$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\halfi}{{1/2}} \newcommand{\xpoint}{\boldsymbol{x}} \newcommand{\normalvec}{\boldsymbol{n}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\It}{\mathcal{I}_t} \newcommand{\setb}[1]{#1^0} % set begin \newcommand{\sete}[1]{#1^{-1}} % set end \newcommand{\setl}[1]{#1^-} \newcommand{\setr}[1]{#1^+} \newcommand{\seti}[1]{#1^i} \newcommand{\Real}{\mathbb{R}} $$

« Previous
Next »

Verification: quadratic solution (1)

Manufactured solution: $$ \begin{equation} \uex(x,y,t) = x(L_x-x)y(L_y-y)(1+{\half}t) \tag{43} \end{equation} $$

Requires \( f=2c^2(1+{\half}t)(y(L_y-y) + x(L_x-x)) \).

This \( \uex \) is ideal because it also solves the discrete equations!

« Previous
Next »