Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)}

« Previous
Next »

Solving for the numerical frequency

The scheme with u^n=I\exp{(i\omega\tilde\Delta t\, n)} inserted gives -I\exp{(i\tilde\omega t)}\frac{4}{\Delta t^2}\sin^2(\frac{\tilde\omega\Delta t}{2}) + \omega^2 I\exp{(i\tilde\omega t)} = 0 which after dividing by I\exp{(i\tilde\omega t)} results in \frac{4}{\Delta t^2}\sin^2(\frac{\tilde\omega\Delta t}{2}) = \omega^2 Solve for \tilde\omega : \tilde\omega = \pm \frac{2}{\Delta t}\sin^{-1}\left(\frac{\omega\Delta t}{2}\right)

« Previous
Next »