Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\halfi}{{1/2}} \newcommand{\xpoint}{\boldsymbol{x}} \newcommand{\normalvec}{\boldsymbol{n}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\It}{\mathcal{I}_t} \newcommand{\setb}[1]{#1^0} % set begin \newcommand{\sete}[1]{#1^{-1}} % set end \newcommand{\setl}[1]{#1^-} \newcommand{\setr}[1]{#1^+} \newcommand{\seti}[1]{#1^i} \newcommand{\Real}{\mathbb{R}}

« Previous
Next »

Boundary and initial conditions

We need one boundary condition at each point on \partial\Omega :

  1. u is prescribed ( u=0 or known incoming wave)
  2. \partial u/\partial n = \normalvec\cdot\nabla u prescribed ( =0 : reflecting boundary)
  3. open boundary (radiation) condition: u_t + \boldsymbol{c}\cdot\nabla u =0 (let waves travel undisturbed out of the domain)
PDEs with second-order time derivative need two initial conditions:

  1. u=I ,
  2. u_t = V .

« Previous
Next »