Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\tp}{\thinspace .}
\newcommand{\Oof}[1]{\mathcal{O}(#1)}
Linearization via a geometric mean approximation
- f(u')=bu'|u'| leads to a quadratic equation for u^{n+1}
- Instead of solving the quadratic equation, we use a geometric mean
approximation
In general, the geometric mean approximation reads
(w^2)^n \approx w^{n-\half}w^{n+\half}\tp
For |u'|u' at t_n :
[u'|u'|]^n \approx u'(t_n+{\half})|u'(t_n-{\half})|\tp
For u' at t_{n\pm 1/2} we use centered difference:
u'(t_{n+1/2})\approx [D_t u]^{n+\half},\quad u'(t_{n-1/2})\approx [D_t u]^{n-\half}