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Purpose.

Truncation error analysis provides a widely applicable framework for ana-
lyzing the accuracy of finite difference schemes. This type of analysis can
also be used for finite element and finite volume methods if the discrete
equations are written in finite difference form. The result of the analysis
is an asymptotic estimate of the error in the scheme on the form Chr,
where h is a discretization parameter (∆t, ∆x, etc.), r is a number, known
as the convergence rate, and C is a constant, typically dependent on the
derivatives of the exact solution.

Knowing r gives understanding of the accuracy of the scheme. But
maybe even more important, a powerful verification method for computer
codes is to check that the empirically observed convergence rates in experi-
ments coincide with the theoretical value of r found from truncation error
analysis.

The analysis can be carried out by hand, by symbolic software, and also
numerically. All three methods will be illustrated. From examining the
symbolic expressions of the truncation error we can add correction terms
to the differential equations in order to increase the numerical accuracy.

In general, the term truncation error refers to the discrepancy that arises
from performing a finite number of steps to approximate a process with infinitely
many steps. The term is used in a number of contexts, including truncation
of infinite series, finite precision arithmetic, finite differences, and differential
equations. We shall be concerned with computing truncation errors arising in
finite difference formulas and in finite difference discretizations of differential
equations.
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1 Overview of truncation error analysis
1.1 Abstract problem setting
Consider an abstract differential equation

L(u) = 0,
where L(u) is some formula involving the unknown u and its derivatives. One
example is L(u) = u′(t) +a(t)u(t)− b(t), where a and b are contants or functions
of time. We can discretize the differential equation and obtain a corresponding
discrete model, here written as

L∆(u) = 0 .
The solution u of this equation is the numerical solution. To distinguish the
numerical solution from the exact solution of the differential equation problem,
we denote the latter by ue and write the differential equation and its discrete
counterpart as

L(ue) = 0,
L∆(u) = 0 .

Initial and/or boundary conditions can usually be left out of the truncation error
analysis and are omitted in the following.

The numerical solution u is in a finite difference method computed at a collec-
tion of mesh points. The discrete equations represented by the abstract equation
L∆(u) = 0 are usually algebraic equations involving u at some neighboring mesh
points.

1.2 Error measures
A key issue is how accurate the numerical solution is. The ultimate way of
addressing this issue would be to compute the error ue − u at the mesh points.
This is usually extremely demanding. In very simplified problem settings we
may, however, manage to derive formulas for the numerical solution u, and
therefore closed form expressions for the error ue − u. Such special cases can
provide considerable insight regarding accuracy and stability, but the results are
established for special problems.

The error ue−u can be computed empirically in special cases where we know
ue. Such cases can be constructed by the method of manufactured solutions,
where we choose some exact solution ue = v and fit a source term f in the
governing differential equation L(ue) = f such that ue = v is a solution (i.e., f =
L(v)). Assuming an error model of the form Chr, where h is the discretization
parameter, such as ∆t or ∆x, one can estimate the convergence rate r. This is a
widely applicable procedure, but the valididity of the results is, strictly speaking,
tied to the chosen test problems.
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Another error measure is to ask to what extent the exact solution ue fits the
discrete equations. Clearly, ue is in general not a solution of L∆(u) = 0, but we
can define the residual

R = L∆(ue),

and investigate how close R is to zero. A small R means intuitively that the
discrete equations are close to the differential equation, and then we are tempted
to think that un must also be close to ue(tn).

The residual R is known as the truncation error of the finite difference scheme
L∆(u) = 0. It appears that the truncation error is relatively straightforward
to compute by hand or symbolic software without specializing the differential
equation and the discrete model to a special case. The resulting R is found
as a power series in the discretization parameters. The leading-order terms
in the series provide an asymptotic measure of the accuracy of the numerical
solution method (as the discretization parameters tend to zero). An advantage
of truncation error analysis compared empricial estimation of convergence rates
or detailed analysis of a special problem with a mathematical expression for the
numerical solution, is that the truncation error analysis reveals the accuracy
of the various building blocks in the numerical method and how each building
block impacts the overall accuracy. The analysis can therefore be used to detect
building blocks with lower accuracy than the others.

Knowing the truncation error or other error measures is important for verifica-
tion of programs by empirically establishing convergence rates. The forthcoming
text will provide many examples on how to compute truncation errors for finite
difference discretizations of ODEs and PDEs.

2 Truncation errors in finite difference formulas
The accuracy of a finite difference formula is a fundamental issue when discretizing
differential equations. We shall first go through a particular example in detail
and thereafter list the truncation error in the most common finite difference
approximation formulas.

2.1 Example: The backward difference for u′(t)
Consider a backward finite difference approximation of the first-order derivative
u′:

[D−t u]n = un − un−1

∆t ≈ u′(tn) . (1)

Here, un means the value of some function u(t) at a point tn, and [D−t u]n is
the discrete derivative of u(t) at t = tn. The discrete derivative computed by a
finite difference is not exactly equal to the derivative u′(tn). The error in the
approximation is
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Rn = [D−t u]n − u′(tn) . (2)

The common way of calculating Rn is to

1. expand u(t) in a Taylor series around the point where the derivative is
evaluated, here tn,

2. insert this Taylor series in (2), and

3. collect terms that cancel and simplify the expression.

The result is an expression for Rn in terms of a power series in ∆t. The error Rn
is commonly referred to as the truncation error of the finite difference formula.

The Taylor series formula often found in calculus books takes the form

f(x+ h) =
∞∑

i=0

1
i!
dif

dxi
(x)hi .

In our application, we expand the Taylor series around the point where the finite
difference formula approximates the derivative. The Taylor series of un at tn
is simply u(tn), while the Taylor sereis of un−1 at tn must employ the general
formula,

u(tn−1) = u(t−∆t) =
∞∑

i=0

1
i!
diu

dti
(tn)(−∆t)i

= u(tn)− u′(tn)∆t+ 1
2u
′′(tn)∆t2 +O(∆t3),

where O(∆t3) means a power-series in ∆t where the lowest power is ∆t3. We
assume that ∆t is small such that ∆tp � ∆tq if p is smaller than q. The details
of higher-order terms in ∆t are therefore not of much interest. Inserting the
Taylor series above in the left-hand side of1 (2) gives rise to some algebra:

[D−t u]n − u′(tn) = u(tn)− u(tn−1)
∆t − u′(tn)

=
u(tn)− (u(tn)− u′(tn)∆t+ 1

2u
′′(tn)∆t2 +O(∆t3))

∆t − u′(tn)

= −1
2u
′′(tn)∆t+O(∆t2)),

which is, according to (2), the truncation error:

Rn = −1
2u
′′(tn)∆t+O(∆t2)) . (3)

The dominating term for small ∆t is − 1
2u
′′(tn)∆t, which is proportional to ∆t,

and we say that the truncation error is of first order in ∆t.
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2.2 Example: The forward difference for u′(t)
We can analyze the approximation error in the forward difference

u′(tn) ≈ [D+
t u]n = un+1 − un

∆t ,

by writing
Rn = [D+

t u]n − u′(tn),

and expanding un+1 in a Taylor series around tn,

u(tn+1) = u(tn) + u′(tn)∆t+ 1
2u
′′(tn)∆t2 +O(∆t3) .

The result becomes
R = 1

2u
′′(tn)∆t+O(∆t2),

showing that also the forward difference is of first order.

2.3 Example: The central difference for u′(t)
For the central difference approximation,

u′(tn) ≈ [Dtu]n, [Dtu]n = un+ 1
2 − un− 1

2

∆t ,

we write

Rn = [Dtu]n − u′(tn),

and expand u(tn+ 1
2
) and u(tn−1/2) in Taylor series around the point tn where

the derivative is evaluated. We have

u(tn+ 1
2
) =u(tn) + u′(tn)1

2∆t+ 1
2u
′′(tn)(1

2∆t)2+
1
6u
′′′(tn)(1

2∆t)3 + 1
24u

′′′′(tn)(1
2∆t)4+

1
120u

′′′′(tn)(1
2∆t)5 +O(∆t6),

u(tn−1/2) =u(tn)− u′(tn)1
2∆t+ 1

2u
′′(tn)(1

2∆t)2−
1
6u
′′′(tn)(1

2∆t)3 + 1
24u

′′′′(tn)(1
2∆t)4−

1
120u

′′′′′(tn)(1
2∆t)5 +O(∆t6) .

Now,

u(tn+ 1
2
)− u(tn−1/2) = u′(tn)∆t+ 1

24u
′′′(tn)∆t3 + 1

960u
′′′′′(tn)∆t5 +O(∆t7) .
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By collecting terms in [Dtu]n − u(tn) we find the truncation error to be

Rn = 1
24u

′′′(tn)∆t2 +O(∆t4), (4)

with only even powers of ∆t. Since R ∼ ∆t2 we say the centered difference is of
second order in ∆t.

2.4 Overview of leading-order error terms in finite differ-
ence formulas

Here we list the leading-order terms of the truncation errors associated with
several common finite difference formulas for the first and second derivatives.

[Dtu]n = un+ 1
2 − un− 1

2

∆t = u′(tn) +Rn, (5)

Rn = 1
24u

′′′(tn)∆t2 +O(∆t4) (6)

[D2tu]n = un+1 − un−1

2∆t = u′(tn) +Rn, (7)

Rn = 1
6u
′′′(tn)∆t2 +O(∆t4) (8)

[D−t u]n = un − un−1

∆t = u′(tn) +Rn, (9)

Rn = −1
2u
′′(tn)∆t+O(∆t2) (10)

[D+
t u]n = un+1 − un

∆t = u′(tn) +Rn, (11)

Rn = 1
2u
′′(tn)∆t+O(∆t2) (12)

[D̄tu]n+θ = un+1 − un
∆t = u′(tn+θ) +Rn+θ, (13)

Rn+θ = 1
2(1− 2θ)u′′(tn+θ)∆t−

1
6((1− θ)3 − θ3)u′′′(tn+θ)∆t2 +O(∆t3)

(14)

[D2−
t u]n = 3un − 4un−1 + un−2

2∆t = u′(tn) +Rn, (15)

Rn = −1
3u
′′′(tn)∆t2 +O(∆t3) (16)

[DtDtu]n = un+1 − 2un + un−1

∆t2 = u′′(tn) +Rn, (17)

Rn = 1
12u

′′′′(tn)∆t2 +O(∆t4) (18)
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It will also be convenient to have the truncation errors for various means or
averages. The weighted arithmetic mean leads to

[ut,θ]n+θ = θun+1 + (1− θ)un = u(tn+θ) +Rn+θ, (19)

Rn+θ = 1
2u
′′(tn+θ)∆t2θ(1− θ) +O(∆t3) . (20)

The standard arithmetic mean follows from this formula when θ = 1/2. Expressed
at point tn we get

[ut]n = 1
2(un− 1

2 + un+ 1
2 ) = u(tn) +Rn, (21)

Rn = 1
8u
′′(tn)∆t2 + 1

384u
′′′′(tn)∆t4 +O(∆t6) . (22)

The geometric mean also has an error O(∆t2):

[u2t,g]n = un−
1
2un+ 1

2 = (un)2 +Rn, (23)

Rn = −1
4u
′(tn)2∆t2 + 1

4u(tn)u′′(tn)∆t2 +O(∆t4) . (24)

The harmonic mean is also second-order accurate:

[ut,h]n = un = 2
1

un− 1
2

+ 1
un+ 1

2

+Rn+ 1
2 , (25)

Rn = −u
′(tn)2

4u(tn) ∆t2 + 1
8u
′′(tn)∆t2 . (26)

2.5 Software for computing truncation errors
We can use sympy to aid calculations with Taylor series. The derivatives can
be defined as symbols, say D3f for the 3rd derivative of some function f . A
truncated Taylor series can then be written as f + D1f*h + D2f*h**2/2. The
following class takes some symbol f for the function in question and makes a list
of symbols for the derivatives. The __call__ method computes the symbolic
form of the series truncated at num_terms terms.

import sympy as sp

class TaylorSeries:
"""Class for symbolic Taylor series."""
def __init__(self, f, num_terms=4):

self.f = f
self.N = num_terms
# Introduce symbols for the derivatives
self.df = [f]
for i in range(1, self.N+1):
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self.df.append(sp.Symbol(’D%d%s’ % (i, f.name)))

def __call__(self, h):
"""Return the truncated Taylor series at x+h."""
terms = self.f
for i in range(1, self.N+1):

terms += sp.Rational(1, sp.factorial(i))*self.df[i]*h**i
return terms

We may, for example, use this class to compute the truncation error of the
Forward Euler finite difference formula:

>>> from truncation_errors import TaylorSeries
>>> from sympy import *
>>> u, dt = symbols(’u dt’)
>>> u_Taylor = TaylorSeries(u, 4)
>>> u_Taylor(dt)
D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24 + u
>>> FE = (u_Taylor(dt) - u)/dt
>>> FE
(D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24)/dt
>>> simplify(FE)
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24

The truncation error consists of the terms after the first one (u′).
The module file trunc/truncation_errors.py1 contains another class DiffOp

with symbolic expressions for most of the truncation errors listed in the previous
section. For example:

>>> from truncation_errors import DiffOp
>>> from sympy import *
>>> u = Symbol(’u’)
>>> diffop = DiffOp(u, independent_variable=’t’)
>>> diffop[’geometric_mean’]
-D1u**2*dt**2/4 - D1u*D3u*dt**4/48 + D2u**2*dt**4/64 + ...
>>> diffop[’Dtm’]
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24
>>> >>> diffop.operator_names()
[’geometric_mean’, ’harmonic_mean’, ’Dtm’, ’D2t’, ’DtDt’,
’weighted_arithmetic_mean’, ’Dtp’, ’Dt’]

The indexing of diffop applies names that correspond to the operators: Dtp
for D+

t , Dtm for D−t , Dt for Dt, D2t for D2t, DtDt for DtDt.

3 Truncation errors in exponential decay ODE
We shall now compute the truncation error of a finite difference scheme for a
differential equation. Our first problem involves the following the linear ODE
modeling exponential decay,

u′(t) = −au(t) . (27)
1http://tinyurl.com/jvzzcfn/trunc/truncation_errors.py
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3.1 Truncation error of the Forward Euler scheme
We begin with the Forward Euler scheme for discretizing (27):

[D+
t u = −au]n . (28)

The idea behind the truncation error computation is to insert the exact solution
ue of the differential equation problem (27) in the discrete equations (28) and
find the residual that arises because ue does not solve the discrete equations.
Instead, ue solves the discrete equations with a residual Rn:

[D+
t ue + aue = R]n . (29)

From (11)-(12) it follows that

[D+
t ue]n = u′e(tn) + 1

2u
′′
e (tn)∆t+O(∆t2),

which inserted in (29) results in

u′e(tn) + 1
2u
′′
e (tn)∆t+O(∆t2) + aue(tn) = Rn .

Now, u′e(tn) + aune = 0 since ue solves the differential equation. The remaining
terms constitute the residual:

Rn = 1
2u
′′
e (tn)∆t+O(∆t2) . (30)

This is the truncation error Rn of the Forward Euler scheme.
Because Rn is proportional to ∆t, we say that the Forward Euler scheme

is of first order in ∆t. However, the truncation error is just one error measure,
and it is not equal to the true error une − un. For this simple model problem
we can compute a range of different error measures for the Forward Euler
scheme, including the true error une − un, and all of them have dominating terms
proportional to ∆t.

3.2 Truncation error of the Crank-Nicolson scheme
For the Crank-Nicolson scheme,

[Dtu = −au]n+ 1
2 , (31)

we compute the truncation error by inserting the exact solution of the ODE and
adding a residual R,

[Dtue + auet = R]n+ 1
2 . (32)

The term [Dtue]n+ 1
2 is easily computed from (5)-(6) by replacing n with n+ 1

2
in the formula,
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[Dtue]n+ 1
2 = u′(tn+ 1

2
) + 1

24u
′′′
e (tn+ 1

2
)∆t2 +O(∆t4) .

The arithmetic mean is related to u(tn+ 1
2
) by (21)-(22) so

[auet]n+ 1
2 = u(tn+ 1

2
) + 1

8u
′′(tn)∆t2 + +O(∆t4) .

Inserting these expressions in (32) and observing that u′e(tn+ 1
2
) + au

n+ 1
2e = 0,

because ue(t) solves the ODE u′(t) = −au(t) at any point t, we find that

Rn+ 1
2 =

(
1
24u

′′′
e (tn+ 1

2
) + 1

8u
′′(tn)

)
∆t2 +O(∆t4) (33)

Here, the truncation error is of second order because the leading term in R is
proportional to ∆t2.

At this point it is wise to redo some of the computations above to establish
the truncation error of the Backward Euler scheme, see Exercise 4.

3.3 Truncation error of the θ-rule
We may also compute the truncation error of the θ-rule,

[D̄tu = −aut,θ]n+θ .

Our computational task is to find Rn+θ in

[D̄tue + auet,θ = R]n+θ .

From (13)-(14) and (19)-(20) we get expressions for the terms with ue. Using
that u′e(tn+θ) + aue(tn+θ) = 0, we end up with

Rn+θ =(1
2 − θ)u

′′
e (tn+θ)∆t+ 1

2θ(1− θ)u
′′
e (tn+θ)∆t2+

1
2(θ2 − θ + 3)u′′′e (tn+θ)∆t2 +O(∆t3) (34)

For θ = 1/2 the first-order term vanishes and the scheme is of second order,
while for θ 6= 1/2 we only have a first-order scheme.

3.4 Using symbolic software
The previously mentioned truncation_error module can be used to automate
the Taylor series expansions and the process of collecting terms. Here is an
example on possible use:
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from truncation_error import DiffOp
from sympy import *

def decay():
u, a = symbols(’u a’)
diffop = DiffOp(u, independent_variable=’t’,

num_terms_Taylor_series=3)
D1u = diffop.D(1) # symbol for du/dt
ODE = D1u + a*u # define ODE

# Define schemes
FE = diffop[’Dtp’] + a*u
CN = diffop[’Dt’ ] + a*u
BE = diffop[’Dtm’] + a*u
theta = diffop[’barDt’] + a*diffop[’weighted_arithmetic_mean’]
theta = sm.simplify(sm.expand(theta))
# Residuals (truncation errors)
R = {’FE’: FE-ODE, ’BE’: BE-ODE, ’CN’: CN-ODE,

’theta’: theta-ODE}
return R

The returned dictionary becomes

decay: {
’BE’: D2u*dt/2 + D3u*dt**2/6,
’FE’: -D2u*dt/2 + D3u*dt**2/6,
’CN’: D3u*dt**2/24,
’theta’: -D2u*a*dt**2*theta**2/2 + D2u*a*dt**2*theta/2 -

D2u*dt*theta + D2u*dt/2 + D3u*a*dt**3*theta**3/3 -
D3u*a*dt**3*theta**2/2 + D3u*a*dt**3*theta/6 +
D3u*dt**2*theta**2/2 - D3u*dt**2*theta/2 + D3u*dt**2/6,

}

The results are in correspondence with our hand-derived expressions.

3.5 Empirical verification of the truncation error
The task of this section is to demonstrate how we can compute the truncation
error R numerically. For example, the truncation error of the Forward Euler
scheme applied to the decay ODE u′ = −ua is

Rn = [D+
t ue + aue]n . (35)

If we happen to know the exact solution ue(t), we can easily evaluate Rn from
the above formula.

To estimate how R varies with the discretization parameter ∆t, which has
been our focus in the previous mathematical derivations, we first make the
assumption that R = C∆tr for appropriate constants C and r and small enough
∆t. The rate r can be estimated from a series of experiments where ∆t is varied.
Suppose we have m experiments (∆ti, Ri), i = 0, . . . ,m− 1. For two consecutive
experiments (∆ti−1, Ri−1) and (∆ti, Ri), a corresponding ri−1 can be estimated
by

ri−1 = ln(Ri−1/Ri)
ln(∆ti−1/∆ti)

, (36)
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for i = 1, . . . ,m− 1. Note that the truncation error Ri varies through the mesh,
so (36) is to be applied pointwise. A complicating issue is that Ri and Ri−1 refer
to different meshes. Pointwise comparisons of the truncation error at a certain
point in all meshes therefore requires any computed R to be restricted to the
coarsest mesh and that all finer meshes contain all the points in the coarsest
mesh. Suppose we have N0 intervals in the coarsest mesh. Inserting a superscript
n in (36), where n counts mesh points in the coarsest mesh, n = 0, . . . , N0, leads
to the formula

rni−1 =
ln(Rni−1/R

n
i )

ln(∆ti−1/∆ti)
. (37)

Experiments are most conveniently defined by N0 and a number of refinements
m. Suppose each mesh have twice as many cells Ni as the previous one:

Ni = 2iN0, ∆ti = TN−1
i ,

where [0, T ] is the total time interval for the computations. Suppose the computed
Ri values on the mesh with Ni intervals are stored in an array R[i] (R being a
list of arrays, one for each mesh). Restricting this Ri function to the coarsest
mesh means extracting every Ni/N0 point and is done as follows:

stride = N[i]/N_0
R[i] = R[i][::stride]

The quantity R[i][n] now corresponds to Rni .
In addition to estimating r for the pointwise values of R = C∆tr, we may

also consider an integrated quantity on mesh i,

RI,i =
(

∆ti
Ni∑

n=0
(Rni )2

) 1
2

≈
∫ T

0
Ri(t)dt . (38)

The sequence RI,i, i = 0, . . . ,m− 1, is also expected to behave as C∆tr, with
the same r as for the pointwise quantity R, as ∆t→ 0.

The function below computes the Ri and RI,i quantities, plots them and
compares with the theoretically derived truncation error (R_a) if available.

import numpy as np
import scitools.std as plt

def estimate(truncation_error, T, N_0, m, makeplot=True):
"""
Compute the truncation error in a problem with one independent
variable, using m meshes, and estimate the convergence
rate of the truncation error.

The user-supplied function truncation_error(dt, N) computes
the truncation error on a uniform mesh with N intervals of
length dt::
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R, t, R_a = truncation_error(dt, N)

where R holds the truncation error at points in the array t,
and R_a are the corresponding theoretical truncation error
values (None if not available).

The truncation_error function is run on a series of meshes
with 2**i*N_0 intervals, i=0,1,...,m-1.
The values of R and R_a are restricted to the coarsest mesh.
and based on these data, the convergence rate of R (pointwise)
and time-integrated R can be estimated empirically.
"""
N = [2**i*N_0 for i in range(m)]

R_I = np.zeros(m) # time-integrated R values on various meshes
R = [None]*m # time series of R restricted to coarsest mesh
R_a = [None]*m # time series of R_a restricted to coarsest mesh
dt = np.zeros(m)
legends_R = []; legends_R_a = [] # all legends of curves

for i in range(m):
dt[i] = T/float(N[i])
R[i], t, R_a[i] = truncation_error(dt[i], N[i])

R_I[i] = np.sqrt(dt[i]*np.sum(R[i]**2))

if i == 0:
t_coarse = t # the coarsest mesh

stride = N[i]/N_0
R[i] = R[i][::stride] # restrict to coarsest mesh
R_a[i] = R_a[i][::stride]

if makeplot:
plt.figure(1)
plt.plot(t_coarse, R[i], log=’y’)
legends_R.append(’N=%d’ % N[i])
plt.hold(’on’)

plt.figure(2)
plt.plot(t_coarse, R_a[i] - R[i], log=’y’)
plt.hold(’on’)
legends_R_a.append(’N=%d’ % N[i])

if makeplot:
plt.figure(1)
plt.xlabel(’time’)
plt.ylabel(’pointwise truncation error’)
plt.legend(legends_R)
plt.savefig(’R_series.png’)
plt.savefig(’R_series.pdf’)
plt.figure(2)
plt.xlabel(’time’)
plt.ylabel(’pointwise error in estimated truncation error’)
plt.legend(legends_R_a)
plt.savefig(’R_error.png’)
plt.savefig(’R_error.pdf’)

# Convergence rates
r_R_I = convergence_rates(dt, R_I)
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print ’R integrated in time; r:’,
print ’ ’.join([’%.1f’ % r for r in r_R_I])
R = np.array(R) # two-dim. numpy array
r_R = [convergence_rates(dt, R[:,n])[-1]

for n in range(len(t_coarse))]

The first makeplot block demonstrates how to build up two figures in parallel,
using plt.figure(i) to create and switch to figure number i. Figure numbers
start at 1. A logarithmic scale is used on the y axis since we expect that R
as a function of time (or mesh points) is exponential. The reason is that the
theoretical estimate (30) contains u′′e , which for the present model goes like e−at.
Taking the logarithm makes a straight line.

The code follows closely the previously stated mathematical formulas, but the
statements for computing the convergence rates might deserve an explanation.
The generic help function convergence_rate(h, E) computes and returns ri−1,
i = 1, . . . ,m− 1 from (37), given ∆ti in h and Rni in E:

def convergence_rates(h, E):
from math import log
r = [log(E[i]/E[i-1])/log(h[i]/h[i-1])

for i in range(1, len(h))]
return r

Calling r_R_I = convergence_rates(dt, R_I) computes the sequence of
rates r0, r1, . . . , rm−2 for the model RI ∼ ∆tr, while the statements

R = np.array(R) # two-dim. numpy array
r_R = [convergence_rates(dt, R[:,n])[-1]

for n in range(len(t_coarse))]

compute the final rate rm−2 for Rn ∼ ∆tr at each mesh point tn in the coarsest
mesh. This latter computation deserves more explanation. Since R[i][n] holds
the estimated truncation error Rni on mesh i, at point tn in the coarsest mesh,
R[:,n] picks out the sequence Rni for i = 0, . . . ,m− 1. The convergence_rate
function computes the rates at tn, and by indexing [-1] on the returned array
from convergence_rate, we pick the rate rm−2, which we believe is the best
estimation since it is based on the two finest meshes.

The estimate function is available in a module trunc_empir.py2. Let us
apply this function to estimate the truncation error of the Forward Euler scheme.
We need a function decay_FE(dt, N) that can compute (35) at the points in a
mesh with time step dt and N intervals:

import numpy as np
import trunc_empir

def decay_FE(dt, N):
dt = float(dt)
t = np.linspace(0, N*dt, N+1)
u_e = I*np.exp(-a*t) # exact solution, I and a are global

2http://tinyurl.com/jvzzcfn/trunc/trunc_empir.py
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u = u_e # naming convention when writing up the scheme
R = np.zeros(N)

for n in range(0, N):
R[n] = (u[n+1] - u[n])/dt + a*u[n]

# Theoretical expression for the trunction error
R_a = 0.5*I*(-a)**2*np.exp(-a*t)*dt

return R, t[:-1], R_a[:-1]

if __name__ == ’__main__’:
I = 1; a = 2 # global variables needed in decay_FE
trunc_empir.estimate(decay_FE, T=2.5, N_0=6, m=4, makeplot=True)

The estimated rates for the integrated truncation error RI become 1.1, 1.0,
and 1.0 for this sequence of four meshes. All the rates for Rn, computed as
r_R, are also very close to 1 at all mesh points. The agreement between the
theoretical formula (30) and the computed quantity (ref(35)) is very good, as
illustrated in Figures 1 and 2. The program trunc_decay_FE.py3 was used to
perform the simulations and it can easily be modified to test other schemes (see
also Exericse 5).

Figure 1: Estimated truncation error at mesh points for different meshes.

3http://tinyurl.com/jvzzcfn/trunc/trunc_decay_FE.py
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Figure 2: Difference between theoretical and estimated truncation error at mesh
points for different meshes.

3.6 Increasing the accuracy by adding correction terms
Now we ask the question: can we add terms in the differential equation that
can help increase the order of the truncation error? To be precise, let us revisit
the Forward Euler scheme for u′ = −au, insert the exact solution ue, include a
residual R, but also include new terms C:

[D+
t ue + aue = C +R]n . (39)

Inserting the Taylor expansions for [D+
t ue]n and keeping terms up to 3rd order

in ∆t gives the equation

1
2u
′′
e (tn)∆t− 1

6u
′′′
e (tn)∆t2 + 1

24u
′′′′
e (tn)∆t3 +O(∆t4) = Cn +Rn .

Can we find Cn such that Rn is O(∆t2)? Yes, by setting

Cn = 1
2u
′′
e (tn)∆t,

we manage to cancel the first-order term and

Rn = 1
6u
′′′
e (tn)∆t2 +O(∆t3) .
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The correction term Cn introduces 1
2∆tu′′ in the discrete equation, and

we have to get rid of the derivative u′′. One idea is to approximate u′′ by a
second-order accurate finite difference formula, u′′ ≈ (un+1 − 2un + un−1)/∆t2,
but this introduces an additional time level with un−1. Another approach is to
rewrite u′′ in terms of u′ or u using the ODE:

u′ = −au ⇒ u′′ = −au′ = −a(−au) = a2u .

This means that we can simply set Cn = 1
2a

2∆tun. We can then either solve
the discrete equation

[D+
t u = −au+ 1

2a
2∆tu]n, (40)

or we can equivalently discretize the perturbed ODE

u′ = −âu, â = a(1− 1
2a∆t), (41)

by a Forward Euler method. That is, we replace the original coefficient a by the
perturbed coefficient â. Observe that â→ a as ∆t→ 0.

The Forward Euler method applied to (41) results in

[D+
t u = −a(1− 1

2a∆t)u]n .

We can control our computations and verify that the truncation error of the
scheme above is indeed O(∆t2).

Another way of revealing the fact that the perturbed ODE leads to a more
accurate solution is to look at the amplification factor. Our scheme can be
written as

un+1 = Aun, A = 1− â∆t = 1− p+ 1
2p

2, p = a∆t,

The amplification factor A as a function of p = a∆t is seen to be the first three
terms of the Taylor series for the exact amplification factor e−p. The Forward
Euler scheme for u = −au gives only the first two terms 1−p of the Taylor series
for e−p. That is, using â increases the order of the accuracy in the amplification
factor.

Instead of replacing u′′ by a2u, we use the relation u′′ = −au′ and add a
term − 1

2a∆tu′ in the ODE:

u′ = −au− 1
2a∆tu′ ⇒

(
1 + 1

2a∆t
)
u′ = −au .

Using a Forward Euler method results in
(

1 + 1
2a∆t

)
un+1 − un

∆t = −aun,

which after some algebra can be written as
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un+1 =
1− 1

2a∆t
1 + 1

2a∆t
un .

This is the same formula as the one arising from a Crank-Nicolson scheme applied
to u′ = −au! It now recommended to do Exercise 6 and repeat the above steps
to see what kind of correction term is needed in the Backward Euler scheme to
make it second order.

The Crank-Nicolson scheme is a bit more challenging to analyze, but the
ideas and techniques are the same. The discrete equation reads

[Dtu = −au]n+ 1
2 ,

and the truncation error is defined through

[Dtue + auet = C +R]n+ 1
2 ,

where we have added a correction term. We need to Taylor expand both the
discrete derivative and the arithmetic mean with aid of (5)-(6) and (21)-(22),
respectively. The result is

1
24u

′′′
e (tn+ 1

2
)∆t2 +O(∆t4) + a

8u
′′
e (tn+ 1

2
)∆t2 +O(∆t4) = Cn+ 1

2 +Rn+ 1
2 .

The goal now is to make Cn+ 1
2 cancel the ∆t2 terms:

Cn+ 1
2 = 1

24u
′′′
e (tn+ 1

2
)∆t2 + a

8u
′′
e (tn)∆t2 .

Using u′ = −au, we have that u′′ = a2u, and we find that u′′′ = −a3u. We can
therefore solve the perturbed ODE problem

u′ = −âu, â = a(1− 1
12a

2∆t2),

by the Crank-Nicolson scheme and obtain a method that is of fourth order
in ∆t. Exercise 7 encourages you to implement these correction terms and
calculate empirical convergence rates to verify that higher-order accuracy is
indeed obtained in real computations.

3.7 Extension to variable coefficients
Let us address the decay ODE with variable coefficients,

u′(t) = −a(t)u(t) + b(t),

discretized by the Forward Euler scheme,

[D+
t u = −au+ b]n . (42)
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The truncation error R is as always found by inserting the exact solution ue(t)
in the discrete scheme:

[D+
t ue + aue − b = R]n . (43)

Using (11)-(12),

u′e(tn)− 1
2u
′′
e (tn)∆t+O(∆t2) + a(tn)ue(tn)− b(tn) = Rn .

Because of the ODE,

u′e(tn) + a(tn)ue(tn)− b(tn) = 0,

so we are left with the result

Rn = −1
2u
′′
e (tn)∆t+O(∆t2) . (44)

We see that the variable coefficients do not pose any additional difficulties in this
case. Exercise 8 takes the analysis above one step further to the Crank-Nicolson
scheme.

3.8 Exact solutions of the finite difference equations
Having a mathematical expression for the numerical solution is very valuable in
program verification since we then know the exact numbers that the program
should produce. Looking at the various formulas for the truncation errors in
(5)-(6) and (25)-(26) in Section 2.4, we see that all but two of the R expressions
contains a second or higher order derivative of ue. The exceptions are the
geometric and harmonic means where the truncation error involves u′e and even
ue in case of the harmonic mean. So, apart from these two means, choosing ue
to be a linear function of t, ue = ct + d for constants c and d, will make the
truncation error vanish since u′′e = 0. Consqeuently, the truncation error of a
finite difference scheme will be zero since the various approximations used will
all be exact. This means that the linear solution is an exact solution of the
discrete equations.

In a particular differential equation problem, the reasoning above can be
used to determine if we expect a linear ue to fulfill the discrete equations. To
actually prove that this is true, we can either compute the truncation error and
see that it vanishes, or we can simply insert ue(t) = ct+ d in the scheme and
see that it fulfills the equations. The latter method is usually the simplest. It
will often be necessary to add some source term to the ODE in order to allow a
linear solution.

Many ODEs are discretized by centered differences. From Section 2.4 we
see that all the centered difference formulas have truncation errors involving
u′′′e or higher-order derivatives. A quadratic solution, e.g., ue(t) = t2 + ct+ d,
will then make the truncation errors vanish. This observation can be used
to test if a quadratic solution will fulfill the discrete equations. Note that a
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quadratic solution will not obey the equations for a Crank-Nicolson scheme for
u′ = −au + b because the approximation applies an arithmetic mean, which
involves a truncation error with u′′e .

3.9 Computing truncation errors in nonlinear problems
The general nonlinear ODE

u′ = f(u, t), (45)

can be solved by a Crank-Nicolson scheme

[Dtu
′ = f

t]n+ 1
2 . (46)

The truncation error is as always defined as the residual arising when inserting
the exact solution ue in the scheme:

[Dtu
′
e − f

t = R]n+ 1
2 . (47)

Using (21)-(22) for f t results in

[f t]n+ 1
2 = 1

2(f(une , tn) + f(un+1
e , tn+1))

= f(un+ 1
2e , tn+ 1

2
) + 1

8u
′′
e (tn+ 1

2
)∆t2 +O(∆t4) .

With (5)-(6) the discrete equations (47) lead to

u′e(tn+ 1
2
)+ 1

24u
′′′
e (tn+ 1

2
)∆t2−f(un+ 1

2e , tn+ 1
2
)− 1

8u
′′(tn+ 1

2
)∆t2+O(∆t4) = Rn+ 1

2 .

Since u′e(tn+ 1
2
)− f(un+ 1

2e , tn+ 1
2
) = 0, the truncation error becomes

Rn+ 1
2 = ( 1

24u
′′′
e (tn+ 1

2
)− 1

8u
′′(tn+ 1

2
))∆t2 .

The computational techniques worked well even for this nonlinear ODE.

4 Truncation errors in vibration ODEs
4.1 Linear model without damping
The next example on computing the truncation error involves the following ODE
for vibration problems:

u′′(t) + ω2u(t) = 0 . (48)

Here, ω is a given constant.
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The truncation error of a centered finite difference scheme. Using a
standard, second-ordered, central difference for the second-order derivative time,
we have the scheme

[DtDtu+ ω2u = 0]n . (49)

Inserting the exact solution ue in this equation and adding a residual R so
that ue can fulfill the equation results in

[DtDtue + ω2ue = R]n . (50)

To calculate the truncation error Rn, we use (17)-(18), i.e.,

[DtDtue]n = u′′e (tn) + 1
12u

′′′′
e (tn)∆t2,

and the fact that u′′e (t) + ω2ue(t) = 0. The result is

Rn = 1
12u

′′′′
e (tn)∆t2 +O(∆t4) . (51)

The truncation error of approximating u′(0). The initial conditions for
(48) are u(0) = I and u′(0) = V . The latter involves a finite difference approxi-
mation. The standard choice

[D2tu = V ]0,

where u−1 is eliminated with the aid of the discretized ODE for n = 0, involves
a centered difference with an O(∆t2) truncation error given by (7)-(8). The
simpler choice

[D+
t u = V ]0,

is based on a forward difference with a truncation error O(∆t). A central
question is if this initial error will impact the order of the scheme throughout the
simulation. Exercise 11 asks you to quickly perform an experiment to investigate
this question.

Truncation error of the equation for the first step. We have shown that
the truncation error of the difference used to approximate the initial condition
u′(0) = 0 is O(∆t2), but can also investigate the difference equation used for
the first step. In a truncation error setting, the right way to view this equation
is not to use the initial condition [D2tu = V ]0 to express u−1 = u1 − 2∆tV
in order to eliminate u−1 from the discretized differential equation, but the
other way around: the fundamental equation is the discretized initial condition
[D2tu = V ]0 and we use the discretized ODE [DtDt + ω2u = 0]0 to eliminate
u−1 in the disretized initial condition. From [DtDt + ω2u = 0]0 we have

u−1 = 2u0 − u1 −∆t2ω2u0,
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which inserted in [D2tu = V ]0 gives

u1 − u0

∆t + 1
2ω

2∆tu0 = V . (52)

The first term can be recognized as a forward difference such that the equation
can be written in operator notation as

[D+
t u+ 1

2ω
2∆tu = V ]0 .

The truncation error is defined as

[D+
t ue + 1

2ω
2∆tue − V = R]0 .

Using (11)-(12) with one more term in the Taylor series, we get that

u′e(0) + 1
2u
′′
e (0)∆t+ 1

6u
′′′
e (0)∆t2 +O(∆t3) + 1

2ω
2∆tue(0)− V = Rn .

Now, u′e(0) = V and u′′e (0) = −ω2ue(0) so we get

Rn = 1
6u
′′′
e (0)∆t2 +O(∆t3) .

There is another way of analyzing the discrete initial condition, because
eliminating u−1 via the discretized ODE can be expressed as

[D2tu+ ∆t(DtDtu− ω2u) = V ]0 . (53)
Writing out (53) shows that the equation is equivalent to (52). The truncation
error is defined by

[D2tue + ∆t(DtDtue − ω2ue) = V +R]0 .
Replacing the difference via (7)-(8) and (17)-(18), as well as using u′e(0) = V
and u′′e (0) = −ω2ue(0), gives

Rn = 1
6u
′′′(0)∆t2 +O(∆t3) .

Computing correction terms. The idea of using correction terms to increase
the order of Rn can be applied as described in Section 3.6. We look at

[DtDtue + ω2ue = C +R]n,
and observe that Cn must be chosen to cancel the ∆t2 term in Rn. That is,

Cn = 1
12u

′′′′
e (tn)∆t2 .

To get rid of the 4th-order derivative we can use the differential equation:
u′′ = −ω2u, which implies u′′′′ = ω4u. Adding the correction term to the ODE
results in
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u′′ + ω2(1− 1
12ω

2∆t2)u = 0 . (54)

Solving this equation by the standard scheme

[DtDtu+ ω2(1− 1
12ω

2∆t2)u = 0]n,

will result in a scheme with trunction error O(∆t4).
We can use another set of arguments to justify that (54) leads to a higher-order

method. Mathematical analysis of the scheme (49) reveals that the numerical
frequency ω̃ is (approximately as ∆t→ 0)

ω̃ = ω(1 + 1
24ω

2∆t2) .

One can therefore attempt to replace ω in the ODE by a slightly smaller ω since
the numerics will make it larger:

[u′′ + (ω(1− 1
24ω

2∆t2))2u = 0 .

Expanding the squared term and omitting the higher-order term ∆t4 gives
exactly the ODE (54). Experiments show that un is computed to 4th order in
∆t.

4.2 Model with damping and nonlinearity
The model (48) can be extended to include damping βu′, a nonlinear restoring
(spring) force s(u), and some known excitation force F (t):

mu′′ + βu′ + s(u) = F (t) . (55)
The coefficient m usually represents the mass of the system. This governing
equation can by discretized by centered differences:

[mDtDtu+ βD2tu+ s(u) = F ]n . (56)

The exact solution ue fulfills the discrete equations with a residual term:

[mDtDtue + βD2tue + s(ue) = F +R]n . (57)
Using (17)-(18) and (7)-(8) we get

[mDtDtue + βD2tue]n = mu′′e (tn) + βu′e(tn)+
(
m

12u
′′′′
e (tn) + β

6 u
′′′
e (tn)

)
∆t2 +O(∆t4)

Combining this with the previous equation, we can collect the terms

mu′′e (tn) + βu′e(tn) + ω2ue(tn) + s(ue(tn))− Fn,
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and set this sum to zero because ue solves the differential equation. We are left
with the truncation error

Rn =
(
m

12u
′′′′
e (tn) + β

6 u
′′′
e (tn)

)
∆t2 +O(∆t4), (58)

so the scheme is of second order.
According to (58), we can add correction terms

Cn =
(
m

12u
′′′′
e (tn) + β

6 u
′′′
e (tn)

)
∆t2,

to the right-hand side of the ODE to obtain a fourth-order scheme. However,
expressing u′′′′ and u′′′ in terms of lower-order derivatives is now harder because
the differential equation is more complicated:

u′′′ = 1
m

(F ′ − βu′′ − s′(u)u′),

u′′′′ = 1
m

(F ′′ − βu′′′ − s′′(u)(u′)2 − s′(u)u′′),

= 1
m

(F ′′ − β 1
m

(F ′ − βu′′ − s′(u)u′)− s′′(u)(u′)2 − s′(u)u′′) .

It is not impossible to discretize the resulting modified ODE, but it is up to
debate whether correction terms are feasible and the way to go. Computing with
a smaller ∆t is usually always possible in these problems to achieve the desired
accuracy.

4.3 Extension to quadratic damping
Instead of the linear damping term βu′ in (55) we now consider quadratic
damping β|u′|u′:

mu′′ + β|u′|u′ + s(u) = F (t) . (59)
A centered difference for u′ gives rise to a nonlinearity, which can be linearized
using a geometric mean: [|u′|u′]n ≈ |[u′]n− 1

2 |[u′]n+ 1
2 . The resulting scheme

becomes

[mDtDtu]n + β|[Dtu]n− 1
2 |[Dtu]n+ 1

2 + s(un) = Fn . (60)
The truncation error is defined through

[mDtDtue]n + β|[Dtue]n− 1
2 |[Dtue]n+ 1

2 + s(une )− Fn = Rn . (61)
We start with expressing the truncation error of the geometric mean. Ac-

cording to (23)-(24),

|[Dtue]n− 1
2 |[Dtue]n+ 1

2 = [|Dtue|Dtue]n−1
4u
′(tn)2∆t2+1

4u(tn)u′′(tn)∆t2+O(∆t4) .
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Using (5)-(6) for the Dtue factors results in

[|Dtue|Dtue]n = |u′e + 1
24u

′′′
e (tn)∆t2 +O(∆t4)|(u′e + 1

24u
′′′
e (tn)∆t2 +O(∆t4))

We can remove the absolute value since it essentially gives a factor 1 or -1 only.
Calculating the product, we have the leading-order terms

[DtueDtue]n = (u′e(tn))2 + 1
12ue(tn)u′′′e (tn)∆t2 +O(∆t4) .

With

m[DtDtue]n = mu′′e (tn) + m

12u
′′′′
e (tn)∆t2 +O(∆t4),

and using the differential equation on the form mu′′ + β(u′)2 + s(u) = F , we
end up with

Rn = (m12u
′′′′
e (tn) + β

12ue(tn)u′′′e (tn))∆t2 +O(∆t4) .

This result demonstrates that we have second-order accuracy also with quadratic
damping. The key elements that lead to the second-order accuracy is that the
difference approximations are O(∆t2) and the geometric mean approximation is
also of O(∆t2).

4.4 The general model formulated as first-order ODEs
The second-order model (59) can be formulated as a first-order system,

u′ = v, (62)

v′ = 1
m

(F (t)− β|v|v − s(u)) . (63)

The system (62)-(62) can be solved either by a forward-backward scheme or a
centered scheme on a staggered mesh.

The forward-backward scheme. The discretization is based on the idea of
stepping (62) forward in time and then using a backward difference in (63) with
the recently computed (and therefore known) u:

[D+
t u = v]n, (64)

[D−t v = 1
m

(F (t)− β|v|v − s(u))]n+1 . (65)

The term |v|v gives rise to a nonlinearity |vn+1|vn+1, which can be linearized as
|vn|vn+1:
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[D+
t u = v]n, (66)

[D−t v]n+1 = 1
m

(F (tn+1)− β|vn|vn+1 − s(un+1)) . (67)

Each ODE will have a truncation error when inserting the exact solutions ue
and ve in (64)-(65):

[D+
t ue = ve +Ru]n, (68)

[D−t ve]n+1 = 1
m

(F (tn+1)− β|ve(tn)|ve(tn+1)− s(ue(tn+1))) +Rn+1
v . (69)

Application of (11)-(12) and (9)-(10) in (68) and (69), respectively, gives

u′e(tn) + 1
2u
′′
e (tn)∆t+O(∆t2) = ve(tn) +Rnu, (70)

v′e(tn+1)− 1
2v
′′
e (tn+1)∆t+O(∆t2) = 1

m
(F (tn+1)− β|ve(tn)|ve(tn+1)+

s(ue(tn+1)) +Rnv . (71)

Since u′e = ve, (70) gives

Rnu = 1
2u
′′
e (tn)∆t+O(∆t2) .

In (71) we can collect the terms that constitute the ODE, but the damping term
has the wrong form. Let us drop the absolute value in the damping term for
simplicity. Adding a substracting the right form vn+1vn+1 helps:

v′e(tn+1)− 1
m

(F (tn+1)− βve(tn+1)ve(tn+1) + s(ue(tn+1))+

(βve(tn)ve(tn+1)− βve(tn+1)ve(tn+1))),

which reduces to

β

m
ve(tn+1(ve(tn)− ve(tn+1)) = β

m
ve(tn+1[D−t ve]n+1∆t

= β

m
ve(tn+1(v′e(tn+1)∆t+−1

2v
′′′
e (tn+1)∆t+O(∆t3)) .

We end with Rnu and Rn+1
v as O(∆t), simply because all the building blocks in

the schemes (the forward and backward differences and the linearization trick)
are only first-order accurate. However, this analysis is misleading: the building
blocks play together in a way that makes the scheme second-order accurate. This
is shown by considering an alternative, yet equivalent, formulation of the above
scheme.
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A centered scheme on a staggered mesh. We now introduce a staggered
mesh where we seek u at mesh points tn and v at points tn+ 1

2
in between the u

points. The staggered mesh makes it easy to formulate centered differences in
the system (62)-(62):

[Dtu = v]n− 1
2 , (72)

[Dtv = 1
m

(F (t)− β|v|v − s(u))]n . (73)

The term |vn|vn causes trouble since vn is not computed, only vn− 1
2 and vn+ 1

2 .
Using geometric mean, we can express |vn|vn in terms of known quantities:
|vn|vn ≈ |vn− 1

2 |vn+ 1
2 . We then have

[Dtu]n− 1
2 = vn−

1
2 , (74)

[Dtv]n = 1
m

(F (tn)− β|vn− 1
2 |vn+ 1

2 − s(un)) . (75)

The truncation error in each equation fulfills

[Dtue]n− 1
2 = ve(tn− 1

2
) +R

n− 1
2

u ,

[Dtve]n = 1
m

(F (tn)− β|ve(tn− 1
2
)|ve(tn+ 1

2
)− s(un)) +Rnv .

The truncation error of the centered differences is given by (5)-(6), and the
geometric mean approximation analysis can be taken from (23)-(24). These
results lead to

u′e(tn− 1
2
) + 1

24u
′′′
e (tn− 1

2
)∆t2 +O(∆t4) = ve(tn− 1

2
) +R

n− 1
2

u ,

and
v′e(tn) = 1

m
(F (tn)− β|ve(tn)|ve(tn) +O(∆t2)− s(un)) +Rnv .

The ODEs fulfilled by ue and ve are evident in these equations, and we achieve
second-order accuracy for the truncation error in both equations:

R
n− 1

2
u = O(∆t2), Rnv = O(∆t2) .

Comparing (74)-(75) with (66)-(67), we can hopefully realize that these
schemes are equivalent (which becomes clear when we implement both). The
obvious advantage with the staggered mesh approach is that we can all the way
use second-order accurate building blocks and in this way concince ourselves
that the resulting scheme has an error of O(∆t2).
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5 Truncation errors in wave equations
5.1 Linear wave equation in 1D
The standard, linear wave equation in 1D for a function u(x, t) reads

∂2u

∂t2
= c2

∂2u

∂x2 + f(x, t), x ∈ (0, L), t ∈ (0, T ], (76)

where c is the constant wave velocity of the physical medium [0, L]. The equation
can also be more compactly written as

utt = c2uxx + f, x ∈ (0, L), t ∈ (0, T ], (77)
Centered, second-order finite differences are a natural choice for discretizing the
derivatives, leading to

[DtDtu = c2DxDxu+ f ]ni . (78)
Inserting the exact solution ue(x, t) in (78) makes this function fulfill the

equation if we add the term R:

[DtDtue = c2DxDxue + f +R]ni (79)
Our purpose is to calculate the truncation error R. From (17)-(18) we have

that

[DtDtue]ni = ue,tt(xi, tn) + 1
12ue,tttt(xi, tn)∆t2 +O(∆t4),

when we use a notation taking into account that ue is a function of two variables
and that derivatives must be partial derivatives. The notation ue,tt means
∂2ue/∂t2.

The same formula may also be applied to the x-derivative term:

[DxDxue]ni = ue,xx(xi, tn) + 1
12ue,xxxx(xi, tn)∆x2 +O(∆x4),

Equation (81) now becomes

ue,tt + 1
12ue,tttt(xi, tn)∆t2 = c2ue,xx + c2

1
12ue,xxxx(xi, tn)∆x2 + f(xi, tn)+

O(∆t4,∆x4) +Rni .

Because ue fulfills the partial differential equation (PDE) (77), the first, third,
and fifth terms cancel out, and we are left with

Rni = 1
12ue,tttt(xi, tn)∆t2 − c2 1

12ue,xxxx(xi, tn)∆x2 +O(∆t4,∆x4), (80)

showing that the scheme (78) is of second order in the time and space mesh
spacing.
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5.2 Finding correction terms
Can we add correction terms to the PDE and increase the order of Rni in (80)?
The starting point is

[DtDtue = c2DxDxue + f + C +R]ni (81)
From the previous analysis we simply get (80) again, but now with C:

Rni +Cni = 1
12ue,tttt(xi, tn)∆t2− c2 1

12ue,xxxx(xi, tn)∆x2 +O(∆t4,∆x4) . (82)

The idea is to let Cni cancel the ∆t2 and ∆x2 terms to make Rni = O(∆t4,∆x4):

Cni = 1
12ue,tttt(xi, tn)∆t2 − c2 1

12ue,xxxx(xi, tn)∆x2 .

Essentially, it means that we add a new term

C = 1
12
(
utttt∆t2 − c2uxxxx∆x2) ,

to the right-hand side of the PDE. We must either discretize these 4th-order
derivatives directly or rewrite them in terms of lower-order derivatives with the
aid of the PDE. The latter approach is more feasible. From the PDE we have
that

∂2

∂t2
= c2

∂2

∂x2 ,

so

utttt = c2uxxtt, uxxxx = c−2uttxx .

Assuming u is smooth enough that uxxtt = uttxx, these relations lead to

C = 1
12((c2∆t2 −∆x2)uxx)tt .

A natural discretization is

Cni = 1
12((c2∆t2 −∆x2)[DxDxDtDtu]ni .

Writing out [DxDxDtDtu]ni as [DxDx(DtDtu)]ni gives

1
∆t2

(
un+1
i+1 − 2uni+1 + un−1

i+1
∆x2 − 2

un+1
i − 2uni + un−1

i

∆x2 +
un+1
i−1 − 2uni−1 + un−1

i−1
∆x2

)

Now the unknown values un+1
i+1 , un+1

i , and un+1
i−1 are coupled, and we must solve

a tridiagonal system to find them. This is in principle straightforward, but it
results in an implicit finite difference schemes, while we had a convenient explicit
scheme without the correction terms.
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5.3 Extension to variable coefficients
Now we address the variable coefficient version of the linear 1D wave equation,

∂2u

∂t2
= ∂

∂x

(
λ(x)∂u

∂x

)
,

or written more compactly as

utt = (λux)x . (83)

The discrete counterpart to this equation, using arithmetic mean for λ and
centered differences, reads

[DtDtu = Dxλ
x
Dxu]ni . (84)

The truncation error is the residual R in the equation

[DtDtue = Dxλ
x
Dxue +R]ni . (85)

The difficulty in the present is how to compute the truncation error of the term
[Dxλ

x
Dxue]ni .

We start by writing out the outer operator:

[Dxλ
x
Dxue]ni = 1

∆x

(
[λxDxue]ni+ 1

2
− [λxDxue]ni− 1

2

)
. (86)

With the aid of (5)-(6) and (21)-(22) we have

[Dxue]ni+ 1
2

= ue,x(xi+ 1
2
, tn) + 1

24ue,xxx(xi+ 1
2
, tn)∆x2 +O(∆x4),

[λx]i+ 1
2

= λ(xi+ 1
2
) + 1

8λ
′′(xi+ 1

2
)∆x2 +O(∆x4),

[λxDxue]ni+ 1
2

= (λ(xi+ 1
2
) + 1

8λ
′′(xi+ 1

2
)∆x2 +O(∆x4))×

(ue,x(xi+ 1
2
, tn) + 1

24ue,xxx(xi+ 1
2
, tn)∆x2 +O(∆x4))

= λ(xi+ 1
2
)ue,x(xi+ 1

2
, tn) + λ(xi+ 1

2
) 1
24ue,xxx(xi+ 1

2
, tn)∆x2+

ue,x(xi+ 1
2
)1
8λ
′′(xi+ 1

2
)∆x2 +O(∆x4)

= [λue,x]ni+ 1
2

+Gni+ 1
2
∆x2 +O(∆x4),

where we have introduced the short form

Gni+ 1
2

= ( 1
24ue,xxx(xi+ 1

2
, tn)λ((xi+ 1

2
) + ue,x(xi+ 1

2
, tn)1

8λ
′′(xi+ 1

2
))∆x2 .

Similarly, we find that
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[λxDxue]ni− 1
2

= [λue,x]ni− 1
2

+Gni− 1
2
∆x2 +O(∆x4) .

Inserting these expressions in the outer operator (86) results in

[Dxλ
x
Dxue]ni = 1

∆x ([λxDxue]ni+ 1
2
− [λxDxue]ni− 1

2
)

= 1
∆x ([λue,x]ni+ 1

2
+Gni+ 1

2
∆x2 − [λue,x]ni− 1

2
−Gni− 1

2
∆x2 +O(∆x4))

= [Dxλue,x]ni + [DxG]ni ∆x2 +O(∆x4) .

The reason for O(∆x4) in the remainder is that there are coefficients in front
of this term, say H∆x4, and the subtraction and division by ∆x results in
[DxH]ni ∆x4.

We can now use (5)-(6) to express the Dx operator in [Dxλue,x]ni as a
derivative and a truncation error:

[Dxλue,x]ni = ∂

∂x
λ(xi)ue,x(xi, tn) + 1

24(λue,x)xxx(xi, tn)∆x2 +O(∆x4) .

Expressions like [DxG]ni ∆x2 can be treated in an identical way,

[DxG]ni ∆x2 = Gx(xi, tn)∆x2 + 1
24Gxxx(xi, tn)∆x4 +O(∆x4) .

There will be a number of terms with the ∆x2 factor. We lump these now
into O(∆x2). The result of the truncation error analysis of the spatial derivative
is therefore summarized as

[Dxλ
x
Dxue]ni = ∂

∂x
λ(xi)ue,x(xi, tn) +O(∆x2) .

After having treated the [DtDtue]ni term as well, we achieve

Rni = O(∆x2) + 1
12ue,tttt(xi, tn)∆t2 .

The main conclusion is that the scheme is of second-order in time and space
also in this variable coefficient case. The key ingredients for second order are
the centered differences and the arithmetic mean for λ: all those building blocks
feature second-order accuracy.

5.4 1D wave equation on a staggered mesh
5.5 Linear wave equation in 2D/3D
The two-dimensional extension of (76) takes the form

∂2u

∂t2
= c2

(
∂2u

∂x2 + ∂2u

∂y2

)
+ f(x, y, t), (x, y) ∈ (0, L)× (0, H), t ∈ (0, T ], (87)
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where now c(x, y) is the constant wave velocity of the physical medium [0, L]×
[0, H]. In the compact notation, the PDE (87) can be written

utt = c2(uxx + uyy) + f(x, y, t), (x, y) ∈ (0, L)× (0, H), t ∈ (0, T ], (88)

in 2D, while the 3D version reads

utt = c2(uxx + uyy + uzz) + f(x, y, z, t), (89)

for (x, y, z) ∈ (0, L)× (0, H)× (0, B) and t ∈ (0, T ].
Approximating the second-order derivatives by the standard formulas (17)-

(18) yields the scheme

[DtDtu = c2(DxDxu+DyDyu) + f ]ni,j,k . (90)

The truncation error is found from

[DtDtue = c2(DxDxue +DyDyue) + f +R]n . (91)

The calculations from the 1D case can be repeated to the terms in the y and z
directions. Collecting terms that fulfill the PDE, we end up with

Rni,j,k = [ 1
12ue,tttt∆t2 − c2

1
12
(
ue,xxxx∆x2 + ue,yyyy∆x2 + ue,zzzz∆z2)]ni,j,k+

(92)
O(∆t4,∆x4,∆y4,∆z4) .

6 Truncation errors in diffusion equations
6.1 Linear diffusion equation in 1D
The standard, linear, 1D diffusion equation takes the form

∂u

∂t
= α

∂2u

∂x2 + f(x, t), x ∈ (0, L), t ∈ (0, T ], (93)

where α > 0 is the constant diffusion coefficient. A more compact form of the
diffusion equation is ut = αuxx + f .

The spatial derivative in the diffusion equation, αuxx, is commonly discretized
as [DxDxu]ni . The time-derivative, however, can be treated by a variety of
methods.

The Forward Euler scheme in time. Let us start with the simple Forward
Euler scheme:

[D+
t u = αDxDxu+ f ]n .
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The truncation error arises as the residual R when inserting the exact solution
ue in the discrete equations:

[D+
t ue = αDxDxue + f +R]ni .

Now, using (11)-(12) and (17)-(18), we can transform the difference operators to
derivatives:

ue,t(xi, tn) + 1
2ue,tt(tn)∆t+O(∆t2) = αue,xx(xi, tn)+

α

12ue,xxxx(xi, tn)∆x2 +O(∆x4) + f(xi, tn) +Rni .

The terms ue,t(xi, tn) − αue,xx(xi, tn) − f(xi, tn) vansih because ue solves the
PDE. The truncation error then becomes

Rni = 1
2ue,tt(tn)∆t+O(∆t2)− α

12ue,xxxx(xi, tn)∆x2 +O(∆x4) .

The Crank-Nicolson scheme in time. The Crank-Nicolson method consists
of using a centered difference for ut and an arithmetic average of the uxx term:

[Dtu]n+ 1
2

i = α
1
2([DxDxu]ni + [DxDxu]n+1

i + f
n+ 1

2
i .

The equation for the truncation error is

[Dtue]n+ 1
2

i = α
1
2([DxDxue]ni + [DxDxue]n+1

i ) + f
n+ 1

2
i +R

n+ 1
2

i .

To find the truncation error, we start by expressing the arithmetic average in
terms of values at time tn+ 1

2
. According to (21)-(22),

1
2([DxDxue]ni +[DxDxue]n+1

i ) = [DxDxue]n+ 1
2

i +1
8[DxDxue,tt]

n+ 1
2

i ∆t2+O(∆t4) .

With (17)-(18) we can express the difference operator DxDxu in terms of a
derivative:

[DxDxue]n+ 1
2

i = ue,xx(xi, tn+ 1
2
) + 1

12ue,xxxx(xi, tn+ 1
2
)∆x2 +O(∆x4) .

The error term from the arithmetic mean is similarly expanded,

1
8 [DxDxue,tt]

n+ 1
2

i ∆t2 = 1
8ue,ttxx(xi, tn+ 1

2
)∆t2 +O(∆t2∆x2)

The time derivative is analyzed using (5)-(6):

[Dtu]n+ 1
2

i = ue,t(xi, tn+ 1
2
) + 1

24ue,ttt(xi, tn+ 1
2
)∆t2 +O(∆t4) .
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Summing up all the contributions and notifying that

ue,t(xi, tn+ 1
2
) = αue,xx(xi, tn+ 1

2
) + f(xi, tn+ 1

2
),

the truncation error is given by

R
n+ 1

2
i = 1

8ue,xx(xi, tn+ 1
2
)∆t2 + 1

12ue,xxxx(xi, tn+ 1
2
)∆x2+

1
24ue,ttt(xi, tn+ 1

2
)∆t2 + +O(∆x4) +O(∆t4) +O(∆t2∆x2)

6.2 Linear diffusion equation in 2D/3D
6.3 A nonlinear diffusion equation in 2D

7 Exercises
Exercise 1: Truncation error of a weighted mean
Derive the truncation error of the weighted mean in (19)-(20).

Hint. Expand un+1
e and une around tn+θ.

Filename: trunc_weighted_mean.pdf.

Exercise 2: Simulate the error of a weighted mean
We consider the weighted mean

ue(tn) ≈ θun+1
e + (1− θ)une .

Choose some specific function for ue(t) and compute the error in this approxima-
tion for a sequence of decreasing ∆t = tn+1 − tn and for θ = 0, 0.25, 0.5, 0.75, 1.
Assuming that the error equals C∆tr, for some constants C and r, compute r for
the two smallest ∆t values for each choice of θ and compare with the truncation
error (19)-(20). Filename: trunc_theta_avg.py.

Exercise 3: Verify a truncation error formula
Set up a numerical experiment as explained in Section 3.5 for verifying the
formulas (15)-(16). Filename: trunc_backward_2level.py.

Exercise 4: Truncation error of the Backward Euler scheme
Derive the truncation error of the Backward Euler scheme for the decay ODE
u′ = −au with constant a. Extend the analysis to cover the variable-coefficient
case u′ = −a(t)u+ b(t). Filename: trunc_decay_BE.py.
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Exercise 5: Empirical estimation of truncation errors
Use the ideas and tools from Section 3.5 to estimate the rate of the trunca-
tion error of the Backward Euler and Crank-Nicolson schemes applied to the
exponential decay model u′ = −au, u(0) = I.

Hint. In the Backward Euler scheme, the truncation error can be estimated
at mesh points n = 1, . . . , N , while the truncation error must be estimated
at midpoints tn+ 1

2
, n = 0, . . . , N − 1 for the Crank-Nicolson scheme. The

truncation_error(dt, N) function to be supplied to the estimate function
needs to carefully implement these details and return the right t array such that
t[i] is the time point corresponding to the quantities R[i] and R_a[i].
Filename: trunc_decay_BNCN.py.

Exercise 6: Correction term for a Backward Euler scheme
Consider the model u′ = −au, u(0) = I. Use the ideas of Section 3.6 to add a
correction term to the ODE such that the Backward Euler scheme applied to
the perturbed ODE problem is of second order in ∆t. Find the amplification
factor. Filename: trunc_decay_BE_corr.pdf.

Exercise 7: Verify the effect of correction terms
The program decay_convrate.py4 solves u′ = −au, u(0) = I, by the θ-rule and
computes convergence rates. Copy this file and adjust a in the solver function
such that it incorporates correction terms. Run the program to verify that the
error from the Forward and Backward Euler schemes with perturbed a is O(∆t2),
while the error arising from the Crank-Nicolson scheme with perturbed a is
O(∆t4). Filename: trunc_decay_corr_verify.py.

Exercise 8: Truncation error of the Crank-Nicolson scheme
The variable-coefficient ODE u′ = −a(t)u+b(t) can be discretized in two different
ways by the Crank-Nicolson scheme, depending on whether we use averages for
a and b or compute them at the midpoint tn+ 1

2
:

[Dtu = −aut + b]n+ 1
2 , (94)

[Dtu = −au+ b
t]n+ 1

2 . (95)

Compute the truncation error in both cases. Filename: trunc_decay_CN_vc.pdf.
4http://tinyurl.com/jvzzcfn/decay/decay_convrate.py
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Exercise 9: Truncation error of u′ = f(u, t)
Consider the general nonlinear first-order scalar ODE

u′(t) = f(u(t), t) .

Show that the truncation error in the Forward Euler scheme,

[D+
t u = f(u, t)]n,

and in the Backward Euler scheme,

[D−t u = f(u, t)]n,

both are of first order, regardless of what f is.
Showing the order of the truncation error in the Crank-Nicolson scheme,

[Dtu = f(u, t)]n+ 1
2 ,

is somewhat more involved: Taylor expand une , un+1
e , f(une , tn), and f(un+1

e , tn+1)
around tn+ 1

2
, and use that

df

dt
= ∂f

∂u
u′ + ∂f

∂t
.

Check that the derived truncation error is consistent with previous results for
the case f(u, t) = −au. Filename: trunc_nonlinear_ODE.pdf.

Exercise 10: Truncation error of [DtDtu]n

Derive the truncation error of the finite difference approximation (17)-(18) to
the second-order derivative. Filename: trunc_d2u.pdf.

Exercise 11: Investigate the impact of approximating u′(0)
Section 4.1 describes two ways of discretizing the initial conditon u′(0) = V for
a vibration model u′′ + ω2u = 0: a centered difference [D2tu = V ]0 or a forward
difference [D+

t u = V ]0. The program vib_undamped.py5 solves u′′ + ω2u = 0
with [D2tu = 0]0 and features a function convergence_rates for computing the
order of the error in the numerical solution. Modify this program such that it
applies the forward difference [D+

t u = 0]0 and report how this simpler and more
convenient approximation impacts the overall convergence rate of the scheme.
Filename: trunc_vib_ic_fw.py.

5http://tinyurl.com/jvzzcfn/vib/vib_undamped.py
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Exercise 12: Investigate the accuracy of a simplified scheme
Consider the ODE

mu′′ + β|u′|u′ + s(u) = F (t) .

The term |u′|u′ quickly gives rise to nonlinearities and complicates the scheme.
Why not simply apply a backward difference to this term such that it only
involves known values? That is, we propose to solve

[mDtDtu+ β|D−t u|D−t u+ s(u) = F ]n .

Drop the absolute value for simplicity and find the truncation error of the scheme.
Perform numerical experiments with the scheme and compared with the one
based on centered differences. Can you illustrate the accuracy loss visually in real
computations, or is the asymptotic analysis here mainly of theoretical interest?
Filename: trunc_vib_bw_damping.pdf.
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