Study guide: Finite difference methods for vibration

problems

Hans Petter Langtangen®-?

Center for Biomedical Computing, Simula Research Laboratory?

Department of Informatics, University of Oslo?

Nov 12, 2014

@ A simple vibration problem

A simple vibration problem

(1) +w?u=0, w0)=1, v (0)=0, t€(0,T]
Exact solution:

u(t) = I cos(wt)

u(t) oscillates with constant amplitude / and (angular) frequency
w. Period: P =27 /w.

A centered finite difference scheme; step 1 and 2

o Strategy: follow the four steps of the finite difference method.

@ Step 1: Introduce a time mesh, here uniform on [0, T]:
t, = nAt

@ Step 2: Let the ODE be satisfied at each mesh point:

u"(t)) + u(tas) =0, n=1,...,N;

http://tinyurl.com/opdfafk/pub/sphinx-decay/main_decay.html#the-forward-euler-scheme

A centered finite difference scheme; step 3

Step 3: Approximate derivative(s) by finite difference
approximation(s). Very common (standard!) formula for v":

un+1 —oyn + un—l
At?

U//(tn) ~

Use this discrete initial condition together with the ODE at t =0

to eliminate v~ !:

A centered finite difference scheme; step 4

Step 4: Formulate the computational algorithm. Assume u"~! and
u" are known, solve for unknown u"*1:

1:2un_ At22n

Nick names for this scheme: Stérmer’'s method or Verlet
integration.

http://en.wikipedia.org/wiki/Velocity_Verlet
http://en.wikipedia.org/wiki/Velocity_Verlet

Computing the first step

1

@ The formula breaks down for u! because v~! is unknown and

outside the mesh!

@ And: we have not used the initial condition v’(0) = 0.

Discretize v'(0) = 0 by a centered difference
ul— oyl

=0 = u'l=4!
oAt vt

Inserted in the scheme for n = 0 gives

1
ul = u® — EAt2w2u0

The computational algorithm

o =1

Q compute u!

Q forn=1,2,.... N, — 1
@ compute y"*!

More precisly expressed in Python:

t = linspace(0, T, Nt+l) # mesh points in time

dt = t[1] - t[0] # constant time step.
u = zeros (Nt+1) # solution

uf0] = I

ul1] = ul0] - 0.5%dt**2%w**2%ul[0]

for n in range(l, Nt):
uln+1] = 2*xuln] - uln-1] - dt**2*w**2*u[n]

Note: w is consistently used for w in my code.

Operator notation; ODE

With [D;D;u]" as the finite difference approximation to u”(t,) we
can write

[D:Dsu + w?u = 0]"

[D¢D;u]™ means applying a central difference with step At/2 twice:

_ [Deu]™3 — [Dpu)"
o At

[Dt(Dyu)]”
which is written out as

1 un+1 — u — un—l B un+1 —ou" ¢ un—l
At? '

At

At At

Operator notation; initial condition

[u=1]°, [Doru=0]°

where [Dy¢u]” is defined as

[D2tU]n =

u is often displacement/position, v’ is velocity and can be
computed by

U (ty) =~ S [Daru]”

© Implementation

Core algorithm

from numpy import *
from matplotlib.pyplot import *
from vib_empirical_analysis import minmax, periods, amplitudes

def solver(I, w, dt, T):
nnn
Solve u’’ + w*#2%u = 0 for t in (0,T], w(0)=I and u’(0)=0,
by a central finite difference method with time step dt.

nnn

dt = float(dt)

Nt = int(round(T/dt))

u = zeros(Nt+1)

t = linspace(0, Ntxdt, Nt+1)

uf0] = I

ul1] = ul0] - 0.5xdt**2%wk*2xul[0]

for n in range(l, Nt):
uln+1] = 2*uln] - uln-1] - dt**2*w**2*u[n]
return u, t

def u_exact(t, I, w):
return I*cos(w*t)

def visualize(u, t, I, w):
plot(t, u, ’r--o0?)
t_fine = linspace(0, t[-11, 1001) # wery fine mesh for u_e
u_e = u_exact(t_fine, I, w)
hold(’on’)
plot(t_fine, u_e, ’b-’)
legend([’numerical’, ’exact’], loc=’upper left’)
xlabel (’t?)
ylabel (*u’)
dt = t[1] - t[0]
title(’dt=Yg’ % dt)
umin = 1.2*u.min(); wumax = -umin
axis([t[0], t[-1], umin, umax])
savefig(’vibl.png?)
savefig(’vibl.pdf’)

I=1
w = 2¥pi
dt = 0.05

num_periods = 5

P = 2%pi/w # one period
T = P*num_periods

u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)

User interface: command line

import
parser

parser.
parser.
.add_argument (’--dt’, type=float, default=0.05)
parser.

parser

argparse
= argparse.ArgumentParser ()

add_argument (°--I’, type=float, default=1.0)
add_argument (’--w’, type=float, default=2*pi)

add_argument (’ --num_periods’, type=int, default=5)

a = parser.parse_args()
I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods

Running the program

vib_undamped.py:

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

Generates frames tmp_vib%04d.png in files. Can make movie:

Terminal> avconv -r 12 -i tmp_vibJ,04d.png -c:v flv movie.flv

Can use ffmpeg instead of avconv.

Format Codec and filename
Flash -c:v flv movie.flv

MP4 -c:v 1ibx264 movie.mp4
Webm -c:v libvpx movie.webm
Ogg -c:v libtheora movie.ogg

http://tinyurl.com/nm5587k/vib/vib_undamped.py

© Verification

First steps for testing and debugging

e Testing very simple solutions: u = const or v = ct + d do
not apply here (without a force term in the equation:
v’ + w?u = f).

e Hand calculations: calculate u! and u? and compare with
program.

Checking convergence rates

The next function estimates convergence rates, i.e., it

e performs m simulations with halved time steps: 2~ ¥At,
k=0,...,m—1,

@ computes the L, norm of the error,
E= \/At, Ne 1(um — we(t,))? in each case,

@ estimates the rates r; from two consecutive experiments
(Ati_1, Ei—1) and (At;, E;), assuming E; = CAt] and
Ei_4 = CAtiri_l

Implementational details

def convergence_rates(m, solver_function, num_periods=8):
nmnn
Return m-1 empirical estimates of the convergence rate
based on m simulations, where the time step is halved
for each simulation.
nnn
w=20.35; IT=0.3
dt = 2*pi/w/30 # 30 time step per period 2+#pi/w
T = 2*pi/w+num_periods
dt_values = []
E_values = []
for i in range(m):
u, t = solver_function(I, w, dt, T)
u_e = u_exact(t, I, w)
E = sqrt(dt*sum((u_e-u)**2))
dt_values.append(dt)
E_values.append(E)
dt = dt/2

r = [log(E_values[i-1]/E_values[i])/
log(dt_values[i-1]/dt_values[i])
for i in range(l, m, 1)]

return r

Result: r contains values equal to 2.00 - as expected!

Use final r[-1] in a unit test:

def test_convergence_rates():
r = convergence_rates(m=5, solver_function=solver, num_periods=8)

Accept rate to 1 decimal place
nt.assert_almost_equal(r[-1], 2.0, places=1)

Complete code in vib_undamped. py.

http://tinyurl.com/nm5587k/vib/vib_undamped.py

@ Long time simulations

Effect of the time step on long simulations

dt=0.05

® - numerical
Y — exact

@ The numerical solution seems to have right amplitude.
@ There is a phase error (reduced by reducing the time step).

o The total phase error seems to grow with time.

Using a moving plot window

@ In long time simulations we need a plot window that follows
the solution.

@ Method 1: scitools.MovingPlotWindow.
o Method 2: scitools.avplotter (ASCII vertical plotter).

Example:

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

Movie of the moving plot window.

http://tinyurl.com/opdfafk/pub/mov-vib/vib_undamped_dt0.05/index.html

© Analysis of the numerical scheme

Analysis of the numerical scheme

’Can we understand the phase error?

dt=0.05

Movie of the phase error

u" +w?u =0, u(0) =1, «/(0) =0, w = 27, ue(t) = cos(2rt),
At = 0.05 (20 intervals per period)

mov-vib/vib_undamped_movie_dt0.05/movie.ogg

We can derive an exact solution of the discrete equations

We have a linear, homogeneous, difference equation for u”.
Has solutions u” ~ [A", where A is unknown (number).
Here: ue(t) = I cos(wt) ~ I exp (iwt) = I(eA)"

Trick for simplifying the algebra: u” = IA", with

A = exp (IOAL), then find @

&: unknown numerical frequency (easier to calculate than A)

w — & is the phase error

Use the real part as the physical relevant part of a complex
expression

Calculations of an exact solution of the discrete equations

u" = IA" = lexp (WAt n) = I exp (&t) = I cos(Wt) + il sin(&t) .

Loy 4yl
At?
An+1 —2A" 1 Anfl
At?
exp (I0(t + At)) — 2exp (idt) + exp (i0(t — At))
At?

5 (exp (i0(At)) + exp (iv(—At)) — 2)

[DtDt U]n =

=1

=1

= lexp (i&t)

=R~

= lexp (i®t) (cosh(i®At) — 1)

>

t

\ o

= lexp (idt) (cos(wAt) — 1)

WAL
5 sin (—2)

-b“

At
= —lexp (idt) 5

Solving for the numerical frequency

The scheme with u” = [exp (iwAt n) inserted gives

4 YN
—lexp (th)p sin (w2

which after dividing by / exp (i@t) results in

) + w?l exp (ipt) = 0

4, At

@SIH (72 =

Solve for &:

@ Phase error because & # w.

o Note: dimensionless number p = wAt is the key parameter
(i.e., no of time intervals per period is important, not At
itself)

@ But how good is the approximation & to w?

Polynomial approximation of the phase error

Taylor series expansion for small At gives a formula that is easier
to understand:

>>> from sympy import =*

>>> dt, w = symbols(’dt w’)

>>> w_tilde = asin(w*dt/2) .series(dt, 0, 4)*2/dt

>>> print w_tilde

(dt*w + dt**3*wx*3/24 + 0(dt**4))/dt # note the final "/dt"

1
H=w <1 + 24w2At2> +O(AL)

The numerical frequency is too large (to fast oscillations).

Plot of the phase error

1.6

exact discrete frequency
2nd-order expansion

1.51

numerical frequency
-
w
T

=
N
T

1.1r

1'00 5 10 15 20 25 30 35

no of time steps per period

Recommendation: 25-30 points per period.

Exact discrete solution

2 At
u" =lcos(&nAt), &= Esin*1 <u}2>

The error mesh function,

e" = ue(ty) — u" = I cos (wnAt) — I cos (OnAt)

is ideal for verification and further analysis!

1
e" = Il cos (wnAt)—I cos (OnAt) = =2/ sin <t2 (w— J))) sin (t (w+ @

Convergence of the numerical scheme

Can easily show convergence

e” — 0 as At — 0,

because

. ~ . 2 .1 WAt
lim &= lim —sin — | = w,
At—0 At—0 At

by L'Hopital’s rule or simply asking sympy: or WolframAlpha:

>>> import sympy as sp

>>> dt, w = sp.symbols(’x w’)

>>> sp.limit ((2/dt) *sp.asin(w*dt/2), dt, 0, dir=’+’)
W

http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0

Observations:

@ Numerical solution has constant amplitude (desired!), but
phase error

o Constant amplitude requires sin~*(wAt/2) to be real-valued
= lwAt/2| <1

o sin"(x) is complex if |x| > 1, and then & becomes complex

What is the consequence of complex &7

@ Set & = &, + IW;

@ Since sin~!(x) has a *negative* imaginary part for x > 1,
exp (iwf) = exp (—@;t) exp (id, t) leads to exponential growth
e “it when —@;t >0

@ This is instability because the qualitative behavior is wrong

http://www.wolframalpha.com/input/?i=arcsin%28x%29%2C+x+in+%280%2C3%29

The stability criterion

Cannot tolerate growth and must therefore demand a stability

criterion A 5
WAt

=<1 = A<=

2 w

Try At =2 49.01-107° (slightly too big!):

dt=0.3184
25 T T T T T

® - numerical
20| — exact %
1

-2.0

Summary of the analysis

We can draw three important conclusions:

@ The key parameter in the formulas is p = wAt (dimensionless)

@ Period of oscillations: P =27 /w

® Number of time steps per period: Np = P/At
0 = p:wAt:27r/Np ~ 1/NP

@ The smallest possible Np is 2 = p € (0, 7]

@ For p <2 the amplitude of u” is constant (stable solution)

n . ~ ~ 1.2 .
Qu has. a relative phase error ©/w ~ 1 + 5;p°, making
numerical peaks occur too early

@ Alternative schemes based on 1st-order equations

Rewriting 2nd-order ODE as system of two 1st-order ODEs

The vast collection of ODE solvers (e.g., in Odespy) cannot be
applied to
v +uwlu=0

unless we write this higher-order ODE as a system of 1st-order
ODEs.

Introduce an auxiliary variable v = v/:

Initial conditions: u(0) =/ and v(0) = 0.

https://github.com/hplgit/odespy

The Forward Euler scheme

We apply the Forward Euler scheme to each component equation:

[DtJru = V]n7
[D v = —w?u]",
or written out,
u" =y A", (3)

vt = vt Atw?u”. (4)

The Backward Euler scheme

We apply the Backward Euler scheme to each component equation:

Dy u=v]", (5)
[D;y v = —wu]"t. (6)
Written out:
u" — At = ", (7)
vt 4 Aty = v (8)

This is a coupled 2 x 2 system for the new values at t = t,;1!

The Crank-Nicolson scheme

[Dew = 1172, (9)
[Dyv = —wut]"Jr2 . (10)

The result is also a coupled system:

1 1
u™tt — §Atv"+1 =u"+ EAtv", (11)

1
v Atw2 ml—yn §Atw2u". (12)

Comparison of schemes via Odespy

Can use Odespy to compare many methods for first-order schemes:

import odespy
import numpy as np

def f(u, t, w=1):
u, v=u # u is array of length 2 holding our [u, v]
return [v, -w**2*u]

def run_solvers_and_plot(solvers, timesteps_per_period=20,
num_periods=1, I=1, w=2%np.pi):
P = 2xnp.pi/w # duration of one period
dt = P/timesteps_per_period
Nt = num_periods*timesteps_per_period
T = Ntxdt
t_mesh = np.linspace(0, T, Nt+1)

legends = []

for solver in solvers:
solver.set (f_kwargs={’w’: w})
solver.set_initial_condition([I, 0])
u, t = solver.solve(t_mesh)

https://github.com/hplgit/odespy

Forward and Backward Euler and Crank-Nicolson

solvers = [

Two

odespy.ForwardEuler(f),

Implictt methods must use Newton solver to converge
odespy.BackwardEuler (f, nonlinear_solver=’Newton’),
odespy.CrankNicolson(f, nonlinear_solver=’Newton’),

plot types:

u(t) vs t
Parameterized curve (u(t), v(t)) in phase space
Exact curve is an ellipse: (/ coswt, —w/! sinwt), closed and

periodic

Time step: 0.05

v(t)

e—e ForwardEuler
=—a BackwardEuler

exact

v—v Midpointimplicit

=2 -1 0 1 2
u(t)

v(t)

Phase plane plot of the numerical solutions

Time step: 0.025

Vos.

e—e ForwardEuler
=—a BackwardEuler
v—v Midpointimplicit
exact

=15 -1.0 ~0.5 0.0 0.5 1.0 15 2.0

Note: CrankNicolson in Odespy leads to the name Midpointimplicit

in plots.

Plain solution curves

Time step: 0.025

ForwardEuler
BackwardEuler
Midpointimplicit

Time step: 0.05

ForwardEuler
BackwardEuler

Midpointimplicit
exact

exact

11!

130 0.2 0.4
t

Figure : Comparison of classical schemes.

Observations from the figures

e Forward Euler has growing amplitude and outward (u, v) spiral
- pumps energy into the system.

o Backward Euler is opposite: decreasing amplitude, inward
sprial, extracts energy.

o Forward and Backward Euler are useless for vibrations.
@ Crank-Nicolson (Midpointlmplicit) looks much better.

v(t)

Time step: 0.1

6|
4
2
0
-2
-4
-6
=15 -10 ~05 0.0 05 10
u(t)
Time step: 0.1

0.2

0.8

Time step: 0.05

6|
4
2
2 o
-2
-4
-6
“15 -10 —05 0.0 05 10
u(t)

Time step: 0.05

139 0.2

0.4 0.6

Time step: 0.05
Time step: 0.05

1.

— RK2
— RK4
10§ — exact
5 0. \/

10

0
(t)

Time step: 0.1
Time step: 0.1

oooooooo

0
(]
=
(]
wv
(]
£
B
-
(O]
oY0)]
[
RS
AW
O
(e
T
([@\]
—
(]
O
-
o
(U
o
[%2]
o]
o
-
)
(]
S
T
-
-
3
X
D
oY0)]
=
3
o

Crank-Nicolson; longer time series

Time step: 0.1 Time St_'e_p: 0.05

v(t)

v(t)
o

-1.0 =05 0.0 0.5 1.0 =15 -1.0 -0.5 0.0
u(t) u(t)
Time step: 0.1 Time step: 0.05

— Midpointimplicit
— exact

0.5]

~0.5|

(Midpointlmplicit means CrankNicolson in Odespy)

Observations of RK and CN methods

@ 4th-order Runge-Kutta is very accurate, also for large At.

@ 2th-order Runge-Kutta is almost as bad as Forward and
Backward Euler.

@ Crank-Nicolson is accurate, but the amplitude is not as
accurate as the difference scheme for v + w?u = 0.

Energy conservation property

The model

" +wPu=0, u(0)=1 (0)=V,

has the nice energy conservation property that

E(t) = %(u')2 + %w

This can be used to check solutions.

2LI2 = const.

Derivation of the energy conservation property

Multiply u” + w?u = 0 by « and integrate:

T T
/ u"u dt +/ Wwuddt =0.
0 0

Observing that

d1 d1
"o - 2 ! -2
dtz(u)’ TS
we get
— E(T)-E
[AW+ & rmi =) -),
where

Remark about E(t)

E(t) does not measure energy, energy per mass unit.

Starting with an ODE coming directly from Newton's 2nd law
F = ma with a spring force F = —ku and ma = mu” (a:
acceleration, u: displacement), we have

mu” + ku =0

Integrating this equation gives a physical energy balance:

1 1
E(t) - EmV2 + Eku2 = E(O)’ vV = u/
~— ——

kinetic energy potential energy

Note: the balance is not valid if we add other terms to the ODE.

The Euler-Cromer method: idea

2x2 system for v + w?u = 0:

Forward-backward discretization:
@ Update v with Forward Euler

e Update u with Backward Euler, using latest v

[Dfv = —w?u]" (13)
[D; u = v]"*! (14)

The Euler-Cromer method; complete formulas

Written out:

=1, (15)
v0 =0, (16)
vt = v Atw?u” (17)
u™t =" 4 Aty (18)

Names: Forward-backward scheme, Semi-implicit Euler method,
symplectic Euler, semi-explicit Euler, Newton-Stormer-Verlet, and
Euler-Cromer.

http://en.wikipedia.org/wiki/Semi-implicit_Euler_method

Euler-Cromer is equivalent to the scheme for u” + w?u = 0

o Forward Euler and Backward Euler have error O(At)
@ What about the overall scheme? Expect O(At)...

We can eliminate v” and v™*1, resulting in
u™t =24 — u" — A2WPu"

which is the centered finite differrence scheme for v/ + w?u = 0!

The schemes are not equivalent wrt the initial conditions

v=v=0 = =0,
0]
v =0 — Atw?u® = — At
1
vt =00+ Anvt = 00 — A0l = u® — EAtw2u0

——
from [D:Diu+w?u=0]" and [Dy;u=0]°

The exact discrete solution derived earlier does not fit the
Euler-Cromer scheme because of mismatch for u!.

0 Generalization: damping, nonlinear spring, and external
excitation

Generalization: damping, nonlinear spring, and external

excitation

mu” + f(J') +s(u) = F(t), wu(0)=1, J(0)=V, te(0,T]
Input data: m, f(u'), s(u), F(t), I, V, and T.
Typical choices of f and s:

o linear damping f(u’) = bu, or

e quadratic damping f(u') = bu'|J/|

e linear spring s(u) = cu

@ nonlinear spring s(u) ~ sin(u) (pendulum)

A centered scheme for linear damping

[thDtU =+ f(DQtU) =+ S(U) = F]n
Written out

un+1 —2u" + un—l N f(un+1 _ un—l
m At? 2At

Assume f(u') is linear in ' = v:

)+ s(u") = F"

"t = <2mu” + (gAt —m)u"t + A (F" — s(u"))) (m—i—gAt)_l

Initial conditions

u(0) =1, J'(0) = V:

w=1" = =1
[Dyu=V]® = u'=u'-2AtV

End result:

1 0 At 0 0
ut=u —l—AtV—i—%(—bV—s(u)+ FY)

Same formula for u! as when using a centered scheme for
u" 4+ wu =0.

Linearization via a geometric mean approximation

o f(u') = bu'|u'| leads to a quadratic equation for u™+1

@ Instead of solving the quadratic equation, we use a geometric
mean approximation

In general, the geometric mean approximation reads

1
nty

For |U/|u at t,:

1
101"~ (8 +)10 (8 = 3

For v’ at tn+1/2 we use centered difference:

1 _1
U'(ty1y2) = [Deu]™ 2, Uty 1y2) = [Deu]" 2

A centered scheme for quadratic damping

After some algebra:

un+1 — (m+ b|un . un—l‘)*l %

(2mu" — mu"t + bu"u" — U + AL (F" — s(u")))

Initial condition for quadratic damping

Simply use that v/ = V in the scheme when t =0 (n = 0):

[mD:Diu + bV |V| + s(u) = F]°

which gives

At?
2m

ut = + ALV + (—=bV|V| —s(u®) + F?)

Algorithm

Qo L=
@ compute u! (formula depends on linear/quadratic damping)
Q forn=1,2,... N, —1:
O compute u™! from formula (depends on linear/quadratic
damping)

Implementation

def solver(I, V, m, b, s, F, dt, T, damping=’linear’):
dt = float(dt); b = float(b); m = float(m) # avoid integer div.
Nt = int(round(T/dt))
u = zeros(Nt+1)
t linspace(0, Nt*dt, Nt+1)

ul0] = I
if damping == ’linear’:
ul1] = ul0] + dt*V + dt**2/(2#m)*(-b*V - s(u[0]) + F(t[0]))
elif damping == ’quadratic’:
ul1] = uf0] + dt*V + \
dt**2/(2+m) * (-b*V*abs (V) - s(u[0]) + F(t[0]1))

for n in range(l, Nt):
if damping == ’linear’:
uln+1] = (2*m*u[n] + (b*dt/2 - m)*uln-1] +
dt**2x(F(t[n]) - s(ulnl)))/(m + bxdt/2)
elif damping == ’quadratic’:
uln+1] = (2*m*u[n] - m*u[n-1] + b*uln]l*abs(u[n] - uln-1])
+ dt**2*% (F(t[n]) - s(ulnl)))/\
(m + b*abs(u[n] - uln-11))
return u, t

e Constant solution ue =/ (V = 0) fulfills the ODE problem
and the discrete equations. Ideal for debugging!

@ Linear solution ue = Vt + [fulfills the ODE problem and the
discrete equations.

o Quadratic solution ue = bt? + Vt + [fulfills the ODE problem
and the discrete equations with linear damping, but not for
quadratic damping. A special discrete source term can allow
Ue to also fulfill the discrete equations with quadratic damping.

vib.py supports input via the command line:

Terminal> python vib.py --s ’sin(u)’ --F ’3%cos(4*t)’ --c 0.03

This results in a moving window following the function on the
screen.

dt=0.05

1.0f

0.5F

—0.5F

-1.0f

http://tinyurl.com/nm5587k/vib/vib.py
http://tinyurl.com/opdfafk/pub/mov-vib/vib_generalized_dt0.05/index.html

Euler-Cromer formulation

We rewrite

mu” + f(J') +s(u) = F(t), wu(0)=1, J/(0)=V, te(0,T]

as a first-order ODE system

/
u

vi=m H(F(t) — f(v) — s(u))

v

Staggered grid

@ v is unknown at t,; u”

: 1
@ v is unknown at t,qo: vita

o All derivatives are approximated by centered differences

[Diu = v]”_%

[Dev = m™ (F(t) — f(v) — s(u))]"

Written out,
n_ ,,n—1
u Au _ b
t
ntl 1
A =M FT () s(u)

Problem: f(v™)

Linear damping

With f(v) = bv, we can use an arithmetic mean for bv" a la
Crank-Nicolson schemes.

1
=" 4 Atv"fi7

() <v"§ + Atm ! (F" _ %f(v"*%) - s(u")>>

M\i—l

Quadratic damping

With f(v) = b|v|v, we can use a geometric mean
blv v & b|v”_%|v”+%,

resulting in

_ _1
u" = u" 4+ Atv 2,

nt3 — (1+ %yv"*%mt)*l (v"*% + Atm™ L (F" — s(u"))> .

v

Initial conditions

N[=

1
vi=V— 5Amﬂ/

	A simple vibration problem
	Implementation
	Verification
	Long time simulations
	Analysis of the numerical scheme
	Alternative schemes based on 1st-order equations
	Generalization: damping, nonlinear spring, and external excitation

