Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\vex}{{v_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)}

« Previous
Next »

Example: The backward difference for u'(t)

Backward difference approximation to u' : \begin{equation} \lbrack D_t^- u\rbrack^n = \frac{u^{n} - u^{n-1}}{\Delta t} \approx u'(t_n) \tag{1} \tp \end{equation}

Define the truncation error of this approximation as \begin{equation} R^n = [D^-_tu]^n - u'(t_n)\tp \tag{2} \end{equation}

The common way of calculating R^n is to

  1. expand u(t) in a Taylor series around the point where the derivative is evaluated, here t_n ,
  2. insert this Taylor series in (2), and
  3. collect terms that cancel and simplify the expression.

« Previous
Next »