
Study guide: Solving nonlinear ODE and PDE
problems

Hans Petter Langtangen1,2

Center for Biomedical Computing, Simula Research Laboratory1

Department of Informatics, University of Oslo2

Dec 14, 2014

What makes a di�erential equations nonlinear?

In linear di�erential equations, the unknown u or its derivatives
appear in linear terms au(t), au′(t), a∇2u, where a is
independent of u.

All other types of terms containing u are nonlinear and contain
products of u or its derivatives.

Examples on linear and nonlinear di�erential equations

Linear ODE:

u′(t) = a(t)u(t) + b(t)

Nonlinear ODE:

u′(t) = u(t)(1− u(t)) = u(t)− u(t)2

This (pendulum) ODE is also nonlinear:

u′′ + γ sin u = 0

because

sin u = u − 1

6
u3 +O(u5),

contains products of u

Introduction of basic concepts

Logistic ODE as simple model for a nonlinear problem

Introduction of basic techniques:

Explicit time integration (no nonlinearities)
Implicit time integration (nonlinearities)
Linearization and Picard iteration
Linearization via Newton's method
Linearization via a trick like geometric mean

Numerical illustration of the performance

The scaled logistic ODE

u′(t) = u(t)(1− u(t)) = u − u2

Linearization by explicit time discretization

Forward Euler method:

un+1 − un

∆t
= un(1− un)

gives a linear algebraic equation for the unknown value un+1!

Explicit time integration methods will (normally) linearize a
nonlinear problem.

Another example: 2nd-order Runge-Kutta method

u∗ = un + ∆tun(1− un),

un+1 = un + ∆t
1

2
(un(1− un) + u∗(1− u∗))) .

An implicit method: Backward Euler discretization

A backward time di�erence

un − un−1

∆t
= un(1− un)

gives a nonlinear algebraic equation for the unknown un. The
equation is of quadratic type (which can easily be solved exactly):

∆t(un)2 + (1−∆t)un − un−1 = 0

Detour: new notation

To make formulas less overloaded and the mathematics as close as
possible to computer code, a new notation is introduced:

u(1) means un−1

In general: u(`) means un−`

u is the unknown (un)

Nonlinear equation to solve in new notation:

F (u) = ∆tu2 + (1−∆t)u − u(1) = 0

Exact solution of quadratic nonlinear equations

Solution of F (u) = 0:

u =
1

2∆t

(
−1 + ∆t ±

√
(1−∆t)2 − 4∆tu(1)

)

Observation:

Nonlinear algebraic equations may have multiple solutions!

How do we pick the right solution in this case?

Let's investigate the nature of the two roots:

>>> import sympy as sp
>>> dt, u_1, u = sp.symbols('dt u_1 u')
>>> r1, r2 = sp.solve(dt*u**2 + (1-dt)*u - u_1, u) # find roots
>>> r1
(dt - sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> r2
(dt + sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> print r1.series(dt, 0, 2)
-1/dt + 1 - u_1 + dt*(u_1**2 - u_1) + O(dt**2)
>>> print r2.series(dt, 0, 2)
u_1 + dt*(-u_1**2 + u_1) + O(dt**2)

The r1 root behaves as 1/∆t →∞ as ∆t → 0! Therefore, only
the r2 root is of relevance.

Linearization

In general, we cannot solve nonlinear algebraic equations with
formulas

We must linearize the equation, or create a recursive set of
linearized equations whose solutions hopefully converge to the
solution of the nonlinear equation

Manual linearization may be an art

Automatic linearization is possible (cf. Newton's method)

Examples will illustrate the points!

Picard iteration

Nonliner equation from Backward Euler scheme for logistic ODE:

F (u) = au2 + bu + c = 0

Let u− be an available approximation of the unknown u.

Linearization of u2: u−u

F (u) ≈ F̂ (u) = au−u + bu + c = 0

But

Problem: the solution u of F̂ (u) = 0 is not the exact solution
of F (u) = 0

Solution: set u− = u and repeat the procedure

The algorithm of Picard iteration

At a time level, set u− = u(1) (solution at previous time level) and
iterate:

u = − c

au− + b
, u− ← u

This technique is known as

�xed-point iteration

successive substitutions

nonlinear Richardson iteration

Picard iteration

The algorithm of Picard iteration with classical math
notation

uk : computed approximation in iteration k

uk+1 is the next approximation (unknown)

aukuk+1 +buk+1 +c = 0 ⇒ uk+1 = − c

auk + b
, k = 0, 1, . . .

Or with a time level n too:

aun,kun,k+1+bun,k+1−un−1 = 0 ⇒ un,k+1 =
un−1

aun,k + b
, k = 0, 1, . . .

Stopping criteria

Using change in solution:

|u − u−| ≤ εu

or change in residual:

|F (u)| = |au2 + bu + c | < εr

A single Picard iteration

Common simple and cheap technique: perform 1 single Picard
iteration

un − un−1

∆t
= un(1− un−1)

Inconsistent time discretization (u(1− u) must be evaluated for n,
n − 1, or n − 1

2) - can produce quite inaccurate results, but is very
popular.

Implicit Crank-Nicolson discretization

Crank-Nicolson discretization:

[Dtu = u(1− u)]n+ 1

2

un+1 − un

∆t
= un+ 1

2 − (un+ 1

2)2

Approximate un+ 1

2 as usual by an arithmetic mean,

un+ 1

2 ≈ 1

2
(un + un+1)

(un+ 1

2)2 ≈ 1

4
(un + un+1)2 (nonlinear term)

which is nonlinear in the unknown un+1.

Linearization by a geometric mean

Using a geometric mean for (un+ 1

2)2 linearizes the nonlinear term

(un+ 1

2)2 (error O(∆t2) as in the discretization of u′):

(un+ 1

2)2 ≈ unun+1

Arithmetic mean on the linear un+ 1

2 term and a geometric mean for

(un+ 1

2)2 gives a linear equation for un+1:

un+1 − un

∆t
=

1

2
(un + un+1) + unun+1

Note: Here we turned a nonlinear algebraic equation into a linear
one. No need for iteration! (Consistent O(∆t2) approx.)

Newton's method

Write the nonlinear algebraic equation as

F (u) = 0

Newton's method: linearize F (u) by two terms from the Taylor
series,

F (u) = F (u−) + F ′(u−)(u − u−) +
1

2
F ′′(u−)(u − u−)2 + · · ·

≈ F (u−) + F ′(u−)(u − u−) ≡ F̂ (u)

The linear equation F̂ (u) = 0 has the solution

u = u− − F (u−)

F ′(u−)

Note that F̂ in Picard and Newton are di�erent!

Newton's method with an iteration index

uk+1 = uk − F (uk)

F ′(uk)
, k = 0, 1, . . .

Newton's method exhibits quadratic convergence if uk is su�ciently
close to the solution. Otherwise, the method may diverge.

Using Newton's method on the logistic ODE

F (u) = au2 + bu + c

F ′(u) = 2au + b

The iteration method becomes

u = u− +
a(u−)2 + bu− + c

2au− + b
, u− ← u

Start of iteration: u− = u(1)

Using Newton's method on the logistic ODE with typical
math notation

Set iteration start as un,0 = un−1 and iterate with explicit indices
for time (n) and Newton iteration (k):

un,k+1 = un,k +
∆t(un,k)2 + (1−∆t)un,k − un−1

2∆tun,k + 1−∆t

Compare notation with

u = u− +
∆t(u−)2 + (1−∆t)u− − u(1)

2∆tu− + 1−∆t

Relaxation may improve the convergence

Problem: Picard and Newton iteration may change the
solution too much

Remedy: relaxation (less change in the solution)

Let u∗ be the suggested new value from Picard or Newton
iteration

Relaxation with relaxation parameter ω (weight old and new value):

u = ωu∗ + (1− ω)u−, ω ≤ 1

Simple formula when used in Newton's method:

u = u− − ω F (u−)

F ′(u−)

Implementation; part 1

Program logistic.py

def BE_logistic(u0, dt, Nt, choice='Picard',
eps_r=1E-3, omega=1, max_iter=1000):

if choice == 'Picard1':
choice = 'Picard'; max_iter = 1

u = np.zeros(Nt+1)
iterations = []
u[0] = u0
for n in range(1, Nt+1):

a = dt
b = 1 - dt
c = -u[n-1]

if choice == 'Picard':

def F(u):
return a*u**2 + b*u + c

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = omega*(-c/(a*u_ + b)) + (1-omega)*u_
k += 1

u[n] = u_
iterations.append(k)

Implementation; part 2

def BE_logistic(u0, dt, Nt, choice='Picard',
eps_r=1E-3, omega=1, max_iter=1000):

...
elif choice == 'Newton':

def F(u):
return a*u**2 + b*u + c

def dF(u):
return 2*a*u + b

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = u_ - F(u_)/dF(u_)
k += 1

u[n] = u_
iterations.append(k)

return u, iterations

Implementation; part 3

The Crank-Nicolson method with a geometric mean:

def CN_logistic(u0, dt, Nt):
u = np.zeros(Nt+1)
u[0] = u0
for n in range(0, Nt):

u[n+1] = (1 + 0.5*dt)/(1 + dt*u[n] - 0.5*dt)*u[n]
return u

Experiments: accuracy of iteration methods

0 1 2 3 4 5 6 7 8 9
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

u

dt=0.9, eps=5E-02

FE
BE exact
BE Picard
BE Picard1
BE Newton
CN gm

0 1 2 3 4 5 6 7 8 9
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

u

dt=0.9, eps=1E-03

FE
BE exact
BE Picard
BE Picard1
BE Newton
CN gm

0 1 2 3 4 5 6 7 8 9
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

u

dt=0.45, eps=1E-03

FE
BE exact
BE Picard
BE Picard1
BE Newton
CN gm

0 1 2 3 4 5 6 7 8 9
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
u

dt=0.09, eps=1E-04

FE
BE exact
BE Picard
BE Picard1
BE Newton
CN gm

Figure : The impact of solution strategies and for four di�erent time step
lengths on the solution.

Experiments: number of iterations

2 4 6 8 10
Time level

0

2

4

6

8

10

12

No
 o

f i
te

ra
tio

ns

dt=0.9, eps=5E-02

Picard
Newton

2 4 6 8 10
Time level

0

5

10

15

20

25

30

35

40

No
 o

f i
te

ra
tio

ns

dt=0.9, eps=1E-03

Picard
Newton

5 10 15 20
Time level

0

1

2

3

4

5

6

No
 o

f i
te

ra
tio

ns

dt=0.45, eps=1E-03

Picard
Newton

20 40 60 80 100
Time level

0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
 o

f i
te

ra
tio

ns

dt=0.09, eps=1E-04

Picard
Newton

Figure : Comparison of the number of iterations at various time levels for
Picard and Newton iteration.

The e�ect of relaxation can potentially be great!

∆t = 0.9: Picard required 32 iterations on average

ω = 0.8: 7 iterations

ω = 0.5: 2 iterations (!) - optimal choice

Other ω = 1 experiments:

∆t εr Picard Newton

0.2 10
−7

5 2

0.2 10
−3

2 1

0.4 10
−7

12 3

0.4 10
−3

4 2

0.8 10
−7

58 3

0.8 10
−3

4 2

Generalization to a general nonlinear ODE

u′ = f (u, t)

Note: f is in general nonlinear in u so the ODE is nonlinear

Explicit time discretization

Forward Euler and all explicit methods sample f with known values
and all nonlinearities are gone:

un+1 − un

∆t
= f (un, tn)

Backward Euler discretization

Backward Euler [D−t u = f]n leads to nonlinear algebraic equations:

F (un) = un −∆t f (un, tn)− un−1 = 0

Alternative notation:

F (u) = u −∆t f (u, tn)− u(1) = 0

Picard iteration for Backward Euler scheme

A simple Picard iteration, not knowing anything about the
nonlinear structure of f , must approximate f (u, tn) by f (u−, tn):

F̂ (u) = u −∆t f (u−, tn)− u(1)

The iteration starts with u− = u(1) and proceeds with repeating

u∗ = ∆t f (u−, tn) + u(1), u = ωu∗ + (1− ω)u−, u− ← u

until a stopping criterion is ful�lled.

Manual linearization for a given f (u, t)

f (u−, t): explicit treatment of f
(as in time-discretization)

f (u, t): fully implicit treatment of f

If f has some structure, say f (u, t) = u3, we may think of a
partially implicit treatment: (u−)2u

More implicit treatment of f often gives faster convergence
(as it gives more stable time discretizations)

Trick for partially implicit treatment of a general f (u, t):

f (u−, t)
u

u−1

(Idea: u ≈ u−)

Computational experiments with partially implicit treatment
of f

f (u, t) = −u3:
(u−)3 linearization: 22, 9, 6 iterations
(u−)2u linearization: 8, 5, 4 iterations

f (u, t) = e−u: a trick f (u−, t)u/u− has no e�ect

f (u, t) = sin(2(u + 1)): a trick f (u−, t)u/u− has e�ect
(7, 9, 11 iterations vs 17, 21, 20)

Newton's method for Backward Euler scheme

Newton's method requires the computation of the derivative

F ′(u) = 1−∆t
∂f

∂u
(u, tn)

Algorithm for Newton's method for u′ = f (u, t)

Start with u− = u(1), then iterate

u = u− − ω F (u−)

F ′(u−)
= u− − ωu

(1) + ∆t f (u−, tn)

1−∆t ∂∂u f (u−, tn)

Crank-Nicolson discretization

The standard Crank-Nicolson scheme with arithmetic mean
approximation of f reads

un+1 − un

∆t
=

1

2
(f (un+1, tn+1) + f (un, tn))

Nonlinear algebraic equation:

F (u) = u − u(1) −∆t
1

2
f (u, tn+1)−∆t

1

2
f (u(1), tn) = 0

Picard and Newton iteration in the Crank-Nicolson case

Picard iteration (for a general f):

F̂ (u) = u − u(1) −∆t
1

2
f (u−, tn+1)−∆t

1

2
f (u(1), tn)

Newton's method:

F (u) = u − u(1) −∆t
1

2
f (u, tn+1)−∆t

1

2
f (u(1), tn)

F ′(u) = 1− 1

2
∆t

∂f

∂u
(u, tn+1)

Systems of ODEs

d

dt
u0(t) = f0(u0(t), u1(t), . . . , uN(t), t)

d

dt
u1(t) = f1(u0(t), u1(t), . . . , uN(t), t),

...

d

dt
uN(t) = fN(u0(t), u1(t), . . . , uN(t), t)

Introduce vector notation:

u = (u0(t), u1(t), . . . , uN(t))

(f0(u, t), f1(u, t), . . . , fN(u, t))

Vector form:

u′ = f (u, t), u(0) = U0

Schemes: apply scalar scheme to each component

A Backward Euler scheme for the vector ODE u′ = f (u, t)

un0 − un−10

∆t
= f0(un, tn)

un1 − un−11

∆t
= f1(un, tn)

...

unN − un−1N

∆t
= fN(un, tn)

This can be written more compactly in vector form as

un − un−1

∆t
= f (un, tn)

This is a system of nonlinear algebraic equations,

un −∆t f (un, tn)− un−1 = 0,

or written out

un0 −∆t f0(un, tn)− un−10 = 0,

...

unN −∆t fN(un, tn)− un−1N = 0 .

Example: Crank-Nicolson scheme for the oscillating
pendulum model

The scaled equations for an oscillating pendulum:

ω̇ = − sin θ − βω|ω|, (1)

θ̇ = omega, (2)

Set u0 = ω, u1 = θ

u′0 = f0(u, t) = − sin u1 − βu0|u0|,
u′1 = f1(u, t) = u1 .

Crank-Nicolson discretization:

un+1
0 − un0

∆t
= − sin u

n+ 1

2

1 − βun+ 1

2

0 |un+ 1

2

0 | ≈ − sin

(
1

2
(un+1

1 + u1n)

)
− β 1

4
(un+1

0 + un0)|un+1
0 + un0 |,

(3)

un+1
1 − un1

∆t
= v

n+ 1

2

0 ≈ 1

2
(un+1

0 + un0) . (4)

The nonlinear 2× 2 system

Introduce u0 and u1 for un+1
0 and un+1

1 , write u
(1)
0 and u

(1)
1 for un0

and un1 , and rearrange:

F0(u0, u1) = u0 − u
(1)
0 + ∆t sin

(
1

2
(u1 + u

(1)
1)

)
+

1

4
∆tβ(u0 + u

(1)
0)|u0 + u

(1)
0 | = 0

F1(u0, u1) = u1 − u
(1)
1 −

1

2
∆t(u0 + u

(1)
0) = 0

Systems of nonlinear algebraic equations

x cos y + y3 = 0

y2ex + xy = 2

Systems of nonlinear algebraic equations arise from solving systems

of ODEs or solving PDEs

Notation for general systems of algebraic equations

F (u) = 0

where

u = (u0, . . . , uN), F = (F0, . . . ,FN)

Special linear system-type structure
(arises frequently in PDE problems):

A(u)u = b(u)

Picard iteration

Picard iteration for F (u) = 0 is meaningless unless there is some
structure so we can linearize. For A(u)u = b(u) we can linearize

A(u−)u = b(u−)

Note: we solve a system of nonlinear algebraic equations as a
sequence of linear systems.

Algorithm for relaxed Picard iteration

Given A(u)u = b(u) and an initial guess u−, iterate until
convergence:

1 solve A(u−)u∗ = b(u−) with respect to u∗

2 u = ωu∗ + (1− ω)u−

3 u− ← u

�Until convergence�: ||u − u−|| ≤ εu or ||A(u)u − b|| ≤ εr

Newton's method for F (u) = 0

Linearization of F (u) = 0 equation via multi-dimensional Taylor
series:

F (u) = F (u−) + J(u−) · (u − u−) +O(||u − u−||2)

where J is the Jacobian of F , sometimes denoted ∇uF , de�ned by

Ji ,j =
∂Fi
∂uj

Approximate the original nonlinear system F (u) = 0 by

F̂ (u) = F (u−) + J(u−) · δu = 0, δu = u − u−

which is linear vector equation in u

Algorithm for Newton's method

F (u−)vector + J(u−)matrix · δuvector = 0

Solution by a two-step procedure:

1 solve linear system J(u−)δu = −F (u−) wrt δu

2 update u = u− + δu

Relaxed update:

u = ω(u− + δu) + (1− ω)u− = u− + ωδu

Newton's method for A(u)u = b(u)

For

Fi =
∑

k

Ai ,k(u)uk − bi (u)

one gets

Ji ,j =
∂Fi
∂uj

=
∑

k

∂Ai ,k

∂uj
uk + Ai ,j −

∂bi
∂uj

Matrix form:

(A + A′u + b′)δu = −Au + b

(A(u−) + A′(u−)u− + b′(u−))δu = −A(u−)u− + b(u−)

Comparison of Newton and Picard iteration

Newton:

(A(u−) + A′(u−)u− + b′(u−))δu = −A(u−)u− + b(u−)

Rewrite:

A(u−)(u− + δu)− b(u−)︸ ︷︷ ︸
Picard system

+ γ(A′(u−)u− + b′(u−))δu = 0

All the �Picard terms� are contained in the Newton formulation.

Combined Picard-Newton algorithm

Idea:

Write a common Picard-Newton algorithm so we can trivially
switch between the two methods (e.g., start with Picard, get faster
convergence with Newton when u is closer to the solution)

Algorithm:

Given A(u), b(u), and an initial guess u−, iterate until convergence:

1 solve (A + γ(A′(u−)u− + b′(u−)))δu = −A(u−)u− + b(u−)
with respect to δu

2 u = u− + ωδu

3 u− ← u

Note:

γ = 1: Newton's method

γ = 0: Picard iteration

Stopping criteria

Let || · || be the standard Eucledian vector norm. Several
termination criteria are much in use:

Absolute change in solution: ||u − u−|| ≤ εu
Relative change in solution: ||u − u−|| ≤ εu||u0||, where u0
denotes the start value of u− in the iteration

Absolute residual: ||F (u)|| ≤ εr
Relative residual: ||F (u)|| ≤ εr ||F (u0)||
Max no of iterations: stop when k > kmax

Combination of absolute and relative stopping criteria

Problem with relative criterion: a small ||F (u0)|| (because u0 ≈ u,
perhaps because of small ∆t) must be signi�cantly reduced. Better
with absolute criterion.

Can make combined absolute-relative criterion

εrr : tolerance for relative part

εra: tolerance for absolute part

||F (u)|| ≤ εrr ||F (u0)||+ εra

||F (u)|| ≤ εrr ||F (u0)||+εra or ||δu|| ≤ εur ||u0||+εua or k > kmax

Example: A nonlinear ODE model from epidemiology

Spreading of a disease (e.g., a �u) can be modeled by a 2× 2 ODE
system

S ′ = −βSI
I ′ = βSI − νI

Here:

S(t) is the number of people who can get ill (susceptibles)

I (t) is the number of people who are ill (infected)

Must know β > 0 (danger of getting ill) and
ν > 0 (1/ν: expected recovery time)

Implicit time discretization

A Crank-Nicolson scheme:

Sn+1 − Sn

∆t
= −β[SI]n+ 1

2 ≈ −β
2

(SnI n + Sn+1I n+1)

I n+1 − I n

∆t
= β[SI]n+ 1

2 − νI n+ 1

2 ≈ β

2
(SnI n + Sn+1I n+1)− ν

2
(I n + I n+1)

New notation: S for Sn+1, S (1) for Sn, I for I n+1, I (1) for I n

FS(S , I) = S − S (1) +
1

2
∆tβ(S (1)I (1) + SI) = 0

FI (S , I) = I − I (1) − 1

2
∆tβ(S (1)I (1) + SI)− 1

2
∆tν(I (1) + I) = 0

A Picard iteration

We have approximations S− and I− to S and I .

Linearize SI in S ODE as I−S (linear equation in S!)

Linearize SI in I ODE as S−I (linear equation in I !)

S =
S (1) − 1

2∆tβS (1)I (1)

1 + 1
2∆tβI−

I =
I (1) + 1

2∆tβS (1)I (1)

1− 1
2∆tβS− + ν

Before a new iteration: S− ← S and I− ← I

Newton's method

F (u) = 0, F = (FS ,FI), u = (S , I)

Jacobian:

J =

∂
∂S FS

∂
∂I FS

∂
∂S FI

∂
∂I FI

 =

1 + 1
2∆tβI 1

2∆tβ

−1
2∆tβS 1− 1

2∆tβI − 1
2∆tν

Newton system: J(u−)δu = −F (u−)

(
1 + 1

2∆tβI− 1
2∆tβS−

−1
2∆tβS− 1− 1

2∆tβI− − 1
2∆tν

)(
δS
δI

)
=

(
S− − S (1) + 1

2∆tβ(S (1)I (1) + S−I−)

I− − I (1) − 1
2∆tβ(S (1)I (1) + S−I−)− 1

2∆tν(I (1) + I−)

)

Actually no need to bother with nonlinear algebraic
equations for this particular model...

Remark:

For this particular system of ODEs, explicit time integration
methods work very well. Even a Forward Euler scheme is �ne, but
the 4-th order Runge-Kutta method is an excellent balance between
high accuracy, high e�ciency, and simplicity.

Linearization at the di�erential equation level

Goal: linearize a PDE like

∂u

∂t
= ∇ · (α(u)∇u) + f (u)

PDE problem

∂u

∂t
= ∇ · (α(u)∇u) + f (u), x ∈ Ω, t ∈ (0,T]

−α(u)
∂u

∂n
= g , x ∈ ∂ΩN , t ∈ (0,T]

u = u0, x ∈ ∂ΩD , t ∈ (0,T]

Explicit time integration

Explicit time integration methods remove the nonlinearity

Forward Euler method:

[D+
t u = ∇ · (α(u)∇u) + f (u)]n

un+1 − un

∆t
= ∇ · (α(un)∇un) + f (un)

This is a linear equation in the unknown un+1(x), with solution

un+1 = un + ∆t∇ · (α(un)∇un) + ∆tf (un)

Disadvantage: ∆t ≤ (maxα)−1(∆x2 + ∆y2 + ∆z2)

Backward Euler scheme

Backward Euler scheme:

[D−t u = ∇ · (α(u)∇u) + f (u)]n

Written out:

un − un−1

∆t
= ∇ · (α(un)∇un) + f (un)

This is a nonlinear, stationary PDE for the unknown function un(x)

Picard iteration for Backward Euler scheme

We have

un − un−1

∆t
= ∇ · (α(un)∇un) + f (un)

Picard iteration:

un,k+1 − un−1

∆t
= ∇ · (α(un,k)∇un,k+1) + f (un,k)

Start iteration with un,0 = un−1

Picard iteration with alternative notation

un,k+1 − un−1

∆t
= ∇ · (α(un,k)∇un,k+1) + f (un,k)

Rewrite with a simpli�ed, implementation-friendly notation:

u means the unknown un,k+1 to solve for

u− means the most recent approximation to u

u(1) means un−1 (u(`) means un−`)

u − u(1)

∆t
= ∇ · (α(u−)∇u) + f (u−)

Start iteration with u− = u(1); update with u− to u.

Backward Euler scheme and Newton's method

Normally, Newton's method is de�ned for systems of alge-
braic equations, but the idea of the method can be applied
at the PDE level too!

Let un,k be an approximation to the unknown un. We seek a better
approximation

un = un,k + δu

Insert un = un,k + δu in the PDE

Taylor expand the nonlinearities and keep only terms that are
linear in δu

Result: linear PDE for the approximate correction δu

Calculation details of Newton's method at the PDE level

Insert un,k + δu for un in PDE:

un,k + δu − un−1

∆t
= ∇ · (α(un,k + δu)∇(un,k + δu)) + f (un,k + δu)

Taylor expand α(un,k + δu) and f (un,k + δu):

α(un,k + δu) = α(un,k) +
dα

du
(un,k)δu +O(δu2) ≈ α(un,k) + α′(un,k)δu

f (un,k + δu) = f (un,k) +
df

du
(un,k)δu +O(δu2) ≈ f (un,k) + f ′(un,k)δu

Calculation details of Newton's method at the PDE level

Inserting linear approximations of α and f :

un,k + δu − un−1

∆t
= ∇ · (α(un,k)∇un,k) + f (un,k)+

∇ · (α(un,k)∇δu) +∇ · (α′(un,k)δu∇un,k)+

∇ · (α′(un,k) δu∇δu︸ ︷︷ ︸
dropped

) + f ′(un,k)δu

Note: α′(un,k)δu∇δu is O(δu2) and therefore omitted.

Result of Newton's method at the PDE level

δF (δu; un,k) = −F (un,k)

with

F (un,k) =
un,k − un−1

∆t
−∇ · (α(un,k)∇un,k) + f (un,k)

δF (δu; un,k) = − 1

∆t
δu +∇ · (α(un,k)∇δu)+

∇ · (α′(un,k)δu∇un,k) + f ′(un,k)δu

Note:

δF is linear in δu

F contains only known terms

Similarity with Picard iteration

Rewrite the PDE for δu using un,k + δu = un,k+1:

un,k+1 − un−1

∆t
= ∇ · (α(un,k)∇un,k+1) + f (un,k)

+∇ · (α′(un,k)δu∇un,k) + f ′(un,k)δu

Note:

The �rst line is the same PDE as arise in the Picard iteration

The remaining terms arise from the di�erentiations in
Newton's method

Using new notation for implementation

u for un

u− for un,k

u(1) for un−1

δF (δu; u−) = −F (u−) (PDE)

F (u−) =
u− − u(1)

∆t
−∇ · (α(u−)∇u−) + f (u−)

δF (δu; u−) = − 1

∆t
δu +∇ · (α(u−)∇δu) +

∇ · (α′(u−)δu∇u−) + f ′(u−)δu

Combined Picard and Newton formulation

u − u(1)

∆t
= ∇ · (α(u−)∇u) + f (u−)+

γ(∇ · (α′(u−)(u − u−)∇u−) + f ′(u−)(u − u−))

Observe:

γ = 0: Picard iteration

γ = 1: Newton's method

Why is this formulation convenient? Easy to switch (start with
Picard, use Newton close to solution)

Crank-Nicolson discretization

Crank-Nicolson discretization applies a centered di�erence at tn+ 1

2

:

[Dtu = ∇ · (α(u)∇u) + f (u)]n+ 1

2 .

Many choices of formulating an arithmetic means:

[f (u)]n+ 1

2 ≈ f (
1

2
(un + un+1)) = [f (ut)]n+ 1

2

[f (u)]n+ 1

2 ≈ 1

2
(f (un) + f (un+1)) = [f (u)

t
]n+ 1

2

[α(u)∇u]n+ 1

2 ≈ α(
1

2
(un + un+1))∇(

1

2
(un + un+1)) = α(ut)∇ut]n+ 1

2

[α(u)∇u]n+ 1

2 ≈ 1

2
(α(un) + α(un+1))∇(

1

2
(un + un+1)) = [α(u)

t∇ut]n+ 1

2

[α(u)∇u]n+ 1

2 ≈ 1

2
(α(un)∇un + α(un+1)∇un+1) = [α(u)∇ut]n+ 1

2

Arithmetic means: which variant is best?

Is there any di�erences in accuracy between

1 two factors of arithmetic means

2 the arithmetic mean of a product

More precisely,

[PQ]n+ 1

2 = Pn+ 1

2Qn+ 1

2 ≈ 1

2
(Pn + Pn+1)

1

2
(Qn + Qn+1)

[PQ]n+ 1

2 ≈ 1

2
(PnQn + Pn+1Qn+1)

It can be shown (by Taylor series around tn+ 1

2

) that both

approximations are O(∆t2)

Solution of nonlinear equations in the Crank-Nicolson
scheme

No big di�erence from the Backward Euler case, just more terms:

Identify the F (u) = 0 for the unknown un+1

Apply Picard iteration or Newton's method to the PDE

Identify the sequence of linearized PDEs and iterate

Discretization of 1D stationary nonlinear di�erential
equations

Di�erential equation:

−(α(u)u′)′ + au = f (u), x ∈ (0, L)

Boundary conditions:

α(u(0))u′(0) = C , u(L) = D

Relevance of this stationary 1D problem

1. As stationary limit of a di�usion PDE

ut = (α(u)ux)x + au + f (u)

(ut → 0)

2. The time-discrete problem at each time level arising from a
Backward Euler scheme for a di�usion PDE

ut = (α(u)ux)x + f (u)

(au comes from ut , a ∼ 1/∆t, f (u) := f (u)− un−1/∆t)

Finite di�erence discretizations

The nonlinear term (α(u)u′)′ behaves just as a variable coe�cient
term (α(x)u′)′ wrt discretization:

[−DxαDxu + au = f]i

Written out at internal points:

− 1

∆x2

(
αi+ 1

2

(ui+1 − ui)− αi− 1

2

(ui − ui−1)
)

+ aui = f (ui)

αi+ 1

2

: two choices

αi+ 1

2

≈ α(
1

2
(ui + ui+1)) = [α(ux)]i+

1

2

αi+ 1

2

≈ 1

2
(α(ui) + α(ui+1)) = [α(u)

x
]i+

1

2

Finite di�erence scheme

αi+ 1

2

≈ 1

2
(α(ui) + α(ui+1)) = [α(u)

x
]i+

1

2

results in

[−Dxα
xDxu + au = f]i .

− 1

2∆x2
((α(ui) + α(ui+1))(ui+1 − ui)− (α(ui−1) + α(ui))(ui − ui−1))

+ aui = f (ui)

Boundary conditions

At i = Nx : ui = 0.

At i = 0: α(u)u′ = C

[α(u)D2xu = C]0

α(u0)
u1 − u−1
2∆x

= C

The �ctitious value u−1 can, as usual, be eliminated with the aid of
the scheme at i = 0

The structure of the equation system
Structure of nonlinear algebraic equations:

A(u)u = b(u)

Ai ,i =
1

2∆x2
(−α(ui−1) + 2α(ui)− α(ui+1)) + a

Ai ,i−1 = − 1

2∆x2
(α(ui−1) + α(ui))

Ai ,i+1 = − 1

2∆x2
(α(ui) + α(ui+1))

bi = f (ui)

Note:

A(u) is tridiagonal: Ai ,j = 0 for j > 1 + 1 and j < i − 1.

The i = 0 and i = Nx equation must incorporate boundary
conditions

The equation for the Neumann boundary condition

i = 0: insert

u−1 = u1 −
2∆x

α(u0)

in A0,0. The expression for Ai ,i+1 applies for i = 0, and Ai ,i−1 for
i = 0 does not enter the system.

The equation for the Dirichlet boundary condition

1. For i = Nx we can use the Dirichlet condition as a separate
equation

ui = D, i = Nx

2. Alternative: for i = Nx we can substitute uNx
in Ai ,i by D and

have Nx − 1 equations.

Picard iteration

Use the most recently computed vaue u− of u in A(u) and b(u):

A(u−)u = b(u−)

Tridiagonal system: use tridiagonal Gaussian elimination

Details: without Dirichlet condition equation
Nx = 2 and Dirichlet condition not as a separate equation:

(
A0,0 A0,1

A1,0 A1,1

)(
u0
u1

)
=

(
b0
b1

)

A0,0 =
1

2∆x2
(−α(u−1) + 2α(u−0)− α(u−1)) + a

A0,1 = − 1

2∆x2
(α(u−0) + α(u−1))

A1,0 = − 1

2∆x2
(α(u−0) + α(u−1))

A1,1 =
1

2∆x2
(−α(u−0) + 2α(u−1)− α(u2)) + a

b0 = f (u−0)

b1 = f (u−1)

Note: subst. u−1 by Neumann condition formula, subst. u2 by D

Details: with Dirichlet condition equation

Nx = 2 and including u2 = D as a separate equation:

A0,0 A0,1 A0,2

A1,0 A1,1 A1,2

A2,0 A2,1 A2,2

u0
u1
u2

 =

b0
b1
b2

with Ai ,j and bi as before for i , j = 1, 2, keeping u2 as unknown in
A1,1, and

A0,2 = A2,0 = A2,1 = 0

A1,2 = − 1

2∆x2
(α(u1) + α(u2))

A2,2 =1, b2 = D

Newton's method; Jacobian (1)
Nonlinear eq.no i has the structure

Fi = Ai ,i−1(ui−1, ui)ui−1 + Ai ,i (ui−1, ui , ui+1)ui+

Ai ,i+1(ui , ui+1)ui+1 − bi (ui)

Need Jacobian, i.e., need to di�erentiate F (u) = A(u)u − b(u) wrt
u. Example:

∂

∂ui
(Ai ,i (ui−1, ui , ui+1)ui) =

∂Ai ,i

∂ui
ui + Ai ,i

∂ui
∂ui

=
∂

∂ui
(

1

2∆x2
(−α(ui−1) + 2α(ui)− α(ui+1)) + a)ui+

1

2∆x2
(−α(ui−1) + 2α(ui)− α(ui+1)) + a

=
1

2∆x2
(2α′(ui)ui − α(ui−1) + 2α(ui)− α(ui+1)) + a

Newton's method; Jacobian (2)

The complete Jacobian becomes (make sure you get this!)

Ji ,i =
∂Fi
∂ui

=
∂Ai ,i−1
∂ui

ui−1 +
∂Ai ,i

∂ui
ui + Ai ,i +

∂Ai ,i+1

∂ui
ui+1 −

∂bi
∂ui

=
1

2∆x2
(−α′(ui)ui−1 + 2α′(ui)ui − α(ui−1) + 2α(ui)− α(ui+1))+

a − 1

2∆x2
α′(ui)ui+1 − b′(ui)

Ji ,i−1 =
∂Fi
∂ui−1

=
∂Ai ,i−1
∂ui−1

ui−1 + Ai−1,i +
∂Ai ,i

∂ui−1
ui −

∂bi
∂ui−1

=
1

2∆x2
(−α′(ui−1)ui−1 − (α(ui−1) + α(ui)) + α′(ui−1)ui)

Ji ,i+1 =
∂Ai ,i+1

∂ui−1
ui+1 + Ai+1,i +

∂Ai ,i

∂ui+1
ui −

∂bi
∂ui+1

=
1

2∆x2
(−α′(ui+1)ui+1 − (α(ui) + α(ui+1)) + α′(ui+1)ui)

Newton's method; nonlinear equations at the end points

Fi = − 1

2∆x2
((α(ui) + α(ui+1))(ui+1 − ui)− (α(ui−1) + α(ui))×

(ui − ui−1)) + aui − f (ui) = 0

At i = 0, replace u−1 by formula from Neumann condition.

1 Exclude Dirichlet condition as separate equation: replace ui ,
i = Nx , by D in Fi , i = Nx − 1

2 Include Dirichlet condition as separate equation:

FNx
(u0, . . . , uNx

) = uNx
− D = 0 .

Note: The size of the Jacobian depends on 1 or 2.

Galerkin-type discretizations

V : function space with basis functions ψi (x), i ∈ Is
Dirichlet conditionat x = L: ψi (L) = 0, i ∈ Is
(v(L) = 0 ∀v ∈ V)

u = D +
∑

j∈Is cjψj

Galerkin's method for −(α(u)u′)′ + au = f (u):

∫ L

0

α(u)u′v ′ dx+

∫ L

0

auv dx =

∫ L

0

f (u)v dx+[α(u)u′v]L0, ∀v ∈ V

Insert Neumann condition:

[α(u)u′v]L0 = α(u(L))u′(L)v(L)− α(u(0))u′(0)v(0) = −Cv(0)

The nonlinear algebraic equations

Find u ∈ V such that

∫ L

0

α(u)u′v ′ dx +

∫ L

0

auv dx =

∫ L

0

f (u)v dx − Cv(0), ∀v ∈ V

∀v ∈ V ⇒ ∀i ∈ Is , v = ψi . Inserting u = D +
∑

j cjψj and
sorting terms:

∑

j

L∫

0

α(D +
∑

k

ckψk)ψ′jψ
′
i dx

 cj =

L∫

0

f (D+
∑

k

ckψk)ψi dx−Cψi (0)

This is a nonlinear algebraic system

Fundamental integration problem: how to deal with∫
f (
∑

k ckψk)ψidx for unknown ck?

We do not know ck in
∫ L
0
f (
∑

k ckψk)ψidx and∫ L
0
α(
∑

k ckψk)ψ′iψ
′
j dx

Solution: numerical integration with approximations to ck , as
in
∫ L
0
f (u−)ψidx

Next: want to do symbolic integration of such terms to
see the structure of nonlinear �nite element equations (to
compare with �nite di�erences)

We choose ψi as �nite element basis functions

ψi = ϕν(i), i ∈ Is

Degree of freedom number ν(i) in the mesh corresponds to
unknown number i (ci).

Model problem: ν(i) = i , Is = {0, . . . ,Nn − 2} (last node
excluded)

u = D +
∑

j∈Is
cjϕν(j)

or with ϕi in the boundary function:

u = DϕNn−1 +
∑

j∈Is
cjϕj

The group �nite element method

Since u is represented by
∑

j ϕju(xj), we may use the same
approximation for f (u):

f (u) ≈
∑

j

f (xj)ϕj

f (xj): value of f at node j . With uj as u(xj), we can write

f (u) ≈
∑

j

f (uj)ϕj

This approximation is known as the group �nite element method or
the product approximation technique. The index j runs over all
node numbers in the mesh.

What is the point with the group �nite element method?

1 Complicated nonlinear expressions can be simpli�ed to increase
the e�ciency of numerical computations.

2 One can derive symbolic forms of the di�erence equations
arising from the �nite element method in nonlinear problems.
The symbolic form is useful for comparing �nite element and
�nite di�erence equations of nonlinear di�erential equation
problems.

Simpli�ed problem for symbolic calculations

Simple nonlinear problem: −u′′ = u2, u′(0) = 1, u′(L) = 0.

∫ L

0

u′v ′ dx =

∫ L

0

u2v dx − v(0), ∀v ∈ V

Now,

Focus on
∫
u2v dx

Set cj = u(xj) = uj
(to mimic �nite di�erence interpretation of uj)

That is, u =
∑

j ujϕj

Integrating very simple nonlinear functions results in
complicated expressions in the �nite element method

Consider
∫
u2v dx with u =

∑
k ukϕk and v = ϕi :

∫ L

0

(
∑

k

ukϕk)2ϕi dx

Tedious exact evaluation on uniform P1 elements:

h

12
(u2i−1 + 2ui (ui−1 + ui+1) + 6u2i + u2i+1)

Finite di�erence counterpart: u2i (!)

Application of the group �nite element method

∫ L

0

f (u)ϕi dx ≈
∫ L

0

(
∑

j

ϕj f (uj))ϕi dx =
∑

j

(

∫ L

0

ϕiϕj dx

︸ ︷︷ ︸
mass matrix Mi,j

)f (uj)

Corresponding part of di�erence equation for P1 elements:

h

6
(f (ui−1) + 4f (ui) + f (ui+1))

Rewrite as ��nite di�erence form plus something�:

h

6
(f (ui−1) + 4f (ui) + f (ui+1)) = h[f (u)− h2

6
DxDx f (u)]i

This is like the �nite di�erence discretization of
−u′′ = f (u)− h2

6 f
′′(u)

Lumping the mass matrix gives �nite di�erence form

Lumped mass matrix (integrate at the nodes): M becomes
diagonal and the �nite element and di�erence method's
treatment of f (u) becomes identical!

Alternative: evaluation of �nite element terms at nodes
gives great simpli�cations

Idea: integrate
∫
f (u)v dx numerically with a rule that samples

f (u)v at the nodes only. This involves great simpli�cations, since

∑

k

ukϕk(x`) = u`

and

f ϕi (x`) = f (
∑

k

uk ϕk(x`)︸ ︷︷ ︸
δk`

)ϕi (x`)︸ ︷︷ ︸
δi`

= f (u`)δi` 6= 0 only for f (ui)

(δij = 0 if i 6= j and δij = 1 if i = j)

Numerical integration of nonlinear terms

Trapezoidal rule with the nodes only gives the �nite di�erence form
of [f (u)]i :

∫ L

0

f (
∑

k

ukϕk)(x)ϕi (x) dx ≈ h

Nn−1∑

`=0

f (u`)δi` − C = hf (ui)

(C: boundary adjustment of rule, i = 0,Nn − 1)

Finite elements for a variable coe�cient Laplace term

Consider the term (αu′)′, with the group �nite element method:
α(u) ≈∑k α(uk)ϕk , and the variational counterpart

∫ L

0

α(
∑

k

ckϕk)ϕ′iϕ
′
j dx ≈

∑

k

(

∫ L

0

ϕkϕ
′
iϕ
′
j dx)α(uk) = . . .

Further calculations (see text) lead to

−1

h
(
1

2
(α(ui)+α(ui+1))(ui+1−ui)−

1

2
(α(ui−1)+α(ui))(ui −ui−1))

= standard �nite di�erence discretization of −(α(u)u′)′ with an
arithmetic mean of α(u)

Numerical integration at the nodes

Instead of the group �nite element method and exact integration,
use Trapezoidal rule in the nodes for

∫ L
0
α(
∑

k ukϕk)ϕ′iϕ
′
j dx .

Work at the cell level (most convenient with discontinuous ϕ′i):

∫ 1

−1
α(
∑

t

ũtϕ̃t)ϕ̃
′
r ϕ̃
′
s

h

2
dX =

∫ 1

−1
α(

1∑

t=0

ũtϕ̃t)
2

h

d ϕ̃r

dX

2

h

d ϕ̃s

dX

h

2
dX

=
1

2h
(−1)r (−1)s

∫ 1

−1
α(

1∑

t=0

utϕ̃t(X))dX

≈ 1

2h
(−1)r (−1)sα(

1∑

t=0

ϕ̃t(−1)ũt) + α(
1∑

t=0

ϕ̃t(1)ũt)

=
1

2h
(−1)r (−1)s(α(ũ0) + α(ũ(1)))

Summary of �nite element vs �nite di�erence nonlinear
algebraic equations

−(α(u)u′)′ + au = f (u)

Uniform P1 �nite elements:

Group �nite element or Trapezoidal integration at nodes:
−(α(u)u′)′ becomes −h[Dxα(u)

x
Dxu]i

f (u) becomes hf (ui) with Trapezoidal integration
or the �mass matrix� representation h[f (u)− h

6DxDx f (u)]i if
group �nite elements

au leads to the �mass matrix� form ah[u − h
6DxDxu]i

Real computations utilize accurate numerical integration

Previous group �nite element or Trapezoidal integration
examples had one aim: derive symbolic expressions for �nite
element equations

Real world computations apply numerical integration

How to de�ne Picard iteration and Newton's method from a
variational form with numerical integration in real world
computations?

Picard iteration de�ned from the variational form

−(α(u)u′)′+au = f (u), x ∈ (0, L), α(u(0))u′(0) = C , u(L) = D

Variational form (v = ψi):

Fi =

∫ L

0

α(u)u′ψ′i dx +

∫ L

0

auψi dx −
∫ L

0

f (u)ψi dx + Cψi (0) = 0

Picard iteration: use �old value� u− in α(u) and f (u) and integrate
numerically:

Fi =

∫ L

0

(α(u−)u′ψ′i + auψi) dx −
∫ L

0

f (u−)ψi dx + Cψi (0)

The linear system in Picard iteration

Fi =

∫ L

0

(α(u−)u′ψ′i + auψi) dx −
∫ L

0

f (u−)ψi dx + Cψi (0)

This is a linear problem a(u, v) = L(v) with bilinear and linear
forms

a(u, v) =

∫ L

0

(α(u−)u′v ′+auv) dx , L(v) =

∫ L

0

f (u−)v dx−Cv(0)

The linear system now is computed the standard way.

The equations in Newton's method

Fi =

∫ L

0

(α(u)u′ψ′i + auψi − f (u)ψi) dx + Cψi (0) = 0, i ∈ Is

Easy to evaluate right-hand side −Fi (u−) by numerical integration:

Fi =

∫ L

0

(α(u−)u′ψ′i + auψi − f (u−)ψi) dx + Cψi (0) = 0

(just known functions)

Useful formulas for computing the Jacobian

∂u

∂cj
=

∂

∂cj

∑

k

ckψk = ψj

∂u′

∂cj
=

∂

∂cj

∑

k

ckψ
′
k = ψ′j

Computing the Jacobian

Ji ,j =
∂Fi
∂cj

=

∫ L

0

∂

∂cj
(α(u)u′ψ′i + auψi − f (u)ψi) dx

=

∫ L

0

((α′(u)
∂u

∂cj
u′ + α(u)

∂u′

∂cj
)ψ′i + a

∂u

∂cj
ψi − f ′(u)

∂u

∂cj
ψi) dx

=

∫ L

0

((α′(u)ψju
′ + α(u)ψ′jψ

′
i + aψjψi − f ′(u)ψjψi) dx

=

∫ L

0

(α′(u)u′ψ′iψj + α(u)ψ′iψ
′
j + (a − f (u))ψiψj) dx

Use α′(u−), α(u−), f ′(u−), f (u−) and integrate expressions
numerically (only known functions)

Computations in a reference cell [−1, 1]

F̃
(e)
r =

∫ 1

−1

(
α(ũ−)ũ−′ϕ̃′r + (a − f (ũ−))ϕ̃r

)
det J dX − C ϕ̃r (0)

J̃
(e)
r ,s =

∫ 1

−1
(α′(ũ−)ũ−′ϕ̃′r ϕ̃s + α(ũ−)ϕ̃′r ϕ̃

′
s + (a − f (ũ−))ϕ̃r ϕ̃s) det J dX

r , s ∈ Id (local degrees of freedom)

How to handle Dirichlet conditions in Newton's method

Newton's method solves J(u−)δu = −F (u−)

δu is a correction to u−

If u(xi) has Dirchlet condition D, set u−i = D in prior to the
�rst iteration

Set δui = 0 (no change for Dirichlet conditions)

Multi-dimensional PDE problems

ut = ∇ · (α(u)∇u) + f (u)

Backward Euler and variational form

ut = ∇ · (α(u)∇u) + f (u)

Backward Euler time discretization:

un −∆t∇ · (α(un)∇un) + f (un) = un−1

Alternative notation (u for un, u(1) for un−1):

u −∆t∇ · (α(u)∇u)−∆tf (u) = u(1)

Boundary conditions: ∂u/∂n = 0 for simplicity. Variational form:

∫

Ω
(uv + ∆t α(u)∇u · ∇v −∆tf (u)v − u(1)v) dx = 0

Nonlinear algebraic equations arising from the variational
form

∫

Ω
(uv + ∆t α(u)∇u · ∇v −∆tf (u)v − u(1)v) dx = 0

Fi =

∫

Ω
(uψi + ∆t α(u)∇u · ∇ψi −∆tf (u)ψi − u(1)ψi) dx = 0

Picard iteration:

Fi ≈ F̂i =

∫

Ω
(uψi+∆t α(u−)∇u·∇ψi−∆tf (u−)ψi−u(1)ψi) dx = 0

This is a variable coe�cient problem like
au −∇ · α(x)∇u = f (x , t) and results in a linear system

A note on our notation and the di�erent meanings of u (1)

PDE problem: u(x , t) is the exact solution of

ut = ∇ · (α(u)∇u) + f (u)

Time discretization: u(x) is the exact solution of the time-discrete
spatial equation

u −∆t∇ · (α(un)∇u)−∆tf (u) = u(1)

The same u(x) is the exact solution of the (continuous) variational
form:

∫

Ω
(uv + ∆t α(u)∇u · ∇v −∆tf (u)v − u(1)v) dx , ∀v ∈ V

A note on our notation and the di�erent meanings of u (2)
Or we may approximate u: u(x) =

∑
j cjψj(x) and let this spatially

discrete u enter the variational form,

∫

Ω
(uv + ∆t α(u)∇u · ∇v −∆tf (u)v − u(1)v) dx , ∀v ∈ V

Picard iteration: u(x) solves the approximate variational form

∫

Ω
(uv + ∆t α(u−)∇u · ∇v −∆tf (u−)v − u(1)v) dx

Could introduce

ue(x , t) for the exact solution of the PDE problem
ue(x)n for the exact solution after time discretization
un(x) for the spatially discrete solution

∑
j cjψj

un,k for approximation in Picard/Newton iteration no k to
un(x)

Newton's method (1)

Need to evaluate Fi (u
−):

Fi ≈ F̂i =

∫

Ω
(u−ψi +∆t α(u−)∇u− ·∇ψi−∆tf (u−)ψi−u(1)ψi) dx

To compute the Jacobian we need

∂u

∂cj
=
∑

k

∂

∂cj
ckψk = ψj

∂∇u
∂cj

=
∑

k

∂

∂cj
ck∇ψk = ∇ψj

Newton's method (2)

The Jacobian becomes

Ji ,j =
∂Fi
∂cj

=

∫

Ω
(ψjψi + ∆t α′(u)ψj∇u · ∇ψi + ∆t α(u)∇ψj · ∇ψi−

∆tf ′(u)ψjψi) dx

Evaluation of Ji ,j as the coe�cient matrix in the Newton system
Jδu = −F means J(u−):

Ji ,j =

∫

Ω
(ψjψi + ∆t α′(u−)ψj∇u− · ∇ψi + ∆t α(u−)∇ψj · ∇ψi−

∆tf ′(u−)ψjψi) dx

Non-homogeneous Neumann conditions

A natural physical �ux condition:

−α(u)
∂u

∂n
= g , x ∈ ∂ΩN

Integration by parts gives the boundary term

∫

∂ΩN

α(u)
∂u

∂u
v ds

Inserting the nonlinear Neumann condition:

−
∫

∂ΩN

gv ds

(no nonlinearity)

Robin condition

Heat conduction problems often apply a kind of Newton's cooling
law, also known as a Robin condition, at the boundary:

−α(u)
∂u

∂u
= h(u)(u − Ts(t)), x ∈ ∂ΩR

Here:

h(u): heat transfer coe�cient between the body (Ω) and its
surroundings

Ts : temperature of the surroundings

Inserting the condition in the boundary integral
∫
∂ΩN

α(u)∂u∂u v ds:

∫

∂ΩR

h(u)(u − Ts(T))v ds

Use h(u−)(u − Ts) for Picard, di�erentiate for Newton

Finite di�erence discretization in a 2D problem

ut = ∇ · (α(u)∇u) + f (u)

Backward Euler in time, centered di�erences in space:

[D−t u = Dxα(u)
x
Dxu + Dyα(u)

y
Dyu + f (u)]ni ,j

uni ,j −
∆t

h2
(
1

2
(α(uni ,j) + α(uni+1,j))(uni+1,j − uni ,j)

− 1

2
(α(uni−1,j) + α(uni ,j))(uni ,j − uni−1,j)

+
1

2
(α(uni ,j) + α(uni ,j+1))(uni ,j+1 − uni ,j)

− 1

2
(α(uni ,j−1) + α(uni ,j))(uni ,j − uni−1,j−1))−∆tf (uni ,j) = un−1i ,j

Nonlinear algebraic system on the form A(u)u = b(u)

Picard iteration

Use the most recently computed values u− of un in α and f

Or: A(u−)u = b(u−)

Like solving ut = ∇ · (α(x)∇u) + f (x , t)

Picard iteration in operator notation:

[D−t u = Dxα(u−)
x
Dxu + Dyα(u−)

y
Dyu + f (u−)]ni ,j

Newton's method: the nonlinear algebraic equations

De�ne the nonlinear equations (use u for un, u(1) for un−1):

Fi ,j = ui ,j −
∆t

h2
(

1

2
(α(ui ,j) + α(ui+1,j))(ui+1,j − ui ,j)−

1

2
(α(ui−1,j) + α(ui ,j))(ui ,j − ui−1,j)+

1

2
(α(ui ,j) + α(ui ,j+1))(ui ,j+1 − ui ,j)−

1

2
(α(ui ,j−1) + α(ui ,j))(ui ,j − ui−1,j−1))−∆t f (ui ,j)− u

(1)
i ,j = 0

Newton's method: the Jacobian and its sparsity

Ji ,j ,r ,s =
∂Fi ,j
∂ur ,s

Newton system:

∑

r∈Ix

∑

s∈Iy
Ji ,j ,r ,sδur ,s = −Fi ,j , i ∈ Ix , j ∈ Iy .

But Fi ,j contains only ui±1,j , ui ,j±1, and ui ,j . We get nonzero
contributions only for Ji ,j ,i−1,j , Ji ,j ,i+1,j , Ji ,j ,i ,j−1, Ji ,j ,i ,j+1, and
Ji ,j ,i ,j . The Newton system collapses to

Ji ,j ,r ,sδur ,s = Ji ,j ,i ,jδui ,j + Ji ,j ,i−1,jδui−1,j+

Ji ,j ,i+1,jδui+1,j + Ji ,j ,i ,j−1δui ,j−1 + Ji ,j ,i ,j+1δui ,j+1

Newton's method: details of the Jacobian

Ji ,j ,i−1,j =
∂Fi ,j
∂ui−1,j

=
∆t

h2
(α′(ui−1,j)(ui ,j − ui−1,j) + α(ui−1,j)(−1)),

Ji ,j ,i+1,j =
∂Fi ,j
∂ui+1,j

=
∆t

h2
(−α′(ui+1,j)(ui+1,j − ui ,j)− α(ui−1,j)),

Ji ,j ,i ,j−1 =
∂Fi ,j
∂ui ,j−1

=
∆t

h2
(α′(ui ,j−1)(ui ,j − ui ,j−1) + α(ui ,j−1)(−1)),

Ji ,j ,i ,j+1 =
∂Fi ,j
∂ui ,j+1

=
∆t

h2
(−α′(ui ,j+1)(ui ,j+1 − ui ,j)− α(ui ,j−1)) .

Good exercise at this point: Ji ,j ,i ,j

Compute Ji ,j ,i ,j :

Fi ,j = ui ,j −
∆t

h2
(

1

2
(α(ui ,j) + α(ui+1,j))(ui+1,j − ui ,j)−

1

2
(α(ui−1,j) + α(ui ,j))(ui ,j − ui−1,j)+

1

2
(α(ui ,j) + α(ui ,j+1))(ui ,j+1 − ui ,j)−

1

2
(α(ui ,j−1) + α(ui ,j))(ui ,j − ui−1,j−1))−∆t f (ui ,j)− u

(1)
i ,j = 0

Ji ,j ,i ,j =
∂Fi ,j
∂ui ,j

Continuation methods

Picard iteration or Newton's method may diverge

Relaxation with ω < 1 may help

If not, resort to continuation methods

Continuation method: solve di�cult problem as a sequence
of simpler problems

Introduce a continuation parameter Λ

Λ = 0: simple version of the PDE problem

Λ = 1: desired PDE problem

Increase Λ in steps: Λ0 = 0,Λ1 < · · · < Λn = 1

Use the solution from Λi−1 as initial guess for the iterations for
Λi

Example on a continuation method

−∇ · (||∇u||q∇u) = f ,

Pseudo-plastic �uids may be q = −0.8, which is a di�cult problem
for Picard/Newton iteration.

Λ ∈ [0, 1] : q = −Λ0.8

−∇ ·
(
||∇u||−Λ0.8∇u

)
= f

Start with Λ = 0, increase in steps to Λ = 1, use previous solution
as initial guess for Newton or Picard

