$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\vex}{{v_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} $$

« Previous
Next »

Example: The backward difference for \( u'(t) \)

Backward difference approximation to \( u' \): $$ \begin{equation} \lbrack D_t^- u\rbrack^n = \frac{u^{n} - u^{n-1}}{\Delta t} \approx u'(t_n) \tag{1} \tp \end{equation} $$

Define the truncation error of this approximation as $$ \begin{equation} R^n = [D^-_tu]^n - u'(t_n)\tp \tag{2} \end{equation} $$

The common way of calculating \( R^n \) is to

  1. expand \( u(t) \) in a Taylor series around the point where the derivative is evaluated, here \( t_n \),
  2. insert this Taylor series in (2), and
  3. collect terms that cancel and simplify the expression.

« Previous
Next »