Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)}

« Previous
Next »

Summary of the analysis

We can draw three important conclusions:

  1. The key parameter in the formulas is p=\omega\Delta t (dimensionless)
    1. Period of oscillations: P=2\pi/\omega
    2. Number of time steps per period: N_P=P/\Delta t
    3. \Rightarrow\ p=\omega\Delta t = 2\pi/ N_P \sim 1/N_P
    4. The smallest possible N_P is 2 \Rightarrow $p\in (0,\pi]$

  2. For p\leq 2 the amplitude of u^n is constant (stable solution)
  3. u^n has a relative phase error \tilde\omega/\omega \approx 1 + \frac{1}{24}p^2 , making numerical peaks occur too early

« Previous
Next »