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6 Exercises

In a linear differential equation all terms involving the unknown fi
are linear in the unknown functions or their derivatives. Linear here me:
the unknown function or a derivative of it is multiplied by a number or :
function. All other differential equations are non-linear.

The easiest way to see if an equation is nonlinear is to spot nonlines
where the unknown functions or their derivatives are multiplied by eac
For example, in

' (t) = —a(t)u(t) + b(t),

the terms involving the unknown function u are linear: u’ contains the de
of the unknown function multiplied by unity, and au contains the u
function multiplied by a known function. However,

W/ (1) = u(t) (1~ u(t)),

is nonlinear because of the term —u? where the unknown function is my
by itself. Also

ou ou

E + U% = 07
is nonlinear because of the term uu, where the unknown function ap;j
a product with itself or one if its derivatives. Another example of a n
equation is

v’ + sin(u) = 0,

because sin(u) contains products of u,



sin(u) =u—-u’ +...

Mathematical proof.

To really prove mathematically that some differential equation in an un-
known u is linear, show for each term T'(u) that with v = au; + bugy for
constants a and b,

T(auy + bug) = aT'(uy) + bT (us) .

For example, the term T'(u) = (sin®¢)u/(t) is linear because

T(auy+buy) = (sin? t)(auy (t)+bug(t)) = a(sin® t)uy (t)+b(sin® t)uy(t) = aT'(4

However, T'(u) = sinu is nonlinear because

T(auy + bug) = sin(auy + bug) # asinuy + bsinus .

A series of forthcoming examples will explain how to tackle nonlinear differ-
atial equations with various techniques.

Introduction of basic concepts

'onsider the (scaled) logistic equation

u'(t) = u(t)(1 - u(t)) . (1)

his is a nonlinear differential equation which will be solved by different strategies
1 the following. A time discretization of (1) will either lead to a linear algebraic
juation or a nonlinear algebraic equation at each time level. In the former
ase, the time discretization method transforms the nonlinear ODE into linear
1ibproblems at each time level, and the solution is straightforward to find
nce linear algebraic equations are easy to solve by hand. However, when the
me discretization leads to nonlinear algebraic equations, we cannot (except in
ary rare cases) solve these without turning to approximate, iterative solution
lethods.
The following subsections first introduce various methods using (1):

e explicit time discretization methods (with no need to solve nonlinear
algebraic equations)

e implicit Backward Euler discretization, leading to nonlinear algebraic
equations solved by

an exact analytical technique

Picard iteration based on manual linearization

— a single Picard step

— Newton’s method

e Implicit Crank-Nicolson discretization and linearization via a ge
mean formula

Thereafter, we compare the performance of the various approaches. Des
simplicity of (1), the conclusions reveal typical features of the various 1
in much more complicated nonlinear PDE problems.

1.1 Linearization by explicit time discretization

A Forward Euler method to solve (1) results in

= un(l - un)’

At
which is a linear algebraic equation for the unknown value u”**. The non
in the original equation poses in this case no difficulty in the discrete a
equation. Any other explicit scheme in time will also give only linear a

equations to solve. For example, a typical 2nd-order Runge-Kutta met
(1) reads,

u* =u" + Atu” (1 —u™),
1
u"t =" 4 Ati (W"(1—u™)+u*(1—u"))) .

The first step is linear in the unknown «*. Then u* is known in the ne
which is linear in the unknown u™*?! .

1.2 Exact solution of nonlinear equations
Switching to a Backward Euler scheme for (1),

u® — un—l

At

results in a nonlinear algebraic equation for the unknown value u™. The €
is of quadratic type:

= un(l - un)’

At(u™)? 4+ (1 — At)u" —u""t =0.

We shall now introduce a shorter and often cleaner notation for ni
algebraic equations at a given time level. The notation is inspired by the
notation, i.e., variable names, used in a program, especially in more a«



artial differential equation problems. The unknown in the algebraic equation is
enoted by u, while ©") is the value of the unknown at the previous time level
n general u(¥) is the value of the unknown ¢ levels back in time). The notation
ill be frequently used in later sections. What is meant by u (the exact solution
f the PDE problem, the numerical approximation to the exact solution, or the
nknown solution at a certain time level) should be evident from the context.

The quadratic equation for the unknown «™ in (2) can with the new notation
e written

F(u) = Atu? + (1 — At)yu —uM = 0. (3)

he solution is readily found to be

1
L . AN — (1
u mt( L4+ At£ /(1 - A2 — 4Am > (4)

Now we encounter a fundamental challenge with nonlinear algebraic equations:
1e equation may have more than one solution. How do we pick the right solution?
1 the present simple case we can expand the square root in a series in At and
‘uncate after the linear term since the Backward Euler scheme will introduce
n error proportional to At anyway. Using sympy we find the following Taylor
»ries expansions of the roots:

>>> import sympy as sp

>>> dt, u_1l, u = sp.symbols(’dt u_1 u’)

»>> rl, r2 = sp.solve(dt*u**2 + (1-dt)*u - u_1, u) # find roots
»>> ril

{dt - sqrt(dt**2 + 4xdt*u_1 - 2xdt + 1) - 1)/(2xdt)
»>> r2

{dt + sqrt(dt**2 + 4xdt*u_1 - 2xdt + 1) - 1)/(2xdt)
»>> print ril.series(dt, 0, 2)

-1/dt + 1 - u_1 + dtx(u_1**2 - u_1) + 0(dt**2)

»>> print r2.series(dt, 0, 2)

1.1 + dtx(—u_1**2 + u_1) + 0(dt*x2)

/e see that the r1 root, corresponding to a minus sign in front of the square
ot in (4), behaves as 1/At and will therefore blow up as At — 0! Therefore,
aly the r2 root is of relevance in this case.

.3 Linearization

/hen the time integration of an ODE results in a nonlinear algebraic equation,
e must normally find its solution by defining a sequence of linear equations
nd hope that the solutions of these linear equations converge to the desired
>lution of the nonlinear algebraic equation. Usually this means solving the linear
juation repeatedly in an iterative fashion. Alternatively, the nonlinear equation
an sometimes be approximated by one linear equation, and consequently there
no need for iteration.

Constructing a linear equation from a nonlinear one requires linearization
f each nonlinear term. This can be done manually as in Picard iteration, or

fully algorithmically as in Newton’s method. Examples will best illustr
to linearize nonlinear problems.

1.4 Picard iteration

Let us write (3) in a more compact form

F(u) = au® + bu+c =0,

with ¢ = At, b=1— At, and ¢ = —u?). Let u~ be an available approx
of the unknown u. Then we can linearize the term u? simply by writi
The resulting equation, F'(u) = 0, is now linear and hence easy to solve

Flu) =~ F(u) =au"u+bu+c=0.

Since the equation F' = 0 is only approximate, the solution u does not e
exact solution ue of the exact equation F(ue) = 0, but we can hope t
closer to ue than u™ is, and hence it makes sense to repeat the proced
set u~ = u and solve F'(u) = 0 again.

The idea of turning a nonlinear equation into a linear one by u
approximation u~ of u in nonlinear terms is a widely used approach tl
under many names: fixed-point iteration, the method of successive subst
nonlinear Richardson iteration, and Picard iteration. We will stick to tl
name.

Picard iteration for solving the nonlinear equation arising from the B:
Euler discretization of the logistic equation can be written as

c —
U= Ep=—— uT 4~ u.
The iteration is started with the value of the unknown at the previous tii
u™ =u),

Some prefer an explicit iteration counter as superscript in the mathe
notation. Let u* be the computed approximation to the solution in ites
In iteration k 4+ 1 we want to solve

aFuF Tt bkt L e=0 = WfH = —L, k=0,1,..
auk +b
Since we need to perform the iteration at every time level, the time level
is often also included:

B T A T u” k=0
au™k +b’
with the start value «™° = u®~! and the final converged value u"” =
sufficiently large k.
However, we will normally apply a mathematical notation in our final {
that is as close as possible to what we aim to write in a computer code a
it becomes natural to use v and 1~ instead of u**! and u* or w™**1 a



topping criteria. The iteration method can typically be terminated when
1e change in the solution is smaller than a tolerance €,:

lu —u™| < €y,
t when the residual in the equation is sufficiently small (e,),

|F(u)| = |au® + bu+c| < e, .

. single Picard iteration. Instead of iterating until a stopping criterion is
ifilled, one may iterate a specific number of times. Just one Picard iteration is
opular as this corresponds to the intuitive idea of approximating a nonlinear
rrm like (u™)? by u”~!u™. This follows from the linearization u~u" and the
iitial choice of u~ = u”~! at time level t,,. In other words, a single Picard
eration corresponds to using the solution at the previous time level to linearize
onlinear terms. The resulting discretization becomes

u® — un—l

At
hich is a linear algebraic equation in the unknown ", and therefore we can
asily solve for u™, and there is no need for any alternative notation.

We shall later refer to the strategy of taking one Picard step, or equivalently,
nearizing terms with use of the solution at the previous time step, as the Picard1
iethod. It is a widely used approach in science and technology, but with some
mitations if At is not sufficiently small (as will be illustrated later).

=u"(1—u""t), (5)

Notice.

Equation (5) does not correspond to a “pure” finite difference method where
the equation is sampled at a point and derivatives replaced by differences
(because the u"~! term on the right-hand side must then be u™). The best
interpretation of the scheme (5) is a Backward Euler difference combined
with a single (perhaps insufficient) Picard iteration at each time level, with
the value at the previous time level as start for the Picard iteration.

.5 Linearization by a geometric mean

/e consider now a Crank-Nicolson discretization of (1). This means that the
me derivative is approximated by a centered difference,

[Dyu = u(l — u)]""3,

ritten out as

=u"tE - (e (6)

The term u™*2 is normally approximated by an arithmetic mean,

1
utE §(u” + un+1)’

such that the scheme involves the unknown function only at the time leve
we actually compute it. The same arithmetic mean applied to the n
term gives

1 1
(un+2)2 ~ 7(un + un—',—l)Q7
4
which is nonlinear in the unknown u"*!. However, using a geometric n.
1yo . . . . .
(u"*2)? is a way of linearizing the nonlinear term in (6):
(un+%)2 ~ uy L
. . . . 1 .
Using an arithmetic mean on the linear 4" 2 term in (6) and a geometr
for the second term, results in a linearized equation for the unknown w
n+1l un
At
which can readily be solved:

1
u _ 5(un +un+1) +unun+17

1+ At
=
1+ Atur — $At

This scheme can be coded directly, and since there is no nonlinear a
equation to iterate over, we skip the simplified notation with u for '
u® for u”. The technique with using a geometric average is an exa
transforming a nonlinear algebraic equation to a linear one, without a
for iterations.

The geometric mean approximation is often very effective for lin
quadratic nonlinearities. Both the arithmetic and geometric mean apy
tions have truncation errors of order At? and are therefore compatible 1
truncation error O(At) of the centered difference approximation for =
Crank-Nicolson method.

Applying the operator notation for the means and finite differen
linearized Crank-Nicolson scheme for the logistic equation can be co
expressed as

n+1

n

[Dyu =3t +u2 |+3 .

r Remark.

If we use an arithmetic instead of a geometric mean for the nonl
term in (6), we end up with a nonlinear term (u™*1)2. This term c:
linearized as v~ u"*! in a Picard iteration approach and in particul



uu™t! in a Picardl iteration approach. The latter gives a scheme almost

identical to the one arising from a geometric mean (the difference in u™*!
being 2 Atu" (u" ! — u") & LAL2u/y, ie., a difference of O(At?)).

.6 Newton’s method

he Backward Euler scheme (2) for the logistic equation leads to a nonlinear
lgebraic equation (3). Now we write any nonlinear algebraic equation in the
sneral and compact form

F(u)=0.

‘ewton’s method linearizes this equation by approximating F(u) by its Taylor
ries expansion around a computed value u~ and keeping only the linear part:

F(u) = F(u™) + F/(u”)(u—u") +
~Fu )+ F(u ) u—u")=F(u).
he linear equation F'(u) = 0 has the solution
Fu”)
Fr(u~)”
xpressed with an iteration index in the unknown, Newton’s method takes on
1e more familiar mathematical form

k+1 _ k _ F(u")
F'(uk)’

It can be shown that the error in iteration k£ + 1 of Newton’s method is the

u

E=0,1,...

juare of the error in iteration k, a result referred to as quadratic convergence.

his means that for small errors the method converges very fast, and in particular
wch faster than Picard iteration and other iteration methods. (The proof of
1is result is found in most textbooks on numerical analysis.) However, the

uadratic convergence appears only if u* is sufficiently close to the solution.

urther away from the solution the method can easily converge very slowly or
iverge. The reader is encouraged to do Exercise 2 to get a better understanding
r the behavior of the method.

Application of Newton’s method to the logistic equation discretized by the
ackward Euler method is straightforward as we have

F(u)=au® +bu+c, a=At b=1—-At, c= —y,
nd then

F'(u) = 2au +b.

The iteration method becomes

_ a4+ buT +c _
u=u -+ , U .
2au~ +b

At each time level, we start the iteration by setting u~ = u("). Stopping
as listed for the Picard iteration can be used also for Newton’s method

An alternative mathematical form, where we write out a, b, and ¢, a1
time level counter n and an iteration counter k, takes the form

un,k+1 — un,k+ At(un’k)2 + (1 — At)unk — un—l n,0 n—1
2Atu™k +1 — At ’

A program implementation is much closer to (7) than to (8), but the
better aligned with the established mathematical notation used in the li

1.7 Relaxation

One iteration in Newton’s method or Picard iteration consists of solving
problem F (u) = 0. Sometimes convergence problems arise because -
solution u of F' (u) = 0 is “too far away” from the previously computed
u~. A remedy is to introduce a relaxation, meaning that we first solve F
for a suggested value u* and then we take u as a weighted mean of what
u~, and what our linearized equation F=0 suggests, u*:

u=wu" + (1 —w)u" .

The parameter w is known as a relazation parameter, and a choice w <
prevent divergent iterations.

Relaxation in Newton’s method can be directly incorporated in tl
iteration formula:

1.8 Implementation and experiments

The program logistic.py' contains implementations of all the metl
scribed above. Below is an extract of the file showing how the Picard and
methods are implemented for a Backward Euler discretization of the
equation.

lhttp://tinyurl.com/nm5587k/nonlin/logistic.py
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lef BE_logistic(u0, dt, Nt, choice=’Picard’,
eps_r=1E-3, omega=1, max_iter=1000):
if choice == ’Picardl’:
choice = ’Picard’
max_iter = 1

u = np.zeros(Nt+1)
iterations = []
uf0] = uo
for n in range(1l, Nt+1):
a = dt
b 1 - dt
¢ = -u[n-1]

if choice == ’Picard’:

def F(u):
return axu*x*2 + b*u + c

u_ = ul[n-1]

k=0

while abs(F(u_)) > eps_r and k < max_iter:
u_ = omegax(-c/(axu_ + b)) + (1-omega)*u_
k += 1

uln] = u_

iterations.append (k)

elif choice == ’Newton’:
def F(u):
return akxux*2 + b*u + c
def dF(u):
return 2*a*u + b
u_ = ul[n-1]
k=0

while abs(F(u_)) > eps_r and k < max_iter:
u_=u_ - F(u_)/dF(u_)
k += 1
uln] = u_
iterations.append (k)
return u, iterations

The Crank-Nicolson method utilizing a linearization based on the geometric
lean gives a simpler algorithm:

lef CN_logistic(u0, dt, Nt):
u = np.zeros(Nt+1)
ul0] = u0
for n in range(0, Nt):
uln+1] = (1 + 0.5%dt)/(1 + dt*ul[n] - 0.5*dt)*ul[n]
return u

We may run experiments with the model problem (1) and the different
irategies for dealing with nonlinearities as described above. For a quite coarse
me resolution, At = 0.9, use of a tolerance ¢, = 0.1 in the stopping criterion
itroduces an iteration error, especially in the Picard iterations, that is visibly

11

much larger than the time discretization error due to a large At.
illustrated by comparing the upper two plots in Figure 1. The one to t
has a stricter tolerance ¢ = 103, which leads to all the curves correspol
Picard and Newton iteration to be on top of each other (and no change:
visually observed by reducing €, further). The reason why Newton’s metl
much better than Picard iteration in the upper left plot is that Newton’s
with one step comes far below the €, tolerance, while the Picard iteratic
on average 7 iterations to bring the residual down to ¢, = 107!, whi
insufficient accuracy in the solution of the nonlinear equation. It is obvi
the Picard1 method gives significant errors in addition to the time discre
unless the time step is as small as in the lower right plot.

The BFE ezact curve corresponds to using the exact solution of the q
equation at each time level, so this curve is only affected by the Backwa:
time discretization. The CN gm curve corresponds to the theoretical
accurate Crank-Nicolson discretization, combined with a geometric n
linearization. This curve appear as more accurate, especially if we take
in the lower right with a small At and an appropriately small ¢, valu
exact curve.

When it comes to the need for iterations, Figure 2 displays the nu
iterations required at each time level for Newton’s method and Picard i
The smaller At is, the better starting value we have for the iteration,
faster the convergence is. With At = 0.9 Picard iteration requires on
32 iterations per time step, but this number is dramatically reduced :
reduced.

However, introducing relaxation and a parameter w = 0.8 imm
reduces the average of 32 to 7, indicating that for the large At = 0.9.
iteration takes too long steps. An approximately optimal value for «
case is 0.5, which results in an average of only 2 iterations! Even more ¢
impact of w appears when At = 1: Picard iteration does not convergence
iterations, but w = 0.5 again brings the average number of iterations do

Remark. The simple Crank-Nicolson method with a geometric mear
quadratic nonlinearity gives visually more accurate solutions than the B:
Euler discretization. Even with a tolerance of ¢, = 1073, all the metl
treating the nonlinearities in the Backward Euler discretization gives gra:
cannot be distinguished. So for accuracy in this problem, the time discre
is much more crucial than €. Ideally, one should estimate the error in t
discretization, as the solution progresses, and set €, accordingly.

1.9 Generalization to a general nonlinear ODE

Let us see how the various methods in the previous sections can be ap
the more generic model

v = f(u,t),

12



dt=0.9, eps=5E-02 dt=0.9, eps=1E-03
* = ———

1.9, ‘ 0.9) ‘
1.8 0.8}
17 0.7,
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=—a BE exact =—a BE exact
1.3 v—v BE Picard 0.3 v—v BE Picard
a4 BE Picardl a4 BE Picardl
1.2] +— BE Newton 0.2 +—+ BE Newton
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0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 <
t t
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. y
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1.6) 0.6}
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BE exact BE exact
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12 0.2 BE Newton
CNgm
" 1 2 3 4 5 6 7 8 o1 1 2 3 4 B 6 7 8

igure 1: The impact of solution strategies and for four different time step
mngths on the solution.

here f is a nonlinear function of u.

xplicit time discretization. Explicit ODE methods like the Forward Euler
heme, Runge-Kutta methods, Adams-Bashforth methods all evaluate f at
me levels where u is already computed, so nonlinearities in f do not pose any
ifficulties.

vackward Euler discretization. Approximating v’ by a backward difference
:ads to a Backward Euler scheme, which can be written as

F(u™) =u" — At f(u",t,) —u""! =0,

¢ alternatively

F(u) =u— At f(u,t,) —u® =0.

simple Picard iteration, not knowing anything about the nonlinear structure
f f, must approximate f(u,t,) by f(u~,t,):

Fu)=u— At f(u™,t,) —u®.

13
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Figure 2: Comparison of the number of iterations at various time le
Picard and Newton iteration.

The iteration starts with v~ = u(*) and proceeds with repeating

w = At flu ) +uY, u=wut + (1 —wuT, T — u,

until a stopping criterion is fulfilled.

Explicit vs implicit treatment of nonlinear terms.

Evaluating f for a known u~ is referred to as explicit treatment of f,
if f(u,t) has some structure, say f(u,t) = u?, parts of f can involv
known u, as in the manual linearization like (u~)?u, and then the treat
of f is “more implicit” and “less explicit”. This terminology is inspir
time discretization of u’ = f(u,t), where evaluating f for known u v
gives explicit schemes, while treating f or parts of f implicitly, ma
contribute to the unknown terms in the equation at the new time le

Explicit treatment of f usually means stricter conditions on A
stability of time discretization schemes. The same goes for itera

14



techniques for nonlinear algebraic equations: the more f can involve
unknowns to be solved for, the faster the convergence may be.

We may say that f(u,t) = u® is treated explicitly if we evaluate f as
(u™)3, partially implicit if we linearize as (u~)?u and fully implicit if we
represent f by u. (Of course, the fully implicit representation will require
further linearization, but with f(u,t) = u? a fully implicit treatment is
possible if the resulting quadratic equation is solved with a formula.)

For the ODE v/ = —u? with f(u,t) = —u® and coarse time resolution
At = 0.4, Picard iteration with (u~)2u requires 8 iterations with e, = 1073
for the first time step, while (u™)? leads to 22 iterations. After about 10
time steps both approaches are down to about 2 iterations per time step,
but this example shows a potential of treating f more implicitly.

A trick to treat f implicitly in Picard iteration is to evaluate it as
flu™,t)u/u~. For a polynomial f, f(u,t) = u™, this corresponds to
(u™)™ lu. Sometimes this more implicit treatment has no effect, as with
f(u,t) = exp(—u) and f(u,t) = In(1 + u), but with f(u,t) = sin(2(u+ 1)),
the f(u™,t)u/u~ trick leads to 7, 9, and 11 iterations during the first three
steps, while f(u™,¢) demands 17, 21, and 20 iterations. (Experiments can
be done with the code ODE_Picard_tricks.py“.)

%http://tinyurl.com/nm5587k/nonlin/0DE_Picard_tricks.py

Newton’s method applied to ' = f(u,t) requires the computation of the
erivative

0
Fl(u)=1- Ata—;}:(u,tn) .
tarting with the solution at the previous time level, v~ = u® | we can just use
1e standard formula
F(u™ W 4 Atf(u,t,
u=u" —w (u):uf—wu +6f(u, ) (11)
F'(u™) 1— Aty f(u=,tn)

‘rank-Nicolson discretization. The standard Crank-Nicolson scheme with
rithmetic mean approximation of f takes the form

un+1 _ u’n 1
At §(f(“n+1,tn+1) + f(u",tn)) .

/e can write the scheme as a nonlinear algebraic equation

1 1
Flu) =u—u® — At f(u tnir) - At§f(u(1), tn) =0. (12)
Picard iteration scheme must in general employ the linearization

1 1
Fu)=u—u® - Atif(u_7tn+1) - Atif(u(1)7tn)7

15

while Newton’s method can apply the general formula (11) with F'(u)
(12) and
of

1
F/(’LL) =1- EAt%(U,tn_;rl) .

1.10 Systems of ODEs
We may write a system of ODEs

%Uo(t) = fo(UO(t),ul(t)7 e ,uN(t),t),
%ul(t) = fi(uo(t),u1(t),...,un(t),t),

d

aum(t) = fm(uo(t)vul(t)a .- '7UN(t)7t)7

as

u' = f(uvt)a U(O) = Uy,

if we interpret u as a vector u = (ug(t),u1(t),...,un(t)) and f as ¢
function with components (fo(u,t), fi(u,t),..., fn(u,t)).

Solution methods for scalar ODEs normally generalize in a straight
way to systems of ODEs simply by using vector arithmetics instead ¢
arithmetics, which corresponds to applying the scalar scheme to each cor
of the system. For example, here is a backward difference scheme ap
each component,

ul — unfl
R = folw )
ul — un—l
% = fl(u",tn),
u? —ul !
NAitN = fn(u" ty),

which can be written more compactly in vector form as

ul — unfl

At
This is a system of algebraic equations,

= f(unatn) .

u" — At f(u",t,) —u""t =0,
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r written out

ug — At fo(u", t,) — ug_l =0,

uy — At fy(u” ty) — uﬁ,_l =0.

As specific example, a 2 x 2 system for the oscillations of a pendulum subject
» gravity and air drag reads

W= —sinf — fw|w|, (14)
0 =uw, (15)
here §8 is a dimensionless parameter (this is the scaled, dimensionless version
f the original, physical model). The unknown components of the system are

1e angle 0(t) and the angular velocity w(t). We introduce vy = w and u; = 6,
hich leads to

uy = fo(u,t) = —sinuy — Buglugl,

uy = fi(u,t) = up.

Crank-Nicolson scheme reads

n+1 n
ug T — 1 1 1
0 0 . on+d n+d, ntl
= —sinu — Pu U
Al 1 Bug * g ?|
(1 1 1 1 1
~ s (G ) ) < B3 gl ()
n+1 n
U T ntd 1o oa
= ~ —(u, +ugp) . 17
Al o " ) (17)
his is a coupled system of two nonlinear algebraic equations in two unknowns
ot and w Tt
+

Using the notation up and u; for the unknowns uf™* and «}™ in this system,

riting ugl) and ugl) for the previous values ug and uf, multiplying by At and

loving the terms to the left-hand sides, gives

1 1
Uug — ugl) —+ At sin <§(u1 + u?))) + ZAtﬂ(’U/O =+ uél))|u0 + uél)| = O, (18)
1
up — ugw — QAt(uo + ugl)) =0. (19)

bviously, we have a need for solving systems of nonlinear algebraic equations,
hich is the topic of the next section.
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2 Systems of nonlinear algebraic equations

Implicit time discretization methods for a system of ODEs, or a PDE,
systems of nonlinear algebraic equations, written compactly as

F(u) =0,

where v is a vector of unknowns u = (ug,...,un), and F' is a vector f
F = (Fy,...,Fy). The system at the end of Section 1.10 fits this notat;
N =2, Fy(u) given by the left-hand side of (18), while Fj(u) is the le
side of (19).

Sometimes the equation system has a special structure because of th
lying problem, e.g.,

A(u)u = b(u),

with A(u) as an (N +1) X (N 4 1) matrix function of u and b as a vector f
b= (bo,...,bn).

We shall next explain how Picard iteration and Newton’s method
applied to systems like F'(u) = 0 and A(u)u = b(u). The exposition has
on ideas and practical computations. More theoretical considerations, i
quite general results on convergence properties of these methods, can k
in Kelley [1].

2.1 Picard iteration

We cannot apply Picard iteration to nonlinear equations unless there
special structure. For the commonly arising case A(u)u = b(u) we can ]
the product A(u)u to A(u™)u and b(u) as b(u~). That is, we use tl
previously computed approximation in A and b to arrive at a linear sy.
u:

A )u=0b(u").
A relaxed iteration takes the form
Al )u* =bu™), u=wu"+(1—-w)u" .

In other words, we solve a system of nonlinear algebraic equations as a s
of linear systems.

Algorithm for relaxed Picard iteration.

Given A(u)u = b(u) and an initial guess u ™, iterate until convergenc
1. solve A(u~)u* = b(u~) with respect to u*

2. u=wu' + (1 —w)u~
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3. uT +— u

“Until convergence” means that the iteration is stopped when the change in
1e unknown, ||u — u~||, or the residual ||A(u)u — bl|, is sufficiently small, see
ection 2.3 for more details.

.2 Newton’s method

he natural starting point for Newton’s method is the general nonlinear vector
juation F'(u) = 0. As for a scalar equation, the idea is to approximate F around
known value v~ by a linear function F', calculated from the first two terms of
Taylor expansion of F. In the multi-variate case these two terms become

Fu™)+J(u™) (u—u"),
here J is the Jacobian of F, defined by

OF,
8u]- '

0, the original nonlinear system is approximated by

Jij =

Fluy=Fu )+ Ju ) - (u—u") =0,

hich is linear in w and can be solved in a two-step procedure: first solve
ou = —F(u™) with respect to the vector du and then update u = v~ + du. A
slaxation parameter can easily be incorporated:

u=w(u" +du)+(1-wu =u" +wiu.

Algorithm for Newton’s method.

Given F(u) = 0 and an initial guess u™, iterate until convergence:
1. solve Jou = —F (u~) with respect to du
2. u=u" +wiu

3. u” — u

For the special system with structure A(u)u = b(u),

F; = ZAi,k(U)Uk — bi(u),
k
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one gets

0b;

i, .
2 auj

0A;
Ji,j = Z 781@ ug + A
k

We realize that the Jacobian needed in Newton’s method consists of 4
in the Picard iteration plus two additional terms arising from the differe
Using the notation A’(u) for A4/0u (a quantity with three indices: A,
and V' (u) for 9b/Ou (a quantity with two indices: 9b;/0u;), we can w
linear system to be solved as

(A+ Au+b)ou=—Au+b,

or

(Au)+ A (uw )u” + b (u)du=—A(u )u” +b(u”).

Rearranging the terms demonstrates the difference from the system s
each Picard iteration:

A(u™)(u™ +u) = bu™) +y(A' (u™)u” +b'(u”))du=0.

Picard system

Here we have inserted a parameter v such that v = 0 gives the Picard
and v = 1 gives the Newton system. Such a parameter can be handy in
to easily switch between the methods.

Combined algorithm for Picard and Newton iteration.

Given A(u), b(u), and an initial guess u~, iterate until convergence:

1. solve (A+~(A (v )u™+b' (u7)))ou = —A(u™ )u™ +b(u™) with re
to du

2. u=u" +wou
3. uT +— u

v =1 gives a Newton method while v = 0 corresponds to Picard iterat

2.3 Stopping criteria

Let || - || be the standard Eucledian vector norm. Four termination crit
much in use:

e Absolute change in solution: ||u —u~|| < €,
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e Relative change in solution: ||u — u™|| < €u||ug||, where ug denotes the
start value of u™ in the iteration

e Absolute residual: ||F(u)|| < e,

o Relative residual: ||F(u)|| < €,||F(uo)||

o prevent divergent iterations to run forever, one terminates the iterations
hen the current number of iterations k exceeds a maximum value kp.x.

The relative criteria are most used since they are not sensitive to the char-
cteristic size of u. Nevertheless, the relative criteria can be misleading when
1€ initial start value for the iteration is very close to the solution, since an
nnecessary reduction in the error measure is enforced. In such cases the absolute
-iteria work better. It is common to combine the absolute and relative measures
f the size of the residual, as in

IF(@)l| < err|[F(uo)l| + €ra, (21)

here ¢, is the tolerance in the relative criterion and €, is the tolerance in the
bsolute criterion. With a very good initial guess for the iteration (typically the
slution of a differential equation at the previous time level), the term ||F'(ug)|]
small and €., is the dominating tolerance. Otherwise, €,.||F(ug)|| and the
slative criterion dominates.
With the change in solution as criterion we can formulate a combined absolute
nd relative measure of the change in the solution:

|[0u]] < eur||uol| + €uas (22)

The ultimate termination criterion, combining the residual and the change
1 solution with a test on the maximum number of iterations allow, can be
xpressed as

|F)]| < errl[F(uo)l| + €ra or  [|0u]| < eurlluol| + €ua 0 k> Eyax . (23)

.4 Example: A nonlinear ODE model from epidemiology

he simplest model spreading of a disease, such as a flu, takes the form of a
x 2 ODE system

S = —pSI, (24)
I'=pBSI—vl, (25)
here S(t) is the number of people who can get ill (susceptibles) and I(¢) is the

umber of people who are ill (infected). The constants 5 > 0 and v > 0 must be
iven along with initial conditions S(0) and I(0).
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Implicit time discretization. A Crank-Nicolson scheme leads to
system of nonlinear algebraic equations in the unknowns S"+! and I"™*

Sn+1 _gn i

S = BISI (s S,

In+1 —I" nti n+1 ﬂ nrn n+1 rn+1 v n
T_ﬂ[SI] —vl Ng(SI + 8" T )—5(1 +1

Introducing S for S7+1, S for S I for 1"t I for I, we can rew
system as

Fs(S,I)=5— 5" + %Atﬁ(s(l)l(l) + SI) =0,

Fr(8,1)=1—-1Y — %Atﬁ(S(l)I(l) +SI) + %Atu(l(l) +1)=0.

A Picard iteration. We assume that we have approximations S~ an
S and I. A way of linearizing the only nonlinear term ST is to write
the Fs = 0 equation and S~ in the F; = 0 equation, which also decou
equations. Solving the resulting linear equations with respect to the ur
S and [ gives

S — 1ApsM )
5= +21At61* ’
2
I 4 LA )
11— JABS +v

Before a new iteration, we must update S~ «+ Sand [~ «+ [I.
Newton’s method. The nonlinear system (28)-(29) can be written as
0 with F = (Fg, F7) and u = (S, I). The Jacobian becomes

2 Fs ZFs 1+ IAtBI 1AtBS

2F ZF —3AtBI 1+ 3ALBS + At

The Newton system J(u~)du = —F(u~) to be solved in each iteration

< 1+ SAtBI- FALBS™ ) ( 5S ) B
—INtBI-  1-LiAtBST + iAW 81
S —8W 4+ IAB(SWIW 4 §-17)
1= — 1MW —IAB(SWIW + S~ 17) + LAt(IM + 1~
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temark. For this particular system of ODEs, explicit time integration methods
ork very well. Even a Forward Euler scheme is fine, but the 4-th order Runge-
utta method is an excellent balance between high accuracy, high efficiency, and
mplicity.

,  Linearization at the differential equation level
he attention is now turned to nonlinear partial differential equations (PDEs)

ad application of the techniques explained above for ODEs. The model problem
a nonlinear diffusion equation

% =V (a(u)Vu) + f(u), x e, te(0,T), (30)
fa(u)% =g, x € 00y, te€(0,7T], (31)
U = ug, xedlp, te (O,T] (32)

Our aim is to discretize the problem in time and then present techniques
r linearizing the time-discrete PDE problem “at the PDE level” such that
e transform the nonlinear stationary PDE problems at each time level into a
:quence of linear PDE problems, which can be solved using any method for
near PDEs. This strategy avoids the solution systems of nonlinear algebraic
juations. In Section 4 we shall take the opposite (and more common) approach:
iscretize the nonlinear problem in time and space first, and then solve the
ssulting nonlinear algebraic equations at each time level by the methods of
ection 2.

.1 Explicit time integration

he nonlinearities in the PDE are trivial to deal with if we choose an explicit
me integration method for (30), such as the Forward Euler method:

[Difu =V - (a(u)Vu) + f(u)]",
r written out,

un+1 _n

u
At
hich is a linear equation in the unknown «"*! with solution

= V- (a(")Vu") + f(u"),

The disadvantage with this discretization is usually thought to be the stability
“iterion

At < L(sz + Ay? + AZ?),

T maxa
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for the case f = 0 and a standard 2nd-order finite difference discretiz
space with mesh cell sizes Az, Ay, and Az in the various spatial direct

3.2 Backward Euler scheme and Picard iteration

A Backward Euler scheme for (30) reads

[Dyuw=V"(a(u)Vu) + f(u)]".
Written out,

u™ — unfl

At
This is a nonlinear PDE for the unknown function u"(x). Such a PDE
viewed as a time-independent PDE where u"~1(z) is a known function
We introduce a Picard iteration with k as iteration counter. A
linearization of the V - a(u™)Vu™ term in iteration k + 1 is to use the pr
computed u™* approximation in the diffusion coefficient: a(u™¥). The n
source term is treated similarly: f(u™*). The unknown function u"*
fulfills the linear PDE

=V - (a(u™)Vu™) + f(u").

un,k+1 _ unfl

At
The initial guess for the Picard iteration at this time level can be take:
solution at the previous time level: ©™9 = ¢~
We can alternatively apply the implementation-friendly notation -
corresponds to the unknown we want to solve for, i.e., ™ 1 above,
is the most recently computed value, u"* above. Moreover, u(!) den
unknown function at the previous time level, «»~! above. The PDE to b
in a Picard iteration then looks like

=V- (oz(u"’k)Vu”’kH) + f(u”k) .

u — u

NI V- (a(u™)Vu) + f(u™).
At the beginning of the iteration we start with the value from the previc
level: v~ =« and after each iteration, v~ is updated to w.

Remark on notation.

The previous derivations of the numerical scheme for time discretiza
of PDEs have, strictly speaking, somewhat sloppy notation. A

precise notation must distinguish clearly between the exact soluti
the PDE problem, here denoted ue(,t), and the exact solution o
spatial problem, arising after time discretization at each time level, v
(33) is an example. The latter is here represented as u™(x,t) and
approximation to ue(a,t,). Then we have another approximation u"
to u™(x) when solving the nonlinear PDE problem for «" by iter
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methods, as in (34). Alternatively, we introduce u(x) as a synonym for
u™"(z) (and also uV)(x)) as in (35).

However, we will usually state the PDE problem in terms of u and
quickly redefine the symbol u to mean the numerical approximation, while
ue is not explicitly introduced unless we need to talk about the exact
solution and the approximate solution at the same time.

.3 Backward Euler scheme and Newton’s method

t time level n we have to solve the stationary PDE (33), this time with Newton’s
iethod. Normally, Newton’s method is defined for systems of algebraic equations,
ut the idea of the method can be applied at the PDE level too.

inearization via Taylor expansions. Let ©™* be an approximation to the
nknown u"™. We seek a better approximation on the form

u = u™* + Su. (36)

he idea is to insert (36) in (33), Taylor expand the nonlinearities and keep
nly the terms that are linear in du. Then we can solve a linear PDE for the

srrection du and use (36) to find a new approximation u™*+1 = u™* + ju to
n

Inserting (36) in (33) gives

uvk 4§y —unt

Al =V - (a(u™* + 6u)V(u™* + du)) + fu™F +ou).  (37)

Je can Taylor expand a(u™* + du) and f(u™* + du):

do

a(u™* + su) = a(u™F) + @(u”’k)éu + O(6u?) =~ a(u™F) + o/ (u™*)du,
Fu™* 4+ 6u) = f(u™*) + %(u"’k)éu + O(0u?) = f(u™*) + f'(u™*)ou.

1serting the linear approximations of « and f in (37) results in

w4+ Sy — unt

AL =V - (a(u™*)Vu™ ) + fu™F)+

V- (a(u™F)\Véu) + V - (o (u™F)suVu™F)+
V- (o (u™F)ouVeu) + f/(u™F)ou . (38)

he term o (u™*)6uVéu is O(6u?) and therefore omitted. Reorganizing the
quation gives a PDE for dju that we can write in short form as
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SF(bu;u™*) = —F(u™"),

where

un,k _ un—l
At
1
OF (du;u™*) = —A—téu + V- (a(u™F)Viu)+

V- (@ (uF)ouVu™r) + f(uF)ou.

F(un,k) _ -V- (a(un,k)vun,k) + f(un,k)7

Note that 0F is a linear function of du, and F contains only terms t
known, such that the PDE for du is indeed linear.

Observations.

The notational form 6 F' = —F resembles the Newton system Jou = —
systems of algebraic equations, with 6 F' as Jéu. The unknown vectol
linear system of algebraic equations enters the system as a linear ope
in terms of a matrix-vector product (Jéu), while at the PDE level we
a linear differential operator instead (0F).

Similarity with Picard iteration. We can rewrite the PDE for
slightly different way too if we define u™* + du as u™*+1.

un,kJrl _ unfl

=V @RV
+ V- (@ (w™*)ouVu™F) + f () ou .

Note that the first line is the same PDE as arise in the Picard iteration, w
remaining terms arise from the differentiations that are an inherent in;
in Newton’s method.

Implementation. For coding we want to introduce u for u™, u~ for 1
u® for w1, The formulas for F' and §F are then more clearly writte:

u™ —uM)
Fu) = = = V- (a(u)Vu") + f(u"),

1 _
7E5u + V- (a(u™)Vou)+

V(o (u™)ouVu™) + f(u”)du.

OF (du;u™) =
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he form that orders the PDE as the Picard iteration terms plus the Newton
iethod’s derivative terms becomes

u—ul
A Ve (a(u™)Vu) + f(u™)+
YV - (@ (u)(u—u")VuT) + f/(u”)(u—u")). (44)

he Picard and full Newton versions correspond to v = 0 and v = 1, respectively.

Jerivation with alternative notation. Some may prefer to derive the lin-
arized PDE for du using the more compact notation. We start with inserting
" =4~ 4+ du to get

u” + bu —unt
At
aylor expanding,

=V (a(u” +0u)V(u~ +déu)) + f(u™ + du).

alu” +0u) ~ a(u”) + o (u”)du,
flu™ +6u) = fu”) + f'(u7)du,

nd inserting these expressions gives a less cluttered PDE for du:

u” 4 ou—u™ !

A7 =V (a(uw )Vu )+ f(u")+

V- (a(u™)Vou) + V- (o (u™)duVu™ )+
V- (o (u™)ouVou) + f'(u”)ou.
.4 Crank-Nicolson discretization
Crank-Nicolson discretization of (30) applies a centered difference at ¢, 1:
[Dyu =V - (a(u)Vu) + f(u)]"*3.

ince u is not known at t,, | 1 we need to express the terms on the right-hand side

ia unknowns 1" and u"*!. The standard technique is to apply an arithmetic
verage,

1
u'tE §(u" +au"th.

owever, with nonlinear terms we have many choices of formulating an arithmetic
lean:
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I = ) = (),
£ L)+ Fa ) = [ T
[OZ(U)VU}"+% 7 (%(u" + un+1))v(%(un + un+1)) _ [a(ﬂt)Vﬂt]”JF%’

ol Va]"™ % J(a(u") + @™ V(5 (" +um)) = [al) Vo]

(a(u™) V" + a(u™ Va1 = [af@)Va | .

Wl
Q

[T IS

[a(u) V)™

A big question is whether there are significant differences in accuracy
taking the products of arithmetic means or taking the arithmetic 1
products. Exercise 5 investigates this question, and the answer is t
approximation is O(At?) in both cases.

4 Discretization of 1D stationary nonlinea
ferential equations

Section 3 presents methods for linearizing time-discrete PDEs directly

discretization in space. We can alternatively carry out the discretization

and of the time-discrete nonlinear PDE problem and get a system of n

algebraic equations, which can be solved by Picard iteration or Newton’s

as presented in Section 2. This latter approach will now be described i:
We shall work with the 1D problem

—(au)u') +au=f(u), x€(0,L), a(u(0)u'(0)=C, u(l)=L
The problem (50) arises from the stationary limit of a diffusion equ
ou 0 ou
5% " B (a(u)ax> +au+ f(u),
as t — oo and Ou/dt — 0. Alternatively, the problem (50) arises at ea

level from implicit time discretization of (51). For example, a Backwai
scheme for (51) with a = 0 leads to

n_ ,n—1 a a n

Introducing u(z) for u"(x), uV) for u"~!, and letting f(u) in (50) be
w1 /At in (52), gives (50) with a = 1/At.
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.1 Finite difference discretizations

he nonlinearity in the differential equation (50) poses no more difficulty than a
ariable coefficient, as in (a(z)u’)’. We can therefore use a standard approach
» discretizing the Laplace term with a variable coefficient:

[_DIaDzu +au = f]z .

/riting this out for a uniform mesh with points z; = iAz, i =0,..., N, leads
)
1
AL (04¢+§(Ui+1 —ui) — o1 (u; — u,—,,l)) +au; = f(us). (53)

his equation is valid at all the mesh points ¢ = 0,1,...,N, — 1. At i = N,
e have the Dirichlet condition u; = 0. The only difference from the case with
v(z)u') and f(z) is that now « and f are functions of v and not only on z:

v(u(z))u’)" and f(u(z)).

The quantity «; 41 evaluated between two mesh points, needs a comment.

ince o depends on u and w is only known at the mesh points, we need to express
i1 in terms of u; and w;41. For this purpose we use an arithmetic mean,
lthough a harmonic mean is also common in this context if « features large
umps. There are two choices of arithmetic means:

@iy % g (s + uagn) = [a(@)] 7, (54)
ity ¥ %(a(u"') +a(uip1)) = [a(u) ]7*2 (55)

quation (53) with the latter approximation then looks like

((a(ui) + i) (witr — i) — (a(ui—1) + o)) (u; — ui—1))
+ au; = f(u;), (56)

1
2Ax2

¢ written more compactly,

[-D,a*Dyu+ au = fl;.

At mesh point ¢ = 0 we have the boundary condition a(u)u’ = C, which is
iscretized by

[a(u) Dagu = Co,

leaning

The fictitious value u_; can be eliminated with the aid of (56) for i = 0. F
(56) should be solved with respect to u;—1 and that value (for i = 0) st
inserted in (57), but it is algebraically much easier to do it the other way
Alternatively, one can use a ghost cell [-Az, 0] and update the u_; -
the ghost cell according to (57) after every Picard or Newton iteratio
an approach means that we use a known u_; value in (56) from the 1
iteration.

4.2 Solution of algebraic equations

The structure of the equation system. The nonlinear algebraic ec
(56) are of the form A(u)u = b(u) with

1
A= m(a(ui—l) + 2a(u;)a(uit)) + a,
Ajio1 = —m(a(ui—l) + a(u;)),
1
A1 = —m(a(ui) + a(uit1)),
bi = f(ui).

The matrix A(u) is tridiagonal: A; ; =0 for j > 14+ 1and j <i— 1.
The above expressions are valid for internal mesh points 1 <¢ < N, -
1 =0 we need to express u;—1 = u_1 in terms of u; using (57):

2Ax

(uo)

This value must be inserted in Ag . The expression for A; ;11 applies fi
and A; ;1 does not enter the system when ¢ = 0.

Regarding the last equation, its form depends on whether we incl
Dirichlet condition u(L) = D, meaning uy, = D, in the nonlinear a
equation system or not. Suppose we choose (ug,u1,...,uUn,—1) as un
later referred to as systems without Dirichlet conditions. The last equatic
sponds to ¢ = N, —1. It involves the boundary value u, , which is substi
D. If the unknown vector includes the boundary value, (ug,u1,...,uy
referred to as system including Dirichlet conditions, the equation for 7 =
just involves the unknown uy,_, and the final equation becomes ux
corresponding to A;; =1 and b, = D for i = N,.

U—_1 =Uuy —

Picard iteration. The obvious Picard iteration scheme is to use pr
computed values of u; in A(u) and b(u), as described more in detail in S
With the notation u~ for the most recently computed value of wu, *
the system F(u) = F(u) = A(u™)u — b(u™), with F = (Fy, F,..., F,
(ug,u1, ..., Up). The index m is N, if the system includes the Dirichlet c
as a separate equation and N, — 1 otherwise. The matrix A(u™) is tric
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» the solution procedure is to fill a tridiagonal matrix data structure and the
ght-hand side vector with the right numbers and call a Gaussian elimination
»utine for tridiagonal linear systems.

To write out all the mathematical details in a specific case, let us look at
1e case N, = 2. We use u; for the ¢-th component in v~. In case we omit the
iirichlet condition from the system we get the following 2 x 2 system,

Ao,o Ao uo \ _ ( bo
Ao Ain Uy b1

he matrix and right-hand side entries are given by

Ao = s (a(uzy) + 2a(ug) + a(up)) +a (59)
Aoy = — 535 (a(ug) + aluy), (60)
Arp = — 535 (a(ug) + alup), (61)
Avi = 3a (@) + 20(u) +aluz) + o, (62)
o= flu). (63)
b= fu), (64)

here u_1 must be substituted by (58), and us by D.
The system with the Dirichlet condition becomes

Aoo Ao Ao Ug bo
Ao Ain A ur | =1 b |,
Az A1 Asp Un bo

ith entries for A;; and b; as above for 4, j = 1,2, keeping us as unknown in
1,15 and

1

Apo=As0=A51=0, Ajo = ———
0,2 2,0 2,1 y 1,2 9AL2

(a(u1) + a(u2)), Asa =1, bo=D.
(65)

lewton’s method. The Jacobian must be derived in order to use Newton’s
iethod. Here it means that we need to differentiate F(u) = A(u)u — b(u) with
spect to the unknown parameters ug, U1, ..., U, (M = N, or m = N, — 1,
epending on whether the Dirichlet condition is included in the nonlinear system
'(u) = 0 or not). Nonlinear equation number i has the structure

1

3= Aiio1(Wim1, wi)ui—1 4+ Ag s (Wim1, Wiy Wi ) + Ay i (Wiy Wig1 )t — bi(w) .

‘'omputing the Jacobian requires careful differentiation. For example,
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9 0A; Ou;
aiu‘L(AZﬂ (Ui717 ’U/i, ul+1)u7‘) - aul uz + A'L,Z auz
0 1
= 5. (Gazz(euin) +20(u) + a(uisr) +

Saa (@) +20(u) + a(us)) +a

1
= ALz (20 (ui)u; + a(ui—1) + 2a(u;) + a(u

The complete Jacobian becomes

Jii = gfj: = 8%2’:1%71 + a;@;’luz + A+ 3%2,;;1 Ui+l — %
— ﬁ(w/(ui)ui,l + 20 (ui)u; + o(ui—1) + 200(u;) + oo(uig
a— AL o (ug)uipr — b (ug),
Jiji-1= 8?5; = %ui—l +Aic1+ %“z - 63?;
- 2Alx2 (=o' (wi—1)ui—1 — (a(ui—1) + ;) + o (wi—1)u;),
Jijiy1 = 6(541;11 i1 + Aipri + g:j:_zl e 53511
1

~ 2As2 (= (wir1)uirr — ((ui) + a(uirr)) + o (wip1)uq) -

The explicit expression for nonlinear equation number i, F;(ug, u1,. ..
from moving the (u;) term in (56) to the left-hand side:

_2Alx2 ((c(us) + a(uipr)) (uipr — wi) = (ui-1) + au))(ui —-

+ au; —f(ui) =0.

F =

At the boundary point ¢ = 0, u_; must be replaced using the formy
When the Dirichlet condition at ¢ = N, is not a part of the equation
the last equation F,,, = 0 for m = N, — 1 involves the quantity uy, _
must be replaced by D. If uy is treated as an unknown in the system,
equation F,, =0 has m = N, and reads

FNw(uo,...,uNw):uNz —D=0.

Similar replacement of u_; and uy, must be done in the Jacobian for
and last row. When uy, is included as an unknown, the last row in the J
must help implement the condition duy, = 0, since we assume that u «
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1e right Dirichlet value at the beginning of the iteration (uy, = D), and then
1e Newton update should be zero for i = 0, i.e., dupn, = 0. This also forces the
ght-hand side to be b; =0, i = N,.

We have seen, and can see from the present example, that the linear system
1 Newton’s method contains all the terms present in the system that arises
1 the Picard iteration method. The extra terms in Newton’s method can be
wltiplied by a factor such that it is easy to program one linear system and set
1is factor to 0 or 1 to generate the Picard or Newton system.

.3 Galerkin-type discretizations

or a Galerkin-type discretization, which may be developed into a finite element
1iethod, we first need to derive the variational problem. Let V be an appropriate
mction space with basis functions {9;},.7 . Because of the Dirichlet condition
b x = L we require ¥;(L) = 0, i € Z;. The approximate solution is written as
=D+ ZjeIs ¢, where the term D can be viewed as a boundary function
eeded to implement the Dirichlet condition u(L) = D.

Using Galerkin’s method, we multiply the differential equation by any v € V'
nd integrate terms with second-order derivatives by parts:

L L L
/ a(u)u'v' dz +/ auvdzr = / fu)vdz + [a(u)u/v]y, YveV.
0 0 0

he Neumann condition at the boundary z = 0 is inserted in the boundary term:

[a(u)u'v)§ = a(u(L))w' (L)v(L) — a(u(0))u’ (0)v(0) = 0 — Cv(0) = —Cv(0).

Yecall that since ;(L) = 0, any linear combination v of the basis functions also
wnishes at @ = L: v(L) = 0.) The variational problem is then: find u € V such
1at

L L L
/ a(u)u'v' dz + / auvdx = / fw)vdz — Cv(0), YveV. (67)
0 0 0

To derive the algebraic equations, we note that Yv € V' is equivalent with
= ); for i € Z,. Setting u = D + Zj ¢jv; and sorting terms results in the
near system

10

o

k€L ke,

(68)

33

L L
(/0 a(D+ > exth) P dm) ¢j :/o F(D+ Y cxtpr)s de—Ci(0), i€

Fundamental integration problem. Methods that use the Gale
weighted residual principle face a fundamental difficulty in nonlinear p:
how can we integrate a terms like fOL (32, et )Pia do and fOL FO cn
when we do not know the ¢, coefficients in the argument of the a functi
can resort to numerical integration, provided an approximate ), i
used for the argument u in f and a. This is the approach used in cc
programs.

However, if we want to look more mathematically into the structur
algebraic equations generated by the finite element method in nonlinear p
and compare such equations with those arising in the finite difference met
need techniques that enable integration of expressions like fOL FO L cry
by hand. Two such techniques will be shown: the group finite elem
numerical integration based on the nodes only. Both techniques are appr
but they allow us to see the difference equations in the finite element n

4.4 Finite element basis functions

Introduction of finite element basis functions y; means setting

Vi = o), €L,
where degree of freedom number v(7) in the mesh corresponds to u
number i (¢;). In the present example, we use all the basis functions ex
last at ¢+ = N, — 1, i.e., Zs = {0,..., N,, — 2}, and v(j) = j. The expans
can be taken as

u=D+ ) ¢,
JE€Ls
but it is more common in a finite element context to use a boundary {
B =3 jern, Ujpj, where U; are prescribed Dirichlet conditions for d
freedom number j and Uj is the corresponding value.

u = D@anl + Z C]'QDV(]') .
J€Ls
In the general case with v prescribed as U; at some nodes j € I, we sc
w= D Uiei+ D citu,
JEL, JET,

where ¢; = u(2¥()). That is, v(j) maps unknown number j to the corres
node number v(j) such that ¢; = u(z¥\9)).
4.5 The group finite element method

Finite element approximation of functions of u. Since we already
uasy, ; pju(z;), we may use the same approximation for other func
well. For example,
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Flu) =Y f5)e;,
J
here f(z;) is the value of f at node j. Since f is a function of u, f(z;) =
(u(z;)). Introducing u; as a short form for u(z;), we can write

Flw)~ 3 s

his approximation is known as the group finite element method or the product
nproximation technique. The index j runs over all node numbers in the mesh.
The principal advantages of the group finite element method are two-fold:

1. Complicated nonlinear expressions can be simplified to increase the effi-
ciency of numerical computations.

2. One can derive symbolic forms of the difference equations arising from the
finite element method in nonlinear problems. The symbolic form is useful
for comparing finite element and finite difference equations of nonlinear
differential equation problems.

elow, we shall explore point 2 to see exactly how the finite element method
-eates more complex expressions in the resulting linear system (the difference
juations) that the finite difference method does. It turns out that is very difficult
» see what kind of turns in the difference equations that arise from [ f(u)y; da
ithout using the group finite element method or numerical integration utilizing
1e nodes only.

Note, however, that an expression like f f(uw)p; da causes no problems in a
>mputer program as the integral is calculated by numerical integration using
n existing approximation of u in f(u) such that the integrand can be sampled
t any spatial point.

implified problem. Our aim now is the derive symbolic expressions for the
ifference equations arising from the finite element method in nonlinear problems
nd compare the expressions with those arising in the finite difference method.
o this, let us simplify the model problem and set a = 0, a = 1, f(u) = u?, and
ave Neumann conditions at both ends such that we get a very simple nonlinear
roblem —u” = u?, v/(0) = 1, /(L) = 0. The variational form is then

L L
/ u'v' do = / v?vdr —v(0), YoeV.
0 0

he term with u/v’ is well known so the only new feature is the term [ u?vdu.

To make the distance from finite element equations to finite difference equa-
ons as short as possible, we shall substitute ¢; in the sum u = 37, c;jp; by
; = u(x;) since ¢; is the value of u at node j. (In the more general case with
iirichlet conditions as well, we have a sum ) 5 CiPu() where c; is replaced by
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u(z,(;)). We can then introduce some other counter & such that it is me
to write u = >, urpr, where k runs over appropriate node number:
quantity u; in Zj u;p; is the same as v at mesh point number j in tl
difference method, which is commonly denoted u;.

Integrating nonlinear functions. Consider the term [ u?vdz in tl
tional formulation with v = ¢; and v = >, @ru:

L
/ (Z uppr )i de .
0k

Evaluating this integral for P1 elements (see Problem 10) results in the ex

h

12
to be compared with the simple value uf that would arise in a finite di
discretization when u? is sampled at mesh point ;. More complicat
functions give rise to much more lengthy expressions, if it is possible -
out the integral symbolically at all.

u2271 + 2u;(Ui—1 + Uig1) + 6’1.L22 + U?+1)»

Application of the group finite element method. Let use the gro
element method to derive the terms in the difference equation correspoi
f(u) in the differential equation. We have

/OL flu)pide ~ /OL(Z @jf(u;))pide = Z (/OL Pip; dx) flu,

We recognize this expression as the mass matrix M, arising from |
times the vector f = (f(uo), f(u1),...,): Mf. The associated term
difference equations are, for P1 elements,

B (Fluia) + 45 () + Fuig)).

Occasionally, we want to interpret this expression in terms of finite difl
and to this end a rewrite of this expression is convenient:

g(f(ui—l) +4f(u;) + f(uig1)) = h[f(u) — %QDzsz(U)}i .

That is, the finite element treatment of f(u) (when using a group finite
method) gives the same term as in a finite difference approach, f(u;),
diffusion term which is the 2nd-order discretization of §h?f”(x;).

We may lump the mass matrix through integration with the Trapezo
so that M becomes diagonal in the finite element method. In that case -
term in the differential equation gives rise to a single term A f(u;), just ¢
finite difference method.
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.6 Numerical integration of nonlinear terms

et us reconsider a term [ f(u)vdax as treated in the previous section, but
ow we want to integrate this term numerically. Such an approach can lead to
asy-to-interpret formulas if we apply a numerical integration rule that samples
1e integrand at the node points z; only, because at such points, ¢;(x;) = 0 if
# 1, which leads to great simplifications.

The term in question takes the form

L
/ FO urpr)pide.
0 k

valuation of the integrand at a node z, leads to a collapse of the sum >, uppp
> one term because

ZukSDk(xl) =g
%
f(zk: ug r(xe)) pi(xe) = fug)dic,

Oke die

here we have used the Kronecker delta: §;; = 0if i # j and 9;; = 1 if i = j.
Considering the Trapezoidal rule for integration, where the integration points
re the nodes, we have

N,

/f(Zum )oula) e = 3 Suhha =€ = b ).

his is the same representation of the f term as in the finite difference method.
he term C contains the evaluations of the integrand at the ends with weight 2 55
eeded to make a true Trapezoidal rule:

= Fw0)eu(0) + & Flun, -1)ei(D)

he answer hf(u;) must therefore be multiplied by 3 if i = 0 or i = N,, — 1.
otethat C=0fori=1,...,N, — 2.

One can alternatively use the Trapezoidal rule on the reference cell and
ssemble the contributions. It is a bit more labor in this context, but working on
1e reference cell is safer as that approach is guaranteed to handle discontinuous
erivatives of finite element functions correctly (not important in this particular
xample), while the rule above was derived with the assumption that f is
mtinuous at the integration points.

The conclusion is that it suffices to use the Trapezoidal rule if one wants
» derive the difference equations in the finite element method and make them
milar to those arising in the finite difference method. The Trapezoidal rule
as sufficient accuracy for P1 elements, but for P2 elements one should turn to
impson’s rule.
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4.7 Finite element discretization of a variable coef
Laplace term

Turning back to the model problem (50), it remains to calculate the cont
of the (au')’ and boundary terms to the difference equations. The int
the variational form corresponding to (au')’ is

L
/0 oD err )i da.
k

Numerical integration utilizing a value of ), ¢zt from a previous i
must in general be used to compute the integral. Now our aim is to i1
symbolically, as much as we can, to obtain some insight into how the finite
method approximates this term. To be able to derive symbolic express
must either turn to the group finite element method or numerical integr
the node points. Finite element basis functions ¢; are now used.

Group finite element method. We set a(u) = Y, a(ux)pr, and
write

L
/ a(z Crpr) i do = Z(/ PR dr)auy) = ZL ig k(T
0 % — Jo
—_—
Lijk

Further calculations are now easiest to carry out in the reference cell. !
elements we can compute L; ; for the two k values that are relevant
reference cell. Turning to local indices, one gets

@ _ 1/ 1 -1 _
Lr,s,t - 2h ( -1 1 ) t_0717

where 7, s,t = 0,1 are indices over local degrees of freedom in the refere
(t =qle,7), 5 = qle,s), and k = q(e,t)). The sum Y, L; ; po(uy) at
level becomes Zi:o Lg s) sa(@y), where @y is u(2g(e,¢)), i.¢., the value of u
node number ¢ in cell number e. The element matrix becomes

plat+a@y () 1)

As usual, we employ a left-to-right numbering of cells and nodes. Row n
in the global matrix gets contributions from the first row of the element
in cell ¢ and the last row of the element matrix in cell ¢ — 1. In cell
i — 1 the sum a(ig) + a(@(M) corresponds to a(u;_1) + a(u;). The sa
becomes a(u;) + a(uit+1) in cell number ;. We can with this insight a
the contributions to row number i in the global matrix:

ﬁ(*(a(uwl) +a(u;),  a(ui-1) +2a(u;) + a(uiv),  o(u;) +au
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[ultiplying by the vector of unknowns u; results in a formula that can be
cranged to

L (@ui-1) + 0(u) (s — wi_1)), (70)

- %(%(Q(Uz) + o(ui1)) (Uip1 — ) — 2

hich is nothing but the standard finite difference discretization of —(a(u)u')’
ith an arithmetic mean of a(u) (and the usual factor h because of the integration
1 the finite element method).

lumerical integration at the nodes. Instead of using the group finite
ement method and exact integration we can turn to the Trapezoidal rule for

>mputing fo > ukgok)gozgoj dz, again at the cell level since that is most
»nvenient when we deal with discontinuous functions ¢}:

1 1 1 ~ ~
vy h L .\ 2dpr2dps h
/ O‘(E ut<pt)<plrg0’55dX :/ @(E 1tt@t)ﬁd7ﬁd7§dX
-1 t -1 =0

= (C1(-1) / a<2ut¢t<x>
1 1 1 . .
o a3 A1)+l

t=0
1

= S (=1 (=1)*(al@) + a(@)) (71)

Q

he element matrix in (71) is identical to the one in (69), showing that the
roup finite element method and Trapezoidal integration are equivalent with
standard finite discretization of a nonlinear Laplace term (a(u)u’)’ using an
rithmetic mean for «: [D,ZD,ul;.

Remark about integration in the physical x coordinate.

We might comment on integration in the physical coordinate system too.
The common Trapezoidal rule in Section 4.6 cannot be used to integrate
derivatives like ¢!, because the formula is derived under the assumption
of a continuous integrand. One must instead use the more basic version
of the Trapezoidal rule where all the trapezoids are summed up. This is
straightforward, but I think it is even more straightforward to apply the
Trapezoidal rule on the reference cell and assemble the contributions.

The term [ auv dz in the variational form is linear and gives these terms in
1e algebraic equations:
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ah h?

E(Ui,1 + 4ui + ’U,Z‘+1) = ah[u — FDmeu], .

The final term in the variational form is the Neumann condition at the
ary: Cv(0) = Cyp;(0). With a left-to-right numbering only i = 0 wil
contribution Cv(0) = Cd;o (since ¢;(0) # 0 only for i = 0).

Summary.

For the equation

—(a(w') + au = f(u),

P1 finite elements results in difference equations where

e the term —(a(u)u’)’ becomes —h[Dyo(u) ) D, u); if the group
element method or Trapezoidal integration is applied,

e f(u) becomes hf(u;) with Trapezoidal integration or the “mas
trix” representation h[f(u) — 2D, D, f(u)]; if computed by a ¢
finite element method,

e au leads to the “mass matrix” form ahlu — %DzDzu]i.

As we now have explicit expressions for the nonlinear difference ec
also in the finite element method, a Picard or Newton method can be de
shown for the finite difference method. However, our efforts in deriving s
forms of the difference equations in the finite element method was motiva
desire to see how nonlinear terms in differential equations make the finite
and difference method different. For practical calculations in computer p
we apply numerical integration, normally the more accurate Gauss-L
quadrature rules, to the integrals directly. This allows us to easily eval
nonlinear algebraic equations for a given numerical approximation of
denoted u™). To solve the nonlinear algebraic equations we need to aj
Picard iteration method or Newton’s method to the variational form dir
shown next.

4.8 Picard iteration defined from the variational fo:

We address again the problem (50) with the corresponding variational fo
Our aim is to define a Picard iteration based on this variational form witl
attempt to compute integrals symbolically as in the previous three sectic
idea in Picard iteration is to use a previously computed u value in the n
functions a(u) and f(u). Let u~ be the available approximation to u f
previous iteration. The linearized variational form for Picard iteration
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L L
/ (a(u)u'v" + awv) dx = / fw)vdr — Cv(0), VYveV. (72)
0 0

his is a linear problem a(u,v) = L(v) with bilinear and linear forms

a(u,v) —/OL(a(u Ju'v' + auv) dz / fw )vdz — Cv(0).

[ake sure to distinguish the coefficient a in auv from the differential equation
om the a in the abstract bilinear form notation a(-, ).

The linear system associated with (72) is computed the standard way. Tech-
ically, we are back to solving —(a(z)u’) +au = f(x). The unknown u is sought
a the form u = B(z)+3_ 7. ¢j¥), with B(z) = D and ¥; = ¢,(:), v(i) = i+1,
ad Z, = {0,1,...,N = N, — 2}.

.9 Newton’s method defined from the variational form

pplication of Newton’s method to the nonlinear variational form (67) arising
om the problem (50) requires identification of the nonlinear algebraic equations
7 = 0. Although we originally denoted the unknowns in nonlinear algebraic
juations by ug, ..., un, it is in the present context most natural to have the
nknowns as cg,...,cy and write

E(007"'7CN):0a i € s,

ud define the Jacobian as J; ; = OF;/0c; for i,j € Ts.
The specific form of the equations F; = 0 follows from the variational form

L L
/ (a(u)u'v' + auww) dz = / f(wvdz — Cv(0), YveV,
0 0

y choosing v = v;, i € Z,, and setting u =
inction to incorporate Dirichlet conditions.
With v = ; we get

jez, ¢j¥;, maybe with a boundary

L
P = / (@), + auths — F(u)ibs) de + Cebi(0) = 0, i€ T,.  (73)
0

1 the differentiations leading to the Jacobian we will frequently use the results

ou 0 ;o
acJ chdﬁk Y5, @‘@?Ckwk_%

he derivation of the Jacobian of (73) goes as
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w)u' Pl + aup; — f(u)y;) dz

i 3cj (9cj
/ ’ o', ou , ou
:/0 ((a (U)OT:JU +a(u)8—cj)1/1i +a67cj¢i -f (U)afcjdj
L
= [ @ s + a4t~ S ) da

L
- /0 (of (W' $s; + alw)dladh + (a — flu)bunhy) de

When calculating the right-hand side vector F; and the coefficient
Ji,; in the linear system to be solved in each Newton iteration, one mu
previously computed u, denoted by u~, for the symbol  in (73) and (74
this notation we have

L
F = / (alu ™" + (a — f(u))y) do — Ci(0), i€ T,,
0

L
Jij =/0 (o (u™)u™ "y + a(u™ )iy + (a — f(u™))idy) da, i, j

These expressions can be used for any basis {t;},.; . Choosing finite
functions for 1;, one will normally want to compute the integral contribu
by cell, working in a reference cell. To this end, we restrict the integratio
cell and transform the cell to [—1, 1]. The most recently computed approx
u”™ to u becomes @~ = >, i; '@ (X) over the reference element, wher
the value of u~ at global node (or degree of freedom) ¢(e,t) correspondin
local node ¢ (or degree of freedom). The formulas (75) and (76) then cl

Fl) = / (a(@™)a™' @ + (a— f(@7))@,) det JdX — C3,(0),

—1

1
I = [ (@@ E 5+ al@)F 8 + (- (07)prpe) det T
-1
with r, s € I; runs over the local degrees of freedom.

Many finite element programs require the user to provide F; and J;,
programs, like FEniCS?, are capable of automatically deriving J;
specified.

Dirichlet conditions. Incorporation of the Dirichlet values by ass
contributions from all degrees of freedom and then modifying the linear

2http://fenicsproject.org
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an be obviously be applied to Picard iteration as that method involves a standard
near system. In the Newton system, however, the unknown is a correction
u to the solution. Dirichlet conditions are implemented by inserting them in
1€ initial guess u~ for the Newton iteration and implementing du; = 0 for all
nown degrees of freedom. The manipulation of the linear system follows exactly
1e algorithm in the linear problems, the only difference being that the known
alues are zero.

» Multi-dimensional PDE problems

he fundamental ideas in the derivation of F; and J; ; in the 1D model problem
easily generalized to multi-dimensional problems. Nevertheless, the expressions
wolved are slightly different, with derivatives in x replaced by V, so we present
»me examples below in detail.
.1 Finite element discretization
s an example, Backward Euler discretization of the PDE
up = V- (a(u)Vu) + f(u), (79)
ives the nonlinear time-discrete PDEs
u™ — AtV - (a(u™)Vu™) + fu™) =u" .

Je may alternatively write this equation with u for «” and u(*) for u"~':

u— AtV - ((u)Vu) — At f(u) = u®

(Note that the mathematical meaning of the symbol u changes in these
Juations: u(ax,t) is the exact solution of (79), u™(x) is an approximation to the

xact solution at t = t,,, while u(x) in the latter equation is a synonym for u™.

elow, this u(x) will be approximated by a new u = ", cx¥x(x) in space, and
1en the actual u symbol used in the Picard and Newton iterations is a further
pproximation of )", ¢4y arising from the nonlinear iteration algorithm.)

Let us assume homogeneous Neumann conditions on the entire boundary for
mplicity in the boundary term. The variational form becomes: find v € V' such
1at

/ (w + At a(u)Vu - Vo — Atf(u)o —uPDv)dz =0, YoeV. (80)
Q

he nonlinear algebraic equations follow from setting v = 1; and using the
spresentation u =y, cxtr, which we just write as

P = / (s + At a(w)Vu - Vs — Atf(w)ern — uD)dz. (81
Q
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Picard iteration needs a linearization where we use the most recent approx
u” tow in o and f:

Fa~F = / (u); + At a(u™)Vu - Vip; — Atf(u™ ) — u(l)wi) de.
Q

The equations F; = 0 are now linear and we can easily derive a linear
> jer, Aijcj = bi, i € I, for the unknown coefficients {c;},. by i
u=73_;cjt;. We get

Q Q
In Newton’s method we need to evaluate F; with the known value @
Fy~F;, = / (u™1h; + At a(u™)Vu™ - Voo, — Atf(u™ )y — uMapy) da
Q
The Jacobian is obtained by differentiating (81) and using
ou 0
Tq = ; chckqﬁk = ¢j7

oVu
66]'

0
=D 5 Vir = Vi
e ¢
The result becomes

OF;
8 Cj

Tii = e, = /Q(ibﬂ/)i +Ata (W) Vu - Vi + At a(u) Vi, - Vi,
Atf/ (u)%zﬁl) dz.

The evaluation of J; ; as the coefficient matrix in the linear system in N
method applies the known approximation u~ for u:

Ji’j = /Q(’l/)J’LZJl + At a'(uf)d)jVu* . V¢z + Atoz(uf)ij . Vl/}z—
Atf/(u_)lﬁj’l/)i) de.

Hopefully, this example also shows how convenient the notation with
is: the unknown to be computed is always u and linearization by insertiny
(previously computed) values is a matter of adding an underscore. One «
great advantage of this quick notation in software [2].
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lon-homogeneous Neumann conditions. A natural physical flux condi-
on for the PDE (79) takes the form of a non-homogeneous Neumann condition

- a(u)% =g, x€dy, (88)

here g is a prescribed function and 02 is a part of the boundary of the domain
.. From integrating fﬂ V - (aVu) dz by parts, we get a boundary term

ou
a(u)=—uvds. 89
[ a3 (39)

1serting the condition (88) into this term results in an integral over prescribed

alues:
— / gvds.
0N

he nonlinearity in the a(u) coefficient condition (88) therefore does not con-
‘ibute with a nonlinearity in the variational form.

tobin conditions. Heat conduction problems often apply a kind of Newton’s
boling law, also known as a Robin condition, at the boundary:
ou

(w5t = h(u)(u - T,(0), €y, (90)
here h(u) is a heat transfer coefficient between the body (€2) and its sur-
yundings, T is the temperature of the surroundings, and 92y is a part of the
oundary where this Robin condition applies. The boundary integral (89) now
ecomes

/ h(u)(u — Ty(T))v ds.
19773

1 many physical applications, h(u) can be taken as constant, and then the
oundary term is linear in u, otherwise it is nonlinear and contributes to the
acobian in a Newton method. Linearization in a Picard method will typically
se a known value in h, but keep the u in u — T, as unknown: h(u™)(u — T(¢)).
xercise 14 asks you to carry out the details.

.2 Finite difference discretization

typical diffusion equation

up = V- (a(u)Vu) + f(u),

an be discretized by (e.g.) a Backward Euler scheme, which in 2D can be
ritten

[D; u = Dyafu) Dyu+ Dya(w)” Dyu+ f(w)]7;
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We do not dive into the details of handling boundary conditions now. I
and Neumann conditions are handled as in a corresponding linear, v
coefficient diffusion problems.

Writing the scheme out, putting the unknown values on the left-he
and known values on the right-hand side, and introducing Ax = Ay = h
some writing, one gets

At 1
(A ﬁ(i(a(u?,j) +oa(uig ;) (uwips j — wity)

— (el ,) + ol )l — i)

+ 5 (aul) + o)) — )

— (el ) + el )ty — iy )~ Atf(ul) =l
This defines a nonlinear algebraic system on the form A(u)u = b(u).

Picard iteration. The most recently computed values v~ of u™ can

in « and f for a Picard iteration, or equivalently, we solve A(u~)u = b(u

result is a linear system of the same type as arising from u; = V - (a(c
[, ).

The Picard iteration scheme can also be expressed in operator nota

[D;u= Dya(u~) Dyu+ Dya(u=) Dyu+ f(u)]}, .

Newton’s method. As always, Newton’s method is technically more -

than Picard iteration. We first define the nonlinear algebraic equatio
solved, drop the superscript n (use u for u"), and introduce u™) for u"

Fij=uij— %(
g (aluig) + aluive)) (uivy — i) =
%(a(uifl,j) + o(uij)) (i — ui-1,5)+
%(a(ui,j) + i j1)) (i1 — wij)—
%(a(ui,j—l) + i ) (i — uim1jo1)) — AL f(uig) —ul) -

It is convenient to work with two indices ¢ and j in 2D finite difference di
tions, but it complicates the derivation of the Jacobian, which then g
indices. (Make sure you really understand the 1D version of this pro
treated in Section 4.1.) The left-hand expression of an equation F; ; =0
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ifferentiated with respect to each of the unknowns w, s (recall that this is short
otation for uy,), r € I, s € I,

aFi,j
Oy s

Jijirs =

he Newton system to be solved in each iteration can be written as

SN Jijesdur.=—Fij, i€L, jET,.
rel, s€l,

Given ¢ and j, only a few r and s indices give nonzero contribution to the
acobian since Fj ; contains i+ j, %; j+1, and u; ;. This means that J; ;, s has
onzero contributions only if r =¢+1, s = j+1, as well as r = ¢ and s = j. The
)rresponding terms in Ji,j,r,s are Ji,j,i—l,j7 Ji,j,i+1,j7 Ji,j,i,j—h Ji,j,i,j-&-ly and

iji,j- Therefore, the left-hand side of the Newton system, Y > J; jrs0Ur
sllapses to

r —_—
igirysOUrs = Ji g j0ui + Jijio1,j0Ui—1,5 + Jijiv1,j0Uiy + Jigaj—10Ui 51
+ Ji i j+10Ui 41

he specific derivatives become

Gui,l,j
At

= ﬁ(a'(uifl,j)(ui,j —ui-1,5) + a(ui-1,;)(=1)),

it

At

= ﬁ(_al(ui—kl,j)(“i-&-l,j — i) — a(ui-15)),

Ou; 51

At

= ﬁ(a'(ui,j—l)(um = Ui j-1) + a(uij-1)(=1)),

aui,jﬂ

At

- ﬁ(_o‘/(ui7j+l)(ui,j+l — i) — augj—1)) -

Jiji-15 =

Jijit1,5 =

Jijij—1 =

Jijig+1 =

he J; ;;; entry has a few more terms and is left as an exercise. Inserting
1e most recent approximation u~ for w in the J and F formulas and then

rming Jou = —F gives the linear system to be solved in each Newton iteration.

oundary conditions will affect the formulas when any of the indices coincide
ith a boundary value of an index.
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5.3 Continuation methods

Picard iteration or Newton’s method may diverge when solving PDEs wit
nonlinearities. Relaxation with w < 1 may help, but in highly nonlinear p
it can be necessary to introduce a continuation parameter A in the 1
A = 0 gives a version of the problem that is easy to solve, while A = 1 is tt
problem. The idea is then to increase A in steps, Ag = 0,A1 < --- < A, -
use the solution from the problem with A;_; as initial guess for the iters
the problem corresponding to A;.

The continuation method is easiest to understand through an e
Suppose we intend to solve

=V - ([[Vul|*Vu) = f,

which is an equation modeling the flow of a non-Newtonian fluid th
channel or pipe. For ¢ = 0 we have the Poisson equation (correspond
Newtonian fluid) and the problem is linear. A typical value for pseudc
fluids may be ¢, = —0.8. We can introduce the continuation parameter A
such that ¢ = goA. Let {As}}_, be the sequence of A values in [0,
corresponding ¢ values {q/}}_,. We can then solve a sequence of probl

V- (IVuivat) = 1, =0,....n,

where the initial guess for iterating on ! is the previously computed :
uf~1. If a particular A, leads to convergence problems, one may try a
increase in A: A, = (A1 + Ag), and repeat halving the step in
convergence is reestablished.

6 Exercises

Problem 1: Determine if equations are nonlinear or

Classify each term in the following equations as linear or nonlinear. Assu
u is an unknown function and that all other symbols are known quanti

1. 2 =1
a+b=1

. mu” + Blu v + cu = F(t)

o

Ut = Qlgy

u = 2V2u

ur =V - (u)Vu) + f(z,y)

us + f(u)y =0

u+u-Vu=-Vp+rV32u, V-u =0 (u is a vector field)

® N o o
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9. v = f(u,t)
10. V2u = Ae®

ilename: nonlinear_vs_linear.pdf.

'roblem 2: Experience the behavior of Newton’s method

he program Newton_demo.py® illustrates graphically each step in Newton’s
tethod and is run like

earminal> python Newton_demo.py f dfdx x0 xmin xmax

se this program to investigate potential problems with Newton’s method when
slving 799" cos(mrz) = 0. Try a starting point zo = 0.8 and zo = 0.85 and
atch the different behavior. Just run

sarminal> python Newton_demo.py ’0.2 + exp(-0.5*x**2)*cos(pi*x)’ \
’—x*exp (-x**2) xcos (pi*x) - pi¥exp(-x**2)*sin(pix*x)’ \
0.85 -3 3

nd repeat with 0.85 replaced by 0.8.

'roblem 3: Compute the Jacobian of a 2 x 2 system

/rite up the system (18)-(19) in the form F(u) =0, F = (Fy, F1), u = (ug, uy),
nd compute the Jacobian J; ; = 0F;/0u;.

'roblem 4: Solve nonlinear equations arising from a vibra-
ion ODE

‘onsider a nonlinear vibration problem

mu” + bu'|u'| + s(u) = F(t), (91)

here m > 0 is a constant, b > 0 is a constant, s(u) a possibly nonlinear function
fu, and F(t) is a prescribed function. Such models arise from Newton’s second
w of motion in mechanical vibration problems where s(u) is a spring or restoring
ree, mu' is mass times acceleration, and bu'|u’| models water or air drag.

) Rewrite the equation for u as a system of two first-order ODEs, and discretize

1is system by a Crank-Nicolson (centered difference) method. With v = v/, we
. 1 1 . 1

ot a nonlinear term v"* 2 [v"T2|. Use a geometric average for v 2.

Shttp://tinyurl.com/nm5587k/nonlin/Newton_demo.py
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b) Formulate a Picard iteration method to solve the system of nonlinear a
equations.

¢) Explain how to apply Newton’s method to solve the nonlinear equa
each time level. Derive expressions for the Jacobian and the right-hanc
each Newton iteration.

Filename: nonlin_vib.pdf.

Exercise 5: Find the truncation error of arithmetic
of products

In Section 3.4 we introduce alternative arithmetic means of a product.
product is P(t)Q(t) evaluated at t = tny1- The exact value is

[PQ"+: = PriiQrts

There are two obvious candidates for evaluating [PQ]"*'% as a mean of 1
P and @ at t,, and t,1. Either we can take the arithmetic mean of eac

P and Q,
1
2

or we can take the arithmetic mean of the product PQ:

[PQI™E = (P 4+ PP Q1+ @),

[PQ}"JF% ~ (PnQn + Pn+lQn+1) )

N =

The arithmetic average of P(t,,1) is O(At?):

1
P(t,1) = §(P” + P + O(A).

A fundamental question is whether (92) and (93) have different orders of ¢
in At =t,41 — t,. To investigate this question, expand quantities at t.
tn in Taylor series around ¢,,, 1, and subtract the true value [PQ]™T 3 f
approximations (92) and (93) to see what the order of the error terms .

Hint. You may explore sympy for carrying out the tedious calculat
general Taylor series expansion of P(t + %At) around ¢ involving just a
function P(t) can be created as follows:

>>> from sympy import *

>>> t, dt = symbols(’t dt’)

>>> P = symbols(’P’, cls=Function)
>>> P(t).series(t, 0, 4)

P(0) + t*Subs(Derivative(P(_x), _x), (_x,), (0,)) +

t**2%Subs (Derivative (P(_x), _x, _x), (_x,), (0,))/2 +

t**3%Subs (Derivative (P(_x), _x, _x, _x), (_x,), (0,))/6 + 0(t**x4)
>>> P_p = P(t).series(t, 0, 4).subs(t, dt/2)

>>> P_p

P(0) + dt*Subs(Derivative(P(_x), _x), (_x,), (0,))/2 +
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1t**x2xSubs (Derivative(P(_x), _x, _x), (_x,), (0,))/8 +
it**3*Subs (Derivative(P(_x), _x, _x, _x), (_x,), (0,))/48 + 0(dt*x*4)

he error of the arithmetic mean

, 2(P(—3At) + P(—1At)) for t = 0 is then

>>> P_m = P(t).series(t, 0, 4).subs(t, -dt/2)

>>> mean = Rational(1,2)*(P_m + P_p)

»>> error = simplify(expand(mean) - P(0))

»>> error

1t**2*Subs (Derivative (P(_x), _x, _x), (_x,), (0,))/8 + 0(dt**4)

‘se these examples to investigate the error of (92) and (93) for n = 0. (Choosing
= 0 is necessary for making the expressions too complicated for sympy, but
1ere is of course no lack of generality by using n = 0 rather than an arbitrary n
the main point is the product and addition of Taylor series.)

ilename: product_arith_mean.py.

'roblem 6: Newton’s method for linear problems

uppose we have a linear system F(u) = Au — b = 0. Apply Newton’s method
» this system, and show that the method converges in one iteration. Filename:
ewton_linear.pdf.

xercise 7: Discretize a 1D problem with a nonlinear coef-
cient

/e consider the problem

(1+uHu') =1, 2€(0,1), u(0)=u(l)=0. (94)
) Discretize (94) by a centered finite difference method on a uniform mesh.

) Discretize (94) by a finite element method with P1 of equal length. Use the
rapezoidal method to compute all integrals. Set up the resulting matrix system
1 symbolic form such that the equations can be compared with those in a).
ilename: nonlin_1D_coeff_discretize.pdf.

xercise 8: Linearize a 1D problem with a nonlinear coeffi-
ient

/e have a two-point boundary value problem

(1+u?)') =1, x€(0,1), u0)=u(l)=0. (95)
) Construct a Picard iteration method for (95) without discretizing in space.
) Apply Newton’s method to (95) without discretizing in space.

) Discretize (95) by a centered finite difference scheme. Construct a Picard
iethod for the resulting system of nonlinear algebraic equations.
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d) Discretize (95) by a centered finite difference scheme. Define the
of nonlinear algebraic equations, calculate the Jacobian, and set up N
method for solving the system.

Filename: nonlin_1D_coeff_linearize.pdf.

Problem 9: Finite differences for the 1D Bratu prob]
We address the so-called Bratu problem

v + X =0, z€(0,1), u(0)=u(l)=0,

where A is a given parameter and u is a function of z. This is a widely use
problem for studying numerical methods for nonlinear differential eq
The problem (96) has an exact solution

cosh((z — ;>e/2>) |

te(x) = —2In ( cosh(6/4)

where 6 solves

0 = v2Xcosh(0/4) .

There are two solutions of (96) for 0 < A < A, and no solution for A >
A = A there is one unique solution. The critical value A. solves

1
1= \/2)\61 sinh(6(A;)/4) .
A numerical value is A. = 3.513830719.
a) Discretize (96) by a centered finite difference method.

b) Set up the nonlinear equations F;(ug, u1,...,uy,) = 0 from a). C
the associated Jacobian.

¢) Implement a solver that can compute u(z) using Newton’s method.
error as a function of x in each iteration.

d) Investigate whether Newton’s method gives second-order converg
computing ||ue — u||/||ue — u~||? in each iteration, where u is solutio
current iteration and u~ is the solution in the previous iteration.
Filenames: nonlin_1D_Bratu_fd.pdf, nonlin_1D_Bratu_£fd.py.

Problem 10: Integrate functions of finite element ¢
sions

We shall investigate integrals on the form

L
/0 1 urpr(@) i) de,
k
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here ¢;(x) are P1 finite element basis functions and uy, are unknown coefficients,
1ore precisely the values of the unknown function u at nodes x;. We introduce a
ode numbering that goes from left to right and also that all cells have the same
ngth h. Given 4, the integral only gets contributions from [x;_1,z;1+1]. On this
iterval @i (z) =0 for k <i—1and k > i+ 1, so only three basis functions will
mtribute:

Zuk@k(x) = Uj—10i-1(2) + uipi(2) + uit19i41(2) -
k

he integral (97) now takes the simplified form

/ i1 Flui—1i—1(x) + uipi(x) + Uip10i41(x) )i () do

Ti—1

plit this integral in two integrals over cell L (left), [z;—_1,z;], and cell R (right),
5, Zig1]. Over cell L, u simplifies to u;—1pi—1 + u;ip; (since ¢;11 = 0 on this
2ll), and over cell R, u simplifies to u;@; + w;r1¢;+1. Make a sympy program
1at can compute the integral and write it out as a difference equation. Give
1e f(u) formula on the command line. Try out f(u) = u?,sinu,exp u.

[int. Introduce symbols u_i, u_iml, and u_ip1 for w;, u;—1, and u;yq, re-
sectively, and similar symbols for x;, x;_1, and z;y;. Find formulas for the
asis functions on each of the two cells, make expressions for u on the two cells,
itegrate over each cell, expand the answer and simplify. You can ask sympy for
TEX code and render it either by creating a I¥TEX document and compiling it
> a PDF document or by using http://latex.codecogs.com to display IXTEX
rmulas in a web page. Here are some appropriate Python statements for the
itter purpose:

rom sympy import *

t expr_i holdes the integral as a sympy expression
latex_code = latex(expr_i, mode=’plain’)

t Replace u_iml sympy symbol name by latex symbol u_{i-1}
latex_code = latex_code.replace(’iml’, ’{i-1}’)

t Replace u_ipl sympy symbol name by latex symbol u_{i+1}
latex_code = latex_code.replace(’ipl’, ’{i+1}’)

t Escape (quote) latex_code so it can be sent as HTML text
import cgi

1tml_code = cgi.escape(latex_code)

t Make a file with HTML code for displaying the LaTeX formula
I = open(’tmp.html’, ’w’)

t Include an image that can be clicked on to yield a new

t page with an interactive editor and display area where the
t formula can be further edited

:ext = nnn

{a href="http://www.codecogs.com/eqnedit.php?latex=% (html_code)s"
target="_blank">

{img src="http://latex.codecogs.com/gif.latex?% (html_code)s"
title="%(latex_code)s"/>

Ja>

nnn % vars()
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f.write(text)
f.close()

The formula is displayed by loading tmp.html into a web browser.
Filename: fu_fem_int.py.

Problem 11: Finite elements for the 1D Bratu probl
We address the same 1D Bratu problem as described in Problem 9.

a) Discretize (11) by a finite element method using a uniform mesh
elements. Use a group finite element method for the e* term.

b) Set up the nonlinear equations F;(ug,u1,...,un,) = 0 from a). C
the associated Jacobian.
Filename: nonlin_1D_Bratu_fe.pdf.

Exercise 12: Discretize a nonlinear 1D heat cond:
PDE by finite differences

We address the 1D heat conduction PDE

oc(T)Ty = (K(T)Te)as

for x € [0, L], where p is the density of the solid material, ¢(T) is t
capacity, T is the temperature, and k(T') is the heat conduction co
T(x,0) = I(z), and ends are subject to a cooling law:

KD Telemo = H(I)T = T.), k(D) Tols = H(I)(T = T.),

where h(T) is a heat transfer coefficient and T is the given surrounding
ature.

a) Discretize this PDE in time using either a Backward Euler or Crank-]
scheme.

b) Formulate a Picard iteration method for the time-discrete problem
iteration method before discretizing in space).

c) Formulate a Newton method for the time-discrete problem in b).

d) Discretize the PDE by a finite difference method in space. Derive th
and right-hand side of a Picard iteration method applied to the spe
discretized PDE.

e) Derive the matrix and right-hand side of a Newton method applies
discretized PDE in d).
Filename: nonlin_1D_heat_FD.pdf.
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xercise 13: Use different symbols for different approxima-
ions of the solution

he symbol u has several meanings, depending on the context, as briefly men-
oned in Section 5.1. Go through the derivation of the Picard iteration method
1 that section and use different symbols for all the different approximations of

e uc(x,t) for the exact solution of the PDE problem

e uc(x)" for the exact solution after time discretization

e u"(x) for the spatially discrete solution }_, ¢;1;

e u™* for approximation in Picard/Newton iteration no k to u"(x)

ilename: nonlin_heat_FE_usymbols.pdf.

xercise 14: Derive Picard and Newton systems from a
ariational form

/e study the multi-dimensional heat conduction PDE

0c(T) Ty =V - (K(T)VT)
1 a spatial domain 2, with a nonlinear Robin boundary condition

or
on
t the boundary 9€2. The primary unknown is the temperature T', g is the density
f the solid material, ¢(T') is the heat capacity, k(T') is the heat conduction, h(T)
a heat transfer coefficient, and T(7') is a possibly time-dependent temperature
f the surroundings.

—k(T) hT)NT = Tu(t)),

) Use a Backward Euler or Crank-Nicolson time discretization and derive the
ariational form for the spatial problem to be solved at each time level.

) Define a Picard iteration method from the variational form at a time level.

) Derive expressions for the matrix and the right-hand side of the equation
s/stem that arises from applying Newton’s method to the variational form at a
me level.

) Apply the Backward Euler or Crank-Nicolson scheme in time first. Derive
Newton method at the PDE level. Make a variational form of the resulting
DE at a time level.

ilename: nonlin_heat_FE.pdf.
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Exercise 15: Derive algebraic equations for nonline
heat conduction

We consider the same problem as in Exercise 14, but restricted to one ¢
mension: ) = [0, L]. Simplify the boundary condition to T, = 0 (i.e., h(
Use a uniform finite element mesh of P1 elements, the group finite
method, and the Trapezoidal rule for integration at the nodes to deri
bolic expressions for the algebraic equations arising from this diffusion |
Filename: nonlin_1D_heat_FE.pdf.

Exercise 16: Differentiate a highly nonlinear term

The operator V - (a(u)Vu) with a(u) = |Vu|? appears in several |
problems, especially flow of Non-Newtonian fluids. The expression
defined as the Eucledian norm of a vector: |Vu|? = Vu - Vu. In a
method one has to carry out the differentiation da(u)/dc;, for u =
Show that

0
6—uj|Vu\q = q|Vul??Vu - Vi; .

Filename: nonlin_differentiate.pdf.

Exercise 17: Crank-Nicolson for a nonlinear 3D dif
equation

Redo Section 5.2 when a Crank-Nicolson scheme is used to discretize the ec
in time and the problem is formulated for three spatial dimensions.

Hint. Express the Jacobian as J; j k.rs: = OF; jk/Our s and obsery
the 2D case, that J; j s, is very sparse: J; g rs: 7 0 only for r
s=j+l,andt=k+tlaswellasr =1, s=j,and t = k.

Filename: nonlin_heat_FD_CN_2D.pdf.

Exercise 18: Find the sparsity of the Jacobian

Consider a typical nonlinear Laplace term like V- a(u)Vu discretized by «
finite differences. Explain why the Jacobian corresponding to this term
same sparsity pattern as the matrix associated with the correspondin
term aV2u.

Hint. Set up the unknowns that enter the difference equation at a po
in 2D or (4,4, k) in 3D, and identify the nonzero entries of the Jacobian 1
arise from such a type of difference equation.
Filename: nonlin_sparsity_Jacobian.pdf.
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'roblem 19: Investigate a 1D problem with a continuation
rethod

low of a pseudo-plastic power-law fluid between two flat plates can be modeled

y
a
dx Ho

here 5 > 0 and pg > 0 are constants. A target value of n may be n = 0.2.

n—1
du

dr

du
dx

) =8, u(0)=0, u(H)=0,

) Formulate a Picard iteration method directly for the differential equation
roblem.

) Perform a finite difference discretization of the problem in each Picard
eration. Implement a solver that can compute u on a mesh. Verify that the
slver gives an exact solution for n = 1 on a uniform mesh regardless of the cell
ze.

) Given a sequence of decreasing n values, solve the problem for each n
sing the solution for the previous n as initial guess for the Picard iteration.
his is called a continuation method. Experiment with n = (1,0.6,0.2) and
= (1,0.9,0.8,...,0.2) and make a table of the number of Picard iterations
3rSus 7M.

) Derive a Newton method at the differential equation level and discretize the
sulting linear equations in each Newton iteration with the finite difference
tethod.

) Investigate if Newton’s method has better convergence properties than Picard
eration, both in combination with a continuation method.
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