Loading [MathJax]/extensions/TeX/boldsymbol.js
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\tp}{\thinspace .}
Estimating the convergence rate r
Perform numerical experiments: (\Delta t_i, E_i) , i=0,\ldots,m-1 .
Two methods for finding r (and C ):
- Take the logarithm of (1), \ln E = r\ln \Delta t + \ln C ,
and fit a straight line to the data points (\Delta t_i, E_i) ,
i=0,\ldots,m-1 .
- Consider two consecutive experiments, (\Delta t_i, E_i) and
(\Delta t_{i-1}, E_{i-1}) . Dividing the equation
E_{i-1}=C\Delta t_{i-1}^r by E_{i}=C\Delta t_{i}^r and solving
for r yields
\begin{equation}
r_{i-1} = \frac{\ln (E_{i-1}/E_i)}{\ln (\Delta t_{i-1}/\Delta t_i)}
\tag{2}
\end{equation}
for i=1,=\ldots,m-1 .
Method 2 is best.