$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\halfi}{{1/2}} \newcommand{\xpoint}{\boldsymbol{x}} \newcommand{\normalvec}{\boldsymbol{n}} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\It}{\mathcal{I}_t} \newcommand{\setb}[1]{#1^0} % set begin \newcommand{\sete}[1]{#1^{-1}} % set end \newcommand{\setl}[1]{#1^-} \newcommand{\setr}[1]{#1^+} \newcommand{\seti}[1]{#1^i} \newcommand{\Real}{\mathbb{R}} $$

« Previous
Next »

Step 3: Algebraic version of the initial conditions

$$ [D_{2t} u]^n_i = 0,\quad n=0\quad\Rightarrow\quad u^{n-1}_i=u^{n+1}_i,\quad i=0,\ldots,N_x$$

The other initial condition \( u(x,0)=I(x) \) can be computed by $$ u_i^0 = I(x_i),\quad i=0,\ldots,N_x$$

« Previous
Next »