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In a linear differential equation all terms involving the unknown functions
are linear in the unknown functions or their derivatives. Linear here means that
the unknown function or a derivative of it is multiplied by a number or a known
function. All other differential equations are non-linear.

The easiest way to see if an equation is nonlinear is to spot nonlinear terms
where the unknown functions or their derivatives are multiplied by each other.
For example, in

u′(t) = −a(t)u(t) + b(t),

the terms involving the unknown function u are linear: u′ contains the derivative
of the unknown function multiplied by unity, and au contains the unknown
function multiplied by a known function. However,

u′(t) = u(t)(1− u(t)),

is nonlinear because of the term −u2 where the unknown function is multiplied
by itself. Also

∂u

∂t
+ u

∂u

∂x
= 0,

is nonlinear because of the term uux where the unknown function appears in
a product with itself or one if its derivatives. Another example of a nonlinear
equation is

u′′ + sin(u) = 0,

because sin(u) contains products of u,
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sin(u) = u− 1
3u

3 + . . .

Mathematical proof.

To really prove mathematically that some differential equation in an un-
known u is linear, show for each term T (u) that with u = au1 + bu2 for
constants a and b,

T (au1 + bu2) = aT (u1) + bT (u2) .

For example, the term T (u) = (sin2 t)u′(t) is linear because

T (au1+bu2) = (sin2 t)(au1(t)+bu2(t)) = a(sin2 t)u1(t)+b(sin2 t)u2(t) = aT (u1)+bT (u2) .

However, T (u) = sin u is nonlinear because

T (au1 + bu2) = sin(au1 + bu2) 6= a sin u1 + b sin u2 .

A series of forthcoming examples will explain how to tackle nonlinear differ-
ential equations with various techniques.

1 Introduction of basic concepts
Consider the (scaled) logistic equation

u′(t) = u(t)(1− u(t)) . (1)

This is a nonlinear differential equation which will be solved by different strategies
in the following. A time discretization of (1) will either lead to a linear algebraic
equation or a nonlinear algebraic equation at each time level. In the former
case, the time discretization method transforms the nonlinear ODE into linear
subproblems at each time level, and the solution is straightforward to find
since linear algebraic equations are easy to solve by hand. However, when the
time discretization leads to nonlinear algebraic equations, we cannot (except in
very rare cases) solve these without turning to approximate, iterative solution
methods.

The following subsections first introduce various methods using (1):

• explicit time discretization methods (with no need to solve nonlinear
algebraic equations)

• implicit Backward Euler discretization, leading to nonlinear algebraic
equations solved by
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– an exact analytical technique
– Picard iteration based on manual linearization
– a single Picard step
– Newton’s method

• Implicit Crank-Nicolson discretization and linearization via a geometric
mean formula

Thereafter, we compare the performance of the various approaches. Despite the
simplicity of (1), the conclusions reveal typical features of the various methods
in much more complicated nonlinear PDE problems.

1.1 Linearization by explicit time discretization
A Forward Euler method to solve (1) results in

un+1 − un
∆t = un(1− un),

which is a linear algebraic equation for the unknown value un+1. The nonlinearity
in the original equation poses in this case no difficulty in the discrete algebraic
equation. Any other explicit scheme in time will also give only linear algebraic
equations to solve. For example, a typical 2nd-order Runge-Kutta method for
(1) reads,

u∗ = un + ∆tun(1− un),

un+1 = un + ∆t12 (un(1− un) + u∗(1− u∗))) .

The first step is linear in the unknown u∗. Then u∗ is known in the next step,
which is linear in the unknown un+1 .

1.2 Exact solution of nonlinear equations
Switching to a Backward Euler scheme for (1),

un − un−1

∆t = un(1− un), (2)

results in a nonlinear algebraic equation for the unknown value un. The equation
is of quadratic type:

∆t(un)2 + (1−∆t)un − un−1 = 0 .

We shall now introduce a shorter and often cleaner notation for nonlinear
algebraic equations at a given time level. The notation is inspired by the natural
notation, i.e., variable names, used in a program, especially in more advanced
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partial differential equation problems. The unknown in the algebraic equation is
denoted by u, while u(1) is the value of the unknown at the previous time level
(in general u(`) is the value of the unknown ` levels back in time). The notation
will be frequently used in later sections. What is meant by u (the exact solution
of the PDE problem, the numerical approximation to the exact solution, or the
unknown solution at a certain time level) should be evident from the context.

The quadratic equation for the unknown un in (2) can with the new notation
be written

F (u) = ∆tu2 + (1−∆t)u− u(1) = 0 . (3)

The solution is readily found to be

u = 1
2∆t

(
−1 + ∆t±

√
(1−∆t)2 − 4∆tu(1)

)
. (4)

Now we encounter a fundamental challenge with nonlinear algebraic equations:
the equation may have more than one solution. How do we pick the right solution?
In the present simple case we can expand the square root in a series in ∆t and
truncate after the linear term since the Backward Euler scheme will introduce
an error proportional to ∆t anyway. Using sympy we find the following Taylor
series expansions of the roots:

>>> import sympy as sp
>>> dt, u_1, u = sp.symbols(’dt u_1 u’)
>>> r1, r2 = sp.solve(dt*u**2 + (1-dt)*u - u_1, u) # find roots
>>> r1
(dt - sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> r2
(dt + sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> print r1.series(dt, 0, 2)
-1/dt + 1 - u_1 + dt*(u_1**2 - u_1) + O(dt**2)
>>> print r2.series(dt, 0, 2)
u_1 + dt*(-u_1**2 + u_1) + O(dt**2)

We see that the r1 root, corresponding to a minus sign in front of the square
root in (4), behaves as 1/∆t and will therefore blow up as ∆t→ 0! Therefore,
only the r2 root is of relevance in this case.

1.3 Linearization
When the time integration of an ODE results in a nonlinear algebraic equation,
we must normally find its solution by defining a sequence of linear equations
and hope that the solutions of these linear equations converge to the desired
solution of the nonlinear algebraic equation. Usually this means solving the linear
equation repeatedly in an iterative fashion. Alternatively, the nonlinear equation
can sometimes be approximated by one linear equation, and consequently there
is no need for iteration.

Constructing a linear equation from a nonlinear one requires linearization
of each nonlinear term. This can be done manually as in Picard iteration, or
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fully algorithmically as in Newton’s method. Examples will best illustrate how
to linearize nonlinear problems.

1.4 Picard iteration
Let us write (3) in a more compact form

F (u) = au2 + bu+ c = 0,
with a = ∆t, b = 1−∆t, and c = −u(1). Let u− be an available approximation
of the unknown u. Then we can linearize the term u2 simply by writing u−u.
The resulting equation, F̂ (u) = 0, is now linear and hence easy to solve:

F (u) ≈ F̂ (u) = au−u+ bu+ c = 0 .
Since the equation F̂ = 0 is only approximate, the solution u does not equal the
exact solution ue of the exact equation F (ue) = 0, but we can hope that u is
closer to ue than u− is, and hence it makes sense to repeat the procedure, i.e.,
set u− = u and solve F̂ (u) = 0 again.

The idea of turning a nonlinear equation into a linear one by using an
approximation u− of u in nonlinear terms is a widely used approach that goes
under many names: fixed-point iteration, the method of successive substitutions,
nonlinear Richardson iteration, and Picard iteration. We will stick to the latter
name.

Picard iteration for solving the nonlinear equation arising from the Backward
Euler discretization of the logistic equation can be written as

u = − c

au− + b
, u− ← u .

The iteration is started with the value of the unknown at the previous time level:
u− = u(1).

Some prefer an explicit iteration counter as superscript in the mathematical
notation. Let uk be the computed approximation to the solution in iteration k.
In iteration k + 1 we want to solve

aukuk+1 + buk+1 + c = 0 ⇒ uk+1 = − c

auk + b
, k = 0, 1, . . .

Since we need to perform the iteration at every time level, the time level counter
is often also included:

aun,kun,k+1 + bun,k+1 − un−1 = 0 ⇒ un,k+1 = un

aun,k + b
, k = 0, 1, . . . ,

with the start value un,0 = un−1 and the final converged value un = un,k for
sufficiently large k.

However, we will normally apply a mathematical notation in our final formulas
that is as close as possible to what we aim to write in a computer code and then
it becomes natural to use u and u− instead of uk+1 and uk or un,k+1 and un,k.
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Stopping criteria. The iteration method can typically be terminated when
the change in the solution is smaller than a tolerance εu:

|u− u−| ≤ εu,
or when the residual in the equation is sufficiently small (εr),

|F (u)| = |au2 + bu+ c| < εr .

A single Picard iteration. Instead of iterating until a stopping criterion is
fulfilled, one may iterate a specific number of times. Just one Picard iteration is
popular as this corresponds to the intuitive idea of approximating a nonlinear
term like (un)2 by un−1un. This follows from the linearization u−un and the
initial choice of u− = un−1 at time level tn. In other words, a single Picard
iteration corresponds to using the solution at the previous time level to linearize
nonlinear terms. The resulting discretization becomes

un − un−1

∆t = un(1− un−1), (5)

which is a linear algebraic equation in the unknown un, and therefore we can
easily solve for un, and there is no need for any alternative notation.

We shall later refer to the strategy of taking one Picard step, or equivalently,
linearizing terms with use of the solution at the previous time step, as the Picard1
method. It is a widely used approach in science and technology, but with some
limitations if ∆t is not sufficiently small (as will be illustrated later).

Notice.
Equation (5) does not correspond to a “pure” finite difference method where
the equation is sampled at a point and derivatives replaced by differences
(because the un−1 term on the right-hand side must then be un). The best
interpretation of the scheme (5) is a Backward Euler difference combined
with a single (perhaps insufficient) Picard iteration at each time level, with
the value at the previous time level as start for the Picard iteration.

1.5 Linearization by a geometric mean
We consider now a Crank-Nicolson discretization of (1). This means that the
time derivative is approximated by a centered difference,

[Dtu = u(1− u)]n+ 1
2 ,

written out as

un+1 − un
∆t = un+ 1

2 − (un+ 1
2 )2 . (6)
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The term un+ 1
2 is normally approximated by an arithmetic mean,

un+ 1
2 ≈ 1

2(un + un+1),

such that the scheme involves the unknown function only at the time levels where
we actually compute it. The same arithmetic mean applied to the nonlinear
term gives

(un+ 1
2 )2 ≈ 1

4(un + un+1)2,

which is nonlinear in the unknown un+1. However, using a geometric mean for
(un+ 1

2 )2 is a way of linearizing the nonlinear term in (6):

(un+ 1
2 )2 ≈ unun+1 .

Using an arithmetic mean on the linear un+ 1
2 term in (6) and a geometric mean

for the second term, results in a linearized equation for the unknown un+1:

un+1 − un
∆t = 1

2(un + un+1) + unun+1,

which can readily be solved:

un+1 =
1 + 1

2∆t
1 + ∆tun − 1

2∆t
un .

This scheme can be coded directly, and since there is no nonlinear algebraic
equation to iterate over, we skip the simplified notation with u for un+1 and
u(1) for un. The technique with using a geometric average is an example of
transforming a nonlinear algebraic equation to a linear one, without any need
for iterations.

The geometric mean approximation is often very effective for linearizing
quadratic nonlinearities. Both the arithmetic and geometric mean approxima-
tions have truncation errors of order ∆t2 and are therefore compatible with the
truncation error O(∆t) of the centered difference approximation for u′ in the
Crank-Nicolson method.

Applying the operator notation for the means and finite differences, the
linearized Crank-Nicolson scheme for the logistic equation can be compactly
expressed as

[Dtu = ut + u2t,g]n+ 1
2 .

Remark.
If we use an arithmetic instead of a geometric mean for the nonlinear
term in (6), we end up with a nonlinear term (un+1)2. This term can be
linearized as u−un+1 in a Picard iteration approach and in particular as
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unun+1 in a Picard1 iteration approach. The latter gives a scheme almost
identical to the one arising from a geometric mean (the difference in un+1

being 1
4∆tun(un+1 − un) ≈ 1

4∆t2u′u, i.e., a difference of O(∆t2)).

1.6 Newton’s method
The Backward Euler scheme (2) for the logistic equation leads to a nonlinear
algebraic equation (3). Now we write any nonlinear algebraic equation in the
general and compact form

F (u) = 0 .

Newton’s method linearizes this equation by approximating F (u) by its Taylor
series expansion around a computed value u− and keeping only the linear part:

F (u) = F (u−) + F ′(u−)(u− u−) + 1
2F
′′(u−)(u− u−)2 + · · ·

≈ F (u−) + F ′(u−)(u− u−) = F̂ (u) .

The linear equation F̂ (u) = 0 has the solution

u = u− − F (u−)
F ′(u−) .

Expressed with an iteration index in the unknown, Newton’s method takes on
the more familiar mathematical form

uk+1 = uk − F (uk)
F ′(uk) , k = 0, 1, . . .

It can be shown that the error in iteration k + 1 of Newton’s method is the
square of the error in iteration k, a result referred to as quadratic convergence.
This means that for small errors the method converges very fast, and in particular
much faster than Picard iteration and other iteration methods. (The proof of
this result is found in most textbooks on numerical analysis.) However, the
quadratic convergence appears only if uk is sufficiently close to the solution.
Further away from the solution the method can easily converge very slowly or
diverge. The reader is encouraged to do Exercise 2 to get a better understanding
for the behavior of the method.

Application of Newton’s method to the logistic equation discretized by the
Backward Euler method is straightforward as we have

F (u) = au2 + bu+ c, a = ∆t, b = 1−∆t, c = −u(1),

and then
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F ′(u) = 2au+ b .

The iteration method becomes

u = u− + a(u−)2 + bu− + c

2au− + b
, u− ← u . (7)

At each time level, we start the iteration by setting u− = u(1). Stopping criteria
as listed for the Picard iteration can be used also for Newton’s method.

An alternative mathematical form, where we write out a, b, and c, and use a
time level counter n and an iteration counter k, takes the form

un,k+1 = un,k+ ∆t(un,k)2 + (1−∆t)un,k − un−1

2∆tun,k + 1−∆t , un,0 = un−1, k = 0, 1, . . .
(8)

A program implementation is much closer to (7) than to (8), but the latter is
better aligned with the established mathematical notation used in the literature.

1.7 Relaxation
One iteration in Newton’s method or Picard iteration consists of solving a linear
problem F̂ (u) = 0. Sometimes convergence problems arise because the new
solution u of F̂ (u) = 0 is “too far away” from the previously computed solution
u−. A remedy is to introduce a relaxation, meaning that we first solve F̂ (u∗) = 0
for a suggested value u∗ and then we take u as a weighted mean of what we had,
u−, and what our linearized equation F̂ = 0 suggests, u∗:

u = ωu∗ + (1− ω)u− .

The parameter ω is known as a relaxation parameter, and a choice ω < 1 may
prevent divergent iterations.

Relaxation in Newton’s method can be directly incorporated in the basic
iteration formula:

u = u− − ω F (u−)
F ′(u−) . (9)

1.8 Implementation and experiments
The program logistic.py1 contains implementations of all the methods de-
scribed above. Below is an extract of the file showing how the Picard and Newton
methods are implemented for a Backward Euler discretization of the logistic
equation.

1http://tinyurl.com/nm5587k/nonlin/logistic.py
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def BE_logistic(u0, dt, Nt, choice=’Picard’,
eps_r=1E-3, omega=1, max_iter=1000):

if choice == ’Picard1’:
choice = ’Picard’
max_iter = 1

u = np.zeros(Nt+1)
iterations = []
u[0] = u0
for n in range(1, Nt+1):

a = dt
b = 1 - dt
c = -u[n-1]

if choice == ’Picard’:

def F(u):
return a*u**2 + b*u + c

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = omega*(-c/(a*u_ + b)) + (1-omega)*u_
k += 1

u[n] = u_
iterations.append(k)

elif choice == ’Newton’:

def F(u):
return a*u**2 + b*u + c

def dF(u):
return 2*a*u + b

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = u_ - F(u_)/dF(u_)
k += 1

u[n] = u_
iterations.append(k)

return u, iterations

The Crank-Nicolson method utilizing a linearization based on the geometric
mean gives a simpler algorithm:

def CN_logistic(u0, dt, Nt):
u = np.zeros(Nt+1)
u[0] = u0
for n in range(0, Nt):

u[n+1] = (1 + 0.5*dt)/(1 + dt*u[n] - 0.5*dt)*u[n]
return u

We may run experiments with the model problem (1) and the different
strategies for dealing with nonlinearities as described above. For a quite coarse
time resolution, ∆t = 0.9, use of a tolerance εr = 0.1 in the stopping criterion
introduces an iteration error, especially in the Picard iterations, that is visibly
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much larger than the time discretization error due to a large ∆t. This is
illustrated by comparing the upper two plots in Figure 1. The one to the right
has a stricter tolerance ε = 10−3, which leads to all the curves corresponding to
Picard and Newton iteration to be on top of each other (and no changes can be
visually observed by reducing εr further). The reason why Newton’s method does
much better than Picard iteration in the upper left plot is that Newton’s method
with one step comes far below the εr tolerance, while the Picard iteration needs
on average 7 iterations to bring the residual down to εr = 10−1, which gives
insufficient accuracy in the solution of the nonlinear equation. It is obvious that
the Picard1 method gives significant errors in addition to the time discretization
unless the time step is as small as in the lower right plot.

The BE exact curve corresponds to using the exact solution of the quadratic
equation at each time level, so this curve is only affected by the Backward Euler
time discretization. The CN gm curve corresponds to the theoretically more
accurate Crank-Nicolson discretization, combined with a geometric mean for
linearization. This curve appear as more accurate, especially if we take the plot
in the lower right with a small ∆t and an appropriately small εr value as the
exact curve.

When it comes to the need for iterations, Figure 2 displays the number of
iterations required at each time level for Newton’s method and Picard iteration.
The smaller ∆t is, the better starting value we have for the iteration, and the
faster the convergence is. With ∆t = 0.9 Picard iteration requires on average
32 iterations per time step, but this number is dramatically reduced as ∆t is
reduced.

However, introducing relaxation and a parameter ω = 0.8 immediately
reduces the average of 32 to 7, indicating that for the large ∆t = 0.9, Picard
iteration takes too long steps. An approximately optimal value for ω in this
case is 0.5, which results in an average of only 2 iterations! Even more dramatic
impact of ω appears when ∆t = 1: Picard iteration does not convergence in 1000
iterations, but ω = 0.5 again brings the average number of iterations down to 2.

Remark. The simple Crank-Nicolson method with a geometric mean for the
quadratic nonlinearity gives visually more accurate solutions than the Backward
Euler discretization. Even with a tolerance of εr = 10−3, all the methods for
treating the nonlinearities in the Backward Euler discretization gives graphs that
cannot be distinguished. So for accuracy in this problem, the time discretization
is much more crucial than εr. Ideally, one should estimate the error in the time
discretization, as the solution progresses, and set εr accordingly.

1.9 Generalization to a general nonlinear ODE
Let us see how the various methods in the previous sections can be applied to
the more generic model

u′ = f(u, t), (10)
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Figure 1: The impact of solution strategies and for four different time step
lengths on the solution.

where f is a nonlinear function of u.

Explicit time discretization. Explicit ODE methods like the Forward Euler
scheme, Runge-Kutta methods, Adams-Bashforth methods all evaluate f at
time levels where u is already computed, so nonlinearities in f do not pose any
difficulties.

Backward Euler discretization. Approximating u′ by a backward difference
leads to a Backward Euler scheme, which can be written as

F (un) = un −∆t f(un, tn)− un−1 = 0,
or alternatively

F (u) = u−∆t f(u, tn)− u(1) = 0 .
A simple Picard iteration, not knowing anything about the nonlinear structure
of f , must approximate f(u, tn) by f(u−, tn):

F̂ (u) = u−∆t f(u−, tn)− u(1) .
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Figure 2: Comparison of the number of iterations at various time levels for
Picard and Newton iteration.

The iteration starts with u− = u(1) and proceeds with repeating

u∗ = ∆t f(u−, tn) + u(1), u = ωu∗ + (1− ω)u−, u− ← u,

until a stopping criterion is fulfilled.

Explicit vs implicit treatment of nonlinear terms.

Evaluating f for a known u− is referred to as explicit treatment of f , while
if f(u, t) has some structure, say f(u, t) = u3, parts of f can involve the
known u, as in the manual linearization like (u−)2u, and then the treatment
of f is “more implicit” and “less explicit”. This terminology is inspired by
time discretization of u′ = f(u, t), where evaluating f for known u values
gives explicit schemes, while treating f or parts of f implicitly, makes f
contribute to the unknown terms in the equation at the new time level.

Explicit treatment of f usually means stricter conditions on ∆t for
stability of time discretization schemes. The same goes for iterations
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techniques for nonlinear algebraic equations: the more f can involve
unknowns to be solved for, the faster the convergence may be.

We may say that f(u, t) = u3 is treated explicitly if we evaluate f as
(u−)3, partially implicit if we linearize as (u−)2u and fully implicit if we
represent f by u3. (Of course, the fully implicit representation will require
further linearization, but with f(u, t) = u2 a fully implicit treatment is
possible if the resulting quadratic equation is solved with a formula.)

For the ODE u′ = −u3 with f(u, t) = −u3 and coarse time resolution
∆t = 0.4, Picard iteration with (u−)2u requires 8 iterations with εr = 10−3

for the first time step, while (u−)3 leads to 22 iterations. After about 10
time steps both approaches are down to about 2 iterations per time step,
but this example shows a potential of treating f more implicitly.

A trick to treat f implicitly in Picard iteration is to evaluate it as
f(u−, t)u/u−. For a polynomial f , f(u, t) = um, this corresponds to
(u−)m−1u. Sometimes this more implicit treatment has no effect, as with
f(u, t) = exp(−u) and f(u, t) = ln(1 + u), but with f(u, t) = sin(2(u+ 1)),
the f(u−, t)u/u− trick leads to 7, 9, and 11 iterations during the first three
steps, while f(u−, t) demands 17, 21, and 20 iterations. (Experiments can
be done with the code ODE_Picard_tricks.pya.)

ahttp://tinyurl.com/nm5587k/nonlin/ODE_Picard_tricks.py

Newton’s method applied to u′ = f(u, t) requires the computation of the
derivative

F ′(u) = 1−∆t∂f
∂u

(u, tn) .

Starting with the solution at the previous time level, u− = u(1), we can just use
the standard formula

u = u− − ω F (u−)
F ′(u−) = u− − ωu

(1) + ∆tf(u−, tn)
1−∆t ∂∂uf(u−, tn)

. (11)

Crank-Nicolson discretization. The standard Crank-Nicolson scheme with
arithmetic mean approximation of f takes the form

un+1 − un
∆t = 1

2(f(un+1, tn+1) + f(un, tn)) .

We can write the scheme as a nonlinear algebraic equation

F (u) = u− u(1) −∆t12f(u, tn+1)−∆t12f(u(1), tn) = 0 . (12)

A Picard iteration scheme must in general employ the linearization

F̂ (u) = u− u(1) −∆t12f(u−, tn+1)−∆t12f(u(1), tn),
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while Newton’s method can apply the general formula (11) with F (u) given in
(12) and

F ′(u) = 1− 1
2∆t∂f

∂u
(u, tn+1) .

1.10 Systems of ODEs
We may write a system of ODEs

d

dt
u0(t) = f0(u0(t), u1(t), . . . , uN (t), t),

d

dt
u1(t) = f1(u0(t), u1(t), . . . , uN (t), t),

...
d

dt
um(t) = fm(u0(t), u1(t), . . . , uN (t), t),

as

u′ = f(u, t), u(0) = U0, (13)
if we interpret u as a vector u = (u0(t), u1(t), . . . , uN (t)) and f as a vector
function with components (f0(u, t), f1(u, t), . . . , fN (u, t)).

Solution methods for scalar ODEs normally generalize in a straightforward
way to systems of ODEs simply by using vector arithmetics instead of scalar
arithmetics, which corresponds to applying the scalar scheme to each component
of the system. For example, here is a backward difference scheme applied to
each component,

un0 − un−1
0

∆t = f0(un, tn),

un1 − un−1
1

∆t = f1(un, tn),

...
unN − un−1

N

∆t = fN (un, tn),

which can be written more compactly in vector form as

un − un−1

∆t = f(un, tn) .

This is a system of algebraic equations,

un −∆t f(un, tn)− un−1 = 0,
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or written out

un0 −∆t f0(un, tn)− un−1
0 = 0,

...
unN −∆t fN (un, tn)− un−1

N = 0 .

As specific example, a 2× 2 system for the oscillations of a pendulum subject
to gravity and air drag reads

ω̇ = − sin θ − βω|ω|, (14)
θ̇ = ω, (15)

where β is a dimensionless parameter (this is the scaled, dimensionless version
of the original, physical model). The unknown components of the system are
the angle θ(t) and the angular velocity ω(t). We introduce u0 = ω and u1 = θ,
which leads to

u′0 = f0(u, t) = − sin u1 − βu0|u0|,
u′1 = f1(u, t) = u0 .

A Crank-Nicolson scheme reads

un+1
0 − un0

∆t = − sin un+ 1
2

1 − βun+ 1
2

0 |un+ 1
2

0 |

≈ − sin
(

1
2(un+1

1 + u1n)
)
− β 1

4(un+1
0 + un0 )|un+1

0 + un0 |, (16)

un+1
1 − un1

∆t = v
n+ 1

2
0 ≈ 1

2(un+1
0 + un0 ) . (17)

This is a coupled system of two nonlinear algebraic equations in two unknowns
un+1

0 and un+1
1 .

Using the notation u0 and u1 for the unknowns un+1
0 and un+1

1 in this system,
writing u(1)

0 and u(1)
1 for the previous values un0 and un1 , multiplying by ∆t and

moving the terms to the left-hand sides, gives

u0 − u(1)
0 + ∆t sin

(
1
2(u1 + u

(1)
1 )
)

+ 1
4∆tβ(u0 + u

(1)
0 )|u0 + u

(1)
0 | = 0, (18)

u1 − u(1)
1 −

1
2∆t(u0 + u

(1)
0 ) = 0 . (19)

Obviously, we have a need for solving systems of nonlinear algebraic equations,
which is the topic of the next section.
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2 Systems of nonlinear algebraic equations
Implicit time discretization methods for a system of ODEs, or a PDE, lead to
systems of nonlinear algebraic equations, written compactly as

F (u) = 0,
where u is a vector of unknowns u = (u0, . . . , uN ), and F is a vector function:
F = (F0, . . . , FN ). The system at the end of Section 1.10 fits this notation with
N = 2, F0(u) given by the left-hand side of (18), while F1(u) is the left-hand
side of (19).

Sometimes the equation system has a special structure because of the under-
lying problem, e.g.,

A(u)u = b(u),
with A(u) as an (N+1)× (N+1) matrix function of u and b as a vector function:
b = (b0, . . . , bN ).

We shall next explain how Picard iteration and Newton’s method can be
applied to systems like F (u) = 0 and A(u)u = b(u). The exposition has a focus
on ideas and practical computations. More theoretical considerations, including
quite general results on convergence properties of these methods, can be found
in Kelley [1].

2.1 Picard iteration
We cannot apply Picard iteration to nonlinear equations unless there is some
special structure. For the commonly arising case A(u)u = b(u) we can linearize
the product A(u)u to A(u−)u and b(u) as b(u−). That is, we use the most
previously computed approximation in A and b to arrive at a linear system for
u:

A(u−)u = b(u−) .
A relaxed iteration takes the form

A(u−)u∗ = b(u−), u = ωu∗ + (1− ω)u− .
In other words, we solve a system of nonlinear algebraic equations as a sequence
of linear systems.

Algorithm for relaxed Picard iteration.

Given A(u)u = b(u) and an initial guess u−, iterate until convergence:

1. solve A(u−)u∗ = b(u−) with respect to u∗

2. u = ωu∗ + (1− ω)u−
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3. u− ← u

“Until convergence” means that the iteration is stopped when the change in
the unknown, ||u− u−||, or the residual ||A(u)u− b||, is sufficiently small, see
Section 2.3 for more details.

2.2 Newton’s method
The natural starting point for Newton’s method is the general nonlinear vector
equation F (u) = 0. As for a scalar equation, the idea is to approximate F around
a known value u− by a linear function F̂ , calculated from the first two terms of
a Taylor expansion of F . In the multi-variate case these two terms become

F (u−) + J(u−) · (u− u−),
where J is the Jacobian of F , defined by

Ji,j = ∂Fi
∂uj

.

So, the original nonlinear system is approximated by

F̂ (u) = F (u−) + J(u−) · (u− u−) = 0,
which is linear in u and can be solved in a two-step procedure: first solve
Jδu = −F (u−) with respect to the vector δu and then update u = u− + δu. A
relaxation parameter can easily be incorporated:

u = ω(u− + δu) + (1− ω)u− = u− + ωδu .

Algorithm for Newton’s method.

Given F (u) = 0 and an initial guess u−, iterate until convergence:

1. solve Jδu = −F (u−) with respect to δu

2. u = u− + ωδu

3. u− ← u

For the special system with structure A(u)u = b(u),

Fi =
∑

k

Ai,k(u)uk − bi(u),
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one gets

Ji,j =
∑

k

∂Ai,k
∂uj

uk +Ai,j −
∂bi
∂uj

. (20)

We realize that the Jacobian needed in Newton’s method consists of A(u−) as
in the Picard iteration plus two additional terms arising from the differentiation.
Using the notation A′(u) for ∂A/∂u (a quantity with three indices: ∂Ai,k/∂uj),
and b′(u) for ∂b/∂u (a quantity with two indices: ∂bi/∂uj), we can write the
linear system to be solved as

(A+A′u+ b′)δu = −Au+ b,

or

(A(u−) +A′(u−)u− + b′(u−))δu = −A(u−)u− + b(u−) .

Rearranging the terms demonstrates the difference from the system solved in
each Picard iteration:

A(u−)(u− + δu)− b(u−)︸ ︷︷ ︸
Picard system

+ γ(A′(u−)u− + b′(u−))δu = 0 .

Here we have inserted a parameter γ such that γ = 0 gives the Picard system
and γ = 1 gives the Newton system. Such a parameter can be handy in software
to easily switch between the methods.

Combined algorithm for Picard and Newton iteration.

Given A(u), b(u), and an initial guess u−, iterate until convergence:

1. solve (A+γ(A′(u−)u−+b′(u−)))δu = −A(u−)u−+b(u−) with respect
to δu

2. u = u− + ωδu

3. u− ← u

γ = 1 gives a Newton method while γ = 0 corresponds to Picard iteration.

2.3 Stopping criteria
Let || · || be the standard Eucledian vector norm. Four termination criteria are
much in use:

• Absolute change in solution: ||u− u−|| ≤ εu
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• Relative change in solution: ||u − u−|| ≤ εu||u0||, where u0 denotes the
start value of u− in the iteration

• Absolute residual: ||F (u)|| ≤ εr
• Relative residual: ||F (u)|| ≤ εr||F (u0)||

To prevent divergent iterations to run forever, one terminates the iterations
when the current number of iterations k exceeds a maximum value kmax.

The relative criteria are most used since they are not sensitive to the char-
acteristic size of u. Nevertheless, the relative criteria can be misleading when
the initial start value for the iteration is very close to the solution, since an
unnecessary reduction in the error measure is enforced. In such cases the absolute
criteria work better. It is common to combine the absolute and relative measures
of the size of the residual, as in

||F (u)|| ≤ εrr||F (u0)||+ εra, (21)

where εrr is the tolerance in the relative criterion and εra is the tolerance in the
absolute criterion. With a very good initial guess for the iteration (typically the
solution of a differential equation at the previous time level), the term ||F (u0)||
is small and εra is the dominating tolerance. Otherwise, εrr||F (u0)|| and the
relative criterion dominates.

With the change in solution as criterion we can formulate a combined absolute
and relative measure of the change in the solution:

||δu|| ≤ εur||u0||+ εua, (22)

The ultimate termination criterion, combining the residual and the change
in solution with a test on the maximum number of iterations allow, can be
expressed as

||F (u)|| ≤ εrr||F (u0)||+ εra or ||δu|| ≤ εur||u0||+ εua or k > kmax . (23)

2.4 Example: A nonlinear ODE model from epidemiology
The simplest model spreading of a disease, such as a flu, takes the form of a
2× 2 ODE system

S′ = −βSI, (24)
I ′ = βSI − νI, (25)

where S(t) is the number of people who can get ill (susceptibles) and I(t) is the
number of people who are ill (infected). The constants β > 0 and ν > 0 must be
given along with initial conditions S(0) and I(0).
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Implicit time discretization. A Crank-Nicolson scheme leads to a 2 × 2
system of nonlinear algebraic equations in the unknowns Sn+1 and In+1:

Sn+1 − Sn
∆t = −β[SI]n+ 1

2 ≈ −β2 (SnIn + Sn+1In+1), (26)

In+1 − In
∆t = β[SI]n+ 1

2 − νIn+ 1
2 ≈ β

2 (SnIn + Sn+1In+1)− ν

2 (In + In+1) .
(27)

Introducing S for Sn+1, S(1) for Sn, I for In+1, I(1) for In, we can rewrite the
system as

FS(S, I) = S − S(1) + 1
2∆tβ(S(1)I(1) + SI) = 0, (28)

FI(S, I) = I − I(1) − 1
2∆tβ(S(1)I(1) + SI) + 1

2∆tν(I(1) + I) = 0 . (29)

A Picard iteration. We assume that we have approximations S− and I− to
S and I. A way of linearizing the only nonlinear term SI is to write I−S in
the FS = 0 equation and S−I in the FI = 0 equation, which also decouples the
equations. Solving the resulting linear equations with respect to the unknowns
S and I gives

S =
S(1) − 1

2∆tβS(1)I(1)

1 + 1
2∆tβI−

,

I =
I(1) + 1

2∆tβS(1)I(1)

1− 1
2∆tβS− + ν

.

Before a new iteration, we must update S− ← S and I− ← I.

Newton’s method. The nonlinear system (28)-(29) can be written as F (u) =
0 with F = (FS , FI) and u = (S, I). The Jacobian becomes

J =




∂
∂SFS

∂
∂IFS

∂
∂SFI

∂
∂IFI


 =




1 + 1
2∆tβI 1

2∆tβS

− 1
2∆tβI 1 + 1

2∆tβS + 1
2∆tν


 .

The Newton system J(u−)δu = −F (u−) to be solved in each iteration is then

(
1 + 1

2∆tβI− 1
2∆tβS−

− 1
2∆tβI− 1− 1

2∆tβS− + 1
2∆tν

)(
δS
δI

)
=

(
S− − S(1) + 1

2∆tβ(S(1)I(1) + S−I−)
I− − I(1) − 1

2∆tβ(S(1)I(1) + S−I−) + 1
2∆tν(I(1) + I−)

)
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Remark. For this particular system of ODEs, explicit time integration methods
work very well. Even a Forward Euler scheme is fine, but the 4-th order Runge-
Kutta method is an excellent balance between high accuracy, high efficiency, and
simplicity.

3 Linearization at the differential equation level
The attention is now turned to nonlinear partial differential equations (PDEs)
and application of the techniques explained above for ODEs. The model problem
is a nonlinear diffusion equation

∂u

∂t
= ∇ · (α(u)∇u) + f(u), x ∈ Ω, t ∈ (0, T ], (30)

−α(u)∂u
∂n

= g, x ∈ ∂ΩN , t ∈ (0, T ], (31)

u = u0, x ∈ ∂ΩD, t ∈ (0, T ] . (32)

Our aim is to discretize the problem in time and then present techniques
for linearizing the time-discrete PDE problem “at the PDE level” such that
we transform the nonlinear stationary PDE problems at each time level into a
sequence of linear PDE problems, which can be solved using any method for
linear PDEs. This strategy avoids the solution systems of nonlinear algebraic
equations. In Section 4 we shall take the opposite (and more common) approach:
discretize the nonlinear problem in time and space first, and then solve the
resulting nonlinear algebraic equations at each time level by the methods of
Section 2.

3.1 Explicit time integration
The nonlinearities in the PDE are trivial to deal with if we choose an explicit
time integration method for (30), such as the Forward Euler method:

[D+
t u = ∇ · (α(u)∇u) + f(u)]n,

or written out,

un+1 − un
∆t = ∇ · (α(un)∇un) + f(un),

which is a linear equation in the unknown un+1 with solution

un+1 = un + ∆t∇ · (α(un)∇un) + ∆tf(un) .
The disadvantage with this discretization is usually thought to be the stability

criterion

∆t ≤ 1
maxα (∆x2 + ∆y2 + ∆z2),
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for the case f = 0 and a standard 2nd-order finite difference discretization in
space with mesh cell sizes ∆x, ∆y, and ∆z in the various spatial directions.

3.2 Backward Euler scheme and Picard iteration
A Backward Euler scheme for (30) reads

[D−t u = ∇ · (α(u)∇u) + f(u)]n .
Written out,

un − un−1

∆t = ∇ · (α(un)∇un) + f(un) . (33)

This is a nonlinear PDE for the unknown function un(x). Such a PDE can be
viewed as a time-independent PDE where un−1(x) is a known function.

We introduce a Picard iteration with k as iteration counter. A typical
linearization of the ∇ · α(un)∇un term in iteration k+ 1 is to use the previously
computed un,k approximation in the diffusion coefficient: α(un,k). The nonlinear
source term is treated similarly: f(un,k). The unknown function un,k+1 then
fulfills the linear PDE

un,k+1 − un−1

∆t = ∇ · (α(un,k)∇un,k+1) + f(un,k) . (34)

The initial guess for the Picard iteration at this time level can be taken as the
solution at the previous time level: un,0 = un−1.

We can alternatively apply the implementation-friendly notation where u
corresponds to the unknown we want to solve for, i.e., un,k+1 above, and u−
is the most recently computed value, un,k above. Moreover, u(1) denotes the
unknown function at the previous time level, un−1 above. The PDE to be solved
in a Picard iteration then looks like

u− u(1)

∆t = ∇ · (α(u−)∇u) + f(u−) . (35)

At the beginning of the iteration we start with the value from the previous time
level: u− = u(1), and after each iteration, u− is updated to u.

Remark on notation.
The previous derivations of the numerical scheme for time discretizations
of PDEs have, strictly speaking, somewhat sloppy notation. A more
precise notation must distinguish clearly between the exact solution of
the PDE problem, here denoted ue(x, t), and the exact solution of the
spatial problem, arising after time discretization at each time level, where
(33) is an example. The latter is here represented as un(x, t) and is an
approximation to ue(x, tn). Then we have another approximation un,k(x)
to un(x) when solving the nonlinear PDE problem for un by iteration
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methods, as in (34). Alternatively, we introduce u(x) as a synonym for
un,k(x) (and also u(1)(x)) as in (35).

However, we will usually state the PDE problem in terms of u and
quickly redefine the symbol u to mean the numerical approximation, while
ue is not explicitly introduced unless we need to talk about the exact
solution and the approximate solution at the same time.

3.3 Backward Euler scheme and Newton’s method
At time level n we have to solve the stationary PDE (33), this time with Newton’s
method. Normally, Newton’s method is defined for systems of algebraic equations,
but the idea of the method can be applied at the PDE level too.

Linearization via Taylor expansions. Let un,k be an approximation to the
unknown un. We seek a better approximation on the form

un = un,k + δu . (36)

The idea is to insert (36) in (33), Taylor expand the nonlinearities and keep
only the terms that are linear in δu. Then we can solve a linear PDE for the
correction δu and use (36) to find a new approximation un,k+1 = un,k + δu to
un.

Inserting (36) in (33) gives

un,k + δu− un−1

∆t = ∇ · (α(un,k + δu)∇(un,k + δu)) + f(un,k + δu) . (37)

We can Taylor expand α(un,k + δu) and f(un,k + δu):

α(un,k + δu) = α(un,k) + dα

du
(un,k)δu+O(δu2) ≈ α(un,k) + α′(un,k)δu,

f(un,k + δu) = f(un,k) + df

du
(un,k)δu+O(δu2) ≈ f(un,k) + f ′(un,k)δu .

Inserting the linear approximations of α and f in (37) results in

un,k + δu− un−1

∆t = ∇ · (α(un,k)∇un,k) + f(un,k)+

∇ · (α(un,k)∇δu) +∇ · (α′(un,k)δu∇un,k)+
∇ · (α′(un,k)δu∇δu) + f ′(un,k)δu . (38)

The term α′(un,k)δu∇δu is O(δu2) and therefore omitted. Reorganizing the
equation gives a PDE for δu that we can write in short form as

25

δF (δu;un,k) = −F (un,k),

where

F (un,k) = un,k − un−1

∆t −∇ · (α(un,k)∇un,k) + f(un,k), (39)

δF (δu;un,k) = − 1
∆tδu+∇ · (α(un,k)∇δu)+

∇ · (α′(un,k)δu∇un,k) + f ′(un,k)δu . (40)

Note that δF is a linear function of δu, and F contains only terms that are
known, such that the PDE for δu is indeed linear.

Observations.
The notational form δF = −F resembles the Newton system Jδu = −F for
systems of algebraic equations, with δF as Jδu. The unknown vector in a
linear system of algebraic equations enters the system as a linear operator
in terms of a matrix-vector product (Jδu), while at the PDE level we have
a linear differential operator instead (δF ).

Similarity with Picard iteration. We can rewrite the PDE for δu in a
slightly different way too if we define un,k + δu as un,k+1.

un,k+1 − un−1

∆t = ∇ · (α(un,k)∇un,k+1) + f(un,k)

+∇ · (α′(un,k)δu∇un,k) + f ′(un,k)δu . (41)

Note that the first line is the same PDE as arise in the Picard iteration, while the
remaining terms arise from the differentiations that are an inherent ingredient
in Newton’s method.

Implementation. For coding we want to introduce u for un, u− for un,k and
u(1) for un−1. The formulas for F and δF are then more clearly written as

F (u−) = u− − u(1)

∆t −∇ · (α(u−)∇u−) + f(u−), (42)

δF (δu;u−) = − 1
∆tδu+∇ · (α(u−)∇δu)+

∇ · (α′(u−)δu∇u−) + f ′(u−)δu . (43)
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The form that orders the PDE as the Picard iteration terms plus the Newton
method’s derivative terms becomes

u− u(1)

∆t = ∇ · (α(u−)∇u) + f(u−)+

γ(∇ · (α′(u−)(u− u−)∇u−) + f ′(u−)(u− u−)) . (44)

The Picard and full Newton versions correspond to γ = 0 and γ = 1, respectively.

Derivation with alternative notation. Some may prefer to derive the lin-
earized PDE for δu using the more compact notation. We start with inserting
un = u− + δu to get

u− + δu− un−1

∆t = ∇ · (α(u− + δu)∇(u− + δu)) + f(u− + δu) .

Taylor expanding,

α(u− + δu) ≈ α(u−) + α′(u−)δu,
f(u− + δu) ≈ f(u−) + f ′(u−)δu,

and inserting these expressions gives a less cluttered PDE for δu:

u− + δu− un−1

∆t = ∇ · (α(u−)∇u−) + f(u−)+

∇ · (α(u−)∇δu) +∇ · (α′(u−)δu∇u−)+
∇ · (α′(u−)δu∇δu) + f ′(u−)δu .

3.4 Crank-Nicolson discretization
A Crank-Nicolson discretization of (30) applies a centered difference at tn+ 1

2
:

[Dtu = ∇ · (α(u)∇u) + f(u)]n+ 1
2 .

Since u is not known at tn+ 1
2
we need to express the terms on the right-hand side

via unknowns un and un+1. The standard technique is to apply an arithmetic
average,

un+ 1
2 ≈ 1

2(un + un+1) .

However, with nonlinear terms we have many choices of formulating an arithmetic
mean:
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[f(u)]n+ 1
2 ≈ f(1

2(un + un+1)) = [f(ut)]n+ 1
2 , (45)

[f(u)]n+ 1
2 ≈ 1

2(f(un) + f(un+1)) = [f(u)t]n+ 1
2 , (46)

[α(u)∇u]n+ 1
2 ≈ α(1

2(un + un+1))∇(1
2(un + un+1)) = [α(ut)∇ut]n+ 1

2 , (47)

[α(u)∇u]n+ 1
2 ≈ 1

2(α(un) + α(un+1))∇(1
2(un + un+1)) = [α(u)t∇ut]n+ 1

2 , (48)

[α(u)∇u]n+ 1
2 ≈ 1

2(α(un)∇un + α(un+1)∇un+1) = [α(u)∇ut]n+ 1
2 . (49)

A big question is whether there are significant differences in accuracy between
taking the products of arithmetic means or taking the arithmetic mean of
products. Exercise 5 investigates this question, and the answer is that the
approximation is O(∆t2) in both cases.

4 Discretization of 1D stationary nonlinear dif-
ferential equations

Section 3 presents methods for linearizing time-discrete PDEs directly prior to
discretization in space. We can alternatively carry out the discretization in space
and of the time-discrete nonlinear PDE problem and get a system of nonlinear
algebraic equations, which can be solved by Picard iteration or Newton’s method
as presented in Section 2. This latter approach will now be described in detail.

We shall work with the 1D problem

− (α(u)u′)′ + au = f(u), x ∈ (0, L), α(u(0))u′(0) = C, u(L) = D . (50)

The problem (50) arises from the stationary limit of a diffusion equation,

∂u

∂t
= ∂

∂x

(
α(u)∂u

∂x

)
+ au+ f(u), (51)

as t→∞ and ∂u/∂t→ 0. Alternatively, the problem (50) arises at each time
level from implicit time discretization of (51). For example, a Backward Euler
scheme for (51) with a = 0 leads to

un − un−1

∆t = ∂

∂x

(
α(un)∂u

n

∂x

)
− f(un) . (52)

Introducing u(x) for un(x), u(1) for un−1, and letting f(u) in (50) be f(u) +
un−1/∆t in (52), gives (50) with a = 1/∆t.
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4.1 Finite difference discretizations
The nonlinearity in the differential equation (50) poses no more difficulty than a
variable coefficient, as in (α(x)u′)′. We can therefore use a standard approach
to discretizing the Laplace term with a variable coefficient:

[−DxαDxu+ au = f ]i .

Writing this out for a uniform mesh with points xi = i∆x, i = 0, . . . , Nx, leads
to

− 1
∆x2

(
αi+ 1

2
(ui+1 − ui)− αi− 1

2
(ui − ui−1)

)
+ aui = f(ui) . (53)

This equation is valid at all the mesh points i = 0, 1, . . . , Nx − 1. At i = Nx
we have the Dirichlet condition ui = 0. The only difference from the case with
(α(x)u′)′ and f(x) is that now α and f are functions of u and not only on x:
(α(u(x))u′)′ and f(u(x)).

The quantity αi+ 1
2
, evaluated between two mesh points, needs a comment.

Since α depends on u and u is only known at the mesh points, we need to express
αi+ 1

2
in terms of ui and ui+1. For this purpose we use an arithmetic mean,

although a harmonic mean is also common in this context if α features large
jumps. There are two choices of arithmetic means:

αi+ 1
2
≈ α(1

2(ui + ui+1) = [α(ux)]i+ 1
2 , (54)

αi+ 1
2
≈ 1

2(α(ui) + α(ui+1)) = [α(u)x]i+ 1
2 (55)

Equation (53) with the latter approximation then looks like

− 1
2∆x2 ((α(ui) + α(ui+1))(ui+1 − ui)− (α(ui−1) + α(ui))(ui − ui−1))

+ aui = f(ui), (56)

or written more compactly,

[−Dxα
xDxu+ au = f ]i .

At mesh point i = 0 we have the boundary condition α(u)u′ = C, which is
discretized by

[α(u)D2xu = C]0,

meaning

α(u0)u1 − u−1
2∆x = C . (57)
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The fictitious value u−1 can be eliminated with the aid of (56) for i = 0. Formally,
(56) should be solved with respect to ui−1 and that value (for i = 0) should be
inserted in (57), but it is algebraically much easier to do it the other way around.
Alternatively, one can use a ghost cell [−∆x, 0] and update the u−1 value in
the ghost cell according to (57) after every Picard or Newton iteration. Such
an approach means that we use a known u−1 value in (56) from the previous
iteration.

4.2 Solution of algebraic equations
The structure of the equation system. The nonlinear algebraic equations
(56) are of the form A(u)u = b(u) with

Ai,i = 1
2∆x2 (α(ui−1) + 2α(ui)α(ui+1)) + a,

Ai,i−1 = − 1
2∆x2 (α(ui−1) + α(ui)),

Ai,i+1 = − 1
2∆x2 (α(ui) + α(ui+1)),

bi = f(ui) .

The matrix A(u) is tridiagonal: Ai,j = 0 for j > 1 + 1 and j < i− 1.
The above expressions are valid for internal mesh points 1 ≤ i ≤ Nx − 1. For

i = 0 we need to express ui−1 = u−1 in terms of u1 using (57):

u−1 = u1 −
2∆x
α(u0)C . (58)

This value must be inserted in A0,0. The expression for Ai,i+1 applies for i = 0,
and Ai,i−1 does not enter the system when i = 0.

Regarding the last equation, its form depends on whether we include the
Dirichlet condition u(L) = D, meaning uNx

= D, in the nonlinear algebraic
equation system or not. Suppose we choose (u0, u1, . . . , uNx−1) as unknowns,
later referred to as systems without Dirichlet conditions. The last equation corre-
sponds to i = Nx−1. It involves the boundary value uNx

, which is substituted by
D. If the unknown vector includes the boundary value, (u0, u1, . . . , uNx), later
referred to as system including Dirichlet conditions, the equation for i = Nx − 1
just involves the unknown uNx

, and the final equation becomes uNx
= D,

corresponding to Ai,i = 1 and bi = D for i = Nx.

Picard iteration. The obvious Picard iteration scheme is to use previously
computed values of ui in A(u) and b(u), as described more in detail in Section 2.
With the notation u− for the most recently computed value of u, we have
the system F (u) ≈ F̂ (u) = A(u−)u − b(u−), with F = (F0, F1, . . . , Fm), u =
(u0, u1, . . . , um). The index m is Nx if the system includes the Dirichlet condition
as a separate equation and Nx − 1 otherwise. The matrix A(u−) is tridiagonal,
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so the solution procedure is to fill a tridiagonal matrix data structure and the
right-hand side vector with the right numbers and call a Gaussian elimination
routine for tridiagonal linear systems.

To write out all the mathematical details in a specific case, let us look at
the case Nx = 2. We use u−i for the i-th component in u−. In case we omit the
Dirichlet condition from the system we get the following 2× 2 system,

(
A0,0 A0,1
A1,0 A1,1

)(
u0
u1

)
=
(
b0
b1

)

The matrix and right-hand side entries are given by

A0,0 = 1
2∆x2 (α(u−−1) + 2α(u−0 ) + α(u−1 )) + a (59)

A0,1 = − 1
2∆x2 (α(u−0 ) + α(u−1 )), (60)

A1,0 = − 1
2∆x2 (α(u−0 ) + α(u−1 )), (61)

A1,1 = 1
2∆x2 (α(u−0 ) + 2α(u−1 ) + α(u2)) + a, (62)

b0 = f(u−0 ), (63)
b1 = f(u−1 ), (64)

where u−1 must be substituted by (58), and u2 by D.
The system with the Dirichlet condition becomes




A0,0 A0,1 A0,2
A1,0 A1,1 A1,2
A2,0 A2,1 A2,2






u0
u1
u2


 =




b0
b1
b2


 ,

with entries for Ai,j and bi as above for i, j = 1, 2, keeping u2 as unknown in
A1,1, and

A0,2 = A2,0 = A2,1 = 0, A1,2 = − 1
2∆x2 (α(u1) + α(u2)), A2,2 = 1, b2 = D .

(65)

Newton’s method. The Jacobian must be derived in order to use Newton’s
method. Here it means that we need to differentiate F (u) = A(u)u− b(u) with
respect to the unknown parameters u0, u1, . . . , um (m = Nx or m = Nx − 1,
depending on whether the Dirichlet condition is included in the nonlinear system
F (u) = 0 or not). Nonlinear equation number i has the structure

Fi = Ai,i−1(ui−1, ui)ui−1 +Ai,i(ui−1, ui, ui+1)ui+Ai,i+1(ui, ui+1)ui+1− bi(ui) .

Computing the Jacobian requires careful differentiation. For example,
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∂

∂ui
(Ai,i(ui−1, ui, ui+1)ui) = ∂Ai,i

∂ui
ui +Ai,i

∂ui
∂ui

= ∂

∂ui
( 1
2∆x2 (α(ui−1) + 2α(ui) + α(ui+1)) + a)ui+

1
2∆x2 (α(ui−1) + 2α(ui) + α(ui+1)) + a

= 1
2∆x2 (2α′(ui)ui + α(ui−1) + 2α(ui) + α(ui+1)) + a .

The complete Jacobian becomes

Ji,i = ∂Fi
∂ui

= ∂Ai,i−1
∂ui

ui−1 + ∂Ai,i
∂ui

ui +Ai,i + ∂Ai,i+1
∂ui

ui+1 −
∂bi
∂ui

= 1
2∆x2 (−α′(ui)ui−1 + 2α′(ui)ui + α(ui−1) + 2α(ui) + α(ui+1))+

a− 1
2∆x2α

′(ui)ui+1 − b′(ui),

Ji,i−1 = ∂Fi
∂ui−1

= ∂Ai,i−1
∂ui−1

ui−1 +Ai−1,i + ∂Ai,i
∂ui−1

ui −
∂bi
∂ui−1

= 1
2∆x2 (−α′(ui−1)ui−1 − (α(ui−1) + α(ui)) + α′(ui−1)ui),

Ji,i+1 = ∂Ai,i+1
∂ui−1

ui+1 +Ai+1,i + ∂Ai,i
∂ui+1

ui −
∂bi
∂ui+1

= 1
2∆x2 (−α′(ui+1)ui+1 − (α(ui) + α(ui+1)) + α′(ui+1)ui) .

The explicit expression for nonlinear equation number i, Fi(u0, u1, . . .), arises
from moving the (ui) term in (56) to the left-hand side:

Fi = − 1
2∆x2 ((α(ui) + α(ui+1))(ui+1 − ui)− (α(ui−1) + α(ui))(ui − ui−1))

+ aui − f(ui) = 0 . (66)

At the boundary point i = 0, u−1 must be replaced using the formula (58).
When the Dirichlet condition at i = Nx is not a part of the equation system,
the last equation Fm = 0 for m = Nx − 1 involves the quantity uNx−1 which
must be replaced by D. If uNx

is treated as an unknown in the system, the last
equation Fm = 0 has m = Nx and reads

FNx(u0, . . . , uNx) = uNx −D = 0 .

Similar replacement of u−1 and uNx
must be done in the Jacobian for the first

and last row. When uNx
is included as an unknown, the last row in the Jacobian

must help implement the condition δuNx
= 0, since we assume that u contains
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the right Dirichlet value at the beginning of the iteration (uNx = D), and then
the Newton update should be zero for i = 0, i.e., δuNx = 0. This also forces the
right-hand side to be bi = 0, i = Nx.

We have seen, and can see from the present example, that the linear system
in Newton’s method contains all the terms present in the system that arises
in the Picard iteration method. The extra terms in Newton’s method can be
multiplied by a factor such that it is easy to program one linear system and set
this factor to 0 or 1 to generate the Picard or Newton system.

4.3 Galerkin-type discretizations
For a Galerkin-type discretization, which may be developed into a finite element
method, we first need to derive the variational problem. Let V be an appropriate
function space with basis functions {ψi}i∈Is

. Because of the Dirichlet condition
at x = L we require ψi(L) = 0, i ∈ Is. The approximate solution is written as
u = D +

∑
j∈Is

cjψj , where the term D can be viewed as a boundary function
needed to implement the Dirichlet condition u(L) = D.

Using Galerkin’s method, we multiply the differential equation by any v ∈ V
and integrate terms with second-order derivatives by parts:

∫ L

0
α(u)u′v′ dx+

∫ L

0
auv dx =

∫ L

0
f(u)v dx+ [α(u)u′v]L0 , ∀v ∈ V .

The Neumann condition at the boundary x = 0 is inserted in the boundary term:

[α(u)u′v]L0 = α(u(L))u′(L)v(L)− α(u(0))u′(0)v(0) = 0− Cv(0) = −Cv(0) .

(Recall that since ψi(L) = 0, any linear combination v of the basis functions also
vanishes at x = L: v(L) = 0.) The variational problem is then: find u ∈ V such
that

∫ L

0
α(u)u′v′ dx+

∫ L

0
auv dx =

∫ L

0
f(u)v dx− Cv(0), ∀v ∈ V . (67)

To derive the algebraic equations, we note that ∀v ∈ V is equivalent with
v = ψi for i ∈ Is. Setting u = D +

∑
j cjψj and sorting terms results in the

linear system

∑

j∈Is

(∫ L

0
α(D +

∑

k∈Is

ckψk)ψ′jψ′i dx
)
cj =

∫ L

0
f(D+

∑

k∈Is

ckψk)ψi dx−Cψi(0), i ∈ Is .

(68)
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Fundamental integration problem. Methods that use the Galerkin or
weighted residual principle face a fundamental difficulty in nonlinear problems:
how can we integrate a terms like

∫ L
0 α(

∑
k ckψk)ψ′iψ′j dx and

∫ L
0 f(

∑
k ckψk)ψi dx

when we do not know the ck coefficients in the argument of the α function? We
can resort to numerical integration, provided an approximate

∑
k ckψk can be

used for the argument u in f and α. This is the approach used in computer
programs.

However, if we want to look more mathematically into the structure of the
algebraic equations generated by the finite element method in nonlinear problems,
and compare such equations with those arising in the finite difference method, we
need techniques that enable integration of expressions like

∫ L
0 f(

∑
k ckψk)ψi dx

by hand. Two such techniques will be shown: the group finite element and
numerical integration based on the nodes only. Both techniques are approximate,
but they allow us to see the difference equations in the finite element method.

4.4 Finite element basis functions
Introduction of finite element basis functions ϕi means setting

ψi = ϕν(i), i ∈ Is,
where degree of freedom number ν(i) in the mesh corresponds to unknown
number i (ci). In the present example, we use all the basis functions except the
last at i = Nn − 1, i.e., Is = {0, . . . , Nn − 2}, and ν(j) = j. The expansion of u
can be taken as

u = D +
∑

j∈Is

cjϕν(j),

but it is more common in a finite element context to use a boundary function
B =

∑
j∈Ib

Ujϕj , where Uj are prescribed Dirichlet conditions for degree of
freedom number j and Uj is the corresponding value.

u = DϕNn−1 +
∑

j∈Is

cjϕν(j) .

In the general case with u prescribed as Uj at some nodes j ∈ Ib, we set

u =
∑

j∈Ib

Ujϕj +
∑

j∈Is

cjϕν(j),

where cj = u(xν(j)). That is, ν(j) maps unknown number j to the corresponding
node number ν(j) such that cj = u(xν(j)).

4.5 The group finite element method
Finite element approximation of functions of u. Since we already expand
u as

∑
j ϕju(xj), we may use the same approximation for other functions as

well. For example,
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f(u) ≈
∑

j

f(xj)ϕj ,

where f(xj) is the value of f at node j. Since f is a function of u, f(xj) =
f(u(xj)). Introducing uj as a short form for u(xj), we can write

f(u) ≈
∑

j

f(uj)ϕj .

This approximation is known as the group finite element method or the product
approximation technique. The index j runs over all node numbers in the mesh.

The principal advantages of the group finite element method are two-fold:

1. Complicated nonlinear expressions can be simplified to increase the effi-
ciency of numerical computations.

2. One can derive symbolic forms of the difference equations arising from the
finite element method in nonlinear problems. The symbolic form is useful
for comparing finite element and finite difference equations of nonlinear
differential equation problems.

Below, we shall explore point 2 to see exactly how the finite element method
creates more complex expressions in the resulting linear system (the difference
equations) that the finite difference method does. It turns out that is very difficult
to see what kind of turns in the difference equations that arise from

∫
f(u)ϕi dx

without using the group finite element method or numerical integration utilizing
the nodes only.

Note, however, that an expression like
∫
f(u)ϕi dx causes no problems in a

computer program as the integral is calculated by numerical integration using
an existing approximation of u in f(u) such that the integrand can be sampled
at any spatial point.

Simplified problem. Our aim now is the derive symbolic expressions for the
difference equations arising from the finite element method in nonlinear problems
and compare the expressions with those arising in the finite difference method.
To this, let us simplify the model problem and set a = 0, α = 1, f(u) = u2, and
have Neumann conditions at both ends such that we get a very simple nonlinear
problem −u′′ = u2, u′(0) = 1, u′(L) = 0. The variational form is then

∫ L

0
u′v′ dx =

∫ L

0
u2v dx− v(0), ∀v ∈ V .

The term with u′v′ is well known so the only new feature is the term
∫
u2v dx.

To make the distance from finite element equations to finite difference equa-
tions as short as possible, we shall substitute cj in the sum u =

∑
j cjϕj by

uj = u(xj) since cj is the value of u at node j. (In the more general case with
Dirichlet conditions as well, we have a sum

∑
j cjϕν(j) where cj is replaced by
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u(xν(j)). We can then introduce some other counter k such that it is meaningful
to write u =

∑
k ukϕk, where k runs over appropriate node numbers.) The

quantity uj in
∑
j ujϕj is the same as u at mesh point number j in the finite

difference method, which is commonly denoted uj .

Integrating nonlinear functions. Consider the term
∫
u2v dx in the varia-

tional formulation with v = ϕi and u =
∑
k ϕkuk:

∫ L

0
(
∑

k

ukϕk)2ϕi dx .

Evaluating this integral for P1 elements (see Problem 10) results in the expression

h

12(u2
i−1 + 2ui(ui−1 + ui+1) + 6u2

i + u2
i+1),

to be compared with the simple value u2
i that would arise in a finite difference

discretization when u2 is sampled at mesh point xi. More complicated f(u)
functions give rise to much more lengthy expressions, if it is possible to carry
out the integral symbolically at all.

Application of the group finite element method. Let use the group finite
element method to derive the terms in the difference equation corresponding to
f(u) in the differential equation. We have

∫ L

0
f(u)ϕi dx ≈

∫ L

0
(
∑

j

ϕjf(uj))ϕi dx =
∑

j

(∫ L

0
ϕiϕj dx

)
f(uj) .

We recognize this expression as the mass matrix M , arising from
∫
ϕiϕj dx,

times the vector f = (f(u0), f(u1), . . . , ): Mf . The associated terms in the
difference equations are, for P1 elements,

h

6 (f(ui−1) + 4f(ui) + f(ui+1)) .

Occasionally, we want to interpret this expression in terms of finite differences,
and to this end a rewrite of this expression is convenient:

h

6 (f(ui−1) + 4f(ui) + f(ui+1)) = h[f(u)− h2

6 DxDxf(u)]i .

That is, the finite element treatment of f(u) (when using a group finite element
method) gives the same term as in a finite difference approach, f(ui), minus a
diffusion term which is the 2nd-order discretization of 1

6h
2f ′′(xi).

We may lump the mass matrix through integration with the Trapezoidal rule
so that M becomes diagonal in the finite element method. In that case the f(u)
term in the differential equation gives rise to a single term hf(ui), just as in the
finite difference method.
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4.6 Numerical integration of nonlinear terms
Let us reconsider a term

∫
f(u)v dx as treated in the previous section, but

now we want to integrate this term numerically. Such an approach can lead to
easy-to-interpret formulas if we apply a numerical integration rule that samples
the integrand at the node points xi only, because at such points, ϕj(xi) = 0 if
j 6= i, which leads to great simplifications.

The term in question takes the form
∫ L

0
f(
∑

k

ukϕk)ϕi dx .

Evaluation of the integrand at a node x` leads to a collapse of the sum
∑
k ukϕk

to one term because
∑

k

ukϕk(x`) = u` .

f(
∑

k

uk ϕk(x`)︸ ︷︷ ︸
δk`

)ϕi(x`)︸ ︷︷ ︸
δi`

= f(u`)δi`,

where we have used the Kronecker delta: δij = 0 if i 6= j and δij = 1 if i = j.
Considering the Trapezoidal rule for integration, where the integration points

are the nodes, we have

∫ L

0
f(
∑

k

ukϕk)(x)ϕi(x) dx ≈ h
Nn∑

`=0
f(u`)δi` − C = hf(ui) .

This is the same representation of the f term as in the finite difference method.
The term C contains the evaluations of the integrand at the ends with weight 1

2 ,
needed to make a true Trapezoidal rule:

C = h

2 f(u0)ϕi(0) + h

2 f(uNn−1)ϕi(L) .

The answer hf(ui) must therefore be multiplied by 1
2 if i = 0 or i = Nn − 1.

Note that C = 0 for i = 1, . . . , Nn − 2.
One can alternatively use the Trapezoidal rule on the reference cell and

assemble the contributions. It is a bit more labor in this context, but working on
the reference cell is safer as that approach is guaranteed to handle discontinuous
derivatives of finite element functions correctly (not important in this particular
example), while the rule above was derived with the assumption that f is
continuous at the integration points.

The conclusion is that it suffices to use the Trapezoidal rule if one wants
to derive the difference equations in the finite element method and make them
similar to those arising in the finite difference method. The Trapezoidal rule
has sufficient accuracy for P1 elements, but for P2 elements one should turn to
Simpson’s rule.
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4.7 Finite element discretization of a variable coefficient
Laplace term

Turning back to the model problem (50), it remains to calculate the contribution
of the (αu′)′ and boundary terms to the difference equations. The integral in
the variational form corresponding to (αu′)′ is

∫ L

0
α(
∑

k

ckψk)ψ′iψ′j dx .

Numerical integration utilizing a value of
∑
k ckψk from a previous iteration

must in general be used to compute the integral. Now our aim is to integrate
symbolically, as much as we can, to obtain some insight into how the finite element
method approximates this term. To be able to derive symbolic expressions, we
must either turn to the group finite element method or numerical integration in
the node points. Finite element basis functions ϕi are now used.

Group finite element method. We set α(u) ≈ ∑k α(uk)ϕk, and then we
write

∫ L

0
α(
∑

k

ckϕk)ϕ′iϕ′j dx ≈
∑

k

(
∫ L

0
ϕkϕ

′
iϕ
′
j dx

︸ ︷︷ ︸
Li,j,k

)α(uk) =
∑

k

Li,j,kα(uk) .

Further calculations are now easiest to carry out in the reference cell. With P1
elements we can compute Li,j,k for the two k values that are relevant on the
reference cell. Turning to local indices, one gets

L
(e)
r,s,t = 1

2h

(
1 −1
−1 1

)
, t = 0, 1,

where r, s, t = 0, 1 are indices over local degrees of freedom in the reference cell
(i = q(e, r), j = q(e, s), and k = q(e, t)). The sum

∑
k Li,j,kα(uk) at the cell

level becomes
∑1
t=0 L

(e)
r,s,tα(ũt), where ũt is u(xq(e,t)), i.e., the value of u at local

node number t in cell number e. The element matrix becomes

1
2(α(ũ0) + α(ũ(1))) 1

h

(
1 −1
−1 1

)
. (69)

As usual, we employ a left-to-right numbering of cells and nodes. Row number i
in the global matrix gets contributions from the first row of the element matrix
in cell i and the last row of the element matrix in cell i − 1. In cell number
i− 1 the sum α(ũ0) + α(ũ(1)) corresponds to α(ui−1) + α(ui). The same sum
becomes α(ui) + α(ui+1) in cell number i. We can with this insight assemble
the contributions to row number i in the global matrix:

1
2h (−(α(ui−1) + α(ui)), α(ui−1) + 2α(ui) + α(ui+1), α(ui) + α(ui+1)) .
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Multiplying by the vector of unknowns ui results in a formula that can be
arranged to

− 1
h

(1
2(α(ui) + α(ui+1))(ui+1 − ui)−

1
2(α(ui−1) + α(ui))(ui − ui−1)), (70)

which is nothing but the standard finite difference discretization of −(α(u)u′)′
with an arithmetic mean of α(u) (and the usual factor h because of the integration
in the finite element method).

Numerical integration at the nodes. Instead of using the group finite
element method and exact integration we can turn to the Trapezoidal rule for
computing

∫ L
0 α(

∑
k ukϕk)ϕ′iϕ′j dx, again at the cell level since that is most

convenient when we deal with discontinuous functions ϕ′i:

∫ 1

−1
α(
∑

t

ũtϕ̃t)ϕ̃′rϕ̃′s
h

2 dX =
∫ 1

−1
α(

1∑

t=0
ũtϕ̃t)

2
h

dϕ̃r
dX

2
h

dϕ̃s
dX

h

2 dX

= 1
2h (−1)r(−1)s

∫ 1

−1
α(

1∑

t=0
utϕ̃t(X))dX

≈ 1
2h (−1)r(−1)sα(

1∑

t=0
ϕ̃t(−1)ũt) + α(

1∑

t=0
ϕ̃t(1)ũt)

= 1
2h (−1)r(−1)s(α(ũ0) + α(ũ(1))) . (71)

The element matrix in (71) is identical to the one in (69), showing that the
group finite element method and Trapezoidal integration are equivalent with
a standard finite discretization of a nonlinear Laplace term (α(u)u′)′ using an
arithmetic mean for α: [DxxDxu]i.

Remark about integration in the physical x coordinate.

We might comment on integration in the physical coordinate system too.
The common Trapezoidal rule in Section 4.6 cannot be used to integrate
derivatives like ϕ′i, because the formula is derived under the assumption
of a continuous integrand. One must instead use the more basic version
of the Trapezoidal rule where all the trapezoids are summed up. This is
straightforward, but I think it is even more straightforward to apply the
Trapezoidal rule on the reference cell and assemble the contributions.

The term
∫
auv dx in the variational form is linear and gives these terms in

the algebraic equations:
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ah

6 (ui−1 + 4ui + ui+1) = ah[u− h2

6 DxDxu]i .

The final term in the variational form is the Neumann condition at the bound-
ary: Cv(0) = Cϕi(0). With a left-to-right numbering only i = 0 will give a
contribution Cv(0) = Cδi0 (since ϕi(0) 6= 0 only for i = 0).

Summary.

For the equation

−(α(u)u′)′ + au = f(u),

P1 finite elements results in difference equations where

• the term −(α(u)u′)′ becomes −h[Dxα(u)xDxu]i if the group finite
element method or Trapezoidal integration is applied,

• f(u) becomes hf(ui) with Trapezoidal integration or the “mass ma-
trix” representation h[f(u)− h

6DxDxf(u)]i if computed by a group
finite element method,

• au leads to the “mass matrix” form ah[u− h
6DxDxu]i.

As we now have explicit expressions for the nonlinear difference equations
also in the finite element method, a Picard or Newton method can be defined as
shown for the finite difference method. However, our efforts in deriving symbolic
forms of the difference equations in the finite element method was motivated by a
desire to see how nonlinear terms in differential equations make the finite element
and difference method different. For practical calculations in computer programs
we apply numerical integration, normally the more accurate Gauss-Legendre
quadrature rules, to the integrals directly. This allows us to easily evaluate the
nonlinear algebraic equations for a given numerical approximation of u (here
denoted u−). To solve the nonlinear algebraic equations we need to apply the
Picard iteration method or Newton’s method to the variational form directly, as
shown next.

4.8 Picard iteration defined from the variational form
We address again the problem (50) with the corresponding variational form (67).
Our aim is to define a Picard iteration based on this variational form without any
attempt to compute integrals symbolically as in the previous three sections. The
idea in Picard iteration is to use a previously computed u value in the nonlinear
functions α(u) and f(u). Let u− be the available approximation to u from the
previous iteration. The linearized variational form for Picard iteration is then
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∫ L

0
(α(u−)u′v′ + auv) dx =

∫ L

0
f(u−)v dx− Cv(0), ∀v ∈ V . (72)

This is a linear problem a(u, v) = L(v) with bilinear and linear forms

a(u, v) =
∫ L

0
(α(u−)u′v′ + auv) dx, L(v) =

∫ L

0
f(u−)v dx− Cv(0) .

Make sure to distinguish the coefficient a in auv from the differential equation
from the a in the abstract bilinear form notation a(·, ·).

The linear system associated with (72) is computed the standard way. Tech-
nically, we are back to solving −(α(x)u′)′+au = f(x). The unknown u is sought
on the form u = B(x) +

∑
j∈Is

cjψj , with B(x) = D and ψi = ϕν(i), ν(i) = i+ 1,
and Is = {0, 1, . . . , N = Nn − 2}.

4.9 Newton’s method defined from the variational form
Application of Newton’s method to the nonlinear variational form (67) arising
from the problem (50) requires identification of the nonlinear algebraic equations
Fi = 0. Although we originally denoted the unknowns in nonlinear algebraic
equations by u0, . . . , uN , it is in the present context most natural to have the
unknowns as c0, . . . , cN and write

Fi(c0, . . . , cN ) = 0, i ∈ Is,
and define the Jacobian as Ji,j = ∂Fi/∂cj for i, j ∈ Is.

The specific form of the equations Fi = 0 follows from the variational form
∫ L

0
(α(u)u′v′ + auv) dx =

∫ L

0
f(u)v dx− Cv(0), ∀v ∈ V,

by choosing v = ψi, i ∈ Is, and setting u =
∑
j∈Is

cjψj , maybe with a boundary
function to incorporate Dirichlet conditions.

With v = ψi we get

Fi =
∫ L

0
(α(u)u′ψ′i + auψi − f(u)ψi) dx+ Cψi(0) = 0, i ∈ Is . (73)

In the differentiations leading to the Jacobian we will frequently use the results

∂u

∂cj
= ∂

∂cj

∑

k

ckψk = ψj ,
∂u′

∂cj
= ∂

∂cj

∑

k

ckψ
′
k = ψ′j .

The derivation of the Jacobian of (73) goes as
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Ji,j = ∂Fi
∂cj

=
∫ L

0

∂

∂cj
(α(u)u′ψ′i + auψi − f(u)ψi) dx

=
∫ L

0
((α′(u) ∂u

∂cj
u′ + α(u)∂u

′

∂cj
)ψ′i + a

∂u

∂cj
ψi − f ′(u) ∂u

∂cj
ψi) dx

=
∫ L

0
((α′(u)ψju′ + α(u)ψ′j)ψ′i + aψjψi − f ′(u)ψjψi) dx

=
∫ L

0
(α′(u)u′ψ′iψj + α(u)ψ′iψ′j + (a− f(u))ψiψj) dx (74)

When calculating the right-hand side vector Fi and the coefficient matrix
Ji,j in the linear system to be solved in each Newton iteration, one must use a
previously computed u, denoted by u−, for the symbol u in (73) and (74). With
this notation we have

Fi =
∫ L

0

(
α(u−)u−′ψ′i + (a− f(u−))ψi

)
dx− Cψi(0), i ∈ Is, (75)

Ji,j =
∫ L

0
(α′(u−)u−′ψ′iψj + α(u−)ψ′iψ′j + (a− f(u−))ψiψj) dx, i, j ∈ Is .

(76)

These expressions can be used for any basis {ψi}i∈Is
. Choosing finite element

functions for ψi, one will normally want to compute the integral contribution cell
by cell, working in a reference cell. To this end, we restrict the integration to one
cell and transform the cell to [−1, 1]. The most recently computed approximation
u− to u becomes ũ− =

∑
t ũ
−1
t ϕ̃t(X) over the reference element, where ũ−1

t is
the value of u− at global node (or degree of freedom) q(e, t) corresponding to the
local node t (or degree of freedom). The formulas (75) and (76) then change to

F̃ (e)
r =

∫ 1

−1

(
α(ũ−)ũ−′ϕ̃′r + (a− f(ũ−))ϕ̃r

)
det J dX − Cϕ̃r(0), (77)

J̃ (e)
r,s =

∫ 1

−1
(α′(ũ−)ũ−′ϕ̃′rϕ̃s + α(ũ−)ϕ̃′rϕ̃′s + (a− f(ũ−))ϕ̃rϕ̃s) detJ dX, (78)

with r, s ∈ Id runs over the local degrees of freedom.
Many finite element programs require the user to provide Fi and Ji,j . Some

programs, like FEniCS2, are capable of automatically deriving Ji,j if Fi is
specified.

Dirichlet conditions. Incorporation of the Dirichlet values by assembling
contributions from all degrees of freedom and then modifying the linear system

2http://fenicsproject.org
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can be obviously be applied to Picard iteration as that method involves a standard
linear system. In the Newton system, however, the unknown is a correction
δu to the solution. Dirichlet conditions are implemented by inserting them in
the initial guess u− for the Newton iteration and implementing δui = 0 for all
known degrees of freedom. The manipulation of the linear system follows exactly
the algorithm in the linear problems, the only difference being that the known
values are zero.

5 Multi-dimensional PDE problems
The fundamental ideas in the derivation of Fi and Ji,j in the 1D model problem
is easily generalized to multi-dimensional problems. Nevertheless, the expressions
involved are slightly different, with derivatives in x replaced by ∇, so we present
some examples below in detail.

5.1 Finite element discretization
As an example, Backward Euler discretization of the PDE

ut = ∇ · (α(u)∇u) + f(u), (79)

gives the nonlinear time-discrete PDEs

un −∆t∇ · (α(un)∇un) + f(un) = un−1 .

We may alternatively write this equation with u for un and u(1) for un−1:

u−∆t∇ · (α(u)∇u)−∆tf(u) = u(1) .

(Note that the mathematical meaning of the symbol u changes in these
equations: u(x, t) is the exact solution of (79), un(x) is an approximation to the
exact solution at t = tn, while u(x) in the latter equation is a synonym for un.
Below, this u(x) will be approximated by a new u =

∑
k ckψk(x) in space, and

then the actual u symbol used in the Picard and Newton iterations is a further
approximation of

∑
k ckψk arising from the nonlinear iteration algorithm.)

Let us assume homogeneous Neumann conditions on the entire boundary for
simplicity in the boundary term. The variational form becomes: find u ∈ V such
that

∫

Ω
(uv + ∆t α(u)∇u · ∇v −∆tf(u)v − u(1)v) dx = 0, ∀v ∈ V . (80)

The nonlinear algebraic equations follow from setting v = ψi and using the
representation u =

∑
k ckψk, which we just write as

Fi =
∫

Ω
(uψi + ∆t α(u)∇u · ∇ψi −∆tf(u)ψi − u(1)ψi) dx . (81)
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Picard iteration needs a linearization where we use the most recent approximation
u− to u in α and f :

Fi ≈ F̂i =
∫

Ω
(uψi + ∆t α(u−)∇u · ∇ψi −∆tf(u−)ψi − u(1)ψi) dx . (82)

The equations F̂i = 0 are now linear and we can easily derive a linear system∑
j∈Is

Ai,jcj = bi, i ∈ Is, for the unknown coefficients {ci}i∈Is
by inserting

u =
∑
j cjψj . We get

Ai,j =
∫

Ω
(ϕjψi + ∆t α(u−)∇ϕj · ∇ψi) dx, bi =

∫

Ω
(∆tf(u−)ψi + u(1)ψi) dx .

In Newton’s method we need to evaluate Fi with the known value u− for u:

Fi ≈ F̂i =
∫

Ω
(u−ψi + ∆t α(u−)∇u− · ∇ψi −∆tf(u−)ψi − u(1)ψi) dx . (83)

The Jacobian is obtained by differentiating (81) and using

∂u

∂cj
=
∑

k

∂

∂cj
ckψk = ψj , (84)

∂∇u
∂cj

=
∑

k

∂

∂cj
ck∇ψk = ∇ψj . (85)

The result becomes

Ji,j = ∂Fi
∂cj

=
∫

Ω
(ψjψi + ∆t α′(u)ψj∇u · ∇ψi + ∆t α(u)∇ψj · ∇ψi−

∆tf ′(u)ψjψi) dx . (86)

The evaluation of Ji,j as the coefficient matrix in the linear system in Newton’s
method applies the known approximation u− for u:

Ji,j =
∫

Ω
(ψjψi + ∆t α′(u−)ψj∇u− · ∇ψi + ∆t α(u−)∇ψj · ∇ψi−

∆tf ′(u−)ψjψi) dx . (87)

Hopefully, this example also shows how convenient the notation with u and u−
is: the unknown to be computed is always u and linearization by inserting known
(previously computed) values is a matter of adding an underscore. One can take
great advantage of this quick notation in software [2].
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Non-homogeneous Neumann conditions. A natural physical flux condi-
tion for the PDE (79) takes the form of a non-homogeneous Neumann condition

− α(u)∂u
∂n

= g, x ∈ ∂ΩN , (88)

where g is a prescribed function and ∂ΩN is a part of the boundary of the domain
Ω. From integrating

∫
Ω∇ · (α∇u) dx by parts, we get a boundary term

∫

∂ΩN

α(u)∂u
∂u
v ds . (89)

Inserting the condition (88) into this term results in an integral over prescribed
values:

−
∫

∂ΩN

gv ds .

The nonlinearity in the α(u) coefficient condition (88) therefore does not con-
tribute with a nonlinearity in the variational form.

Robin conditions. Heat conduction problems often apply a kind of Newton’s
cooling law, also known as a Robin condition, at the boundary:

− α(u)∂u
∂u

= h(u)(u− Ts(t)), x ∈ ∂ΩR, (90)

where h(u) is a heat transfer coefficient between the body (Ω) and its sur-
roundings, Ts is the temperature of the surroundings, and ∂ΩR is a part of the
boundary where this Robin condition applies. The boundary integral (89) now
becomes

∫

∂ΩR

h(u)(u− Ts(T ))v ds .

In many physical applications, h(u) can be taken as constant, and then the
boundary term is linear in u, otherwise it is nonlinear and contributes to the
Jacobian in a Newton method. Linearization in a Picard method will typically
use a known value in h, but keep the u in u− Ts as unknown: h(u−)(u− Ts(t)).
Exercise 14 asks you to carry out the details.

5.2 Finite difference discretization
A typical diffusion equation

ut = ∇ · (α(u)∇u) + f(u),
can be discretized by (e.g.) a Backward Euler scheme, which in 2D can be
written

[D−t u = Dxα(u)xDxu+Dyα(u)yDyu+ f(u)]ni,j .
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We do not dive into the details of handling boundary conditions now. Dirichlet
and Neumann conditions are handled as in a corresponding linear, variable-
coefficient diffusion problems.

Writing the scheme out, putting the unknown values on the left-hand side
and known values on the right-hand side, and introducing ∆x = ∆y = h to save
some writing, one gets

uni,j −
∆t
h2 (1

2(α(uni,j) + α(uni+1,j))(uni+1,j − uni,j)

− 1
2(α(uni−1,j) + α(uni,j))(uni,j − uni−1,j)

+ 1
2(α(uni,j) + α(uni,j+1))(uni,j+1 − uni,j)

− 1
2(α(uni,j−1) + α(uni,j))(uni,j − uni−1,j−1))−∆tf(uni,j) = un−1

i,j

This defines a nonlinear algebraic system on the form A(u)u = b(u).

Picard iteration. The most recently computed values u− of un can be used
in α and f for a Picard iteration, or equivalently, we solve A(u−)u = b(u−). The
result is a linear system of the same type as arising from ut = ∇ · (α(x)∇u) +
f(x, t).

The Picard iteration scheme can also be expressed in operator notation:

[D−t u = Dxα(u−)xDxu+Dyα(u−)yDyu+ f(u−)]ni,j .

Newton’s method. As always, Newton’s method is technically more involved
than Picard iteration. We first define the nonlinear algebraic equations to be
solved, drop the superscript n (use u for un), and introduce u(1) for un−1:

Fi,j = ui,j −
∆t
h2 (

1
2(α(ui,j) + α(ui+1,j))(ui+1,j − ui,j)−
1
2(α(ui−1,j) + α(ui,j))(ui,j − ui−1,j)+
1
2(α(ui,j) + α(ui,j+1))(ui,j+1 − ui,j)−
1
2(α(ui,j−1) + α(ui,j))(ui,j − ui−1,j−1))−∆t f(ui,j)− u(1)

i,j = 0 .

It is convenient to work with two indices i and j in 2D finite difference discretiza-
tions, but it complicates the derivation of the Jacobian, which then gets four
indices. (Make sure you really understand the 1D version of this problem as
treated in Section 4.1.) The left-hand expression of an equation Fi,j = 0 is to be

46



differentiated with respect to each of the unknowns ur,s (recall that this is short
notation for unr,s), r ∈ Ix, s ∈ Iy:

Ji,j,r,s = ∂Fi,j
∂ur,s

.

The Newton system to be solved in each iteration can be written as
∑

r∈Ix

∑

s∈Iy

Ji,j,r,sδur,s = −Fi,j , i ∈ Ix, j ∈ Iy .

Given i and j, only a few r and s indices give nonzero contribution to the
Jacobian since Fi,j contains ui±1,j , ui,j±1, and ui,j . This means that Ji,j,r,s has
nonzero contributions only if r = i± 1, s = j± 1, as well as r = i and s = j. The
corresponding terms in Ji,j,r,s are Ji,j,i−1,j , Ji,j,i+1,j , Ji,j,i,j−1, Ji,j,i,j+1, and
Ji,j,i,j . Therefore, the left-hand side of the Newton system,

∑
r

∑
s Ji,j,r,sδur,s

collapses to

Ji,j,r,sδur,s = Ji,j,i,jδui,j + Ji,j,i−1,jδui−1,j + Ji,j,i+1,jδui+1,j + Ji,j,i,j−1δui,j−1

+ Ji,j,i,j+1δui,j+1

The specific derivatives become

Ji,j,i−1,j = ∂Fi,j
∂ui−1,j

= ∆t
h2 (α′(ui−1,j)(ui,j − ui−1,j) + α(ui−1,j)(−1)),

Ji,j,i+1,j = ∂Fi,j
∂ui+1,j

= ∆t
h2 (−α′(ui+1,j)(ui+1,j − ui,j)− α(ui−1,j)),

Ji,j,i,j−1 = ∂Fi,j
∂ui,j−1

= ∆t
h2 (α′(ui,j−1)(ui,j − ui,j−1) + α(ui,j−1)(−1)),

Ji,j,i,j+1 = ∂Fi,j
∂ui,j+1

= ∆t
h2 (−α′(ui,j+1)(ui,j+1 − ui,j)− α(ui,j−1)) .

The Ji,j,i,j entry has a few more terms and is left as an exercise. Inserting
the most recent approximation u− for u in the J and F formulas and then
forming Jδu = −F gives the linear system to be solved in each Newton iteration.
Boundary conditions will affect the formulas when any of the indices coincide
with a boundary value of an index.
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5.3 Continuation methods
Picard iteration or Newton’s method may diverge when solving PDEs with severe
nonlinearities. Relaxation with ω < 1 may help, but in highly nonlinear problems
it can be necessary to introduce a continuation parameter Λ in the problem:
Λ = 0 gives a version of the problem that is easy to solve, while Λ = 1 is the target
problem. The idea is then to increase Λ in steps, Λ0 = 0,Λ1 < · · · < Λn = 1, and
use the solution from the problem with Λi−1 as initial guess for the iterations in
the problem corresponding to Λi.

The continuation method is easiest to understand through an example.
Suppose we intend to solve

−∇ · (||∇u||q∇u) = f,

which is an equation modeling the flow of a non-Newtonian fluid through i
channel or pipe. For q = 0 we have the Poisson equation (corresponding to a
Newtonian fluid) and the problem is linear. A typical value for pseudo-plastic
fluids may be qn = −0.8. We can introduce the continuation parameter Λ ∈ [0, 1]
such that q = qnΛ. Let {Λ`}n`=0 be the sequence of Λ values in [0, 1], with
corresponding q values {q`}n`=0. We can then solve a sequence of problems

−∇ ·
(
||∇u`||q`∇u`

)
= f, ` = 0, . . . , n,

where the initial guess for iterating on u` is the previously computed solution
u`−1. If a particular Λ` leads to convergence problems, one may try a smaller
increase in Λ: Λ∗ = 1

2 (Λ`−1 + Λ`), and repeat halving the step in Λ until
convergence is reestablished.

6 Exercises
Problem 1: Determine if equations are nonlinear or not
Classify each term in the following equations as linear or nonlinear. Assume that
u is an unknown function and that all other symbols are known quantities.

1. b2 = 1

2. a+ b = 1

3. mu′′ + β|u′|u′ + cu = F (t)

4. ut = αuxx

5. utt = c2∇2u

6. ut = ∇ · (α(u)∇u) + f(x, y)

7. ut + f(u)x = 0

8. ut + u · ∇u = −∇p+ r∇2u, ∇ · u = 0 (u is a vector field)
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9. u′ = f(u, t)

10. ∇2u = λeu

Filename: nonlinear_vs_linear.pdf.

Problem 2: Experience the behavior of Newton’s method
The program Newton_demo.py3 illustrates graphically each step in Newton’s
method and is run like

Terminal> python Newton_demo.py f dfdx x0 xmin xmax

Use this program to investigate potential problems with Newton’s method when
solving e−0.5x2 cos(πx) = 0. Try a starting point x0 = 0.8 and x0 = 0.85 and
watch the different behavior. Just run

Terminal> python Newton_demo.py ’0.2 + exp(-0.5*x**2)*cos(pi*x)’ \
’-x*exp(-x**2)*cos(pi*x) - pi*exp(-x**2)*sin(pi*x)’ \
0.85 -3 3

and repeat with 0.85 replaced by 0.8.

Problem 3: Compute the Jacobian of a 2× 2 system
Write up the system (18)-(19) in the form F (u) = 0, F = (F0, F1), u = (u0, u1),
and compute the Jacobian Ji,j = ∂Fi/∂uj .

Problem 4: Solve nonlinear equations arising from a vibra-
tion ODE
Consider a nonlinear vibration problem

mu′′ + bu′|u′|+ s(u) = F (t), (91)

where m > 0 is a constant, b ≥ 0 is a constant, s(u) a possibly nonlinear function
of u, and F (t) is a prescribed function. Such models arise from Newton’s second
law of motion in mechanical vibration problems where s(u) is a spring or restoring
force, mu′′ is mass times acceleration, and bu′|u′| models water or air drag.

a) Rewrite the equation for u as a system of two first-order ODEs, and discretize
this system by a Crank-Nicolson (centered difference) method. With v = u′, we
get a nonlinear term vn+ 1

2 |vn+ 1
2 |. Use a geometric average for vn+ 1

2 .
3http://tinyurl.com/nm5587k/nonlin/Newton_demo.py
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b) Formulate a Picard iteration method to solve the system of nonlinear algebraic
equations.

c) Explain how to apply Newton’s method to solve the nonlinear equations at
each time level. Derive expressions for the Jacobian and the right-hand side in
each Newton iteration.
Filename: nonlin_vib.pdf.

Exercise 5: Find the truncation error of arithmetic mean
of products
In Section 3.4 we introduce alternative arithmetic means of a product. Say the
product is P (t)Q(t) evaluated at t = tn+ 1

2
. The exact value is

[PQ]n+ 1
2 = Pn+ 1

2Qn+ 1
2

There are two obvious candidates for evaluating [PQ]n+ 1
2 as a mean of values of

P and Q at tn and tn+1. Either we can take the arithmetic mean of each factor
P and Q,

[PQ]n+ 1
2 ≈ 1

2(Pn + Pn+1)1
2(Qn +Qn+1), (92)

or we can take the arithmetic mean of the product PQ:

[PQ]n+ 1
2 ≈ 1

2(PnQn + Pn+1Qn+1) . (93)

The arithmetic average of P (tn+ 1
2
) is O(∆t2):

P (tn+ 1
2
) = 1

2(Pn + Pn+1) +O(∆t2) .

A fundamental question is whether (92) and (93) have different orders of accuracy
in ∆t = tn+1 − tn. To investigate this question, expand quantities at tn+1 and
tn in Taylor series around tn+ 1

2
, and subtract the true value [PQ]n+ 1

2 from the
approximations (92) and (93) to see what the order of the error terms are.

Hint. You may explore sympy for carrying out the tedious calculations. A
general Taylor series expansion of P (t+ 1

2∆t) around t involving just a general
function P (t) can be created as follows:

>>> from sympy import *
>>> t, dt = symbols(’t dt’)
>>> P = symbols(’P’, cls=Function)
>>> P(t).series(t, 0, 4)
P(0) + t*Subs(Derivative(P(_x), _x), (_x,), (0,)) +
t**2*Subs(Derivative(P(_x), _x, _x), (_x,), (0,))/2 +
t**3*Subs(Derivative(P(_x), _x, _x, _x), (_x,), (0,))/6 + O(t**4)
>>> P_p = P(t).series(t, 0, 4).subs(t, dt/2)
>>> P_p
P(0) + dt*Subs(Derivative(P(_x), _x), (_x,), (0,))/2 +
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dt**2*Subs(Derivative(P(_x), _x, _x), (_x,), (0,))/8 +
dt**3*Subs(Derivative(P(_x), _x, _x, _x), (_x,), (0,))/48 + O(dt**4)

The error of the arithmetic mean, 1
2 (P (− 1

2∆t) + P (− 1
2∆t)) for t = 0 is then

>>> P_m = P(t).series(t, 0, 4).subs(t, -dt/2)
>>> mean = Rational(1,2)*(P_m + P_p)
>>> error = simplify(expand(mean) - P(0))
>>> error
dt**2*Subs(Derivative(P(_x), _x, _x), (_x,), (0,))/8 + O(dt**4)

Use these examples to investigate the error of (92) and (93) for n = 0. (Choosing
n = 0 is necessary for making the expressions too complicated for sympy, but
there is of course no lack of generality by using n = 0 rather than an arbitrary n
- the main point is the product and addition of Taylor series.)
Filename: product_arith_mean.py.

Problem 6: Newton’s method for linear problems
Suppose we have a linear system F (u) = Au− b = 0. Apply Newton’s method
to this system, and show that the method converges in one iteration. Filename:
Newton_linear.pdf.

Exercise 7: Discretize a 1D problem with a nonlinear coef-
ficient
We consider the problem

((1 + u2)u′)′ = 1, x ∈ (0, 1), u(0) = u(1) = 0 . (94)

a) Discretize (94) by a centered finite difference method on a uniform mesh.

b) Discretize (94) by a finite element method with P1 of equal length. Use the
Trapezoidal method to compute all integrals. Set up the resulting matrix system
in symbolic form such that the equations can be compared with those in a).
Filename: nonlin_1D_coeff_discretize.pdf.

Exercise 8: Linearize a 1D problem with a nonlinear coeffi-
cient
We have a two-point boundary value problem

((1 + u2)u′)′ = 1, x ∈ (0, 1), u(0) = u(1) = 0 . (95)

a) Construct a Picard iteration method for (95) without discretizing in space.

b) Apply Newton’s method to (95) without discretizing in space.

c) Discretize (95) by a centered finite difference scheme. Construct a Picard
method for the resulting system of nonlinear algebraic equations.
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d) Discretize (95) by a centered finite difference scheme. Define the system
of nonlinear algebraic equations, calculate the Jacobian, and set up Newton’s
method for solving the system.
Filename: nonlin_1D_coeff_linearize.pdf.

Problem 9: Finite differences for the 1D Bratu problem
We address the so-called Bratu problem

u′′ + λeu = 0, x ∈ (0, 1), u(0) = u(1) = 0, (96)

where λ is a given parameter and u is a function of x. This is a widely used model
problem for studying numerical methods for nonlinear differential equations.
The problem (96) has an exact solution

ue(x) = −2 ln
(cosh((x− 1

2 )θ/2)
cosh(θ/4)

)
,

where θ solves

θ =
√

2λ cosh(θ/4) .

There are two solutions of (96) for 0 < λ < λc and no solution for λ > λc. For
λ = λc there is one unique solution. The critical value λc solves

1 =
√

2λc
1
4 sinh(θ(λc)/4) .

A numerical value is λc = 3.513830719.

a) Discretize (96) by a centered finite difference method.

b) Set up the nonlinear equations Fi(u0, u1, . . . , uNx
) = 0 from a). Calculate

the associated Jacobian.

c) Implement a solver that can compute u(x) using Newton’s method. Plot the
error as a function of x in each iteration.

d) Investigate whether Newton’s method gives second-order convergence by
computing ||ue − u||/||ue − u−||2 in each iteration, where u is solution in the
current iteration and u− is the solution in the previous iteration.
Filenames: nonlin_1D_Bratu_fd.pdf, nonlin_1D_Bratu_fd.py.

Problem 10: Integrate functions of finite element expan-
sions
We shall investigate integrals on the form

∫ L

0
f(
∑

k

ukϕk(x))ϕi(x) dx, (97)
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where ϕi(x) are P1 finite element basis functions and uk are unknown coefficients,
more precisely the values of the unknown function u at nodes xk. We introduce a
node numbering that goes from left to right and also that all cells have the same
length h. Given i, the integral only gets contributions from [xi−1, xi+1]. On this
interval ϕk(x) = 0 for k < i− 1 and k > i+ 1, so only three basis functions will
contribute:

∑

k

ukϕk(x) = ui−1ϕi−1(x) + uiϕi(x) + ui+1ϕi+1(x) .

The integral (97) now takes the simplified form
∫ xi+1

xi−1

f(ui−1ϕi−1(x) + uiϕi(x) + ui+1ϕi+1(x))ϕi(x) dx .

Split this integral in two integrals over cell L (left), [xi−1, xi], and cell R (right),
[xi, xi+1]. Over cell L, u simplifies to ui−1ϕi−1 + uiϕi (since ϕi+1 = 0 on this
cell), and over cell R, u simplifies to uiϕi + ui+1ϕi+1. Make a sympy program
that can compute the integral and write it out as a difference equation. Give
the f(u) formula on the command line. Try out f(u) = u2, sin u, expu.

Hint. Introduce symbols u_i, u_im1, and u_ip1 for ui, ui−1, and ui+1, re-
spectively, and similar symbols for xi, xi−1, and xi+1. Find formulas for the
basis functions on each of the two cells, make expressions for u on the two cells,
integrate over each cell, expand the answer and simplify. You can ask sympy for
LATEX code and render it either by creating a LATEX document and compiling it
to a PDF document or by using http://latex.codecogs.com to display LATEX
formulas in a web page. Here are some appropriate Python statements for the
latter purpose:

from sympy import *
...
# expr_i holdes the integral as a sympy expression
latex_code = latex(expr_i, mode=’plain’)
# Replace u_im1 sympy symbol name by latex symbol u_{i-1}
latex_code = latex_code.replace(’im1’, ’{i-1}’)
# Replace u_ip1 sympy symbol name by latex symbol u_{i+1}
latex_code = latex_code.replace(’ip1’, ’{i+1}’)
# Escape (quote) latex_code so it can be sent as HTML text
import cgi
html_code = cgi.escape(latex_code)
# Make a file with HTML code for displaying the LaTeX formula
f = open(’tmp.html’, ’w’)
# Include an image that can be clicked on to yield a new
# page with an interactive editor and display area where the
# formula can be further edited
text = """
<a href="http://www.codecogs.com/eqnedit.php?latex=%(html_code)s"
target="_blank">

<img src="http://latex.codecogs.com/gif.latex?%(html_code)s"
title="%(latex_code)s"/>

</a>
""" % vars()
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f.write(text)
f.close()

The formula is displayed by loading tmp.html into a web browser.
Filename: fu_fem_int.py.

Problem 11: Finite elements for the 1D Bratu problem
We address the same 1D Bratu problem as described in Problem 9.

a) Discretize (11) by a finite element method using a uniform mesh with P1
elements. Use a group finite element method for the eu term.

b) Set up the nonlinear equations Fi(u0, u1, . . . , uNx) = 0 from a). Calculate
the associated Jacobian.
Filename: nonlin_1D_Bratu_fe.pdf.

Exercise 12: Discretize a nonlinear 1D heat conduction
PDE by finite differences
We address the 1D heat conduction PDE

%c(T )Tt = (k(T )Tx)x,

for x ∈ [0, L], where % is the density of the solid material, c(T ) is the heat
capacity, T is the temperature, and k(T ) is the heat conduction coefficient.
T (x, 0) = I(x), and ends are subject to a cooling law:

k(T )Tx|x=0 = h(T )(T − Ts), −k(T )Tx|x=L = h(T )(T − Ts),
where h(T ) is a heat transfer coefficient and Ts is the given surrounding temper-
ature.

a) Discretize this PDE in time using either a Backward Euler or Crank-Nicolson
scheme.

b) Formulate a Picard iteration method for the time-discrete problem (i.e., an
iteration method before discretizing in space).

c) Formulate a Newton method for the time-discrete problem in b).

d) Discretize the PDE by a finite difference method in space. Derive the matrix
and right-hand side of a Picard iteration method applied to the space-time
discretized PDE.

e) Derive the matrix and right-hand side of a Newton method applied to the
discretized PDE in d).
Filename: nonlin_1D_heat_FD.pdf.
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Exercise 13: Use different symbols for different approxima-
tions of the solution
The symbol u has several meanings, depending on the context, as briefly men-
tioned in Section 5.1. Go through the derivation of the Picard iteration method
in that section and use different symbols for all the different approximations of
u:

• ue(x, t) for the exact solution of the PDE problem

• ue(x)n for the exact solution after time discretization

• un(x) for the spatially discrete solution
∑
j cjψj

• un,k for approximation in Picard/Newton iteration no k to un(x)

Filename: nonlin_heat_FE_usymbols.pdf.

Exercise 14: Derive Picard and Newton systems from a
variational form
We study the multi-dimensional heat conduction PDE

%c(T )Tt = ∇ · (k(T )∇T )

in a spatial domain Ω, with a nonlinear Robin boundary condition

−k(T )∂T
∂n

= h(T )(T − Ts(t)),

at the boundary ∂Ω. The primary unknown is the temperature T , % is the density
of the solid material, c(T ) is the heat capacity, k(T ) is the heat conduction, h(T )
is a heat transfer coefficient, and Ts(T ) is a possibly time-dependent temperature
of the surroundings.

a) Use a Backward Euler or Crank-Nicolson time discretization and derive the
variational form for the spatial problem to be solved at each time level.

b) Define a Picard iteration method from the variational form at a time level.

c) Derive expressions for the matrix and the right-hand side of the equation
system that arises from applying Newton’s method to the variational form at a
time level.

d) Apply the Backward Euler or Crank-Nicolson scheme in time first. Derive
a Newton method at the PDE level. Make a variational form of the resulting
PDE at a time level.
Filename: nonlin_heat_FE.pdf.
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Exercise 15: Derive algebraic equations for nonlinear 1D
heat conduction
We consider the same problem as in Exercise 14, but restricted to one space di-
mension: Ω = [0, L]. Simplify the boundary condition to Tx = 0 (i.e., h(T ) = 0).
Use a uniform finite element mesh of P1 elements, the group finite element
method, and the Trapezoidal rule for integration at the nodes to derive sym-
bolic expressions for the algebraic equations arising from this diffusion problem.
Filename: nonlin_1D_heat_FE.pdf.

Exercise 16: Differentiate a highly nonlinear term
The operator ∇ · (α(u)∇u) with α(u) = |∇u|q appears in several physical
problems, especially flow of Non-Newtonian fluids. The expression |∇u| is
defined as the Eucledian norm of a vector: |∇u|2 = ∇u · ∇u. In a Newton
method one has to carry out the differentiation ∂α(u)/∂cj , for u =

∑
k ckψk.

Show that

∂

∂uj
|∇u|q = q|∇u|q−2∇u · ∇ψj .

Filename: nonlin_differentiate.pdf.

Exercise 17: Crank-Nicolson for a nonlinear 3D diffusion
equation
Redo Section 5.2 when a Crank-Nicolson scheme is used to discretize the equations
in time and the problem is formulated for three spatial dimensions.

Hint. Express the Jacobian as Ji,j,k,r,s,t = ∂Fi,j,k/∂ur,s,t and observe, as in
the 2D case, that Ji,j,k,r,s,t is very sparse: Ji,j,k,r,s,t 6= 0 only for r = i ± i,
s = j ± 1, and t = k ± 1 as well as r = i, s = j, and t = k.
Filename: nonlin_heat_FD_CN_2D.pdf.

Exercise 18: Find the sparsity of the Jacobian
Consider a typical nonlinear Laplace term like ∇·α(u)∇u discretized by centered
finite differences. Explain why the Jacobian corresponding to this term has the
same sparsity pattern as the matrix associated with the corresponding linear
term α∇2u.

Hint. Set up the unknowns that enter the difference equation at a point (i, j)
in 2D or (i, j, k) in 3D, and identify the nonzero entries of the Jacobian that can
arise from such a type of difference equation.
Filename: nonlin_sparsity_Jacobian.pdf.
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Problem 19: Investigate a 1D problem with a continuation
method
Flow of a pseudo-plastic power-law fluid between two flat plates can be modeled
by

d

dx

(
µ0

∣∣∣∣
du

dx

∣∣∣∣
n−1

du

dx

)
= −β, u′(0) = 0, u(H) = 0,

where β > 0 and µ0 > 0 are constants. A target value of n may be n = 0.2.

a) Formulate a Picard iteration method directly for the differential equation
problem.

b) Perform a finite difference discretization of the problem in each Picard
iteration. Implement a solver that can compute u on a mesh. Verify that the
solver gives an exact solution for n = 1 on a uniform mesh regardless of the cell
size.

c) Given a sequence of decreasing n values, solve the problem for each n
using the solution for the previous n as initial guess for the Picard iteration.
This is called a continuation method. Experiment with n = (1, 0.6, 0.2) and
n = (1, 0.9, 0.8, . . . , 0.2) and make a table of the number of Picard iterations
versus n.

d) Derive a Newton method at the differential equation level and discretize the
resulting linear equations in each Newton iteration with the finite difference
method.

e) Investigate if Newton’s method has better convergence properties than Picard
iteration, both in combination with a continuation method.
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