate C code for calling C from Python

o Full manual control of the translation to C

‘ Building the extension module

Generate Fortran 90 module (wave2D_u0_loop_c_f2py.pyf):

Te:

1> £2p
-h wave2D
wave2D_u0_

lysis of the difference equati

A

‘ Properties of the solution of the wave equation

%u ,0%u
gu_ 22y
or? Ox?

Solutions:

u(x, t) = gr(x — ct) + gL(x + ct)

If u(x,0) = /(x) and us(x,0) = 0:

1 1
u(x,t) = EI(X —ct)+ EI(X +ct)

Two waves: one traveling to the right and one to the left

‘ What happens here?

We have just changed the initial condition...

Analysis of the finite difference scheme

A similar discrete 4 = e/(kxa=t) solves

[DeDeu = 2Dy Dyu]f
Note: different frequency & # w

@ How accurate is & compared to w?

o What about the wave amplitude?

‘ Effect of variable wave velocity

A wave propagates perfectly (C = 1) and hits a medium with 1/4
of the wave velocity. A part of the wave is reflected and the rest is
transmitted.

‘ Representation of waves as sum of sine/cosine waves

Build /(x) of wave components e** = cos kx + i sin kx:

1(x) = > bre™

kek

o k is the frequency of a component (A = 27 /k corresponding
wave length)

o K is some set of all k needed to approximate /(x) well

o by must be computed (Fourier coefficients)
Since u(x, t) = 11(x — ct) + 31(x + ct):
_ 1 ik(x—ct 1 ik(x+ct
u(x,t)—EZbke’ (x C)+§Zbke’ (xtet)
kek kek

Our interest: one component ef(kx—t) ; — k¢

‘ Preliminary results

i 4 At
[D:Dtelum]n = *E sin? <L2) elwniat

By w — k, t = x, n — q) it follows that

p 4 kA ;
[DxDye™], = 2 sin? (ZX) eikatx

| Numerical wave propagation (1)

Inserting a basic wave component u = e/(ka~®t) in the scheme
requires computation of

[Dt Dteikxe—im]g — [Dt Dte—ii;t]neikqAx
Y DAt o iDnAt gikghx
At? 2
[DXDXeikxe—izDr]g — [DXDXeikx]qe—iu”;nAr

_ 7% sin? (kg)() kabx g—iGnAt
X

| Numerical wave propagation (3)

Taking the square root:

Exact w is real

Look for a real solution & of

Then the sine functions are in [—1,1]
o Lef-hand side in [—1,1] requires C <1

Stability criterion

‘ Numerical dispersion relation

o How close is @ to w?

@ Can solve for an explicit formula for &

2 . kAx
= Esm (Csm (?)>

w = kc is the analytical dispersion relation

€

°

o & =&(k,c, Ax, At) is the numerical dispersion relation

o Speed of waves: ¢ =w/k, ¢ =&/k

o The numerical wave component has a wrong, mesh-dependent
speed

| Numerical wave propagation (2)

The complete scheme,

[Dt Dte:kxe—ubt — 2 DXDXe:kxe—:m]Z

leads to an equation for &:

Lo (OAE\ o o (kAx
sin (—2) = C%sin (5 s
cAt

where C = S5F is the Courant number

‘ Why C < 1 is a stability criterion

Assume C > 1. Then

. (WAt . (kDx
sm(T)>17Csm(3)

——

o |sinx| > 1 implies complex x
o Here: complex & = @, + i@;

o One @; < 0 gives exp(i - i%;) = exp(&;) and exponential growth

‘ The special case C =1

eForC=1,0=w
@ The numerical solution is exact (at the mesh points)!
o The only requirement is constant ¢

‘ Computing the error in wave velocity

o Introduce p = kAx/2
(the important dimensionless spatial discretization parameter)

@ p measures no of mesh points in space per wave length in
space

o Study error in wave velocity through &/c as function of p

oo

H(C,p) = :%psin’l(Csinp), Ce(0.1, pe(0,7/2]

‘ Taylor e ding the error in wave velocity

For small p, Taylor expand & as polynomial in p:

>>> C, p = symbols(°C p’)

>>> rs = r(C, p).series(p, 0, 7)

>>> print rs

1 - p**2/6 + p**4/120 - p**6/5040 + C*2+p**2/6 -
CH*2%p**4/12 + 13xCxx2xp**6/720 + 3*Ck*4*xp**4/40 -
C#*4%p**6/16 + B+C*x6xp**6/112 + 0(p**7)

>>> # Factorize each term and drop the remainder 0(...) term
>>> rs_factored = [factor(term) for term in rs.lseries(p)]
>>> rs_factored = sum(rs_factored)

>>> print rs_factored

p*¥6%(C - 1)*(C + 1)*(225%C#*4 - 90*C#*2 + 1)/5040 +

pr#4x(C - 1)#(C + 1)*(3*C - 1)*(3*C + 1)/120 +

p**¥2¢(C - 1)*(C + 1)/6 + 1

Leading error term is %(C2 —1)p? or

1/ kAx\? K2
c <TX) (€?—1) = 5, (A8 - A) = (A, A7)

| Example on effect of w wave velocity (1)

Not so smooth wave, significant short waves (large k) in /(x):

Visualizing the error in wave velocity

def r(C, p):
return 2/(C*p)*asin(C*sin(p))

Numerical divided by exact wave velocity

velocity ratio
°
©

°
®

Nata: tha chartact wiavac hava tha Iaraact arear and chart winvac

| Example on effect of wrong wave velocity (1)

Smooth wave, few short waves (large k) in /(x):

‘ Extending the analysis to

u(x,y, t) = glkex + kyy — wt)
is a typically solution of

Uy = 62(uxx + uyy)

Can build solutions by adding complex Fourier components of the
form

eilkax-thyy—wt)

‘ Discrete wave components in 2D

[DeDeu = c*(DyDyu + Dy Dyu)]2,
This equation admits a Fourier component
n i(kxqAx+kyrAy—onAt)

ug,=e

Inserting the expression and using formulas from the 1D analysis:

SOt
sin? (%) = CZsin® pe + C2sin? p,

where

c2A¢? c2At? keAx k, Ay
= Px="0— Py =,

T Ax2 Yy AyZ’

‘ Stability criterion in

Al l 1o 1 -1/2
T c\Ax2 Ay? ' AZ?

For c¢? = c?(x) we must use the worst-case value

¢ = y/Maxyeq c2(x) and a safety factor 5 < 1:

1/ 1 1 1\ V2
At<fB= (ot s+ —
£= E(Ax2+Ay2+A22)

| Numerical dispersion relation in 2D (2)

LI Ry ey wkpsing))
c = s (C (sm (zkhc059)+sm (2khsm0)

Can make color contour plots of 1 — &/c in polar coordinates with
0 as the angular coordinate and kh as the radial coordinate.

‘ Stability criterion in 2D

Rreal-valued & requires
G+C<1

or

At <

1/ 1 1\ 2
c (Ax2 * Ay2>

‘ Numerical dispersion relation in 2D (1)

2 1
= Esin’1 ((Cfsin2 Px + Cyzsin‘;)z)

€

For visualization, introduce 6:

ke = ksin®, k, = kcos®, pX:%thOSG, py:%khsinQ

Also: Ax = Ay = h. Then G, = C, = cAt/h=C.
Now & depends on

C reflecting the number cells a wave is displaced during a time
step
kh reflecting the number of cells per wave length in space

o 0 expressing the direction of the wave

Numerical dispersion relation in 2D (3)

