
Study guide: Finite di�erence methods for vibration

problems

Hans Petter Langtangen1,2

Center for Biomedical Computing, Simula Research Laboratory1

Department of Informatics, University of Oslo2

Nov 12, 2014

A simple vibration problem

u′′(t) + ω2u = 0, u(0) = I , u′(0) = 0, t ∈ (0,T]

Exact solution:

u(t) = I cos(ωt)

u(t) oscillates with constant amplitude I and (angular) frequency
ω. Period: P = 2π/ω.

A centered �nite di�erence scheme; step 1 and 2

Strategy: follow the four steps of the �nite di�erence method.

Step 1: Introduce a time mesh, here uniform on [0,T]:
tn = n∆t

Step 2: Let the ODE be satis�ed at each mesh point:

u′′(tn) + ω2u(tn) = 0, n = 1, . . . ,Nt

A centered �nite di�erence scheme; step 3

Step 3: Approximate derivative(s) by �nite di�erence
approximation(s). Very common (standard!) formula for u′′:

u′′(tn) ≈ un+1 − 2un + un−1

∆t2

Use this discrete initial condition together with the ODE at t = 0
to eliminate u−1:

un+1 − 2un + un−1

∆t2
= −ω2un

A centered �nite di�erence scheme; step 4

Step 4: Formulate the computational algorithm. Assume un−1 and
un are known, solve for unknown un+1:

un+1 = 2un − un−1 −∆t2ω2un

Nick names for this scheme: Störmer's method or Verlet
integration.

Computing the �rst step

The formula breaks down for u1 because u−1 is unknown and
outside the mesh!

And: we have not used the initial condition u′(0) = 0.

Discretize u′(0) = 0 by a centered di�erence

u1 − u−1

2∆t
= 0 ⇒ u−1 = u1

Inserted in the scheme for n = 0 gives

u1 = u0 − 1

2
∆t2ω2u0

The computational algorithm

1 u0 = I

2 compute u1

3 for n = 1, 2, . . . ,Nt − 1:
1 compute un+1

More precisly expressed in Python:

t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0] # constant time step.
u = zeros(Nt+1) # solution

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]

Note: w is consistently used for ω in my code.

Operator notation; ODE

With [DtDtu]n as the �nite di�erence approximation to u′′(tn) we
can write

[DtDtu + ω2u = 0]n

[DtDtu]n means applying a central di�erence with step ∆t/2 twice:

[Dt(Dtu)]n =
[Dtu]n+ 1

2 − [Dtu]n−
1

2

∆t

which is written out as

1

∆t

(
un+1 − un

∆t
− un − un−1

∆t

)
=

un+1 − 2un + un−1

∆t2
.

Operator notation; initial condition

[u = I]0, [D2tu = 0]0

where [D2tu]n is de�ned as

[D2tu]n =
un+1 − un−1

2∆t
.

Computing u
′

u is often displacement/position, u′ is velocity and can be
computed by

u′(tn) ≈ un+1 − un−1

2∆t
= [D2tu]n

Core algorithm

from numpy import *
from matplotlib.pyplot import *
from vib_empirical_analysis import minmax, periods, amplitudes

def solver(I, w, dt, T):
"""
Solve u'' + w**2*u = 0 for t in (0,T], u(0)=I and u'(0)=0,
by a central finite difference method with time step dt.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1)

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]
return u, t

Plotting

def u_exact(t, I, w):
return I*cos(w*t)

def visualize(u, t, I, w):
plot(t, u, 'r--o')
t_fine = linspace(0, t[-1], 1001) # very fine mesh for u_e
u_e = u_exact(t_fine, I, w)
hold('on')
plot(t_fine, u_e, 'b-')
legend(['numerical', 'exact'], loc='upper left')
xlabel('t')
ylabel('u')
dt = t[1] - t[0]
title('dt=%g' % dt)
umin = 1.2*u.min(); umax = -umin
axis([t[0], t[-1], umin, umax])
savefig('vib1.png')
savefig('vib1.pdf')

Main program

I = 1
w = 2*pi
dt = 0.05
num_periods = 5
P = 2*pi/w # one period
T = P*num_periods
u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)

User interface: command line

import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--I', type=float, default=1.0)
parser.add_argument('--w', type=float, default=2*pi)
parser.add_argument('--dt', type=float, default=0.05)
parser.add_argument('--num_periods', type=int, default=5)
a = parser.parse_args()
I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods

Running the program

vib_undamped.py:

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

Generates frames tmp_vib%04d.png in �les. Can make movie:

Terminal> avconv -r 12 -i tmp_vib%04d.png -c:v flv movie.flv

Can use ffmpeg instead of avconv.

Format Codec and �lename

Flash -c:v flv movie.flv

MP4 -c:v libx264 movie.mp4

Webm -c:v libvpx movie.webm

Ogg -c:v libtheora movie.ogg

First steps for testing and debugging

Testing very simple solutions: u = const or u = ct + d do
not apply here (without a force term in the equation:
u′′ + ω2u = f).

Hand calculations: calculate u1 and u2 and compare with
program.

Checking convergence rates

The next function estimates convergence rates, i.e., it

performs m simulations with halved time steps: 2−k∆t,
k = 0, . . . ,m − 1,

computes the L2 norm of the error,

E =
√

∆ti
∑

Nt−1
n=0 (un − ue(tn))2 in each case,

estimates the rates ri from two consecutive experiments
(∆ti−1,Ei−1) and (∆ti ,Ei), assuming Ei = C∆tri

i
and

Ei−1 = C∆tri
i−1:

Implementational details

def convergence_rates(m, solver_function, num_periods=8):
"""
Return m-1 empirical estimates of the convergence rate
based on m simulations, where the time step is halved
for each simulation.
"""
w = 0.35; I = 0.3
dt = 2*pi/w/30 # 30 time step per period 2*pi/w
T = 2*pi/w*num_periods
dt_values = []
E_values = []
for i in range(m):

u, t = solver_function(I, w, dt, T)
u_e = u_exact(t, I, w)
E = sqrt(dt*sum((u_e-u)**2))
dt_values.append(dt)
E_values.append(E)
dt = dt/2

r = [log(E_values[i-1]/E_values[i])/
log(dt_values[i-1]/dt_values[i])
for i in range(1, m, 1)]

return r

Result: r contains values equal to 2.00 - as expected!

Nose test

Use �nal r[-1] in a unit test:

def test_convergence_rates():
r = convergence_rates(m=5, solver_function=solver, num_periods=8)
Accept rate to 1 decimal place
nt.assert_almost_equal(r[-1], 2.0, places=1)

Complete code in vib_undamped.py.

E�ect of the time step on long simulations

The numerical solution seems to have right amplitude.

There is a phase error (reduced by reducing the time step).

The total phase error seems to grow with time.

Using a moving plot window

In long time simulations we need a plot window that follows
the solution.

Method 1: scitools.MovingPlotWindow.

Method 2: scitools.avplotter (ASCII vertical plotter).

Example:

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

Movie of the moving plot window.

Analysis of the numerical scheme

Can we understand the phase error?

Movie of the phase error

u′′ + ω2u = 0, u(0) = 1, u′(0) = 0, ω = 2π, ue(t) = cos(2πt),
∆t = 0.05 (20 intervals per period)

mov-vib/vib_undamped_movie_dt0.05/movie.ogg

We can derive an exact solution of the discrete equations

We have a linear, homogeneous, di�erence equation for un.

Has solutions un ∼ IAn, where A is unknown (number).

Here: ue(t) = I cos(ωt) ∼ I exp (iωt) = I (e iω∆t)n

Trick for simplifying the algebra: un = IAn, with
A = exp (i ω̃∆t), then �nd ω̃

ω̃: unknown numerical frequency (easier to calculate than A)

ω − ω̃ is the phase error

Use the real part as the physical relevant part of a complex
expression

Calculations of an exact solution of the discrete equations

un = IAn = I exp (ω̃∆t n) = I exp (ω̃t) = I cos(ω̃t) + iI sin(ω̃t) .

[DtDtu]n =
un+1 − 2un + un−1

∆t2

= I
An+1 − 2An + An−1

∆t2

= I
exp (i ω̃(t + ∆t))− 2 exp (i ω̃t) + exp (i ω̃(t −∆t))

∆t2

= I exp (i ω̃t)
1

∆t2
(exp (i ω̃(∆t)) + exp (i ω̃(−∆t))− 2)

= I exp (i ω̃t)
2

∆t2
(cosh(i ω̃∆t)− 1)

= I exp (i ω̃t)
2

∆t2
(cos(ω̃∆t)− 1)

= −I exp (i ω̃t)
4

∆t2
sin2(

ω̃∆t

2
)

Solving for the numerical frequency

The scheme with un = I exp (iω∆̃t n) inserted gives

−I exp (i ω̃t)
4

∆t2
sin2(

ω̃∆t

2
) + ω2I exp (i ω̃t) = 0

which after dividing by I exp (i ω̃t) results in

4

∆t2
sin2(

ω̃∆t

2
) = ω2

Solve for ω̃:

ω̃ = ± 2

∆t
sin−1

(
ω∆t

2

)

Phase error because ω̃ 6= ω.

Note: dimensionless number p = ω∆t is the key parameter
(i.e., no of time intervals per period is important, not ∆t

itself)

But how good is the approximation ω̃ to ω?

Polynomial approximation of the phase error

Taylor series expansion for small ∆t gives a formula that is easier
to understand:

>>> from sympy import *
>>> dt, w = symbols('dt w')
>>> w_tilde = asin(w*dt/2).series(dt, 0, 4)*2/dt
>>> print w_tilde
(dt*w + dt**3*w**3/24 + O(dt**4))/dt # note the final "/dt"

ω̃ = ω

(
1 +

1

24
ω2∆t2

)
+O(∆t3)

The numerical frequency is too large (to fast oscillations).

Plot of the phase error

0 5 10 15 20 25 30 35
no of time steps per period

1.0

1.1

1.2

1.3

1.4

1.5

1.6

nu
m

er
ic

al
 fr

eq
ue

nc
y

exact discrete frequency
2nd-order expansion

Recommendation: 25-30 points per period.

Exact discrete solution

un = I cos (ω̃n∆t) , ω̃ =
2

∆t
sin−1

(
ω∆t

2

)

The error mesh function,

en = ue(tn)− un = I cos (ωn∆t)− I cos (ω̃n∆t)

is ideal for veri�cation and further analysis!

en = I cos (ωn∆t)−I cos (ω̃n∆t) = −2I sin
(
t
1

2
(ω − ω̃)

)
sin

(
t
1

2
(ω + ω̃)

)

Convergence of the numerical scheme

Can easily show convergence:

en → 0 as ∆t → 0,

because

lim
∆t→0

ω̃ = lim
∆t→0

2

∆t
sin−1

(
ω∆t

2

)
= ω,

by L'Hopital's rule or simply asking sympy: or WolframAlpha:

>>> import sympy as sp
>>> dt, w = sp.symbols('x w')
>>> sp.limit((2/dt)*sp.asin(w*dt/2), dt, 0, dir='+')
w

Stability

Observations:

Numerical solution has constant amplitude (desired!), but
phase error

Constant amplitude requires sin−1(ω∆t/2) to be real-valued
⇒ |ω∆t/2| ≤ 1

sin−1(x) is complex if |x | > 1, and then ω̃ becomes complex

What is the consequence of complex ω̃?

Set ω̃ = ω̃r + i ω̃i

Since sin−1(x) has a *negative* imaginary part for x > 1,
exp (iωt̃) = exp (−ω̃i t) exp (i ω̃r t) leads to exponential growth
e−ω̃i t when −ω̃i t > 0

This is instability because the qualitative behavior is wrong

The stability criterion

Cannot tolerate growth and must therefore demand a stability

criterion
ω∆t

2
≤ 1 ⇒ ∆t ≤ 2

ω

Try ∆t = 2
ω + 9.01 · 10−5 (slightly too big!):

Summary of the analysis

We can draw three important conclusions:

1 The key parameter in the formulas is p = ω∆t (dimensionless)
1 Period of oscillations: P = 2π/ω
2 Number of time steps per period: NP = P/∆t

3 ⇒ p = ω∆t = 2π/NP ∼ 1/NP

4 The smallest possible NP is 2 ⇒ p ∈ (0, π]

2 For p ≤ 2 the amplitude of un is constant (stable solution)

3 un has a relative phase error ω̃/ω ≈ 1 + 1
24p

2, making
numerical peaks occur too early

Rewriting 2nd-order ODE as system of two 1st-order ODEs

The vast collection of ODE solvers (e.g., in Odespy) cannot be
applied to

u′′ + ω2u = 0

unless we write this higher-order ODE as a system of 1st-order
ODEs.

Introduce an auxiliary variable v = u′:

u′ = v , (1)

v ′ = −ω2u . (2)

Initial conditions: u(0) = I and v(0) = 0.

The Forward Euler scheme

We apply the Forward Euler scheme to each component equation:

[D+
t u = v]n,

[D+
t v = −ω2u]n,

or written out,

un+1 = un + ∆tvn, (3)

vn+1 = vn −∆tω2un . (4)

The Backward Euler scheme

We apply the Backward Euler scheme to each component equation:

[D−t u = v]n+1, (5)

[D−t v = −ωu]n+1 . (6)

Written out:

un+1 −∆tvn+1 = un, (7)

vn+1 + ∆tω2un+1 = vn . (8)

This is a coupled 2× 2 system for the new values at t = tn+1!

The Crank-Nicolson scheme

[Dtu = v t]n+ 1

2 , (9)

[Dtv = −ωut]n+ 1

2 . (10)

The result is also a coupled system:

un+1 − 1

2
∆tvn+1 = un +

1

2
∆tvn, (11)

vn+1 +
1

2
∆tω2un+1 = vn − 1

2
∆tω2un . (12)

Comparison of schemes via Odespy

Can use Odespy to compare many methods for �rst-order schemes:

import odespy
import numpy as np

def f(u, t, w=1):
u, v = u # u is array of length 2 holding our [u, v]
return [v, -w**2*u]

def run_solvers_and_plot(solvers, timesteps_per_period=20,
num_periods=1, I=1, w=2*np.pi):

P = 2*np.pi/w # duration of one period
dt = P/timesteps_per_period
Nt = num_periods*timesteps_per_period
T = Nt*dt
t_mesh = np.linspace(0, T, Nt+1)

legends = []
for solver in solvers:

solver.set(f_kwargs={'w': w})
solver.set_initial_condition([I, 0])
u, t = solver.solve(t_mesh)

Forward and Backward Euler and Crank-Nicolson

solvers = [
odespy.ForwardEuler(f),
Implicit methods must use Newton solver to converge
odespy.BackwardEuler(f, nonlinear_solver='Newton'),
odespy.CrankNicolson(f, nonlinear_solver='Newton'),
]

Two plot types:

u(t) vs t

Parameterized curve (u(t), v(t)) in phase space

Exact curve is an ellipse: (I cosωt,−ωI sinωt), closed and
periodic

Phase plane plot of the numerical solutions

2 1 0 1 2 3
u(t)

10

5

0

5

10

15

v
(t

)

Time step: 0.05

ForwardEuler
BackwardEuler
MidpointImplicit
exact

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
u(t)

8

6

4

2

0

2

4

6

8

10

v
(t

)

Time step: 0.025

ForwardEuler
BackwardEuler
MidpointImplicit
exact

Note: CrankNicolson in Odespy leads to the name MidpointImplicit
in plots.

Plain solution curves

0.0 0.2 0.4 0.6 0.8 1.0
t

2

1

0

1

2

3

u

Time step: 0.05

ForwardEuler
BackwardEuler
MidpointImplicit
exact

0.0 0.2 0.4 0.6 0.8 1.0
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

u

Time step: 0.025

ForwardEuler
BackwardEuler
MidpointImplicit
exact

Figure : Comparison of classical schemes.

Observations from the �gures

Forward Euler has growing amplitude and outward (u, v) spiral
- pumps energy into the system.

Backward Euler is opposite: decreasing amplitude, inward
sprial, extracts energy.

Forward and Backward Euler are useless for vibrations.

Crank-Nicolson (MidpointImplicit) looks much better.

Runge-Kutta methods of order 2 and 4; short time series

1.5 1.0 0.5 0.0 0.5 1.0 1.5
u(t)

8

6

4

2

0

2

4

6

8

v
(t

)

Time step: 0.1

RK2
RK4
exact

1.5 1.0 0.5 0.0 0.5 1.0 1.5
u(t)

8

6

4

2

0

2

4

6

8

v
(t

)

Time step: 0.05

RK2
RK4
exact

0.0 0.2 0.4 0.6 0.8 1.0
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

Time step: 0.1

RK2
RK4
exact

0.0 0.2 0.4 0.6 0.8 1.0
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

Time step: 0.05

RK2
RK4
exact

Runge-Kutta methods of order 2 and 4; longer time series

8 6 4 2 0 2 4 6
u(t)

50

40

30

20

10

0

10

20

30

40

v
(t

)

Time step: 0.1

RK2
RK4
exact

1.5 1.0 0.5 0.0 0.5 1.0 1.5
u(t)

8

6

4

2

0

2

4

6

8

v
(t

)

Time step: 0.05

RK2
RK4
exact

0 2 4 6 8 10
t

8

6

4

2

0

2

4

6

u

Time step: 0.1

RK2
RK4
exact

0 2 4 6 8 10
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

Time step: 0.05

RK2
RK4
exact

Crank-Nicolson; longer time series

1.0 0.5 0.0 0.5 1.0
u(t)

8

6

4

2

0

2

4

6

8

v
(t

)

Time step: 0.1

MidpointImplicit
exact

1.5 1.0 0.5 0.0 0.5 1.0 1.5
u(t)

8

6

4

2

0

2

4

6

8

v
(t

)

Time step: 0.05

MidpointImplicit
exact

0 2 4 6 8 10
t

1.0

0.5

0.0

0.5

1.0

u

Time step: 0.1

MidpointImplicit
exact

0 2 4 6 8 10
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

u

Time step: 0.05

MidpointImplicit
exact

(MidpointImplicit means CrankNicolson in Odespy)

Observations of RK and CN methods

4th-order Runge-Kutta is very accurate, also for large ∆t.

2th-order Runge-Kutta is almost as bad as Forward and
Backward Euler.

Crank-Nicolson is accurate, but the amplitude is not as
accurate as the di�erence scheme for u′′ + ω2u = 0.

Energy conservation property

The model

u′′ + ω2u = 0, u(0) = I , u′(0) = V ,

has the nice energy conservation property that

E (t) =
1

2
(u′)2 +

1

2
ω2u2 = const .

This can be used to check solutions.

Derivation of the energy conservation property

Multiply u′′ + ω2u = 0 by u′ and integrate:

∫
T

0

u′′u′dt +

∫
T

0

ω2uu′dt = 0 .

Observing that

u′′u′ =
d

dt

1

2
(u′)2, uu′ =

d

dt

1

2
u2,

we get

∫
T

0

(
d

dt

1

2
(u′)2 +

d

dt

1

2
ω2u2)dt = E (T)− E (0),

where

E (t) =
1

2
(u′)2 +

1

2
ω2u2

Remark about E (t)

E (t) does not measure energy, energy per mass unit.

Starting with an ODE coming directly from Newton's 2nd law
F = ma with a spring force F = −ku and ma = mu′′ (a:
acceleration, u: displacement), we have

mu′′ + ku = 0

Integrating this equation gives a physical energy balance:

E (t) =
1

2
mv2

︸ ︷︷ ︸
kinetic energy

+
1

2
ku2

︸ ︷︷ ︸
potential energy

= E (0), v = u′

Note: the balance is not valid if we add other terms to the ODE.

The Euler-Cromer method; idea

2x2 system for u′′ + ω2u = 0:

v ′ = −ω2u

u′ = v

Forward-backward discretization:

Update v with Forward Euler

Update u with Backward Euler, using latest v

[D+
t v = −ω2u]n (13)

[D−t u = v]n+1 (14)

The Euler-Cromer method; complete formulas

Written out:

u0 = I , (15)

v0 = 0, (16)

vn+1 = vn −∆tω2un (17)

un+1 = un + ∆tvn+1 (18)

Names: Forward-backward scheme, Semi-implicit Euler method,
symplectic Euler, semi-explicit Euler, Newton-Stormer-Verlet, and
Euler-Cromer.

Euler-Cromer is equivalent to the scheme for u′′ + ω2
u = 0

Forward Euler and Backward Euler have error O(∆t)

What about the overall scheme? Expect O(∆t)...

We can eliminate vn and vn+1, resulting in

un+1 = 2un − un−1 −∆t2ω2un

which is the centered �nite di�errence scheme for u′′ + ω2u = 0!

The schemes are not equivalent wrt the initial conditions

u′ = v = 0 ⇒ v0 = 0,

so

v1 = v0 −∆tω2u0 = −∆tω2u0

u1 = u0 + ∆tv1 = u0 −∆tω2u0! = u0 − 1

2
∆tω2u0

︸ ︷︷ ︸
from [DtDtu+ω2u=0]n and [D2tu=0]0

The exact discrete solution derived earlier does not �t the
Euler-Cromer scheme because of mismatch for u1.

Generalization: damping, nonlinear spring, and external

excitation

mu′′ + f (u′) + s(u) = F (t), u(0) = I , u′(0) = V , t ∈ (0,T]

Input data: m, f (u′), s(u), F (t), I , V , and T .

Typical choices of f and s:

linear damping f (u′) = bu, or

quadratic damping f (u′) = bu′|u′|
linear spring s(u) = cu

nonlinear spring s(u) ∼ sin(u) (pendulum)

A centered scheme for linear damping

[mDtDtu + f (D2tu) + s(u) = F]n

Written out

m
un+1 − 2un + un−1

∆t2
+ f (

un+1 − un−1

2∆t
) + s(un) = F n

Assume f (u′) is linear in u′ = v :

un+1 =

(
2mun + (

b

2
∆t −m)un−1 + ∆t2(F n − s(un))

)
(m+

b

2
∆t)−1

Initial conditions

u(0) = I , u′(0) = V :

[u = I]0 ⇒ u0 = I

[D2tu = V]0 ⇒ u−1 = u1 − 2∆tV

End result:

u1 = u0 + ∆t V +
∆t2

2m
(−bV − s(u0) + F 0)

Same formula for u1 as when using a centered scheme for
u′′ + ωu = 0.

Linearization via a geometric mean approximation

f (u′) = bu′|u′| leads to a quadratic equation for un+1

Instead of solving the quadratic equation, we use a geometric
mean approximation

In general, the geometric mean approximation reads

(w2)n ≈ wn− 1

2wn+ 1

2 .

For |u′|u′ at tn:

[u′|u′|]n ≈ u′(tn +
1

2
)|u′(tn −

1

2
)| .

For u′ at tn±1/2 we use centered di�erence:

u′(tn+1/2) ≈ [Dtu]n+ 1

2 , u′(tn−1/2) ≈ [Dtu]n−
1

2

A centered scheme for quadratic damping

After some algebra:

un+1 =
(
m + b|un − un−1|

)−1×
(
2mun −mun−1 + bun|un − un−1|+ ∆t2(F n − s(un))

)

Initial condition for quadratic damping

Simply use that u′ = V in the scheme when t = 0 (n = 0):

[mDtDtu + bV |V |+ s(u) = F]0

which gives

u1 = u0 + ∆tV +
∆t2

2m

(
−bV |V | − s(u0) + F 0

)

Algorithm

1 u0 = I

2 compute u1 (formula depends on linear/quadratic damping)
3 for n = 1, 2, . . . ,Nt − 1:

1 compute un+1 from formula (depends on linear/quadratic
damping)

Implementation

def solver(I, V, m, b, s, F, dt, T, damping='linear'):
dt = float(dt); b = float(b); m = float(m) # avoid integer div.
Nt = int(round(T/dt))
u = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1)

u[0] = I
if damping == 'linear':

u[1] = u[0] + dt*V + dt**2/(2*m)*(-b*V - s(u[0]) + F(t[0]))
elif damping == 'quadratic':

u[1] = u[0] + dt*V + \
dt**2/(2*m)*(-b*V*abs(V) - s(u[0]) + F(t[0]))

for n in range(1, Nt):
if damping == 'linear':

u[n+1] = (2*m*u[n] + (b*dt/2 - m)*u[n-1] +
dt**2*(F(t[n]) - s(u[n])))/(m + b*dt/2)

elif damping == 'quadratic':
u[n+1] = (2*m*u[n] - m*u[n-1] + b*u[n]*abs(u[n] - u[n-1])

+ dt**2*(F(t[n]) - s(u[n])))/\
(m + b*abs(u[n] - u[n-1]))

return u, t

Veri�cation

Constant solution ue = I (V = 0) ful�lls the ODE problem
and the discrete equations. Ideal for debugging!

Linear solution ue = Vt + I ful�lls the ODE problem and the
discrete equations.

Quadratic solution ue = bt2 + Vt + I ful�lls the ODE problem
and the discrete equations with linear damping, but not for
quadratic damping. A special discrete source term can allow
ue to also ful�ll the discrete equations with quadratic damping.

Demo program

vib.py supports input via the command line:

Terminal> python vib.py --s 'sin(u)' --F '3*cos(4*t)' --c 0.03

This results in a moving window following the function on the
screen.

0 10 20 30 40 50 60
t

1.0

0.5

0.0

0.5

1.0

u

dt=0.05

Euler-Cromer formulation

We rewrite

mu′′ + f (u′) + s(u) = F (t), u(0) = I , u′(0) = V , t ∈ (0,T]

as a �rst-order ODE system

u′ = v

v ′ = m−1 (F (t)− f (v)− s(u))

Staggered grid

u is unknown at tn: u
n

v is unknown at tn+1/2: v
n+ 1

2

All derivatives are approximated by centered di�erences

[Dtu = v]n−
1

2

[Dtv = m−1 (F (t)− f (v)− s(u))]n

Written out,

un − un−1

∆t
= vn−

1

2

vn+ 1

2 − vn−
1

2

∆t
= m−1 (F n − f (vn)− s(un))

Problem: f (vn)

Linear damping

With f (v) = bv , we can use an arithmetic mean for bvn a la
Crank-Nicolson schemes.

un = un−1 + ∆tvn−
1

2 ,

vn+ 1

2 =

(
1 +

b

2m
∆t

)−1(
vn−

1

2 + ∆tm−1
(
F n − 1

2
f (vn−

1

2)− s(un)

))
.

Quadratic damping

With f (v) = b|v |v , we can use a geometric mean

b|vn|vn ≈ b|vn− 1

2 |vn+ 1

2 ,

resulting in

un = un−1 + ∆tvn−
1

2 ,

vn+ 1

2 = (1 +
b

m
|vn− 1

2 |∆t)−1
(
vn−

1

2 + ∆tm−1 (F n − s(un))
)
.

Initial conditions

u0 = I

v
1

2 = V − 1

2
∆tω2I

