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Goal.
This document illustrates best practice for developing scientific software in an efficient and
reliable way. Not only will the outlined techniques save a lost of human time, but they will
also help assure reproducible science and higher quality of computational investigations.
Key questions to be answered are

• How should I organize a program?

• How can I efficiently and safely provide input data and run my code?

• How can I verify that the implementation is correct?

• How should I reliably work with files and documents?

• How should I conduct large numerical experiments?

1 Sample problem and code
This first introduction to good programming habits in scientific computing will make use of a very
simple mathematical problem to keep the mathematical details at the lowest possible level while
introducing a series of computer science concepts. The simplicity of the mathematical problem
obviously prevents us from treating several techniques that are only meaningful for complex
scientific software.

1.1 Mathematical problem
We consider the simplest possible ordinary differential equation with constant coefficient a:

u′(t) = −au(t), u(0) = I, t ∈ (0, T ] . (1)

This problem is numerically solved by the so-called θ-rule, which is a convenient way to
merge different formulas for the well-known Forward Euler, Backward Euler, and Crank-Nicolson
(midpoint/central) schemes. We introduce a uniform time mesh tn = n∆t, n = 0, 1, . . . , Nt, and
seek u(t) at the mesh points. The numerical approximation to u(tn) is denoted un. Since we will
use the symbol u both for the exact analytical solution of (1) and for the numerical approximation,
we sometimes introduce ue(t) to help distinguish the two types of solutions (i.e., subscript e for
“exact”)1.

The θ-rule leads to an explicit updating formula for un+1, given un:

un+1 = 1− (1− θ)a∆t
1 + θa∆t un,

1In the literature, it is more common to put a subscript (like u∆ or uh) on the numerical solution to distinguish
it from the exact solution. However, we will use the variable u in the code for the numerical approximation to be
computed, and therefore adjust the mathematical notation to convenient conventions in the code such that we can
have as close correspondence as possible between the implementation and the mathematics.

3



1.2 Implementation
The numerical method is implemented as a function solver. Another function explore computes
the error in the solution, by comparing with the exact solution ue(t) = Ie−at, and creates a plot
for comparing the numerical and exact solution.

The program file decay_plot.py2 contains the two functions and a main program.

from numpy import *
from matplotlib.pyplot import *

def solver(I, a, T, dt, theta):
"""Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt."""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)*u[n]
return u, t

def exact_solution(t, I, a):
return I*exp(-a*t)

def explore(I, a, T, dt, theta=0.5, makeplot=True):
"""
Run a case with the solver, compute error measure,
and plot the numerical and exact solutions (if makeplot=True).
"""
u, t = solver(I, a, T, dt, theta) # Numerical solution
u_e = exact_solution(t, I, a)
e = u_e - u
E = sqrt(dt*sum(e**2))
if makeplot:

figure() # create new plot
t_e = linspace(0, T, 1001) # fine mesh for u_e
u_e = exact_solution(t_e, I, a)
plot(t, u, ’r--o’) # red dashes w/circles
plot(t_e, u_e, ’b-’) # blue line for exact sol.
legend([’numerical’, ’exact’])
xlabel(’t’)
ylabel(’u’)
title(’theta=%g, dt=%g’ % (theta, dt))
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
savefig(’%s_%g.png’ % (theta2name[theta], dt))
savefig(’%s_%g.pdf’ % (theta2name[theta], dt))
show()

return E

def main(I, a, T, dt_values, theta_values=(0, 0.5, 1)):
for theta in theta_values:

for dt in dt_values:
E = explore(I, a, T, dt, theta, makeplot=True)
print ’%3.1f %6.2f: %12.3E’ % (theta, dt, E)

main(I=1, a=2, T=5, dt_values=[0.4, 0.04])

2http://tinyurl.com/nm5587k/softeng1/decay_plot.py
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2 User interfaces
It is good programming practice to let programs read input from the user rather than require the
user to edit the source code when trying out new values of input parameters. One reason is that
any edit of the code has a danger of introducing bugs. Another reason is that it is easier and less
manual work to supply data to a program instead of editing the program code. A third reason is
that a program that reads input can easily be run by another program, and in this way we can
automate a large number of runs in scientific investigations.

Tip.

We shall make it a habit to equip any implementation of a numerical solver with an
appropriate user interface before testing out the code.

Reading input data can be done in many ways. We have to decide on desired user interface,
i.e., how we want to operate the program when providing input, and then use appropriate tools
to implement the user interface. There are four basic types of user interface of relevance to our
programs, listed here with increasing complexity of the implementation:

1. Questions and answers in the terminal window

2. Command-line arguments

3. Reading data from file

4. Graphical user interfaces

Although conceptually simple, alternative 1 involves more typing than the other alternatives and
is therefore abandoned. Below, we shall address alternative 2 and 4, which are most appropriate
for the present problem.

[[[

2.1 Creating command-line interfaces
Reading input from the command line is a simple and flexible way of interacting with the user.
Python stores all the command-line arguments in the list sys.argv, and there are, in principle,
two ways of programming with command-line arguments in Python:

• Decide upon a sequence of parameters on the command line and read their values directly
from the sys.argv[1:] list (sys.argv[0] is the just program name).

• Use option-value pairs (–option value) on the command line to override default values
of input parameters, and utilize the argparse.ArgumentParser tool to interact with the
command line.

Both strategies will be illustrated next.
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Reading a sequence of command-line arguments. The decay_plot.py3 program needs
the following input data: I, a, T , an option to turn the plot on or off (makeplot), and a list of
∆t values.

The simplest way of reading this input from the command line is to say that the first four
command-line arguments correspond to the first four points in the list above, in that order, and
that the rest of the command-line arguments are the ∆t values. The input given for makeplot
can be a string among ’on’, ’off’, ’True’, and ’False’. The code for reading this input is
most conveniently put in a function:

import sys

def read_command_line():
if len(sys.argv) < 6:

print ’Usage: %s I a T on/off dt1 dt2 dt3 ...’ % \
sys.argv[0]; sys.exit(1) # abort

I = float(sys.argv[1])
a = float(sys.argv[2])
T = float(sys.argv[3])
makeplot = sys.argv[4] in (’on’, ’True’)
dt_values = [float(arg) for arg in sys.argv[5:]]

return I, a, T, makeplot, dt_values

One should note the following about the constructions in the program above:

• Everything on the command line ends up in a string in the list sys.argv. Explicit conversion
to, e.g., a float object is required if the string as a number we want to compute with.

• The value of makeplot is determined from a boolean expression, which becomes True if
the command-line argument is either ’on’ or ’True’, and False otherwise.

• It is easy to build the list of ∆t values: we simply run through the rest of the list,
sys.argv[5:], convert each command-line argument to float, and collect these float
objects in a list, using the compact and convenient list comprehension syntax in Python.

The loops over θ and ∆t values can be coded in a main function:

def main():
I, a, T, makeplot, dt_values = read_command_line()
for theta in 0, 0.5, 1:

for dt in dt_values:
E = explore(I, a, T, dt, theta, makeplot)
print ’%3.1f %6.2f: %12.3E’ % (theta, dt, E)

The complete program can be found in decay_cml.py4.

Working with an argument parser. Python’s ArgumentParser tool in the argparsemodule
makes it easy to create a professional command-line interface to any program. The documentation
of ArgumentParser5 demonstrates its versatile applications, so we shall here just list an example
containing basic features. On the command line we want to specify option-value pairs for I, a,
and T , e.g., –a 3.5 –I 2 –T 2. Including –makeplot turns the plot on and excluding this option

3http://tinyurl.com/nm5587k/softeng1/decay_plot.py
4http://tinyurl.com/nm5587k/softeng1/decay_cml.py
5http://docs.python.org/library/argparse.html
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turns the plot off. The ∆t values can be given as –dt 1 0.5 0.25 0.1 0.01. Each parameter
must have a sensible default value so that we specify the option on the command line only when
the default value is not suitable.

We introduce a function for defining the mentioned command-line options:

def define_command_line_options():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--I’, ’--initial_condition’, type=float,

default=1.0, help=’initial condition, u(0)’,
metavar=’I’)

parser.add_argument(’--a’, type=float,
default=1.0, help=’coefficient in ODE’,
metavar=’a’)

parser.add_argument(’--T’, ’--stop_time’, type=float,
default=1.0, help=’end time of simulation’,
metavar=’T’)

parser.add_argument(’--makeplot’, action=’store_true’,
help=’display plot or not’)

parser.add_argument(’--dt’, ’--time_step_values’, type=float,
default=[1.0], help=’time step values’,
metavar=’dt’, nargs=’+’, dest=’dt_values’)

return parser

Each command-line option is defined through the parser.add_argument method. Alternative
options, like the short –I and the more explaining version --initial_condition can be defined.
Other arguments are type for the Python object type, a default value, and a help string, which
gets printed if the command-line argument -h or –help is included. The metavar argument
specifies the value associated with the option when the help string is printed. For example, the
option for I has this help output:

Terminal> python decay_argparse.py -h
...
--I I, --initial_condition I

initial condition, u(0)
...

The structure of this output is

--I metavar, --initial_condition metavar
help-string

The –makeplot option is a pure flag without any value, implying a true value if the flag is
present and otherwise a false value. The action=’store_true’ makes an option for such a flag.

Finally, the –dt option demonstrates how to allow for more than one value (separated by
blanks) through the nargs=’+’ keyword argument. After the command line is parsed, we get an
object where the values of the options are stored as attributes. The attribute name is specified by
the dist keyword argument, which for the –dt option is dt_values. Without the dest argument,
the value of an option –opt is stored as the attribute opt.

The code below demonstrates how to read the command line and extract the values for each
option:

def read_command_line():
parser = define_command_line_options()
args = parser.parse_args()
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print ’I={}, a={}, T={}, makeplot={}, dt_values={}’.format(
args.I, args.a, args.T, args.makeplot, args.dt_values)

return args.I, args.a, args.T, args.makeplot, args.dt_values

The main function remains the same as in the decay_cml.py code based on reading from
sys.argv directly. A complete program featuring the demo above of ArgumentParser appears
in the file decay_argparse.py6.

2.2 Creating a graphical web user interface
The Python package Parampool7 can be used to automatically generate a web-based graphical user
interface (GUI) for our simulation program. Although the programming technique dramatically
simplifies the efforts to create a GUI, the forthcoming material on equipping our decay_mod
module with a GUI is quite technical and of significantly less importance than knowing how to
make a command-line interface (Section 2.1). There is no danger in jumping right to Section 3.4.

Making a compute function. The first step is to identify a function that performs the
computations and that takes the necessary input variables as arguments. This is called the compute
function in Parampool terminology. We may start with a copy of the basic file decay_plot.py8,
which has a main function displayed in Section ?? for carrying out simulations and plotting for a
series of ∆t values. Now we want to control and view the same experiments from a web GUI.

To tell Parampool what type of input data we have, we assign default values of the right type
to all arguments in the main function and call it main_GUI:

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):

The compute function must return the HTML code we want for displaying the result in a web
page. Here we want to show plots of the numerical and exact solution for different methods and
∆t values. The plots can be organized in a table with θ (methods) varying through the columns
and ∆t varying through the rows. Assume now that a new version of the explore function
not only returns the error E but also HTML code containing the plot. Then we can write the
main_GUI function as

def main_GUI(I=1.0, a=.2, T=4.0,
dt_values=[1.25, 0.75, 0.5, 0.1],
theta_values=[0, 0.5, 1]):

# Build HTML code for web page. Arrange plots in columns
# corresponding to the theta values, with dt down the rows
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
html_text = ’<table>\n’
for dt in dt_values:

html_text += ’<tr>\n’
for theta in theta_values:

E, html = explore(I, a, T, dt, theta, makeplot=True)
html_text += """

<td>
<center><b>%s, dt=%g, error: %s</b></center><br>
%s
</td>

6http://tinyurl.com/nm5587k/softeng1/decay_argparse.py
7https://github.com/hplgit/parampool
8http://tinyurl.com/nm5587k/softeng1/decay_plot.py
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""" % (theta2name[theta], dt, E, html)
html_text += ’</tr>\n’

html_text += ’</table>\n’
return html_text

Rather than creating plot files and showing the plot on the screen, the new version of the
explore function makes a string with the PNG code of the plot and embeds that string in HTML
code. This action is conveniently performed by Parampool’s save_png_to_str function:

import matplotlib.pyplot as plt
...
# plot
plt.plot(t, u, r-’)
plt.xlabel(’t’)
plt.ylabel(’u’)
...
from parampool.utils import save_png_to_str
html_text = save_png_to_str(plt, plotwidth=400)

Note that we now write plt.plot, plt.xlabel, etc. The html_text string is long and contains
all the characters that build up the PNG file of the current plot. The new explore function can
make use of the above code snippet and return html_text along with E.

Generating the user interface. The web GUI is automatically generated by the following
code, placed in a file decay_GUI_generate.py9

from parampool.generator.flask import generate
from decay_GUI import main
generate(main,

output_controller=’decay_GUI_controller.py’,
output_template=’decay_GUI_view.py’,
output_model=’decay_GUI_model.py’)

Running the decay_GUI_generate.py program results in three new files whose names are specified
in the call to generate:

1. decay_GUI_model.py defines HTML widgets to be used to set input data in the web
interface,

2. templates/decay_GUI_views.py defines the layout of the web page,

3. decay_GUI_controller.py runs the web application.

We only need to run the last program, and there is no need to look into these files.

Running the web application. The web GUI is started by

Terminal> python decay_GUI_controller.py

Open a web browser at the location 127.0.0.1:5000. Input fields for I, a, T, dt_values, and
theta_values are presented. Setting the latter two to [1.25, 0.5] and [1, 0.5], respectively,
and pressing Compute results in four plots, see Figure 1. With the techniques demonstrated
here, one can easily create a tailored web GUI for a particular type of application and use it to
interactively explore physical and numerical effects.

9http://tinyurl.com/nm5587k/softeng1/decay_GUI_generate.py
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Figure 1: Automatically generated graphical web interface.

3 Verification
3.1 Comparison with hand calculations
One of the simplest and most powerful methods for verifying numerical codes is to perform some
steps of the algorithm by hand and compare the results with those produced by the code. In the
present case, we may choose some test problem and run three steps by hand. Picking a(t) = t2...

3.2 Test function
Caution: choice of parameter values.

For the choice of values of parameters in verification tests one should stay away from integers,
especially 0 and 1, as these can simplify formulas too much for test purposes. For example,
with θ = 1 the nominator in the formula for un will be the same for all a and ∆t values.
One should therefore choose more “arbitrary” values, say θ = 0.8 and I = 0.1.

3.3 Comparison with an exact discrete solution
Sometimes it is possible to find a closed-form exact discrete solution that fulfills the discrete finite
difference equations. The implementation can then be verified against the exact discrete solution.
This is usually the best technique for verification.

Define
A = 1− (1− θ)a∆t

1 + θa∆t .
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Manual computations with the θ-rule results in

u0 = I,

u1 = Au0 = AI,

u2 = Au1 = A2I,

...
un = Anun−1 = AnI .

We have then established the exact discrete solution as

un = IAn . (2)

Caution.
One should be conscious about the different meanings of the notation on the left- and
right-hand side of (2): on the left, n in un is a superscript reflecting a counter of mesh
points (tn), while on the right, n is the power in the exponentiation An.

Comparison of the exact discrete solution and the computed solution is done in the following
function:

def verify_exact_discrete_solution():

def exact_discrete_solution(n, I, a, theta, dt):
A = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
return I*A**n

theta = 0.8; a = 2; I = 0.1; dt = 0.8
Nt = int(8/dt) # no of steps
u, t = solver(I=I, a=a, T=Nt*dt, dt=dt, theta=theta)
u_de = array([exact_discrete_solution(n, I, a, theta, dt)

for n in range(Nt+1)])
difference = abs(u_de - u).max() # max deviation
tol = 1E-15 # tolerance for comparing floats
success = difference <= tol
return success

The complete program is found in the file decay_verf2.py10 (verf2 is a short name for "verifi-
cation, version 2").

Local functions.

One can define a function inside another function, here called a local function (also known
as closure) inside a parent function. A local function is invisible outside the parent function.
A convenient property is that any local function has access to all variables defined in the
parent function, also if we send the local function to some other function as argument
(!). In the present example, it means that the local function exact_discrete_solution
does not need its five arguments as the values can alternatively be accessed through the
local variables defined in the parent function verify_exact_discrete_solution. We can

10http://tinyurl.com/nm5587k/softeng1/decay_verf2.py
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send such an exact_discrete_solution without arguments to any other function and
exact_discrete_solution will still have access to n, I, a, and so forth defined in its parent
function.

3.4 Computing convergence rates
We expect that the error E in the numerical solution is reduced if the mesh size ∆t is decreased.
More specifically, many numerical methods obey a power-law relation between E and ∆t:

E = C∆tr, (3)

where C and r are (usually unknown) constants independent of ∆t. The formula (3) is viewed
as an asymptotic model valid for sufficiently small ∆t. How small is normally hard to estimate
without doing numerical estimations of r.

The parameter r is known as the convergence rate. For example, if the convergence rate is 2,
halving ∆t reduces the error by a factor of 4. Diminishing ∆t then has a greater impact on the
error compared with methods that have r = 1. For a given value of r, we refer to the method as
of r-th order. First- and second-order methods are most common in scientific computing.

Estimating r. There are two alternative ways of estimating C and r based on a set of m
simulations with corresponding pairs (∆ti, Ei), i = 0, . . . ,m−1, and ∆ti < ∆ti−1 (i.e., decreasing
cell size).

1. Take the logarithm of (3), lnE = r ln ∆t+ lnC, and fit a straight line to the data points
(∆ti, Ei), i = 0, . . . ,m− 1.

2. Consider two consecutive experiments, (∆ti, Ei) and (∆ti−1, Ei−1). Dividing the equation
Ei−1 = C∆tri−1 by Ei = C∆tri and solving for r yields

ri−1 = ln(Ei−1/Ei)
ln(∆ti−1/∆ti)

(4)

for i = 1, . . . ,m− 1.
The disadvantage of method 1 is that (3) might not be valid for the coarsest meshes (largest ∆t

values). Fitting a line to all the data points is then misleading. Method 2 computes convergence
rates for pairs of experiments and allows us to see if the sequence ri converges to some value as
i → m − 2. The final rm−2 can then be taken as the convergence rate. If the coarsest meshes
have a differing rate, the corresponding time steps are probably too large for (3) to be valid. That
is, those time steps lie outside the asymptotic range of ∆t values where the error behaves like (3).

Implementation. It is straightforward to extend the main function in the program decay_argparse.py
with statements for computing r0, r1, . . . , rm−2 from (3):

from math import log

def main():
I, a, T, makeplot, dt_values = read_command_line()
r = {} # estimated convergence rates
for theta in 0, 0.5, 1:

E_values = []
for dt in dt_values:

E = explore(I, a, T, dt, theta, makeplot=False)
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E_values.append(E)

# Compute convergence rates
m = len(dt_values)
r[theta] = [log(E_values[i-1]/E_values[i])/

log(dt_values[i-1]/dt_values[i])
for i in range(1, m, 1)]

for theta in r:
print ’\nPairwise convergence rates for theta=%g:’ % theta
print ’ ’.join([’%.2f’ % r_ for r_ in r[theta]])

return r

The program containing this main function is called decay_convrate.py11.
The r object is a dictionary of lists. The keys in this dictionary are the θ values. For example,

r[1] holds the list of the ri values corresponding to θ = 1. In the loop for theta in r, the loop
variable theta takes on the values of the keys in the dictionary r (in an undetermined ordering).
We could simply do a print r[theta] inside the loop, but this would typically yield output of
the convergence rates with 16 decimals:

[1.331919482274763, 1.1488178494691532, ...]

Instead, we format each number with 2 decimals, using a list comprehension to turn the
list of numbers, r[theta], into a list of formatted strings. Then we join these strings with a
space in between to get a sequence of rates on one line in the terminal window. More generally,
d.join(list) joins the strings in the list list to one string, with d as delimiter between list[0],
list[1], etc.

Here is an example on the outcome of the convergence rate computations:

Terminal> python decay_convrate.py --dt 0.5 0.25 0.1 0.05 0.025 0.01
...
Pairwise convergence rates for theta=0:
1.33 1.15 1.07 1.03 1.02

Pairwise convergence rates for theta=0.5:
2.14 2.07 2.03 2.01 2.01

Pairwise convergence rates for theta=1:
0.98 0.99 0.99 1.00 1.00

The Forward and Backward Euler methods seem to have an r value which stabilizes at 1, while
the Crank-Nicolson seems to be a second-order method with r = 2.

Very often, we have some theory that predicts what r is for a numerical method. Various
theoretical error measures for the θ-rule point to r = 2 for θ = 0.5 and r = 1 otherwise. The
computed estimates of r are in very good agreement with these theoretical values.

Why convergence rates are important.

The strong practical application of computing convergence rates is for verification: wrong
convergence rates point to errors in the code, and correct convergence rates brings evidence

11http://tinyurl.com/nm5587k/softeng1/decay_convrate.py
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that the implementation is correct. Experience shows that bugs in the code easily destroy
the expected convergence rate.

Debugging via convergence rates. Let us experiment with bugs and see the implication on
the convergence rate. We may, for instance, forget to multiply by a in the denominator in the
updating formula for u[n+1]:

u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt)*u[n]

Running the same decay_convrate.py command as above gives the expected convergence rates
(!). Why? The reason is that we just specified the ∆t values are relied on default values for other
parameters. The default value of a is 1. Forgetting the factor a has then no effect. This example
shows how important it is to avoid parameters that are 1 or 0 when verifying implementations.
Running the code decay_v0.py with a = 2.1 and I = 0.1 yields

Terminal> python decay_convrate.py --a 2.1 --I 0.1 \
--dt 0.5 0.25 0.1 0.05 0.025 0.01

...
Pairwise convergence rates for theta=0:
1.49 1.18 1.07 1.04 1.02

Pairwise convergence rates for theta=0.5:
-1.42 -0.22 -0.07 -0.03 -0.01

Pairwise convergence rates for theta=1:
0.21 0.12 0.06 0.03 0.01

This time we see that the expected convergence rates for the Crank-Nicolson and Backward Euler
methods are not obtained, while r = 1 for the Forward Euler method. The reason for correct
rate in the latter case is that θ = 0 and the wrong theta*dt term in the denominator vanishes
anyway.

The error

u[n+1] = ((1-theta)*a*dt)/(1 + theta*dt*a)*u[n]

manifests itself through wrong rates r ≈ 0 for all three methods. About the same results arise
from an erroneous initial condition, u[0] = 1, or wrong loop limits, range(1,Nt). It seems that
in this simple problem, most bugs we can think of are detected by the convergence rate test,
provided the values of the input data do not hide the bug.

A verify_convergence_rate function could compute the dictionary of list via main and
check if the final rate estimates (rm−2) are sufficiently close to the expected ones. A tolerance of
0.1 seems appropriate, given the uncertainty in estimating r:

def verify_convergence_rate():
r = main()
tol = 0.1
expected_rates = {0: 1, 1: 1, 0.5: 2}
for theta in r:

r_final = r[theta][-1]
diff = abs(expected_rates[theta] - r_final)
if diff > tol:

return False
return True # all tests passed
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We remark that r[theta] is a list and the last element in any list can be extracted by the index
-1.

4 Software engineering

Goal.
Efficient use of differential equation models requires software that is easy to test and flexible
for setting up extensive numerical experiments. This section introduces three important
concepts:

• Modules

• Testing frameworks

• Implementation with classes

The concepts are introduced using the differential equation problem u′ = −au, u(0) = I, as
example.

4.1 Making a module

The DRY principle.

The previous sections have outlined numerous different programs, all of them having their
own copy of the solver function. Such copies of the same piece of code is against the
important Don’t Repeat Yourself (DRY) principle in programming. If we want to change
the solver function there should be one and only one place where the change needs to be
performed.

To clean up the repetitive code snippets scattered among the decay_*.py files, we start by
collecting the various functions we want to keep for the future in one file, now called decay_mod.
py12 (mod stands for "module"). The following functions are copied to this file:

• solver for computing the numerical solution

• verify_three_steps for verifying the first three solution points against hand calculations

• verify_discrete_solution for verifying the entire computed solution against an exact
formula for the numerical solution

• explore for computing and plotting the solution

• define_command_line_options for defining option-value pairs on the command line

• read_command_line for reading input from the command line, now extended to work both
with sys.argv directly and with an ArgumentParser object

12http://tinyurl.com/nm5587k/softeng1/decay_mod.py
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• main for running experiments with θ = 0, 0.5, 1 and a series of ∆t values, and computing
convergence rates

• main_GUI for doing the same as the main function, but modified for automatic GUI
generation

• verify_convergence_rate for verifying the computed convergence rates against the theo-
retically expected values

We use Matplotlib for plotting. A sketch of the decay_mod.py file, with complete versions of the
modified functions, looks as follows:

from numpy import *
from matplotlib.pyplot import *
import sys

def solver(I, a, T, dt, theta):
...

def verify_three_steps():
...

def verify_exact_discrete_solution():
...

def u_exact(t, I, a):
...

def explore(I, a, T, dt, theta=0.5, makeplot=True):
...

def define_command_line_options():
...

def read_command_line(use_argparse=True):
if use_argparse:

parser = define_command_line_options()
args = parser.parse_args()
print ’I={}, a={}, makeplot={}, dt_values={}’.format(

args.I, args.a, args.makeplot, args.dt_values)
return args.I, args.a, args.makeplot, args.dt_values

else:
if len(sys.argv) < 6:

print ’Usage: %s I a on/off dt1 dt2 dt3 ...’ % \
sys.argv[0]; sys.exit(1)

I = float(sys.argv[1])
a = float(sys.argv[2])
T = float(sys.argv[3])
makeplot = sys.argv[4] in (’on’, ’True’)
dt_values = [float(arg) for arg in sys.argv[5:]]

return I, a, makeplot, dt_values

def main():
...

This decay_mod.py file is already a module such that we can import desired functions in
other programs. For example, we can in a file do
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from decay_mod import solver
u, t = solver(I=1.0, a=3.0, T=3, dt=0.01, theta=0.5)

However, it should also be possible to both use decay_mod.py as a module and execute the
file as a program that runs main(). This is accomplished by ending the file with a test block:

if __name__ == ’__main__’:
main()

When decay_mod.py is used as a module, __name__ equals the module name decay_mod, while
__name__ equals ’__main__’ when the file is run as a program. Optionally, we could run the veri-
fication tests if the word verify is present on the command line and verify_convergence_rate
could be tested if verify_rates is found on the command line. The verify_rates argu-
ment must be removed before we read parameter values from the command line, otherwise the
read_command_line function (called by main) will not work properly.

if __name__ == ’__main__’:
if ’verify’ in sys.argv:

if verify_three_steps() and verify_discrete_solution():
pass # ok

else:
print ’Bug in the implementation!’

elif ’verify_rates’ in sys.argv:
sys.argv.remove(’verify_rates’)
if not ’--dt’ in sys.argv:

print ’Must assign several dt values’
sys.exit(1) # abort

if verify_convergence_rate():
pass

else:
print ’Bug in the implementation!’

else:
# Perform simulations
main()

4.2 Prefixing imported functions by the module name
Import statements of the form from module import * import functions and variables in module.py
into the current file. For example, when doing

from numpy import *
from matplotlib.pyplot import *

we get mathematical functions like sin and exp as well as MATLAB-style functions like linspace
and plot, which can be called by these well-known names. Unfortunately, it sometimes be-
comes confusing to know where a particular function comes from. Is it from numpy? Or
matplotlib.pyplot? Or is it our own function?

An alternative import is

import numpy
import matplotlib.pyplot

and such imports require functions to be prefixed by the module name, e.g.,
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t = numpy.linspace(0, T, Nt+1)
u_e = I*numpy.exp(-a*t)
matplotlib.pyplot.plot(t, u_e)

This is normally regarded as a better habit because it is explicitly stated from which module a
function comes from.

The modules numpy and matplotlib.pyplot are so frequently used, and their full names quite
tedious to write, so two standard abbreviations have evolved in the Python scientific computing
community:

import numpy as np
import matplotlib.pyplot as plt

t = np.linspace(0, T, Nt+1)
u_e = I*np.exp(-a*t)
plt.plot(t, u_e)

A version of the decay_mod module where we use the np and plt prefixes is found in the file
decay_mod_prefix.py13.

The downside of prefixing functions by the module name is that mathematical expressions
like e−at sin(2πt) get cluttered with module names,

numpy.exp(-a*t)*numpy.sin(2(numpy.pi*t)
# or
np.exp(-a*t)*np.sin(2*np.pi*t)

Such an expression looks like exp(-a*t)*sin(2*pi*t) in most other programming languages.
Similarly, np.linspace and plt.plot look less familiar to people who are used to MATLAB and
who have not adopted Python’s prefix style. Whether to do from module import * or import
module depends on personal taste and the problem at hand. In these writings we use from
module import in shorter programs where similarity with MATLAB could be an advantage, and
where a one-to-one correspondence between mathematical formulas and Python expressions is
important. The style import module is preferred inside Python modules (see Exercise 5 for a
demonstration).

4.3 Doctests
We have emphasized how important it is to be able to run tests in the program at any time. This
was solved by calling various verify* functions in the previous examples. However, there exists
well-established procedures and corresponding tools for automating the execution of tests. We
shall briefly demonstrate two important techniques: doctest and unit testing. The corresponding
files are the modules decay_mod_doctest.py14 and decay_mod_nosetest.py15.

A doc string (the first string after the function header) is used to document the purpose of
functions and their arguments. Very often it is instructive to include an example on how to use
the function. Interactive examples in the Python shell are most illustrative as we can see the
output resulting from function calls. For example, we can in the solver function include an
example on calling this function and printing the computed u and t arrays:

13http://tinyurl.com/nm5587k/softeng1/decay_mod_prefix.py
14http://tinyurl.com/nm5587k/softeng1/decay_mod_doctest.py
15http://tinyurl.com/nm5587k/softeng1/decay_mod_nosetest.py
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def solver(I, a, T, dt, theta):
"""
Solve u’=-a*u, u(0)=I, for t in (0,T] with steps of dt.

>>> u, t = solver(I=0.8, a=1.2, T=4, dt=0.5, theta=0.5)
>>> for t_n, u_n in zip(t, u):
... print ’t=%.1f, u=%.14f’ % (t_n, u_n)
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
t=2.0, u=0.06725254717972
t=2.5, u=0.03621291001985
t=3.0, u=0.01949925924146
t=3.5, u=0.01049960113002
t=4.0, u=0.00565363137770
"""
...

When such interactive demonstrations are inserted in doc strings, Python’s doctest16 module
can be used to automate running all commands in interactive sessions and compare new output
with the output appearing in the doc string. All we have to do in the current example is to write

Terminal> python -m doctest decay_mod_doctest.py

This command imports the doctest module, which runs all tests. No additional command-line
argument is allowed when running doctests. If any test fails, the problem is reported, e.g.,

Terminal> python -m doctest decay_mod_doctest.py
********************************************************
File "decay_mod_doctest.py", line 12, in decay_mod_doctest....
Failed example:

for t_n, u_n in zip(t, u):
print ’t=%.1f, u=%.14f’ % (t_n, u_n)

Expected:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
t=2.0, u=0.06725254717972

Got:
t=0.0, u=0.80000000000000
t=0.5, u=0.43076923076923
t=1.0, u=0.23195266272189
t=1.5, u=0.12489758761948
t=2.0, u=0.06725254718756

********************************************************
1 items had failures:

1 of 2 in decay_mod_doctest.solver
***Test Failed*** 1 failures.

Note that in the output of t and u we write u with 14 digits. Writing all 16 digits is not a
good idea: if the tests are run on different hardware, round-off errors might be different, and the
doctest module detects that the numbers are not precisely the same and reports failures. In
the present application, where 0 < u(t) ≤ 0.8, we expect round-off errors to be of size 10−16, so
comparing 15 digits would probably be reliable, but we compare 14 to be on the safe side.

16http://docs.python.org/library/doctest.html
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Doctests are highly encouraged as they do two things: 1) demonstrate how a function is used
and 2) test that the function works.

Here is an example on a doctest in the explore function:

def explore(I, a, T, dt, theta=0.5, makeplot=True):
"""
Run a case with the solver, compute error measure,
and plot the numerical and exact solutions (if makeplot=True).

>>> for theta in 0, 0.5, 1:
... E = explore(I=1.9, a=2.1, T=5, dt=0.1, theta=theta,
... makeplot=False)
... print ’%.10E’ % E
...
7.3565079236E-02
2.4183893110E-03
6.5013039886E-02
"""
...

This time we limit the output to 10 digits.

Caution.
Doctests requires careful coding if they use command-line input or print results to the
terminal window. Command-line input must be simulated by filling sys.argv correctly, e.g.,
sys.argv = ’–I 1.0 –a 5’.split. The output lines of print statements must be copied
exactly as they appear when running the statements in an interactive Python shell.

4.4 Unit testing with nose
The unit testing technique consists of identifying small units of code, usually functions (or classes),
and write one or more tests for each unit. One test should, ideally, not depend on the outcome of
other tests. For example, the doctest in function solver is a unit test, and the doctest in function
explore as well, but the latter depends on a working solver. Putting the error computation and
plotting in explore in two separate functions would allow independent unit tests. In this way,
the design of unit tests impacts the design of functions. The recommended practice is actually to
design and write the unit tests first and then implement the functions!

In scientific computing it is not always obvious how to best perform unit testing. The
units is naturally larger than in non-scientific software. Very often the solution procedure of a
mathematical problem identifies a unit.

Basic use of nose. The nose package is a versatile tool for implementing unit tests in Python.
Here is a short explanation of the usage of nose:

1. Implement tests in functions with names starting with test_. Such functions cannot have
any arguments.

2. The test functions perform assertions on computed results using assert functions from the
nose.tools module.

3. The test functions can be in the source code files or be collected in separate files with names
test*.py.
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Here comes a very simple illustration of the three points. Assume that we have this function in a
module mymod:

def double(n):
return 2*n

Either in this file, or in a separate file test_mymod.py, we implement a test function whose
purpose is to test that the function double works as intended:

import nose.tools as nt

def test_double():
result = double(4)
nt.assert_equal(result, 8)

Notice that test_double has no arguments. We need to do an import mymod or from mymod
import double if this test resides in a separate file. Running

Terminal> nosetests -s mymod

makes the nose tool run all functions with names matching test_*() in mymod.py. Alternatively,
if the test functions are in some test_mymod.py file, we can just write nosetests -s. The nose
tool will then look for all files with names mathching test*.py and run all functions test_*()
in these files.

When you have nose tests in separate test files with names test*.py it is common to collect
these files in a subdirectory tests, or *_tests if you have several test subdirectories. Running
nosetests -s will then recursively look for all tests and *_tests subdirectories and run all
functions test_*() in all files test_*.py in these directories. Just one command can then launch
a series of tests in a directory tree!

An example of a tests directory with different types of test*.py files are found in src/de-
cay/tests17. Note that these perform imports of modules in the parent directory. These imports
works well because the tests are supposed to be run by nosetests -s executed in the parent
directory (decay).

Tip.

The -s option to nosetests assures that any print statement in the test_* functions
appears in the output. Without this option, nosetests suppressed whatever the tests
writes to the terminal window (standard output). Such behavior is annoying, especially
when developing and testing tests.

The number of failed tests and their details are reported, or an OK is printed if all tests passed.
The advantage with the nose package is two-fold:

1. tests are written and collected in a structured way, and

2. large collections of tests, scattered throughout a tree of directories, can be executed with
one command nosetests -s.

17http://tinyurl.com/nm5587k/softeng1/tests
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Alternative assert statements. In case the nt.assert_equal function finds that the two
arguments are equal, the test is a success, otherwise it is a failure and an exception of type
AssertionError is raised. The particular exception is the indicator that a test has failed.

Instead of calling the convenience function nt.assert_equal, we can use Python’s plain
assert statement, which tests if a boolean expression is true and raises an AssertionError
otherwise. Here, the statement is assert result == 8.

A completely manual alternative is to explicitly raise an AssertionError exception if the
computed result is wrong:

if result != 8:
raise AssertionError()

Applying nose. Let us illustrate how to use the nose tool for testing key functions in the
decay_mod module. Or more precisely, the module is called decay_mod_unittest with all the
verify* functions removed as these now are outdated by the unit tests.

We design three unit tests:

1. A comparison between the computed un values and the exact discrete solution.

2. A comparison between the computed un values and precomputed, verified reference values.

3. A comparison between observed and expected convergence rates.

These tests follow very closely the code in the previously shown verify* functions. We start
with comparing un, as computed by the function solver, to the formula for the exact discrete
solution:

import nose.tools as nt
import decay_mod_unittest as decay_mod
import numpy as np

def exact_discrete_solution(n, I, a, theta, dt):
"""Return exact discrete solution of the theta scheme."""
dt = float(dt) # avoid integer division
factor = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
return I*factor**n

def test_exact_discrete_solution():
"""
Compare result from solver against
formula for the discrete solution.
"""
theta = 0.8; a = 2; I = 0.1; dt = 0.8
N = int(8/dt) # no of steps
u, t = decay_mod.solver(I=I, a=a, T=N*dt, dt=dt, theta=theta)
u_de = np.array([exact_discrete_solution(n, I, a, theta, dt)

for n in range(N+1)])
diff = np.abs(u_de - u).max()
nt.assert_almost_equal(diff, 0, delta=1E-14)

The nt.assert_almost_equal is the relevant function for comparing two real numbers. The
delta argument specifies a tolerance for the comparison. Alternatively, one can specify a places
argument for the number of decimal places to be used in the comparison.

After having carefully verified the implementation, we may store correctly computed numbers
in the test program or in files for use in future tests. Here is an example on how the outcome
from the solver function can be compared to what is considered to be correct results:
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def test_solver():
"""
Compare result from solver against
precomputed arrays for theta=0, 0.5, 1.
"""
I=0.8; a=1.2; T=4; dt=0.5 # fixed parameters
precomputed = {

’t’: np.array([ 0. , 0.5, 1. , 1.5, 2. , 2.5,
3. , 3.5, 4. ]),

0.5: np.array(
[ 0.8 , 0.43076923, 0.23195266, 0.12489759,

0.06725255, 0.03621291, 0.01949926, 0.0104996 ,
0.00565363]),

0: np.array(
[ 8.00000000e-01, 3.20000000e-01,

1.28000000e-01, 5.12000000e-02,
2.04800000e-02, 8.19200000e-03,
3.27680000e-03, 1.31072000e-03,
5.24288000e-04]),

1: np.array(
[ 0.8 , 0.5 , 0.3125 , 0.1953125 ,

0.12207031, 0.07629395, 0.04768372, 0.02980232,
0.01862645]),

}
for theta in 0, 0.5, 1:

u, t = decay_mod.solver(I, a, T, dt, theta=theta)
diff = np.abs(u - precomputed[theta]).max()
# Precomputed numbers are known to 8 decimal places
nt.assert_almost_equal(diff, 0, places=8,

msg=’theta=%s’ % theta)

The precomputed object is a dictionary with four keys: ’t’ for the time mesh, and three θ values
for un solutions corresponding to θ = 0, 0.5, 1.

Testing for special type of input data that may cause trouble constitutes a common way of
constructing unit tests. For example, the updating formula for un+1 may be incorrectly evaluated
because of unintended integer divisions. With

theta = 1; a = 1; I = 1; dt = 2

the nominator and denominator in the updating expression,

(1 - (1-theta)*a*dt)
(1 + theta*dt*a)

evaluate to 1 and 3, respectively, and the fraction 1/3 will call up integer division and consequently
lead to u[n+1]=0. We construct a unit test to make sure solver is smart enough to avoid this
problem:

def test_potential_integer_division():
"""Choose variables that can trigger integer division."""
theta = 1; a = 1; I = 1; dt = 2
N = 4
u, t = decay_mod.solver(I=I, a=a, T=N*dt, dt=dt, theta=theta)
u_de = np.array([exact_discrete_solution(n, I, a, theta, dt)

for n in range(N+1)])
diff = np.abs(u_de - u).max()
nt.assert_almost_equal(diff, 0, delta=1E-14)

The final test is to see that the convergence rates corresponding to θ = 0, 0.5, 1 are 1, 2, and
1, respectively:
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def test_convergence_rates():
"""Compare empirical convergence rates to exact ones."""
# Set command-line arguments directly in sys.argv
import sys
sys.argv[1:] = ’--I 0.8 --a 2.1 --T 5 ’\

’--dt 0.4 0.2 0.1 0.05 0.025’.split()
r = decay_mod.main()
for theta in r:

nt.assert_true(r[theta]) # check for non-empty list

expected_rates = {0: 1, 1: 1, 0.5: 2}
for theta in r:

r_final = r[theta][-1]
# Compare to 1 decimal place
nt.assert_almost_equal(expected_rates[theta], r_final,

places=1, msg=’theta=%s’ % theta)

Nothing more is needed in the test_decay_nose.py18 file where the tests reside. Running
nosetests -s will report Ran 3 tests and an OK for success. Every time we modify the
decay_mod_unittest module we can run nosetests to quickly see if the edits have any impact
on the verification tests.

Installation of nose. The nose package does not come with a standard Python distribution
and must therefore be installed separately. The procedure is standard and described on Nose’s web
pages19. On Debian-based Linux systems the command is sudo apt-get install python-nose,
and with MacPorts you run sudo port install py27-nose.

Using nose to test modules with doctests. Assume that mod is the name of some module
that contains doctests. We may let nose run these doctests and report errors in the standard
way using the code set-up

import doctest
import mod

def test_mod():
failure_count, test_count = doctest.testmod(m=mod)
nt.assert_equal(failure_count, 0,

msg=’%d tests out of %d failed’ %
(failure_count, test_count))

The call to doctest.testmod runs all doctests in the module file mod.py and returns the number
of failures (failure_count) and the total number of tests (test_count). A real example is found
in the file test_decay_doctest.py20.

4.5 Classical class-based unit testing
The classical way of implementing unit tests derives from the JUnit tool in Java where all tests
are methods in a class for testing. Python comes with a module unittest for doing this type of
unit tests. While nose allows simple functions for unit tests, unittest requires deriving a class
Test* from unittest.TestCase and implementing each test as methods with names test_* in
that class. I strongly recommend to use nose over unittest, because it is much simpler and more

18http://tinyurl.com/nm5587k/softeng1/tests/test_decay_nose.py
19http://nose.readthedocs.org/en/latest/
20http://tinyurl.com/nm5587k/softeng1/tests/test_decay_doctest.py
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convenient, but class-based unit testing is a very classical subject that computational scientists
should have some knowledge about. That is why a short introduction to unittest is included
below.

Basic use of unittest. We apply the double function in the mymod module introduced in the
previous section as example. Unit testing with the aid of the unittest module consists of writing
a file test_mymod.py with the content

import unittest
import mymod

class TestMyCode(unittest.TestCase):
def test_double(self):

result = mymod.double(4)
self.assertEqual(result, 8)

if __name__ == ’__main__’:
unittest.main()

The test is run by executing the test file test_mymod.py as a standard Python program. There
is no support in unittest for automatically locating and running all tests in all test files in a
directory tree.

Those who have experience with object-oriented programming will see that the difference
between using unittest and nose is minor.

Demonstration of unittest. The same tests as shown for the nose framework are reimple-
mented with the TestCase classes in the file test_decay_unittest.py21. The tests are identical,
the only difference being that with unittest we must write the tests as methods in a class and
the assert functions have slightly different names.

import unittest
import decay_mod_unittest as decay
import numpy as np

def exact_discrete_solution(n, I, a, theta, dt):
factor = (1 - (1-theta)*a*dt)/(1 + theta*dt*a)
return I*factor**n

class TestDecay(unittest.TestCase):

def test_exact_discrete_solution(self):
...
diff = np.abs(u_de - u).max()
self.assertAlmostEqual(diff, 0, delta=1E-14)

def test_solver(self):
...
for theta in 0, 0.5, 1:

...
self.assertAlmostEqual(diff, 0, places=8,

msg=’theta=%s’ % theta)

def test_potential_integer_division():
...
self.assertAlmostEqual(diff, 0, delta=1E-14)

def test_convergence_rates(self):

21http://tinyurl.com/nm5587k/softeng1/tests/test_decay_nose.py
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...
for theta in r:

...
self.assertAlmostEqual(...)

if __name__ == ’__main__’:
unittest.main()

4.6 Implementing simple problem and solver classes
The θ-rule was compactly and conveniently implemented in a function solver in Section ??. In
more complicated problems it might be beneficial to use classes and introduce a class Problem to
hold the definition of the physical problem, a class Solver to hold the data and methods needed
to numerically solve the problem, and a class Visualizer to make plots. This idea will now be
illustrated, resulting in code that represents an alternative to the solver and explore functions
found in the decay_mod module.

Explaining the details of class programming in Python is considered beyond the scope of this
text. Readers who are unfamiliar with Python class programming should first consult one of the
many electronic Python tutorials or textbooks to come up to speed with concepts and syntax of
Python classes before reading on. The author has a gentle introduction to class programming for
scientific applications in [1], see Chapter 7 and 9 and Appendix E. Other useful resources are

• The Python Tutorial: http://docs.python.org/2/tutorial/classes.html

• Wiki book on Python Programming: http://en.wikibooks.org/wiki/Python_Programming/
Classes

• tutorialspoint.com: http://www.tutorialspoint.com/python/python_classes_objects.
htm

The problem class. The purpose of the problem class is to store all information about the
mathematical model. This usually means all the physical parameters in the problem. In the
current example with exponential decay we may also add the exact solution of the ODE to the
problem class. The simplest form of a problem class is therefore

from numpy import exp

class Problem:
def __init__(self, I=1, a=1, T=10):

self.T, self.I, self.a = I, float(a), T

def u_exact(self, t):
I, a = self.I, self.a
return I*exp(-a*t)

We could in the u_exact method have written self.I*exp(-self.a*t), but using local variables
I and a allows the formula I*exp(-a*t) which looks closer to the mathematical expression
Ie−at. This is not an important issue with the current compact formula, but is beneficial in more
complicated problems with longer formulas to obtain the closest possible relationship between
code and mathematics. My coding style is to strip off the self prefix when the code expresses
mathematical formulas.

The class data can be set either as arguments in the constructor or at any time later, e.g.,
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problem = Problem(T=5)
problem.T = 8
problem.dt = 1.5

(Some programmers prefer set and get functions for setting and getting data in classes, often
implemented via properties in Python, but I consider that overkill when we just have a few data
items in a class.)

It would be convenient if class Problem could also initialize the data from the command
line. To this end, we add a method for defining a set of command-line options and a method
that sets the local attributes equal to what was found on the command line. The default values
associated with the command-line options are taken as the values provided to the constructor.
Class Problem now becomes

class Problem:
def __init__(self, I=1, a=1, T=10):

self.T, self.I, self.a = I, float(a), T

def define_command_line_options(self, parser=None):
if parser is None:

import argparse
parser = argparse.ArgumentParser()

parser.add_argument(
’--I’, ’--initial_condition’, type=float,
default=self.I, help=’initial condition, u(0)’,
metavar=’I’)

parser.add_argument(
’--a’, type=float, default=self.a,
help=’coefficient in ODE’, metavar=’a’)

parser.add_argument(
’--T’, ’--stop_time’, type=float, default=self.T,
help=’end time of simulation’, metavar=’T’)

return parser

def init_from_command_line(self, args):
self.I, self.a, self.T = args.I, args.a, args.T

def exact_solution(self, t):
I, a = self.I, self.a
return I*exp(-a*t)

Observe that if the user already has an ArgumentParser object it can be supplied, but if she
does not have any, class Problem makes one. Python’s None object is used to indicate that a
variable is not initialized with a proper value.

The solver class. The solver class stores data related to the numerical solution method and
provides a function solve for solving the problem. A problem object must be given to the
constructor so that the solver can easily look up physical data. In the present example, the data
related to the numerical solution method consists of ∆t and θ. We add, as in the problem class,
functionality for reading ∆t and θ from the command line:

class Solver:
def __init__(self, problem, dt=0.1, theta=0.5):

self.problem = problem
self.dt, self.theta = float(dt), theta

def define_command_line_options(self, parser):
parser.add_argument(
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’--dt’, ’--time_step_value’, type=float,
default=0.5, help=’time step value’, metavar=’dt’)

parser.add_argument(
’--theta’, type=float, default=0.5,
help=’time discretization parameter’, metavar=’dt’)

return parser

def init_from_command_line(self, args):
self.dt, self.theta = args.dt, args.theta

def solve(self):
from decay_mod import solver
self.u, self.t = solver(

self.problem.I, self.problem.a, self.problem.T,
self.dt, self.theta)

def error(self):
u_e = self.problem.exact_solution(self.t)
e = u_e - self.u
E = sqrt(self.dt*sum(e**2))
return E

Note that we here simply reuse the implementation of the numerical method from the decay_mod
module. The solve function is just a wrapper of the previously developed stand-alone solver
function.

The visualizer class. The purpose of the visualizer class is to plot the numerical solution
stored in class Solver. We also add the possibility to plot the exact solution. Access to the
problem and solver objects is required when making plots so the constructor must hold references
to these objects:

class Visualizer:
def __init__(self, problem, solver):

self.problem, self.solver = problem, solver

def plot(self, include_exact=True, plt=None):
"""
Add solver.u curve to the plotting object plt,
and include the exact solution if include_exact is True.
This plot function can be called several times (if
the solver object has computed new solutions).
"""
if plt is None:

import scitools.std as plt # can use matplotlib as well

plt.plot(self.solver.t, self.solver.u, ’--o’)
plt.hold(’on’)
theta2name = {0: ’FE’, 1: ’BE’, 0.5: ’CN’}
name = theta2name.get(self.solver.theta, ’’)
legends = [’numerical %s’ % name]
if include_exact:

t_e = linspace(0, self.problem.T, 1001)
u_e = self.problem.exact_solution(t_e)
plt.plot(t_e, u_e, ’b-’)
legends.append(’exact’)

plt.legend(legends)
plt.xlabel(’t’)
plt.ylabel(’u’)
plt.title(’theta=%g, dt=%g’ %

(self.solver.theta, self.solver.dt))
plt.savefig(’%s_%g.png’ % (name, self.solver.dt))
return plt

28



The plt object in the plot method is worth a comment. The idea is that plot can add a
numerical solution curve to an existing plot. Calling plot with a plt object (which has to be
a matplotlib.pyplot or scitools.std object in this implementation), will just add the curve
self.solver.u as a dashed line with circles at the mesh points (leaving the color of the curve
up to the plotting tool). This functionality allows plots with several solutions: just make a loop
where new data is set in the problem and/or solver classes, the solver’s solve() method is called,
and the most recent numerical solution is plotted by the plot(plt) method in the visualizer
object Exercise 6 describes a problem setting where this functionality is explored.

Combining the objects. Eventually we need to show how the classes Problem, Solver, and
Visualizer play together:

def main():
problem = Problem()
solver = Solver(problem)
viz = Visualizer(problem, solver)

# Read input from the command line
parser = problem.define_command_line_options()
parser = solver. define_command_line_options(parser)
args = parser.parse_args()
problem.init_from_command_line(args)
solver. init_from_command_line(args)

# Solve and plot
solver.solve()
import matplotlib.pyplot as plt
#import scitools.std as plt
plt = viz.plot(plt=plt)
E = solver.error()
if E is not None:

print ’Error: %.4E’ % E
plt.show()

The file decay_class.py22 constitutes a module with the three classes and the main function.

Test the understanding.

Implement the problem in Exercise ?? in terms of problem, solver, and visualizer classes.
Equip the classes and their methods with doc strings with tests. Also include nose tests.

4.7 Improving the problem and solver classes
The previous Problem and Solver classes containing parameters soon get much repetitive code
when the number of parameters increases. Much of this code can be parameterized and be made
more compact. For this purpose, we decide to collect all parameters in a dictionary, self.prms,
with two associated dictionaries self.types and self.help for holding associated object types
and help strings. Provided a problem, solver, or visualizer class defines these three dictionaries in
the constructor, using default or user-supplied values of the parameters, we can create a super
class Parameters with general code for defining command-line options and reading them as well
as methods for setting and getting a parameter. A Problem or Solver class will then inherit
command-line functionality and the set/get methods from the Parameters class.

22http://tinyurl.com/nm5587k/softeng1/decay_class.py
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A generic class for parameters. A simplified version of the parameter class looks as follows:

class Parameters:
def set(self, **parameters):

for name in parameters:
self.prms[name] = parameters[name]

def get(self, name):
return self.prms[name]

def define_command_line_options(self, parser=None):
if parser is None:

import argparse
parser = argparse.ArgumentParser()

for name in self.prms:
tp = self.types[name] if name in self.types else str
help = self.help[name] if name in self.help else None
parser.add_argument(

’--’ + name, default=self.get(name), metavar=name,
type=tp, help=help)

return parser

def init_from_command_line(self, args):
for name in self.prms:

self.prms[name] = getattr(args, name)

The file class_decay_oo.py23 contains a slightly more advanced version of class Parameters
where we in the set and get functions test for valid parameter names and raise exceptions with
informative messages if any name is not registered.

The problem class. A class Problem for the problem u′ = −au, u(0) = I, t ∈ (0, T ], with
parameters input a, I, and T can now be coded as

class Problem(Parameters):
"""
Physical parameters for the problem u’=-a*u, u(0)=I,
with t in [0,T].
"""
def __init__(self):

self.prms = dict(I=1, a=1, T=10)
self.types = dict(I=float, a=float, T=float)
self.help = dict(I=’initial condition, u(0)’,

a=’coefficient in ODE’,
T=’end time of simulation’)

def exact_solution(self, t):
I, a = self.get(’I’), self.get(’a’)
return I*np.exp(-a*t)

The solver class. Also the solver class is derived from class Parameters and works with the
prms, types, and help dictionaries in the same way as class Problem. Otherwise, the code is
very similar to class Solver in the decay_class.py file:

23http://tinyurl.com/nm5587k/softeng1/class_decay_oo.py
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class Solver(Parameters):
def __init__(self, problem):

self.problem = problem
self.prms = dict(dt=0.5, theta=0.5)
self.types = dict(dt=float, theta=float)
self.help = dict(dt=’time step value’,

theta=’time discretization parameter’)

def solve(self):
from decay_mod import solver
self.u, self.t = solver(

self.problem.get(’I’),
self.problem.get(’a’),
self.problem.get(’T’),
self.get(’dt’),
self.get(’theta’))

def error(self):
try:

u_e = self.problem.exact_solution(self.t)
e = u_e - self.u
E = np.sqrt(self.get(’dt’)*np.sum(e**2))

except AttributeError:
E = None

return E

The visualizer class. Class Visualizer can be identical to the one in the decay_class.py
file since the class does not need any parameters. However, a few adjustments in the plot method
is necessary since parameters are accessed as, e.g., problem.get(’T’) rather than problem.T.
The details are found in the file class_decay_oo.py.

Finally, we need a function that solves a real problem using the classes Problem, Solver, and
Visualizer. This function can be just like main in the decay_class.py file.

The advantage with the Parameters class is that it scales to problems with a large number of
physical and numerical parameters: as long as the parameters are defined once via a dictionary,
the compact code in class Parameters can handle any collection of parameters of any size.

5 Performing scientific experiments

Goal.
This section explores the behavior of a numerical method for a differential equation through
computer experiments. In particular, it is shown how scientific experiments can be set up
and reported. We address the ODE problem

u′(t) = −au(t), u(0) = I, t ∈ (0, T ], (5)

numerically discretized by the θ-rule:

un+1 = 1− (1− θ)a∆t
1 + θa∆t un, u0 = I .

Our aim is to plot u0, u1, . . . , uN together with the exact solution ue = Ie−at for various
choices of the parameters in this numerical problem: I, a, ∆t, and θ. We are especially
interested in how the discrete solution compares with the exact solution when the ∆t

31



parameter is varied and θ takes on the three values corresponding to the Forward Euler,
Backward Euler, and Crank-Nicolson schemes (θ = 0, 1, 0.5, respectively).

5.1 Software
A verified implementation for computing the numerical solution un and plotting it together with
the exact solution ue is found in the file decay_mod.py24. This program admits command-line
arguments to specify a series of ∆t values and will run a loop over these values and θ = 0, 0.5, 1.
We make a slight edit of how the plots are designed: the numerical solution is specified with
line type ’r–o’ (dashed red lines with dots at the mesh points), and the show() command is
removed to avoid a lot of plot windows popping up on the computer screen (but hardcopies
of the plot are still stored in files via savefig). The slightly modified program has the name
experiments/decay_mod.py25. All files associated with the scientific investigation are collected
in a subdirectory experiments.

Running the experiments is easy since the decay_mod.py program already has the loops over
θ and ∆t implemented. An experiment with I = 1, a = 2, T = 5, and dt = 0.5, 0.25, 0.1, 0.05 is
run by

Terminal> python decay_mod.py --I 1 --a 2 --makeplot \
--T 5 --dt 0.5 0.25 0.1 0.05

5.2 Combining plot files
The decay_mod.py program generates a lot of image files, e.g., FE_*.png, BE_*.png, and
CN_*.png. We want to combine all the FE_*.png files in a table fashion in one file, with
two images in each row, starting with the largest ∆t in the upper left corner and decreasing the
value as we go to the right and down. This can be done using the montage26 program. The often
occurring white areas around the plots can be cropped away by the convert -trim command.
The remaining white can be made transparent for HTML pages with a non-white background by
the command convert -transparent white.

Also plot files in the PDF format with names FE_*.pdf, BE_*.pdf, and CN_*.pdf are generated
and these should be combined using other tools: pdftk to combine individual plots into one file
with one plot per page, and pdfnup to combine the pages into a table with multiple plots per
page. The resulting image often has some extra surrounding white space that can be removed by
the pdfcrop program. The code snippets below contain all details about the usage of montage,
convert, pdftk, pdfnup, and pdfcrop.

Running manual commands is boring, and errors may easily sneak in. Both for automating
manual work and documenting the operating system commands we actually issued in the
experiment, we should write a script (little program). An alternative is to write the commands
into an IPython notebook and use the notebook as the script. A plain script as a standard Python
program in a separate text file will be used here.

24http://tinyurl.com/nm5587k/softeng1/decay_mod.py
25http://tinyurl.com/nm5587k/softeng1/experiments/decay_mod.py
26http://www.imagemagick.org/script/montage.php
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Reproducible science.

A script that automates running our computer experiments will ensure that the experiments
can easily be rerun by ourselves or others in the future, either to check the results or redo
the experiments with other input data. Also, whatever we did to produce the results is
documented in every detail in the script. Automating scripts are therefore essential to
making our research reproducible, which is a fundamental principle in science.

The script takes a list of ∆t values on the command line as input and makes three combined
images, one for each θ value, displaying the quality of the numerical solution as ∆t varies. For
example,

Terminal> python decay_exper0.py 0.5 0.25 0.1 0.05

results in images FE.png, CN.png, BE.png, FE.pdf, CN.pdf, and BE.pdf, each with four plots
corresponding to the four ∆t values. Each plot compares the numerical solution with the exact
one. The latter image is shown in Figure 2.

Ideally, the script should be scalable in the sense that it works for any number of ∆t values,
which is the case for this particular implementation:

import os, sys

def run_experiments(I=1, a=2, T=5):
# The command line must contain dt values
if len(sys.argv) > 1:

dt_values = [float(arg) for arg in sys.argv[1:]]
else:

print ’Usage: %s dt1 dt2 dt3 ...’ % sys.argv[0]
sys.exit(1) # abort

# Run module file as a stand-alone application
cmd = ’python decay_mod.py --I %g --a %g --makeplot --T %g’ % \

(I, a, T)
dt_values_str = ’ ’.join([str(v) for v in dt_values])
cmd += ’ --dt %s’ % dt_values_str
print cmd
failure = os.system(cmd)
if failure:

print ’Command failed:’, cmd; sys.exit(1)

# Combine images into rows with 2 plots in each row
image_commands = []
for method in ’BE’, ’CN’, ’FE’:

pdf_files = ’ ’.join([’%s_%g.pdf’ % (method, dt)
for dt in dt_values])

png_files = ’ ’.join([’%s_%g.png’ % (method, dt)
for dt in dt_values])

image_commands.append(
’montage -background white -geometry 100%’ +
’ -tile 2x %s %s.png’ % (png_files, method))

image_commands.append(
’convert -trim %s.png %s.png’ % (method, method))

image_commands.append(
’convert %s.png -transparent white %s.png’ %
(method, method))

image_commands.append(
’pdftk %s output tmp.pdf’ % pdf_files)
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Figure 2: Illustration of the Backward Euler method for four time step values.

num_rows = int(round(len(dt_values)/2.0))
image_commands.append(

’pdfnup --nup 2x%d tmp.pdf’ % num_rows)
image_commands.append(

’pdfcrop tmp-nup.pdf %s.pdf’ % method)

for cmd in image_commands:
print cmd
failure = os.system(cmd)
if failure:

print ’Command failed:’, cmd; sys.exit(1)

# Remove the files generated above and by decay_mod.py
from glob import glob
filenames = glob(’*_*.png’) + glob(’*_*.pdf’) + \

glob(’*_*.eps’) + glob(’tmp*.pdf’)
for filename in filenames:

os.remove(filename)

if __name__ == ’__main__’:
run_experiments()
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This file is available as experiments/decay_exper0.py27.
We may comment upon many useful constructs in this script:

• [float(arg) for arg in sys.argv[1:]] builds a list of real numbers from all the
command-line arguments.

• failure = os.system(cmd) runs an operating system command, e.g., another program.
The execution is successful only if failure is zero.

• Unsuccessful execution usually makes it meaningless to continue the program, and therefore
we abort the program with sys.exit(1). Any argument different from 0 signifies to the
computer’s operating system that our program stopped with a failure.

• [’%s_%s.png’ % (method, dt) for dt in dt_values] builds a list of filenames from a
list of numbers (dt_values).

• All montage, convert, pdftk, pdfnup, and pdfcrop commands for creating composite
figures are stored in a list and later executed in a loop.

• glob(’*_*.png’) returns a list of the names of all files in the current directory where the
filename matches the Unix wildcard notation28 *_*.png (meaning any text, underscore,
any text, and then .png).

• os.remove(filename) removes the file with name filename.

5.3 Interpreting output from other programs
Programs that run other programs, like decay_exper0.py does, will often need to interpret
output from those programs. Let us demonstrate how this is done in Python by extracting the
relations between θ, ∆t, and the error E as written to the terminal window by the decay_mod.py
program, when being executed by decay_exper0.py. We will

• read the output from the decay_mod.py program

• interpret this output and store the E values in arrays for each θ value

• plot E versus ∆t, for each θ, in a log-log plot

The simple os.system(cmd) call does not allow us to read the output from running cmd.
Instead we need to invoke a bit more involved procedure:

from subprocess import Popen, PIPE, STDOUT
p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT)
output, dummy = p.communicate()
failure = p.returncode
if failure:

print ’Command failed:’, cmd; sys.exit(1)

27http://tinyurl.com/nm5587k/softeng1/experiments/decay_exper0.py
28http://en.wikipedia.org/wiki/Glob_(programming)
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The command stored in cmd is run and all text that is written to the standard output and the
standard error is available in the string output. Or in other words, the text in output is what
appeared in the terminal window while running cmd.

Our next task is to run through the output string, line by line, and if the current line prints
θ, ∆t, and E, we split the line into these three pieces and store the data. The chosen storage
structure is a dictionary errors with keys dt to hold the ∆t values in a list, and three θ keys to
hold the corresponding E values in a list. The relevant code lines are

errors = {’dt’: dt_values, 1: [], 0: [], 0.5: []}
for line in output.splitlines():

words = line.split()
if words[0] in (’0.0’, ’0.5’, ’1.0’): # line with E?

# typical line: 0.0 1.25: 7.463E+00
theta = float(words[0])
E = float(words[2])
errors[theta].append(E)

Note that we do not bother to store the ∆t values as we read them from output, because we
already have these values in the dt_values list.

We are now ready to plot E versus ∆t for θ = 0, 0.5, 1:

import matplotlib.pyplot as plt
plt.loglog(errors[’dt’], errors[0], ’ro-’)
plt.hold(’on’)
plt.loglog(errors[’dt’], errors[0.5], ’b+-’)
plt.loglog(errors[’dt’], errors[1], ’gx-’)
plt.legend([’FE’, ’CN’, ’BE’], loc=’upper left’)
plt.xlabel(’log(time step)’)
plt.ylabel(’log(error)’)
plt.title(’Error vs time step’)
plt.savefig(’error.png’)
plt.savefig(’error.pdf’)

Plots occasionally need some manual adjustments. Here, the axis of the log-log plot look nicer if
we adapt them strictly to the data, see Figure 3. To this end, we need to compute minE and
maxE, and later specify the extent of the axes:

# Find min/max for the axis
E_min = 1E+20; E_max = -E_min
for theta in 0, 0.5, 1:

E_min = min(E_min, min(errors[theta]))
E_max = max(E_max, max(errors[theta]))

plt.loglog(errors[’dt’], errors[0], ’ro-’)
...
plt.axis([min(dt_values), max(dt_values), E_min, E_max])
...

The complete program, incorporating the code snippets above, is found in experiments/
decay_exper1.py29. This example can hopefully act as template for numerous other occasions
where one needs to run experiments, extract data from the output of programs, make plots, and
combine several plots in a figure file. The decay_exper1.py program is organized as a module,
and other files can then easily extend the functionality, as illustrated in the next section.

29http://tinyurl.com/nm5587k/softeng1/experiments/decay_exper1.py

36

http://tinyurl.com/nm5587k/softeng1/experiments/decay_exper1.py
http://tinyurl.com/nm5587k/softeng1/experiments/decay_exper1.py


Figure 3: Default plot (left) and manually adjusted axes (right).

5.4 Making a report
The results of running computer experiments are best documented in a little report containing
the problem to be solved, key code segments, and the plots from a series of experiments. At least
the part of the report containing the plots should be automatically generated by the script that
performs the set of experiments, because in that script we know exactly which input data that
were used to generate a specific plot, thereby ensuring that each figure is connected to the right
data. Take a look at an example at http://hplgit.github.io/teamods/writing_reports/
sphinx-cloud/ to see what we have in mind.

Plain HTML. Scientific reports can be written in a variety of formats. Here we begin with
the HTML30 format which allows efficient viewing of all the experiments in any web browser.
The program decay_exper1_html.py31 calls decay_exper1.py to perform the experiments and
then runs statements for creating an HTML file with a summary, a section on the mathematical
problem, a section on the numerical method, a section on the solver function implementing the
method, and a section with subsections containing figures that show the results of experiments
where ∆t is varied for θ = 0, 0.5, 1. The mentioned Python file contains all the details for
writing this HTML report32. You can view the report on http://hplgit.github.io/teamods/
writing_reports/_static/report_html.html.

HTML with MathJax. Scientific reports usually need mathematical formulas and hence
mathematical typesetting. In plain HTML, as used in the decay_exper1_html.py file, we have to
use just the keyboard characters to write mathematics. However, there is an extension to HTML,
called MathJax33, which allows formulas and equations to be typeset with LATEX syntax and
nicely rendered in web browsers, see Figure 4. A relatively small subset of LATEX environments is
supported, but the syntax for formulas is quite rich. Inline formulas are look like \( u’=-au \)
while equations are surrounded by $$ signs. Inside such signs, one can use \[ u’=-au \] for

30http://en.wikipedia.org/wiki/HTML
31http://tinyurl.com/nm5587k/softeng1/experiments/decay_exper1_html.py
32http://hplgit.github.io/teamods/writing_reports/_static/report_html.html.html
33http://www.mathjax.org/
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unnumbered equations, or \begin{equation} and \end{equation} surrounding u’=-au for
numbered equations, or \begin{align} and \end{align} for multiple aligned equations. You
need to be familiar with mathematical typesetting in LaTeX34.

The file decay_exper1_mathjax.py35 contains all the details for turning the previous plain
HTML report into web pages with nicely typeset mathematics. The corresponding HTML code36

be studied to see all details of the mathematical typesetting.

Figure 4: Report in HTML format with MathJax.

LATEX. The de facto language for mathematical typesetting and scientific report writing is
LaTeX37. A number of very sophisticated packages have been added to the language over a
period of three decades, allowing very fine-tuned layout and typesetting. For output in the PDF
format38, see Figure 5 for an example, LATEX is the definite choice when it comes to quality. The
LATEX language used to write the reports has typically a lot of commands involving backslashes
and braces39. For output on the web, using HTML (and not the PDF directly in the browser
window), LATEX struggles with delivering high quality typesetting. Other tools, especially Sphinx,
give better results and can also produce nice-looking PDFs. The file decay_exper1_latex.py
shows how to generate the LATEX source from a program.

Sphinx. Sphinx40 is a typesetting language with similarities to HTML and LATEX, but with much
less tagging. It has recently become very popular for software documentation and mathematical
reports. Sphinx can utilize LATEX for mathematical formulas and equations (via MathJax or PNG

34http://en.wikibooks.org/wiki/LaTeX/Mathematics
35http://tinyurl.com/nm5587k/softeng1/experiments/decay_exper1_html.py
36http://hplgit.github.io/teamods/writing_reports/_static/report_mathjax.html.html
37http://en.wikipedia.org/wiki/LaTeX
38http://hplgit.github.io/teamods/writing_reports/_static/report.pdf
39http://hplgit.github.io/teamods/writing_reports/_static/report.tex.html
40http://sphinx.pocoo.org/
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Figure 5: Report in PDF format generated from LATEX source.

images). Unfortunately, the subset of LATEX mathematics supported is less than in full MathJax
(in particular, numbering of multiple equations in an align type environment is not supported).
The Sphinx syntax41 is an extension of the reStructuredText language. An attractive feature of
Sphinx is its rich support for fancy layout of web pages42. In particular, Sphinx can easily be
combined with various layout themes that give a certain look and feel to the web site and that
offers table of contents, navigation, and search facilities, see Figure 6.

Markdown. A recently popular format for easy writing of web pages is Markdown43. Text is
written very much like one would do in email, using spacing and special characters to naturally
format the code instead of heavily tagging the text as in LATEX and HTML. With the tool
Pandoc44 one can go from Markdown to a variety of formats. HTML is a common output format,
but LATEX, epub, XML, OpenOffice, MediaWiki, and MS Word are some other possibilities.

Wiki formats. A range of wiki formats are popular for creating notes on the web, especially
documents which allow groups of people to edit and add content. Apart from MediaWiki45 (the
wiki format used for Wikipedia), wiki formats have no support for mathematical typesetting and
also limited tools for displaying computer code in nice ways. Wiki formats are therefore less
suitable for scientific reports compared to the other formats mentioned here.

DocOnce. Since it is difficult to choose the right tool or format for writing a scientific report, it
is advantageous to write the content in a format that easily translates to LATEX, HTML, Sphinx,

41http://hplgit.github.io/teamods/writing_reports/_static/report_sphinx.rst.html
42http://hplgit.github.io/teamods/writing_reports/_static/sphinx-cloud/index.html
43http://daringfireball.net/projects/markdown/
44http://johnmacfarlane.net/pandoc/
45http://www.mediawiki.org/wiki/MediaWiki
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Figure 6: Report in HTML format generated from Sphinx source.

Markdown, and various wikis. DocOnce46 is such a tool. It is similar to Pandoc, but offers
some special convenient features for writing about mathematics and programming. The tagging
is modest47, somewhere between LATEX and Markdown. The program decay_exper_do.py
demonstrates how to generate (and write) DocOnce code for a report.

Worked example. The HTML, LATEX (PDF), Sphinx, and DocOnce formats for the scientific
report whose content is outlined above, are exemplified with source codes and results at the web
pages associated with this teaching material: http://hplgit.github.io/teamods/writing_
reports.

5.5 Publishing a complete project
A report documenting scientific investigations should be accompanied by all the software and
data used for the investigations so that others have a possibility to redo the work and assess the
qualify of the results. This possibility is important for reproducible research and hence reaching
reliable scientific conclusions.

One way of documenting a complete project is to make a directory tree with all relevant
files. Preferably, the tree is published at some project hosting site like Bitbucket, GitHub, or
Googlecode48 so that others can download it as a tarfile, zipfile, or clone the files directly using a
version control system like Mercurial or Git. For the investigations outlined in Section 5.4, we
can create a directory tree with files

setup.py
./src:

decay_mod.py
./doc:

46https://github.com/hplgit/doconce
47http://hplgit.github.io/teamods/writing_reports/_static/report.do.txt.html
48http://hplgit.github.com/teamods/bitgit/html/
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./src:
decay_exper1_mathjax.py
make_report.sh
run.sh

./pub:
report.html

The src directory holds source code (modules) to be reused in other projects, the setup.py
builds and installs such software, the doc directory contains the documentation, with src for the
source of the documentation and pub for ready-made, published documentation. The run.sh file
is a simple Bash script listing the python command we used to run decay_exper1_mathjax.py
to generate the experiments and the report.html file.

6 Exercises
Exercise 1: Refactor a flat program in terms of a function
For simple ODEs of the form

u′ = f(t), u(0) = I, t ∈ (0, T ]

we can find the solution by straightforward integration:

u(t) =
∫ t

0
f(τ)dτ .

To compute u(t) for t ∈ [0, T ], we introduce a uniform time mesh with points tn = n∆t and
apply to Trapezoidal rule to approximate the integral. Suppose we have computed the numerical
approximation un to u(tn). We have

u(tn+1) = u(tn) +
∫ tn+1

tn

f(τ)dτ .

Using the Trapezoidal rule we get

un+1 = un + 1
2∆t(f(tn) + f(tn+1)) . (6)

The starting value is u0 = I. A corresponding implementation for the case f(t) = 2t+ 1 is given
next.

# f(t) is 2*t + 1
T = 2
from numpy import *
dt = 0.2 # time step
Nt = int(round(T/dt)) # no of mesh points
u = zeros(Nt+1)
t = linspace(0, T, Nt+1)
for n in range(Nt-1):

u[n+1] = u[n] + 0.5*dt*(2*t[n]+1 + 2*t[n+1]+1)

This is a flat program. Refactor the program as a function solver(f, I, T, dt), where f is the
Python implementation of the mathematical function f(t) that is to be integrated. The return
value of solver is the pair (u, t) representing the solution values and the associated time mesh.
Filename: integrate.py.

41



Remarks. Many prefer to do a first implementation of an algorithm as a flat program and
hardcode formulas, here the f(t), into the algorithm. Unfortunately, this coding style makes it
difficult to reuse a well-tested algorithm. When the flat program works, it is strongly recommended
to refactor the code (i.e., rearrange the statements) such that general algorithms are encapsulated
in Python functions. The function arguments should be chosen such that the function can be
applied for a large class of problems, here all problems that can be expressed as u′ = f(t),.

Exercise 2: Compare methods for a given time mesh
Make a program that imports the solver function from the decay_mod module and offers a
function compare(dt, I, a) for comparing, in a plot, the methods corresponding to θ = 0, 0.5, 1
and the exact solution. This plot shows the accuracy of the methods for a given time mesh. Read
input data for the problem from the command line using appropriate functions in the decay_mod
module (the –dt option for giving several time step values can be reused: just use the first time
step value for the computations). Filename: decay_compare_theta.py.

Problem 3: Write a doctest
Type in the following program and equip the roots function with a doctest:

import sys
# This sqrt(x) returns real if x>0 and complex if x<0
from numpy.lib.scimath import sqrt

def roots(a, b, c):
"""
Return the roots of the quadratic polynomial
p(x) = a*x**2 + b*x + c.

The roots are real or complex objects.
"""
q = b**2 - 4*a*c
r1 = (-b + sqrt(q))/(2*a)
r2 = (-b - sqrt(q))/(2*a)
return r1, r2

a, b, c = [float(arg) for arg in sys.argv[1:]]
print roots(a, b, c)

Make sure to test both real and complex roots. Write out numbers with 14 digits or less. Filename:
doctest_roots.py.

Problem 4: Write a nose test
Make a nose test for the roots function in Problem 3. Filename: test_roots.py.

Problem 5: Make a module
Let

q(t) = RAeat

R+A(eat − 1) .

Make a Python module q_module containing two functions q(t) and dqdt(t) for computing q(t)
and q′(t), respectively. Perform a from numpy import * in this module. Import q and dqdt in
another file using the "star import" construction from q_module import *. All objects available
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in this file is given by dir(). Print dir() and len(dir()). Then change the import of numpy
in q_module.py to import numpy as np. What is the effect of this import on the number of
objects in dir() in a file that does from q_module import *? Filename: q_module.py.

Exercise 6: Make use of a class implementation
We want to solve the exponential decay problem u′ = −au, u(0) = I, for several ∆t values and
θ = 0, 0.5, 1. For each ∆t value, we want to make a plot where the three solutions corresponding
to θ = 0, 0.5, 1 appear along with the exact solution. Write a function experiment to accomplish
this. The function should import the classes Problem, Solver, and Visualizer from the
decay_class49 module and make use of these. A new command-line option --dt_values must
be added to allow the user to specify the ∆t values on the command line (the options –dt
and –theta implemented by the decay_class module have then no effect when running the
experiment function). Note that the classes in the decay_class module should not be modified.
Filename: decay_class_exper.py.

Exercise 7: Generalize a class implementation
Consider the file decay_class.py50 where the exponential decay problem u′ = −au, u(0) = I, is
implemented via the classes Problem, Solver, and Visualizer. Extend the classes to handle
the more general problem

u′(t) = −a(t)u(t) + b(t), u(0) = I, t ∈ (0, T ],

using the θ-rule for discretization.
In the case with arbitrary functions a(t) and b(t) the problem class is no longer guaranteed to

provide an exact solution. Let the u_exact in class Problem return None if the exact solution for
the particular problem is not available. Modify classes Solver and Visualizer accordingly.

Add test functions test_*() for the nose testing tool in the module. Also add a demo example
where the environment suddenly changes (modeled as an abrupt change in the decay rate a):

a(t) =
{

1, 0 ≤ t ≤ tp,
k, t > tp,

where tp is the point of time the environment changes. Take tp = 1 and make plots that illustrate
the effect of having k � 1 and k � 1. Filename: decay_class2.py.

Exercise 8: Generalize an advanced class implementation
Solve Exercise 7 by utilizing the class implementations in decay_class_oo.py51. Filename:
decay_class3.py.
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Science and Engineering. Springer, third edition, 2012.

49http://tinyurl.com/nm5587k/decay/decay_class.py
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