$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\halfi}{{1/2}} \newcommand{\xpoint}{\boldsymbol{x}} \newcommand{\normalvec}{\boldsymbol{n}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\It}{\mathcal{I}_t} \newcommand{\setb}[1]{#1^0} % set begin \newcommand{\sete}[1]{#1^{-1}} % set end \newcommand{\setl}[1]{#1^-} \newcommand{\setr}[1]{#1^+} \newcommand{\seti}[1]{#1^i} \newcommand{\Real}{\mathbb{R}} $$

« Previous
Next »

Boundary and initial conditions

We need one boundary condition at each point on \( \partial\Omega \):

  1. \( u \) is prescribed (\( u=0 \) or known incoming wave)
  2. \( \partial u/\partial n = \normalvec\cdot\nabla u \) prescribed (\( =0 \): reflecting boundary)
  3. open boundary (radiation) condition: \( u_t + \boldsymbol{c}\cdot\nabla u =0 \) (let waves travel undisturbed out of the domain)
PDEs with second-order time derivative need two initial conditions:

  1. \( u=I \),
  2. \( u_t = V \).

« Previous
Next »