$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\halfi}{{1/2}} \newcommand{\xpoint}{\boldsymbol{x}} \newcommand{\normalvec}{\boldsymbol{n}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\It}{\mathcal{I}_t} \newcommand{\setb}[1]{#1^0} % set begin \newcommand{\sete}[1]{#1^{-1}} % set end \newcommand{\setl}[1]{#1^-} \newcommand{\setr}[1]{#1^+} \newcommand{\seti}[1]{#1^i} \newcommand{\Real}{\mathbb{R}} $$

« Previous
Next »

The benefits of scaling

Introduce new \( x \), \( t \), and \( u \) without dimension: $$ \bar x = \frac{x}{L},\quad \bar t = \frac{c}{L}t,\quad \bar u = \frac{u}{a} $$

Insert this in the PDE (with \( f=0 \)) and dropping bars $$ u_{tt} = u_{xx}$$

Initial condition: set \( a=1 \), \( L=1 \), and \( x_0\in [0,1] \) in (20).

In the code: set a=c=L=1, x0=0.8, and there is no need to calculate with wavelengths and frequencies to estimate \( c \)!

Just one challenge: determine the period of the waves and an appropriate end time (see the text for details).

« Previous
Next »