Study guide: Finite difference methods for wave

Hans Petter Langtangen 1

Center for Biomedical Computing, Simula Research Laboratory and Department of Informatics, University of Oslo¹

Nov 12, 2014

Finite difference methods for waves on a string

Waves on a string can be modeled by the wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

u(x, t) is the displacement of the string

Demo of waves on a string.

The complete initial-boundary value problem

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial v^2},$$

$$\frac{\partial^{2} u}{\partial t^{2}} = c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \qquad x \in (0, L), \ t \in (0, T] \qquad (1)$$

$$u(x, 0) = l(x), \qquad x \in [0, L] \qquad (2)$$

$$\frac{\partial}{\partial t} u(x, 0) = 0, \qquad x \in [0, L] \qquad (3)$$

$$u(0, t) = 0, \qquad t \in (0, T] \qquad (4)$$

$$u(L, t) = 0, \qquad t \in (0, T] \qquad (5)$$

$$\frac{\partial}{\partial x}u(x,0)=0$$

$$x \in [0, L]$$
 (3)

$$\frac{\partial}{\partial t}u(x,0)=0$$

$$u(0,t) = 0,$$

$$\in (0,T]$$

$$u(L, t) = 0,$$

$$t \in (0, T]$$

Input data in the problem

- Initial condition u(x,0) = I(x): initial string shape
- Initial condition $u_t(x,0) = 0$: string starts from rest
- $c = \sqrt{T/\varrho}$: velocity of waves on the string
- (T is the tension in the string, ϱ is density of the string)
- ullet Two boundary conditions on u: u=0 means fixed ends (no displacement)

Rule for number of initial and boundary conditions:

- ullet u_{tt} in the PDE: two initial conditions, on u and u_t
- \bullet u_t (and no u_{tt}) in the PDE: one initial conditions, on u
- \bullet u_{xx} in the PDE: one boundary condition on u at each boundary point

Demo of a vibrating string (C = 0.8)

- Our numerical method is sometimes exact (!)
- Our numerical method is sometimes subject to serious non-physical effects

Demo of a vibrating string (C = 1.0012)

Ooops!

Step 1: Discretizing the domain

Mesh in time:

$$0 = t_0 < t_1 < t_2 < \dots < t_{N_t - 1} < t_{N_t} = T$$
 (6)

Mesh in space:

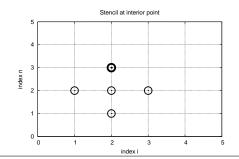
$$0 = x_0 < x_1 < x_2 < \dots < x_{N_x - 1} < x_{N_x} = L \tag{7}$$

Uniform mesh with constant mesh spacings Δt and Δx :

$$x_i = i \Delta x, i = 0, ..., N_x, t_i = n \Delta t, n = 0, ..., N_t$$
 (8)

The discrete solution

- The numerical solution is a mesh function: $u_i^n \approx u_{\rm e}(x_i,t_n)$
- ullet Finite difference stencil (or scheme): equation for u_i^n involving neighboring space-time points



Step 2: Fulfilling the equation at the mesh points

Let the PDE be satisfied at all interior mesh points:

$$\frac{\partial^2}{\partial t^2} u(x_i, t_n) = c^2 \frac{\partial^2}{\partial x^2} u(x_i, t_n), \tag{9}$$

for $i = 1, ..., N_x - 1$ and $n = 1, ..., N_t - 1$.

For n=0 we have the initial conditions u=l(x) and $u_t=0$, and at the boundaries i=0, N_x we have the boundary condition u=0.

Step 3: Replacing derivatives by finite differences

Widely used finite difference formula for the second-order derivative:

$$\frac{\partial^2}{\partial t^2} u(x_i, t_n) \approx \frac{u_i^{n+1} - 2u_i^n + u_i^{n-1}}{\Delta t^2} = [D_t D_t u]_i^n$$

an d

$$\frac{\partial^{2}}{\partial x^{2}}u(x_{i},t_{n}) \approx \frac{u_{i+1}^{n} - 2u_{i}^{n} + u_{i-1}^{n}}{\Delta x^{2}} = [D_{x}D_{x}u]_{i}^{n}$$

Step 3: Algebraic version of the PDE

Replace derivatives by differences:

$$\frac{u_i^{n+1} - 2u_i^n + u_i^{n-1}}{\Delta t^2} = c^2 \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2},$$
 (10)

In operator notation:

$$[D_t D_t u = c^2 D_x D_x]_i^n (11)$$

Step 3: Algebraic version of the initial conditions

- ullet Need to replace the derivative in the initial condition $u_t(x,0)=0$ by a finite difference approximation
- ullet The differences for u_{tt} and u_{xx} have second-order accuracy
- Use a centered difference for $u_t(x,0)$

$$[D_{2t}u]_i^n = 0, \quad n = 0 \quad \Rightarrow \quad u_i^{n-1} = u_i^{n+1}, \quad i = 0, \dots, N_x$$

The other initial condition u(x,0) = I(x) can be computed by

$$u_i^0 = I(x_i), \quad i = 0, \ldots, N_x$$

Step 4: Formulating a recursive algorithm

- Nature of the algorithm: compute u in space at $t = \Delta t, 2\Delta t, 3\Delta t, ...$
- Three time levels are involved in the general discrete equation: n+1, n, n-1
- ullet u_i^n and u_i^{n-1} are then already computed for $i=0,\dots,N_{\rm X}$, and u_i^{n+1} is the unknown quantity

Write out $[D_t D_t u = c^2 D_x D_x]_i^n$ and solve for u_i^{n+1} ,

$$u_i^{n+1} = -u_i^{n-1} + 2u_i^n + C^2 \left(u_{i+1}^n - 2u_i^n + u_{i-1}^n \right)$$
 (12)

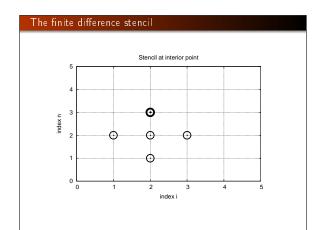
The Courant number

$$C = c \frac{\Delta t}{\Delta x},\tag{13}$$

is known as the (dimensionless) Courant number

Observe

There is only one parameter, C, in the discrete model: C lumps mesh parameters Δt and Δx with the only physical parameter, the wave velocity c. The value C and the smoothness of I(x) govern the quality of the numerical solution.



The stencil for the first time level

- Problem: the stencil for n=1 involves u_i^{-1} , but time $t=-\Delta t$ is outside the mesh
- ullet Remedy: use the initial condition $u_t=0$ together with the stencil to eliminate u_i^{-1}

Initial condition:

$$[D_{2t}u = 0]_i^0 \Rightarrow u_i^{-1} = u_i^1$$

Insert in stencil $[D_t D_t u = c^2 D_x D_x]_i^0$ to get

$$u_i^1 = u_i^0 - \frac{1}{2}C^2 \left(u_{i+1}^n - 2u_i^n + u_{i-1}^n \right)$$
 (14)

The algorithm

- ① Compute $u_i^0 = I(x_i)$ for $i = 0, ..., N_x$
- Ompute u_i^1 by (14) and set $u_i^1 = 0$ for the boundary points i = 0 and $i = N_x$, for n = 1, 2, ..., N - 1
- ullet For each time level $n=1,2,\ldots,N_t-1$

 - apply (12) to find u_i^{n+1} for $i=1,\ldots,N_x-1$ set $u_i^{n+1}=0$ for the boundary points $i=0,\ i=N_x$.

Moving finite difference stencil

web page or a movie file.

Sketch of an implementation (1)

- Arrays:
 - u[i] stores u_i^{n+1}
 - u_1[i] stores u;
 - u_2[i] stores u_iⁿ⁻¹

Naming convention

 ${\tt u}$ is the unknown to be computed (a spatial mesh function), ${\tt u}_{\tt k}$ is the computed spatial mesh function ${\tt k}$ time steps back in time.

PDE solvers should save memory

Important to minimize the memory usage

The algorithm only needs to access the three most recent time levels, so we need only three arrays for u_i^{n+1} , u_i^n , and u_i^{n-1} , $i=0,\dots,N_x$. Storing all the solutions in a two-dimensional array of size $(N_x+1)\times(N_t+1)$ would be possible in this simple one-dimensional PDE problem, but not in large 2D problems and not even in small 3D problems.

Verification

- Think about testing and verification before you start implementing the algorithm!
- Powerful testing tool: method of manufactured solutions and computation of convergence rates
- Will need a source term in the PDE and $u_t(x,0) \neq 0$
- Even more powerful method: exact solution of the scheme

A slightly generalized model problem

Add source term f and nonzero initial condition $u_t(x,0)$:

$$u_{tt} = c^2 u_{xx} + f(x, t),$$
 (15)

$$u(x,0) = l(x),$$
 $x \in [0, L]$ (16)

$$u_t(x,0) = V(x),$$
 $x \in [0,L]$ (17)

$$u(0,t) = 0, t > 0, (18)$$

$$u(L,t) = 0, t > 0 (19)$$

Discrete model for the generalized model problem

$$[D_t D_t u = c^2 D_x D_x + f]_i^n (20)$$

Writing out and solving for the unknown u_i^{n+1} :

$$u_i^{n+1} = -u_i^{n-1} + 2u_i^n + C^2(u_{i+1}^n - 2u_i^n + u_{i-1}^n) + \Delta t^2 f_i^n$$
 (21)

Modified equation for the first time level

Centered difference for $u_t(x, 0) = V(x)$:

$$[D_{2t} u = V]_i^0 \quad \Rightarrow \quad u_i^{-1} = u_i^1 - 2\Delta t V_i,$$

Inserting this in the stencil (21) for n = 0 leads to

$$u_{i}^{1} = u_{i}^{0} - \Delta t V_{i} + \frac{1}{2} C^{2} \left(u_{i+1}^{n} - 2 u_{i}^{n} + u_{i-1}^{n} \right) + \frac{1}{2} \Delta t^{2} f_{i}^{n}$$
 (22)

Using an analytical solution of physical significance

- Standing waves occur in real life on a string
- Can be analyzed mathematically (known exact solution)

$$u_{\rm e}(x,y,t)) = A \sin\left(\frac{\pi}{L}x\right) \cos\left(\frac{\pi}{L}ct\right)$$
 (23)

- PDE data: f=0, boundary conditions $u_{\rm e}(0,t)=u_{\rm e}(L,0)=0$, initial conditions $I(x)=A\sin\left(\frac{\pi}{L}x\right)$ and V=0
- Note: $u_i^{n+1} \neq u_e(x_i, t_{n+1}, \text{ and we do not know the error, so testing must aim at reproducing the expected convergence rates$

Manufactured solution: principles

- \bullet Disadvantage with the previous physical solution: it does not test $V \neq 0$ and $f \neq 0$
- Method of manufactured solution:
 - Choose some ue(x, t)
 - Insert in PDE and fit f
 - \bullet Set boundary and initial conditions compatible with the chosen $u_{\rm e}(x,t)$

Manufactured solution: example

$$u_{e}(x, t) = x(L - x)\sin t$$

PDE $u_{tt} = c^2 u_{xx} + f$:

$$-x(L-x)\sin t = -2\sin t + f \Rightarrow f = (2-x(L-x))\sin t$$

Implied initial conditions:

$$u(x, 0) = l(x) = 0$$

 $u_t(x, 0) = V(x) = -x(L - x)$

Boundary conditions:

$$u(x,0)=u(x,L)=0$$

Testing a manufactured solution

- Introduce common mesh parameter: $h = \Delta t$, $\Delta x = ch/C$
- This h keeps C and $\Delta t/\Delta x$ constant
- Select coarse mesh h: h₀
- Run experiments with $h_i=2^{-i}h_0$ (halving the cell size), i=0
- Record the error E_i and h_i in each experiment
- Compute pariwise convergence rates $r_i = \ln E_{i+1}/E_i/\ln h_{i+1}/h_i$
- Verification: $r_i \rightarrow 2$ as i increases

Constructing an exact solution of the discrete equations

- Manufactured solution with computation of convergence rates: much manual work
- Simpler and more powerful: use an exact solution for u_iⁿ
- \bullet A linear or quadratic u_e in x and t is often a good candidate

Analytical work with the PDE problem

Here, choose u_e such that $u_e(x,0) = u_e(L,0) = 0$:

$$u_{e}(x, t) = x(L - x)(1 + \frac{1}{2}t),$$

Insert in the PDE and find f:

$$f(x,t) = 2(1+t)c^2$$

Initial conditions

$$I(x) = x(L-x), \quad V(x) = \frac{1}{2}x(L-x)$$

Analytical work with the discrete equations (1)

We want to show that u_e also solves the discrete equations! Useful preliminary result:

$$[D_t D_t t^2]^n = \frac{t_{n+1}^2 - 2t_n^2 + t_{n-1}^2}{\Delta t^2} = (n+1)^2 - n^2 + (n-1)^2 = 2$$
(24)

$$[D_t D_t t]^n = \frac{t_{n+1} - 2t_n + t_{n-1}}{\Delta t^2} = \frac{((n+1) - n + (n-1))\Delta t}{\Delta t^2} = 0$$
(24)

$$[D_t D_t u_e]_i^n = x_i (L - x_i) [D_t D_t (1 + \frac{1}{2}t)]^n = x_i (L - x_i) \frac{1}{2} [D_t D_t t]^n = 0$$

Analytical work with the discrete equations (1)

$$[D_X D_X u_{\mathsf{e}}]_i^n = (1 + \frac{1}{2} t_n) [D_X D_X (xL - x^2)]_i = (1 + \frac{1}{2} t_n) [LD_X D_X x - D_X D_X x^2]_i$$
$$= -2(1 + \frac{1}{2} t_n)$$

Now, $f_i^n = 2(1 + \frac{1}{2}t_n)c^2$ and we get

$$[D_t D_t u_e - c^2 D_x D_x u_e - f]_i^n = 0 - c^2 (-1)2(1 + \frac{1}{2}t_n + 2(1 + \frac{1}{2}t_n)c^2 = 0$$

Moreover, $u_e(x_i, 0) = I(x_i)$, $\partial u_e/\partial t = V(x_i)$ at t = 0, and $u_{\rm e}(x_0,t)=u_{\rm e}(x_{\rm N_o},0)=0$. Also the modified scheme for the first time step is fulfilled by $u_e(x_i, t_n)$.

Testing with the exact discrete solution

- We have established that $u_i^{n+1} = u_e(x_i, t_{n+1}) = x_i(L - x_i)(1 + t_{n+1}/2)$
- Run one simulation with one choice of c, Δt , and Δx
- Check that $\max_i |u_i^{n+1} u_e(x_i, t_{n+1})| < \epsilon, \epsilon \sim 10^{-14}$ (machine precision + some round-off errors)
- This is the simplest and best verification test

Later we show that the exact solution of the discrete equations can be obtained by C = 1 (!)

The algorithm

- Compute $u_i^0 = I(x_i)$ for $i = 0, ..., N_x$
- Occupate u_i^1 by (14) and set $u_i^1 = 0$ for the boundary points i = 0 and $i = N_x$, for n = 1, 2, ..., N - 1,
- \bullet For each time level $n = 1, 2, \dots, N_t 1$

 - apply (12) to find u_i^{n+1} for $i=1,\ldots,N_x-1$ set $u_i^{n+1}=0$ for the boundary points i=0, $i=N_x$.

What do to with the solution?

- Different problem settings demand different actions with the computed u_i^{n+1} at each time step
- Solution: let the solver function make a callback to a user function where the user can do whatever is desired with the solution
- Advantage: solver just solves and user uses the solution

```
\begin{array}{lll} \text{def user\_action}(\mathbf{u},~\mathbf{x},~\mathbf{t},~\mathbf{n}):\\ \#~u[i]~~at~spatial~~mesh~~points~~x[i]~~at~~time~~t[n]\\ \#~plot~~u\\ \#~or~store~~u \end{array}
```


Making a solver function (1) We specify Δt and C, and let the solver function compute $\Delta x = c \Delta t / C$. $\label{eq:converse_def} def \ \ solver(I,\ V,\ f,\ c,\ L,\ dt,\ C,\ T,\ user_action=None):$ """Solve u_tt=c^2*u_xx + f on (0,L)x(0,T]." Nt = int(round(T/dt)) t = linspace(0, Nt*dt, Nt+1) # Mesh points in time dx = dt*c/float(C) Nx = int(round(L/dx)) x = linspace(0, L, Nx+1) dx = x[1] - x[0] C2 = C**2 # Mesh points in space # Help variable in the scheme if f is None or f == 0: f = lambda x, t: 0 if V is None or V == 0: V = lambda x: 0import time; t0 = time.clock() # for measuring CPU time # Load initial condition into u_1 for i in range(0,Nx+1): u_1[i] = I(x[i])

```
Verification: exact quadratic solution
  Exact solution of the PDE problem and the discrete equations:
  u_{\rm e}(x,t) = x(L-x)(1+\frac{1}{2}t)
   import nose.tools as nt
   def test_quadratic():
          ""Check that u(x, t) = x(L-x)(1+t/2) is exactly reproduced."""
       def u_exact(x, t):
            return x*(L-x)*(1 + 0.5*t)
       def I(x) .
            return u_exact(x, 0)
       def V(x).
            return 0.5*u_exact(x, 0)
       def f(x, t):
    return 2*(1 + 0.5*t)*c**2
       I_{\bullet} = 2.5
        C = 0.75
       Nx = 3 # Very coarse mesh for this exact test
       dt = C*(L/Nx)/c
       u, x, t, cpu = solver(I, V, f, c, L, dt, C, T)
```

Making movie files

- Store spatial curve in a file, for each time level
- \bullet Name files like 'something_%04d.png' % frame_counter
- Combine files to a movie

```
Terminal> scitools movie encoder=html output_file=movie.html \
fps=4 frame_*.png  # web page with a player

Terminal> avconv -r 4 -i frame_\004d.png -c:v libtpora movie.ogg

Terminal> avconv -r 4 -i frame_\004d.png -c:v libtpora movie.ogg

Terminal> avconv -r 4 -i frame_\004d.png -c:v libtpora movie.wpd

Terminal> avconv -r 4 -i frame_\004d.png -c:v libtpora movie.webm
```

lmportant

- Zero padding (%04d) is essential for correct sequence of frames in something_*.png (Unix alphanumeric sort)
- Remove old frame_*.png files before making a new movie

Running a case

- Vibrations of a guitar string
- Triangular initial shape (at rest)

$$I(x) = \begin{cases} ax/x_0, & x < x_0 \\ a(L-x)/(L-x_0), & \text{otherwise} \end{cases}$$
 (26)

Appropriate data:

• L=75 cm, $x_0=0.8$ L, a=5 mm, time frequency $\nu=440$ Hz

Implementation of the case

```
def guitar(C):
    """Triangular wave (pulled guitar string)."""
    L = 0.75
    x0 = 0.8 kL
    a = 0.005
    freq = 440
    wavelength = 2*L
    c = freq*wavelength
    omega = 2*pi*freq
    num.periods = 1
    T = 2*pi*fomega*num.periods
    # Choose dt the same as the stability limit for Nx=50
    dt = L/50./c
    def I(x):
        return a*x/x0 if x < x0 else a/(L-x0)*(L-x)
    umin = -1.2*a; umax = -umin
    cpu = viz(I, 0, 0, c, L, dt, C, T, umin, umax, animate=True)

Program: wave1D_u0.py.</pre>
```

Resulting movie for C = 0.8

Movie of the vibrating string

The benefits of scaling

- It is difficult to figure out all the physical parameters of a case
- And it is not necessary because of a powerful: scaling

Introduce new x, t, and u without dimension:

$$\bar{x} = \frac{x}{L}, \quad \bar{t} = \frac{c}{L}t, \quad \bar{u} = \frac{u}{a}$$

Insert this in the PDE (with f=0) and dropping bars

$$u_{tt} = u_{xx}$$

Initial condition: set a=1, L=1, and $x_0 \in [0,1]$ in (26).

In the code: set a=c=L=1, x=0=0.8, and there is no need to calculate with wavelengths and frequencies to estimate c!

Just one challenge: determine the period of the waves and an appropriate end time (see the text for details).

Vectorization

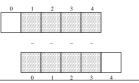
- Problem: Python loops over long arrays are slow
- One remedy: use vectorized (numpy) code instead of explicit loops
- Other remedies: use Cython, port spatial loops to Fortran or C
- Speedup: 100-1000 (varies with N_x)

Next: vectorized loops

Operations on slices of arrays

• Introductory example: compute $d_i = u_{i+1} - u_i$

- Note: all the differences here are independent of each other.
- Therefore $d = (u_1, u_2, \dots, u_n) (u_0, u_1, \dots, u_{n-1})$
- In numpy code: u[1:n] u[0:n-1] or just u[1:] u[:-1]



Test the understanding

Newcomers to vectorization are encouraged to choose a small array \mathbf{u} , say with five elements, and simulate with pen and paper both the loop version and the vectorized version.

Vectorization of finite difference schemes (1)

Finite difference schemes basically contains differences between array elements with shifted indices. Consider the updating formula

```
for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1]
```

The vectorization consists of replacing the loop by arithmetics on slices of arrays of length n-2:

Note: u2 gets length n-2.

If u2 is already an array of length n, do update on "inner" elements

```
\begin{array}{lll} u2[1:-1] &= u[:-2] &- 2*u[1:-1] &+ u[2:] \\ u2[1:n-1] &= u[0:n-2] &- 2*u[1:n-1] &+ u[2:n] & \textit{\# alternative} \end{array}
```

Vectorization of finite difference schemes (2)

Include a function evaluation too:

```
def f(x):
    return x**2 + 1

# Scalar version
for i in range(1, n-1):
    u2[i] = u[i-1] - 2*u[i] + u[i+1] + f(x[i])

# Vectorized version
u2[i:-1] = u[:-2] - 2*u[i:-1] + u[2:] + f(x[i:-1])
```

Vectorized implementation in the solver function

```
Scalar loop:
```

```
for i in range(1, Mx):
	u[i] = 2*u_1[i] - u_2[i] + \
	C2*(u_1[i-1] - 2*u_1[i] + u_1[i+1])
```

Vectorized loop:

```
\begin{array}{lll} u[1:-1] &=& u_{-}2[1:-1] &+& 2*u_{-}1[1:-1] &+& \\ & C2*(u_{-}1[:-2] &-& 2*u_{-}1[1:-1] &+& u_{-}1[2:]) \\ \\ \text{or} & \\ u[1:Nx] &=& 2*u_{-}1[1:Nx] -& u_{-}2[1:Nx] &+& \\ & & C2*(u_{-}1[0:Nx-1] &-& 2*u_{-}1[1:Nx] &+& u_{-}1[2:Nx+1]) \\ \end{array}
```

Program: wave1D_u0v.py

Verification of the vectorized version

Efficiency measurements

- ullet Run wave 1D_uOv.py for N_X as 50,100,200,400,800 and measuring the CPU time
- ullet Observe substantial speed-up: vectorized version is about $N_{\rm x}/5$ times faster

Much bigger improvements for 2D and 3D codes!

Generalization: reflecting boundaries

- Boundary condition u = 0: u changes sign
- Boundary condition $u_x = 0$: wave is perfectly reflected
- How can we implement u_x ? (more complicated than u=0)

Demo of boundary conditions

Neumann boundary condition

$$\frac{\partial u}{\partial n} \equiv \mathbf{n} \cdot \nabla u = 0 \tag{27}$$

For a 1D domain [0, L]:

$$\left. \frac{\partial}{\partial n} \right|_{x=L} = \frac{\partial}{\partial x}, \quad \left. \frac{\partial}{\partial n} \right|_{x=0} = -\frac{\partial}{\partial x}$$

Boundary condition terminology:

- u_x specified: Neumann condition
- ullet u specified: Dirichlet condition

Discretization of derivatives at the boundary (1)

- How can we incorporate the condition $u_x = 0$ in the finite difference scheme?
- ullet We used centeral differences for u_{tt} and u_{xx} : $\mathcal{O}(\Delta t^2, \Delta x^2)$ accuracy
- Also for $u_t(x,0)$
- ullet Should use central difference for u_x to preserve second order accuracy

$$\frac{u_{-1}^n - u_1^n}{2\Delta x} = 0 (28)$$

Discretization of derivatives at the boundary (2)

$$\frac{u_{-1}^n - u_1^n}{2\Delta x} = 0$$

- Problem: u_{-1}^n is outside the mesh (fictitious value)
- \bullet Remedy: use the stencil at the boundary to eliminate u_{-1}^n ; just replace u_{-1}^n by u_1^n

$$u_i^{n+1} = -u_i^{n-1} + 2u_i^n + 2C^2 \left(u_{i+1}^n - u_i^n \right), \quad i = 0$$
 (29)

Visualization of modified boundary stencil

Discrete equation for computing u_0^3 in terms of u_0^2 , u_0^1 , and u_1^2 :

Animation in a web page or a movie file.

Implementation of Neumann conditions

- Use the general stencil for interior points also on the boundary
- Replace u_{i-1}^n by u_{i+1}^n for i=0
- Replace u_{i+1}^n by u_{i-1}^n for $i = N_x$

```
i = 0
ip1 = i+1
im1 = ip1  # i-1 -> i+1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])
i = Nx
im1 = i-1
ip1 = im1  # i+1 -> i-1
u[i] = u_1[i] + C2*(u_1[im1] - 2*u_1[i] + u_1[ip1])
# Or just one loop over all points
for i in range(0, Nx+1):
    ip1 = i+1 if i < Nx else i-1
    im1 = i-1 if i > 0 else i+1
    u[i] = u_1[i] + U2*(u_1[im1] - 2*u_1[i] + u_1[ip1])
```

Program wave1D_dn0.py

Moving finite difference stencil

web page or a movie file.

Index set notation

- ullet Tedious to write index sets like $i=0,\ldots,N_{x}$ and $n=0,\ldots,N_{t}$
- Notation not valid if i or n starts at 1 instead...
- Both in math and code it is advantageous to use index sets
- $i \in \mathcal{I}_x$ instead of $i = 0, \dots, N_x$
- Definition: $\mathcal{I}_x = \{0, \dots, N_x\}$
- The first index: $i = \mathcal{I}_{x}^{0}$
- The last index: $i = \mathcal{I}_{\mathbf{y}}^{-1}$
- All interior points: $i \in \mathcal{I}_x^i$, $\mathcal{I}_x^i = \{1, \dots, N_x 1\}$
- $\mathcal{I}_{\mathbf{x}}^{-}$ means $\{0,\ldots,N_{\mathbf{x}}-1\}$
- $\mathcal{I}_{\mathbf{x}}^+$ means $\{1,\ldots,N_{\mathbf{x}}\}$

Index set notation in code

$\begin{array}{c|c} \text{Notation} & \text{Python} \\ \hline \mathcal{I}_x & \text{Ix} \\ \mathcal{I}_0^* & \text{Ix} [0] \\ \hline \mathcal{I}_x^{-1} & \text{Ix} [-1] \\ \mathcal{I}_x^{-1} & \text{Ix} [1:] \\ \hline \mathcal{I}_x^+ & \text{Ix} [1:-1] \\ \hline \mathcal{I}_x^i & \text{Ix} [1:-1] \end{array}$

Index sets in action (1)

Index sets for a problem in the x, t plane:

$$\mathcal{I}_{x} = \{0, \dots, N_{x}\}, \quad \mathcal{I}_{t} = \{0, \dots, N_{t}\},$$
 (30)

Implemented in Python as

Index sets in action (2)

A finite difference scheme can with the index set notation be specified as

$$\begin{split} u_i^{n+1} &= -u_i^{n-1} + 2u_i^n + C^2 \left(u_{i+1}^n - 2u_i^n + u_{i-1}^n \right), \quad i \in \mathcal{I}_x^i, \ n \in \mathcal{I}_t^i \\ u_i &= 0, \quad i = \mathcal{I}_x^0, \ n \in \mathcal{I}_t^i \\ u_i &= 0, \quad i = \mathcal{I}_x^{-1}, \ n \in \mathcal{I}_t^i \end{split}$$

Corresponding implementation:

Program wave1D_dn.py

Alternative implementation via ghost cells

- Instead of modifying the stencil at the boundary, we extend the mesh to cover u_{-1}^n and $u_{N_v+1}^n$
- The extra left and right cell are called ghost cells
- The extra points are called ghost points
- ullet The u^n_{-1} and $u^n_{N_x+1}$ values are called ghost values
- ullet Update ghost values as $u_{i-1}^n=u_{i+1}^n$ for i=0 and $i=N_x$
- Then the stencil becomes right at the boundary

Implementation of ghost cells (1)

Add ghost points:

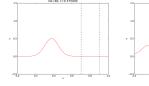
- x = linspace(0, L, Nx+1) # Mesh points without ghost points
- A major indexing problem arises with ghost cells since Python indices must start at 0.
- u [-1] will always mean the last element in u
- Math indexing: $-1, 0, 1, 2, ..., N_x + 1$
- Python indexing: 0,..,Nx+2
- Remedy: use index sets

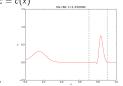
Implementation of ghost cells (2)

Program: wave1D_dn0_ghost.py.

Generalization: variable wave velocity

Heterogeneous media: varying c = c(x)





The model PDE with a variable coefficient

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x} \left(q(x) \frac{\partial u}{\partial x} \right) + f(x, t) \tag{31}$$

This equation sampled at a mesh point (x_i, t_n) :

$$\frac{\partial^2}{\partial t^2}u(x_i,t_n)=\frac{\partial}{\partial x}\left(q(x_i)\frac{\partial}{\partial x}u(x_i,t_n)\right)+f(x_i,t_n),$$

Discretizing the variable coefficient (1)

The principal idea is to first discretize the outer derivative.

Define

$$\phi = q(x) \frac{\partial u}{\partial x}$$

Then use a centered derivative around $x=x_i$ for the derivative of ϕ :

$$\left[\frac{\partial \phi}{\partial x}\right]_{i}^{n} \approx \frac{\phi_{i+\frac{1}{2}} - \phi_{i-\frac{1}{2}}}{\Delta x} = [D_{x}\phi]_{i}^{n}$$

Discretizing the variable coefficient (2)

Then discretize the inner operators:

$$\phi_{i+\frac{1}{2}} = q_{i+\frac{1}{2}} \left[\frac{\partial u}{\partial x} \right]_{i+\frac{1}{2}}^{n} \approx q_{i+\frac{1}{2}} \frac{u_{i+1}^{n} - u_{i}^{n}}{\Delta x} = [q D_{x} u]_{i+\frac{1}{2}}^{n}$$

Similarly,

$$\phi_{i-\frac{1}{2}} = q_{i-\frac{1}{2}} \left[\frac{\partial u}{\partial x} \right]_{i-\frac{1}{2}}^{n} \approx q_{i-\frac{1}{2}} \frac{u_{i}^{n} - u_{i-1}^{n}}{\Delta x} = [q D_{x} u]_{i-\frac{1}{2}}^{n}$$

Discretizing the variable coefficient (3)

These intermediate results are now combined to

$$\left[\frac{\partial}{\partial x}\left(q(x)\frac{\partial u}{\partial x}\right)\right]_{i}^{n} \approx \frac{1}{\Delta x^{2}}\left(q_{i+\frac{1}{2}}\left(u_{i+1}^{n}-u_{i}^{n}\right)-q_{i-\frac{1}{2}}\left(u_{i}^{n}-u_{i-1}^{n}\right)\right)$$
(32)

In operator notation:

$$\left[\frac{\partial}{\partial x}\left(q(x)\frac{\partial u}{\partial x}\right)\right]_{i}^{n} \approx \left[D_{x}qD_{x}u\right]_{i}^{n} \tag{33}$$

Remark

Many are tempted to use the chain rule on the term $\frac{\partial}{\partial x} \left(q(x) \frac{\partial u}{\partial x} \right)$, but this is not a good idea!

Computing the coefficient between mesh points

- Given q(x): compute $q_{i+\frac{1}{2}}$ as $q(x_{i+\frac{1}{2}})$
- Given q at the mesh points: q_i , use an average

$$q_{i+\frac{1}{2}} pprox rac{1}{2} \left(q_i + q_{i+1}\right) = [\overline{q}^x]_i$$
 (arithmetic mean) (34)

$$q_{i+\frac{1}{2}} \approx 2\left(\frac{1}{q_i} + \frac{1}{q_{i+1}}\right)^{-1} \qquad \qquad \text{(harmonic mean)} \qquad (35)$$

$$q_{i+\frac{1}{2}} \approx (q_i q_{i+1})^{1/2} \qquad \qquad \text{(geometric mean)} \qquad (36)$$

$$q_{i+\frac{1}{5}} \approx (q_i q_{i+1})^{1/2}$$
 (geometric mean) (36)

The arithmetic mean in (34) is by far the most used averaging technique.

Discretization of variable-coefficient wave equation in operator notation

$$[D_t D_t u = D_x \overline{q}^x D_x u + f]_i^n \tag{37}$$

We clearly see the type of finite differences and averaging! Write out and solve wrt u_i^{n+1} :

$$u_i^{n+1} = -u_i^{n-1} + 2u_i^n + \left(\frac{\Delta x}{\Delta t}\right)^2 \times \left(\frac{1}{2}(q_i + q_{i+1})(u_{i+1}^n - u_i^n) - \frac{1}{2}(q_i + q_{i-1})(u_i^n - u_{i-1}^n)\right) + \Delta t^2 f_i^n$$
(38)

Neumann condition and a variable coefficient

Consider $\partial u/\partial x = 0$ at $x = L = N_x \Delta x$:

$$\frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x} = 0 \quad u_{i+1}^n = u_{i-1}^n, \quad i = N_x$$

Insert $u_{i+1}^n = u_{i-1}^n$ in the stencil (38) for $i = N_x$ and obtain

$$u_i^{n+1} \approx -u_i^{n-1} + 2u_i^n + \left(\frac{\Delta x}{\Delta t}\right)^2 2q_i(u_{i-1}^n - u_i^n) + \Delta t^2 f_i^n$$

(We have used $q_{i+\frac{1}{6}}+q_{i-\frac{1}{6}}\approx 2q_{i}$.)

Alternative: assume dq/dx = 0 (simpler).

Implementation of variable coefficients

Assume c[i] holds c_i the spatial mesh points

Here: C2=(dt/dx)**2

Vectorized version:

$$\begin{array}{lll} u[i:-1] &=& -u_-2[i:-1] &+ 2*u_-1[i:-1] &+ \\ & & & & & & & & & & & & \\ 22*(0.5*(q[i:-1]+q[2:])*(u_-1[2:]-u_-1[i:-1]) &- \\ & & & & & & & & & \\ 0.5*(q[i:-1]+q[i:-2])*(u_-1[i:-1]-u_-1[i:-2])) &+ \\ & & & & & & & & \\ & & & & & & & \\ \end{array}$$

Neumann condition $u_x = 0$: same ideas as in 1D (modified stencil or ghost cells).

A more general model PDE with variable coefficients

$$\varrho(x)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x}\left(q(x)\frac{\partial u}{\partial x}\right) + f(x,t) \tag{39}$$

A natural scheme is

$$[\varrho D_t D_t u = D_x \overline{q}^x D_x u + f]_i^n \tag{40}$$

$$[D_t D_t u = \rho^{-1} D_x \overline{q}^x D_x u + f]_i^n \tag{41}$$

No need to average ϱ , just sample at i

Generalization: damping

Why do waves die out?

- Damping (non-elastic effects, air resistance)
- 2D/3D: conservation of energy makes an amplitude reduction by $1/\sqrt{r}$ (2D) or 1/r (3D)

Simplest damping model (for physical behavior, see demo):

$$\frac{\partial^2 u}{\partial t^2} + b \frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} + f(x, t), \tag{42}$$

 $b \ge 0$: prescribed damping coefficient.

Discretization via centered differences to ensure $\mathcal{O}(\Delta t^2)$ error:

$$[D_t D_t u + b D_{2t} u = c^2 D_x D_x u + f]_i^n$$
(43)

Need special formula for u_i^1 + special stencil (or ghost cells) for Neumann conditions.

Building a general 1D wave equation solver

The program wave1D_dn_vc.py solves a fairly general 1D wave equation:

$$\begin{array}{lll} u_t = (c^2(x)u_x)_x + f(x,t), & x \in (0,L), \ t \in (0,T] & (44) \\ u(x,0) = I(x), & x \in [0,L] & (45) \\ u_t(x,0) = V(t), & x \in [0,L] & (46) \\ u(0,t) = U_0(t) \ \text{or} \ u_X(0,t) = 0, & t \in (0,T] & (47) \\ u(L,t) = U_L(t) \ \text{or} \ u_X(L,t) = 0, & t \in (0,T] & (48) \end{array}$$

Can be adapted to many needs.

Collection of initial conditions

The function pulse in wave1D_dn_vc.py offers four initial conditions:

- a rectangular pulse ("plug")
- a Gaussian function (gaussian)
- \bullet a "cosine hat": one period of $1 + \cos(\pi x, x \in [-1, 1])$
- half a "cosine hat": half a period of $\cos \pi x$, $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$

Can locate the initial pulse at x = 0 or in the middle

>>> import waveiD_dn_vc as w >>> w.pulse(loc='left', pulse_tp='cosinehat', Nx=50, every_frame=10)

Finite difference methods for 2D and 3D wave equations

Constant wave velocity c:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u \text{ for } \mathbf{x} \in \Omega \subset \mathbb{R}^d, \ t \in (0, T]$$
 (49)

Variable wave velocity:

$$\varrho \frac{\partial^2 u}{\partial t^2} = \nabla \cdot (q \nabla u) + f \text{ for } x \in \Omega \subset \mathbb{R}^d, \ t \in (0, T]$$
 (50)

Examples on wave equations written out in 2D/3D

3D, constant c:

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$$

2D, variable c:

$$\varrho(x,y)\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x}\left(q(x,y)\frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y}\left(q(x,y)\frac{\partial u}{\partial y}\right) + f(x,y,t)$$
(51)

Compact notation:

$$u_{tt} = c^2(u_{xx} + u_{yy} + u_{zz}) + f,$$
 (52)

$$\rho u_{tt} = (q u_x)_x + (q u_z)_z + (q u_z)_z + f \tag{53}$$

Boundary and initial conditions

We need one boundary condition at each point on $\partial\Omega$:

- $\mathbf{0}$ u is prescribed (u = 0 or known incoming wave)
- $\partial u/\partial n = \mathbf{n} \cdot \nabla u$ prescribed (= 0: reflecting boundary)
- **9** open boundary (radiation) condition: $u_t + c \cdot \nabla u = 0$ (let waves travel undisturbed out of the domain)

PDEs with second-order time derivative need two initial conditions:

- $0 \ u = 1$,
- $u_t = V$

Mesh

• Mesh point: (x_i, y_i, z_k, t_n)

•
$$x$$
 direction: $x_0 < x_1 < \cdots < x_N$

•
$$y$$
 direction: $y_0 < y_1 < \cdots < y_N$

•
$$z$$
 direction: $z_0 < z_1 < \cdots < z_N$.

•
$$u_{i,j,k}^n \approx u_e(x_i, y_j, z_k, t_n)$$

Discretization

$$[D_t D_t u = c^2 (D_x D_x u + D_y D_y u) + f]_{i,i,k}^n,$$

Written out in detail:

$$\begin{split} \frac{u_{i,j}^{n+1}-2u_{i,j}^n+u_{i,j}^{n-1}}{\Delta t^2} &= c^2 \frac{u_{i+1,j}^n-2u_{i,j}^n+u_{i-1,j}^n}{\Delta x^2} + \\ &c^2 \frac{u_{i,j+1}^n-2u_{i,j}^n+u_{i,j-1}^n}{\Delta y^2} + f_{i,j}^n, \end{split}$$

 $u_{i,j}^{n-1}$ and $u_{i,j}^n$ are known, solve for $u_{i,j}^{n+1}$:

$$u_{i,j}^{n+1} = 2u_{i,j}^n + u_{i,j}^{n-1} + c^2 \Delta t^2 [D_x D_x u + D_y D_y u]_{i,j}^n$$

Special stencil for the first time step

ullet The stencil for $u_{i,j}^1$ (n=0) involves $u_{i,j}^{-1}$ which is outside the time mesh

• Remedy: use discretized $u_t(x,0) = V$ and the stencil for n = 0 to develop a special stencil (as in the 1D case)

$$[D_{2t}u = V]_{i,j}^{0} \Rightarrow u_{i,j}^{-1} = u_{i,j}^{1} - 2\Delta t V_{i,j}$$

$$u_{i,j}^{n+1} = u_{i,j}^n - 2\Delta V_{i,j} + \frac{1}{2}c^2\Delta t^2[D_x D_x u + D_y D_y u]_{i,j}^n$$

Variable coefficients (1)

3D wave equation:

$$\varrho u_{tt} = (q u_x)_x + (q u_y)_y + (q u_z)_z + f(x, y, z, t)$$

Just apply the 1D discretization for each term:

$$[\rho D_t D_t u = (D_x \overline{q}^x D_x u + D_y \overline{q}^y D_y u + D_z \overline{q}^z D_z u) + f]_{i,j,k}^n$$
 (54)

Need special formula for $u^1_{i,j,k}$ (use $[D_{2t}u=V]^0$ and stencil for n=0).

Variable coefficients (2)

Written out:

$$\begin{split} u_{i,j,k}^{n+1} &= -u_{i,j,k}^{n-1} + 2u_{i,j,k}^n + \\ &= \frac{1}{\varrho_{i,j,k}} \frac{1}{\Delta x^2} (\frac{1}{2} (q_{i,j,k} + q_{i+1,j,k}) (u_{i+1,j,k}^n - u_{i,j,k}^n) - \\ &\qquad \frac{1}{2} (q_{i-1,j,k} + q_{i,j,k}) (u_{i,j,k}^n - u_{i-1,j,k}^n) + \\ &= \frac{1}{\varrho_{i,j,k}} \frac{1}{\Delta x^2} (\frac{1}{2} (q_{i,j,k} + q_{i,j+1,k}) (u_{i,j+1,k}^n - u_{i,j,k}^n) - \\ &\qquad \frac{1}{2} (q_{i,j-1,k} + q_{i,j,k}) (u_{i,j,k}^n - u_{i,j-1,k}^n)) + \\ &= \frac{1}{\varrho_{i,j,k}} \frac{1}{\Delta x^2} (\frac{1}{2} (q_{i,j,k} + q_{i,j,k+1}) (u_{i,j,k+1}^n - u_{i,j,k}^n) - \\ &\qquad \frac{1}{2} (q_{i,j,k-1} + q_{i,j,k}) (u_{i,j,k}^n - u_{i,j,k-1}^n)) + \\ &+ \Delta t^2 f_{i,j,k}^n \end{split}$$

Neumann boundary condition in 2D

Use ideas from 1D! Example: $\frac{\partial u}{\partial n}$ at y=0, $\frac{\partial u}{\partial n}=-\frac{\partial u}{\partial v}$

Boundary condition discretization:

$$[-D_{2y}u=0]_{i,0}^n \quad \Rightarrow \quad \frac{u_{i,1}^n-u_{i,-1}^n}{2\Delta y}=0, \ i\in\mathcal{I}_x$$

Insert $u_{i,-1}^n=u_{i,1}^n$ in the stencil for $u_{i,j=0}^{n+1}$ to obtain a modified stencil on the boundary.

Pattern: use interior stencil also on the bundary, but replace j-1 by j+1

Alternative: use ghost cells and ghost values

Implementation of 2D/3D problems

$$u_{t} = c^{2}(u_{xx} + u_{yy}) + f(x, y, t), (x, y) \in \Omega, t \in (0, T]$$
(55)

$$u(x, y, 0) = l(x, y), (x, y) \in \Omega$$
(56)

$$u_{t}(x, y, 0) = V(x, y), (x, y) \in \Omega$$
(57)

$$u = 0, (x, y) \in \partial\Omega, t \in (0, T]$$
(58)

 $\Omega = [0, L_x] \times [0, L_y]$

Discretization:

$$[D_t D_t u = c^2 (D_x D_x u + D_y D_y u) + f]_{i,j}^n,$$

Algorithm

- Set initial condition $u_{i,j}^0 = I(x_i, y_j)$
- Occupate $u_{i,i}^1 = \cdots$ for $i \in \mathcal{I}_x^i$ and $j \in \mathcal{I}_y^i$
- \bullet Set $u_{i,j}^1 = 0$ for the boundaries $i = 0, N_x, j = 0, N_y$
- For $n = 1, 2, ..., N_t$:

 - $\begin{array}{l} \bullet \quad \text{Find } u_{i,j}^{n+1} = \cdots \text{ for } i \in \mathcal{I}_x^i \text{ and } j \in \mathcal{I}_y^i \\ \bullet \quad \text{Set } u_{i,j}^{n+1} = 0 \text{ for the boundaries } i = 0, N_x, j = 0, N_y \end{array}$

Scalar computations: mesh

```
Program: wave2D_u0.py
```

Mesh:

```
x = linspace(0, Lx, Nx+1)
y = linspace(0, Ly, Ny+1)
dx = x[1] - x[0]
dy = y[1] - y[0]
Nt = int(round(T/float(dt)))
                                                                                                                                                           # mesh points in a dir
# mesh points in y dir
\begin{array}{lll} & \text{The Lorent ()} & \text{The Lorent ()} & \text{the mesh points in time} \\ & \text{Cx2} & = (c*\text{dt}/\text{dx})**2; & \text{Cy2} & = (c*\text{dt}/\text{dy})**2 & \text{thelp variables} \\ & \text{dt2} & = \text{dt}**2) & \text{thelp variables} \\ \end{array}
```

Scalar computations: arrays

Store $u_{i,j}^{n+1}$, $u_{i,j}^{n}$ and $u_{i,j}^{n-1}$ in three two-dimensional arrays:

 $u_{i,j}^{n+1}$ corresponds to u [i,j], etc.

Scalar computations: initial condition

```
Ix = range(0, u.shape[0])
Iy = range(0, u.shape[1])
It = range(0, t.shape[0])
for i in Ix:
    for j in Iy:
        u_i[i,j] = I(x[i], y[j])
if user_action is not None:
    user_action(u_1, x, xv, y, yv, t, 0)
```

Arguments xv and yv: for vectorized computations

```
Scalar computations: primary stencil
    1x - range(v, u.snape(v); 1y - range(v, u.snape(i))
if step1:
    dt = sqrt(dt2)  # save
    Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2  # redefine
    D1 = 1; D2 = 0
        else:
D1 = 2; D2 = 1
     for i in Ix: u[i,j] = 0
        for i in Ix: u[i,j] = 0
j = Iy[-i]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in Iy: u[i,j] = 0
i = Ix[-i]
for j in Iy: u[i,j] = 0
return
         return u
```

Vectorized computations: mesh coordinates

Mesh with 30×30 cells: vectorization reduces the CPU time by a factor of 70 (!).

Need special coordinate arrays xv and yv such that I(x,y) and f(x,y,t) can be vectorized:

```
from numpy import newaxis
xv = x[:,newaxis]
yv = y[newaxis,:]

u_1[:,:] = I(xv, yv)
f_a[:,:] = f(xv, yv, t)
```

D1 = 1; D2 = 0 else: D1 = 2; D2 = 1 u_xx = u_1[:-2,1:-1] - 2*u_1[[:-1,1:-1] + u_1[2:,1:-1] u_yy = u_1[:-1,-2] - 2*u_1[:-1,1:-1] + u_1[:-1,2:] u[:-1,1:-1] = D1*u_1[1:-1,:-1] - D2*u_2[:-1,1:-1] + \ if step1: u[:-1,1:-1] += dt*V[:-1,1:-1] # Boundary condition u=0 j = 0 u[:,j] = 0 u[:,j] = 0 j = u_shape[:]-1 u[:,j] = 0

if step1: dt = sqrt(dt2) # save Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine

Verification: quadratic solution (1)

Manufactured solution:

$$u_{e}(x, y, t) = x(L_{x} - x)y(L_{y} - y)(1 + \frac{1}{2}t)$$
 (59)

Requires
$$f = 2c^2(1 + \frac{1}{2}t)(y(L_y - y) + x(L_x - x))$$
.

This u_e is ideal because it also solves the discrete equations!

Verification: quadratic solution (2)

Vectorized computations: stencil

• $[D_t D_t 1]^n = 0$

u[i,:] = 0 i = u.shape[0]-1 u[i,:] = 0

- $D_t D_t t]^n = 0$
- $[D_t D_t t^2] = 2$
- $D_t D_t$ is a linear operator: $[D_t D_t (a u + b v)]^n = a[D_t D_t u]^n + b[D_t D_t v]^n$

$$\begin{aligned} [D_x D_x u_e]_{i,j}^n &= [y(L_y - y)(1 + \frac{1}{2}t)D_x D_x x(L_x - x)]_{i,j}^n \\ &= y_j(L_y - y_j)(1 + \frac{1}{2}t_n)2 \end{aligned}$$

- Similar calculations for $[D_y D_y u_e]_{i,i}^n$ and $[D_t D_t u_e]_{i,i}^n$ terms
- Must also check the equation for u¹_{i,i}

Migrating loops to Cython

- Vectorization: 5-10 times slower than pure C or Fortran code
- Cython: extension of Python for translating functions to C
- Principle: declare variables with type

Declaring variables and annotating the code

Pure Python code:

- Copy this function and put it in a file with .pyx extension.
- Add type of variables:
 - function(a, b) \rightarrow cpdef function(int a, double b)
 - $v = 1.2 \rightarrow cdef double v = 1.2$
 - Array declaration:
 - np.ndarray[np.float64_t, ndim=2, mode='c'] u

Building the extension module • Cython code must be translated to C • C code must be compiled • Compiled C code must be linked to Python C libraries • Result: C extension module (.so file) that can be loaded as a standard Python module • Use a setup.py script to build the extension module from distutils.core import setup from distutils extension import Extension from Cython.Distutils import build_ext cymodule = 'wave2D_u0_loop_cy' setup(name=cymodule ext_modules=[Extension(cymodule, [cymodule + '.pyx'],)], cmdclass={'build_ext': build_ext}, } Terminal> python setup.py build_ext --inplace

```
    Write the advance function in pure Fortran
    Use f2py to generate C code for calling Fortran Full manual control of the translation to Fortran
```

```
Visual inspection of the C translation

See how effective Cython can translate this code to C:

Terminal> cython -a wave2D_u0_loop_cy.pyx

Load wave2D_u0_loop_cy.html in a browser (white: pure C, yellow: still Python):

**Terminal Cython -a wave2D_u0_loop_cy.html in a browser (white: pure C, yellow: still Python):

**Terminal Cython -a wave2D_u0_loop_cy.html in a browser (white: pure C, yellow: still Python):

**Terminal Cython -a wave2D_u0_loop_cy.html in a browser (white: pure C, yellow: still Python):

**Terminal Cython -a wave2D_u0_loop_cy.html in a browser (white: pure C, yellow: still Python):

**Terminal Cython -a wave2D_u0_loop_cy.html in a browser (white: pure C, yellow: still Python):

**Terminal Cython -a wave2D_u0_loop_cy.c. to see the generated C code...
```


How to avoid array copying

- Two-dimensional arrays are stored row by row in Python and C
- Two-dimensional arrays are stored column by column in Fortran
- f2py takes a copy of a numpy (C) array and transposes it when calling Fortran
- Such copies are time and memory consuming
- Remedy: declare numpy arrays with Fortran storage

```
order = 'Fortran' if version == 'f77' else 'C'
u = zeros((Nx+1,Ny+1), order=order)
u_1 = zeros((Nx+1,Ny+1), order=order)
u_2 = zeros((Nx+1,Ny+1), order=order)
```

Option -DF2PY_REPORT_ON_ARRAY_COPY=1 makes f2py write out array copying:

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

Efficiency of translating to Fortran

- Same efficiency (in this example) as Cython and C
- About 5 times faster than vectorized numpy code
- > 1000 faster than pure Python code

The C code

Migrating loops to C via Cython

- Write the advance function in pure C
- Use Cython to generate C code for calling C from Python
- Full manual control of the translation to C

```
Building the extension module

Compile and link the extension module with a setup.py file:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build.ext

sources = ['vave2D_u0_loop_c.c', 'vave2D_u0_loop_c_cy.pyx']
module = 'vave2D_u0_loop_c.c', 'vave2D_u0_loop_c_cy.pyx']
setup(
name module,
ext_modules=[Extension(module, sources,
libraries=[], * C libs to link with
];
cmdclass={'build_ext': build_ext},

Terminal> python setup.py build_ext --inplace

In Python:

import wave2D_u0_loop_c_cy
advance = wave2D_u0_loop_c_cy advance_cwrap
...
f_a[:,:] = f(xv, yv, t[n])
u = advance(u, u, 1, u, 2, f_a, Cx2, Cy2, dt2)
```

```
Migrating loops to C via f2py
```

- Write the advance function in pure C
- Use f2py to generate C code for calling C from Python
- Full manual control of the translation to C

The C code and the Fortran interface file

- Write the C function advance as before
- Write a Fortran 90 module defining the signature of the advance function
- Or: write a Fortran 77 function defining the signature and let f2py generate the Fortran 90 module

Fortran 77 signature (note intent(c)):

```
subroutine advance(u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny)
Cf2py intent(c) advance
    integer Nx, Ny, N
        real*8 u(0:Nx, 0:Ny), u_1(0:Nx, 0:Ny), u_2(0:Nx, 0:Ny)
        real*8 u(0:Nx, 0:Ny), Cx2, Cy2, dt2
Cf2py intent(in, out) u
Cf2py intent(c) u, u_1, u_2, f, Cx2, Cy2, dt2, Nx, Ny
        return
    end
```

Building the extension module

Generate Fortran 90 module (wave2D_u0_loop_c_f2py.pyf):

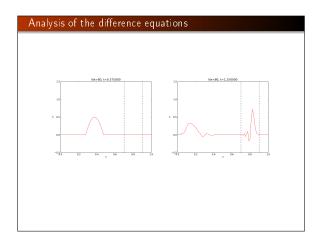
Terminal> f2py -m wave2D_u0_loop_c.f2py \
-h wave2D_u0_loop_c.f2py.pyf --overwrite-signature \
wave2D_u0.loop_c.f2py_signature.f

The compile and build step must list the C files:

 $\label{eq:continuity} Terminal > f2py -c \ wave2D_u0_loop_c_f2py.pyf \ \\ --build-dir \ tmp_build_c \ \\ -DF2PY_REPORT_ON_ARRAY_COPY=1 \ wave2D_u0_loop_c.c$

Migrating loops to C++ via f2py

- C++ can be used as an alternative to C
- C++ code often applies sophisticated arrays
- Challenge: translate from numpy C arrays to C++ array classes
- Can use SWIG to make C++ classes available as Python classes
- Easier (and more efficient):
 - Make C API to the C++ code
 - Wrap C API with f2py
 - \bullet Send numpy arrays to C API and let C translate numpy arrays into C++ array classes



Properties of the solution of the wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

Solutions:

$$u(x, t) = g_R(x - ct) + g_L(x + ct)$$

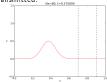
If
$$u(x,0) = l(x)$$
 and $u_t(x,0) = 0$:

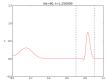
$$u(x,t) = \frac{1}{2}I(x-ct) + \frac{1}{2}I(x+ct)$$

Two waves: one traveling to the right and one to the left

Effect of variable wave velocity

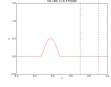
A wave propagates perfectly (C=1) and hits a medium with 1/4 of the wave velocity. A part of the wave is reflected and the rest is transmitted

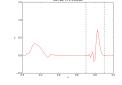




What happens here?

We have just changed the initial condition...





Representation of waves as sum of sine/cosine waves

Build I(x) of wave components $e^{ikx} = \cos kx + i \sin kx$:

$$I(x) \approx \sum_{k \in K} b_k e^{ikx}$$

- • k is the frequency of a component ($\lambda=2\pi/k$ corresponding wave length)
- K is some set of all k needed to approximate I(x) well
- b_k must be computed (Fourier coefficients)

Since $u(x, t) = \frac{1}{2}I(x - ct) + \frac{1}{2}I(x + ct)$:

$$u(x,t) = \frac{1}{2} \sum_{k \in K} b_k e^{ik(x-ct)} + \frac{1}{2} \sum_{k \in K} b_k e^{ik(x+ct)}$$

Our interest: one component $e^{i(kx-\omega t)}$, $\omega=kc$

Analysis of the finite difference scheme

A similar discrete $u_n^n = e^{i(kx_q - \tilde{\omega}t_n)}$ solves

$$[D_t D_t u = c^2 D_x D_x u]_a^n$$

Note: different frequency $\tilde{\omega} \neq \omega$

- How accurate is $\tilde{\omega}$ compared to ω ?
- What about the wave amplitude?

Preliminary results

$$[D_t D_t e^{i\omega t}]^n = -\frac{4}{\Delta t^2} \sin^2\left(\frac{\omega \Delta t}{2}\right) e^{i\omega n \Delta t}$$

By $\omega
ightarrow {\it k}, \ {\it t}
ightarrow {\it x}, \ {\it n}
ightarrow {\it q})$ it follows that

$$[D_x D_x e^{ikx}]_q = -\frac{4}{\Delta x^2} \sin^2\left(\frac{k\Delta x}{2}\right) e^{ikq\Delta x}$$

Numerical wave propagation (1)

Inserting a basic wave component $u=e^{i(kx_q-\tilde{\omega}t_n)}$ in the scheme requires computation of

$$\begin{split} [D_t D_t e^{ikx} e^{-i\tilde{\omega}t}]_q^n &= [D_t D_t e^{-i\tilde{\omega}t}]^n e^{ikq\Delta x} \\ &= -\frac{4}{\Delta t^2} \sin^2\left(\frac{\tilde{\omega}\Delta t}{2}\right) e^{-i\tilde{\omega}n\Delta t} e^{ikq\Delta x} \\ [D_x D_x e^{ikx} e^{-i\tilde{\omega}t}]_q^n &= [D_x D_x e^{ikx}]_q e^{-i\tilde{\omega}n\Delta t} \\ &= -\frac{4}{\Delta x^2} \sin^2\left(\frac{k\Delta x}{2}\right) e^{ikq\Delta x} e^{-i\tilde{\omega}n\Delta t} \end{split}$$

Numerical wave propagation (2)

The complete scheme,

$$[D_t D_t e^{ikx} e^{-i\tilde{\omega}t} = c^2 D_x D_x e^{ikx} e^{-i\tilde{\omega}t}]_q^n$$

leads to an equation for $\tilde{\omega}$:

$$\sin^2\left(\frac{\tilde{\omega}\Delta t}{2}\right) = C^2\sin^2\left(\frac{k\Delta x}{2}\right),$$

where $C = \frac{c\Delta t}{\Delta x}$ is the Courant number

Numerical wave propagation (3)

Taking the square root:

$$\sin\left(\frac{\tilde{\omega}\Delta t}{2}\right) = C\sin\left(\frac{k\Delta x}{2}\right)$$

- ullet Exact ω is real
- ullet Look for a real solution $\tilde{\omega}$ of
- ullet Then the sine functions are in [-1,1]
- Lef-hand side in [-1,1] requires $C \leq 1$

Stability criterion

$$C = \frac{c\Delta t}{\Delta x} \le 1$$

Why $C \leq 1$ is a stability criterion

Assume C>1. Then

$$\underbrace{\sin\left(\frac{\tilde{\omega}\Delta t}{2}\right)} > 1 = C\sin\left(\frac{k\Delta x}{2}\right)$$

- $|\sin x| > 1$ implies complex x
- Here: complex $\tilde{\omega} = \tilde{\omega}_r \pm i \tilde{\omega}_i$
- One $\tilde{\omega}_i < 0$ gives $\exp(i \cdot i \tilde{\omega}_i) = \exp(\tilde{\omega}_i)$ and exponential growth

Numerical dispersion relation

- How close is $\tilde{\omega}$ to ω ?
- ullet Can solve for an explicit formula for $ilde{\omega}$

$$\tilde{\omega} = \frac{2}{\Delta t} \sin^{-1} \left(C \sin \left(\frac{k \Delta x}{2} \right) \right)$$

- $\omega = kc$ is the analytical dispersion relation
- $ilde{\omega} = ilde{\omega}(k,c,\Delta x,\Delta t)$ is the numerical dispersion relation
- Speed of waves: $c = \omega/k$, $\tilde{c} = \tilde{\omega}/k$
- The numerical wave component has a wrong, mesh-dependent speed

The special case C=1

- For C=1, $\tilde{\omega}=\omega$
- The numerical solution is exact (at the mesh points)!
- ullet The only requirement is constant c

Computing the error in wave velocity

- Introduce $p = k \Delta x / 2$ (the important dimensionless spatial discretization parameter)
- p measures no of mesh points in space per wave length in space
- ullet Study error in wave velocity through \tilde{c}/c as function of p

$$r(C, p) = \frac{\tilde{c}}{c} = \frac{1}{Cp} \sin^{-1}(C \sin p), \quad C \in (0, 1], \ p \in (0, \pi/2]$$

Taylor expanding the error in wave velocity

For small p, Taylor expand $\tilde{\omega}$ as polynomial in p:

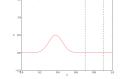
```
>>> C, p = symbols('C p')
>>> rs = r(C, p).series(p, 0, 7)
>>> print rs + p**4/120 - p**6/5040 + C**2*p**2/6 - C**2*p**4/12 + 13*6**2*p**6/720 + 3*C**4*p**4/40 - C**4*p**6/16 + 5*C**6*p**6/112 + 0(p**7)
>>> # Factorize each term and drop the remainder 0(...) term >>> rs_factored = [factor(term) for term in rs.lseries(p)]
>>> rs_factored = sum(rs_factored)
>>> print rs_factored
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040 + p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120 + p**2*(C - 1)*(C + 1)/6 + 1
```

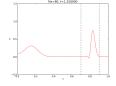
Leading error term is $\frac{1}{6}(C^2-1)p^2$ or

$$\frac{1}{6} \left(\frac{k \Delta x}{2} \right)^2 (C^2 - 1) = \frac{k^2}{24} \left(c^2 \Delta t^2 - \Delta x^2 \right) = \mathcal{O}(\Delta t^2, \Delta x^2)$$

Example on effect of wrong wave velocity (1)

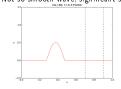
Smooth wave, few short waves (large k) in I(x):

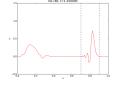




Example on effect of wrong wave velocity (1)

Not so smooth wave, significant short waves (large k) in I(x):





Extending the analysis to 2D (and 3D)

$$u(x, y, t) = g(k_x x + k_y y - \omega t)$$

is a typically solution of

$$u_{tt} = c^2(u_{xx} + u_{yy})$$

Can build solutions by adding complex Fourier components of the form

$$e^{i(k_x x + k_y y - \omega t)}$$

Discrete wave components in 2D

$$[D_t D_t u = c^2 (D_x D_x u + D_y D_y u)]_{q,r}^n$$

This equation admits a Fourier component

$$u_{q,r}^n = e^{i(k_x q \Delta x + k_y r \Delta y - \tilde{\omega} n \Delta t)}$$

Inserting the expression and using formulas from the 1D analysis:

$$\sin^2\left(\frac{\tilde{\omega}\Delta t}{2}\right) = C_x^2\sin^2p_x + C_y^2\sin^2p_y$$

where

$$C_x = rac{c^2 \Delta t^2}{\Delta x^2}, \quad C_y = rac{c^2 \Delta t^2}{\Delta y^2}, \quad p_x = rac{k_x \Delta x}{2}, \quad p_y = rac{k_y \Delta y}{2}$$

Stability criterion in 2D

Rreal-valued $\tilde{\omega}$ requires

$$C_x^2 + C_y^2 \le 1$$

or

$$\Delta t \leq \frac{1}{c} \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} \right)^{-1/2}$$

Stability criterion in 3D

$$\Delta t \leq rac{1}{c} \left(rac{1}{\Delta x^2} + rac{1}{\Delta y^2} + rac{1}{\Delta z^2}
ight)^{-1/2}$$

For $c^2=c^2(x)$ we must use the worst-case value $\bar{c}=\sqrt{\max_{x\in\Omega}c^2(x)}$ and a safety factor $\beta\leq 1$:

$$\Delta t \leq \beta \frac{1}{\overline{c}} \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2} \right)^{-1/2}$$

Numerical dispersion relation in 2D (1)

$$\tilde{\omega} = \frac{2}{\Delta t} \sin^{-1} \left(\left(C_x^2 \sin^2 p_x + C_y^2 \sin_y^p \right)^{\frac{1}{2}} \right)$$

For visualization, introduce θ :

$$k_x = k \sin \theta$$
, $k_y = k \cos \theta$, $p_x = \frac{1}{2} k h \cos \theta$, $p_y = \frac{1}{2} k h \sin \theta$

Also:
$$\Delta x = \Delta y = h$$
. Then $C_x = C_y = c \Delta t/h \equiv C$.

Now $\tilde{\omega}$ depends on

- C reflecting the number cells a wave is displaced during a time step
- kh reflecting the number of cells per wave length in space
- $m{ heta}$ expressing the direction of the wave

Numerical dispersion relation in 2D (2)

$$\frac{\tilde{c}}{c} = \frac{1}{Ckh} \sin^{-1} \left(C \left(\sin^2(\frac{1}{2}kh\cos\theta) + \sin^2(\frac{1}{2}kh\sin\theta) \right)^{\frac{1}{2}} \right)$$

Can make color contour plots of $1-\tilde{c}/c$ in polar coordinates with θ as the angular coordinate and kh as the radial coordinate.

