Study guide: Finite difference methods for vibration

problems

Hans Petter Langtangen':?

Center for Biomedical Computing, Simula Research Laboratory®

Department of Informatics, University of Oslo?

Nov 12, 2014

‘ A centered finite difference scheme; step 1 and 2

o Strategy: follow the four steps of the finite difference method.

o Step 1: Introduce a time mesh, here uniform on [0, T]:
t, = nAt

o Step 2: Let the ODE be satisfied at each mesh point:

u"(tn) + Pu(ts) =0, n=1,....N;

‘ A centered finite difference scheme; step 4

Step 4: Formulate the computational algorithm. Assume u"~! and
u™ are known, solve for unknown y"*1:

U = oyt oyl A2y

Nick names for this scheme: Stérmer’s method or Verlet
integration.

‘ A simple vibration problem

u"(8) +w?u=0, u(0)=1, d'(0)=0, te(0,T]
Exact solution:

u(t) = I cos(wt)

u(t) oscillates with constant amplitude / and (angular) frequency
w. Period: P =27/w.

‘ A centered finite difference scheme; step 3

Step 3: Approximate derivative(s) by finite difference
approximation(s). Very common (standard!) formula for v”:

1 —1
u”(t,,) ~ utl —2yn 4y
At?

Use this discrete initial condition together with the ODE at t =0

to eliminate u™1:

un+1 — 2" + un—l
At?

‘ Computing the first step

o The formula breaks down for u! because u=! is unknown and
outside the mesh!

@ And: we have not used the initial condition v’(0) = 0.

Discretize u’(0) = 0 by a centered difference
' —u?

At =0 = u =u

Inserted in the scheme for n = 0 gives

1
ut =’ - §At2w2u°




‘ The computati

Q=1
@ compute vt
Q forn=1,2,....,N,— 1

@ compute y"!

More precisly expressed in Python:

t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0] # constant time step.
u = zeros (Nt+1) # solution

uf0] = I
= u[0] - 0.5xdt**2*+w**2+u[0]
for n in range(1, Nt):
uln+1] = 2+uln] - uln-1] - dt**2%wk*2%u[n]

Note: w is consistently used for w in my code.

‘ Operator notation; initial condition

[u= /]Ov [Daru = 0]0
where [Dy;u]" is defined as

n+l _ yn—1

u
n_
Y

‘ e algorithm

from numpy import #*
from matplotlib.pyplot import *
from vib_empirical_analysis import minmax, periods, amplitudes

def solver(I, w, dt, T):

Solve u’’ + w¥*2+u = 0 for t in (0,T], u(0)=I and u’(0)=0,
by a central finite difference method with time step dt.
wirn
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1)
uf0] =T
ul1]l = uf0] - 0.5*dt**2*rwx*2+u[0]
for n in range(1, Nt):
uln+1] = 2#uln] - uln-1] - dt**2*w*+2*uln]
return u, t

‘ Operator notatio

With [DyD;u]" as the finite difference approximation to u”(t,) we
can write

[D¢Dyu + w?u = 0]"

[D¢Dyu)™ means applying a central difference with step At/2 twice:

[De)™% — D)™

[De(Dyu)]" = At

which is written out as

At

‘ Computing v/

u is often displacement/position, u’ is velocity and can be
computed by

, gl _ =1 .,
~ ————=[D
u'(ta) At [Da 1]

def u_exact(t, I, w):
return I*cos(w¥t)

def visualize(u, t, I, w):
plot(t, u, ’r--o’)
t_fine = linspace(0, t[-1], 1001) # very fine mesh for u_e
u_e = u_exact(t_fine, I, w)
hold(’on’)
plot (t_fine, u_e, 'b-?)
legend([’numerical®, ’exact’], loc=’upper left’)
xlabel(’t’)
ylabel(’u’)
dt = t[1] - t[0]
title(*dt=Yg’ % dt)
umin = 1.2*u.min(); wumax = -umin
axis([t[0], t[-1], umin, umax])
savefig(’vibl.png’)
savefig(’vibl.pdf’)




‘ Main program

I 1

w = 2%pi

dt = 0.05

num_periods = 5

P = 2+#pi/w  # ome period
T = P*num_periods

u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)

‘ User inte

‘ Running the pro

vib_undamped.py:

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

Generates frames tmp_vib%04d.png in files. Can make movie:

Terminal> avconv -r 12 -i tmp_vib}%04d.f v flv

Can use ffmpeg instead of avconv.

Format Codec and filename
Flash -c:v flv movie.flv

MP4 -c:v 1ibx264 movie.mp4
Webm  -c:v libvpx movie.webm
Ogg -c:v libtheora movie.ogg

command line

import argparse

parser = argparse.ArgumentParser()
parser.add_argument (’--I’, type=float, default=1.0)
parser.add_argument (’--w’, type=float, default=2#pi)
parser.add_argument (’--dt’, type=float, default=0.05)
parser.add_argument (’--num_periods’, type=int, default=5)
a = parser.parse_args ()

I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods

‘ First steps for testing a

Checking convergence rates

The next function estimates convergence rates, i.e., it

performs m simulations with halved time steps: 2-¥At,
k=0,....,m—1,

computes the L norm of the error,

E= /AN !

n=t

(u™ — ue(tn))? in each case,

estimates the rates r; from two consecutive experiments
(Ati_1,Ei_1) and (At;, E;), assuming E; = CAt[" and
Eii1 = CAt]

o Testing very simple solutions: u = const or u = ct + d do
not apply here (without a force term in the equation:
u" +w?u=f).

o Hand calculations: calculate u! and u? and compare with
program.

‘ Implement

al details

def convergence_rates(m, solver_function, num_periods=8):
ni

Return m-1 empirical estimates of the convergence rate
based on m simulations, where the time step is halved
for each simulation.
won
w=0.35; I=0.3
dt = 2%pi/w/30 # 30 time step per period 2*pi/w
T = 2+pi/wtnum_periods
dt_values =
E_values = []
for i in range(m):
u, t = solver_function(I, w, dt, T)
u_e = u_exact(t, I, w)
E = sqrt(dt*sum((u_e-u)**2))
dt_values.append(dt)
E_values.append (E)
dt = dt/2

r = [log(E_values[i-1]/E_values[il)/
log(dt_values[i-1]/dt_values[il)
for i in range(1, m, 1)]

return r

Result: r contains values equal to 2.00 - as expected!




Use final r[-1] in a unit test:

def test_convergence_rates():
r = convergence_rates(m=5, solver_function=solver, num_periods=8)
# Accept rate to 1 decimal place
nt.assert_almost_equal(r[-1], 2.0, places=1)

Complete code in vib_undamped.py.

‘ Using a movi

plot window

o In long time simulations we need a plot window that follows
the solution.

@ Method 1: scitools.MovingPlotWindow.
o Method 2: scitools.avplotter (ASCII vertical plotter).
Example:

Terminal>

thon vib_undamped.py --dt 0

Movie of the moving plot window.

‘ Movie of the phase er

u" +w?u =0, u(0) =1, u/(0) =0, w = 27, ue(t) = cos(2rt),
At = 0.05 (20 intervals per period)

mov-vib/vib_undamped_movie_dt0.05/movie.ogg

‘ Effect of the time step on long simulations

o The numerical solution seems to have right amplitude.
o There is a phase error (reduced by reducing the time step).

o The total phase error seems to grow with time.

‘ Analysis of the numerical scheme

Can we understand the phase error?

‘Wec

derive an exact solution of the dis

o We have a linear, homogeneous, difference equation for u”.

o Has solutions u" ~ IA", where A is unknown (number).
Here: ue(t) = I cos(wt) ~ I exp (iwt) = I(e~At)"

Trick for simplifying the algebra: u” = IA”, with

A = exp (i®At), then find &

@: unknown numerical frequency (easier to calculate than A)
w — & is the phase error

Use the real part as the physical relevant part of a complex
expression




‘ Calculations of an exact solution of the discrete equations

u" = IA" = lexp (WAt n) = | exp (©t) = I cos(@t) + il sin(@t).

yn oy 4 oyn-1
[DeDe]" = ——— 77—

B ’An+1 A" 4 A1

N At2

- ’exp(i@(t + At)) — 2exp (idt) + exp (i(t — At))
N At?

—lexp (im)ALt2 (exp (iB(A8)) + exp (iG(—AL)) — 2)

- Iexp(i&t)& (cosh(iGAt) — 1)

2
= lexp (i&;t)ﬁ (cos(@At) —1)
4 &At)

L2
Esm( 3

= —lexp (iit)

‘ Polynomial approximation of the phase error

Taylor series expansion for small At gives a formula that is easier
to understand:

>>> from sympy import #*

>>> dt, w = symbols(’dt w’)

>>> w_tilde = asin(w*dt/2).series(dt, 0, 4)*2/dt

>>> print w_tilde

(dt*w + dt*x3*wk*3/24 + 0(dt**4))/dt # note the final "/dt"

1
b=w (1 + 24w2At2) +0(At%)

The numerical frequency is too large (to fast oscillations).

‘ Exact discrete solution

2 wAt
n_ - - -
u" = [ cos (WnAt), @ ArSin (—2 )

The error mesh function,

e" = ue(tn) — u" = I cos (wnAt) — [ cos (OnAt)
is ideal for verification and further analysis!
1

e" = | cos (wnAt)—/I cos (onAt) = =2/ sin <t% (w— Jz)) sin <t§ (w+a

‘ Solving for the numerical frequency

The scheme with u” = I exp (iwAt n) inserted gives

“lexp (iwt)é sinz(wTAt) + Wl exp (i) = 0

which after dividing by / exp (i&t) results in
4, OAt
A sin?(——) = w?

Solve for &:

@ Phase error because & # w.

o Note: dimensionless number p = wAt is the key parameter
(i.e., no of time intervals per period is important, not At
itself)

o But how good is the approximation & to w?

Plot of the phase error
— exact discrete frequency
-~ 2nd-order expansion

numerical frequency
W

Y

15 25 30 35
no of time steps per period

Recommendation: 25-30 points per period.

‘ Convergence of the numerical scheme

Can easily show convergence:

e" — 0as At — 0,

because

lim & i 2 sin~! wAt

im &= lim —sin — | =w,

At—0 At—0 At 2

by L'Hopital's rule or simply asking sympy: or WolframAlpha:
>>> import sympy as sp

>>> dt, w = sp.symbols(’x w’)
>>> sp.limit((2/dt)*sp.asin(wxdt/2), dt, 0, dir=’+’)
w




‘ Stability

Observations:

o Numerical solution has constant amplitude (desired!), but
phase error

o Constant amplitude requires sin~*(wAt/2) to be real-valued
= [wAt/2| <1

o sin~!(x) is complex if [x| > 1, and then & becomes complex

What is the consequence of complex &?

o Set & = &, + iW;

@ Since sin~!(x) has a *negative* imaginary part for x > 1,
exp (iwt) = exp (—@;t) exp (i@, t) leads to exponential growth
e %it when —&;jt >0

o This is instability because the qualitative behavior is wrong

‘ Summary of the analysis

We can draw three important conclusions:

Q The key parameter in the formulas is p = wAt (dimensionless)
@ Period of oscillations: P = 27 /w
@ Number of time steps per period: Np = P/At
0 = p=wht="21/Np~1/Np
O The smallest possible Np is 2 = p € (0, 7]
@ For p < 2 the amplitude of u" is constant (stable solution)

© u" has a relative phase error &/w ~ 1+ ﬁpz, making
numerical peaks occur too early

‘ The Forward Euler scheme

We apply the Forward Euler scheme to each component equation:

[DFu = vI",
[Dfv = —w?ul",
or written out,
"t =" A", 3)
vl = v At (4)

Cannot tolerate growth and must therefore demand a stability

criterion A 9
wAt
<1l = At<-—

2 = w

Try At =2 +9.01-107° (slightly too big!):

dt=0.3184

der ODE as system of two 1st-order ODEs

‘ Rewriti

The vast collection of ODE solvers (e.g., in Odespy) cannot be
applied to
U+ wPu=0

unless we write this higher-order ODE as a system of 1st-order
ODEs.

Introduce an auxiliary variable v = u':

Initial conditions: u(0) =/ and v(0) = 0.

‘ The Backward Euler scheme

We apply the Backward Euler scheme to each component equation:

[DFu=v]"", (5)
[D7 v = —wu]"™*!. (6)
Written out:
S SN S @
v L Aty = vn (8)

This is a coupled 2 x 2 system for the new values at t = tp41!




scheme
[Deu = 7]"3, ©)
[Dev = 7wﬁr]"+% . (10)

The result is also a coupled system:

1 1
umtt - EAILV"Jr1 =u"+ EAtv", (11)

1 1
vty EAthu"H =v'- iAthu”. (12)

‘ Compari

of schemes via Odespy

Can use Odespy to compare many methods for first-order schemes:

import odespy
import numpy as np

def f(u, t, w=1):
u, v=u #uis array of length 2 holding our [u, v]
return [v, -wk*2¥u]

def run_solvers_and_plot(solvers, timesteps_per_period=20,
num_periods=1, I-1, w-2+np.pi):
P = 2#np.pi/w # duration of one period
dt = P/timesteps_per_period
Nt = num_periods+timesteps_per_period
T = Ntxdt
t_mesh = np.linspace(0, T, Nt+1)

legends = []

for solver in solvers:
solver.set (f_kwargs={"w’: w})
solver.set_initial_condition([I, 0])
u, t = solver.solve(t_mesh)

ard Euler and Crank-Nicolson

‘ Forward and Ba

solvers = [
odespy .ForwardEuler (f),
# Implicit methods must use Newton solver to comverge
odespy.BackwardEuler (f, nonlinear_solver=’lNewton’),
odespy .CrankNicolson(f, nonlinear_solver=’Newton’),
1

Two plot types:

o u(t)vst

o Parameterized curve (u(t), v(t)) in phase space

o Exact curve is an ellipse: (/ coswt, —wl sinwt), closed and
periodic

Phase plane plot of the numerical solutions

Time step: 0.05 . Time step: 0,025

Note: CrankNicolson in Odespy leads to the name Midpointlmplicit
in plots.

Plain soluti

Time step: 0.05 me step: 0025

rwardEular
ackwardEuler
v Midpointimpiicit

Midpointimplicit|
exact

Figure : Comparison of classical schemes.

‘ Observations

o Forward Euler has growing amplitude and outward (u, v) spiral
- pumps energy into the system.

o Backward Euler is opposite: decreasing amplitude, inward
sprial, extracts energy.

o Forward and Backward Euler are useless for vibrations.

o Crank-Nicolson (Midpointlmplicit) looks much better.




Runge-Kutta methods of order 2 and 4; short time series

Time step: 0.1 Time step: 0.05

1ime step: 0.05

— Wiapontimpiict]
— ewct

(Midpointlmplicit means CrankNicolson in Odespy)

‘ Energy conservation property

The model

J" +wPu=0, u(0)=1, J(0)=V,

has the nice energy conservation property that

1 1
E(t)= E(u')2 + szuz = const.

This can be used to check solutions.

Runge-Kutta methods of order 2 and 4; longer time series

‘ Observations of RK and CN methods

o 4th-order Runge-Kutta is very accurate, also for large At.
o 2th-order Runge-Kutta is almost as bad as Forward and
Backward Euler.

o Crank-Nicolson is accurate, but the amplitude is not as
accurate as the difference scheme for u” + w?u = 0.

‘ Derivation of the energy conservation property

Multiply u” + w?u = 0 by v’ and integrate:

T T
/ u"d'dt + / Wuddt = 0.
0 0

Observing that

dl1 d1
u”u’zﬁg(ul)z, uu/zﬁiuz’
we get
Al 4l 2 _
| G300+ ety = E(T) - ECO)
where

1 1
E(t) = 5(11’)2 + §w2u2




‘ Remark about E(

E(t) does not measure energy, energy per mass unit.

Starting with an ODE coming directly from Newton’s 2nd law
F = ma with a spring force F = —ku and ma = mu" (a:
acceleration, u: displacement), we have

mu" + ku =0

Integrating this equation gives a physical energy balance:

1 1
E(t)= Emv2 + Eku2
— ~—
kinetic energy  potential energy

Note: the balance is not valid if we add other terms to the ODE.

‘ The Euler-Cromer method; complete formulas

Written out:

=1, (15)
V=0, (16)
VIt = vt Atw?u” (17)
u™ =y At (18)

Names: Forward-backward scheme, Semi-implicit Euler method,
symplectic Euler, semi-explicit Euler, Newton-Stormer-Verlet, and
Euler-Cromer.

‘ The schemes are not equivalent wrt the initial conditions

v =0 — Atw?u® = —Atw?u®

1
=0+ At = 10 — Al = u® - §Atw2u°
N
from [D,D,u+w?u=0]" and [Ds,u=0]°

The exact discrete solution derived earlier does not fit the
Euler-Cromer scheme because of mismatch for u!.

‘ The Euler-Cromer method; idea

2x2 system for u” + w?u = 0:

Forward-backward discretization:
o Update v with Forward Euler

o Update v with Backward Euler, using latest v

[Dfv = —w?u]” (13)
[Dru= ]+ (14)

Euler-Cromer is equivalent to the scheme for v’ + w

o Forward Euler and Backward Euler have error O(At)
o What about the overall scheme? Expect O(At)...

We can eliminate v" and v"*1, resulting in
un+1 — oy — un—l _ At2w2un

which is the centered finite differrence scheme for v + w?u = 0!

Generalization: damping, nonlinear spring, and external
excitation

mu” + f(U') +s(u) = F(t), u(0)=1, v/(0)=V, te(0,T]

Input data: m, f(v'), s(u), F(t), !, V, and T.
Typical choices of f and s:

o linear damping f(u’) = bu, or

o quadratic damping f(u") = bu'|V'|

o linear spring s(u) = cu

o nonlinear spring s(u) ~ sin(u) (pendulum)




‘ A centered scheme for linear damping

[thD:Ll + f(thu) + S(u) — F]n

Written out

n+l _ -1

2At

un+1 —2u" + un—l
At?

Assume f(u') is linear in v/ = v:

+ (4

)+ s(u") = F7

m

ut = (Zmu" + (gAt —m)u" !+ A (F" — s(u"))> (m+§At)’1

‘ Linearization via a geometric mean approximation

o f(u') = bu'|u/| leads to a quadratic equation for u"*+!

o Instead of solving the quadratic equation, we use a geometric
mean approximation

In general, the geometric mean approximation reads

(w?)" =~ whEwtE

For |u'|u’ at tn:

1 1
W11~ o (tn + )l (80— 3)1.

For u' at t,.1/, we use centered difference:

U (tag1y2) = [Deu]™ 3, u'(tn_1p2) = [Deu)™

Initial condition for quadratic damping

Simply use that v’ = V in the scheme when t =0 (n = 0):

[mDDyu + bV|V| + s(u) = F]°

which gives

1_ 0 N 0 0
ul=u +Atv+ﬁ(—bvw\—s(u )+ F°)

‘ Initial conditions

u(0) =1, u'(0) = V:

[u=1°

=
[Dou=V]" =

End result:

1_ 0 INS 0 0
ut =1 +Atv+ﬂ(fbvfs(u )+ FY)

Same formula for u® as when using a centered scheme for
u" +wu =0.

‘ A centered scheme for quadratic damping

After some algebra:

LS . (m+ blu" — un—l‘)*l %

(2mu" — mu"t + bu”|u” — U™+ AP(F" — s(u™)))

‘ Algorithm

Qo =1
@ compute u* (formula depends on linear/quadratic damping)
Q forn=1,2..., Ny — 1

O compute u"*! from formula (depends on linear/quadratic
damping)




‘ Implementation

def solver(I, V, m, b, s, F, dt, T, damping=’linear’):
dt = float(dt); b = float(b); m = float(m) # avoid integer div.
Nt = int(round(T/dt))

u = zeros (Nt+1)

t = linspace(0, Nt*dt, Nt+1)
uf0] = I
if damping == ’linear’:

ul1] = ul0] + dt*V + dt**2/(2#m)*(-b*V - s(u[0]) + F(t[0]))
elif damping == ’quadratic’:
ul1l = ul0] + dt*V + \
dt*#2/(2#m) * (-b*V*abs (V) - s(ul0]) + F(¢[01))

for n in range(1, Nt):
if damping =- ’linear’:
uln+1] = (2*m*uln] + (b*dt/2 - m)*u[n-1] +
dt**2%(F(t[n]) - s(uln])))/(m + b*dt/2)
elif damping == ’quadratic’:
uln+1] = (2*m*uln] - m*u[n-1] + b*uln]l*abs(uln] - uln-11)
+ dt*#2#(F(t[n]) - s(uln])))/\
(m + b*abs(uln] - uln-11))
return u, t

Demo prog

vib.py supports input via the command line:

Terminal> python vib.py --s ’sin(u)’ --F ’3*cos(4xt)’ --c 0.03
This results in a moving window following the function on the
screen.

dt=0.05

@ uis unknown at t,: u"

) 1
o v is unknown at t,yy/p: VT2

o All derivatives are approximated by centered differences

[Dyu = v]"fé

[Dev = m™ (F(t) = f(v) = s(u))]”

Written out,

un n—1

—u 1
At

1 1
yrty -2

At

Problem: f(v")

‘ Verification

o Constant solution ve = | (V = 0) fulfills the ODE problem
and the discrete equations. Ideal for debugging!

o Linear solution ve = Vit + [ fulfills the ODE problem and the
discrete equations.

o Quadratic solution ue = bt? + Vt + [ fulfills the ODE problem
and the discrete equations with linear damping, but not for
quadratic damping. A special discrete source term can allow
ue to also fulfill the discrete equations with quadratic damping.

‘ Euler-Cromer formulation

We rewrite

mu" + (') + s(u) = F(t), u(0)=1, u'(0)=V, te(0,T]

as a first-order ODE system

=m~H(F(t) = f(v) = s(u))

‘ Linear dampi

With f(v) = bv, we can use an arithmetic mean for bv" a la
Crank-Nicolson schemes.

1

u" =" 4 At

(1 + %At) - (v"*% + Atm™ <F" - %f(\/"’%) - 5(“")))

nt




‘ Quadratic damping ‘ Initial conditions

With f(v) = b|v|v, we can use a geometric mean
b|v"|v" &~ b\vnf%\v'ﬁ%,

resulting in

1
u" ="t 4 AtV

b
VR = (14 2R A (v"’% + Atm™ (F7 - s(u"))) .
m




