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Purpose.

Truncation error analysis provides a widely applicable framework for analyzing the accuracy
of finite difference schemes. This type of analysis can also be used for finite element and
finite volume methods if the discrete equations are written in finite difference form. The
result of the analysis is an asymptotic estimate of the error in the scheme on the form
Chr, where h is a discretization parameter (∆t, ∆x, etc.), r is a number, known as the
convergence rate, and C is a constant, typically dependent on the derivatives of the exact
solution.

Knowing r gives understanding of the accuracy of the scheme. But maybe even more
important, a powerful verification method for computer codes is to check that the empirically
observed convergence rates in experiments coincide with the theoretical value of r found
from truncation error analysis.

The analysis can be carried out by hand, by symbolic software, and also numerically.
All three methods will be illustrated. From examining the symbolic expressions of the
truncation error we can add correction terms to the differential equations in order to increase
the numerical accuracy.

In general, the term truncation error refers to the discrepancy that arises from performing a
finite number of steps to approximate a process with infinitely many steps. The term is used
in a number of contexts, including truncation of infinite series, finite precision arithmetic, finite
differences, and differential equations. We shall be concerned with computing truncation errors
arising in finite difference formulas and in finite difference discretizations of differential equations.

1 Overview of truncation error analysis
1.1 Abstract problem setting
Consider an abstract differential equation

L(u) = 0,
where L(u) is some formula involving the unknown u and its derivatives. One example is
L(u) = u′(t) + a(t)u(t)− b(t), where a and b are contants or functions of time. We can discretize
the differential equation and obtain a corresponding discrete model, here written as

L∆(u) = 0 .
The solution u of this equation is the numerical solution. To distinguish the numerical solution
from the exact solution of the differential equation problem, we denote the latter by ue and write
the differential equation and its discrete counterpart as

L(ue) = 0,
L∆(u) = 0 .

Initial and/or boundary conditions can usually be left out of the truncation error analysis and
are omitted in the following.

The numerical solution u is in a finite difference method computed at a collection of mesh
points. The discrete equations represented by the abstract equation L∆(u) = 0 are usually
algebraic equations involving u at some neighboring mesh points.
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1.2 Error measures
A key issue is how accurate the numerical solution is. The ultimate way of addressing this issue
would be to compute the error ue − u at the mesh points. This is usually extremely demanding.
In very simplified problem settings we may, however, manage to derive formulas for the numerical
solution u, and therefore closed form expressions for the error ue − u. Such special cases can
provide considerable insight regarding accuracy and stability, but the results are established for
special problems.

The error ue − u can be computed empirically in special cases where we know ue. Such
cases can be constructed by the method of manufactured solutions, where we choose some exact
solution ue = v and fit a source term f in the governing differential equation L(ue) = f such that
ue = v is a solution (i.e., f = L(v)). Assuming an error model of the form Chr, where h is the
discretization parameter, such as ∆t or ∆x, one can estimate the convergence rate r. This is
a widely applicable procedure, but the valididity of the results is, strictly speaking, tied to the
chosen test problems.

Another error measure is to ask to what extent the exact solution ue fits the discrete equations.
Clearly, ue is in general not a solution of L∆(u) = 0, but we can define the residual

R = L∆(ue),

and investigate how close R is to zero. A small R means intuitively that the discrete equations
are close to the differential equation, and then we are tempted to think that un must also be
close to ue(tn).

The residual R is known as the truncation error of the finite difference scheme L∆(u) = 0. It
appears that the truncation error is relatively straightforward to compute by hand or symbolic
software without specializing the differential equation and the discrete model to a special case.
The resulting R is found as a power series in the discretization parameters. The leading-order
terms in the series provide an asymptotic measure of the accuracy of the numerical solution
method (as the discretization parameters tend to zero). An advantage of truncation error analysis
compared empricial estimation of convergence rates or detailed analysis of a special problem with
a mathematical expression for the numerical solution, is that the truncation error analysis reveals
the accuracy of the various building blocks in the numerical method and how each building block
impacts the overall accuracy. The analysis can therefore be used to detect building blocks with
lower accuracy than the others.

Knowing the truncation error or other error measures is important for verification of programs
by empirically establishing convergence rates. The forthcoming text will provide many examples
on how to compute truncation errors for finite difference discretizations of ODEs and PDEs.

2 Truncation errors in finite difference formulas
The accuracy of a finite difference formula is a fundamental issue when discretizing differential
equations. We shall first go through a particular example in detail and thereafter list the
truncation error in the most common finite difference approximation formulas.

2.1 Example: The backward difference for u′(t)
Consider a backward finite difference approximation of the first-order derivative u′:

[D−t u]n = un − un−1

∆t ≈ u′(tn) . (1)
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Here, un means the value of some function u(t) at a point tn, and [D−t u]n is the discrete derivative
of u(t) at t = tn. The discrete derivative computed by a finite difference is not exactly equal to
the derivative u′(tn). The error in the approximation is

Rn = [D−t u]n − u′(tn) . (2)

The common way of calculating Rn is to

1. expand u(t) in a Taylor series around the point where the derivative is evaluated, here tn,

2. insert this Taylor series in (2), and

3. collect terms that cancel and simplify the expression.

The result is an expression for Rn in terms of a power series in ∆t. The error Rn is commonly
referred to as the truncation error of the finite difference formula.

The Taylor series formula often found in calculus books takes the form

f(x+ h) =
∞∑
i=0

1
i!
dif

dxi
(x)hi .

In our application, we expand the Taylor series around the point where the finite difference
formula approximates the derivative. The Taylor series of un at tn is simply u(tn), while the
Taylor sereis of un−1 at tn must employ the general formula,

u(tn−1) = u(t−∆t) =
∞∑
i=0

1
i!
diu

dti
(tn)(−∆t)i

= u(tn)− u′(tn)∆t+ 1
2u
′′(tn)∆t2 +O(∆t3),

where O(∆t3) means a power-series in ∆t where the lowest power is ∆t3. We assume that ∆t is
small such that ∆tp � ∆tq if p is smaller than q. The details of higher-order terms in ∆t are
therefore not of much interest. Inserting the Taylor series above in the left-hand side of1 (2) gives
rise to some algebra:

[D−t u]n − u′(tn) = u(tn)− u(tn−1)
∆t − u′(tn)

=
u(tn)− (u(tn)− u′(tn)∆t+ 1

2u
′′(tn)∆t2 +O(∆t3))

∆t − u′(tn)

= −1
2u
′′(tn)∆t+O(∆t2)),

which is, according to (2), the truncation error:

Rn = −1
2u
′′(tn)∆t+O(∆t2)) . (3)

The dominating term for small ∆t is − 1
2u
′′(tn)∆t, which is proportional to ∆t, and we say that

the truncation error is of first order in ∆t.
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2.2 Example: The forward difference for u′(t)
We can analyze the approximation error in the forward difference

u′(tn) ≈ [D+
t u]n = un+1 − un

∆t ,

by writing
Rn = [D+

t u]n − u′(tn),
and expanding un+1 in a Taylor series around tn,

u(tn+1) = u(tn) + u′(tn)∆t+ 1
2u
′′(tn)∆t2 +O(∆t3) .

The result becomes
R = 1

2u
′′(tn)∆t+O(∆t2),

showing that also the forward difference is of first order.

2.3 Example: The central difference for u′(t)
For the central difference approximation,

u′(tn) ≈ [Dtu]n, [Dtu]n = un+ 1
2 − un− 1

2

∆t ,

we write

Rn = [Dtu]n − u′(tn),
and expand u(tn+ 1

2
) and u(tn−1/2) in Taylor series around the point tn where the derivative is

evaluated. We have

u(tn+ 1
2
) =u(tn) + u′(tn)1

2∆t+ 1
2u
′′(tn)(1

2∆t)2+
1
6u
′′′(tn)(1

2∆t)3 + 1
24u

′′′′(tn)(1
2∆t)4+

1
120u

′′′′(tn)(1
2∆t)5 +O(∆t6),

u(tn−1/2) =u(tn)− u′(tn)1
2∆t+ 1

2u
′′(tn)(1

2∆t)2−

1
6u
′′′(tn)(1

2∆t)3 + 1
24u

′′′′(tn)(1
2∆t)4−

1
120u

′′′′′(tn)(1
2∆t)5 +O(∆t6) .

Now,

u(tn+ 1
2
)− u(tn−1/2) = u′(tn)∆t+ 1

24u
′′′(tn)∆t3 + 1

960u
′′′′′(tn)∆t5 +O(∆t7) .

By collecting terms in [Dtu]n − u(tn) we find the truncation error to be

Rn = 1
24u

′′′(tn)∆t2 +O(∆t4), (4)

with only even powers of ∆t. Since R ∼ ∆t2 we say the centered difference is of second order in
∆t.
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2.4 Overview of leading-order error terms in finite difference formulas
Here we list the leading-order terms of the truncation errors associated with several common
finite difference formulas for the first and second derivatives.

[Dtu]n = un+ 1
2 − un− 1

2

∆t = u′(tn) +Rn, (5)

Rn = 1
24u

′′′(tn)∆t2 +O(∆t4) (6)

[D2tu]n = un+1 − un−1

2∆t = u′(tn) +Rn, (7)

Rn = 1
6u
′′′(tn)∆t2 +O(∆t4) (8)

[D−t u]n = un − un−1

∆t = u′(tn) +Rn, (9)

Rn = −1
2u
′′(tn)∆t+O(∆t2) (10)

[D+
t u]n = un+1 − un

∆t = u′(tn) +Rn, (11)

Rn = 1
2u
′′(tn)∆t+O(∆t2) (12)

[D̄tu]n+θ = un+1 − un

∆t = u′(tn+θ) +Rn+θ, (13)

Rn+θ = 1
2(1− 2θ)u′′(tn+θ)∆t−

1
6((1− θ)3 − θ3)u′′′(tn+θ)∆t2 +O(∆t3) (14)

[D2−
t u]n = 3un − 4un−1 + un−2

2∆t = u′(tn) +Rn, (15)

Rn = −1
3u
′′′(tn)∆t2 +O(∆t3) (16)

[DtDtu]n = un+1 − 2un + un−1

∆t2 = u′′(tn) +Rn, (17)

Rn = 1
12u

′′′′(tn)∆t2 +O(∆t4) (18)

It will also be convenient to have the truncation errors for various means or averages. The
weighted arithmetic mean leads to

[ut,θ]n+θ = θun+1 + (1− θ)un = u(tn+θ) +Rn+θ, (19)

Rn+θ = 1
2u
′′(tn+θ)∆t2θ(1− θ) +O(∆t3) . (20)

The standard arithmetic mean follows from this formula when θ = 1/2. Expressed at point tn we
get

[ut]n = 1
2(un− 1

2 + un+ 1
2 ) = u(tn) +Rn, (21)

Rn = 1
8u
′′(tn)∆t2 + 1

384u
′′′′(tn)∆t4 +O(∆t6) . (22)
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The geometric mean also has an error O(∆t2):

[u2t,g]n = un−
1
2un+ 1

2 = (un)2 +Rn, (23)

Rn = −1
4u
′(tn)2∆t2 + 1

4u(tn)u′′(tn)∆t2 +O(∆t4) . (24)

The harmonic mean is also second-order accurate:

[ut,h]n = un = 2
1

un− 1
2

+ 1
un+ 1

2

+Rn+ 1
2 , (25)

Rn = −u
′(tn)2

4u(tn) ∆t2 + 1
8u
′′(tn)∆t2 . (26)

2.5 Software for computing truncation errors
We can use sympy to aid calculations with Taylor series. The derivatives can be defined as
symbols, say D3f for the 3rd derivative of some function f . A truncated Taylor series can then be
written as f + D1f*h + D2f*h**2/2. The following class takes some symbol f for the function
in question and makes a list of symbols for the derivatives. The __call__ method computes the
symbolic form of the series truncated at num_terms terms.

import sympy as sp

class TaylorSeries:
"""Class for symbolic Taylor series."""
def __init__(self, f, num_terms=4):

self.f = f
self.N = num_terms
# Introduce symbols for the derivatives
self.df = [f]
for i in range(1, self.N+1):

self.df.append(sp.Symbol(’D%d%s’ % (i, f.name)))

def __call__(self, h):
"""Return the truncated Taylor series at x+h."""
terms = self.f
for i in range(1, self.N+1):

terms += sp.Rational(1, sp.factorial(i))*self.df[i]*h**i
return terms

We may, for example, use this class to compute the truncation error of the Forward Euler
finite difference formula:

>>> from truncation_errors import TaylorSeries
>>> from sympy import *
>>> u, dt = symbols(’u dt’)
>>> u_Taylor = TaylorSeries(u, 4)
>>> u_Taylor(dt)
D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24 + u
>>> FE = (u_Taylor(dt) - u)/dt
>>> FE
(D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24)/dt
>>> simplify(FE)
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24
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The truncation error consists of the terms after the first one (u′).
The module file trunc/truncation_errors.py1 contains another class DiffOp with symbolic

expressions for most of the truncation errors listed in the previous section. For example:
>>> from truncation_errors import DiffOp
>>> from sympy import *
>>> u = Symbol(’u’)
>>> diffop = DiffOp(u, independent_variable=’t’)
>>> diffop[’geometric_mean’]
-D1u**2*dt**2/4 - D1u*D3u*dt**4/48 + D2u**2*dt**4/64 + ...
>>> diffop[’Dtm’]
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24
>>> >>> diffop.operator_names()
[’geometric_mean’, ’harmonic_mean’, ’Dtm’, ’D2t’, ’DtDt’,
’weighted_arithmetic_mean’, ’Dtp’, ’Dt’]

The indexing of diffop applies names that correspond to the operators: Dtp for D+
t , Dtm for

D−t , Dt for Dt, D2t for D2t, DtDt for DtDt.

3 Truncation errors in exponential decay ODE
We shall now compute the truncation error of a finite difference scheme for a differential equation.
Our first problem involves the following the linear ODE modeling exponential decay,

u′(t) = −au(t) . (27)

3.1 Truncation error of the Forward Euler scheme
We begin with the Forward Euler scheme for discretizing (27):

[D+
t u = −au]n . (28)

The idea behind the truncation error computation is to insert the exact solution ue of the
differential equation problem (27) in the discrete equations (28) and find the residual that arises
because ue does not solve the discrete equations. Instead, ue solves the discrete equations with a
residual Rn:

[D+
t ue + aue = R]n . (29)

From (11)-(12) it follows that

[D+
t ue]n = u′e(tn) + 1

2u
′′
e (tn)∆t+O(∆t2),

which inserted in (29) results in

u′e(tn) + 1
2u
′′
e (tn)∆t+O(∆t2) + aue(tn) = Rn .

Now, u′e(tn) + aune = 0 since ue solves the differential equation. The remaining terms constitute
the residual:

Rn = 1
2u
′′
e (tn)∆t+O(∆t2) . (30)

This is the truncation error Rn of the Forward Euler scheme.
1http://tinyurl.com/jvzzcfn/trunc/truncation_errors.py
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Because Rn is proportional to ∆t, we say that the Forward Euler scheme is of first order in
∆t. However, the truncation error is just one error measure, and it is not equal to the true error
une − un. For this simple model problem we can compute a range of different error measures for
the Forward Euler scheme, including the true error une − un, and all of them have dominating
terms proportional to ∆t.

3.2 Truncation error of the Crank-Nicolson scheme
For the Crank-Nicolson scheme,

[Dtu = −au]n+ 1
2 , (31)

we compute the truncation error by inserting the exact solution of the ODE and adding a residual
R,

[Dtue + aue
t = R]n+ 1

2 . (32)
The term [Dtue]n+ 1

2 is easily computed from (5)-(6) by replacing n with n+ 1
2 in the formula,

[Dtue]n+ 1
2 = u′(tn+ 1

2
) + 1

24u
′′′
e (tn+ 1

2
)∆t2 +O(∆t4) .

The arithmetic mean is related to u(tn+ 1
2
) by (21)-(22) so

[aue
t]n+ 1

2 = u(tn+ 1
2
) + 1

8u
′′(tn)∆t2 + +O(∆t4) .

Inserting these expressions in (32) and observing that u′e(tn+ 1
2
) +au

n+ 1
2e = 0, because ue(t) solves

the ODE u′(t) = −au(t) at any point t, we find that

Rn+ 1
2 =

(
1
24u

′′′
e (tn+ 1

2
) + 1

8u
′′(tn)

)
∆t2 +O(∆t4) (33)

Here, the truncation error is of second order because the leading term in R is proportional to ∆t2.
At this point it is wise to redo some of the computations above to establish the truncation

error of the Backward Euler scheme, see Exercise 4.

3.3 Truncation error of the θ-rule
We may also compute the truncation error of the θ-rule,

[D̄tu = −aut,θ]n+θ .

Our computational task is to find Rn+θ in

[D̄tue + aue
t,θ = R]n+θ .

From (13)-(14) and (19)-(20) we get expressions for the terms with ue. Using that u′e(tn+θ) +
aue(tn+θ) = 0, we end up with

Rn+θ =(1
2 − θ)u

′′
e (tn+θ)∆t+ 1

2θ(1− θ)u
′′
e (tn+θ)∆t2+

1
2(θ2 − θ + 3)u′′′e (tn+θ)∆t2 +O(∆t3) (34)

For θ = 1/2 the first-order term vanishes and the scheme is of second order, while for θ 6= 1/2 we
only have a first-order scheme.
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3.4 Using symbolic software
The previously mentioned truncation_error module can be used to automate the Taylor series
expansions and the process of collecting terms. Here is an example on possible use:

from truncation_error import DiffOp
from sympy import *

def decay():
u, a = symbols(’u a’)
diffop = DiffOp(u, independent_variable=’t’,

num_terms_Taylor_series=3)
D1u = diffop.D(1) # symbol for du/dt
ODE = D1u + a*u # define ODE

# Define schemes
FE = diffop[’Dtp’] + a*u
CN = diffop[’Dt’ ] + a*u
BE = diffop[’Dtm’] + a*u
theta = diffop[’barDt’] + a*diffop[’weighted_arithmetic_mean’]
theta = sm.simplify(sm.expand(theta))
# Residuals (truncation errors)
R = {’FE’: FE-ODE, ’BE’: BE-ODE, ’CN’: CN-ODE,

’theta’: theta-ODE}
return R

The returned dictionary becomes

decay: {
’BE’: D2u*dt/2 + D3u*dt**2/6,
’FE’: -D2u*dt/2 + D3u*dt**2/6,
’CN’: D3u*dt**2/24,
’theta’: -D2u*a*dt**2*theta**2/2 + D2u*a*dt**2*theta/2 -

D2u*dt*theta + D2u*dt/2 + D3u*a*dt**3*theta**3/3 -
D3u*a*dt**3*theta**2/2 + D3u*a*dt**3*theta/6 +
D3u*dt**2*theta**2/2 - D3u*dt**2*theta/2 + D3u*dt**2/6,

}

The results are in correspondence with our hand-derived expressions.

3.5 Empirical verification of the truncation error
The task of this section is to demonstrate how we can compute the truncation error R numerically.
For example, the truncation error of the Forward Euler scheme applied to the decay ODE
u′ = −ua is

Rn = [D+
t ue + aue]n . (35)

If we happen to know the exact solution ue(t), we can easily evaluate Rn from the above formula.
To estimate how R varies with the discretization parameter ∆t, which has been our focus

in the previous mathematical derivations, we first make the assumption that R = C∆tr for
appropriate constants C and r and small enough ∆t. The rate r can be estimated from a series of
experiments where ∆t is varied. Suppose we have m experiments (∆ti, Ri), i = 0, . . . ,m− 1. For
two consecutive experiments (∆ti−1, Ri−1) and (∆ti, Ri), a corresponding ri−1 can be estimated
by

ri−1 = ln(Ri−1/Ri)
ln(∆ti−1/∆ti)

, (36)
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for i = 1, . . . ,m − 1. Note that the truncation error Ri varies through the mesh, so (36) is
to be applied pointwise. A complicating issue is that Ri and Ri−1 refer to different meshes.
Pointwise comparisons of the truncation error at a certain point in all meshes therefore requires
any computed R to be restricted to the coarsest mesh and that all finer meshes contain all the
points in the coarsest mesh. Suppose we have N0 intervals in the coarsest mesh. Inserting a
superscript n in (36), where n counts mesh points in the coarsest mesh, n = 0, . . . , N0, leads to
the formula

rni−1 =
ln(Rni−1/R

n
i )

ln(∆ti−1/∆ti)
. (37)

Experiments are most conveniently defined by N0 and a number of refinements m. Suppose each
mesh have twice as many cells Ni as the previous one:

Ni = 2iN0, ∆ti = TN−1
i ,

where [0, T ] is the total time interval for the computations. Suppose the computed Ri values on
the mesh with Ni intervals are stored in an array R[i] (R being a list of arrays, one for each
mesh). Restricting this Ri function to the coarsest mesh means extracting every Ni/N0 point
and is done as follows:

stride = N[i]/N_0
R[i] = R[i][::stride]

The quantity R[i][n] now corresponds to Rni .
In addition to estimating r for the pointwise values of R = C∆tr, we may also consider an

integrated quantity on mesh i,

RI,i =
(

∆ti
Ni∑
n=0

(Rni )2

) 1
2

≈
∫ T

0
Ri(t)dt . (38)

The sequence RI,i, i = 0, . . . ,m− 1, is also expected to behave as C∆tr, with the same r as for
the pointwise quantity R, as ∆t→ 0.

The function below computes the Ri and RI,i quantities, plots them and compares with the
theoretically derived truncation error (R_a) if available.

import numpy as np
import scitools.std as plt

def estimate(truncation_error, T, N_0, m, makeplot=True):
"""
Compute the truncation error in a problem with one independent
variable, using m meshes, and estimate the convergence
rate of the truncation error.

The user-supplied function truncation_error(dt, N) computes
the truncation error on a uniform mesh with N intervals of
length dt::

R, t, R_a = truncation_error(dt, N)

where R holds the truncation error at points in the array t,
and R_a are the corresponding theoretical truncation error
values (None if not available).
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The truncation_error function is run on a series of meshes
with 2**i*N_0 intervals, i=0,1,...,m-1.
The values of R and R_a are restricted to the coarsest mesh.
and based on these data, the convergence rate of R (pointwise)
and time-integrated R can be estimated empirically.
"""
N = [2**i*N_0 for i in range(m)]

R_I = np.zeros(m) # time-integrated R values on various meshes
R = [None]*m # time series of R restricted to coarsest mesh
R_a = [None]*m # time series of R_a restricted to coarsest mesh
dt = np.zeros(m)
legends_R = []; legends_R_a = [] # all legends of curves

for i in range(m):
dt[i] = T/float(N[i])
R[i], t, R_a[i] = truncation_error(dt[i], N[i])

R_I[i] = np.sqrt(dt[i]*np.sum(R[i]**2))

if i == 0:
t_coarse = t # the coarsest mesh

stride = N[i]/N_0
R[i] = R[i][::stride] # restrict to coarsest mesh
R_a[i] = R_a[i][::stride]

if makeplot:
plt.figure(1)
plt.plot(t_coarse, R[i], log=’y’)
legends_R.append(’N=%d’ % N[i])
plt.hold(’on’)

plt.figure(2)
plt.plot(t_coarse, R_a[i] - R[i], log=’y’)
plt.hold(’on’)
legends_R_a.append(’N=%d’ % N[i])

if makeplot:
plt.figure(1)
plt.xlabel(’time’)
plt.ylabel(’pointwise truncation error’)
plt.legend(legends_R)
plt.savefig(’R_series.png’)
plt.savefig(’R_series.pdf’)
plt.figure(2)
plt.xlabel(’time’)
plt.ylabel(’pointwise error in estimated truncation error’)
plt.legend(legends_R_a)
plt.savefig(’R_error.png’)
plt.savefig(’R_error.pdf’)

# Convergence rates
r_R_I = convergence_rates(dt, R_I)
print ’R integrated in time; r:’,
print ’ ’.join([’%.1f’ % r for r in r_R_I])
R = np.array(R) # two-dim. numpy array
r_R = [convergence_rates(dt, R[:,n])[-1]

for n in range(len(t_coarse))]

The first makeplot block demonstrates how to build up two figures in parallel, using
plt.figure(i) to create and switch to figure number i. Figure numbers start at 1. A logarith-
mic scale is used on the y axis since we expect that R as a function of time (or mesh points) is
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exponential. The reason is that the theoretical estimate (30) contains u′′e , which for the present
model goes like e−at. Taking the logarithm makes a straight line.

The code follows closely the previously stated mathematical formulas, but the statements
for computing the convergence rates might deserve an explanation. The generic help function
convergence_rate(h, E) computes and returns ri−1, i = 1, . . . ,m− 1 from (37), given ∆ti in h
and Rni in E:

def convergence_rates(h, E):
from math import log
r = [log(E[i]/E[i-1])/log(h[i]/h[i-1])

for i in range(1, len(h))]
return r

Calling r_R_I = convergence_rates(dt, R_I) computes the sequence of rates r0, r1, . . . , rm−2
for the model RI ∼ ∆tr, while the statements

R = np.array(R) # two-dim. numpy array
r_R = [convergence_rates(dt, R[:,n])[-1]

for n in range(len(t_coarse))]

compute the final rate rm−2 for Rn ∼ ∆tr at each mesh point tn in the coarsest mesh. This
latter computation deserves more explanation. Since R[i][n] holds the estimated truncation
error Rni on mesh i, at point tn in the coarsest mesh, R[:,n] picks out the sequence Rni for
i = 0, . . . ,m − 1. The convergence_rate function computes the rates at tn, and by indexing
[-1] on the returned array from convergence_rate, we pick the rate rm−2, which we believe is
the best estimation since it is based on the two finest meshes.

The estimate function is available in a module trunc_empir.py2. Let us apply this function to
estimate the truncation error of the Forward Euler scheme. We need a function decay_FE(dt, N)
that can compute (35) at the points in a mesh with time step dt and N intervals:

import numpy as np
import trunc_empir

def decay_FE(dt, N):
dt = float(dt)
t = np.linspace(0, N*dt, N+1)
u_e = I*np.exp(-a*t) # exact solution, I and a are global
u = u_e # naming convention when writing up the scheme
R = np.zeros(N)

for n in range(0, N):
R[n] = (u[n+1] - u[n])/dt + a*u[n]

# Theoretical expression for the trunction error
R_a = 0.5*I*(-a)**2*np.exp(-a*t)*dt

return R, t[:-1], R_a[:-1]

if __name__ == ’__main__’:
I = 1; a = 2 # global variables needed in decay_FE
trunc_empir.estimate(decay_FE, T=2.5, N_0=6, m=4, makeplot=True)

The estimated rates for the integrated truncation error RI become 1.1, 1.0, and 1.0 for this
sequence of four meshes. All the rates for Rn, computed as r_R, are also very close to 1 at all
mesh points. The agreement between the theoretical formula (30) and the computed quantity

2http://tinyurl.com/jvzzcfn/trunc/trunc_empir.py
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(ref(35)) is very good, as illustrated in Figures 1 and 2. The program trunc_decay_FE.py3 was
used to perform the simulations and it can easily be modified to test other schemes (see also
Exericse 5).

Figure 1: Estimated truncation error at mesh points for different meshes.

3.6 Increasing the accuracy by adding correction terms
Now we ask the question: can we add terms in the differential equation that can help increase
the order of the truncation error? To be precise, let us revisit the Forward Euler scheme for
u′ = −au, insert the exact solution ue, include a residual R, but also include new terms C:

[D+
t ue + aue = C +R]n . (39)

Inserting the Taylor expansions for [D+
t ue]n and keeping terms up to 3rd order in ∆t gives the

equation

1
2u
′′
e (tn)∆t− 1

6u
′′′
e (tn)∆t2 + 1

24u
′′′′
e (tn)∆t3 +O(∆t4) = Cn +Rn .

Can we find Cn such that Rn is O(∆t2)? Yes, by setting

Cn = 1
2u
′′
e (tn)∆t,

3http://tinyurl.com/jvzzcfn/trunc/trunc_decay_FE.py
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Figure 2: Difference between theoretical and estimated truncation error at mesh points for
different meshes.

we manage to cancel the first-order term and

Rn = 1
6u
′′′
e (tn)∆t2 +O(∆t3) .

The correction term Cn introduces 1
2∆tu′′ in the discrete equation, and we have to get rid

of the derivative u′′. One idea is to approximate u′′ by a second-order accurate finite difference
formula, u′′ ≈ (un+1 − 2un + un−1)/∆t2, but this introduces an additional time level with un−1.
Another approach is to rewrite u′′ in terms of u′ or u using the ODE:

u′ = −au ⇒ u′′ = −au′ = −a(−au) = a2u .

This means that we can simply set Cn = 1
2a

2∆tun. We can then either solve the discrete equation

[D+
t u = −au+ 1

2a
2∆tu]n, (40)

or we can equivalently discretize the perturbed ODE

u′ = −âu, â = a(1− 1
2a∆t), (41)

by a Forward Euler method. That is, we replace the original coefficient a by the perturbed
coefficient â. Observe that â→ a as ∆t→ 0.

The Forward Euler method applied to (41) results in
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[D+
t u = −a(1− 1

2a∆t)u]n .

We can control our computations and verify that the truncation error of the scheme above is
indeed O(∆t2).

Another way of revealing the fact that the perturbed ODE leads to a more accurate solution
is to look at the amplification factor. Our scheme can be written as

un+1 = Aun, A = 1− â∆t = 1− p+ 1
2p

2, p = a∆t,

The amplification factor A as a function of p = a∆t is seen to be the first three terms of the
Taylor series for the exact amplification factor e−p. The Forward Euler scheme for u = −au gives
only the first two terms 1− p of the Taylor series for e−p. That is, using â increases the order of
the accuracy in the amplification factor.

Instead of replacing u′′ by a2u, we use the relation u′′ = −au′ and add a term − 1
2a∆tu′ in

the ODE:

u′ = −au− 1
2a∆tu′ ⇒

(
1 + 1

2a∆t
)
u′ = −au .

Using a Forward Euler method results in(
1 + 1

2a∆t
)
un+1 − un

∆t = −aun,

which after some algebra can be written as

un+1 =
1− 1

2a∆t
1 + 1

2a∆t
un .

This is the same formula as the one arising from a Crank-Nicolson scheme applied to u′ = −au!
It now recommended to do Exercise 6 and repeat the above steps to see what kind of correction
term is needed in the Backward Euler scheme to make it second order.

The Crank-Nicolson scheme is a bit more challenging to analyze, but the ideas and techniques
are the same. The discrete equation reads

[Dtu = −au]n+ 1
2 ,

and the truncation error is defined through

[Dtue + aue
t = C +R]n+ 1

2 ,

where we have added a correction term. We need to Taylor expand both the discrete derivative
and the arithmetic mean with aid of (5)-(6) and (21)-(22), respectively. The result is

1
24u

′′′
e (tn+ 1

2
)∆t2 +O(∆t4) + a

8u
′′
e (tn+ 1

2
)∆t2 +O(∆t4) = Cn+ 1

2 +Rn+ 1
2 .

The goal now is to make Cn+ 1
2 cancel the ∆t2 terms:

Cn+ 1
2 = 1

24u
′′′
e (tn+ 1

2
)∆t2 + a

8u
′′
e (tn)∆t2 .

Using u′ = −au, we have that u′′ = a2u, and we find that u′′′ = −a3u. We can therefore solve
the perturbed ODE problem
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u′ = −âu, â = a(1− 1
12a

2∆t2),

by the Crank-Nicolson scheme and obtain a method that is of fourth order in ∆t. Exercise 7
encourages you to implement these correction terms and calculate empirical convergence rates to
verify that higher-order accuracy is indeed obtained in real computations.

3.7 Extension to variable coefficients
Let us address the decay ODE with variable coefficients,

u′(t) = −a(t)u(t) + b(t),

discretized by the Forward Euler scheme,

[D+
t u = −au+ b]n . (42)

The truncation error R is as always found by inserting the exact solution ue(t) in the discrete
scheme:

[D+
t ue + aue − b = R]n . (43)

Using (11)-(12),

u′e(tn)− 1
2u
′′
e (tn)∆t+O(∆t2) + a(tn)ue(tn)− b(tn) = Rn .

Because of the ODE,

u′e(tn) + a(tn)ue(tn)− b(tn) = 0,

so we are left with the result

Rn = −1
2u
′′
e (tn)∆t+O(∆t2) . (44)

We see that the variable coefficients do not pose any additional difficulties in this case. Exercise 8
takes the analysis above one step further to the Crank-Nicolson scheme.

3.8 Exact solutions of the finite difference equations
Having a mathematical expression for the numerical solution is very valuable in program veri-
fication since we then know the exact numbers that the program should produce. Looking at
the various formulas for the truncation errors in (5)-(6) and (25)-(26) in Section 2.4, we see
that all but two of the R expressions contains a second or higher order derivative of ue. The
exceptions are the geometric and harmonic means where the truncation error involves u′e and
even ue in case of the harmonic mean. So, apart from these two means, choosing ue to be a
linear function of t, ue = ct+ d for constants c and d, will make the truncation error vanish since
u′′e = 0. Consqeuently, the truncation error of a finite difference scheme will be zero since the
various approximations used will all be exact. This means that the linear solution is an exact
solution of the discrete equations.

In a particular differential equation problem, the reasoning above can be used to determine if
we expect a linear ue to fulfill the discrete equations. To actually prove that this is true, we can
either compute the truncation error and see that it vanishes, or we can simply insert ue(t) = ct+d
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in the scheme and see that it fulfills the equations. The latter method is usually the simplest. It
will often be necessary to add some source term to the ODE in order to allow a linear solution.

Many ODEs are discretized by centered differences. From Section 2.4 we see that all the
centered difference formulas have truncation errors involving u′′′e or higher-order derivatives. A
quadratic solution, e.g., ue(t) = t2 + ct+ d, will then make the truncation errors vanish. This
observation can be used to test if a quadratic solution will fulfill the discrete equations. Note that
a quadratic solution will not obey the equations for a Crank-Nicolson scheme for u′ = −au+ b
because the approximation applies an arithmetic mean, which involves a truncation error with u′′e .

3.9 Computing truncation errors in nonlinear problems
The general nonlinear ODE

u′ = f(u, t), (45)
can be solved by a Crank-Nicolson scheme

[Dtu
′ = f

t]n+ 1
2 . (46)

The truncation error is as always defined as the residual arising when inserting the exact solution
ue in the scheme:

[Dtu
′
e − f

t = R]n+ 1
2 . (47)

Using (21)-(22) for f t results in

[f t]n+ 1
2 = 1

2(f(une , tn) + f(un+1
e , tn+1))

= f(un+ 1
2e , tn+ 1

2
) + 1

8u
′′
e (tn+ 1

2
)∆t2 +O(∆t4) .

With (5)-(6) the discrete equations (47) lead to

u′e(tn+ 1
2
) + 1

24u
′′′
e (tn+ 1

2
)∆t2 − f(un+ 1

2e , tn+ 1
2
)− 1

8u
′′(tn+ 1

2
)∆t2 +O(∆t4) = Rn+ 1

2 .

Since u′e(tn+ 1
2
)− f(un+ 1

2e , tn+ 1
2
) = 0, the truncation error becomes

Rn+ 1
2 = ( 1

24u
′′′
e (tn+ 1

2
)− 1

8u
′′(tn+ 1

2
))∆t2 .

The computational techniques worked well even for this nonlinear ODE.

4 Truncation errors in vibration ODEs
4.1 Linear model without damping
The next example on computing the truncation error involves the following ODE for vibration
problems:

u′′(t) + ω2u(t) = 0 . (48)
Here, ω is a given constant.
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The truncation error of a centered finite difference scheme. Using a standard, second-
ordered, central difference for the second-order derivative time, we have the scheme

[DtDtu+ ω2u = 0]n . (49)

Inserting the exact solution ue in this equation and adding a residual R so that ue can fulfill
the equation results in

[DtDtue + ω2ue = R]n . (50)

To calculate the truncation error Rn, we use (17)-(18), i.e.,

[DtDtue]n = u′′e (tn) + 1
12u

′′′′
e (tn)∆t2,

and the fact that u′′e (t) + ω2ue(t) = 0. The result is

Rn = 1
12u

′′′′
e (tn)∆t2 +O(∆t4) . (51)

The truncation error of approximating u′(0). The initial conditions for (48) are u(0) = I
and u′(0) = V . The latter involves a finite difference approximation. The standard choice

[D2tu = V ]0,

where u−1 is eliminated with the aid of the discretized ODE for n = 0, involves a centered
difference with an O(∆t2) truncation error given by (7)-(8). The simpler choice

[D+
t u = V ]0,

is based on a forward difference with a truncation error O(∆t). A central question is if this initial
error will impact the order of the scheme throughout the simulation. Exercise 11 asks you to
quickly perform an experiment to investigate this question.

Truncation error of the equation for the first step. We have shown that the truncation
error of the difference used to approximate the initial condition u′(0) = 0 is O(∆t2), but can
also investigate the difference equation used for the first step. In a truncation error setting,
the right way to view this equation is not to use the initial condition [D2tu = V ]0 to express
u−1 = u1 − 2∆tV in order to eliminate u−1 from the discretized differential equation, but the
other way around: the fundamental equation is the discretized initial condition [D2tu = V ]0 and
we use the discretized ODE [DtDt +ω2u = 0]0 to eliminate u−1 in the disretized initial condition.
From [DtDt + ω2u = 0]0 we have

u−1 = 2u0 − u1 −∆t2ω2u0,

which inserted in [D2tu = V ]0 gives

u1 − u0

∆t + 1
2ω

2∆tu0 = V . (52)

The first term can be recognized as a forward difference such that the equation can be written in
operator notation as

[D+
t u+ 1

2ω
2∆tu = V ]0 .
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The truncation error is defined as

[D+
t ue + 1

2ω
2∆tue − V = R]0 .

Using (11)-(12) with one more term in the Taylor series, we get that

u′e(0) + 1
2u
′′
e (0)∆t+ 1

6u
′′′
e (0)∆t2 +O(∆t3) + 1

2ω
2∆tue(0)− V = Rn .

Now, u′e(0) = V and u′′e (0) = −ω2ue(0) so we get

Rn = 1
6u
′′′
e (0)∆t2 +O(∆t3) .

There is another way of analyzing the discrete initial condition, because eliminating u−1 via
the discretized ODE can be expressed as

[D2tu+ ∆t(DtDtu− ω2u) = V ]0 . (53)

Writing out (53) shows that the equation is equivalent to (52). The truncation error is defined by

[D2tue + ∆t(DtDtue − ω2ue) = V +R]0 .

Replacing the difference via (7)-(8) and (17)-(18), as well as using u′e(0) = V and u′′e (0) =
−ω2ue(0), gives

Rn = 1
6u
′′′(0)∆t2 +O(∆t3) .

Computing correction terms. The idea of using correction terms to increase the order of
Rn can be applied as described in Section 3.6. We look at

[DtDtue + ω2ue = C +R]n,

and observe that Cn must be chosen to cancel the ∆t2 term in Rn. That is,

Cn = 1
12u

′′′′
e (tn)∆t2 .

To get rid of the 4th-order derivative we can use the differential equation: u′′ = −ω2u, which
implies u′′′′ = ω4u. Adding the correction term to the ODE results in

u′′ + ω2(1− 1
12ω

2∆t2)u = 0 . (54)

Solving this equation by the standard scheme

[DtDtu+ ω2(1− 1
12ω

2∆t2)u = 0]n,

will result in a scheme with trunction error O(∆t4).
We can use another set of arguments to justify that (54) leads to a higher-order method.

Mathematical analysis of the scheme (49) reveals that the numerical frequency ω̃ is (approximately
as ∆t→ 0)

ω̃ = ω(1 + 1
24ω

2∆t2) .

22



One can therefore attempt to replace ω in the ODE by a slightly smaller ω since the numerics
will make it larger:

[u′′ + (ω(1− 1
24ω

2∆t2))2u = 0 .

Expanding the squared term and omitting the higher-order term ∆t4 gives exactly the ODE (54).
Experiments show that un is computed to 4th order in ∆t.

4.2 Model with damping and nonlinearity
The model (48) can be extended to include damping βu′, a nonlinear restoring (spring) force
s(u), and some known excitation force F (t):

mu′′ + βu′ + s(u) = F (t) . (55)

The coefficient m usually represents the mass of the system. This governing equation can by
discretized by centered differences:

[mDtDtu+ βD2tu+ s(u) = F ]n . (56)

The exact solution ue fulfills the discrete equations with a residual term:

[mDtDtue + βD2tue + s(ue) = F +R]n . (57)

Using (17)-(18) and (7)-(8) we get

[mDtDtue + βD2tue]n = mu′′e (tn) + βu′e(tn)+(
m

12u
′′′′
e (tn) + β

6 u
′′′
e (tn)

)
∆t2 +O(∆t4)

Combining this with the previous equation, we can collect the terms

mu′′e (tn) + βu′e(tn) + ω2ue(tn) + s(ue(tn))− Fn,

and set this sum to zero because ue solves the differential equation. We are left with the truncation
error

Rn =
(
m

12u
′′′′
e (tn) + β

6 u
′′′
e (tn)

)
∆t2 +O(∆t4), (58)

so the scheme is of second order.
According to (58), we can add correction terms

Cn =
(
m

12u
′′′′
e (tn) + β

6 u
′′′
e (tn)

)
∆t2,

to the right-hand side of the ODE to obtain a fourth-order scheme. However, expressing u′′′′ and
u′′′ in terms of lower-order derivatives is now harder because the differential equation is more
complicated:
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u′′′ = 1
m

(F ′ − βu′′ − s′(u)u′),

u′′′′ = 1
m

(F ′′ − βu′′′ − s′′(u)(u′)2 − s′(u)u′′),

= 1
m

(F ′′ − β 1
m

(F ′ − βu′′ − s′(u)u′)− s′′(u)(u′)2 − s′(u)u′′) .

It is not impossible to discretize the resulting modified ODE, but it is up to debate whether
correction terms are feasible and the way to go. Computing with a smaller ∆t is usually always
possible in these problems to achieve the desired accuracy.

4.3 Extension to quadratic damping
Instead of the linear damping term βu′ in (55) we now consider quadratic damping β|u′|u′:

mu′′ + β|u′|u′ + s(u) = F (t) . (59)

A centered difference for u′ gives rise to a nonlinearity, which can be linearized using a geometric
mean: [|u′|u′]n ≈ |[u′]n− 1

2 |[u′]n+ 1
2 . The resulting scheme becomes

[mDtDtu]n + β|[Dtu]n− 1
2 |[Dtu]n+ 1

2 + s(un) = Fn . (60)

The truncation error is defined through

[mDtDtue]n + β|[Dtue]n− 1
2 |[Dtue]n+ 1

2 + s(une )− Fn = Rn . (61)

We start with expressing the truncation error of the geometric mean. According to (23)-(24),

|[Dtue]n− 1
2 |[Dtue]n+ 1

2 = [|Dtue|Dtue]n − 1
4u
′(tn)2∆t2 + 1

4u(tn)u′′(tn)∆t2 +O(∆t4) .

Using (5)-(6) for the Dtue factors results in

[|Dtue|Dtue]n = |u′e + 1
24u

′′′
e (tn)∆t2 +O(∆t4)|(u′e + 1

24u
′′′
e (tn)∆t2 +O(∆t4))

We can remove the absolute value since it essentially gives a factor 1 or -1 only. Calculating the
product, we have the leading-order terms

[DtueDtue]n = (u′e(tn))2 + 1
12ue(tn)u′′′e (tn)∆t2 +O(∆t4) .

With

m[DtDtue]n = mu′′e (tn) + m

12u
′′′′
e (tn)∆t2 +O(∆t4),

and using the differential equation on the form mu′′ + β(u′)2 + s(u) = F , we end up with

Rn = (m12u
′′′′
e (tn) + β

12ue(tn)u′′′e (tn))∆t2 +O(∆t4) .

This result demonstrates that we have second-order accuracy also with quadratic damping. The
key elements that lead to the second-order accuracy is that the difference approximations are
O(∆t2) and the geometric mean approximation is also of O(∆t2).
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4.4 The general model formulated as first-order ODEs
The second-order model (59) can be formulated as a first-order system,

u′ = v, (62)

v′ = 1
m

(F (t)− β|v|v − s(u)) . (63)

The system (62)-(62) can be solved either by a forward-backward scheme or a centered scheme
on a staggered mesh.

The forward-backward scheme. The discretization is based on the idea of stepping (62)
forward in time and then using a backward difference in (63) with the recently computed (and
therefore known) u:

[D+
t u = v]n, (64)

[D−t v = 1
m

(F (t)− β|v|v − s(u))]n+1 . (65)

The term |v|v gives rise to a nonlinearity |vn+1|vn+1, which can be linearized as |vn|vn+1:

[D+
t u = v]n, (66)

[D−t v]n+1 = 1
m

(F (tn+1)− β|vn|vn+1 − s(un+1)) . (67)

Each ODE will have a truncation error when inserting the exact solutions ue and ve in
(64)-(65):

[D+
t ue = ve +Ru]n, (68)

[D−t ve]n+1 = 1
m

(F (tn+1)− β|ve(tn)|ve(tn+1)− s(ue(tn+1))) +Rn+1
v . (69)

Application of (11)-(12) and (9)-(10) in (68) and (69), respectively, gives

u′e(tn) + 1
2u
′′
e (tn)∆t+O(∆t2) = ve(tn) +Rnu, (70)

v′e(tn+1)− 1
2v
′′
e (tn+1)∆t+O(∆t2) = 1

m
(F (tn+1)− β|ve(tn)|ve(tn+1)+

s(ue(tn+1)) +Rnv . (71)

Since u′e = ve, (70) gives

Rnu = 1
2u
′′
e (tn)∆t+O(∆t2) .

In (71) we can collect the terms that constitute the ODE, but the damping term has the wrong
form. Let us drop the absolute value in the damping term for simplicity. Adding a substracting
the right form vn+1vn+1 helps:
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v′e(tn+1)− 1
m

(F (tn+1)− βve(tn+1)ve(tn+1) + s(ue(tn+1))+

(βve(tn)ve(tn+1)− βve(tn+1)ve(tn+1))),

which reduces to

β

m
ve(tn+1(ve(tn)− ve(tn+1)) = β

m
ve(tn+1[D−t ve]n+1∆t

= β

m
ve(tn+1(v′e(tn+1)∆t+−1

2v
′′′
e (tn+1)∆t+O(∆t3)) .

We end with Rnu and Rn+1
v as O(∆t), simply because all the building blocks in the schemes

(the forward and backward differences and the linearization trick) are only first-order accurate.
However, this analysis is misleading: the building blocks play together in a way that makes
the scheme second-order accurate. This is shown by considering an alternative, yet equivalent,
formulation of the above scheme.

A centered scheme on a staggered mesh. We now introduce a staggered mesh where we
seek u at mesh points tn and v at points tn+ 1

2
in between the u points. The staggered mesh

makes it easy to formulate centered differences in the system (62)-(62):

[Dtu = v]n− 1
2 , (72)

[Dtv = 1
m

(F (t)− β|v|v − s(u))]n . (73)

The term |vn|vn causes trouble since vn is not computed, only vn− 1
2 and vn+ 1

2 . Using geometric
mean, we can express |vn|vn in terms of known quantities: |vn|vn ≈ |vn− 1

2 |vn+ 1
2 . We then have

[Dtu]n− 1
2 = vn−

1
2 , (74)

[Dtv]n = 1
m

(F (tn)− β|vn− 1
2 |vn+ 1

2 − s(un)) . (75)

The truncation error in each equation fulfills

[Dtue]n− 1
2 = ve(tn− 1

2
) +R

n− 1
2

u ,

[Dtve]n = 1
m

(F (tn)− β|ve(tn− 1
2
)|ve(tn+ 1

2
)− s(un)) +Rnv .

The truncation error of the centered differences is given by (5)-(6), and the geometric mean
approximation analysis can be taken from (23)-(24). These results lead to

u′e(tn− 1
2
) + 1

24u
′′′
e (tn− 1

2
)∆t2 +O(∆t4) = ve(tn− 1

2
) +R

n− 1
2

u ,

and
v′e(tn) = 1

m
(F (tn)− β|ve(tn)|ve(tn) +O(∆t2)− s(un)) +Rnv .
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The ODEs fulfilled by ue and ve are evident in these equations, and we achieve second-order
accuracy for the truncation error in both equations:

R
n− 1

2
u = O(∆t2), Rnv = O(∆t2) .

Comparing (74)-(75) with (66)-(67), we can hopefully realize that these schemes are equivalent
(which becomes clear when we implement both). The obvious advantage with the staggered mesh
approach is that we can all the way use second-order accurate building blocks and in this way
concince ourselves that the resulting scheme has an error of O(∆t2).

5 Truncation errors in wave equations
5.1 Linear wave equation in 1D
The standard, linear wave equation in 1D for a function u(x, t) reads

∂2u

∂t2
= c2

∂2u

∂x2 + f(x, t), x ∈ (0, L), t ∈ (0, T ], (76)

where c is the constant wave velocity of the physical medium [0, L]. The equation can also be
more compactly written as

utt = c2uxx + f, x ∈ (0, L), t ∈ (0, T ], (77)

Centered, second-order finite differences are a natural choice for discretizing the derivatives,
leading to

[DtDtu = c2DxDxu+ f ]ni . (78)

Inserting the exact solution ue(x, t) in (78) makes this function fulfill the equation if we add
the term R:

[DtDtue = c2DxDxue + f +R]ni (79)

Our purpose is to calculate the truncation error R. From (17)-(18) we have that

[DtDtue]ni = ue,tt(xi, tn) + 1
12ue,tttt(xi, tn)∆t2 +O(∆t4),

when we use a notation taking into account that ue is a function of two variables and that
derivatives must be partial derivatives. The notation ue,tt means ∂2ue/∂t2.

The same formula may also be applied to the x-derivative term:

[DxDxue]ni = ue,xx(xi, tn) + 1
12ue,xxxx(xi, tn)∆x2 +O(∆x4),

Equation (81) now becomes

ue,tt + 1
12ue,tttt(xi, tn)∆t2 = c2ue,xx + c2

1
12ue,xxxx(xi, tn)∆x2 + f(xi, tn)+

O(∆t4,∆x4) +Rni .

Because ue fulfills the partial differential equation (PDE) (77), the first, third, and fifth terms
cancel out, and we are left with
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Rni = 1
12ue,tttt(xi, tn)∆t2 − c2 1

12ue,xxxx(xi, tn)∆x2 +O(∆t4,∆x4), (80)

showing that the scheme (78) is of second order in the time and space mesh spacing.

5.2 Finding correction terms
Can we add correction terms to the PDE and increase the order of Rni in (80)? The starting
point is

[DtDtue = c2DxDxue + f + C +R]ni (81)
From the previous analysis we simply get (80) again, but now with C:

Rni + Cni = 1
12ue,tttt(xi, tn)∆t2 − c2 1

12ue,xxxx(xi, tn)∆x2 +O(∆t4,∆x4) . (82)

The idea is to let Cni cancel the ∆t2 and ∆x2 terms to make Rni = O(∆t4,∆x4):

Cni = 1
12ue,tttt(xi, tn)∆t2 − c2 1

12ue,xxxx(xi, tn)∆x2 .

Essentially, it means that we add a new term

C = 1
12
(
utttt∆t2 − c2uxxxx∆x2) ,

to the right-hand side of the PDE. We must either discretize these 4th-order derivatives directly
or rewrite them in terms of lower-order derivatives with the aid of the PDE. The latter approach
is more feasible. From the PDE we have that

∂2

∂t2
= c2

∂2

∂x2 ,

so

utttt = c2uxxtt, uxxxx = c−2uttxx .

Assuming u is smooth enough that uxxtt = uttxx, these relations lead to

C = 1
12((c2∆t2 −∆x2)uxx)tt .

A natural discretization is

Cni = 1
12((c2∆t2 −∆x2)[DxDxDtDtu]ni .

Writing out [DxDxDtDtu]ni as [DxDx(DtDtu)]ni gives

1
∆t2

(
un+1
i+1 − 2uni+1 + un−1

i+1
∆x2 − 2

un+1
i − 2uni + un−1

i

∆x2 +
un+1
i−1 − 2uni−1 + un−1

i−1
∆x2

)
Now the unknown values un+1

i+1 , u
n+1
i , and un+1

i−1 are coupled, and we must solve a tridiagonal
system to find them. This is in principle straightforward, but it results in an implicit finite
difference schemes, while we had a convenient explicit scheme without the correction terms.
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5.3 Extension to variable coefficients
Now we address the variable coefficient version of the linear 1D wave equation,

∂2u

∂t2
= ∂

∂x

(
λ(x)∂u

∂x

)
,

or written more compactly as

utt = (λux)x . (83)

The discrete counterpart to this equation, using arithmetic mean for λ and centered differences,
reads

[DtDtu = Dxλ
x
Dxu]ni . (84)

The truncation error is the residual R in the equation

[DtDtue = Dxλ
x
Dxue +R]ni . (85)

The difficulty in the present is how to compute the truncation error of the term [Dxλ
x
Dxue]ni .

We start by writing out the outer operator:

[Dxλ
x
Dxue]ni = 1

∆x

(
[λxDxue]ni+ 1

2
− [λxDxue]ni− 1

2

)
. (86)

With the aid of (5)-(6) and (21)-(22) we have

[Dxue]ni+ 1
2

= ue,x(xi+ 1
2
, tn) + 1

24ue,xxx(xi+ 1
2
, tn)∆x2 +O(∆x4),

[λx]i+ 1
2

= λ(xi+ 1
2
) + 1

8λ
′′(xi+ 1

2
)∆x2 +O(∆x4),

[λxDxue]ni+ 1
2

= (λ(xi+ 1
2
) + 1

8λ
′′(xi+ 1

2
)∆x2 +O(∆x4))×

(ue,x(xi+ 1
2
, tn) + 1

24ue,xxx(xi+ 1
2
, tn)∆x2 +O(∆x4))

= λ(xi+ 1
2
)ue,x(xi+ 1

2
, tn) + λ(xi+ 1

2
) 1
24ue,xxx(xi+ 1

2
, tn)∆x2+

ue,x(xi+ 1
2
)1
8λ
′′(xi+ 1

2
)∆x2 +O(∆x4)

= [λue,x]ni+ 1
2

+Gni+ 1
2
∆x2 +O(∆x4),

where we have introduced the short form

Gni+ 1
2

= ( 1
24ue,xxx(xi+ 1

2
, tn)λ((xi+ 1

2
) + ue,x(xi+ 1

2
, tn)1

8λ
′′(xi+ 1

2
))∆x2 .

Similarly, we find that

[λxDxue]ni− 1
2

= [λue,x]ni− 1
2

+Gni− 1
2
∆x2 +O(∆x4) .

Inserting these expressions in the outer operator (86) results in
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[Dxλ
x
Dxue]ni = 1

∆x ([λxDxue]ni+ 1
2
− [λxDxue]ni− 1

2
)

= 1
∆x ([λue,x]ni+ 1

2
+Gni+ 1

2
∆x2 − [λue,x]ni− 1

2
−Gni− 1

2
∆x2 +O(∆x4))

= [Dxλue,x]ni + [DxG]ni ∆x2 +O(∆x4) .

The reason for O(∆x4) in the remainder is that there are coefficients in front of this term, say
H∆x4, and the subtraction and division by ∆x results in [DxH]ni ∆x4.

We can now use (5)-(6) to express the Dx operator in [Dxλue,x]ni as a derivative and a
truncation error:

[Dxλue,x]ni = ∂

∂x
λ(xi)ue,x(xi, tn) + 1

24(λue,x)xxx(xi, tn)∆x2 +O(∆x4) .

Expressions like [DxG]ni ∆x2 can be treated in an identical way,

[DxG]ni ∆x2 = Gx(xi, tn)∆x2 + 1
24Gxxx(xi, tn)∆x4 +O(∆x4) .

There will be a number of terms with the ∆x2 factor. We lump these now into O(∆x2). The
result of the truncation error analysis of the spatial derivative is therefore summarized as

[Dxλ
x
Dxue]ni = ∂

∂x
λ(xi)ue,x(xi, tn) +O(∆x2) .

After having treated the [DtDtue]ni term as well, we achieve

Rni = O(∆x2) + 1
12ue,tttt(xi, tn)∆t2 .

The main conclusion is that the scheme is of second-order in time and space also in this variable
coefficient case. The key ingredients for second order are the centered differences and the
arithmetic mean for λ: all those building blocks feature second-order accuracy.

5.4 1D wave equation on a staggered mesh
5.5 Linear wave equation in 2D/3D
The two-dimensional extension of (76) takes the form

∂2u

∂t2
= c2

(
∂2u

∂x2 + ∂2u

∂y2

)
+ f(x, y, t), (x, y) ∈ (0, L)× (0, H), t ∈ (0, T ], (87)

where now c(x, y) is the constant wave velocity of the physical medium [0, L] × [0, H]. In the
compact notation, the PDE (87) can be written

utt = c2(uxx + uyy) + f(x, y, t), (x, y) ∈ (0, L)× (0, H), t ∈ (0, T ], (88)

in 2D, while the 3D version reads

utt = c2(uxx + uyy + uzz) + f(x, y, z, t), (89)

for (x, y, z) ∈ (0, L)× (0, H)× (0, B) and t ∈ (0, T ].
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Approximating the second-order derivatives by the standard formulas (17)-(18) yields the
scheme

[DtDtu = c2(DxDxu+DyDyu) + f ]ni,j,k . (90)

The truncation error is found from

[DtDtue = c2(DxDxue +DyDyue) + f +R]n . (91)

The calculations from the 1D case can be repeated to the terms in the y and z directions.
Collecting terms that fulfill the PDE, we end up with

Rni,j,k = [ 1
12ue,tttt∆t2 − c2

1
12
(
ue,xxxx∆x2 + ue,yyyy∆x2 + ue,zzzz∆z2)]ni,j,k+ (92)

O(∆t4,∆x4,∆y4,∆z4) .

6 Truncation errors in diffusion equations
6.1 Linear diffusion equation in 1D
The standard, linear, 1D diffusion equation takes the form

∂u

∂t
= α

∂2u

∂x2 + f(x, t), x ∈ (0, L), t ∈ (0, T ], (93)

where α > 0 is the constant diffusion coefficient. A more compact form of the diffusion equation
is ut = αuxx + f .

The spatial derivative in the diffusion equation, αuxx, is commonly discretized as [DxDxu]ni .
The time-derivative, however, can be treated by a variety of methods.

The Forward Euler scheme in time. Let us start with the simple Forward Euler scheme:

[D+
t u = αDxDxu+ f ]n .

The truncation error arises as the residual R when inserting the exact solution ue in the discrete
equations:

[D+
t ue = αDxDxue + f +R]ni .

Now, using (11)-(12) and (17)-(18), we can transform the difference operators to derivatives:

ue,t(xi, tn) + 1
2ue,tt(tn)∆t+O(∆t2) = αue,xx(xi, tn)+

α

12ue,xxxx(xi, tn)∆x2 +O(∆x4) + f(xi, tn) +Rni .

The terms ue,t(xi, tn)−αue,xx(xi, tn)−f(xi, tn) vansih because ue solves the PDE. The truncation
error then becomes

Rni = 1
2ue,tt(tn)∆t+O(∆t2)− α

12ue,xxxx(xi, tn)∆x2 +O(∆x4) .
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The Crank-Nicolson scheme in time. The Crank-Nicolson method consists of using a
centered difference for ut and an arithmetic average of the uxx term:

[Dtu]n+ 1
2

i = α
1
2([DxDxu]ni + [DxDxu]n+1

i + f
n+ 1

2
i .

The equation for the truncation error is

[Dtue]n+ 1
2

i = α
1
2([DxDxue]ni + [DxDxue]n+1

i ) + f
n+ 1

2
i +R

n+ 1
2

i .

To find the truncation error, we start by expressing the arithmetic average in terms of values at
time tn+ 1

2
. According to (21)-(22),

1
2([DxDxue]ni + [DxDxue]n+1

i ) = [DxDxue]n+ 1
2

i + 1
8[DxDxue,tt]

n+ 1
2

i ∆t2 +O(∆t4) .

With (17)-(18) we can express the difference operator DxDxu in terms of a derivative:

[DxDxue]n+ 1
2

i = ue,xx(xi, tn+ 1
2
) + 1

12ue,xxxx(xi, tn+ 1
2
)∆x2 +O(∆x4) .

The error term from the arithmetic mean is similarly expanded,

1
8 [DxDxue,tt]

n+ 1
2

i ∆t2 = 1
8ue,ttxx(xi, tn+ 1

2
)∆t2 +O(∆t2∆x2)

The time derivative is analyzed using (5)-(6):

[Dtu]n+ 1
2

i = ue,t(xi, tn+ 1
2
) + 1

24ue,ttt(xi, tn+ 1
2
)∆t2 +O(∆t4) .

Summing up all the contributions and notifying that

ue,t(xi, tn+ 1
2
) = αue,xx(xi, tn+ 1

2
) + f(xi, tn+ 1

2
),

the truncation error is given by

R
n+ 1

2
i = 1

8ue,xx(xi, tn+ 1
2
)∆t2 + 1

12ue,xxxx(xi, tn+ 1
2
)∆x2+

1
24ue,ttt(xi, tn+ 1

2
)∆t2 + +O(∆x4) +O(∆t4) +O(∆t2∆x2)

6.2 Linear diffusion equation in 2D/3D
6.3 A nonlinear diffusion equation in 2D

7 Exercises
Exercise 1: Truncation error of a weighted mean
Derive the truncation error of the weighted mean in (19)-(20).

Hint. Expand un+1
e and une around tn+θ.

Filename: trunc_weighted_mean.pdf.
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Exercise 2: Simulate the error of a weighted mean
We consider the weighted mean

ue(tn) ≈ θun+1
e + (1− θ)une .

Choose some specific function for ue(t) and compute the error in this approximation for a sequence
of decreasing ∆t = tn+1 − tn and for θ = 0, 0.25, 0.5, 0.75, 1. Assuming that the error equals
C∆tr, for some constants C and r, compute r for the two smallest ∆t values for each choice of θ
and compare with the truncation error (19)-(20). Filename: trunc_theta_avg.py.

Exercise 3: Verify a truncation error formula
Set up a numerical experiment as explained in Section 3.5 for verifying the formulas (15)-(16).
Filename: trunc_backward_2level.py.

Exercise 4: Truncation error of the Backward Euler scheme
Derive the truncation error of the Backward Euler scheme for the decay ODE u′ = −au with
constant a. Extend the analysis to cover the variable-coefficient case u′ = −a(t)u+b(t). Filename:
trunc_decay_BE.py.

Exercise 5: Empirical estimation of truncation errors
Use the ideas and tools from Section 3.5 to estimate the rate of the truncation error of the
Backward Euler and Crank-Nicolson schemes applied to the exponential decay model u′ = −au,
u(0) = I.

Hint. In the Backward Euler scheme, the truncation error can be estimated at mesh points
n = 1, . . . , N , while the truncation error must be estimated at midpoints tn+ 1

2
, n = 0, . . . , N − 1

for the Crank-Nicolson scheme. The truncation_error(dt, N) function to be supplied to the
estimate function needs to carefully implement these details and return the right t array such
that t[i] is the time point corresponding to the quantities R[i] and R_a[i].
Filename: trunc_decay_BNCN.py.

Exercise 6: Correction term for a Backward Euler scheme
Consider the model u′ = −au, u(0) = I. Use the ideas of Section 3.6 to add a correction term
to the ODE such that the Backward Euler scheme applied to the perturbed ODE problem is of
second order in ∆t. Find the amplification factor. Filename: trunc_decay_BE_corr.pdf.

Exercise 7: Verify the effect of correction terms
The program decay_convrate.py4 solves u′ = −au, u(0) = I, by the θ-rule and computes
convergence rates. Copy this file and adjust a in the solver function such that it incorporates
correction terms. Run the program to verify that the error from the Forward and Backward Euler
schemes with perturbed a is O(∆t2), while the error arising from the Crank-Nicolson scheme
with perturbed a is O(∆t4). Filename: trunc_decay_corr_verify.py.

4http://tinyurl.com/jvzzcfn/decay/decay_convrate.py
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Exercise 8: Truncation error of the Crank-Nicolson scheme
The variable-coefficient ODE u′ = −a(t)u+ b(t) can be discretized in two different ways by the
Crank-Nicolson scheme, depending on whether we use averages for a and b or compute them at
the midpoint tn+ 1

2
:

[Dtu = −aut + b]n+ 1
2 , (94)

[Dtu = −au+ b
t]n+ 1

2 . (95)

Compute the truncation error in both cases. Filename: trunc_decay_CN_vc.pdf.

Exercise 9: Truncation error of u′ = f(u, t)
Consider the general nonlinear first-order scalar ODE

u′(t) = f(u(t), t) .

Show that the truncation error in the Forward Euler scheme,

[D+
t u = f(u, t)]n,

and in the Backward Euler scheme,

[D−t u = f(u, t)]n,

both are of first order, regardless of what f is.
Showing the order of the truncation error in the Crank-Nicolson scheme,

[Dtu = f(u, t)]n+ 1
2 ,

is somewhat more involved: Taylor expand une , un+1
e , f(une , tn), and f(un+1

e , tn+1) around tn+ 1
2
,

and use that
df

dt
= ∂f

∂u
u′ + ∂f

∂t
.

Check that the derived truncation error is consistent with previous results for the case f(u, t) =
−au. Filename: trunc_nonlinear_ODE.pdf.

Exercise 10: Truncation error of [DtDtu]n

Derive the truncation error of the finite difference approximation (17)-(18) to the second-order
derivative. Filename: trunc_d2u.pdf.

Exercise 11: Investigate the impact of approximating u′(0)
Section 4.1 describes two ways of discretizing the initial conditon u′(0) = V for a vibration
model u′′ + ω2u = 0: a centered difference [D2tu = V ]0 or a forward difference [D+

t u = V ]0.
The program vib_undamped.py5 solves u′′ + ω2u = 0 with [D2tu = 0]0 and features a function
convergence_rates for computing the order of the error in the numerical solution. Modify this
program such that it applies the forward difference [D+

t u = 0]0 and report how this simpler and
more convenient approximation impacts the overall convergence rate of the scheme. Filename:
trunc_vib_ic_fw.py.

5http://tinyurl.com/jvzzcfn/vib/vib_undamped.py
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Exercise 12: Investigate the accuracy of a simplified scheme
Consider the ODE

mu′′ + β|u′|u′ + s(u) = F (t) .

The term |u′|u′ quickly gives rise to nonlinearities and complicates the scheme. Why not simply
apply a backward difference to this term such that it only involves known values? That is, we
propose to solve

[mDtDtu+ β|D−t u|D−t u+ s(u) = F ]n .

Drop the absolute value for simplicity and find the truncation error of the scheme. Perform
numerical experiments with the scheme and compared with the one based on centered differences.
Can you illustrate the accuracy loss visually in real computations, or is the asymptotic analysis
here mainly of theoretical interest? Filename: trunc_vib_bw_damping.pdf.
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