Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\tp}{\thinspace .}
\newcommand{\Oof}[1]{\mathcal{O}(#1)}
Summary of the analysis
We can draw three important conclusions:
- The key parameter in the formulas is p=\omega\Delta t (dimensionless)
- Period of oscillations: P=2\pi/\omega
- Number of time steps per period: N_P=P/\Delta t
- \Rightarrow\ p=\omega\Delta t = 2\pi/ N_P \sim 1/N_P
- The smallest possible N_P is 2 \Rightarrow $p\in (0,\pi]$
- For p\leq 2 the amplitude of u^n is constant (stable solution)
- u^n has a relative phase error
\tilde\omega/\omega \approx 1 + \frac{1}{24}p^2 , making numerical
peaks occur too early