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Vibration problems lead to differential equations with solutions that oscillate in time, typically
in a damped or undamped sinusoidal fashion. Such solutions put certain demands on the numerical
methods compared to other phenomena whose solutions are monotone. Both the frequency and
amplitude of the oscillations need to be accurately handled by the numerical schemes. Most
of the reasoning and specific building blocks introduced in the fortcoming text can be reused
to construct sound methods for partial differential equations of wave nature in multiple spatial
dimensions.

1 Finite difference discretization
Much of the numerical challenges with computing oscillatory solutions in ODEs and PDEs can be
captured by the very simple ODE u′′ + u = 0 and this is therefore the starting point for method
development, implementation, and analysis.

1.1 A basic model for vibrations
A system that vibrates without damping and external forcing can be described by ODE problem

u′′ + ω2u = 0, u(0) = I, u′(0) = 0, t ∈ (0, T ] . (1)
Here, ω and I are given constants. The exact solution of (1) is

u(t) = I cos(ωt) . (2)
That is, u oscillates with constant amplitude I and angular frequency ω. The corresponding
period of oscillations (i.e., the time between two neighboring peaks in the cosine function) is
P = 2π/ω. The number of periods per second is f = ω/(2π) and measured in the unit Hz. Both
f and ω are referred to as frequency, but ω may be more precisely named angular frequency,
measured in rad/s.

In vibrating mechanical systems modeled by (1), u(t) very often represents a position or a
displacement of a particular point in the system. The derivative u′(t) then has the interpretation
of the point’s velocity, and u′′(t) is the associated acceleration. The model (1) is not only
applicable to vibrating mechanical systems, but also to oscillations in electrical circuits.

1.2 A centered finite difference scheme
To formulate a finite difference method for the model problem (1) we follow the four steps from
Section ??in [1].

Step 1: Discretizing the domain. The domain is discretized by introducing a uniformly
partitioned time mesh in the present problem. The points in the mesh are hence tn = n∆t,
n = 0, 1, . . . , Nt, where ∆t = T/Nt is the constant length of the time steps. We introduce a mesh
function un for n = 0, 1, . . . , Nt, which approximates the exact solution at the mesh points. The
mesh function will be computed from algebraic equations derived from the differential equation
problem.

Step 2: Fulfilling the equation at discrete time points. The ODE is to be satisfied at
each mesh point:

u′′(tn) + ω2u(tn) = 0, n = 1, . . . , Nt . (3)

4



Step 3: Replacing derivatives by finite differences. The derivative u′′(tn) is to be replaced
by a finite difference approximation. A common second-order accurate approximation to the
second-order derivative is

u′′(tn) ≈ un+1 − 2un + un−1

∆t2 . (4)

Inserting (4) in (3) yields

un+1 − 2un + un−1

∆t2 = −ω2un . (5)

We also need to replace the derivative in the initial condition by a finite difference. Here we
choose a centered difference, whose accuracy is similar to the centered difference we used for u′′:

u1 − u−1

2∆t = 0 . (6)

Step 4: Formulating a recursive algorithm. To formulate the computational algorithm,
we assume that we have already computed un−1 and un such that un+1 is the unknown value,
which we can readily solve for:

un+1 = 2un − un−1 −∆t2ω2un . (7)
The computational algorithm is simply to apply (7) successively for n = 1, 2, . . . , Nt − 1. This
numerical scheme sometimes goes under the name Störmer’s method or Verlet integration1.

Computing the first step. We observe that (7) cannot be used for n = 0 since the computation
of u1 then involves the undefined value u−1 at t = −∆t. The discretization of the initial condition
then come to rescue: (6) implies u−1 = u1 and this relation can be combined with (7) for n = 1
to yield a value for u1:

u1 = 2u0 − u1 −∆t2ω2u0,

which reduces to

u1 = u0 − 1
2∆t2ω2u0 . (8)

Exercise 5 asks you to perform an alternative derivation and also to generalize the initial condition
to u′(0) = V 6= 0.

The computational algorithm. The steps for solving (1) becomes

1. u0 = I

2. compute u1 from (8)

3. for n = 1, 2, . . . , Nt − 1:

(a) compute un+1 from (7)

The algorithm is more precisely expressed directly in Python:

1http://en.wikipedia.org/wiki/Verlet_integration
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t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0] # constant time step
u = zeros(Nt+1) # solution

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]

Remark.
In the code, we use w as the symbol for ω. The reason is that this author prefers w for
readability and comparison with the mathematical ω instead of the full word omega as
variable name.

Operator notation. We may write the scheme using the compact difference notation (see
Section ??in [1]). The difference (4) has the operator notation [DtDtu]n such that we can write:

[DtDtu+ ω2u = 0]n . (9)

Note that [DtDtu]n means applying a central difference with step ∆t/2 twice:

[Dt(Dtu)]n = [Dtu]n+ 1
2 − [Dtu]n− 1

2

∆t
which is written out as

1
∆t

(
un+1 − un

∆t − un − un−1

∆t

)
= un+1 − 2un + un−1

∆t2 .

The discretization of initial conditions can in the operator notation be expressed as

[u = I]0, [D2tu = 0]0, (10)

where the operator [D2tu]n is defined as

[D2tu]n = un+1 − un−1

2∆t . (11)

2 Implementation
2.1 Making a solver function
The algorithm from the previous section is readily translated to a complete Python function for
computing (returning) u0, u1, . . . , uNt and t0, t1, . . . , tNt

, given the input I, ω, ∆t, and T :

from numpy import *
from matplotlib.pyplot import *
from vib_empirical_analysis import minmax, periods, amplitudes

def solver(I, w, dt, T):
"""
Solve u’’ + w**2*u = 0 for t in (0,T], u(0)=I and u’(0)=0,
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by a central finite difference method with time step dt.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1)

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]
return u, t

A function for plotting the numerical and the exact solution is also convenient to have:

def u_exact(t, I, w):
return I*cos(w*t)

def visualize(u, t, I, w):
plot(t, u, ’r--o’)
t_fine = linspace(0, t[-1], 1001) # very fine mesh for u_e
u_e = u_exact(t_fine, I, w)
hold(’on’)
plot(t_fine, u_e, ’b-’)
legend([’numerical’, ’exact’], loc=’upper left’)
xlabel(’t’)
ylabel(’u’)
dt = t[1] - t[0]
title(’dt=%g’ % dt)
umin = 1.2*u.min(); umax = -umin
axis([t[0], t[-1], umin, umax])
savefig(’vib1.png’)
savefig(’vib1.pdf’)

A corresponding main program calling these functions for a simulation of a given number of
periods (num_periods) may take the form

I = 1
w = 2*pi
dt = 0.05
num_periods = 5
P = 2*pi/w # one period
T = P*num_periods
u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)

Adjusting some of the input parameters on the command line can be handy. Here is a code
segment using the ArgumentParser tool in the argparse module to define option value (–option
value) pairs on the command line:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--I’, type=float, default=1.0)
parser.add_argument(’--w’, type=float, default=2*pi)
parser.add_argument(’--dt’, type=float, default=0.05)
parser.add_argument(’--num_periods’, type=int, default=5)
a = parser.parse_args()
I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods

A typical execution goes like
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Terminal> python vib_undamped.py --num_periods 20 --dt 0.1

Computing u′. In mechanical vibration applications one is often interested in computing the
velocity v(t) = u′(t) after u(t) has been computed. This can be done by a central difference,

v(tn) = u′(tn) ≈ vn = un+1 − un−1

2∆t = [D2tu]n . (12)

This formula applies for all inner mesh points, n = 1, . . . , Nt − 1. For n = 0 we have that v(0)
is given by the initial condition on u′(0), and for n = Nt we can use a one-sided, backward
difference: vn = [D−t u]n.

Appropriate vectorized Python code becomes

v = np.zeros_like(u)
v[1:-1] = (u[2:] - u[:-2])/(2*dt) # internal mesh points
v[0] = V # Given boundary condition u’(0)
v[-1] = (u[-1] - u[-2])/dt # backward difference

2.2 Verification
Manual calculation. The simplest type of verification, which is also instructive for under-
standing the algorithm, is to compute u1, u2, and u3 with the aid of a calculator and make
a function for comparing these results with those from the solver function. We refer to the
test_three_steps function in the file vib_undamped.py2 for details.

Testing very simple solutions. Constructing test problems where the exact solution is
constant or linear helps initial debugging and verification as one expects any reasonable numerical
method to reproduce such solutions to machine precision. Second-order accurate methods will
often also reproduce a quadratic solution. Here [DtDtt

2]n = 2, which is the exact result. A
solution u = t2 leads to u′′+ω2u = 2+(ωt)2 6= 0. We must therefore add a source in the equation:
u′′ + ω2u = f to allow a solution u = t2 for f = (ωt)2. By simple insertion we can show that
the mesh function un = t2n is also a solution of the discrete equations. Problem 1 asks you to
carry out all details with showing that linear and quadratic solutions are solutions of the discrete
equations. Such results are very useful for debugging and verification.

Checking convergence rates. Empirical computation of convergence rates, as explained in
Section ??in [1], yields a good method for verification. The function below

• performs m simulations with halved time steps: 2−i∆t, i = 0, . . . ,m− 1,

• computes the L2 norm of the error, E =
√

2−i∆t
∑Nt−1
n=0 (un − ue(tn))2 in each case,

• estimates the convergence rates ri based on two consecutive experiments (∆ti−1, Ei−1) and
(∆ti, Ei), assuming Ei = C∆tri

i and Ei−1 = C∆tri
i−1. From these equations it follows that

ri−1 = ln(Ei−1/Ei)/ ln(∆ti−1/∆ti), for i = 1, . . . ,m− 1.

All the implementational details appear below.

2http://tinyurl.com/nm5587k/vib/vib_undamped.py
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def convergence_rates(m, solver_function, num_periods=8):
"""
Return m-1 empirical estimates of the convergence rate
based on m simulations, where the time step is halved
for each simulation.
"""
w = 0.35; I = 0.3
dt = 2*pi/w/30 # 30 time step per period 2*pi/w
T = 2*pi/w*num_periods
dt_values = []
E_values = []
for i in range(m):

u, t = solver_function(I, w, dt, T)
u_e = u_exact(t, I, w)
E = sqrt(dt*sum((u_e-u)**2))
dt_values.append(dt)
E_values.append(E)
dt = dt/2

r = [log(E_values[i-1]/E_values[i])/
log(dt_values[i-1]/dt_values[i])
for i in range(1, m, 1)]

return r

The returned r list has its values equal to 2.00, which is in excellent agreement with what is
expected from the second-order finite difference approximation [DtDtu]n and other theoretical
measures of the error in the numerical method. The final r[-1] value is a good candidate for a
unit test:

def test_convergence_rates():
r = convergence_rates(m=5, solver_function=solver, num_periods=8)
# Accept rate to 1 decimal place
nt.assert_almost_equal(r[-1], 2.0, places=1)

The complete code appears in the file vib_undamped.py.

3 Long time simulations
Figure 1 shows a comparison of the exact and numerical solution for ∆t = 0.1, 0.05 and w = 2π.
From the plot we make the following observations:

• The numerical solution seems to have correct amplitude.

• There is a phase error which is reduced by reducing the time step.

• The total phase error grows with time.

By phase error we mean that the peaks of the numerical solution have incorrect positions
compared with the peaks of the exact cosine solution. This effect can be understood as if also the
numerical solution is on the form I cos ω̃t, but where ω̃ is not exactly equal to ω. Later, we shall
mathematically quantify this numerical frequency ω̃.

3.1 Using a moving plot window
In vibration problems it is often of interest to investigate the system’s behavior over long time
intervals. Errors in the phase may then show up as crucial. Let us investigate long time
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Figure 1: Effect of halving the time step.

series by introducing a moving plot window that can move along with the p most recently
computed periods of the solution. The SciTools3 package contains a convenient tool for this:
MovingPlotWindow. Typing pydoc scitools.MovingPlotWindow shows a demo and description
of usage. The function below illustrates the usage and is invoked in the vib_undamped.py code
if the number of periods in the simulation exceeds 10:

def visualize_front(u, t, I, w, savefig=False):
"""
Visualize u and the exact solution vs t, using a
moving plot window and continuous drawing of the
curves as they evolve in time.
Makes it easy to plot very long time series.
"""
import scitools.std as st
from scitools.MovingPlotWindow import MovingPlotWindow

P = 2*pi/w # one period
umin = 1.2*u.min(); umax = -umin
plot_manager = MovingPlotWindow(

window_width=8*P,
dt=t[1]-t[0],
yaxis=[umin, umax],
mode=’continuous drawing’)

for n in range(1,len(u)):
if plot_manager.plot(n):

s = plot_manager.first_index_in_plot
st.plot(t[s:n+1], u[s:n+1], ’r-1’,

t[s:n+1], I*cos(w*t)[s:n+1], ’b-1’,
title=’t=%6.3f’ % t[n],
axis=plot_manager.axis(),
show=not savefig) # drop window if savefig

if savefig:
filename = ’tmp_vib%04d.png’ % n
st.savefig(filename)
print ’making plot file’, filename, ’at t=%g’ % t[n]

plot_manager.update(n)

Running

3http://code.google.com/p/scitools
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Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

makes the simulation last for 40 periods of the cosine function. With the moving plot window we
can follow the numerical and exact solution as time progresses, and we see from this demo that
the phase error is small in the beginning, but then becomes more prominent with time. Running
vib_undamped.py with ∆t = 0.1 clearly shows that the phase errors become significant even
earlier in the time series and destroys the solution.

3.2 Making a video
The visualize_front function stores all the plots in files whose names are numbered: tmp_vib0000.png,
tmp_vib0001.png, tmp_vib0002.png, and so on. From these files we may make a movie. The
Flash format is popular,

Terminal> avconv -r 12 -i tmp_vib%04d.png -c:v flv movie.flv

The avconv program can be replaced by the ffmpeg program in the above command if desired.
The -r option should come first and describes the number of frames per second in the movie.
The -i option describes the name of the plot files. Other formats can be generated by changing
the video codec and equipping the video file with the right extension:

Format Codec and filename
Flash -c:v flv movie.flv
MP4 -c:v libx264 movie.mp4
Webm -c:v libvpx movie.webm
Ogg -c:v libtheora movie.ogg

The video file can be played by some video player like vlc, mplayer, gxine, or totem, e.g.,

Terminal> vlc movie.webm

A web page can also be used to play the movie. Today’s standard is to use the HTML5 video
tag:

<video autoplay loop controls
width=’640’ height=’365’ preload=’none’>

<source src=’movie.webm’ type=’video/webm; codecs="vp8, vorbis"’>
</video>

Caution: number the plot files correctly.

To ensure that the individual plot frames are shown in correct order, it is important to
number the files with zero-padded numbers (0000, 0001, 0002, etc.). The printf format %04d
specifies an integer in a field of width 4, padded with zeros from the left. A simple Unix
wildcard file specification like tmp_vib*.png will then list the frames in the right order.
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If the numbers in the filenames were not zero-padded, the frame tmp_vib11.png would
appear before tmp_vib2.png in the movie.

3.3 Using a line-by-line ascii plotter
Plotting functions vertically, line by line, in the terminal window using ascii characters only is a
simple, fast, and convenient visualization technique for long time series (the time arrow points
downward). The tool scitools.avplotter.Plotter makes it easy to create such plots:

def visualize_front_ascii(u, t, I, w, fps=10):
"""
Plot u and the exact solution vs t line by line in a
terminal window (only using ascii characters).
Makes it easy to plot very long time series.
"""
from scitools.avplotter import Plotter
import time
P = 2*pi/w
umin = 1.2*u.min(); umax = -umin

p = Plotter(ymin=umin, ymax=umax, width=60, symbols=’+o’)
for n in range(len(u)):

print p.plot(t[n], u[n], I*cos(w*t[n])), \
’%.1f’ % (t[n]/P)

time.sleep(1/float(fps))

if __name__ == ’__main__’:
main()
raw_input()

The call p.plot returns a line of text, with the t axis marked and a symbol + for the first function
(u) and o for the second function (the exact solution). Here we append this text a time counter
reflecting how many periods the current time point corresponds to. A typical output (ω = 2π,
∆t = 0.05) looks like this:

| o+ 14.0
| + o 14.0
| + o 14.1
| + o 14.1
| + o 14.2

+| o 14.2
+ | 14.2

+ o | 14.3
+ o | 14.4

+ o | 14.4
+o | 14.5
o + | 14.5
o + | 14.6

o + | 14.6
o + | 14.7

o | + 14.7
| + 14.8
| o + 14.8
| o + 14.9
| o + 14.9
| o+ 15.0

3.4 Empirical analysis of the solution
For oscillating functions like those in Figure 1 we may compute the amplitude and frequency (or
period) empirically. That is, we run through the discrete solution points (tn, un) and find all
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maxima and minima points. The distance between two consecutive maxima (or minima) points
can be used as estimate of the local period, while half the difference between the u value at a
maximum and a nearby minimum gives an estimate of the local amplitude.

The local maxima are the points where

un−1 < un > un+1, n = 1, . . . , Nt − 1, (13)

and the local minima are recognized by

un−1 > un < un+1, n = 1, . . . , Nt − 1 . (14)

In computer code this becomes

def minmax(t, u):
minima = []; maxima = []
for n in range(1, len(u)-1, 1):

if u[n-1] > u[n] < u[n+1]:
minima.append((t[n], u[n]))

if u[n-1] < u[n] > u[n+1]:
maxima.append((t[n], u[n]))

return minima, maxima

Note that the returned objects are list of tuples.
Let (ti, ei), i = 0, . . . ,M − 1, be the sequence of all the M maxima points, where ti is the

time value and ei the corresponding u value. The local period can be defined as pi = ti+1 − ti.
With Python syntax this reads

def periods(maxima):
p = [extrema[n][0] - maxima[n-1][0]

for n in range(1, len(maxima))]
return np.array(p)

The list p created by a list comprehension is converted to an array since we probably want to
compute with it, e.g., find the corresponding frequencies 2*pi/p.

Having the minima and the maxima, the local amplitude can be calculated as the difference
between two neighboring minimum and maximum points:

def amplitudes(minima, maxima):
a = [(abs(maxima[n][1] - minima[n][1]))/2.0

for n in range(min(len(minima),len(maxima)))]
return np.array(a)

The code segments are found in the file vib_empirical_analysis.py4.
Visualization of the periods p or the amplitudes a it is most conveniently done with just a

counter on the horizontal axis, since a[i] and p[i] correspond to the i-th amplitude estimate
and the i-th period estimate, respectively. There is no unique time point associated with either
of these estimate since values at two different time points were used in the computations.

In the analysis of very long time series, it is advantageous to compute and plot p and a instead
of u to get an impression of the development of the oscillations.

4http://tinyurl.com/nm5587k/vib/vib_empirical_analysis.py

13

http://tinyurl.com/nm5587k/vib/vib_empirical_analysis.py


4 Analysis of the numerical scheme
4.1 Deriving a solution of the numerical scheme
After having seen the phase error grow with time in the previous section, we shall now quantify
this error through mathematical analysis. The key tool in the analysis will be to establish an
exact solution of the discrete equations. The difference equation (7) has constant coefficients and
is homogeneous. The solution is then un = CAn, where A is some number to be determined from
the differential equation and C is determined from the initial condition (C = I). Recall that
n in un is a superscript labeling the time level, while n in An is an exponent. With oscillating
functions as solutions, the algebra will be considerably simplified if we seek an A on the form

A = eiω̃∆t,

and solve for the numerical frequency ω̃ rather than A. Note that i =
√
−1 is the imaginary

unit. (Using a complex exponential function gives simpler arithmetics than working with a sine
or cosine function.) We have

An = eiω̃∆t n = eiω̃t = cos(ω̃t) + i sin(ω̃t) .

The physically relevant numerical solution can be taken as the real part of this complex expression.
The calculations goes as

[DtDtu]n = un+1 − 2un + un−1

∆t2

= I
An+1 − 2An +An−1

∆t2

= I
exp (iω̃(t+ ∆t))− 2 exp (iω̃t) + exp (iω̃(t−∆t))

∆t2

= I exp (iω̃t) 1
∆t2 (exp (iω̃(∆t)) + exp (iω̃(−∆t))− 2)

= I exp (iω̃t) 2
∆t2 (cosh(iω̃∆t)− 1)

= I exp (iω̃t) 2
∆t2 (cos(ω̃∆t)− 1)

= −I exp (iω̃t) 4
∆t2 sin2( ω̃∆t

2 )

The last line follows from the relation cosx−1 = −2 sin2(x/2) (try cos(x)-1 in wolframalpha.com5

to see the formula).
The scheme (7) with un = Ieiω∆̃t n inserted now gives

− Ieiω̃t 4
∆t2 sin2( ω̃∆t

2 ) + ω2Ieiω̃t = 0, (15)

which after dividing by Ieiω̃t results in

4
∆t2 sin2( ω̃∆t

2 ) = ω2 . (16)

5http://www.wolframalpha.com
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The first step in solving for the unknown ω̃ is

sin2( ω̃∆t
2 ) =

(
ω∆t

2

)2
.

Then, taking the square root, applying the inverse sine function, and multiplying by 2/∆t, results
in

ω̃ = ± 2
∆t sin−1

(
ω∆t

2

)
. (17)

The first observation of (17) tells that there is a phase error since the numerical frequency
ω̃ never equals the exact frequency ω. But how good is the approximation (17)? That is, what
is the error ω − ω̃ or ω̃/ω? Taylor series expansion for small ∆t may give an expression that is
easier to understand than the complicated function in (17):

>>> from sympy import *
>>> dt, w = symbols(’dt w’)
>>> w_tilde_e = 2/dt*asin(w*dt/2)
>>> w_tilde_series = w_tilde_e.series(dt, 0, 4)
>>> print w_tilde_series
w + dt**2*w**3/24 + O(dt**4)

This means that

ω̃ = ω

(
1 + 1

24ω
2∆t2

)
+O(∆t4) . (18)

The error in the numerical frequency is of second-order in ∆t, and the error vanishes as ∆t→ 0.
We see that ω̃ > ω since the term ω3∆t2/24 > 0 and this is by far the biggest term in the series
expansion for small ω∆t. A numerical frequency that is too large gives an oscillating curve that
oscillates too fast and therefore "lags behind" the exact oscillations, a feature that can be seen in
the plots.

Figure 2 plots the discrete frequency (17) and its approximation (18) for ω = 1 (based on the
program vib_plot_freq.py6). Although ω̃ is a function of ∆t in (18), it is misleading to think of
∆t as the important discretization parameter. It is the product ω∆t that is the key discretization
parameter. This quantity reflects the number of time steps per period of the oscillations. To see
this, we set P = NP∆t, where P is the length of a period, and NP is the number of time steps
during a period. Since P and ω are related by P = 2π/ω, we get that ω∆t = 2π/NP , which
shows that ω∆t is directly related to NP .

The plot shows that at least NP ∼ 25 − 30 points per period are necessary for reasonable
accuracy, but this depends on the length of the simulation (T ) as the total phase error due to the
frequency error grows linearly with time (see Exercise 2).

4.2 Exact discrete solution
Perhaps more important than the ω̃ = ω +O(∆t2) result found above is the fact that we have an
exact discrete solution of the problem:

un = I cos (ω̃n∆t) , ω̃ = 2
∆t sin−1

(
ω∆t

2

)
. (19)

We can then compute the error mesh function
6http://tinyurl.com/nm5587k/vib/vib_plot_freq.py

15

http://tinyurl.com/nm5587k/vib/vib_plot_freq.py


0 5 10 15 20 25 30 35
no of time steps per period

1.0

1.1

1.2

1.3

1.4

1.5

1.6

nu
m

er
ic

al
 fr

eq
ue

nc
y

exact discrete frequency
2nd-order expansion

Figure 2: Exact discrete frequency and its second-order series expansion.

en = ue(tn)− un = I cos (ωn∆t)− I cos (ω̃n∆t) . (20)
From the formula cos 2x− cos 2y = −2 sin(x− y) sin(x+ y) we can rewrite en so the expression
is easier to interpret:

en = −2I sin
(
t
1
2 (ω − ω̃)

)
sin
(
t
1
2 (ω + ω̃)

)
. (21)

In particular, we can use (21) to show convergence of the numerical scheme, i.e., en → 0 as
∆t→ 0. We have that

lim
∆t→0

ω̃ = lim
∆t→0

2
∆t sin−1

(
ω∆t

2

)
= ω,

by L’Hopital’s rule or simply asking sympy or WolframAlpha7 about the limit:

>>> import sympy as sp
>>> dt, w = sp.symbols(’x w’)
>>> sp.limit((2/dt)*sp.asin(w*dt/2), dt, 0, dir=’+’)
w

Therefore, ω̃ → ω and obviously en → 0.
The error mesh function is ideal for verification purposes and you are strongly encouraged to

make a test based on (19) by doing Exercise 10.
7http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0
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4.3 The global error
To achieve more analytical insight into the nature of the global error, we can Taylor expand the
error mesh function. Since ω̃ contains ∆t in the denominator we use the series expansion for ω̃
inside the cosine function:

>>> dt, w, t = symbols(’dt w t’)
>>> w_tilde_e = 2/dt*asin(w*dt/2)
>>> w_tilde_series = w_tilde_e.series(dt, 0, 4)
>>> # Get rid of O() term
>>> w_tilde_series = sum(w_tilde_series.as_ordered_terms()[:-1])
>>> w_tilde_series
dt**2*w**3/24 + w
>>> error = cos(w*t) - cos(w_tilde_series*t)
>>> error.series(dt, 0, 6)
dt**2*t*w**3*sin(t*w)/24 + dt**4*t**2*w**6*cos(t*w)/1152 + O(dt**6)
>>> error.series(dt, 0, 6).as_leading_term(dt)
dt**2*t*w**3*sin(t*w)/24

This means that the leading order global (true) error at a point t is proportional to ω3t∆t2. Setting
t = n∆t and replacing sin(ωt) by its maximum value 1, we have the analytical leading-order
expression

en = 1
24nω

3∆t3,

and the `2 norm of this error can be computed as

||en||2`2 = ∆t
Nt∑
n=0

1
242n

2ω6∆t6 = 1
242ω

6∆t7
Nt∑
n=0

n2 .

The sum
∑Nt

n=0 n
2 is approximately equal to 1

3N
3
t . Replacing Nt by T/∆t and taking the square

root gives the expression

||en||`2 = 1
24

√
T 3

3 ω3∆t2,

which shows that also the integrated error is proportional to ∆t2.

4.4 Stability
Looking at (19), it appears that the numerical solution has constant and correct amplitude, but
an error in the frequency (phase error). However, there is another error that is more serious,
namely an unstable growing amplitude that can occur of ∆t is too large.

We realize that a constant amplitude demands ω̃ to be a real number. A complex ω̃ is
indeed possible if the argument x of sin−1(x) has magnitude larger than unity: |x| > 1 (type
asin(x) in wolframalpha.com8 to see basic properties of sin−1(x)). A complex ω̃ can be written
ω̃ = ω̃r + iω̃i. Since sin−1(x) has a negative imaginary part for x > 1, ω̃i < 0, it means that
exp (iωt̃) = exp (−ω̃it) exp (iω̃rt) will lead to exponential growth in time because exp (−ω̃it) with
ω̃i < 0 has a positive exponent.

We do not tolerate growth in the amplitude and we therefore have a stability criterion arising
from requiring the argument ω∆t/2 in the inverse sine function to be less than one:

ω∆t
2 ≤ 1 ⇒ ∆t ≤ 2

ω
. (22)

8http://www.wolframalpha.com
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With ω = 2π, ∆t > π−1 = 0.3183098861837907 will give growing solutions. Figure 3 displays
what happens when ∆t = 0.3184, which is slightly above the critical value: ∆t = π−1 + 9.01 ·10−5.

Figure 3: Growing, unstable solution because of a time step slightly beyond the stability limit.

4.5 About the accuracy at the stability limit
An interesting question is whether the stability condition ∆t < 2/ω is unfortunate, or more
precisely: would it be meaningful to take larger time steps to speed up computations? The answer
is a clear no. At the stability limit, we have that sin−1 ω∆t/2 = sin−1 1 = π/2, and therefore
ω̃ = π/∆t. (Note that the approximate formula (18) is very inaccurate for this value of ∆t as it
predicts ω̃ = 2.34/pi, which is a 25 percent reduction.) The corresponding period of the numerical
solution is P̃ = 2π/ω̃ = 2∆t, which means that there is just one time step ∆t between a peak and
a through in the numerical solution. This is the shortest possible wave that can be represented in
the mesh. In other words, it is not meaningful to use a larger time step than the stability limit.

Also, the phase error when ∆t = 2/ω is severe: Figure 4 shows a comparison of the numerical
and analytical solution with ω = 2π and ∆t = 2/ω = π−1. Already after one period, the numerical
solution has a through while the exact solution has a peak (!). The error in frequency when ∆t
is at the stability limit becomes ω − ω̃ = ω(1− π/2) ≈ −0.57ω. The corresponding error in the
period is P − P̃ ≈ 0.36P . The error after m periods is then 0.36mP . This error has reach half a
period when m = 1/(2 · 0.36) ≈ 1.38, which theoretically confirms the observations in Figure 4
that the numerical solution is a through ahead of a peak already after one and a half period.
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Figure 4: Numerical solution with ∆t exactly at the stability limit.

Summary.

From the accuracy and stability analysis we can draw three important conclusions:

1. The key parameter in the formulas is p = ω∆t. The period of oscillations is P = 2π/ω,
and the number of time steps per period is NP = P/∆t. Therefore, p = ω∆t = 2πNP ,
showing that the critical parameter is the number of time steps per period. The
smallest possible NP is 2, showing that p ∈ (0, π].

2. Provided p ≤ 2, the amplitude of the numerical solution is constant.

3. The numerical solution exhibits a relative phase error ω̃/ω ≈ 1 + 1
24p

2. This error
leads to wrongly displaced peaks of the numerical solution, and the error in peak
location grows linearly with time (see Exercise 2).

5 Alternative schemes based on 1st-order equations
A standard technique for solving second-order ODEs is to rewrite them as a system of first-order
ODEs and then apply the vast collection of methods for first-order ODE systems. Given the
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second-order ODE problem

u′′ + ω2u = 0, u(0) = I, u′(0) = 0,

we introduce the auxiliary variable v = u′ and express the ODE problem in terms of first-order
derivatives of u and v:

u′ = v, (23)
v′ = −ω2u . (24)

The initial conditions become u(0) = I and v(0) = 0.

6 Standard methods for 1st-order ODE systems
6.1 The Forward Euler scheme
A Forward Euler approximation to our 2× 2 system of ODEs (23)-(24) becomes

[D+
t u = v]n, [D+

t v = −ω2u]n, (25)

or written out,

un+1 = un + ∆tvn, (26)
vn+1 = vn −∆tω2un . (27)

Let us briefly compare this Forward Euler method with the centered difference scheme for the
second-order differential equation. We have from (26) and (27) applied at levels n and n− 1 that

un+1 = un + ∆tvn = un + ∆t(vn−1 −∆tω2un−1 .

Since from (26)
vn−1 = 1

∆t (u
n − un−1),

it follows that

un+1 = 2un − un−1 −∆t2ω2un−1,

which is very close to the centered difference scheme, but the last term is evaluated at tn−1 instead
of tn. Dividing by ∆t2, the left-hand side is an approximation to u′′ at tn, while the right-hand
side is sampled at tn−1. This inconsistency in the scheme turns out to be rather crucial for the
accuracy of the Forward Euler method applied to vibration problems.

6.2 The Backward Euler scheme
A Backward Euler approximation the ODE system is equally easy to write up in the operator
notation:
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[D−t u = v]n+1, (28)
[D−t v = −ωu]n+1 . (29)

This becomes a coupled system for un+1 and vn+1:

un+1 −∆tvn+1 = un, (30)
vn+1 + ∆tω2un+1 = vn . (31)

We can compare (30)-(31) with central the scheme for the second-order differential equation.
To this end, we eliminate vn+1 in (30) using (31) solved with respect to vn+1. Thereafter, we
eliminate vn using (30) solved with respect to vn+1 and replacing n + 1 by n. The resulting
equation involving only un+1, un, and un−1 can be ordered as

un+1 − 2un + un−1

∆t2 = −ω2un+1,

which has almost the same form as the centered scheme for the second-order differential equation,
but the right-hand side is evaluated at un+1 and not un. This obvious inconsistency has a
dramatic effect on the numerical solution.

6.3 The Crank-Nicolson scheme
The Crank-Nicolson scheme takes this form in the operator notation:

[Dtu = vt]n+ 1
2 , (32)

[Dtv = −ωut]n+ 1
2 . (33)

Writing the equations out shows that this is also a coupled system:

un+1 − 1
2∆tvn+1 = un + 1

2∆tvn, (34)

vn+1 + 1
2∆tω2un+1 = vn − 1

2∆tω2un . (35)

6.4 Comparison of schemes
We can easily compare methods like the ones above (and many more!) with the aid of the Odespy9

package. Below is a sketch of the code.

import odespy
import numpy as np

def f(u, t, w=1):
u, v = u # u is array of length 2 holding our [u, v]
return [v, -w**2*u]

def run_solvers_and_plot(solvers, timesteps_per_period=20,

9https://github.com/hplgit/odespy
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num_periods=1, I=1, w=2*np.pi):
P = 2*np.pi/w # duration of one period
dt = P/timesteps_per_period
Nt = num_periods*timesteps_per_period
T = Nt*dt
t_mesh = np.linspace(0, T, Nt+1)

legends = []
for solver in solvers:

solver.set(f_kwargs={’w’: w})
solver.set_initial_condition([I, 0])
u, t = solver.solve(t_mesh)

There is quite some more code dealing with plots also, and we refer to the source file vib_
undamped_odespy.py10 for details. Observe that keyword arguments in f(u,t,w=1) can be
supplied through a solver parameter f_kwargs (dictionary of additional keyword arguments to f).

Specification of the Forward Euler, Backward Euler, and Crank-Nicolson schemes is done like
this:

solvers = [
odespy.ForwardEuler(f),
# Implicit methods must use Newton solver to converge
odespy.BackwardEuler(f, nonlinear_solver=’Newton’),
odespy.CrankNicolson(f, nonlinear_solver=’Newton’),
]

The vib_undamped_odespy.py program makes two plots of the computed solutions with the
various methods in the solvers list: one plot with u(t) versus t, and one phase plane plot where
v is plotted against u. That is, the phase plane plot is the curve (u(t), v(t)) parameterized by t.
Analytically, u = I cos(ωt) and v = u′ = −ωI sin(ωt). The exact curve (u(t), v(t)) is therefore an
ellipse, which often looks like a circle in a plot if the axes are automatically scaled. The important
feature, however, is that exact curve (u(t), v(t)) is closed and repeats itself for every period. Not
all numerical schemes are capable to do that, meaning that the amplitude instead shrinks or
grows with time.

The Forward Euler scheme in Figure 5 has a pronounced spiral curve, pointing to the fact
that the amplitude steadily grows, which is also evident in Figure 6. The Backward Euler scheme
has a similar feature, except that the spriral goes inward and the amplitude is significantly
damped. The changing amplitude and the sprial form decreases with decreasing time step. The
Crank-Nicolson scheme looks much more accurate. In fact, these plots tell that the Forward and
Backward Euler schemes are not suitable for solving our ODEs with oscillating solutions.

6.5 Runge-Kutta methods
We may run two popular standard methods for first-order ODEs, the 2nd- and 4th-order Runge-
Kutta methods, to see how they perform. Figures 7 and 8 show the solutions with larger ∆t
values than what was used in the previous two plots.

The visual impression is that the 4th-order Runge-Kutta method is very accurate, under all
circumstances in these tests, and the 2nd-order scheme suffer from amplitude errors unless the
time step is very small.

The corresponding results for the Crank-Nicolson scheme are shown in Figures 9 and 10. It is
clear that the Crank-Nicolson scheme outperforms the 2nd-order Runge-Kutta method. Both
schemes have the same order of accuracy O(∆t2), but their differences in the accuracy that

10http://tinyurl.com/nm5587k/vib/vib_undamped_odespy.py
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Figure 5: Comparison of classical schemes in the phase plane.
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Figure 6: Comparison of classical schemes.

matters in a real physical application is very clearly pronounced in this example. Exercise 12
invites you to investigate how

6.6 Analysis of the Forward Euler scheme
We may try to find exact solutions of the discrete equations in the Forward Euler method. An
“ansatz” is

un = IAn,

vn = qIAn,

where q and A are unknown numbers. We could have used a complex exponential form exp (iω̃n∆t)
since we get oscillatory form, but the oscillations grow in the Forward Euler method, so the
numerical frequency ω̃ will be complex anyway (to produce an exponentially growing amplitude),
so it is easier to just work with potentially complex A and q as introduced above.

The Forward Euler scheme leads to
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Figure 7: Comparison of Runge-Kutta schemes in the phase plane.
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Figure 8: Comparison of Runge-Kutta schemes.

A = 1 + ∆tq,
A = 1−∆tω2q−1 .

We can easily eliminate A, get q2 + ω2 = 0, and solve for

q = ±iω,
which gives

A = 1±∆tiω .
We shall take the real part of An as the solution. The two values of A are complex conjugates,
and the real part of An will be the same for the two roots. This is easy to realize if we rewrite
the complex numbers in polar form (reiθ), which is also convenient for further analysis and
understanding. The polar form of the two values for A become

1±∆tiω =
√

1 + ω2∆t2e±i tan−1(ω∆t) .
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Figure 9: Long-time behavior of the Crank-Nicolson scheme in the phase plane.
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Figure 10: Long-time behavior of the Crank-Nicolson scheme.

Now,

(1±∆tiω)n = (1 + ω2∆t2)n/2e±ni tan−1(ω∆t) .

Since cos(θn) = cos(−θn), the real part of the two numbers become the same. We therefore
continue with the solution that has the plus sign.

The general solution is un = CAn, where C is a constant. This is determined from the initial
condition: u0 = C = I. Then also vn = qIAn. The final solutions consist of the real part of the
expressions in polar form:

un = I(1 + ω2∆t2)n/2 cos(n tan−1(ω∆t)), vn = −ωI(1 + ω2∆t2)n/2 sin(n tan−1(ω∆t)) .

The expression (1 + ω2∆t2)n/2 causes growth of the amplitude, since a number greater than one
is raised to an integer power. By expanding first the square root,

√
1 + x2 ≈ 1 + 1

2x
2, we realize

that raising the approximation to any integer power, will give rise to a polynomial with leading
terms 1 + x2, or with x = ω∆ as in our case, the amplitude in the Forward Euler scheme grows
as 1 + ω2∆t2.
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7 Energy considerations
The observations of various methods in the previous section can be better interpreted if we
compute an quantity reflecting the total energy of the system. It turns out that this quantity,

E(t) = 1
2(u′)2 + 1

2ω
2u2,

is constant for all t. Checking that E(t) really remains constant brings evidence that the numerical
computations are sound. Such energy measures, when they exist, are much used to check numerical
simulations.

7.1 Derivation of the energy expression
We starting multiplying

u′′ + ω2u = 0,

by u′ and integrating from 0 to T :∫ T

0
u′′u′dt+

∫ T

0
ω2uu′dt = 0 .

Observing that

u′′u′ = d

dt

1
2(u′)2, uu′ = d

dt

1
2u

2,

we get ∫ T

0
( d
dt

1
2(u′)2 + d

dt

1
2ω

2u2)dt = E(T )− E(0) = 0,

where we have introduced the energy measure E(t)

E(t) = 1
2(u′)2 + 1

2ω
2u2 . (36)

The important result from this derivation is that the total energy is constant:

E(t) = E(0) .

Warning.

The quantity E(t) derived above is physically not the energy of a vibrating mechanical
system, but the energy per unit mass. To see this, we start with Newton’s second law
F = ma (F is the sum of forces, m is the mass of the system, and a is the acceleration).
The displacement u is related to a through a = u′′. With a spring force as the only force we
have F = −ku, where k is a spring constant measuring the stiffness of the spring. Newton’s
second law then implies the differential equation

−ku = mu′′ ⇒ mu′′ + ku = 0 .
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This equation of motion can be turned into an energy balance equation by finding the work
done by each term during a time interval [0, T ]. To this end, we multiply the equation by
du = u′dt and integrate: ∫ T

0
muu′dt+

∫ T

0
kuu′dt = 0 .

The result is

E(t) = Ek(t) + Ep(t) = 0,

where

Ek(t) = 12mv2, v = u′, (37)

is the kinetic energy of the system,

Ep(t) = 1
2ku

2 (38)

is the potential energy, and the sum E(t) is the total energy. The derivation demonstrates
the famous energy principle that any change in the kinetic energy is due to a change in
potential energy and vice versa.

The equation mu′′ + ku = 0 can be divided by m and written as u′′ + ω2u = 0 for
ω =

√
k/m. The energy expression E(t) = 1

2 (u′)2 + 1
2ω

2u2 derived earlier is then simply the
true physical total energy 1

2m(u′)2 + 1
2k

2u2 divided by m, i.e., total energy per unit mass.

Energy of the exact solution. Analytically, we have u(t) = I cosωt, if u(0) = I and u′(0) = 0,
so we can easily check that the evolution of the energy E(t) is constant:

E(t) = 1
2I

2(−ω sinωt)2 + 1
2ω

2I2 cos2 ωt = 1
2ω

2(sin2 ωt+ cos2 ωt) = 1
2ω

2 .

7.2 An error measure based on total energy
The error in total energy, as a mesh function, can be computed by

enE = 1
2

(
un+1 − un−1

2∆t

)2

+ 1
2ω

2(un)2 − E(0), n = 1, . . . , Nt − 1, (39)

where

E(0) = 1
2V

2 + 1
2ω

2I2,

if u(0) = I and u′(0) = V . A useful norm can be the maximum absolute value of enE :

||enE ||`∞ = max
1≤n<Nt

|enE | .

The corresponding Python implementation takes the form
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# import numpy as np and compute u, t
dt = t[1]-t[0]
E = 0.5*((u[2:] - u[:-2])/(2*dt))**2 + 0.5*w**2*u[1:-1]**2
E0 = 0.5*V**2 + 0.5**w**2*I**2
e_E = E - E0
e_E_norm = np.abs(e_E).max()

The convergence rates of the quantity e_E_norm can be used for verification. The value of
e_E_norm is also useful for comparing schemes through their ability to preserve energy. Below
is a table demonstrating the error in total energy for various schemes. We clearly see that the
Crank-Nicolson and 4th-order Runge-Kutta schemes are superior to the 2nd-order Runge-Kutta
method and even more superior to the Forward and Backward Euler schemes.

Method T ∆t max |enE |
Forward Euler 1 0.05 1.113 · 102

Forward Euler 1 0.025 3.312 · 101

Backward Euler 1 0.05 1.683 · 101

Backward Euler 1 0.025 1.231 · 101

Runge-Kutta 2nd-order 1 0.1 8.401
Runge-Kutta 2nd-order 1 0.05 9.637 · 10−1

Crank-Nicolson 1 0.05 9.389 · 10−1

Crank-Nicolson 1 0.025 2.411 · 10−1

Runge-Kutta 4th-order 1 0.1 2.387
Runge-Kutta 4th-order 1 0.05 6.476 · 10−1

Crank-Nicolson 10 0.1 3.389
Crank-Nicolson 10 0.05 9.389 · 10−1

Runge-Kutta 4th-order 10 0.1 3.686
Runge-Kutta 4th-order 10 0.05 6.928 · 10−1

8 The Euler-Cromer method
While the 4th-order Runge-Kutta method and the a centered Crank-Nicolson scheme work well
for the first-order formulation of the vibration model, both were inferior to the straightforward
centered difference scheme for the second-order equation u′′ + ω2u = 0. However, there is a
similarly successful scheme available for the first-order system u′ = v, v′ = −ω2u, to be presented
next.

8.1 Forward-backward discretization
The idea is to apply a Forward Euler discretization to the first equation and a Backward Euler
discretization to the second. In operator notation this is stated as

[D+
t u = v]n, (40)

[D−t v = −ωu]n+1 . (41)

We can write out the formulas and collect the unknowns on the left-hand side:

un+1 = un + ∆tvn, (42)
vn+1 = vn −∆tω2un+1 . (43)
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We realize that un+1 can be computed from (42) and then vn+1 from (43) using the recently
computed value un+1 on the right-hand side.

In physics, it is more common to update the v equation first, with a forward difference, and
thereafter the u equation, with a backward difference that applies the most recently computed v
value:

vn+1 = vn −∆tω2un, (44)
un+1 = un + ∆tvn+1 . (45)

The advantage of this sequence of the first-order ODEs becomes evident when we turn to more
complicated models. A typical vibration ODE can in general be written as

ü+ g(u, u′, t) = 0,

which results in the system

v′ = −g(u, v, t),
u′ = v,

and the scheme

vn+1 = vn −∆t g(un, vn, t),
un+1 = un + ∆t vn+1 .

We realize that the first update works well with any g since old values un and vn are used.
Switching the equations would demand un+1 and vn+1 values in g.

The scheme (45)-(44) goes under several names: Forward-backward scheme, Semi-implicit
Euler method11, symplectic Euler, semi-explicit Euler, Newton-Störmer-Verlet, and Euler-Cromer.
We shall stick to the latter name. Since both time discretizations are based on first-order difference
approximation, one may think that the scheme is only of first-order, but this is not true: the use
of a forward and then a backward difference make errors cancel so that the overall error in the
scheme is O(∆t2). This is explaned below.

8.2 Equivalence with the scheme for the second-order ODE
We may eliminate the vn variable from (42)-(43) or (45)-(44). The vn+1 term in (44) can be
eliminated from (45):

un+1 = un + ∆t(vn − ω2∆t2un) . (46)

The vn quantity can be expressed by un and un−1 using (45):

vn = un − un−1

∆t ,

and when this is inserted in (46) we get

un+1 = 2un − un−1 −∆t2ω2un, (47)
11http://en.wikipedia.org/wiki/Semi-implicit_Euler_method
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which is nothing but the centered scheme (7)! Therefore, the previous analysis of (7) also applies
to the Euler-Cromer method. In particular, the amplitude is constant, given that the stability
criterion is fulfilled, but there is always a phase error (18). Exercise 20 gives guidance on how to
derive the exact discrete solution of the two equations in the Euler-Cromer method.

The initial condition u′ = 0 means u′ = v = 0. From (45) we get v1 = −ω2u0 and
u1 = u0−ω2∆t2u0, which is not exactly the same u1 value as obtained by a centered approximation
of v′(0) = 0 and combined with the discretization (7) of the second-order ODE: a factor 1

2 is
missing in the second term. In fact, if we approximate u′(0) = 0 by a backward difference,
(u0−u−1)/∆t = 0, we get u−1 = u0, and when combined with (7), it results in u1 = u0−ω2∆t2u0.
That is, the Euler-Cromer method based on (45)-(44) corresponds to using only a first-order
approximation to the initial condition in the method from Section 1.2.

Correspondingly, using the formulation (42)-(43) with vn = 0 leads to u1 = u0, which can be
interpreted as using a forward difference approximation for the initial condition u′(0) = 0. Both
Euler-Cromer formulations lead to slightly different values for u1 compared to the method in
Section 1.2. The error is 1

2ω
2∆t2u0 and of the same order as the overall scheme.

8.3 Implementation
The function below, found in vib_EulerCromer.py12 implements the Euler-Cromer scheme
(45)-(44):

from numpy import zeros, linspace

def solver(I, w, dt, T):
"""
Solve v’ = - w**2*u, u’=v for t in (0,T], u(0)=I and v(0)=0,
by an Euler-Cromer method.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
v = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1)

v[0] = 0
u[0] = I
for n in range(0, Nt):

v[n+1] = v[n] - dt*w**2*u[n]
u[n+1] = u[n] + dt*v[n+1]

return u, v, t

Since the Euler-Cromer scheme is equivalent to the finite difference method for the second-
order ODE u′′ + ω2u = 0 (see Section 8.2), the performance of the above solver function is
the same as for the solver function in Section 2. The only difference is the formula for the
first time step, as discussed above. This deviation in the Euler-Cromer scheme means that the
discrete solution listed in Section 4.2 is not a solution of the Euler-Cromer scheme. To verify the
implementation of the Euler-Cromer method we can adjust v[1] so that the computer-generated
values can be compared formula from in Section 4.2. This adjustment is done in an alternative
solver function, solver_ic_fix in vib_EulerCromer.py, and combined with a nose test in the
function test_solver that checks equality of computed values with the exact discrete solution
to machine precision. Another function, demo, visualizes the difference between Euler-Cromer
scheme and the scheme for the second-oder ODE, arising from the mismatch in the first time
level.

12http://tinyurl.com/nm5587k/vib/vib_EulerCromer.py
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8.4 The velocity Verlet algorithm
Another very popular algorithm for vibration problems u′′ + ω2u = 0 can be derived as follows.
First, we step u forward from tn to tn+1 using a three-term Taylor series,

u(tn+1) = u(tn) + u′(tn)∆t+ 1
2u
′′(tn)∆t2 .

Using u′ = v and u′′ = −ω2u, we get the updating formula

un+1 = un + vn∆t− 1
2∆2ω2un .

Second, the first-order equation for v,

v′ = −ω2u,

is discretized by a centered difference in a Crank-Nicolson fashion at tn+ 1
2
:

vn+1 − vn

∆t = −ω2 1
2(un + un+1),

or in operator form that explicitly demonstrates the thinking:

[Dtu = −ω2ūt]n+ 1
2 .

To summarize, we have the scheme

un+1 = un + vn∆t− 1
2∆2ω2un (48)

vn+1 = vn − 1
2∆tω2(un + un+1), (49)

known as the velocity Verlet algorithm. Observe that this scheme is explicit since un+1 in (49) is
already computed from (48).

The algorithm can be straightforwardly implemented as shown below.

from vib_undamped import (
zeros, linspace,
convergence_rates,
main)

def solver(I, w, dt, T, return_v=False):
"""
Solve u’=v, v’=-w**2*u for t in (0,T], u(0)=I and v(0)=0,
by the velocity Verlet method with time step dt.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
v = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1)

u[0] = I
v[0] = 0
for n in range(Nt):

u[n+1] = u[n] + v[n]*dt - 0.5*dt**2*w**2*u[n]
v[n+1] = v[n] - 0.5*dt*w**2*(u[n] + u[n+1])

if return_v:
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return u, v, t
else:

# Return just u and t as in the vib_undamped.py’s solver
return u, t

We provide the option that this solver function returns the same data as the solver function
from Section 2.1 (if return_v is False), but we may return v along with u and t.

The error in the Taylor series expansion behind (48) is O(∆t3), while the error in the central
difference for v is O(∆t2). The overall error is then no better than O(∆t2), which can be verified
empirically using the convergence_rates function from 2.2:

>>> import vib_undamped_velocity_Verlet as m
>>> m.convergence_rates(4, solver_function=m.solver)
[2.0036366687367346, 2.0009497328124835, 2.000240105995295]

9 Generalization: damping, nonlinear spring, and external
excitation

We shall now generalize the simple model problem from Section 1 to include a possibly nonlinear
damping term f(u′), a possibly nonlinear spring (or restoring) force s(u), and some external
excitation F (t):

mu′′ + f(u′) + s(u) = F (t), u(0) = I, u′(0) = V, t ∈ (0, T ] . (50)

We have also included a possibly nonzero initial value of u′(0). The parameters m, f(u′), s(u),
F (t), I, V , and T are input data.

There are two main types of damping (friction) forces: linear f(u′) = bu, or quadratic
f(u′) = bu′|u′|. Spring systems often feature linear damping, while air resistance usually gives
rise to quadratic damping. Spring forces are often linear: s(u) = cu, but nonlinear versions are
also common, the most famous is the gravity force on a pendulum that acts as a spring with
s(u) ∼ sin(u).

9.1 A centered scheme for linear damping
Sampling (50) at a mesh point tn, replacing u′′(tn) by [DtDtu]n, and u′(tn) by [D2tu]n results in
the discretization

[mDtDtu+ f(D2tu) + s(u) = F ]n, (51)

which written out means

m
un+1 − 2un + un−1

∆t2 + f(u
n+1 − un−1

2∆t ) + s(un) = Fn, (52)

where Fn as usual means F (t) evaluated at t = tn. Solving (52) with respect to the unknown
un+1 gives a problem: the un+1 inside the f function makes the equation nonlinear unless f(u′)
is a linear function, f(u′) = bu′. For now we shall assume that f is linear in u′. Then

m
un+1 − 2un + un−1

∆t2 + b
un+1 − un−1

2∆t + s(un) = Fn, (53)

which gives an explicit formula for u at each new time level:
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un+1 = (2mun + ( b2∆t−m)un−1 + ∆t2(Fn − s(un)))(m+ b

2∆t)−1 . (54)

For the first time step we need to discretize u′(0) = V as [D2tu = V ]0 and combine with (54)
for n = 0. The discretized initial condition leads to

u−1 = u1 − 2∆tV, (55)

which inserted in (54) for n = 0 gives an equation that can be solved for u1:

u1 = u0 + ∆t V + ∆t2

2m (−bV − s(u0) + F 0) . (56)

9.2 A centered scheme for quadratic damping
When f(u′) = bu′|u′|, we get a quadratic equation for un+1 in (52). This equation can straight-
forwardly be solved, but we can also avoid the nonlinearity by performing an approximation that
is within other numerical errors that we have already committed by replacing derivatives with
finite differences.

The idea is to reconsider (50) and only replace u′′ by DtDtu, giving

[mDtDtu+ bu′|u′|+ s(u) = F ]n, (57)

Here, u′|u′| is to be computed at time tn. We can introduce a geometric mean, defined by

(w2)n ≈ wn− 1
2wn+ 1

2 ,

for some quantity w depending on time. The error in the geometric mean approximation is
O(∆t2), the same as in the approximation u′′ ≈ DtDtu. With w = u′ it follows that

[u′|u′|]n ≈ u′(tn + 1
2)|u′(tn −

1
2)| .

The next step is to approximate u′ at tn±1/2, but here a centered difference can be used:

u′(tn+1/2) ≈ [Dtu]n+ 1
2 , u′(tn−1/2) ≈ [Dtu]n− 1

2 . (58)

We then get

[u′|u′|]n ≈ [Dtu]n+ 1
2 |[Dtu]n− 1

2 | = un+1 − un

∆t
|un − un−1|

∆t . (59)

The counterpart to (52) is then

m
un+1 − 2un + un−1

∆t2 + b
un+1 − un

∆t
|un − un−1|

∆t + s(un) = Fn, (60)

which is linear in un+1. Therefore, we can easily solve with respect to un+1 and achieve the
explicit updating formula

un+1 =
(
m+ b|un − un−1|

)−1×(
2mun −mun−1 + bun|un − un−1|+ ∆t2(Fn − s(un))

)
. (61)
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In the derivation of a special equation for the first time step we run into some trouble: inserting
(55) in (61) for n = 0 results in a complicated nonlinear equation for u1. By thinking differently
about the problem we can easily get away with the nonlinearity again. We have for n = 0 that
b[u′|u′|]0 = bV |V |. Using this value in (57) gives

[mDtDtu+ bV |V |+ s(u) = F ]0 . (62)

Writing this equation out and using (55) results in the special equation for the first time step:

u1 = u0 + ∆tV + ∆t2

2m
(
−bV |V | − s(u0) + F 0) . (63)

9.3 A forward-backward discretization of the quadratic damping term
The previous section first proposed to discretize the quadratic damping term |u′|u′ using centered
differences: [|D2t|D2tu]n. As this gives rise to a nonlinearity in un+1, it was instead proposed to
use a geometric mean combined with centered differences. But there are other alternatives. To
get rid of the nonlinearity in [|D2t|D2tu]n, one can think differently: apply a backward difference
to |u′|, such that the term involves known values, and apply a forward difference to u′ to make
the term linear in the unknown un+1. With mathematics,

[β|u′|u′]n ≈ β|[D−t u]n|[D+
t u]n = β

∣∣∣∣u−un−1

∆t

∣∣∣∣ un+1 − un

∆t .

The forward and backward differences have both an error proportional to ∆t so one may think
the discretization above leads to a first-order scheme. However, by looking at the formulas, we
realize that the forward-backward differences result in exactly the same scheme as when we used
a geometric mean and centered differences. Therefore, the forward-backward differences act in
a symmetric way and actually produce a second-order accurate discretization of the quadratic
damping term.

9.4 Implementation
The algorithm arising from the methods in Sections 9.1 and 9.2 is very similar to the undamped
case in Section 1.2. The difference is basically a question of different formulas for u1 and un+1.
This is actually quite remarkable. The equation (50) is normally impossible to solve by pen and
paper, but possible for some special choices of F , s, and f . On the contrary, the complexity of
the nonlinear generalized model (50) versus the simple undamped model is not a big deal when
we solve the problem numerically!

The computational algorithm takes the form

1. u0 = I

2. compute u1 from (56) if linear damping or (63) if quadratic damping

3. for n = 1, 2, . . . , Nt − 1:

(a) compute un+1 from (54) if linear damping or (61) if quadratic damping

Modifying the solver function for the undamped case is fairly easy, the big difference being
many more terms and if tests on the type of damping:
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def solver(I, V, m, b, s, F, dt, T, damping=’linear’):
"""
Solve m*u’’ + f(u’) + s(u) = F(t) for t in (0,T],
u(0)=I and u’(0)=V,
by a central finite difference method with time step dt.
If damping is ’linear’, f(u’)=b*u, while if damping is
’quadratic’, f(u’)=b*u’*abs(u’).
F(t) and s(u) are Python functions.
"""
dt = float(dt); b = float(b); m = float(m) # avoid integer div.
Nt = int(round(T/dt))
u = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1)

u[0] = I
if damping == ’linear’:

u[1] = u[0] + dt*V + dt**2/(2*m)*(-b*V - s(u[0]) + F(t[0]))
elif damping == ’quadratic’:

u[1] = u[0] + dt*V + \
dt**2/(2*m)*(-b*V*abs(V) - s(u[0]) + F(t[0]))

for n in range(1, Nt):
if damping == ’linear’:

u[n+1] = (2*m*u[n] + (b*dt/2 - m)*u[n-1] +
dt**2*(F(t[n]) - s(u[n])))/(m + b*dt/2)

elif damping == ’quadratic’:
u[n+1] = (2*m*u[n] - m*u[n-1] + b*u[n]*abs(u[n] - u[n-1])

+ dt**2*(F(t[n]) - s(u[n])))/\
(m + b*abs(u[n] - u[n-1]))

return u, t

The complete code resides in the file vib.py13.

9.5 Verification
Constant solution. For debugging and initial verification, a constant solution is often very
useful. We choose ue(t) = I, which implies V = 0. Inserted in the ODE, we get F (t) = s(I) for
any choice of f . Since the discrete derivative of a constant vanishes (in particular, [D2tI]n = 0,
[DtI]n = 0, and [DtDtI]n = 0), the constant solution also fulfills the discrete equations. The
constant should therefore be reproduced to machine precision.

Linear solution. Now we choose a linear solution: ue = ct+ d. The initial condition u(0) = I
implies d = I, and u′(0) = V forces c to be V . Inserting ue = V t + I in the ODE with linear
damping results in

0 + bV + s(V t+ I) = F (t),

while quadratic damping requires the source term

0 + b|V |V + s(V t+ I) = F (t) .

Since the finite difference approximations used to compute u′ all are exact for a linear function, it
turns out that the linear ue is also a solution of the discrete equations. Exercise 9 asks you to
carry out all the details.

13http://tinyurl.com/nm5587k/vib/vib.py
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Quadratic solution. Choosing ue = bt2 +V t+ I, with b arbitrary, fulfills the initial conditions
and fits the ODE if F is adjusted properly. The solution also solves the discrete equations with
linear damping. However, this quadratic polynomial in t does not fulfill the discrete equations
in case of quadratic damping, because the geometric mean used in the approximation of this
term introduces an error. Doing Exercise 9 will reveal the details. One can fit Fn in the discrete
equations such that the quadratic polynomial is reproduced by the numerical method (to machine
precision).

9.6 Visualization
The functions for visualizations differ significantly from those in the undamped case in the
vib_undamped.py program because we in the present general case do not have an exact solution
to include in the plots. Moreover, we have no good estimate of the periods of the oscillations
as there will be one period determined by the system parameters, essentially the approximate
frequency

√
s′(0)/m for linear s and small damping, and one period dictated by F (t) in case the

excitation is periodic. This is, however, nothing that the program can depend on or make use of.
Therefore, the user has to specify T and the window width in case of a plot that moves with the
graph and shows the most recent parts of it in long time simulations.

The vib.py code contains several functions for analyzing the time series signal and for
visualizing the solutions.

9.7 User interface
The main function has substantial changes from the vib_undamped.py code since we need to
specify the new data c, s(u), and F (t). In addition, we must set T and the plot window width
(instead of the number of periods we want to simulate as in vib_undamped.py). To figure out
whether we can use one plot for the whole time series or if we should follow the most recent part
of u, we can use the plot_empricial_freq_and_amplitude function’s estimate of the number
of local maxima. This number is now returned from the function and used in main to decide on
the visualization technique.

def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--I’, type=float, default=1.0)
parser.add_argument(’--V’, type=float, default=0.0)
parser.add_argument(’--m’, type=float, default=1.0)
parser.add_argument(’--c’, type=float, default=0.0)
parser.add_argument(’--s’, type=str, default=’u’)
parser.add_argument(’--F’, type=str, default=’0’)
parser.add_argument(’--dt’, type=float, default=0.05)
parser.add_argument(’--T’, type=float, default=140)
parser.add_argument(’--damping’, type=str, default=’linear’)
parser.add_argument(’--window_width’, type=float, default=30)
parser.add_argument(’--savefig’, action=’store_true’)
a = parser.parse_args()
from scitools.std import StringFunction
s = StringFunction(a.s, independent_variable=’u’)
F = StringFunction(a.F, independent_variable=’t’)
I, V, m, c, dt, T, window_width, savefig, damping = \

a.I, a.V, a.m, a.c, a.dt, a.T, a.window_width, a.savefig, \
a.damping

u, t = solver(I, V, m, c, s, F, dt, T)
num_periods = empirical_freq_and_amplitude(u, t)
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if num_periods <= 15:
figure()
visualize(u, t)

else:
visualize_front(u, t, window_width, savefig)

show()

The program vib.py contains the above code snippets and can solve the model problem (50).
As a demo of vib.py, we consider the case I = 1, V = 0, m = 1, c = 0.03, s(u) = sin(u),
F (t) = 3 cos(4t), ∆t = 0.05, and T = 140. The relevant command to run is

Terminal> python vib.py --s ’sin(u)’ --F ’3*cos(4*t)’ --c 0.03

This results in a moving window following the function14 on the screen. Figure 11 shows a part
of the time series.
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Figure 11: Damped oscillator excited by a sinusoidal function.

14http://tinyurl.com/opdfafk/pub/mov-vib/vib_generalized_dt0.05/index.html
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9.8 The Euler-Cromer scheme for the generalized model
The ideas of the Euler-Cromer method from Section 8 carry over to the generalized model. We
write (50) as two equations for u and v = u′. The first equation is taken as the one with v′ on
the left-hand side:

v′ = 1
m

(F (t)− s(u)− f(v)), (64)

u′ = v . (65)

The idea is to step (64) forward using a standard Forward Euler method, while we update u from
(65) with a Backward Euler method, utilizing the recent, computed vn+1 value. In detail,

vn+1 − vn

∆t = 1
m

(F (tn)− s(un)− f(vn)), (66)

un+1 − un

∆t = vn+1, (67)

resulting in the explicit scheme

vn+1 = vn + ∆t 1
m

(F (tn)− s(un)− f(vn)), (68)

un+1 = un + ∆t vn+1 . (69)

We immediately note one very favorable feature of this scheme: all the nonlinearities in s(u) and
f(v) are evaluated at a previous time level. This makes the Euler-Cromer method easier to apply
and hence much more convenient than the centered scheme for the second-order ODE (50).

The initial conditions are trivially set as

v0 = V, (70)
u0 = I . (71)

10 Exercises and Problems
Problem 1: Use linear/quadratic functions for verification
Consider the ODE problem

u′′ + ω2u = f(t), u(0) = I, u′(0) = V, t ∈ (0, T ] .

Discretize this equation according to [DtDtu+ ω2u = f ]n.

a) Derive the equation for the first time step (u1).

b) For verification purposes, we use the method of manufactured solutions (MMS) with the
choice of ue(x, t) = ct+ d. Find restrictions on c and d from the initial conditions. Compute the
corresponding source term f by term. Show that [DtDtt]n = 0 and use the fact that the DtDt

operator is linear, [DtDt(ct+ d)]n = c[DtDtt]n + [DtDtd]n = 0, to show that ue is also a perfect
solution of the discrete equations.
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c) Use sympy to do the symbolic calculations above. Here is a sketch of the program vib_undamped_verify_mms.py:

import sympy as sp
V, t, I, w, dt = sp.symbols(’V t I w dt’) # global symbols
f = None # global variable for the source term in the ODE

def ode_source_term(u):
"""Return the terms in the ODE that the source term
must balance, here u’’ + w**2*u.
u is symbolic Python function of t."""
return sp.diff(u(t), t, t) + w**2*u(t)

def residual_discrete_eq(u):
"""Return the residual of the discrete eq. with u inserted."""
R = ...
return sp.simplify(R)

def residual_discrete_eq_step1(u):
"""Return the residual of the discrete eq. at the first
step with u inserted."""
R = ...
return sp.simplify(R)

def DtDt(u, dt):
"""Return 2nd-order finite difference for u_tt.
u is a symbolic Python function of t.
"""
return ...

def main(u):
"""
Given some chosen solution u (as a function of t, implemented
as a Python function), use the method of manufactured solutions
to compute the source term f, and check if u also solves
the discrete equations.
"""
print ’=== Testing exact solution: %s ===’ % u
print "Initial conditions u(0)=%s, u’(0)=%s:" % \

(u(t).subs(t, 0), sp.diff(u(t), t).subs(t, 0))

# Method of manufactured solution requires fitting f
global f # source term in the ODE
f = sp.simplify(ode_lhs(u))

# Residual in discrete equations (should be 0)
print ’residual step1:’, residual_discrete_eq_step1(u)
print ’residual:’, residual_discrete_eq(u)

def linear():
main(lambda t: V*t + I)

if __name__ == ’__main__’:
linear()

Fill in the various functions such that the calls in the main function works.

d) The purpose now is to choose a quadratic function ue = bt2 + ct + d as exact solution.
Extend the sympy code above with a function quadratic for fitting f and checking if the discrete
equations are fulfilled. (The function is very similar to linear.)

e) Will a polynomial of degree three fulfill the discrete equations?

f) Implement a solver function for computing the numerical solution of this problem.
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g) Write a nose test for checking that the quadratic solution is computed to correctly (too
machine precision, but the round-off errors accumulate and increase with T ) by the solver
function.
Filenames: vib_undamped_verify_mms.pdf, vib_undamped_verify_mms.py.

Exercise 2: Show linear growth of the phase with time
Consider an exact solution I cos(ωt) and an approximation I cos(ω̃t). Define the phase error as
time lag between the peak I in the exact solution and the corresponding peak in the approx-
imation after m periods of oscillations. Show that this phase error is linear in m. Filename:
vib_phase_error_growth.pdf.

Exercise 3: Improve the accuracy by adjusting the frequency
According to (18), the numerical frequency deviates from the exact frequency by a (dominating)
amount ω3∆t2/24 > 0. Replace the w parameter in the algorithm in the solver function
in vib_undamped.py by w*(1 - (1./24)*w**2*dt**2 and test how this adjustment in the
numerical algorithm improves the accuracy (use ∆t = 0.1 and simulate for 80 periods, with and
without adjustment of ω). Filename: vib_adjust_w.py.

Exercise 4: See if adaptive methods improve the phase error
Adaptive methods for solving ODEs aim at adjusting ∆t such that the error is within a user-
prescribed tolerance. Implement the equation u′′ + u = 0 in the Odespy15 software. Use the
example from Section ??in [1]. Run the scheme with a very low tolerance (say 10−14) and
for a long time, check the number of time points in the solver’s mesh (len(solver.t_all)),
and compare the phase error with that produced by the simple finite difference method from
Section 1.2 with the same number of (equally spaced) mesh points. The question is whether it
pays off to use an adaptive solver or if equally many points with a simple method gives about the
same accuracy. Filename: vib_undamped_adaptive.py.

Exercise 5: Use a Taylor polynomial to compute u1

As an alternative to the derivation of (8) for computing u1, one can use a Taylor polynomial with
three terms for u1:

u(t1) ≈ u(0) + u′(0)∆t+ 1
2u
′′(0)∆t2

With u′′ = −ω2u and u′(0) = 0, show that this method also leads to (8). Generalize the
condition on u′(0) to be u′(0) = V and compute u1 in this case with both methods. Filename:
vib_first_step.pdf.

Exercise 6: Find the minimal resolution of an oscillatory function
Sketch the function on a given mesh which has the highest possible frequency. That is, this
oscillatory "cos-like" function has its maxima and minima at every two grid points. Find an
expression for the frequency of this function, and use the result to find the largest relevant value
of ω∆t when ω is the frequency of an oscillating function and ∆t is the mesh spacing. Filename:
vib_largest_wdt.pdf.

15https://github.com/hplgit/odespy

40

https://github.com/hplgit/odespy


Exercise 7: Visualize the accuracy of finite differences for a cosine func-
tion
We introduce the error fraction

E = [DtDtu]n

u′′(tn)
to measure the error in the finite difference approximation DtDtu to u′′. Compute E for the
specific choice of a cosine/sine function of the form u = exp (iωt) and show that

E =
(

2
ω∆t

)2
sin2(ω∆t

2 ) .

Plot E as a function of p = ω∆t. The relevant values of p are [0, π] (see Exercise 6 for why
p > π does not make sense). The deviation of the curve from unity visualizes the error in the
approximation. Also expand E as a Taylor polynomial in p up to fourth degree (use, e.g., sympy).
Filename: vib_plot_fd_exp_error.py.

Exercise 8: Verify convergence rates of the error in energy
We consider the ODE problem u′′ + ω2u = 0, u(0) = I, u′(0) = V , for t ∈ (0, T ]. The total
energy of the solution E(t) = 1

2 (u′)2 + 1
2ω

2u2 should stay constant. The error in energy can be
computed as explained in Section 7.

Make a nose test in a file test_error_conv.py, where code from vib_undamped.py is im-
ported, but the convergence_rates and test_convergence_rates functions are copied and
modified to also incorporate computations of the error in energy and the convergence rate of this
error. The expected rate is 2. Filename: test_error_conv.py.

Exercise 9: Use linear/quadratic functions for verification
This exercise is a generalization of Problem 1 to the extended model problem (50) where the
damping term is either linear or quadratic. Solve the various subproblems and see how the results
and problem settings change with the generalized ODE in case of linear or quadratic damping.
By modifying the code from Problem 1, sympy will do most of the work required to analyze the
generalized problem. Filename: vib_verify_mms.py.

Exercise 10: Use an exact discrete solution for verification
Write a nose test function in a separate file that employs the exact discrete solution (19)
to verify the implementation of the solver function in the file vib_undamped.py. Filename:
test_vib_undamped_exact_discrete_sol.py.

Exercise 11: Use analytical solution for convergence rate tests
The purpose of this exercise is to perform convergence tests of the problem (50) when s(u) = ω2u
and F (t) = A sinφt. Find the complete analytical solution to the problem in this case (most
textbooks on mechanics or ordinary differential equations list the various elements you need to write
down the exact solution). Modify the convergence_rate function from the vib_undamped.py
program to perform experiments with the extended model. Verify that the error is of order ∆t2.
Filename: vib_conv_rate.py.
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Exercise 12: Investigate the amplitude errors of many solvers
Use the program vib_undamped_odespy.py from Section 6 and the amplitude estimation from
the amplitudes function in the vib_undamped.py file (see Section 3.4) to investigate how well
famous methods for 1st-order ODEs can preserve the amplitude of u in undamped oscillations.
Test, for example, the 3rd- and 4th-order Runge-Kutta methods (RK3, RK4), the Crank-Nicolson
method (CrankNicolson), the 2nd- and 3rd-order Adams-Bashforth methods (AdamsBashforth2,
AdamsBashforth3), and a 2nd-order Backwards scheme (Backward2Step). The relevant governing
equations are listed in Section 23. Filename: vib_amplitude_errors.py.

Exercise 13: Minimize memory usage of a vibration solver
The program vib.py16 store the complete solution u0, u1, . . . , uNt in memory, which is convenient
for later plotting. Make a memory minimizing version of this program where only the last three
un+1, un, and un−1 values are stored in memory. Write each computed (tn+1, u

n+1) pair to file.
Visualize the data in the file (a cool solution is to read one line at a time and plot the u value
using the line-by-line plotter in the visualize_front_ascii function - this technique makes it
trivial to visualize very long time simulations). Filename: vib_memsave.py.

Exercise 14: Implement the solver via classes
Reimplement the vib.py program using a class Problem to hold all the physical parameters of
the problem, a class Solver to hold the numerical parameters and compute the solution, and a
class Visualizer to display the solution.

Hint. Use the ideas and examples from Section ?? and ??in [1]. More specifically, make a
superclass Problem for holding the scalar physical parameters of a problem and let subclasses
implement the s(u) and F (t) functions as methods. Try to call up as much existing functionality
in vib.py as possible.
Filename: vib_class.py.

Exercise 15: Interpret [DtDtu]n as a forward-backward difference
Show that the difference [DtDtu]n is equal to [D+

t D
−
t u]n and D−t D

+
t u]n. That is, instead of

applying a centered difference twice one can alternatively apply a mixture forward and backward
differences. Filename: vib_DtDt_fw_bw.pdf.

Exercise 16: Use the forward-backward scheme with quadratic damping
We consider the generalized model with quadratic damping, expressed as a system of two first-order
equations as in Section ??:

u′ = v,

v′ = 1
m

(F (t)− β|v|v − s(u)) .

However, contrary to what is done in Section ??, we want to apply the idea of the forward-
backward discretization in Section 8. Express the idea in operator notation and write out the

16http://tinyurl.com/nm5587k/vib/vib.py
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scheme. Unfortunately, the backward difference for the v equation creates a nonlinearity |vn+1|vn.
To linearize this nonlinearity, use the known value vn inside the absolute value factor, i.e.,
|vn+1|vn ≈ |vn|vn+1. Show that the resulting scheme is equivalent to the one in Section ?? for
some time level n ≥ 1.

What we learn from this exercise is that the first-order differences and the linearization trick
play together in "the right way" such that the scheme is as good as when we (in Section ??)
carefully apply centered differences and a geometric mean on a staggered mesh to achieve second-
order accuracy. There is a difference in the handling of the initial conditions, though, as explained
at the end of Section 8. Filename: vib_gen_bwdamping.pdf.

Exercise 17: Use a backward difference for the damping term
As an alternative to discretizing the damping terms βu′ and β|u′|u′ by centered differences, we
may apply backward differences:

[u′]n ≈ [D−t u]n,
[|u′|u′]n ≈ [|D−t u|D−t u]n = |[D−t u]n|[D−t u]n .

The advantage of the backward difference is that the damping term is evaluated using known values
un and un−1 only. Extend the vib.py17 code with a scheme based on using backward differences in
the damping terms. Add statements to compare the original approach with centered difference and
the new idea launched in this exercise. Perform numerical experiments to investigate how much
accuracy that is lost by using the backward differences. Filename: vib_gen_bwdamping.pdf.

Exercise 18: Simulate a bouncing ball
A bouncing ball is a body in free vertically fall until it impacts the ground. During the impact,
some kinetic energy is lost, and a new motion upwards with reduced velocity starts. At some
point the velocity close to the ground is so small that the ball is considered to be finally at rest.

The motion of the ball falling in air is governed by Newton’s second law F = ma, where a is
the acceleration of the body, m is the mass, and F is the sum of all forces. Here, we neglect the
air resistance so that gravity −mg is the only force. The height of the ball is denoted by h and v
is the velocity. The relations between h, v, and a,

h′(t) = v(t), v′(t) = a(t),

combined with Newton’s second law gives the ODE model

h′′(t) = −g, (72)

or expressed alternatively as a system of first-order equations:

v′(t) = −g, (73)
h′(t) = v(t) . (74)

These equations govern the motion as long as the ball is away from the ground by a small distance
εh > 0. When h < εh, we have two cases.

17http://tinyurl.com/nm5587k/vib/vib.py
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1. The ball impacts the ground, recognized by a sufficiently large negative velocity (v < −εv).
The velocity then changes sign and is reduced by a factor CR, known as the coefficient of
restitution18. For plotting purposes, one may set h = 0.

2. The motion stops, recognized by a sufficiently small velocity (|v| < εv) close to the ground.

Choose one of the models, (72) or (73)-(74), and simulate a bouncing ball. Plot h(t). Think
about how to plot v(t).

Hint. A naive implementation may get stuck in repeated impacts for large time step sizes. To
avoid this situation, one can introduce a state variable that holds the mode of the motion: free
fall, impact, or rest. Two consecutive impacts imply that the motion has stopped.
Filename: bouncing_ball.py.

Exercise 19: Simulate an elastic pendulum
Consider an elastic pendulum fixed to the point r0 = (0, L0). The length of the pendulum wire
when not stretched is L0. The wire is massless and always straight. At the end point r, we have
a mass m. Stretching the elastic wire a distance s gives rise to a spring force ks in the opposite
direction of the stretching. Let n be a unit normal vector along the wire:

n = r − r0

||r − r0||
.

The stretch s in the wire is the current length ||r − r0|| at some time t minus the original length
L0:

s = ||r − r0|| − L0 .

The force in the wire is then Fw = −ksn. Newton’s second law of motion applied to the mass
results in

mr̈ = −ksn−mgj, (75)

where j is a unit vector in the upward vertical direction. Let r = (x, y) and n = (nx, ny). The
two components of (75) then becomes

ẍ = −m−1ksnx, (76)
(77)

ÿ = −m−1ksny − g . (78)

The mass point (x, y) will undergo a two-dimensional motion, but if the wire is stiff (large k),
the elastic pendulum will approach the classical one where the mass point moves along a circle.
However, the elastic pendulum is modeled by a direct application of Newton’s second law, because
the force in the wire is known (as a function of the motion), while the classical pendulum involves
constrained motion, which requires elimination of an unknown via the constraint (by invoking
polar coordinates).

In equilibrium, the mass hangs in the position (0, y0) determined by
18http://en.wikipedia.org/wiki/Coefficient_of_restitution
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0 = −m−1ksny − g = m−1k(y0 − L0)− g ⇒ y0 = L0 +mg/k = L .

We then displace the mass an angle θ0 to the right. The initial position (x(0), y(0)) then becomes

x(0) = L sin θ0, y(0) = L0 − L cos θ0 .

The velocity is zero, x′(0) = y′(0) = 0.

a) Write a code that can simulate such an elastic pendulum. Plot y against x in a plot with the
same length scale on the axis such that we get a correct picture of the motion. Also plot the
angle the pendulum: θ = tan−1 x/(L0 − y).

A possible set of parameters is L0 = 9.81 m, m = 1 kg, theta0 = 30 degrees.

Hint 1. The associated classical pendulum, for large k, has an equation θ̈ + g/L0θ = 0. With
g = L0, the period is 2π: θ(t) = θ0 cos(t). One can compare in a plot the angle of the elastic
solution (θ = tan−1 x/(L0 − y)) with the solution of the classical pendulum problem.

Hint 2. The equation of motion is subject to round-off errors for large k, because s is then small
such that ks is a product of a large and a small number. Moreover, in this stiff case, m−1ksny is
close to g such that we also subtract two almost equal numbers in the force term in the equation.
For the given parameters, k = 150 is a large value and gives a solution close to the motion of a
perfect classical pendulum. Much larger values gives unstable solutions.

b) Air resistance is a force 1
2%CDA||bmv||v, where CD is a drag coefficient (0.2 for a sphere), %

is the density of air (1.2 kg m−3), A is the cross section area (A = πR2 for a sphere, where R
is the radius), and v is the velocity: v = ṙ. Include air resistance in the model and show plots
comparing the motion with and without air resistance.
Filename: elastic_pendulum.py.

Exercise 20: Analysis of the Euler-Cromer scheme
The Euler-Cromer scheme for the model problem u′′ + ω2u = 0, u(0) = I, u′(0) = 0, is given
in (45)-(44). Find the exact discrete solutions of this scheme and show that the solution for un
coincides with that found in Section 4.

Hint. Use an “ansatz” un = I exp (iω̃∆t n) and v=qun, where ω̃ and q are unknown parameters.
The formula

exp (iω̃(∆t)) + exp (iω̃(−∆t))− 2 = 2 (cosh(iω̃∆t)− 1) = −4 sin2( ω̃∆t
2 ),

becomes handy.
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