Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\vex}{{v_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)}

« Previous
Next »

Abstract problem setting

Consider an abstract differential equation \mathcal{L}(u)=0\tp Example: \mathcal{L}(u)=u'(t)+a(t)u(t)-b(t) .

The corresponding discrete equation: \mathcal{L}_{\Delta}(u) =0\tp Let now

\begin{align*} \mathcal{L}(\uex)&=0,\\ \mathcal{L}_\Delta(u)&=0\tp \end{align*} u is computed at mesh points

« Previous
Next »