$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\halfi}{{1/2}} \newcommand{\xpoint}{\boldsymbol{x}} \newcommand{\normalvec}{\boldsymbol{n}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\It}{\mathcal{I}_t} \newcommand{\setb}[1]{#1^0} % set begin \newcommand{\sete}[1]{#1^{-1}} % set end \newcommand{\setl}[1]{#1^-} \newcommand{\setr}[1]{#1^+} \newcommand{\seti}[1]{#1^i} \newcommand{\Real}{\mathbb{R}} $$

« Previous
Next »

Verification of the vectorized version

def test_quadratic():
    """
    Check the scalar and vectorized versions work for
    a quadratic u(x,t)=x(L-x)(1+t/2) that is exactly reproduced.
    """
    # The following function must work for x as array or scalar
    u_exact = lambda x, t: x*(L - x)*(1 + 0.5*t)
    I = lambda x: u_exact(x, 0)
    V = lambda x: 0.5*u_exact(x, 0)
    # f is a scalar (zeros_like(x) works for scalar x too)
    f = lambda x, t: zeros_like(x) + 2*c**2*(1 + 0.5*t)

    L = 2.5
    c = 1.5
    C = 0.75
    Nx = 3  # Very coarse mesh for this exact test
    dt = C*(L/Nx)/c
    T = 18

    def assert_no_error(u, x, t, n):
        u_e = u_exact(x, t[n])
        diff = abs(u - u_e).max()
        nt.assert_almost_equal(diff, 0, places=13)

    solver(I, V, f, c, L, dt, C, T,
           user_action=assert_no_error, version='scalar')
    solver(I, V, f, c, L, dt, C, T,
           user_action=assert_no_error, version='vectorized')

Note:

« Previous
Next »