Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\halfi}{{1/2}}
\newcommand{\xpoint}{\boldsymbol{x}}
\newcommand{\normalvec}{\boldsymbol{n}}
\newcommand{\Oof}[1]{\mathcal{O}(#1)}
\newcommand{\Ix}{\mathcal{I}_x}
\newcommand{\Iy}{\mathcal{I}_y}
\newcommand{\It}{\mathcal{I}_t}
\newcommand{\setb}[1]{#1^0} % set begin
\newcommand{\sete}[1]{#1^{-1}} % set end
\newcommand{\setl}[1]{#1^-}
\newcommand{\setr}[1]{#1^+}
\newcommand{\seti}[1]{#1^i}
\newcommand{\Real}{\mathbb{R}}
The benefits of scaling
- It is difficult to figure out all the physical parameters of a case
- And it is not necessary because of a powerful: scaling
Introduce new x , t , and u without dimension:
\bar x = \frac{x}{L},\quad \bar t = \frac{c}{L}t,\quad
\bar u = \frac{u}{a}
Insert this in the PDE (with f=0 ) and dropping bars
u_{tt} = u_{xx}
Initial condition: set a=1 , L=1 , and
x_0\in [0,1] in (20).
In the code: set a=c=L=1
, x0=0.8
, and there is no need to calculate with
wavelengths and frequencies to estimate c !
Just one challenge: determine the period of the waves and an
appropriate end time (see the text for details).