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Goal.
This document illustrates best practice for developing scientific software in
an efficient and reliable way. Not only will the outlined techniques save
a lost of human time, but they will also help assure reproducible science
and higher quality of computational investigations. Key questions to be
answered are

• How should I organize a program?

• How can I efficiently and safely provide input data and run my code?

• How can I verify that the implementation is correct?

• How should I reliably work with files and documents?

• How should I conduct large numerical experiments?

1 Sample problem and code
This first introduction to good programming habits in scientific computing will
make use of a very simple mathematical problem to keep the mathematical
details at the lowest possible level while introducing a series of computer science
concepts. The simplicity of the mathematical problem obviously prevents us
from treating several techniques that are only meaningful for complex scientific
software.

1.1 Mathematical problem
We consider the simplest possible ordinary differential equation with constant
coefficient a:

u′(t) = −au(t), u(0) = I, t ∈ (0, T ] . (1)
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This problem is numerically solved by the so-called θ-rule, which is a con-
venient way to merge different formulas for the well-known Forward Euler,
Backward Euler, and Crank-Nicolson (midpoint/central) schemes. We introduce
a uniform time mesh tn = n∆t, n = 0, 1, . . . , Nt, and seek u(t) at the mesh
points. The numerical approximation to u(tn) is denoted un. Since we will use
the symbol u both for the exact analytical solution of (1) and for the numerical
approximation, we sometimes introduce ue(t) to help distinguish the two types
of solutions (i.e., subscript e for “exact”)1.

The θ-rule leads to an explicit updating formula for un+1, given un:

un+1 = 1− (1− θ)a∆t
1 + θa∆t un,

1.2 Implementation
The numerical method is implemented as a function solver. Another function
explore computes the error in the solution, by comparing with the exact solution
ue(t) = Ie−at, and creates a plot for comparing the numerical and exact solution.

The program file decay_plot.py2 contains the two functions and a main
program.

from numpy import *
from matplotlib.pyplot import *

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

def exact_solution(t, I, a):
return I*exp(-a*t)

def explore(I, a, T, dt, theta=0.5, makeplot=True):
"""
Run a case with the solver, compute error measure,
and plot the numerical and exact solutions (if makeplot=True).
"""
u, t = solver(I, a, T, dt, theta) # Numerical solution
u_e = exact_solution(t, I, a)

1In the literature, it is more common to put a subscript (like u∆ or uh) on the numerical
solution to distinguish it from the exact solution. However, we will use the variable u in the
code for the numerical approximation to be computed, and therefore adjust the mathematical
notation to convenient conventions in the code such that we can have as close correspondence
as possible between the implementation and the mathematics.

2http://tinyurl.com/nm5587k/softeng1/decay_plot.py
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e = u_e - u
E = sqrt(dt*sum(e**2))
if makeplot:

figure() # create new plot
t_e = linspace(0, T, 1001) # fine mesh for u_e
u_e = exact_solution(t_e, I, a)
plot(t, u, ’r--o’) # red dashes w/circles
plot(t_e, u_e, ’b-’) # blue line for exact sol.
legend([’numerical’, ’exact’])
xlabel(’t’)
ylabel(’u’)
title(’theta=%g, dt=%g’ % (theta, dt))
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
savefig(’%s_%g.png’ % (theta2name[theta], dt))
savefig(’%s_%g.pdf’ % (theta2name[theta], dt))
show()

return E

def main(I, a, T, dt_values, theta_values=(0, 0.5, 1)):
for theta in theta_values:

for dt in dt_values:
E = explore(I, a, T, dt, theta, makeplot=True)
print ’%3.1f %6.2f: %12.3E’ % (theta, dt, E)

main(I=1, a=2, T=5, dt_values=[0.4, 0.04])

2 User interfaces
It is good programming practice to let programs read input from the user rather
than require the user to edit the source code when trying out new values of input
parameters. One reason is that any edit of the code has a danger of introducing
bugs. Another reason is that it is easier and less manual work to supply data to
a program instead of editing the program code. A third reason is that a program
that reads input can easily be run by another program, and in this way we can
automate a large number of runs in scientific investigations.

Tip.

We shall make it a habit to equip any implementation of a numerical solver
with an appropriate user interface before testing out the code.

Reading input data can be done in many ways. We have to decide on desired
user interface, i.e., how we want to operate the program when providing input,
and then use appropriate tools to implement the user interface. There are
four basic types of user interface of relevance to our programs, listed here with
increasing complexity of the implementation:

1. Questions and answers in the terminal window

2. Command-line arguments
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3. Reading data from file

4. Graphical user interfaces

Although conceptually simple, alternative 1 involves more typing than the other
alternatives and is therefore abandoned. Below, we shall address alternative 2
and 4, which are most appropriate for the present problem.

[[[

2.1 Creating command-line interfaces
Reading input from the command line is a simple and flexible way of interact-
ing with the user. Python stores all the command-line arguments in the list
sys.argv, and there are, in principle, two ways of programming with command-
line arguments in Python:

• Decide upon a sequence of parameters on the command line and read
their values directly from the sys.argv[1:] list (sys.argv[0] is the just
program name).

• Use option-value pairs (–option value) on the command line to override
default values of input parameters, and utilize the argparse.ArgumentParser
tool to interact with the command line.

Both strategies will be illustrated next.

Reading a sequence of command-line arguments. The decay_plot.py3

program needs the following input data: I, a, T , an option to turn the plot on
or off (makeplot), and a list of ∆t values.

The simplest way of reading this input from the command line is to say that
the first four command-line arguments correspond to the first four points in the
list above, in that order, and that the rest of the command-line arguments are
the ∆t values. The input given for makeplot can be a string among ’on’, ’off’,
’True’, and ’False’. The code for reading this input is most conveniently put
in a function:

import sys

def read_command_line():
if len(sys.argv) < 6:

print ’Usage: %s I a T on/off dt1 dt2 dt3 ...’ % \
sys.argv[0]; sys.exit(1) # abort

I = float(sys.argv[1])
a = float(sys.argv[2])
T = float(sys.argv[3])
makeplot = sys.argv[4] in (’on’, ’True’)
dt_values = [float(arg) for arg in sys.argv[5:]]

return I, a, T, makeplot, dt_values

3http://tinyurl.com/nm5587k/softeng1/decay_plot.py
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One should note the following about the constructions in the program above:

• Everything on the command line ends up in a string in the list sys.argv.
Explicit conversion to, e.g., a float object is required if the string as a
number we want to compute with.

• The value of makeplot is determined from a boolean expression, which
becomes True if the command-line argument is either ’on’ or ’True’, and
False otherwise.

• It is easy to build the list of ∆t values: we simply run through the rest
of the list, sys.argv[5:], convert each command-line argument to float,
and collect these float objects in a list, using the compact and convenient
list comprehension syntax in Python.

The loops over θ and ∆t values can be coded in a main function:

def main():
I, a, T, makeplot, dt_values = read_command_line()
for theta in 0, 0.5, 1:

for dt in dt_values:
E = explore(I, a, T, dt, theta, makeplot)
print ’%3.1f %6.2f: %12.3E’ % (theta, dt, E)

The complete program can be found in decay_cml.py4.

Working with an argument parser. Python’s ArgumentParser tool in the
argparse module makes it easy to create a professional command-line interface
to any program. The documentation of ArgumentParser5 demonstrates its
versatile applications, so we shall here just list an example containing basic
features. On the command line we want to specify option-value pairs for I, a,
and T , e.g., –a 3.5 –I 2 –T 2. Including –makeplot turns the plot on and
excluding this option turns the plot off. The ∆t values can be given as –dt 1
0.5 0.25 0.1 0.01. Each parameter must have a sensible default value so that
we specify the option on the command line only when the default value is not
suitable.

We introduce a function for defining the mentioned command-line options:

def define_command_line_options():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--I’, ’--initial_condition’, type=float,

default=1.0, help=’initial condition, u(0)’,
metavar=’I’)

parser.add_argument(’--a’, type=float,
default=1.0, help=’coefficient in ODE’,
metavar=’a’)

parser.add_argument(’--T’, ’--stop_time’, type=float,

4http://tinyurl.com/nm5587k/softeng1/decay_cml.py
5http://docs.python.org/library/argparse.html
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default=1.0, help=’end time of simulation’,
metavar=’T’)

parser.add_argument(’--makeplot’, action=’store_true’,
help=’display plot or not’)

parser.add_argument(’--dt’, ’--time_step_values’, type=float,
default=[1.0], help=’time step values’,
metavar=’dt’, nargs=’+’, dest=’dt_values’)

return parser

Each command-line option is defined through the parser.add_argument
method. Alternative options, like the short –I and the more explaining version
--initial_condition can be defined. Other arguments are type for the Python
object type, a default value, and a help string, which gets printed if the command-
line argument -h or –help is included. The metavar argument specifies the
value associated with the option when the help string is printed. For example,
the option for I has this help output:

Terminal> python decay_argparse.py -h
...
--I I, --initial_condition I

initial condition, u(0)
...

The structure of this output is
--I metavar, --initial_condition metavar

help-string

The –makeplot option is a pure flag without any value, implying a true value
if the flag is present and otherwise a false value. The action=’store_true’
makes an option for such a flag.

Finally, the –dt option demonstrates how to allow for more than one value
(separated by blanks) through the nargs=’+’ keyword argument. After the
command line is parsed, we get an object where the values of the options are
stored as attributes. The attribute name is specified by the dist keyword
argument, which for the –dt option is dt_values. Without the dest argument,
the value of an option –opt is stored as the attribute opt.

The code below demonstrates how to read the command line and extract the
values for each option:

def read_command_line():
parser = define_command_line_options()
args = parser.parse_args()
print ’I={}, a={}, T={}, makeplot={}, dt_values={}’.format(

args.I, args.a, args.T, args.makeplot, args.dt_values)
return args.I, args.a, args.T, args.makeplot, args.dt_values

The main function remains the same as in the decay_cml.py code based on
reading from sys.argv directly. A complete program featuring the demo above
of ArgumentParser appears in the file decay_argparse.py6.

6http://tinyurl.com/nm5587k/softeng1/decay_argparse.py
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2.2 Creating a graphical web user interface
The Python package Parampool7 can be used to automatically generate a web-
based graphical user interface (GUI) for our simulation program. Although
the programming technique dramatically simplifies the efforts to create a GUI,
the forthcoming material on equipping our decay_mod module with a GUI is
quite technical and of significantly less importance than knowing how to make a
command-line interface (Section 2.1). There is no danger in jumping right to
Section 3.4.

Making a compute function. The first step is to identify a function that
performs the computations and that takes the necessary input variables as
arguments. This is called the compute function in Parampool terminology. We
may start with a copy of the basic file decay_plot.py8, which has a main
function displayed in Section ?? for carrying out simulations and plotting for
a series of ∆t values. Now we want to control and view the same experiments
from a web GUI.

To tell Parampool what type of input data we have, we assign default values
of the right type to all arguments in the main function and call it main_GUI:

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):

The compute function must return the HTML code we want for displaying
the result in a web page. Here we want to show plots of the numerical and exact
solution for different methods and ∆t values. The plots can be organized in a
table with θ (methods) varying through the columns and ∆t varying through the
rows. Assume now that a new version of the explore function not only returns
the error E but also HTML code containing the plot. Then we can write the
main_GUI function as

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):

# Build HTML code for web page. Arrange plots in columns
# corresponding to the theta values, with dt down the rows
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
html_text = ’<table>\n’
for dt in dt_values:

html_text += ’<tr>\n’
for theta in theta_values:

E, html = explore(I, a, T, dt, theta, makeplot=True)
html_text += """

<td>
<center><b>%s, dt=%g, error: %s</b></center><br>
%s
</td>

7https://github.com/hplgit/parampool
8http://tinyurl.com/nm5587k/softeng1/decay_plot.py
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""" % (theta2name[theta], dt, E, html)
html_text += ’</tr>\n’

html_text += ’</table>\n’
return html_text

Rather than creating plot files and showing the plot on the screen, the new
version of the explore function makes a string with the PNG code of the plot
and embeds that string in HTML code. This action is conveniently performed
by Parampool’s save_png_to_str function:

import matplotlib.pyplot as plt
...
# plot
plt.plot(t, u, r-’)
plt.xlabel(’t’)
plt.ylabel(’u’)
...
from parampool.utils import save_png_to_str
html_text = save_png_to_str(plt, plotwidth=400)

Note that we now write plt.plot, plt.xlabel, etc. The html_text string is
long and contains all the characters that build up the PNG file of the current
plot. The new explore function can make use of the above code snippet and
return html_text along with E.

Generating the user interface. The web GUI is automatically generated
by the following code, placed in a file decay_GUI_generate.py9

from parampool.generator.flask import generate
from decay_GUI import main
generate(main,

output_controller=’decay_GUI_controller.py’,
output_template=’decay_GUI_view.py’,
output_model=’decay_GUI_model.py’)

Running the decay_GUI_generate.py program results in three new files whose
names are specified in the call to generate:

1. decay_GUI_model.py defines HTML widgets to be used to set input data
in the web interface,

2. templates/decay_GUI_views.py defines the layout of the web page,

3. decay_GUI_controller.py runs the web application.

We only need to run the last program, and there is no need to look into these
files.

9http://tinyurl.com/nm5587k/softeng1/decay_GUI_generate.py
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Running the web application. The web GUI is started by

Terminal> python decay_GUI_controller.py

Open a web browser at the location 127.0.0.1:5000. Input fields for I, a, T,
dt_values, and theta_values are presented. Setting the latter two to [1.25,
0.5] and [1, 0.5], respectively, and pressing Compute results in four plots,
see Figure 1. With the techniques demonstrated here, one can easily create a
tailored web GUI for a particular type of application and use it to interactively
explore physical and numerical effects.

Figure 1: Automatically generated graphical web interface.

3 Verification
3.1 Comparison with hand calculations
One of the simplest and most powerful methods for verifying numerical codes
is to perform some steps of the algorithm by hand and compare the results
with those produced by the code. In the present case, we may choose some test
problem and run three steps by hand. Picking a(t) = t2...

3.2 Test function
Caution: choice of parameter values.

For the choice of values of parameters in verification tests one should stay
away from integers, especially 0 and 1, as these can simplify formulas
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too much for test purposes. For example, with θ = 1 the nominator in
the formula for un will be the same for all a and ∆t values. One should
therefore choose more “arbitrary” values, say θ = 0.8 and I = 0.1.

3.3 Comparison with an exact discrete solution
Sometimes it is possible to find a closed-form exact discrete solution that fulfills
the discrete finite difference equations. The implementation can then be verified
against the exact discrete solution. This is usually the best technique for
verification.

Define
A = 1− (1− θ)a∆t

1 + θa∆t .

Manual computations with the θ-rule results in

u0 = I,

u1 = Au0 = AI,

u2 = Au1 = A2I,

...
un = Anun−1 = AnI .

We have then established the exact discrete solution as

un = IAn . (2)

Caution.
One should be conscious about the different meanings of the notation on
the left- and right-hand side of (2): on the left, n in un is a superscript
reflecting a counter of mesh points (tn), while on the right, n is the power
in the exponentiation An.

Comparison of the exact discrete solution and the computed solution is done
in the following function:

def verify_exact_discrete_solution():

def exact_discrete_solution(n, I, a, theta, dt):
A = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
return I*A**n

theta = 0.8; a = 2; I = 0.1; dt = 0.8
Nt = int(8/dt) # no of steps
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)
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u_de = array([exact_discrete_solution(n, I, a, theta, dt)
for n in range(Nt+1)])

difference = abs(u_de - u).max() # max deviation
tol = 1E-15 # tolerance for comparing floats
success = difference <= tol
return success

The complete program is found in the file decay_verf2.py10 (verf2 is a short
name for "verification, version 2").

Local functions.
One can define a function inside another function, here called a local
function (also known as closure) inside a parent function. A local func-
tion is invisible outside the parent function. A convenient property is
that any local function has access to all variables defined in the parent
function, also if we send the local function to some other function as
argument (!). In the present example, it means that the local function
exact_discrete_solution does not need its five arguments as the values
can alternatively be accessed through the local variables defined in the
parent function verify_exact_discrete_solution. We can send such an
exact_discrete_solution without arguments to any other function and
exact_discrete_solution will still have access to n, I, a, and so forth
defined in its parent function.

3.4 Computing convergence rates
We expect that the error E in the numerical solution is reduced if the mesh size
∆t is decreased. More specifically, many numerical methods obey a power-law
relation between E and ∆t:

E = C∆tr, (3)

where C and r are (usually unknown) constants independent of ∆t. The formula
(3) is viewed as an asymptotic model valid for sufficiently small ∆t. How small
is normally hard to estimate without doing numerical estimations of r.

The parameter r is known as the convergence rate. For example, if the
convergence rate is 2, halving ∆t reduces the error by a factor of 4. Diminishing
∆t then has a greater impact on the error compared with methods that have
r = 1. For a given value of r, we refer to the method as of r-th order. First- and
second-order methods are most common in scientific computing.

Estimating r. There are two alternative ways of estimating C and r based
on a set of m simulations with corresponding pairs (∆ti, Ei), i = 0, . . . ,m− 1,
and ∆ti < ∆ti−1 (i.e., decreasing cell size).

10http://tinyurl.com/nm5587k/softeng1/decay_verf2.py
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1. Take the logarithm of (3), lnE = r ln ∆t+ lnC, and fit a straight line to
the data points (∆ti, Ei), i = 0, . . . ,m− 1.

2. Consider two consecutive experiments, (∆ti, Ei) and (∆ti−1, Ei−1). Di-
viding the equation Ei−1 = C∆tri−1 by Ei = C∆tri and solving for r
yields

ri−1 = ln(Ei−1/Ei)
ln(∆ti−1/∆ti)

(4)

for i = 1, . . . ,m− 1.
The disadvantage of method 1 is that (3) might not be valid for the coarsest

meshes (largest ∆t values). Fitting a line to all the data points is then misleading.
Method 2 computes convergence rates for pairs of experiments and allows us to
see if the sequence ri converges to some value as i→ m− 2. The final rm−2 can
then be taken as the convergence rate. If the coarsest meshes have a differing
rate, the corresponding time steps are probably too large for (3) to be valid.
That is, those time steps lie outside the asymptotic range of ∆t values where
the error behaves like (3).

Implementation. It is straightforward to extend the main function in the
program decay_argparse.py with statements for computing r0, r1, . . . , rm−2
from (3):

from math import log

def main():
I, a, T, makeplot, dt_values = read_command_line()
r = {} # estimated convergence rates
for theta in 0, 0.5, 1:

E_values = []
for dt in dt_values:

E = explore(I, a, T, dt, theta, makeplot=False)
E_values.append(E)

# Compute convergence rates
m = len(dt_values)
r[theta] = [log(E_values[i-1]/E_values[i])/

log(dt_values[i-1]/dt_values[i])
for i in range(1, m, 1)]

for theta in r:
print ’\nPairwise convergence rates for theta=%g:’ % theta
print ’ ’.join([’%.2f’ % r_ for r_ in r[theta]])

return r

The program containing this main function is called decay_convrate.py11.
The r object is a dictionary of lists. The keys in this dictionary are the θ

values. For example, r[1] holds the list of the ri values corresponding to θ = 1.
In the loop for theta in r, the loop variable theta takes on the values of the
keys in the dictionary r (in an undetermined ordering). We could simply do a

11http://tinyurl.com/nm5587k/softeng1/decay_convrate.py
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print r[theta] inside the loop, but this would typically yield output of the
convergence rates with 16 decimals:

[1.331919482274763, 1.1488178494691532, ...]

Instead, we format each number with 2 decimals, using a list comprehension
to turn the list of numbers, r[theta], into a list of formatted strings. Then we
join these strings with a space in between to get a sequence of rates on one line
in the terminal window. More generally, d.join(list) joins the strings in the
list list to one string, with d as delimiter between list[0], list[1], etc.

Here is an example on the outcome of the convergence rate computations:

Terminal> python decay_convrate.py --dt 0.5 0.25 0.1 0.05 0.025 0.01
...
Pairwise convergence rates for theta=0:
1.33 1.15 1.07 1.03 1.02

Pairwise convergence rates for theta=0.5:
2.14 2.07 2.03 2.01 2.01

Pairwise convergence rates for theta=1:
0.98 0.99 0.99 1.00 1.00

The Forward and Backward Euler methods seem to have an r value which
stabilizes at 1, while the Crank-Nicolson seems to be a second-order method
with r = 2.

Very often, we have some theory that predicts what r is for a numerical
method. Various theoretical error measures for the θ-rule point to r = 2 for
θ = 0.5 and r = 1 otherwise. The computed estimates of r are in very good
agreement with these theoretical values.

Why convergence rates are important.

The strong practical application of computing convergence rates is for
verification: wrong convergence rates point to errors in the code, and
correct convergence rates brings evidence that the implementation is cor-
rect. Experience shows that bugs in the code easily destroy the expected
convergence rate.

Debugging via convergence rates. Let us experiment with bugs and see
the implication on the convergence rate. We may, for instance, forget to multiply
by a in the denominator in the updating formula for u[n+1]:

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt)*u[n]

Running the same decay_convrate.py command as above gives the expected
convergence rates (!). Why? The reason is that we just specified the ∆t values
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are relied on default values for other parameters. The default value of a is 1.
Forgetting the factor a has then no effect. This example shows how important it
is to avoid parameters that are 1 or 0 when verifying implementations. Running
the code decay_v0.py with a = 2.1 and I = 0.1 yields

Terminal> python decay_convrate.py --a 2.1 --I 0.1 \
--dt 0.5 0.25 0.1 0.05 0.025 0.01

...
Pairwise convergence rates for theta=0:
1.49 1.18 1.07 1.04 1.02

Pairwise convergence rates for theta=0.5:
-1.42 -0.22 -0.07 -0.03 -0.01

Pairwise convergence rates for theta=1:
0.21 0.12 0.06 0.03 0.01

This time we see that the expected convergence rates for the Crank-Nicolson
and Backward Euler methods are not obtained, while r = 1 for the Forward
Euler method. The reason for correct rate in the latter case is that θ = 0 and
the wrong theta*dt term in the denominator vanishes anyway.

The error

u[n+1] = ((1-theta)*a*dt)/(1 + theta*dt*a)*u[n]

manifests itself through wrong rates r ≈ 0 for all three methods. About the
same results arise from an erroneous initial condition, u[0] = 1, or wrong loop
limits, range(1,Nt). It seems that in this simple problem, most bugs we can
think of are detected by the convergence rate test, provided the values of the
input data do not hide the bug.

A verify_convergence_rate function could compute the dictionary of list
via main and check if the final rate estimates (rm−2) are sufficiently close to the
expected ones. A tolerance of 0.1 seems appropriate, given the uncertainty in
estimating r:

def verify_convergence_rate():
r = main()
tol = 0.1
expected_rates = {0: 1, 1: 1, 0.5: 2}
for theta in r:

r_final = r[theta][-1]
diff = abs(expected_rates[theta] - r_final)
if diff > tol:

return False
return True # all tests passed

We remark that r[theta] is a list and the last element in any list can be
extracted by the index -1.
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4 Software engineering

Goal.
Efficient use of differential equation models requires software that is easy
to test and flexible for setting up extensive numerical experiments. This
section introduces three important concepts:

• Modules

• Testing frameworks

• Implementation with classes

The concepts are introduced using the differential equation problem u′ =
−au, u(0) = I, as example.

4.1 Making a module

The DRY principle.

The previous sections have outlined numerous different programs, all of
them having their own copy of the solver function. Such copies of the
same piece of code is against the important Don’t Repeat Yourself (DRY)
principle in programming. If we want to change the solver function there
should be one and only one place where the change needs to be performed.

To clean up the repetitive code snippets scattered among the decay_*.py
files, we start by collecting the various functions we want to keep for the future
in one file, now called decay_mod.py12 (mod stands for "module"). The following
functions are copied to this file:

• solver for computing the numerical solution

• verify_three_steps for verifying the first three solution points against
hand calculations

• verify_discrete_solution for verifying the entire computed solution
against an exact formula for the numerical solution

• explore for computing and plotting the solution

• define_command_line_options for defining option-value pairs on the
command line

12http://tinyurl.com/nm5587k/softeng1/decay_mod.py
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• read_command_line for reading input from the command line, now ex-
tended to work both with sys.argv directly and with an ArgumentParser
object

• main for running experiments with θ = 0, 0.5, 1 and a series of ∆t values,
and computing convergence rates

• main_GUI for doing the same as the main function, but modified for auto-
matic GUI generation

• verify_convergence_rate for verifying the computed convergence rates
against the theoretically expected values

We use Matplotlib for plotting. A sketch of the decay_mod.py file, with complete
versions of the modified functions, looks as follows:

from numpy import *
from matplotlib.pyplot import *
import sys

def solver(I, a, T, dt, theta):
...

def verify_three_steps():
...

def verify_exact_discrete_solution():
...

def u_exact(t, I, a):
...

def explore(I, a, T, dt, theta=0.5, makeplot=True):
...

def define_command_line_options():
...

def read_command_line(use_argparse=True):
if use_argparse:

parser = define_command_line_options()
args = parser.parse_args()
print ’I={}, a={}, makeplot={}, dt_values={}’.format(

args.I, args.a, args.makeplot, args.dt_values)
return args.I, args.a, args.makeplot, args.dt_values

else:
if len(sys.argv) < 6:

print ’Usage: %s I a on/off dt1 dt2 dt3 ...’ % \
sys.argv[0]; sys.exit(1)

I = float(sys.argv[1])
a = float(sys.argv[2])
T = float(sys.argv[3])
makeplot = sys.argv[4] in (’on’, ’True’)
dt_values = [float(arg) for arg in sys.argv[5:]]

return I, a, makeplot, dt_values

17



def main():
...

This decay_mod.py file is already a module such that we can import desired
functions in other programs. For example, we can in a file do

from decay_mod import solver
u, t = solver(I=1.0, a=3.0, T=3, dt=0.01, theta=0.5)

However, it should also be possible to both use decay_mod.py as a module
and execute the file as a program that runs main(). This is accomplished by
ending the file with a test block:

if __name__ == ’__main__’:
main()

When decay_mod.py is used as a module, __name__ equals the module name
decay_mod, while __name__ equals ’__main__’ when the file is run as a pro-
gram. Optionally, we could run the verification tests if the word verify is
present on the command line and verify_convergence_rate could be tested if
verify_rates is found on the command line. The verify_rates argument must
be removed before we read parameter values from the command line, otherwise
the read_command_line function (called by main) will not work properly.

if __name__ == ’__main__’:
if ’verify’ in sys.argv:

if verify_three_steps() and verify_discrete_solution():
pass # ok

else:
print ’Bug in the implementation!’

elif ’verify_rates’ in sys.argv:
sys.argv.remove(’verify_rates’)
if not ’--dt’ in sys.argv:

print ’Must assign several dt values’
sys.exit(1) # abort

if verify_convergence_rate():
pass

else:
print ’Bug in the implementation!’

else:
# Perform simulations
main()

4.2 Prefixing imported functions by the module name
Import statements of the form from module import * import functions and
variables in module.py into the current file. For example, when doing

from numpy import *
from matplotlib.pyplot import *

18



we get mathematical functions like sin and exp as well as MATLAB-style
functions like linspace and plot, which can be called by these well-known names.
Unfortunately, it sometimes becomes confusing to know where a particular
function comes from. Is it from numpy? Or matplotlib.pyplot? Or is it our
own function?

An alternative import is

import numpy
import matplotlib.pyplot

and such imports require functions to be prefixed by the module name, e.g.,

t = numpy.linspace(0, T, Nt+1)
u_e = I*numpy.exp(-a*t)
matplotlib.pyplot.plot(t, u_e)

This is normally regarded as a better habit because it is explicitly stated from
which module a function comes from.

The modules numpy and matplotlib.pyplot are so frequently used, and
their full names quite tedious to write, so two standard abbreviations have
evolved in the Python scientific computing community:

import numpy as np
import matplotlib.pyplot as plt

t = np.linspace(0, T, Nt+1)
u_e = I*np.exp(-a*t)
plt.plot(t, u_e)

A version of the decay_mod module where we use the np and plt prefixes is
found in the file decay_mod_prefix.py13.

The downside of prefixing functions by the module name is that mathematical
expressions like e−at sin(2πt) get cluttered with module names,

numpy.exp(-a*t)*numpy.sin(2(numpy.pi*t)
# or
np.exp(-a*t)*np.sin(2*np.pi*t)

Such an expression looks like exp(-a*t)*sin(2*pi*t) in most other program-
ming languages. Similarly, np.linspace and plt.plot look less familiar to
people who are used to MATLAB and who have not adopted Python’s prefix
style. Whether to do from module import * or import module depends on
personal taste and the problem at hand. In these writings we use from module
import in shorter programs where similarity with MATLAB could be an advan-
tage, and where a one-to-one correspondence between mathematical formulas
and Python expressions is important. The style import module is preferred
inside Python modules (see Exercise 5 for a demonstration).

13http://tinyurl.com/nm5587k/softeng1/decay_mod_prefix.py

19

http://tinyurl.com/nm5587k/softeng1/decay_mod_prefix.py


4.3 Doctests
We have emphasized how important it is to be able to run tests in the program at
any time. This was solved by calling various verify* functions in the previous
examples. However, there exists well-established procedures and corresponding
tools for automating the execution of tests. We shall briefly demonstrate two
important techniques: doctest and unit testing. The corresponding files are the
modules decay_mod_doctest.py14 and decay_mod_nosetest.py15.

A doc string (the first string after the function header) is used to document
the purpose of functions and their arguments. Very often it is instructive to
include an example on how to use the function. Interactive examples in the
Python shell are most illustrative as we can see the output resulting from function
calls. For example, we can in the solver function include an example on calling
this function and printing the computed u and t arrays:

def solver(I, a, T, dt, theta):
"""
Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt.

>>> u, t = solver(I=0.8, a=1.2, T=4, dt=0.5, theta=0.5)
>>> for t_n, u_n in zip(t, u):
... print ’t=%.1f, u=%.14f’ % (t_n, u_n)
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
t=2.0, u=0.06725254717972
t=2.5, u=0.03621291001985
t=3.0, u=0.01949925924146
t=3.5, u=0.01049960113002
t=4.0, u=0.00565363137770
"""
...

When such interactive demonstrations are inserted in doc strings, Python’s
doctest16 module can be used to automate running all commands in interactive
sessions and compare new output with the output appearing in the doc string.
All we have to do in the current example is to write

Terminal> python -m doctest decay_mod_doctest.py

This command imports the doctest module, which runs all tests. No additional
command-line argument is allowed when running doctests. If any test fails, the
problem is reported, e.g.,

Terminal> python -m doctest decay_mod_doctest.py
********************************************************

14http://tinyurl.com/nm5587k/softeng1/decay_mod_doctest.py
15http://tinyurl.com/nm5587k/softeng1/decay_mod_nosetest.py
16http://docs.python.org/library/doctest.html
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File "decay_mod_doctest.py", line 12, in decay_mod_doctest....
Failed example:

for t_n, u_n in zip(t, u):
print ’t=%.1f, u=%.14f’ % (t_n, u_n)

Expected:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
t=2.0, u=0.06725254717972

Got:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
t=2.0, u=0.06725254718756

********************************************************
1 items had failures:

1 of 2 in decay_mod_doctest.solver
***Test Failed*** 1 failures.

Note that in the output of t and u we write u with 14 digits. Writing all 16
digits is not a good idea: if the tests are run on different hardware, round-off
errors might be different, and the doctest module detects that the numbers are
not precisely the same and reports failures. In the present application, where
0 < u(t) ≤ 0.8, we expect round-off errors to be of size 10−16, so comparing 15
digits would probably be reliable, but we compare 14 to be on the safe side.

Doctests are highly encouraged as they do two things: 1) demonstrate how a
function is used and 2) test that the function works.

Here is an example on a doctest in the explore function:

def explore(I, a, T, dt, theta=0.5, makeplot=True):
"""
Run a case with the solver, compute error measure,
and plot the numerical and exact solutions (if makeplot=True).

>>> for theta in 0, 0.5, 1:
... E = explore(I=1.9, a=2.1, T=5, dt=0.1, theta=theta,
... makeplot=False)
... print ’%.10E’ % E
...
7.3565079236E-02
2.4183893110E-03
6.5013039886E-02
"""
...

This time we limit the output to 10 digits.

Caution.
Doctests requires careful coding if they use command-line input or print
results to the terminal window. Command-line input must be simulated by
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filling sys.argv correctly, e.g., sys.argv = ’–I 1.0 –a 5’.split. The
output lines of print statements must be copied exactly as they appear
when running the statements in an interactive Python shell.

4.4 Unit testing with nose
The unit testing technique consists of identifying small units of code, usually
functions (or classes), and write one or more tests for each unit. One test should,
ideally, not depend on the outcome of other tests. For example, the doctest
in function solver is a unit test, and the doctest in function explore as well,
but the latter depends on a working solver. Putting the error computation
and plotting in explore in two separate functions would allow independent unit
tests. In this way, the design of unit tests impacts the design of functions. The
recommended practice is actually to design and write the unit tests first and
then implement the functions!

In scientific computing it is not always obvious how to best perform unit
testing. The units is naturally larger than in non-scientific software. Very often
the solution procedure of a mathematical problem identifies a unit.

Basic use of nose. The nose package is a versatile tool for implementing
unit tests in Python. Here is a short explanation of the usage of nose:

1. Implement tests in functions with names starting with test_. Such func-
tions cannot have any arguments.

2. The test functions perform assertions on computed results using assert
functions from the nose.tools module.

3. The test functions can be in the source code files or be collected in separate
files with names test*.py.

Here comes a very simple illustration of the three points. Assume that we have
this function in a module mymod:

def double(n):
return 2*n

Either in this file, or in a separate file test_mymod.py, we implement a test
function whose purpose is to test that the function double works as intended:

import nose.tools as nt

def test_double():
result = double(4)
nt.assert_equal(result, 8)

Notice that test_double has no arguments. We need to do an import mymod
or from mymod import double if this test resides in a separate file. Running
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Terminal> nosetests -s mymod

makes the nose tool run all functions with names matching test_*() in
mymod.py. Alternatively, if the test functions are in some test_mymod.py file,
we can just write nosetests -s. The nose tool will then look for all files with
names mathching test*.py and run all functions test_*() in these files.

When you have nose tests in separate test files with names test*.py it is
common to collect these files in a subdirectory tests, or *_tests if you have
several test subdirectories. Running nosetests -s will then recursively look for
all tests and *_tests subdirectories and run all functions test_*() in all files
test_*.py in these directories. Just one command can then launch a series of
tests in a directory tree!

An example of a tests directory with different types of test*.py files are
found in src/decay/tests17. Note that these perform imports of modules in the
parent directory. These imports works well because the tests are supposed to be
run by nosetests -s executed in the parent directory (decay).

Tip.

The -s option to nosetests assures that any print statement in the
test_* functions appears in the output. Without this option, nosetests
suppressed whatever the tests writes to the terminal window (standard
output). Such behavior is annoying, especially when developing and testing
tests.

The number of failed tests and their details are reported, or an OK is printed
if all tests passed.

The advantage with the nose package is two-fold:

1. tests are written and collected in a structured way, and

2. large collections of tests, scattered throughout a tree of directories, can be
executed with one command nosetests -s.

Alternative assert statements. In case the nt.assert_equal function finds
that the two arguments are equal, the test is a success, otherwise it is a failure
and an exception of type AssertionError is raised. The particular exception is
the indicator that a test has failed.

Instead of calling the convenience function nt.assert_equal, we can use
Python’s plain assert statement, which tests if a boolean expression is true and
raises an AssertionError otherwise. Here, the statement is assert result ==
8.

17http://tinyurl.com/nm5587k/softeng1/tests
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A completely manual alternative is to explicitly raise an AssertionError
exception if the computed result is wrong:

if result != 8:
raise AssertionError()

Applying nose. Let us illustrate how to use the nose tool for testing key
functions in the decay_mod module. Or more precisely, the module is called
decay_mod_unittest with all the verify* functions removed as these now are
outdated by the unit tests.

We design three unit tests:

1. A comparison between the computed un values and the exact discrete
solution.

2. A comparison between the computed un values and precomputed, verified
reference values.

3. A comparison between observed and expected convergence rates.

These tests follow very closely the code in the previously shown verify* functions.
We start with comparing un, as computed by the function solver, to the formula
for the exact discrete solution:

import nose.tools as nt
import decay_mod_unittest as decay_mod
import numpy as np

def exact_discrete_solution(n, I, a, theta, dt):
"""Return exact discrete solution of the theta scheme."""
dt = float(dt) # avoid integer division
factor = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
return I*factor**n

def test_exact_discrete_solution():
"""
Compare result from solver against
formula for the discrete solution.
"""
theta = 0.8; a = 2; I = 0.1; dt = 0.8
N = int(8/dt) # no of steps
u, t = decay_mod.solver(I=I, a=a, T=N*dt, dt=dt, theta=theta)
u_de = np.array([exact_discrete_solution(n, I, a, theta, dt)

for n in range(N+1)])
diff = np.abs(u_de - u).max()
nt.assert_almost_equal(diff, 0, delta=1E-14)

The nt.assert_almost_equal is the relevant function for comparing two
real numbers. The delta argument specifies a tolerance for the comparison.
Alternatively, one can specify a places argument for the number of decimal
places to be used in the comparison.
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After having carefully verified the implementation, we may store correctly
computed numbers in the test program or in files for use in future tests. Here is
an example on how the outcome from the solver function can be compared to
what is considered to be correct results:

def test_solver():
"""
Compare result from solver against
precomputed arrays for theta=0, 0.5, 1.
"""
I=0.8; a=1.2; T=4; dt=0.5 # fixed parameters
precomputed = {

’t’: np.array([ 0. , 0.5, 1. , 1.5, 2. , 2.5,
3. , 3.5, 4. ]),

0.5: np.array(
[ 0.8 , 0.43076923, 0.23195266, 0.12489759,

0.06725255, 0.03621291, 0.01949926, 0.0104996 ,
0.00565363]),

0: np.array(
[ 8.00000000e-01, 3.20000000e-01,

1.28000000e-01, 5.12000000e-02,
2.04800000e-02, 8.19200000e-03,
3.27680000e-03, 1.31072000e-03,
5.24288000e-04]),

1: np.array(
[ 0.8 , 0.5 , 0.3125 , 0.1953125 ,

0.12207031, 0.07629395, 0.04768372, 0.02980232,
0.01862645]),

}
for theta in 0, 0.5, 1:

u, t = decay_mod.solver(I, a, T, dt, theta=theta)
diff = np.abs(u - precomputed[theta]).max()
# Precomputed numbers are known to 8 decimal places
nt.assert_almost_equal(diff, 0, places=8,

msg=’theta=%s’ % theta)

The precomputed object is a dictionary with four keys: ’t’ for the time mesh,
and three θ values for un solutions corresponding to θ = 0, 0.5, 1.

Testing for special type of input data that may cause trouble constitutes
a common way of constructing unit tests. For example, the updating formula
for un+1 may be incorrectly evaluated because of unintended integer divisions.
With

theta = 1; a = 1; I = 1; dt = 2

the nominator and denominator in the updating expression,

(1 - (1-theta)*a*dt)
(1 + theta*dt*a)

evaluate to 1 and 3, respectively, and the fraction 1/3 will call up integer division
and consequently lead to u[n+1]=0. We construct a unit test to make sure
solver is smart enough to avoid this problem:
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def test_potential_integer_division():
"""Choose variables that can trigger integer division."""
theta = 1; a = 1; I = 1; dt = 2
N = 4
u, t = decay_mod.solver(I=I, a=a, T=N*dt, dt=dt, theta=theta)
u_de = np.array([exact_discrete_solution(n, I, a, theta, dt)

for n in range(N+1)])
diff = np.abs(u_de - u).max()
nt.assert_almost_equal(diff, 0, delta=1E-14)

The final test is to see that the convergence rates corresponding to θ = 0, 0.5, 1
are 1, 2, and 1, respectively:

def test_convergence_rates():
"""Compare empirical convergence rates to exact ones."""
# Set command-line arguments directly in sys.argv
import sys
sys.argv[1:] = ’--I 0.8 --a 2.1 --T 5 ’\

’--dt 0.4 0.2 0.1 0.05 0.025’.split()
r = decay_mod.main()
for theta in r:

nt.assert_true(r[theta]) # check for non-empty list

expected_rates = {0: 1, 1: 1, 0.5: 2}
for theta in r:

r_final = r[theta][-1]
# Compare to 1 decimal place
nt.assert_almost_equal(expected_rates[theta], r_final,

places=1, msg=’theta=%s’ % theta)

Nothing more is needed in the test_decay_nose.py18 file where the tests
reside. Running nosetests -s will report Ran 3 tests and an OK for success.
Every time we modify the decay_mod_unittest module we can run nosetests
to quickly see if the edits have any impact on the verification tests.

Installation of nose. The nose package does not come with a standard
Python distribution and must therefore be installed separately. The procedure is
standard and described on Nose’s web pages19. On Debian-based Linux systems
the command is sudo apt-get install python-nose, and with MacPorts you
run sudo port install py27-nose.

Using nose to test modules with doctests. Assume that mod is the name
of some module that contains doctests. We may let nose run these doctests and
report errors in the standard way using the code set-up

import doctest
import mod

def test_mod():
failure_count, test_count = doctest.testmod(m=mod)

18http://tinyurl.com/nm5587k/softeng1/tests/test_decay_nose.py
19http://nose.readthedocs.org/en/latest/
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nt.assert_equal(failure_count, 0,
msg=’%d tests out of %d failed’ %
(failure_count, test_count))

The call to doctest.testmod runs all doctests in the module file mod.py and
returns the number of failures (failure_count) and the total number of tests
(test_count). A real example is found in the file test_decay_doctest.py20.

4.5 Classical class-based unit testing
The classical way of implementing unit tests derives from the JUnit tool in Java
where all tests are methods in a class for testing. Python comes with a module
unittest for doing this type of unit tests. While nose allows simple functions for
unit tests, unittest requires deriving a class Test* from unittest.TestCase
and implementing each test as methods with names test_* in that class. I
strongly recommend to use nose over unittest, because it is much simpler and
more convenient, but class-based unit testing is a very classical subject that
computational scientists should have some knowledge about. That is why a short
introduction to unittest is included below.

Basic use of unittest. We apply the double function in the mymod module
introduced in the previous section as example. Unit testing with the aid of the
unittest module consists of writing a file test_mymod.py with the content

import unittest
import mymod

class TestMyCode(unittest.TestCase):
def test_double(self):

result = mymod.double(4)
self.assertEqual(result, 8)

if __name__ == ’__main__’:
unittest.main()

The test is run by executing the test file test_mymod.py as a standard Python
program. There is no support in unittest for automatically locating and
running all tests in all test files in a directory tree.

Those who have experience with object-oriented programming will see that
the difference between using unittest and nose is minor.

Demonstration of unittest. The same tests as shown for the nose framework
are reimplemented with the TestCase classes in the file test_decay_unittest.
py21. The tests are identical, the only difference being that with unittest we
must write the tests as methods in a class and the assert functions have slightly
different names.

20http://tinyurl.com/nm5587k/softeng1/tests/test_decay_doctest.py
21http://tinyurl.com/nm5587k/softeng1/tests/test_decay_nose.py
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import unittest
import decay_mod_unittest as decay
import numpy as np

def exact_discrete_solution(n, I, a, theta, dt):
factor = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
return I*factor**n

class TestDecay(unittest.TestCase):

def test_exact_discrete_solution(self):
...
diff = np.abs(u_de - u).max()
self.assertAlmostEqual(diff, 0, delta=1E-14)

def test_solver(self):
...
for theta in 0, 0.5, 1:

...
self.assertAlmostEqual(diff, 0, places=8,

msg=’theta=%s’ % theta)

def test_potential_integer_division():
...
self.assertAlmostEqual(diff, 0, delta=1E-14)

def test_convergence_rates(self):
...
for theta in r:

...
self.assertAlmostEqual(...)

if __name__ == ’__main__’:
unittest.main()

4.6 Implementing simple problem and solver classes
The θ-rule was compactly and conveniently implemented in a function solver
in Section ??. In more complicated problems it might be beneficial to use
classes and introduce a class Problem to hold the definition of the physical
problem, a class Solver to hold the data and methods needed to numerically
solve the problem, and a class Visualizer to make plots. This idea will now be
illustrated, resulting in code that represents an alternative to the solver and
explore functions found in the decay_mod module.

Explaining the details of class programming in Python is considered beyond
the scope of this text. Readers who are unfamiliar with Python class programming
should first consult one of the many electronic Python tutorials or textbooks
to come up to speed with concepts and syntax of Python classes before reading
on. The author has a gentle introduction to class programming for scientific
applications in [1], see Chapter 7 and 9 and Appendix E. Other useful resources
are

• The Python Tutorial: http://docs.python.org/2/tutorial/classes.
html
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• Wiki book on Python Programming: http://en.wikibooks.org/wiki/
Python_Programming/Classes

• tutorialspoint.com: http://www.tutorialspoint.com/python/python_
classes_objects.htm

The problem class. The purpose of the problem class is to store all infor-
mation about the mathematical model. This usually means all the physical
parameters in the problem. In the current example with exponential decay we
may also add the exact solution of the ODE to the problem class. The simplest
form of a problem class is therefore

from numpy import exp

class Problem:
def __init__(self, I=1, a=1, T=10):

self.T, self.I, self.a = I, float(a), T

def u_exact(self, t):
I, a = self.I, self.a
return I*exp(-a*t)

We could in the u_exact method have written self.I*exp(-self.a*t), but
using local variables I and a allows the formula I*exp(-a*t) which looks closer
to the mathematical expression Ie−at. This is not an important issue with the
current compact formula, but is beneficial in more complicated problems with
longer formulas to obtain the closest possible relationship between code and
mathematics. My coding style is to strip off the self prefix when the code
expresses mathematical formulas.

The class data can be set either as arguments in the constructor or at any
time later, e.g.,

problem = Problem(T=5)
problem.T = 8
problem.dt = 1.5

(Some programmers prefer set and get functions for setting and getting data in
classes, often implemented via properties in Python, but I consider that overkill
when we just have a few data items in a class.)

It would be convenient if class Problem could also initialize the data from the
command line. To this end, we add a method for defining a set of command-line
options and a method that sets the local attributes equal to what was found on
the command line. The default values associated with the command-line options
are taken as the values provided to the constructor. Class Problem now becomes

class Problem:
def __init__(self, I=1, a=1, T=10):

self.T, self.I, self.a = I, float(a), T
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def define_command_line_options(self, parser=None):
if parser is None:

import argparse
parser = argparse.ArgumentParser()

parser.add_argument(
’--I’, ’--initial_condition’, type=float,
default=self.I, help=’initial condition, u(0)’,
metavar=’I’)

parser.add_argument(
’--a’, type=float, default=self.a,
help=’coefficient in ODE’, metavar=’a’)

parser.add_argument(
’--T’, ’--stop_time’, type=float, default=self.T,
help=’end time of simulation’, metavar=’T’)

return parser

def init_from_command_line(self, args):
self.I, self.a, self.T = args.I, args.a, args.T

def exact_solution(self, t):
I, a = self.I, self.a
return I*exp(-a*t)

Observe that if the user already has an ArgumentParser object it can be supplied,
but if she does not have any, class Problem makes one. Python’s None object is
used to indicate that a variable is not initialized with a proper value.

The solver class. The solver class stores data related to the numerical solution
method and provides a function solve for solving the problem. A problem object
must be given to the constructor so that the solver can easily look up physical
data. In the present example, the data related to the numerical solution method
consists of ∆t and θ. We add, as in the problem class, functionality for reading
∆t and θ from the command line:

class Solver:
def __init__(self, problem, dt=0.1, theta=0.5):

self.problem = problem
self.dt, self.theta = float(dt), theta

def define_command_line_options(self, parser):
parser.add_argument(

’--dt’, ’--time_step_value’, type=float,
default=0.5, help=’time step value’, metavar=’dt’)

parser.add_argument(
’--theta’, type=float, default=0.5,
help=’time discretization parameter’, metavar=’dt’)

return parser

def init_from_command_line(self, args):
self.dt, self.theta = args.dt, args.theta

def solve(self):
from decay_mod import solver
self.u, self.t = solver(

self.problem.I, self.problem.a, self.problem.T,
self.dt, self.theta)
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def error(self):
u_e = self.problem.exact_solution(self.t)
e = u_e - self.u
E = sqrt(self.dt*sum(e**2))
return E

Note that we here simply reuse the implementation of the numerical method from
the decay_mod module. The solve function is just a wrapper of the previously
developed stand-alone solver function.

The visualizer class. The purpose of the visualizer class is to plot the numer-
ical solution stored in class Solver. We also add the possibility to plot the exact
solution. Access to the problem and solver objects is required when making plots
so the constructor must hold references to these objects:

class Visualizer:
def __init__(self, problem, solver):

self.problem, self.solver = problem, solver

def plot(self, include_exact=True, plt=None):
"""
Add solver.u curve to the plotting object plt,
and include the exact solution if include_exact is True.
This plot function can be called several times (if
the solver object has computed new solutions).
"""
if plt is None:

import scitools.std as plt # can use matplotlib as well

plt.plot(self.solver.t, self.solver.u, ’--o’)
plt.hold(’on’)
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
name = theta2name.get(self.solver.theta, ’’)
legends = [’numerical %s’ % name]
if include_exact:

t_e = linspace(0, self.problem.T, 1001)
u_e = self.problem.exact_solution(t_e)
plt.plot(t_e, u_e, ’b-’)
legends.append(’exact’)

plt.legend(legends)
plt.xlabel(’t’)
plt.ylabel(’u’)
plt.title(’theta=%g, dt=%g’ %

(self.solver.theta, self.solver.dt))
plt.savefig(’%s_%g.png’ % (name, self.solver.dt))
return plt

The plt object in the plot method is worth a comment. The idea is that
plot can add a numerical solution curve to an existing plot. Calling plot with
a plt object (which has to be a matplotlib.pyplot or scitools.std object
in this implementation), will just add the curve self.solver.u as a dashed
line with circles at the mesh points (leaving the color of the curve up to the
plotting tool). This functionality allows plots with several solutions: just make
a loop where new data is set in the problem and/or solver classes, the solver’s

31



solve() method is called, and the most recent numerical solution is plotted by
the plot(plt) method in the visualizer object Exercise 6 describes a problem
setting where this functionality is explored.

Combining the objects. Eventually we need to show how the classes Problem,
Solver, and Visualizer play together:

def main():
problem = Problem()
solver = Solver(problem)
viz = Visualizer(problem, solver)

# Read input from the command line
parser = problem.define_command_line_options()
parser = solver. define_command_line_options(parser)
args = parser.parse_args()
problem.init_from_command_line(args)
solver. init_from_command_line(args)

# Solve and plot
solver.solve()
import matplotlib.pyplot as plt
#import scitools.std as plt
plt = viz.plot(plt=plt)
E = solver.error()
if E is not None:

print ’Error: %.4E’ % E
plt.show()

The file decay_class.py22 constitutes a module with the three classes and
the main function.

Test the understanding.

Implement the problem in Exercise ?? in terms of problem, solver, and
visualizer classes. Equip the classes and their methods with doc strings
with tests. Also include nose tests.

4.7 Improving the problem and solver classes
The previous Problem and Solver classes containing parameters soon get much
repetitive code when the number of parameters increases. Much of this code can
be parameterized and be made more compact. For this purpose, we decide to
collect all parameters in a dictionary, self.prms, with two associated dictionaries
self.types and self.help for holding associated object types and help strings.
Provided a problem, solver, or visualizer class defines these three dictionaries in
the constructor, using default or user-supplied values of the parameters, we can
create a super class Parameters with general code for defining command-line

22http://tinyurl.com/nm5587k/softeng1/decay_class.py
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options and reading them as well as methods for setting and getting a parameter.
A Problem or Solver class will then inherit command-line functionality and the
set/get methods from the Parameters class.

A generic class for parameters. A simplified version of the parameter class
looks as follows:

class Parameters:
def set(self, **parameters):

for name in parameters:
self.prms[name] = parameters[name]

def get(self, name):
return self.prms[name]

def define_command_line_options(self, parser=None):
if parser is None:

import argparse
parser = argparse.ArgumentParser()

for name in self.prms:
tp = self.types[name] if name in self.types else str
help = self.help[name] if name in self.help else None
parser.add_argument(

’--’ + name, default=self.get(name), metavar=name,
type=tp, help=help)

return parser

def init_from_command_line(self, args):
for name in self.prms:

self.prms[name] = getattr(args, name)

The file class_decay_oo.py23 contains a slightly more advanced version of class
Parameters where we in the set and get functions test for valid parameter names
and raise exceptions with informative messages if any name is not registered.

The problem class. A class Problem for the problem u′ = −au, u(0) = I,
t ∈ (0, T ], with parameters input a, I, and T can now be coded as

class Problem(Parameters):
"""
Physical parameters for the problem u’=-a*u, u(0)=I,
with t in [0,T].
"""
def __init__(self):

self.prms = dict(I=1, a=1, T=10)
self.types = dict(I=float, a=float, T=float)
self.help = dict(I=’initial condition, u(0)’,

a=’coefficient in ODE’,
T=’end time of simulation’)

def exact_solution(self, t):

23http://tinyurl.com/nm5587k/softeng1/class_decay_oo.py
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I, a = self.get(’I’), self.get(’a’)
return I*np.exp(-a*t)

The solver class. Also the solver class is derived from class Parameters
and works with the prms, types, and help dictionaries in the same way as
class Problem. Otherwise, the code is very similar to class Solver in the
decay_class.py file:

class Solver(Parameters):
def __init__(self, problem):

self.problem = problem
self.prms = dict(dt=0.5, theta=0.5)
self.types = dict(dt=float, theta=float)
self.help = dict(dt=’time step value’,

theta=’time discretization parameter’)

def solve(self):
from decay_mod import solver
self.u, self.t = solver(

self.problem.get(’I’),
self.problem.get(’a’),
self.problem.get(’T’),
self.get(’dt’),
self.get(’theta’))

def error(self):
try:

u_e = self.problem.exact_solution(self.t)
e = u_e - self.u
E = np.sqrt(self.get(’dt’)*np.sum(e**2))

except AttributeError:
E = None

return E

The visualizer class. Class Visualizer can be identical to the one in the
decay_class.py file since the class does not need any parameters. However, a
few adjustments in the plot method is necessary since parameters are accessed
as, e.g., problem.get(’T’) rather than problem.T. The details are found in
the file class_decay_oo.py.

Finally, we need a function that solves a real problem using the classes
Problem, Solver, and Visualizer. This function can be just like main in the
decay_class.py file.

The advantage with the Parameters class is that it scales to problems with
a large number of physical and numerical parameters: as long as the parameters
are defined once via a dictionary, the compact code in class Parameters can
handle any collection of parameters of any size.

5 Performing scientific experiments
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Goal.
This section explores the behavior of a numerical method for a differential
equation through computer experiments. In particular, it is shown how
scientific experiments can be set up and reported. We address the ODE
problem

u′(t) = −au(t), u(0) = I, t ∈ (0, T ], (5)

numerically discretized by the θ-rule:

un+1 = 1− (1− θ)a∆t
1 + θa∆t un, u0 = I .

Our aim is to plot u0, u1, . . . , uN together with the exact solution ue =
Ie−at for various choices of the parameters in this numerical problem: I,
a, ∆t, and θ. We are especially interested in how the discrete solution
compares with the exact solution when the ∆t parameter is varied and θ
takes on the three values corresponding to the Forward Euler, Backward
Euler, and Crank-Nicolson schemes (θ = 0, 1, 0.5, respectively).

5.1 Software
A verified implementation for computing the numerical solution un and plotting
it together with the exact solution ue is found in the file decay_mod.py24. This
program admits command-line arguments to specify a series of ∆t values and
will run a loop over these values and θ = 0, 0.5, 1. We make a slight edit of how
the plots are designed: the numerical solution is specified with line type ’r–o’
(dashed red lines with dots at the mesh points), and the show() command is
removed to avoid a lot of plot windows popping up on the computer screen (but
hardcopies of the plot are still stored in files via savefig). The slightly modified
program has the name experiments/decay_mod.py25. All files associated with
the scientific investigation are collected in a subdirectory experiments.

Running the experiments is easy since the decay_mod.py program already
has the loops over θ and ∆t implemented. An experiment with I = 1, a = 2,
T = 5, and dt = 0.5, 0.25, 0.1, 0.05 is run by

Terminal> python decay_mod.py --I 1 --a 2 --makeplot \
--T 5 --dt 0.5 0.25 0.1 0.05

24http://tinyurl.com/nm5587k/softeng1/decay_mod.py
25http://tinyurl.com/nm5587k/softeng1/experiments/decay_mod.py
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5.2 Combining plot files
The decay_mod.py program generates a lot of image files, e.g., FE_*.png,
BE_*.png, and CN_*.png. We want to combine all the FE_*.png files in a
table fashion in one file, with two images in each row, starting with the largest
∆t in the upper left corner and decreasing the value as we go to the right and
down. This can be done using the montage26 program. The often occurring white
areas around the plots can be cropped away by the convert -trim command.
The remaining white can be made transparent for HTML pages with a non-white
background by the command convert -transparent white.

Also plot files in the PDF format with names FE_*.pdf, BE_*.pdf, and
CN_*.pdf are generated and these should be combined using other tools: pdftk
to combine individual plots into one file with one plot per page, and pdfnup
to combine the pages into a table with multiple plots per page. The resulting
image often has some extra surrounding white space that can be removed by the
pdfcrop program. The code snippets below contain all details about the usage
of montage, convert, pdftk, pdfnup, and pdfcrop.

Running manual commands is boring, and errors may easily sneak in. Both
for automating manual work and documenting the operating system commands
we actually issued in the experiment, we should write a script (little program).
An alternative is to write the commands into an IPython notebook and use
the notebook as the script. A plain script as a standard Python program in a
separate text file will be used here.

Reproducible science.

A script that automates running our computer experiments will ensure that
the experiments can easily be rerun by ourselves or others in the future,
either to check the results or redo the experiments with other input data.
Also, whatever we did to produce the results is documented in every detail
in the script. Automating scripts are therefore essential to making our
research reproducible, which is a fundamental principle in science.

The script takes a list of ∆t values on the command line as input and
makes three combined images, one for each θ value, displaying the quality of the
numerical solution as ∆t varies. For example,

Terminal> python decay_exper0.py 0.5 0.25 0.1 0.05

results in images FE.png, CN.png, BE.png, FE.pdf, CN.pdf, and BE.pdf, each
with four plots corresponding to the four ∆t values. Each plot compares the
numerical solution with the exact one. The latter image is shown in Figure 2.

26http://www.imagemagick.org/script/montage.php
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Figure 2: Illustration of the Backward Euler method for four time step values.

Ideally, the script should be scalable in the sense that it works for any number
of ∆t values, which is the case for this particular implementation:

import os, sys

def run_experiments(I=1, a=2, T=5):
# The command line must contain dt values
if len(sys.argv) > 1:

dt_values = [float(arg) for arg in sys.argv[1:]]
else:

print ’Usage: %s dt1 dt2 dt3 ...’ % sys.argv[0]
sys.exit(1) # abort

# Run module file as a stand-alone application
cmd = ’python decay_mod.py --I %g --a %g --makeplot --T %g’ % \

(I, a, T)
dt_values_str = ’ ’.join([str(v) for v in dt_values])
cmd += ’ --dt %s’ % dt_values_str
print cmd
failure = os.system(cmd)
if failure:

print ’Command failed:’, cmd; sys.exit(1)

# Combine images into rows with 2 plots in each row
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image_commands = []
for method in ’BE’, ’CN’, ’FE’:

pdf_files = ’ ’.join([’%s_%g.pdf’ % (method, dt)
for dt in dt_values])

png_files = ’ ’.join([’%s_%g.png’ % (method, dt)
for dt in dt_values])

image_commands.append(
’montage -background white -geometry 100%’ +
’ -tile 2x %s %s.png’ % (png_files, method))

image_commands.append(
’convert -trim %s.png %s.png’ % (method, method))

image_commands.append(
’convert %s.png -transparent white %s.png’ %
(method, method))

image_commands.append(
’pdftk %s output tmp.pdf’ % pdf_files)

num_rows = int(round(len(dt_values)/2.0))
image_commands.append(

’pdfnup --nup 2x%d tmp.pdf’ % num_rows)
image_commands.append(

’pdfcrop tmp-nup.pdf %s.pdf’ % method)

for cmd in image_commands:
print cmd
failure = os.system(cmd)
if failure:

print ’Command failed:’, cmd; sys.exit(1)

# Remove the files generated above and by decay_mod.py
from glob import glob
filenames = glob(’*_*.png’) + glob(’*_*.pdf’) + \

glob(’*_*.eps’) + glob(’tmp*.pdf’)
for filename in filenames:

os.remove(filename)

if __name__ == ’__main__’:
run_experiments()

This file is available as experiments/decay_exper0.py27.
We may comment upon many useful constructs in this script:

• [float(arg) for arg in sys.argv[1:]] builds a list of real numbers
from all the command-line arguments.

• failure = os.system(cmd) runs an operating system command, e.g.,
another program. The execution is successful only if failure is zero.

• Unsuccessful execution usually makes it meaningless to continue the pro-
gram, and therefore we abort the program with sys.exit(1). Any argu-
ment different from 0 signifies to the computer’s operating system that our
program stopped with a failure.

• [’%s_%s.png’ % (method, dt) for dt in dt_values] builds a list of
filenames from a list of numbers (dt_values).

27http://tinyurl.com/nm5587k/softeng1/experiments/decay_exper0.py
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• All montage, convert, pdftk, pdfnup, and pdfcrop commands for creating
composite figures are stored in a list and later executed in a loop.

• glob(’*_*.png’) returns a list of the names of all files in the current
directory where the filename matches the Unix wildcard notation28 *_*.png
(meaning any text, underscore, any text, and then .png).

• os.remove(filename) removes the file with name filename.

5.3 Interpreting output from other programs
Programs that run other programs, like decay_exper0.py does, will often need
to interpret output from those programs. Let us demonstrate how this is done
in Python by extracting the relations between θ, ∆t, and the error E as written
to the terminal window by the decay_mod.py program, when being executed by
decay_exper0.py. We will

• read the output from the decay_mod.py program

• interpret this output and store the E values in arrays for each θ value

• plot E versus ∆t, for each θ, in a log-log plot

The simple os.system(cmd) call does not allow us to read the output from
running cmd. Instead we need to invoke a bit more involved procedure:

from subprocess import Popen, PIPE, STDOUT
p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT)
output, dummy = p.communicate()
failure = p.returncode
if failure:

print ’Command failed:’, cmd; sys.exit(1)

The command stored in cmd is run and all text that is written to the standard
output and the standard error is available in the string output. Or in other
words, the text in output is what appeared in the terminal window while running
cmd.

Our next task is to run through the output string, line by line, and if the
current line prints θ, ∆t, and E, we split the line into these three pieces and
store the data. The chosen storage structure is a dictionary errors with keys
dt to hold the ∆t values in a list, and three θ keys to hold the corresponding E
values in a list. The relevant code lines are

28http://en.wikipedia.org/wiki/Glob_(programming)
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errors = {’dt’: dt_values, 1: [], 0: [], 0.5: []}
for line in output.splitlines():

words = line.split()
if words[0] in (’0.0’, ’0.5’, ’1.0’): # line with E?

# typical line: 0.0 1.25: 7.463E+00
theta = float(words[0])
E = float(words[2])
errors[theta].append(E)

Note that we do not bother to store the ∆t values as we read them from output,
because we already have these values in the dt_values list.

We are now ready to plot E versus ∆t for θ = 0, 0.5, 1:

import matplotlib.pyplot as plt
plt.loglog(errors[’dt’], errors[0], ’ro-’)
plt.hold(’on’)
plt.loglog(errors[’dt’], errors[0.5], ’b+-’)
plt.loglog(errors[’dt’], errors[1], ’gx-’)
plt.legend([’FE’, ’CN’, ’BE’], loc=’upper left’)
plt.xlabel(’log(time step)’)
plt.ylabel(’log(error)’)
plt.title(’Error vs time step’)
plt.savefig(’error.png’)
plt.savefig(’error.pdf’)

Plots occasionally need some manual adjustments. Here, the axis of the log-log
plot look nicer if we adapt them strictly to the data, see Figure 3. To this end,
we need to compute minE and maxE, and later specify the extent of the axes:

# Find min/max for the axis
E_min = 1E+20; E_max = -E_min
for theta in 0, 0.5, 1:

E_min = min(E_min, min(errors[theta]))
E_max = max(E_max, max(errors[theta]))

plt.loglog(errors[’dt’], errors[0], ’ro-’)
...
plt.axis([min(dt_values), max(dt_values), E_min, E_max])
...

The complete program, incorporating the code snippets above, is found in
experiments/decay_exper1.py29. This example can hopefully act as template
for numerous other occasions where one needs to run experiments, extract data
from the output of programs, make plots, and combine several plots in a figure
file. The decay_exper1.py program is organized as a module, and other files
can then easily extend the functionality, as illustrated in the next section.

5.4 Making a report
The results of running computer experiments are best documented in a little
report containing the problem to be solved, key code segments, and the plots

29http://tinyurl.com/nm5587k/softeng1/experiments/decay_exper1.py
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Figure 3: Default plot (left) and manually adjusted axes (right).

from a series of experiments. At least the part of the report containing the
plots should be automatically generated by the script that performs the set of
experiments, because in that script we know exactly which input data that were
used to generate a specific plot, thereby ensuring that each figure is connected
to the right data. Take a look at an example at http://hplgit.github.io/
teamods/writing_reports/sphinx-cloud/ to see what we have in mind.

Plain HTML. Scientific reports can be written in a variety of formats. Here
we begin with the HTML30 format which allows efficient viewing of all the
experiments in any web browser. The program decay_exper1_html.py31 calls
decay_exper1.py to perform the experiments and then runs statements for creat-
ing an HTML file with a summary, a section on the mathematical problem, a sec-
tion on the numerical method, a section on the solver function implementing the
method, and a section with subsections containing figures that show the results
of experiments where ∆t is varied for θ = 0, 0.5, 1. The mentioned Python file
contains all the details for writing this HTML report32. You can view the report
on http://hplgit.github.io/teamods/writing_reports/_static/report_
html.html.

HTML with MathJax. Scientific reports usually need mathematical for-
mulas and hence mathematical typesetting. In plain HTML, as used in the
decay_exper1_html.py file, we have to use just the keyboard characters to
write mathematics. However, there is an extension to HTML, called Math-
Jax33, which allows formulas and equations to be typeset with LATEX syntax
and nicely rendered in web browsers, see Figure 4. A relatively small subset
of LATEX environments is supported, but the syntax for formulas is quite rich.

30http://en.wikipedia.org/wiki/HTML
31http://tinyurl.com/nm5587k/softeng1/experiments/decay_exper1_html.py
32http://hplgit.github.io/teamods/writing_reports/_static/report_html.html.html
33http://www.mathjax.org/
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Inline formulas are look like \( u’=-au \) while equations are surrounded by $$
signs. Inside such signs, one can use \[ u’=-au \] for unnumbered equations,
or \begin{equation} and \end{equation} surrounding u’=-au for numbered
equations, or \begin{align} and \end{align} for multiple aligned equations.
You need to be familiar with mathematical typesetting in LaTeX34.

The file decay_exper1_mathjax.py35 contains all the details for turning the
previous plain HTML report into web pages with nicely typeset mathematics.
The corresponding HTML code36 be studied to see all details of the mathematical
typesetting.

Figure 4: Report in HTML format with MathJax.

LATEX. The de facto language for mathematical typesetting and scientific report
writing is LaTeX37. A number of very sophisticated packages have been added to
the language over a period of three decades, allowing very fine-tuned layout and
typesetting. For output in the PDF format38, see Figure 5 for an example, LATEX
is the definite choice when it comes to quality. The LATEX language used to write
the reports has typically a lot of commands involving backslashes and braces39.
For output on the web, using HTML (and not the PDF directly in the browser
window), LATEX struggles with delivering high quality typesetting. Other tools,
especially Sphinx, give better results and can also produce nice-looking PDFs.
The file decay_exper1_latex.py shows how to generate the LATEX source from
a program.

34http://en.wikibooks.org/wiki/LaTeX/Mathematics
35http://tinyurl.com/nm5587k/softeng1/experiments/decay_exper1_html.py
36http://hplgit.github.io/teamods/writing_reports/_static/report_mathjax.html.html
37http://en.wikipedia.org/wiki/LaTeX
38http://hplgit.github.io/teamods/writing_reports/_static/report.pdf
39http://hplgit.github.io/teamods/writing_reports/_static/report.tex.html
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Figure 5: Report in PDF format generated from LATEX source.

Sphinx. Sphinx40 is a typesetting language with similarities to HTML and
LATEX, but with much less tagging. It has recently become very popular for
software documentation and mathematical reports. Sphinx can utilize LATEX for
mathematical formulas and equations (via MathJax or PNG images). Unfortu-
nately, the subset of LATEX mathematics supported is less than in full MathJax
(in particular, numbering of multiple equations in an align type environment is
not supported). The Sphinx syntax41 is an extension of the reStructuredText
language. An attractive feature of Sphinx is its rich support for fancy layout of
web pages42. In particular, Sphinx can easily be combined with various layout
themes that give a certain look and feel to the web site and that offers table of
contents, navigation, and search facilities, see Figure 6.

Markdown. A recently popular format for easy writing of web pages is Mark-
down43. Text is written very much like one would do in email, using spacing and
special characters to naturally format the code instead of heavily tagging the
text as in LATEX and HTML. With the tool Pandoc44 one can go from Markdown
to a variety of formats. HTML is a common output format, but LATEX, epub,
XML, OpenOffice, MediaWiki, and MS Word are some other possibilities.

Wiki formats. A range of wiki formats are popular for creating notes on
the web, especially documents which allow groups of people to edit and add

40http://sphinx.pocoo.org/
41http://hplgit.github.io/teamods/writing_reports/_static/report_sphinx.rst.html
42http://hplgit.github.io/teamods/writing_reports/_static/sphinx-cloud/index.html
43http://daringfireball.net/projects/markdown/
44http://johnmacfarlane.net/pandoc/
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Figure 6: Report in HTML format generated from Sphinx source.

content. Apart from MediaWiki45 (the wiki format used for Wikipedia), wiki
formats have no support for mathematical typesetting and also limited tools for
displaying computer code in nice ways. Wiki formats are therefore less suitable
for scientific reports compared to the other formats mentioned here.

DocOnce. Since it is difficult to choose the right tool or format for writing a
scientific report, it is advantageous to write the content in a format that easily
translates to LATEX, HTML, Sphinx, Markdown, and various wikis. DocOnce46

is such a tool. It is similar to Pandoc, but offers some special convenient features
for writing about mathematics and programming. The tagging is modest47,
somewhere between LATEX and Markdown. The program decay_exper_do.py
demonstrates how to generate (and write) DocOnce code for a report.

Worked example. The HTML, LATEX (PDF), Sphinx, and DocOnce formats
for the scientific report whose content is outlined above, are exemplified with
source codes and results at the web pages associated with this teaching material:
http://hplgit.github.io/teamods/writing_reports.

5.5 Publishing a complete project
A report documenting scientific investigations should be accompanied by all the
software and data used for the investigations so that others have a possibility to
redo the work and assess the qualify of the results. This possibility is important
for reproducible research and hence reaching reliable scientific conclusions.

45http://www.mediawiki.org/wiki/MediaWiki
46https://github.com/hplgit/doconce
47http://hplgit.github.io/teamods/writing_reports/_static/report.do.txt.html
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One way of documenting a complete project is to make a directory tree with
all relevant files. Preferably, the tree is published at some project hosting site like
Bitbucket, GitHub, or Googlecode48 so that others can download it as a tarfile,
zipfile, or clone the files directly using a version control system like Mercurial
or Git. For the investigations outlined in Section 5.4, we can create a directory
tree with files

setup.py
./src:

decay_mod.py
./doc:

./src:
decay_exper1_mathjax.py
make_report.sh
run.sh

./pub:
report.html

The src directory holds source code (modules) to be reused in other projects,
the setup.py builds and installs such software, the doc directory contains the
documentation, with src for the source of the documentation and pub for ready-
made, published documentation. The run.sh file is a simple Bash script listing
the python command we used to run decay_exper1_mathjax.py to generate
the experiments and the report.html file.

6 Exercises
Exercise 1: Refactor a flat program in terms of a function
For simple ODEs of the form

u′ = f(t), u(0) = I, t ∈ (0, T ]
we can find the solution by straightforward integration:

u(t) =
∫ t

0
f(τ)dτ .

To compute u(t) for t ∈ [0, T ], we introduce a uniform time mesh with points
tn = n∆t and apply to Trapezoidal rule to approximate the integral. Suppose
we have computed the numerical approximation un to u(tn). We have

u(tn+1) = u(tn) +
∫ tn+1

tn

f(τ)dτ .

Using the Trapezoidal rule we get

un+1 = un + 1
2∆t(f(tn) + f(tn+1)) . (6)

The starting value is u0 = I. A corresponding implementation for the case
f(t) = 2t+ 1 is given next.

48http://hplgit.github.com/teamods/bitgit/html/
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# f(t) is 2*t + 1
T = 2
from numpy import *
dt = 0.2 # time step
Nt = int(round(T/dt)) # no of mesh points
u = zeros(Nt+1)
t = linspace(0, T, Nt+1)
for n in range(Nt-1):

u[n+1] = u[n] + 0.5*dt*(2*t[n]+1 + 2*t[n+1]+1)

This is a flat program. Refactor the program as a function solver(f, I, T,
dt), where f is the Python implementation of the mathematical function f(t)
that is to be integrated. The return value of solver is the pair (u, t) representing
the solution values and the associated time mesh. Filename: integrate.py.

Remarks. Many prefer to do a first implementation of an algorithm as a flat
program and hardcode formulas, here the f(t), into the algorithm. Unfortunately,
this coding style makes it difficult to reuse a well-tested algorithm. When
the flat program works, it is strongly recommended to refactor the code (i.e.,
rearrange the statements) such that general algorithms are encapsulated in
Python functions. The function arguments should be chosen such that the
function can be applied for a large class of problems, here all problems that can
be expressed as u′ = f(t),.

Exercise 2: Compare methods for a given time mesh
Make a program that imports the solver function from the decay_mod module
and offers a function compare(dt, I, a) for comparing, in a plot, the methods
corresponding to θ = 0, 0.5, 1 and the exact solution. This plot shows the
accuracy of the methods for a given time mesh. Read input data for the problem
from the command line using appropriate functions in the decay_mod module
(the –dt option for giving several time step values can be reused: just use the first
time step value for the computations). Filename: decay_compare_theta.py.

Problem 3: Write a doctest
Type in the following program and equip the roots function with a doctest:

import sys
# This sqrt(x) returns real if x>0 and complex if x<0
from numpy.lib.scimath import sqrt

def roots(a, b, c):
"""
Return the roots of the quadratic polynomial
p(x) = a*x**2 + b*x + c.

The roots are real or complex objects.
"""
q = b**2 - 4*a*c
r1 = (-b + sqrt(q))/(2*a)
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r2 = (-b - sqrt(q))/(2*a)
return r1, r2

a, b, c = [float(arg) for arg in sys.argv[1:]]
print roots(a, b, c)

Make sure to test both real and complex roots. Write out numbers with 14 digits
or less. Filename: doctest_roots.py.

Problem 4: Write a nose test
Make a nose test for the roots function in Problem 3. Filename: test_roots.py.

Problem 5: Make a module
Let

q(t) = RAeat

R+A(eat − 1) .

Make a Python module q_module containing two functions q(t) and dqdt(t)
for computing q(t) and q′(t), respectively. Perform a from numpy import *
in this module. Import q and dqdt in another file using the "star import"
construction from q_module import *. All objects available in this file is given
by dir(). Print dir() and len(dir()). Then change the import of numpy
in q_module.py to import numpy as np. What is the effect of this import on
the number of objects in dir() in a file that does from q_module import *?
Filename: q_module.py.

Exercise 6: Make use of a class implementation
We want to solve the exponential decay problem u′ = −au, u(0) = I, for several
∆t values and θ = 0, 0.5, 1. For each ∆t value, we want to make a plot where the
three solutions corresponding to θ = 0, 0.5, 1 appear along with the exact solution.
Write a function experiment to accomplish this. The function should import
the classes Problem, Solver, and Visualizer from the decay_class49 module
and make use of these. A new command-line option --dt_values must be added
to allow the user to specify the ∆t values on the command line (the options –dt
and –theta implemented by the decay_class module have then no effect when
running the experiment function). Note that the classes in the decay_class
module should not be modified. Filename: decay_class_exper.py.

Exercise 7: Generalize a class implementation
Consider the file decay_class.py50 where the exponential decay problem u′ =
−au, u(0) = I, is implemented via the classes Problem, Solver, and Visualizer.

49http://tinyurl.com/nm5587k/decay/decay_class.py
50http://tinyurl.com/nm5587k/decay/decay_class.py
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Extend the classes to handle the more general problem

u′(t) = −a(t)u(t) + b(t), u(0) = I, t ∈ (0, T ],

using the θ-rule for discretization.
In the case with arbitrary functions a(t) and b(t) the problem class is no

longer guaranteed to provide an exact solution. Let the u_exact in class Problem
return None if the exact solution for the particular problem is not available.
Modify classes Solver and Visualizer accordingly.

Add test functions test_*() for the nose testing tool in the module. Also
add a demo example where the environment suddenly changes (modeled as an
abrupt change in the decay rate a):

a(t) =
{

1, 0 ≤ t ≤ tp,
k, t > tp,

where tp is the point of time the environment changes. Take tp = 1 and
make plots that illustrate the effect of having k � 1 and k � 1. Filename:
decay_class2.py.

Exercise 8: Generalize an advanced class implementation
Solve Exercise 7 by utilizing the class implementations in decay_class_oo.py51.
Filename: decay_class3.py.
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51http://tinyurl.com/nm5587k/decay/decay_class_oo.py
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