$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\halfi}{{1/2}} \newcommand{\xpoint}{\boldsymbol{x}} \newcommand{\normalvec}{\boldsymbol{n}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\It}{\mathcal{I}_t} \newcommand{\setb}[1]{#1^0} % set begin \newcommand{\sete}[1]{#1^{-1}} % set end \newcommand{\setl}[1]{#1^-} \newcommand{\setr}[1]{#1^+} \newcommand{\seti}[1]{#1^i} \newcommand{\Real}{\mathbb{R}} $$

« Previous
Next »

Analytical work with the PDE problem

Here, choose \( \uex \) such that \( \uex(x,0)=\uex(L,0)=0 \): $$ \uex (x,t) = x(L-x)(1+{\half}t), $$

Insert in the PDE and find \( f \): $$ f(x,t)=2(1+t)c^2$$

Initial conditions: $$ I(x) = x(L-x),\quad V(x)={\half}x(L-x) $$

« Previous
Next »