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The finite element method is a powerful tool for solving differential equations. The method
can easily deal with complex geometries and higher-order approximations of the solution. Figure 1
shows a two-dimensional domain with a non-trivial geometry. The idea is to divide the domain
into triangles (elements) and seek a polynomial approximations to the unknown functions on each
triangle. The method glues these piecewise approximations together to find a global solution.
Linear and quadratic polynomials over the triangles are particularly popular.

Figure 1: Domain for flow around a dolphin.

Many successful numerical methods for differential equations, including the finite element
method, aim at approximating the unknown function by a sum

u(x) =
N∑
i=0

ciψi(x), (1)

where ψi(x) are prescribed functions and c0, . . . , cN are unknown coefficients to be determined.
Solution methods for differential equations utilizing (1) must have a principle for constructing
N + 1 equations to determine c0, . . . , cN . Then there is a machinery regarding the actual
constructions of the equations for c0, . . . , cN , in a particular problem. Finally, there is a solve
phase for computing the solution c0, . . . , cN of the N + 1 equations.
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Especially in the finite element method, the machinery for constructing the discrete equations
to be implemented on a computer is quite comprehensive, with many mathematical and imple-
mentational details entering the scene at the same time. From an ease-of-learning perspective it
can therefore be wise to follow an idea of Larson and Bengzon [1] and introduce the computational
machinery for a trivial equation: u = f . Solving this equation with f given and u on the form (1)
means that we seek an approximation u to f . This approximation problem has the advantage of
introducing most of the finite element toolbox, but with postponing demanding topics related to
differential equations (e.g., integration by parts, boundary conditions, and coordinate mappings).
This is the reason why we shall first become familiar with finite element approximation before
addressing finite element methods for differential equations.

First, we refresh some linear algebra concepts about approximating vectors in vector spaces.
Second, we extend these concepts to approximating functions in function spaces, using the same
principles and the same notation. We present examples on approximating functions by global
basis functions with support throughout the entire domain. Third, we introduce the finite element
type of local basis functions and explain the computational algorithms for working with such
functions. Three types of approximation principles are covered: 1) the least squares method, 2)
the L2 projection or Galerkin method, and 3) interpolation or collocation.

1 Approximation of vectors
We shall start with introducing two fundamental methods for determining the coefficients ci in
(1) and illustrate the methods on approximation of vectors, because vectors in vector spaces give
a more intuitive understanding than starting directly with approximation of functions in function
spaces. The extension from vectors to functions will be trivial as soon as the fundamental ideas
are understood.

The first method of approximation is called the least squares method and consists in finding ci
such that the difference u− f , measured in some norm, is minimized. That is, we aim at finding
the best approximation u to f (in some norm). The second method is not as intuitive: we find u
such that the error u− f is orthogonal to the space where we seek u. This is known as projection,
or we may also call it a Galerkin method. When approximating vectors and functions, the two
methods are equivalent, but this is no longer the case when applying the principles to differential
equations.

1.1 Approximation of planar vectors
Suppose we have given a vector f = (3, 5) in the xy plane and that we want to approximate this
vector by a vector aligned in the direction of the vector (a, b). Figure 2 depicts the situation.

We introduce the vector space V spanned by the vector ψ0 = (a, b):

V = span {ψ0} . (2)

We say that ψ0 is a basis vector in the space V . Our aim is to find the vector u = c0ψ0 ∈ V which
best approximates the given vector f = (3, 5). A reasonable criterion for a best approximation
could be to minimize the length of the difference between the approximate u and the given f .
The difference, or error e = f − u, has its length given by the norm

||e|| = (e, e) 1
2 ,

where (e, e) is the inner product of e and itself. The inner product, also called scalar product or
dot product, of two vectors u = (u0, u1) and v = (v0, v1) is defined as
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Figure 2: Approximation of a two-dimensional vector by a one-dimensional vector.

(u,v) = u0v0 + u1v1 . (3)

Remark 1. We should point out that we use the notation (·, ·) for two different things: (a, b)
for scalar quantities a and b means the vector starting in the origin and ending in the point (a, b),
while (u,v) with vectors u and v means the inner product of these vectors. Since vectors are
here written in boldface font there should be no confusion. We may add that the norm associated
with this inner product is the usual Eucledian length of a vector.

Remark 2. It might be wise to refresh some basic linear algebra by consulting a textbook.
Exercises 1 and 2 suggest specific tasks to regain familiarity with fundamental operations on
inner product vector spaces.
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The least squares method. We now want to find c0 such that it minimizes ||e||. The algebra
is simplified if we minimize the square of the norm, ||e||2 = (e, e), instead of the norm itself.
Define the function

E(c0) = (e, e) = (f − c0ψ0,f − c0ψ0) . (4)

We can rewrite the expressions of the right-hand side in a more convenient form for further work:

E(c0) = (f ,f)− 2c0(f ,ψ0) + c20(ψ0,ψ0) . (5)

The rewrite results from using the following fundamental rules for inner product spaces:

(αu,v) = α(u,v), α ∈ R, (6)

(u+ v,w) = (u,w) + (v,w), (7)

(u,v) = (v,u) . (8)

Minimizing E(c0) implies finding c0 such that

∂E

∂c0
= 0 .

Differentiating (5) with respect to c0 gives

∂E

∂c0
= −2(f ,ψ0) + 2c0(ψ0,ψ0) . (9)

Setting the above expression equal to zero and solving for c0 gives

c0 = (f ,ψ0)
(ψ0,ψ0) , (10)

which in the present case with ψ0 = (a, b) results in

c0 = 3a+ 5b
a2 + b2

. (11)

For later, it is worth mentioning that setting the key equation (9) to zero can be rewritten as

(f − c0ψ0,ψ0) = 0,

or

(e,ψ0) = 0 . (12)
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The projection method. We shall now show that minimizing ||e||2 implies that e is orthogonal
to any vector v in the space V . This result is visually quite clear from Figure 2 (think of other
vectors along the line (a, b): all of them will lead to a larger distance between the approximation
and f). To see this result mathematically, we express any v ∈ V as v = sψ0 for any scalar
parameter s, recall that two vectors are orthogonal when their inner product vanishes, and
calculate the inner product

(e, sψ0) = (f − c0ψ0, sψ0)
= (f , sψ0)− (c0ψ0, sψ0)
= s(f ,ψ0)− sc0(ψ0,ψ0)

= s(f ,ψ0)− s (f ,ψ0)
(ψ0,ψ0) (ψ0,ψ0)

= s ((f ,ψ0)− (f ,ψ0))
= 0 .

Therefore, instead of minimizing the square of the norm, we could demand that e is orthogonal
to any vector in V . This method is known as projection, because it is the same as projecting
the vector onto the subspace. (The approach can also be referred to as a Galerkin method as
explained at the end of Section 1.2.)

Mathematically the projection method is stated by the equation

(e,v) = 0, ∀v ∈ V . (13)

An arbitrary v ∈ V can be expressed as sψ0, s ∈ R, and therefore (13) implies

(e, sψ0) = s(e,ψ0) = 0,

which means that the error must be orthogonal to the basis vector in the space V :

(e,ψ0) = 0 or (f − c0ψ0,ψ0) = 0 .

The latter equation gives (10) and it also arose from least squares computations in (12).

1.2 Approximation of general vectors
Let us generalize the vector approximation from the previous section to vectors in spaces with
arbitrary dimension. Given some vector f , we want to find the best approximation to this vector
in the space

V = span {ψ0, . . . ,ψN} .

We assume that the basis vectors ψ0, . . . ,ψN are linearly independent so that none of them are
redundant and the space has dimension N + 1. Any vector u ∈ V can be written as a linear
combination of the basis vectors,

u =
N∑
j=0

cjψj ,

where cj ∈ R are scalar coefficients to be determined.
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The least squares method. Now we want to find c0, . . . , cN , such that u is the best approxi-
mation to f in the sense that the distance (error) e = f − u is minimized. Again, we define the
squared distance as a function of the free parameters c0, . . . , cN ,

E(c0, . . . , cN ) = (e, e) = (f −
∑
j

cjψj ,f −
∑
j

cjψj)

= (f ,f)− 2
N∑
j=0

cj(f ,ψj) +
N∑
p=0

N∑
q=0

cpcq(ψp,ψq) . (14)

Minimizing this E with respect to the independent variables c0, . . . , cN is obtained by requiring

∂E

∂ci
= 0, i = 0, . . . , N .

The second term in (14) is differentiated as follows:

∂

∂ci

N∑
j=0

cj(f ,ψj) = (f ,ψi), (15)

since the expression to be differentiated is a sum and only one term, ci(f ,ψi), contains ci and
this term is linear in ci. To understand this differentiation in detail, write out the sum specifically
for, e.g, N = 3 and i = 1.

The last term in (14) is more tedious to differentiate. We start with

∂

∂ci
cpcq =


0, if p 6= i and q 6= i,
cq, if p = i and q 6= i,
cp, if p 6= i and q = i,
2ci, if p = q = i,

(16)

Then

∂

∂ci

N∑
p=0

N∑
q=0

cpcq(ψp,ψq) =
N∑

p=0,p6=i
cp(ψp,ψi) +

N∑
q=0,q 6=i

cq(ψq,ψi) + 2ci(ψi,ψi) .

The last term can be included in the other two sums, resulting in

∂

∂ci

N∑
p=0

N∑
q=0

cpcq(ψp,ψq) = 2
N∑
j=0

ci(ψj ,ψi) . (17)

It then follows that setting

∂E

∂ci
= 0, i = 0, . . . , N,

leads to a linear system for c0, . . . , cN :

N∑
j=0

Ai,jcj = bi, i = 0, . . . , N, (18)

where
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Ai,j = (ψi,ψj), (19)
bi = (ψi,f) . (20)

We have changed the order of the two vectors in the inner product according to (1.1):

Ai,j = (ψj ,ψi) = (ψi,ψj),

simply because the sequence i-j looks more aesthetic.

The Galerkin or projection method. In analogy with the "one-dimensional" example in
Section 1.1, it holds also here in the general case that minimizing the distance (error) e is
equivalent to demanding that e is orthogonal to all v ∈ V :

(e,v) = 0, ∀v ∈ V . (21)

Since any v ∈ V can be written as v =
∑N
i=0 ciψi, the statement (21) is equivalent to saying that

(e,
N∑
i=0

ciψi) = 0,

for any choice of coefficients c0, . . . , cN . The latter equation can be rewritten as

N∑
i=0

ci(e,ψi) = 0 .

If this is to hold for arbitrary values of c0, . . . , cN we must require that each term in the sum
vanishes,

(e,ψi) = 0, i = 0, . . . , N . (22)

These N + 1 equations result in the same linear system as (18):

(f −
N∑
j=0

cjψj ,ψi) = (f ,ψi)−
∑
j∈Is

(ψi,ψj)cj = 0,

and hence

N∑
j=0

(ψi,ψj)cj = (f ,ψi), i = 0, . . . , N .

So, instead of differentiating the E(c0, . . . , cN ) function, we could simply use (21) as the principle
for determining c0, . . . , cN , resulting in the N + 1 equations (22).

The names least squares method or least squares approximation are natural since the calcu-
lations consists of minimizing ||e||2, and ||e||2 is a sum of squares of differences between the
components in f and u. We find u such that this sum of squares is minimized.

The principle (21), or the equivalent form (22), is known as projection. Almost the same
mathematical idea was used by the Russian mathematician Boris Galerkin1 to solve differential
equations, resulting in what is widely known as Galerkin’s method.

1http://en.wikipedia.org/wiki/Boris_Galerkin
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2 Approximation of functions
Let V be a function space spanned by a set of basis functions ψ0, . . . , ψN ,

V = span {ψ0, . . . , ψN},

such that any function u ∈ V can be written as a linear combination of the basis functions:

u =
∑
j∈Is

cjψj . (23)

The index set Is is defined as Is = {0, . . . , N} and is used both for compact notation and for
flexibility in the numbering of elements in sequences.

For now, in this introduction, we shall look at functions of a single variable x: u = u(x),
ψi = ψi(x), i ∈ Is. Later, we will almost trivially extend the mathematical details to functions of
two- or three-dimensional physical spaces. The approximation (23) is typically used to discretize
a problem in space. Other methods, most notably finite differences, are common for time
discretization, although the form (23) can be used in time as well.

2.1 The least squares method
Given a function f(x), how can we determine its best approximation u(x) ∈ V ? A natural
starting point is to apply the same reasoning as we did for vectors in Section 1.2. That is, we
minimize the distance between u and f . However, this requires a norm for measuring distances,
and a norm is most conveniently defined through an inner product. Viewing a function as a vector
of infinitely many point values, one for each value of x, the inner product could intuitively be
defined as the usual summation of pairwise components, with summation replaced by integration:

(f, g) =
∫
f(x)g(x) dx .

To fix the integration domain, we let f(x) and ψi(x) be defined for a domain Ω ⊂ R. The inner
product of two functions f(x) and g(x) is then

(f, g) =
∫

Ω
f(x)g(x) dx . (24)

The distance between f and any function u ∈ V is simply f − u, and the squared norm of
this distance is

E = (f(x)−
∑
j∈Is

cjψj(x), f(x)−
∑
j∈Is

cjψj(x)) . (25)

Note the analogy with (14): the given function f plays the role of the given vector f , and the
basis function ψi plays the role of the basis vector ψi. We can rewrite (25), through similar steps
as used for the result (14), leading to

E(ci, . . . , cN ) = (f, f)− 2
∑
j∈Is

cj(f, ψi) +
∑
p∈Is

∑
q∈Is

cpcq(ψp, ψq) . (26)

Minimizing this function of N + 1 scalar variables {ci}i∈Is
, requires differentiation with respect

to ci, for all i ∈ Is. The resulting equations are very similar to those we had in the vector case,
and we hence end up with a linear system of the form (18), with basically the same expressions:
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Ai,j = (ψi, ψj), (27)
bi = (f, ψi) . (28)

2.2 The projection (or Galerkin) method
As in Section 1.2, the minimization of (e, e) is equivalent to

(e, v) = 0, ∀v ∈ V . (29)
This is known as a projection of a function f onto the subspace V . We may also call it a Galerkin
method for approximating functions. Using the same reasoning as in (21)-(22), it follows that
(29) is equivalent to

(e, ψi) = 0, i ∈ Is . (30)
Inserting e = f − u in this equation and ordering terms, as in the multi-dimensional vector case,
we end up with a linear system with a coefficient matrix (27) and right-hand side vector (28).

Whether we work with vectors in the plane, general vectors, or functions in function spaces,
the least squares principle and the projection or Galerkin method are equivalent.

2.3 Example: linear approximation
Let us apply the theory in the previous section to a simple problem: given a parabola f(x) =
10(x − 1)2 − 1 for x ∈ Ω = [1, 2], find the best approximation u(x) in the space of all linear
functions:

V = span {1, x} .
With our notation, ψ0(x) = 1, ψ1(x) = x, and N = 1. We seek

u = c0ψ0(x) + c1ψ1(x) = c0 + c1x,

where c0 and c1 are found by solving a 2×2 the linear system. The coefficient matrix has elements

A0,0 = (ψ0, ψ0) =
∫ 2

1
1 · 1 dx = 1, (31)

A0,1 = (ψ0, ψ1) =
∫ 2

1
1 · x dx = 3/2, (32)

A1,0 = A0,1 = 3/2, (33)

A1,1 = (ψ1, ψ1) =
∫ 2

1
x · x dx = 7/3 . (34)

The corresponding right-hand side is

b1 = (f, ψ0) =
∫ 2

1
(10(x− 1)2 − 1) · 1 dx = 7/3, (35)

b2 = (f, ψ1) =
∫ 2

1
(10(x− 1)2 − 1) · x dx = 13/3 . (36)
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Solving the linear system results in

c0 = −38/3, c1 = 10, (37)

and consequently

u(x) = 10x− 38
3 . (38)

Figure 3 displays the parabola and its best approximation in the space of all linear functions.
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Figure 3: Best approximation of a parabola by a straight line.

2.4 Implementation of the least squares method
Symbolic integration. The linear system can be computed either symbolically or numerically
(a numerical integration rule is needed in the latter case). Here is a function for symbolic
computation of the linear system, where f(x) is given as a sympy expression f involving the
symbol x, psi is a list of expressions for {ψi}i∈Is

, and Omega is a 2-tuple/list holding the limits
of the domain Ω:

import sympy as sp

def least_squares(f, psi, Omega):
N = len(psi) - 1
A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))
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x = sp.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
A[i,j] = sp.integrate(psi[i]*psi[j],

(x, Omega[0], Omega[1]))
A[j,i] = A[i,j]

b[i,0] = sp.integrate(psi[i]*f, (x, Omega[0], Omega[1]))
c = A.LUsolve(b)
u = 0
for i in range(len(psi)):

u += c[i,0]*psi[i]
return u, c

Observe that we exploit the symmetry of the coefficient matrix: only the upper triangular part is
computed. Symbolic integration in sympy is often time consuming, and (roughly) halving the
work has noticeable effect on the waiting time for the function to finish execution.

Fallback on numerical integration. Obviously, sympy mail fail to successfully integrate∫
Ω ψiψjdx and especially

∫
Ω fψidx symbolically. Therefore, we should extend the least_squares

function such that it falls back on numerical integration if the symbolic integration is unsuccessful.
In the latter case, the returned value from sympy’s integrate function is an object of type
Integral. We can test on this type and utilize the mpmath module in sympy to perform numerical
integration of high precision. Even when sympy manages to integrate symbolically, it can take
an undesirable long time. We therefore include an argument symbolic that governs whether or
not to try symbolic integration. Here is the complete code of the improved version of function
least_squares:

def least_squares(f, psi, Omega, symbolic=True):
N = len(psi) - 1
A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))
x = sp.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
integrand = psi[i]*psi[j]
if symbolic:

I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
if not symbolic or isinstance(I, sp.Integral):

# Could not integrate symbolically,
# fall back on numerical integration
integrand = sp.lambdify([x], integrand)
I = sp.mpmath.quad(integrand, [Omega[0], Omega[1]])

A[i,j] = A[j,i] = I

integrand = psi[i]*f
if symbolic:

I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
if not symbolic or isinstance(I, sp.Integral):

integrand = sp.lambdify([x], integrand)
I = sp.mpmath.quad(integrand, [Omega[0], Omega[1]])

b[i,0] = I
c = A.LUsolve(b) # symbolic solve
# c is a sympy Matrix object, numbers are in c[i,0]
u = sum(c[i,0]*psi[i] for i in range(len(psi)))
return u, [c[i,0] for i in range(len(c))]

The function is found in the file approx1D.py.
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Plotting the approximation. Comparing the given f(x) and the approximate u(x) visually
is done by the following function, which with the aid of sympy’s lambdify tool converts a sympy
expression to a Python function for numerical computations:

def comparison_plot(f, u, Omega, filename=’tmp.pdf’):
x = sp.Symbol(’x’)
f = sp.lambdify([x], f, modules="numpy")
u = sp.lambdify([x], u, modules="numpy")
resolution = 401 # no of points in plot
xcoor = linspace(Omega[0], Omega[1], resolution)
exact = f(xcoor)
approx = u(xcoor)
plot(xcoor, approx)
hold(’on’)
plot(xcoor, exact)
legend([’approximation’, ’exact’])
savefig(filename)

The modules=’numpy’ argument to lambdify is important if there are mathematical functions,
such as sin or exp in the symbolic expressions in f or u, and these mathematical functions are
to be used with vector arguments, like xcoor above.

Both the least_squares and comparison_plot are found and coded in the file approx1D.py2.
The forthcoming examples on their use appear in ex_approx1D.py.

2.5 Perfect approximation
Let us use the code above to recompute the problem from Section 2.3 where we want to
approximate a parabola. What happens if we add an element x2 to the basis and test what the
best approximation is if V is the space of all parabolic functions? The answer is quickly found by
running

>>> from approx1D import *
>>> x = sp.Symbol(’x’)
>>> f = 10*(x-1)**2-1
>>> u, c = least_squares(f=f, psi=[1, x, x**2], Omega=[1, 2])
>>> print u
10*x**2 - 20*x + 9
>>> print sp.expand(f)
10*x**2 - 20*x + 9

Now, what if we use ψi(x) = xi for i = 0, 1, . . . , N = 40? The output from least_squares
gives ci = 0 for i > 2, which means that the method finds the perfect approximation.

In fact, we have a general result that if f ∈ V , the least squares and projection/Galerkin
methods compute the exact solution u = f . The proof is straightforward: if f ∈ V , f can be
expanded in terms of the basis functions, f =

∑
j∈Is

djψj , for some coefficients {di}i∈Is
, and the

right-hand side then has entries

bi = (f, ψi) =
∑
j∈Is

dj(ψj , ψi) =
∑
j∈Is

djAi,j .

The linear system
∑
j Ai,jcj = bi, i ∈ Is, is then∑

j∈Is

cjAi,j =
∑
j∈Is

djAi,j , i ∈ Is,

which implies that ci = di for i ∈ Is.
2http://tinyurl.com/nm5587k/fem/approx1D.py
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2.6 Ill-conditioning
The computational example in Section 2.5 applies the least_squares function which invokes
symbolic methods to calculate and solve the linear system. The correct solution c0 = 9, c1 =
−20, c2 = 10, ci = 0 for i ≥ 3 is perfectly recovered.

Suppose we convert the matrix and right-hand side to floating-point arrays and then solve the
system using finite-precision arithmetics, which is what one will (almost) always do in real life.
This time we get astonishing results! Up to about N = 7 we get a solution that is reasonably
close to the exact one. Increasing N shows that seriously wrong coefficients are computed. Below
is a table showing the solution of the linear system arising from approximating a parabola by
functions on the form u(x) = c0 + c1x+ c2x

2 + · · ·+ c10x
10. Analytically, we know that cj = 0

for j > 2, but numerically we may get cj 6= 0 for j > 2.

exact sympy numpy32 numpy64
9 9.62 5.57 8.98

-20 -23.39 -7.65 -19.93
10 17.74 -4.50 9.96
0 -9.19 4.13 -0.26
0 5.25 2.99 0.72
0 0.18 -1.21 -0.93
0 -2.48 -0.41 0.73
0 1.81 -0.013 -0.36
0 -0.66 0.08 0.11
0 0.12 0.04 -0.02
0 -0.001 -0.02 0.002

The exact value of cj , j = 0, 1, . . . , 10, appears in the first column while the other columns
correspond to results obtained by three different methods:

• Column 2: The matrix and vector are converted to the data structure sympy.mpmath.fp.matrix
and the sympy.mpmath.fp.lu_solve function is used to solve the system.

• Column 3: The matrix and vector are converted to numpy arrays with data type numpy.float32
(single precision floating-point number) and solved by the numpy.linalg.solve function.

• Column 4: As column 3, but the data type is numpy.float64 (double precision floating-point
number).

We see from the numbers in the table that double precision performs much better than single pre-
cision. Nevertheless, when plotting all these solutions the curves cannot be visually distinguished
(!). This means that the approximations look perfect, despite the partially very wrong values of
the coefficients.

Increasing N to 12 makes the numerical solver in numpy abort with the message: "matrix is
numerically singular". A matrix has to be non-singular to be invertible, which is a requirement
when solving a linear system. Already when the matrix is close to singular, it is ill-conditioned,
which here implies that the numerical solution algorithms are sensitive to round-off errors and
may produce (very) inaccurate results.

The reason why the coefficient matrix is nearly singular and ill-conditioned is that our basis
functions ψi(x) = xi are nearly linearly dependent for large i. That is, xi and xi+1 are very close
for i not very small. This phenomenon is illustrated in Figure 4. There are 15 lines in this figure,
but only half of them are visually distinguishable. Almost linearly dependent basis functions give
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rise to an ill-conditioned and almost singular matrix. This fact can be illustrated by computing
the determinant, which is indeed very close to zero (recall that a zero determinant implies a
singular and non-invertible matrix): 10−65 for N = 10 and 10−92 for N = 12. Already for N = 28
the numerical determinant computation returns a plain zero.
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Figure 4: The 15 first basis functions xi, i = 0, . . . , 14.

On the other hand, the double precision numpy solver do run for N = 100, resulting in answers
that are not significantly worse than those in the table above, and large powers are associated
with small coefficients (e.g., cj < 10−2 for 10 ≤ j ≤ 20 and c < 10−5 for j > 20). Even for
N = 100 the approximation still lies on top of the exact curve in a plot (!).

The conclusion is that visual inspection of the quality of the approximation may not uncover
fundamental numerical problems with the computations. However, numerical analysts have
studied approximations and ill-conditioning for decades, and it is well known that the basis
{1, x, x2, x3, . . . , } is a bad basis. The best basis from a matrix conditioning point of view is
to have orthogonal functions such that (ψi, ψj) = 0 for i 6= j. There are many known sets of
orthogonal polynomials and other functions. The functions used in the finite element methods
are almost orthogonal, and this property helps to avoid problems with solving matrix systems.
Almost orthogonal is helpful, but not enough when it comes to partial differential equations,
and ill-conditioning of the coefficient matrix is a theme when solving large-scale matrix systems
arising from finite element discretizations.
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2.7 Fourier series
A set of sine functions is widely used for approximating functions (the sines are also orthogonal
as explained more in Section 2.6). Let us take

V = span {sin πx, sin 2πx, . . . , sin(N + 1)πx} .

That is,

ψi(x) = sin((i+ 1)πx), i ∈ Is .

An approximation to the f(x) function from Section 2.3 can then be computed by the least_squares
function from Section 2.4:

N = 3
from sympy import sin, pi
x = sp.Symbol(’x’)
psi = [sin(pi*(i+1)*x) for i in range(N+1)]
f = 10*(x-1)**2 - 1
Omega = [0, 1]
u, c = least_squares(f, psi, Omega)
comparison_plot(f, u, Omega)

Figure 5 (left) shows the oscillatory approximation of
∑N
j=0 cj sin((j + 1)πx) when N = 3.

Changing N to 11 improves the approximation considerably, see Figure 5 (right).
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Figure 5: Best approximation of a parabola by a sum of 3 (left) and 11 (right) sine functions.

There is an error f(0)−u(0) = 9 at x = 0 in Figure 5 regardless of how large N is, because all
ψi(0) = 0 and hence u(0) = 0. We may help the approximation to be correct at x = 0 by seeking

u(x) = f(0) +
∑
j∈Is

cjψj(x) . (39)

However, this adjustment introduces a new problem at x = 1 since we now get an error f(1)−u(1) =
f(1)− 0 = −1 at this point. A more clever adjustment is to replace the f(0) term by a term that
is f(0) at x = 0 and f(1) at x = 1. A simple linear combination f(0)(1− x) + xf(1) does the job:

u(x) = f(0)(1− x) + xf(1) +
∑
j∈Is

cjψj(x) . (40)

This adjustment of u alters the linear system slightly. In the general case, we set

20



u(x) = B(x) +
∑
j∈Is

cjψj(x),

and the linear system becomes∑
j∈Is

(ψi, ψj)cj = (f −B,ψi), i ∈ Is .

The calculations can still utilize the least_squares or least_squares_orth functions, but solve
for u− b:

f0 = 0; f1 = -1
B = f0*(1-x) + x*f1
u_sum, c = least_squares_orth(f-b, psi, Omega)
u = B + u_sum

Figure 6 shows the result of the technique for ensuring right boundary values. Even 3 sines
can now adjust the f(0)(1− x) + xf(1) term such that u approximates the parabola really well,
at least visually.
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Figure 6: Best approximation of a parabola by a sum of 3 (left) and 11 (right) sine functions
with a boundary term.

2.8 Orthogonal basis functions
The choice of sine functions ψi(x) = sin((i + 1)πx) has a great computational advantage: on
Ω = [0, 1] these basis functions are orthogonal, implying that Ai,j = 0 if i 6= j. This result is
realized by trying

integrate(sin(j*pi*x)*sin(k*pi*x), x, 0, 1)

in WolframAlpha3 (avoid i in the integrand as this symbol means the imaginary unit
√
−1). Also

by asking WolframAlpha about
∫ 1

0 sin2(jπx) dx, we find it to equal 1/2. With a diagonal matrix
we can easily solve for the coefficients by hand:

ci = 2
∫ 1

0
f(x) sin((i+ 1)πx) dx, i ∈ Is, (41)

3http://wolframalpha.com
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which is nothing but the classical formula for the coefficients of the Fourier sine series of f(x)
on [0, 1]. In fact, when V contains the basic functions used in a Fourier series expansion, the
approximation method derived in Section 2 results in the classical Fourier series for f(x) (see
Exercise 8 for details).

With orthogonal basis functions we can make the least_squares function (much) more
efficient since we know that the matrix is diagonal and only the diagonal elements need to be
computed:

def least_squares_orth(f, psi, Omega):
N = len(psi) - 1
A = [0]*(N+1)
b = [0]*(N+1)
x = sp.Symbol(’x’)
for i in range(N+1):

A[i] = sp.integrate(psi[i]**2, (x, Omega[0], Omega[1]))
b[i] = sp.integrate(psi[i]*f, (x, Omega[0], Omega[1]))

c = [b[i]/A[i] for i in range(len(b))]
u = 0
for i in range(len(psi)):

u += c[i]*psi[i]
return u, c

As mentioned in Section 2.4, symbolic integration may fail or take very long time. It is
therefore natural to extend the implementation above with a version where we can choose between
symbolic and numerical integration and fall back on the latter if the former fails:

def least_squares_orth(f, psi, Omega, symbolic=True):
N = len(psi) - 1
A = [0]*(N+1) # plain list to hold symbolic expressions
b = [0]*(N+1)
x = sp.Symbol(’x’)
for i in range(N+1):

# Diagonal matrix term
A[i] = sp.integrate(psi[i]**2, (x, Omega[0], Omega[1]))

# Right-hand side term
integrand = psi[i]*f
if symbolic:

I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
if not symbolic or isinstance(I, sp.Integral):

print ’numerical integration of’, integrand
integrand = sp.lambdify([x], integrand)
I = sp.mpmath.quad(integrand, [Omega[0], Omega[1]])

b[i] = I
c = [b[i]/A[i] for i in range(len(b))]
u = 0
u = sum(c[i,0]*psi[i] for i in range(len(psi)))
return u, c

This function is found in the file approx1D.py. Observe that we here assume that
∫

Ω ϕ
2
i dx can

always be symbolically computed, which is not an unreasonable assumption when the basis
functions are orthogonal, but there is no guarantee, so an improved version of the function above
would implement numerical integration also for the A[i,i] term.

2.9 Numerical computations
Sometimes the basis functions ψi and/or the function f have a nature that makes symbolic
integration CPU-time consuming or impossible. Even though we implemented a fallback on
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numerical integration of
∫
fϕidx considerable time might be required by sympy in the attempt to

integrate symbolically. Therefore, it will be handy to have function for fast numerical integration
and numerical solution of the linear system. Below is such a method. It requires Python functions
f(x) and psi(x,i) for f(x) and ψi(x) as input. The output is a mesh function with values
u on the mesh with points in the array x. Three numerical integration methods are offered:
scipy.integrate.quad (precision set to 10−8), sympy.mpmath.quad (high precision), and a
Trapezoidal rule based on the points in x.

def least_squares_numerical(f, psi, N, x,
integration_method=’scipy’,
orthogonal_basis=False):

import scipy.integrate
A = np.zeros((N+1, N+1))
b = np.zeros(N+1)
Omega = [x[0], x[-1]]
dx = x[1] - x[0]

for i in range(N+1):
j_limit = i+1 if orthogonal_basis else N+1
for j in range(i, j_limit):

print ’(%d,%d)’ % (i, j)
if integration_method == ’scipy’:

A_ij = scipy.integrate.quad(
lambda x: psi(x,i)*psi(x,j),
Omega[0], Omega[1], epsabs=1E-9, epsrel=1E-9)[0]

elif integration_method == ’sympy’:
A_ij = sp.mpmath.quad(

lambda x: psi(x,i)*psi(x,j),
[Omega[0], Omega[1]])

else:
values = psi(x,i)*psi(x,j)
A_ij = trapezoidal(values, dx)

A[i,j] = A[j,i] = A_ij

if integration_method == ’scipy’:
b_i = scipy.integrate.quad(

lambda x: f(x)*psi(x,i), Omega[0], Omega[1],
epsabs=1E-9, epsrel=1E-9)[0]

elif integration_method == ’sympy’:
b_i = sp.mpmath.quad(

lambda x: f(x)*psi(x,i), [Omega[0], Omega[1]])
else:

values = f(x)*psi(x,i)
b_i = trapezoidal(values, dx)

b[i] = b_i

c = b/np.diag(A) if orthogonal_basis else np.linalg.solve(A, b)
u = sum(c[i]*psi(x, i) for i in range(N+1))
return u, c

def trapezoidal(values, dx):
"""Integrate values by the Trapezoidal rule (mesh size dx)."""
return dx*(np.sum(values) - 0.5*values[0] - 0.5*values[-1])

Here is an example on calling the function:

from numpy import linspace, tanh, pi

def psi(x, i):
return sin((i+1)*x)

x = linspace(0, 2*pi, 501)
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N = 20
u, c = least_squares_numerical(lambda x: tanh(x-pi), psi, N, x,

orthogonal_basis=True)

2.10 The interpolation (or collocation) method
The principle of minimizing the distance between u and f is an intuitive way of computing a best
approximation u ∈ V to f . However, there are other approaches as well. One is to demand that
u(xi) = f(xi) at some selected points xi, i ∈ Is:

u(xi) =
∑
j∈Is

cjψj(xi) = f(xi), i ∈ Is . (42)

This criterion also gives a linear system with N + 1 unknown coefficients {ci}i∈Is
:∑

j∈Is

Ai,jcj = bi, i ∈ Is, (43)

with

Ai,j = ψj(xi), (44)
bi = f(xi) . (45)

This time the coefficient matrix is not symmetric because ψj(xi) 6= ψi(xj) in general. The method
is often referred to as an interpolation method since some point values of f are given (f(xi)) and
we fit a continuous function u that goes through the f(xi) points. In this case the xi points are
called interpolation points. When the same approach is used to approximate differential equations,
one usually applies the name collocation method and xi are known as collocation points.

Given f as a sympy symbolic expression f, {ψi}i∈Is
as a list psi, and a set of points {xi}i∈Is

as a list or array points, the following Python function sets up and solves the matrix system for
the coefficients {ci}i∈Is

:

def interpolation(f, psi, points):
N = len(psi) - 1
A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))
x = sp.Symbol(’x’)
# Turn psi and f into Python functions
psi = [sp.lambdify([x], psi[i]) for i in range(N+1)]
f = sp.lambdify([x], f)
for i in range(N+1):

for j in range(N+1):
A[i,j] = psi[j](points[i])

b[i,0] = f(points[i])
c = A.LUsolve(b)
u = 0
for i in range(len(psi)):

u += c[i,0]*psi[i](x)
return u

The interpolation function is a part of the approx1D module.
We found it convenient in the above function to turn the expressions f and psi into ordinary

Python functions of x, which can be called with float values in the list points when building
the matrix and the right-hand side. The alternative is to use the subs method to substitute the
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x variable in an expression by an element from the points list. The following session illustrates
both approaches in a simple setting:

>>> from sympy import *
>>> x = Symbol(’x’)
>>> e = x**2 # symbolic expression involving x
>>> p = 0.5 # a value of x
>>> v = e.subs(x, p) # evaluate e for x=p
>>> v
0.250000000000000
>>> type(v)
sympy.core.numbers.Float
>>> e = lambdify([x], e) # make Python function of e
>>> type(e)
>>> function
>>> v = e(p) # evaluate e(x) for x=p
>>> v
0.25
>>> type(v)
float

A nice feature of the interpolation or collocation method is that it avoids computing integrals.
However, one has to decide on the location of the xi points. A simple, yet common choice, is to
distribute them uniformly throughout Ω.

Example. Let us illustrate the interpolation or collocation method by approximating our
parabola f(x) = 10(x− 1)2 − 1 by a linear function on Ω = [1, 2], using two collocation points
x0 = 1 + 1/3 and x1 = 1 + 2/3:

f = 10*(x-1)**2 - 1
psi = [1, x]
Omega = [1, 2]
points = [1 + sp.Rational(1,3), 1 + sp.Rational(2,3)]
u = interpolation(f, psi, points)
comparison_plot(f, u, Omega)

The resulting linear system becomes(
1 4/3
1 5/3

)(
c0
c1

)
=
(

1/9
31/9

)
with solution c0 = −119/9 and c1 = 10. Figure 7 (left) shows the resulting approximation
u = −119/9 + 10x. We can easily test other interpolation points, say x0 = 1 and x1 = 2. This
changes the line quite significantly, see Figure 7 (right).

2.11 Lagrange polynomials
In Section 2.7 we explain the advantage with having a diagonal matrix: formulas for the coefficients
{ci}i∈Is

can then be derived by hand. For an interpolation/collocation method a diagonal matrix
implies that ψj(xi) = 0 if i 6= j. One set of basis functions ψi(x) with this property is the
Lagrange interpolating polynomials, or just Lagrange polynomials. (Although the functions are
named after Lagrange, they were first discovered by Waring in 1779, rediscovered by Euler in
1783, and published by Lagrange in 1795.) The Lagrange polynomials have the form

ψi(x) =
N∏

j=0,j 6=i

x− xj
xi − xj

= x− x0

xi − x0
· · · x− xi−1

xi − xi−1

x− xi+1

xi − xi+1
· · · x− xN

xi − xN
, (46)
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Figure 7: Approximation of a parabola by linear functions computed by two interpolation points:
4/3 and 5/3 (left) versus 1 and 2 (right).

for i ∈ Is. We see from (46) that all the ψi functions are polynomials of degree N which have the
property

ψi(xs) = δis, δis =
{

1, i = s,
0, i 6= s,

(47)

when xs is an interpolation/collocation point. Here we have used the Kronecker delta symbol δis.
This property implies that Ai,j = 0 for i 6= j and Ai,j = 1 when i = j. The solution of the linear
system is them simply

ci = f(xi), i ∈ Is, (48)

and

u(x) =
∑
j∈Is

f(xi)ψi(x) . (49)

The following function computes the Lagrange interpolating polynomial ψi(x), given the
interpolation points x0, . . . , xN in the list or array points:

def Lagrange_polynomial(x, i, points):
p = 1
for k in range(len(points)):

if k != i:
p *= (x - points[k])/(points[i] - points[k])

return p

The next function computes a complete basis using equidistant points throughout Ω:

def Lagrange_polynomials_01(x, N):
if isinstance(x, sp.Symbol):

h = sp.Rational(1, N-1)
else:

h = 1.0/(N-1)
points = [i*h for i in range(N)]
psi = [Lagrange_polynomial(x, i, points) for i in range(N)]
return psi, points
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When x is an sp.Symbol object, we let the spacing between the interpolation points, h, be a
sympy rational number for nice end results in the formulas for ψi. The other case, when x
is a plain Python float, signifies numerical computing, and then we let h be a floating-point
number. Observe that the Lagrange_polynomial function works equally well in the symbolic
and numerical case - just think of x being an sp.Symbol object or a Python float. A little
interactive session illustrates the difference between symbolic and numerical computing of the
basis functions and points:

>>> import sympy as sp
>>> x = sp.Symbol(’x’)
>>> psi, points = Lagrange_polynomials_01(x, N=3)
>>> points
[0, 1/2, 1]
>>> psi
[(1 - x)*(1 - 2*x), 2*x*(2 - 2*x), -x*(1 - 2*x)]

>>> x = 0.5 # numerical computing
>>> psi, points = Lagrange_polynomials_01(x, N=3)
>>> points
[0.0, 0.5, 1.0]
>>> psi
[-0.0, 1.0, 0.0]

The Lagrange polynomials are very much used in finite element methods because of their property
(47).

Approximation of a polynomial. The Galerkin or least squares method lead to an exact
approximation if f lies in the space spanned by the basis functions. It could be interest to see how
the interpolation method with Lagrange polynomials as basis is able to approximate a polynomial,
e.g., a parabola. Running

for N in 2, 4, 5, 6, 8, 10, 12:
f = x**2
psi, points = Lagrange_polynomials_01(x, N)
u = interpolation(f, psi, points)

shows the result that up to N=4 we achieve an exact approximation, and then round-off errors
start to grow, such that N=15 leads to a 15-degree polynomial for u where the coefficients in front
of xr for r > 2 are of size 10−5 and smaller.

Successful example. Trying out the Lagrange polynomial basis for approximating f(x) =
sin 2πx on Ω = [0, 1] with the least squares and the interpolation techniques can be done by

x = sp.Symbol(’x’)
f = sp.sin(2*sp.pi*x)
psi, points = Lagrange_polynomials_01(x, N)
Omega=[0, 1]
u, c = least_squares(f, psi, Omega)
comparison_plot(f, u, Omega)
u, c = interpolation(f, psi, points)
comparison_plot(f, u, Omega)

Figure 8 shows the results. There is little difference between the least squares and the interpolation
technique. Increasing N gives visually better approximations.
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Figure 8: Approximation via least squares (left) and interpolation (right) of a sine function by
Lagrange interpolating polynomials of degree 3.

Less successful example. The next example concerns interpolating f(x) = |1 − 2x| on
Ω = [0, 1] using Lagrange polynomials. Figure 9 shows a peculiar effect: the approximation starts
to oscillate more and more as N grows. This numerical artifact is not surprising when looking at
the individual Lagrange polynomials. Figure 10 shows two such polynomials, ψ2(x) and ψ7(x),
both of degree 11 and computed from uniformly spaced points xxi = i/11, i = 0, . . . , 11, marked
with circles. We clearly see the property of Lagrange polynomials: ψ2(xi) = 0 and ψ7(xi) = 0 for
all i, except ψ2(x2) = 1 and ψ7(x7) = 1. The most striking feature, however, is the significant
oscillation near the boundary. The reason is easy to understand: since we force the functions to
zero at so many points, a polynomial of high degree is forced to oscillate between the points. The
phenomenon is named Runge’s phenomenon and you can read a more detailed explanation on
Wikipedia4.

Remedy for strong oscillations. The oscillations can be reduced by a more clever choice of
interpolation points, called the Chebyshev nodes:

xi = 1
2(a+ b) + 1

2(b− a) cos
(

2i+ 1
2(N + 1)pi

)
, i = 0 . . . , N, (50)

on the interval Ω = [a, b]. Here is a flexible version of the Lagrange_polynomials_01 function
above, valid for any interval Ω = [a, b] and with the possibility to generate both uniformly
distributed points and Chebyshev nodes:

def Lagrange_polynomials(x, N, Omega, point_distribution=’uniform’):
if point_distribution == ’uniform’:

if isinstance(x, sp.Symbol):
h = sp.Rational(Omega[1] - Omega[0], N)

else:
h = (Omega[1] - Omega[0])/float(N)

points = [Omega[0] + i*h for i in range(N+1)]
elif point_distribution == ’Chebyshev’:

points = Chebyshev_nodes(Omega[0], Omega[1], N)
psi = [Lagrange_polynomial(x, i, points) for i in range(N+1)]
return psi, points

def Chebyshev_nodes(a, b, N):

4http://en.wikipedia.org/wiki/Runge%27s_phenomenon

28

http://en.wikipedia.org/wiki/Runge%27s_phenomenon


from math import cos, pi
return [0.5*(a+b) + 0.5*(b-a)*cos(float(2*i+1)/(2*N+1))*pi) \

for i in range(N+1)]

All the functions computing Lagrange polynomials listed above are found in the module file
Lagrange.py. Figure 11 shows the improvement of using Chebyshev nodes (compared with
Figure 9). The reason is that the corresponding Lagrange polynomials have much smaller
oscillations as seen in Figure 12 (compare with Figure 10).

Another cure for undesired oscillation of higher-degree interpolating polynomials is to use
lower-degree Lagrange polynomials on many small patches of the domain, which is the idea
pursued in the finite element method. For instance, linear Lagrange polynomials on [0, 1/2] and
[1/2, 1] would yield a perfect approximation to f(x) = |1− 2x| on Ω = [0, 1] since f is piecewise
linear.
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Figure 9: Interpolation of an absolute value function by Lagrange polynomials and uniformly
distributed interpolation points: degree 7 (left) and 14 (right).

How does the least squares or projection methods work with Lagrange polynomials? We can
just call the least_squares function, but sympy has problems integrating the f(x) = |1− 2x|
function times a polynomial, so we need to fallback on numerical integration.

def least_squares(f, psi, Omega):
N = len(psi) - 1
A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))
x = sp.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
integrand = psi[i]*psi[j]
I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sp.Integral):

# Could not integrate symbolically, fallback
# on numerical integration with mpmath.quad
integrand = sp.lambdify([x], integrand)
I = sp.mpmath.quad(integrand, [Omega[0], Omega[1]])

A[i,j] = A[j,i] = I
integrand = psi[i]*f
I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sp.Integral):

integrand = sp.lambdify([x], integrand)
I = sp.mpmath.quad(integrand, [Omega[0], Omega[1]])

b[i,0] = I
c = A.LUsolve(b)

29



0.0 0.2 0.4 0.6 0.8 1.0
10

8

6

4

2

0

2

4

6

ψ2

ψ7

Figure 10: Illustration of the oscillatory behavior of two Lagrange polynomials based on 12
uniformly spaced points (marked by circles).

u = 0
for i in range(len(psi)):

u += c[i,0]*psi[i]
return u
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Figure 11: Interpolation of an absolute value function by Lagrange polynomials and Chebyshev
nodes as interpolation points: degree 7 (left) and 14 (right).
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Figure 12: Illustration of the less oscillatory behavior of two Lagrange polynomials based on 12
Chebyshev points (marked by circles).
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3 Finite element basis functions
The specific basis functions exemplified in Section 2 are in general nonzero on the entire domain
Ω, see Figure 13 for an example where we plot ψ0(x) = sin 1

2πx and ψ1(x) = sin 2πx together
with a possible sum u(x) = 4ψ0(x)− 1

2ψ1(x). We shall now turn the attention to basis functions
that have compact support, meaning that they are nonzero on only a small portion of Ω. Moreover,
we shall restrict the functions to be piecewise polynomials. This means that the domain is split
into subdomains and the function is a polynomial on one or more subdomains, see Figure 14 for
a sketch involving locally defined hat functions that make u =

∑
j cjψj piecewise linear. At the

boundaries between subdomains one normally forces continuity of the function only so that when
connecting two polynomials from two subdomains, the derivative becomes discontinuous. These
type of basis functions are fundamental in the finite element method.
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Figure 13: A function resulting from adding two sine basis functions.

We first introduce the concepts of elements and nodes in a simplistic fashion as often met
in the literature. Later, we shall generalize the concept of an element, which is a necessary
step to treat a wider class of approximations within the family of finite element methods. The
generalization is also compatible with the concepts used in the FEniCS5 finite element software.

3.1 Elements and nodes
Let us divide the interval Ω on which f and u are defined into non-overlapping subintervals Ω(e),
e = 0, . . . , Ne:

5http://fenicsproject.org
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Figure 14: A function resulting from adding three local piecewise linear (hat) functions.

Ω = Ω(0) ∪ · · · ∪ Ω(Ne) . (51)

We shall for now refer to Ω(e) as an element, having number e. On each element we introduce a
set of points called nodes. For now we assume that the nodes are uniformly spaced throughout
the element and that the boundary points of the elements are also nodes. The nodes are given
numbers both within an element and in the global domain. These are referred to as local and
global node numbers, respectively. Figure 15 shows element boundaries with small vertical lines,
nodes as small disks, element numbers in circles, and global node numbers under the nodes.

Nodes and elements uniquely define a finite element mesh, which is our discrete representation
of the domain in the computations. A common special case is that of a uniformly partitioned
mesh where each element has the same length and the distance between nodes is constant.

Example. On Ω = [0, 1] we may introduce two elements, Ω(0) = [0, 0.4] and Ω(1) = [0.4, 1].
Furthermore, let us introduce three nodes per element, equally spaced within each element.
Figure 16 shows the mesh. The three nodes in element number 0 are x0 = 0, x1 = 0.2, and
x2 = 0.4. The local and global node numbers are here equal. In element number 1, we have the
local nodes x0 = 0.4, x1 = 0.7, and x2 = 1 and the corresponding global nodes x2 = 0.4, x3 = 0.7,
and x4 = 1. Note that the global node x2 = 0.4 is shared by the two elements.

For the purpose of implementation, we introduce two lists or arrays: nodes for storing the
coordinates of the nodes, with the global node numbers as indices, and elements for holding the
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Figure 15: Finite element mesh with 5 elements and 6 nodes.
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Figure 16: Finite element mesh with 2 elements and 5 nodes.

global node numbers in each element, with the local node numbers as indices. The nodes and
elements lists for the sample mesh above take the form

nodes = [0, 0.2, 0.4, 0.7, 1]
elements = [[0, 1, 2], [2, 3, 4]]

Looking up the coordinate of local node number 2 in element 1 is here done by nodes[elements[1][2]]
(recall that nodes and elements start their numbering at 0).

The numbering of elements and nodes does not need to be regular. Figure 17 shows and
example corresponding to

nodes = [1.5, 5.5, 4.2, 0.3, 2.2, 3.1]
elements = [[2, 1], [4, 5], [0, 4], [3, 0], [5, 2]]
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Figure 17: Example on irregular numbering of elements and nodes.

3.2 The basis functions
Construction principles. Finite element basis functions are in this text recognized by the
notation ϕi(x), where the index now in the beginning corresponds to a global node number. In
the current approximation problem we shall simply take ψi = ϕi.

Let i be the global node number corresponding to local node r in element number e. The
finite element basis functions ϕi are now defined as follows.

• If local node number r is not on the boundary of the element, take ϕi(x) to be the Lagrange
polynomial that is 1 at the local node number r and zero at all other nodes in the element.
On all other elements, ϕi = 0.

• If local node number r is on the boundary of the element, let ϕi be made up of the Lagrange
polynomial over element e that is 1 at node i, combined with the Lagrange polynomial over
element e+ 1 that is also 1 at node i. On all other elements, ϕi = 0.

A visual impression of three such basis functions are given in Figure 18.

Properties of ϕi. The construction of basis functions according to the principles above lead
to two important properties of ϕi(x). First,

ϕi(xj) = δij , δij =
{

1, i = j,
0, i 6= j,

(52)

when xj is a node in the mesh with global node number j. The result ϕi(xj) = δij arises because
the Lagrange polynomials are constructed to have exactly this property. The property also implies
a convenient interpretation of ci as the value of u at node i. To show this, we expand u in the
usual way as

∑
j cjψj and choose ψi = ϕi:

u(xi) =
∑
j∈Is

cjψj(xi) =
∑
j∈Is

cjϕj(xi) = ciϕi(xi) = ci .

Because of this interpretation, the coefficient ci is by many named ui or Ui.
Second, ϕi(x) is mostly zero throughout the domain:
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Figure 18: Illustration of the piecewise quadratic basis functions associated with nodes in element
1.

• ϕi(x) 6= 0 only on those elements that contain global node i,

• ϕi(x)ϕj(x) 6= 0 if and only if i and j are global node numbers in the same element.

Since Ai,j is the integral of ϕiϕj it means that most of the elements in the coefficient matrix will
be zero. We will come back to these properties and use them actively in computations to save
memory and CPU time.

We let each element have d+ 1 nodes, resulting in local Lagrange polynomials of degree d. It
is not a requirement to have the same d value in each element, but for now we will assume so.

3.3 Example on piecewise quadratic finite element functions
Figure 18 illustrates how piecewise quadratic basis functions can look like (d = 2). We work with
the domain Ω = [0, 1] divided into four equal-sized elements, each having three nodes. The nodes
and elements lists in this particular example become

nodes = [0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0]
elements = [[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]]

Figure 19 sketches the mesh and the numbering. Nodes are marked with circles on the x axis and
element boundaries are marked with vertical dashed lines in Figure 18.

Let us explain in detail how the basis functions are constructed according to the principles.
Consider element number 1 in Figure 18, Ω(1) = [0.25, 0.5], with local nodes 0, 1, and 2
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Figure 19: Sketch of mesh with 4 elements and 3 nodes per element.

corresponding to global nodes 2, 3, and 4. The coordinates of these nodes are 0.25, 0.375, and
0.5, respectively. We define three Lagrange polynomials on this element:

1. The polynomial that is 1 at local node 1 (x = 0.375, global node 3) makes up the basis
function ϕ3(x) over this element, with ϕ3(x) = 0 outside the element.

2. The Lagrange polynomial that is 1 at local node 0 is the "right part" of the global basis
function ϕ2(x). The "left part" of ϕ2(x) consists of a Lagrange polynomial associated with
local node 2 in the neighboring element Ω(0) = [0, 0.25].

3. Finally, the polynomial that is 1 at local node 2 (global node 4) is the "left part" of the
global basis function ϕ4(x). The "right part" comes from the Lagrange polynomial that is 1
at local node 0 in the neighboring element Ω(2) = [0.5, 0.75].

As mentioned earlier, any global basis function ϕi(x) is zero on elements that do not contain the
node with global node number i.

The other global functions associated with internal nodes, ϕ1, ϕ5, and ϕ7, are all of the same
shape as the drawn ϕ3, while the global basis functions associated with shared nodes also have
the same shape, provided the elements are of the same length.

3.4 Example on piecewise linear finite element functions
Figure 20 shows piecewise linear basis functions (d = 1). Also here we have four elements on
Ω = [0, 1]. Consider the element Ω(1) = [0.25, 0.5]. Now there are no internal nodes in the
elements so that all basis functions are associated with nodes at the element boundaries and
hence made up of two Lagrange polynomials from neighboring elements. For example, ϕ1(x)
results from the Lagrange polynomial in element 0 that is 1 at local node 1 and 0 at local node
0, combined with the Lagrange polynomial in element 1 that is 1 at local node 0 and 0 at local
node 1. The other basis functions are constructed similarly.

Explicit mathematical formulas are needed for ϕi(x) in computations. In the piecewise linear
case, one can show that
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Figure 20: Illustration of the piecewise linear basis functions associated with nodes in element 1.

ϕi(x) =


0, x < xi−1,
(x− xi−1)/(xi − xi−1), xi−1 ≤ x < xi,
1− (x− xi)/(xi+1 − xi), xi ≤ x < xi+1,
0, x ≥ xi+1 .

(53)

Here, xj , j = i− 1, i, i+ 1, denotes the coordinate of node j. For elements of equal length h the
formulas can be simplified to

ϕi(x) =


0, x < xi−1,
(x− xi−1)/h, xi−1 ≤ x < xi,
1− (x− xi)/h, xi ≤ x < xi+1,
0, x ≥ xi+1

(54)

3.5 Example on piecewise cubic finite element basis functions
Piecewise cubic basis functions can be defined by introducing four nodes per element. Figure 21
shows examples on ϕi(x), i = 3, 4, 5, 6, associated with element number 1. Note that ϕ4 and ϕ5
are nonzero on element number 1, while ϕ3 and ϕ6 are made up of Lagrange polynomials on two
neighboring elements.

We see that all the piecewise linear basis functions have the same "hat" shape. They are
naturally referred to as hat functions, also called chapeau functions. The piecewise quadratic
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Figure 21: Illustration of the piecewise cubic basis functions associated with nodes in element 1.

functions in Figure 18 are seen to be of two types. "Rounded hats" associated with internal
nodes in the elements and some more "sombrero" shaped hats associated with element boundary
nodes. Higher-order basis functions also have hat-like shapes, but the functions have pronounced
oscillations in addition, as illustrated in Figure 21.

A common terminology is to speak about linear elements as elements with two local nodes
associated with piecewise linear basis functions. Similarly, quadratic elements and cubic elements
refer to piecewise quadratic or cubic functions over elements with three or four local nodes,
respectively. Alternative names, frequently used later, are P1 elements for linear elements, P2 for
quadratic elements, and so forth: Pd signifies degree d of the polynomial basis functions.

3.6 Calculating the linear system
The elements in the coefficient matrix and right-hand side are given by the formulas (27) and
(28), but now the choice of ψi is ϕi. Consider P1 elements where ϕi(x) piecewise linear. Nodes
and elements numbered consecutively from left to right in a uniformly partitioned mesh imply
the nodes

xi = ih, i = 0, . . . , N,

and the elements

Ω(i) = [xi, xi+1] = [ih, (i+ 1)h], i = 0, . . . , Ne = N − 1 . (55)
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We have in this case N elements and N + 1 nodes, and Ω = [x0, xN ]. The formula for ϕi(x)
is given by (54) and a graphical illustration is provided in Figures 20 and 23. First we clearly
see from the figures the very important property ϕi(x)ϕj(x) 6= 0 if and only if j = i− 1, j = i,
or j = i + 1, or alternatively expressed, if and only if i and j are nodes in the same element.
Otherwise, ϕi and ϕj are too distant to have an overlap and consequently their product vanishes.
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Figure 22: Illustration of the piecewise linear basis functions corresponding to global node 2 and
3.

Calculating a specific matrix entry. Let us calculate the specific matrix entry A2,3 =∫
Ω ϕ2ϕ3 dx. Figure 22 shows how ϕ2 and ϕ3 look like. We realize from this figure that the
product ϕ2ϕ3 6= 0 only over element 2, which contains node 2 and 3. The particular formulas for
ϕ2(x) and ϕ3(x) on [x2, x3] are found from (54). The function ϕ3 has positive slope over [x2, x3]
and corresponds to the interval [xi−1, xi] in (54). With i = 3 we get

ϕ3(x) = (x− x2)/h,

while ϕ2(x) has negative slope over [x2, x3] and corresponds to setting i = 2 in (54),

ϕ2(x) = 1− (x− x2)/h .

We can now easily integrate,

A2,3 =
∫

Ω
ϕ2ϕ3 dx =

∫ x3

x2

(
1− x− x2

h

)
x− x2

h
dx = h

6 .

The diagonal entry in the coefficient matrix becomes

A2,2 =
∫ x2

x1

(
x− x1

h

)2
dx+

∫ x3

x2

(
1− x− x2

h

)2
dx = 2h

3 .

The entry A2,1 has an the integral that is geometrically similar to the situation in Figure 22, so
we get A2,1 = h/6.
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Calculating a general row in the matrix. We can now generalize the calculation of matrix
entries to a general row number i. The entry Ai,i−1 =

∫
Ω ϕiϕi−1 dx involves hat functions as

depicted in Figure 23. Since the integral is geometrically identical to the situation with specific
nodes 2 and 3, we realize that Ai,i−1 = Ai,i+1 = h/6 and Ai,i = 2h/3. However, we can compute
the integral directly too:

Ai,i−1 =
∫

Ω
ϕiϕi−1 dx

=
∫ xi−1

xi−2

ϕiϕi−1 dx︸ ︷︷ ︸
ϕi=0

+
∫ xi

xi−1

ϕiϕi−1 dx+
∫ xi+1

xi

ϕiϕi−1 dx︸ ︷︷ ︸
ϕi−1=0

=
∫ xi

xi−1

(
x− xi
h

)
︸ ︷︷ ︸

ϕi(x)

(
1− x− xi−1

h

)
︸ ︷︷ ︸

ϕi−1(x)

dx = h

6 .

The particular formulas for ϕi−1(x) and ϕi(x) on [xi−1, xi] are found from (54): ϕi is the linear
function with positive slope, corresponding to the interval [xi−1, xi] in (54), while φi−1 has a
negative slope so the definition in interval [xi, xi+1] in (54) must be used. (The appearance of i
in (54) and the integral might be confusing, as we speak about two different i indices.)
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Figure 23: Illustration of two neighboring linear (hat) functions with general node numbers.

The first and last row of the coefficient matrix lead to slightly different integrals:

A0,0 =
∫

Ω
ϕ2

0 dx =
∫ x1

x0

(
1− x− x0

h

)2
dx = h

3 .

Similarly, AN,N involves an integral over only one element and equals hence h/3.
The general formula for bi, see Figure 24, is now easy to set up

bi =
∫

Ω
ϕi(x)f(x) dx =

∫ xi

xi−1

x− xi−1

h
f(x) dx+

∫ xi+1

xi

(
1− x− xi

h

)
f(x) dx . (56)

We need a specific f(x) function to compute these integrals. With two equal-sized elements in
Ω = [0, 1] and f(x) = x(1− x), one gets
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Figure 24: Right-hand side integral with the product of a basis function and the given function
to approximate.

A = h

6

 2 1 0
1 4 1
0 1 2

 , b = h2

12

 2− 3h
12− 14h
10− 17h

 .

The solution becomes

c0 = h2

6 , c1 = h− 5
6h

2, c2 = 2h− 23
6 h

2 .

The resulting function

u(x) = c0ϕ0(x) + c1ϕ1(x) + c2ϕ2(x)

is displayed in Figure 25 (left). Doubling the number of elements to four leads to the improved
approximation in the right part of Figure 25.
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Figure 25: Least squares approximation of a parabola using 2 (left) and 4 (right) P1 elements.
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3.7 Assembly of elementwise computations
The integrals above are naturally split into integrals over individual elements since the formulas
change with the elements. This idea of splitting the integral is fundamental in all practical
implementations of the finite element method.

Let us split the integral over Ω into a sum of contributions from each element:

Ai,j =
∫

Ω
ϕiϕj dx =

∑
e

A
(e)
i,j , A

(e)
i,j =

∫
Ω(e)

ϕiϕj dx . (57)

Now, A(e)
i,j 6= 0 if and only if i and j are nodes in element e (look at Figure 23 to realize this

property). Introduce i = q(e, r) as the mapping of local node number r in element e to the global
node number i. This is just a short mathematical notation for the expression i=elements[e][r]
in a program. Let r and s be the local node numbers corresponding to the global node numbers
i = q(e, r) and j = q(e, s). With d nodes per element, all the nonzero elements in A(e)

i,j arise from
the integrals involving basis functions with indices corresponding to the global node numbers in
element number e: ∫

Ω(e)
ϕq(e,r)ϕq(e,s) dx, r, s = 0, . . . , d .

These contributions can be collected in a (d+ 1)× (d+ 1) matrix known as the element matrix.
Let Id = {0, . . . , d} be the valid indices of r and s. We introduce the notation

Ã(e) = {Ã(e)
r,s}, r, s ∈ Id,

for the element matrix. For the case d = 2 we have

Ã(e) =

 Ã
(e)
0,0 Ã

(e)
0,1 Ã

(e)
0,2

Ã
(e)
1,0 Ã

(e)
1,1 Ã

(e)
1,2

Ã
(e)
2,0 Ã

(e)
2,1 Ã

(e)
2,2

 .
Given the numbers Ã(e)

r,s , we should according to (57) add the contributions to the global coefficient
matrix by

Aq(e,r),q(e,s) := Aq(e,r),q(e,s) + Ã(e)
r,s , r, s ∈ Id . (58)

This process of adding in elementwise contributions to the global matrix is called finite element
assembly or simply assembly. Figure 26 illustrates how element matrices for elements with two
nodes are added into the global matrix. More specifically, the figure shows how the element matrix
associated with elements 1 and 2 assembled, assuming that global nodes are numbered from left
to right in the domain. With regularly numbered P3 elements, where the element matrices have
size 4× 4, the assembly of elements 1 and 2 are sketched in Figure 27.

After assembly of element matrices corresponding to regularly numbered elements and nodes
are understood, it is wise to study the assembly process for irregularly numbered elements and
nodes. Figure 17 shows a mesh where the elements array, or q(e, r) mapping in mathematical
notation, is given as

elements = [[2, 1], [4, 5], [0, 4], [3, 0], [5, 2]]

The associated assembly of element matrices 1 and 2 is sketched in Figure 28.
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Figure 26: Illustration of matrix assembly: regularly numbered P1 elements.

These three assembly processes can also be animated6.
The right-hand side of the linear system is also computed elementwise:

bi =
∫

Ω
f(x)ϕi(x) dx =

∑
e

b
(e)
i , b

(e)
i =

∫
Ω(e)

f(x)ϕi(x) dx . (59)

We observe that b(e)i 6= 0 if and only if global node i is a node in element e (look at Figure 24 to
realize this property). With d nodes per element we can collect the d+ 1 nonzero contributions
b
(e)
i , for i = q(e, r), r ∈ Id, in an element vector

b̃(e)r = {b̃(e)r }, r ∈ Id .

These contributions are added to the global right-hand side by an assembly process similar to
that for the element matrices:

bq(e,r) := bq(e,r) + b̃(e)r , r ∈ Id . (60)
6http://tinyurl.com/opdfafk/pub/mov-fem/fe_assembly.html
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Figure 27: Illustration of matrix assembly: regularly numbered P3 elements.

3.8 Mapping to a reference element
Instead of computing the integrals

Ã(e)
r,s =

∫
Ω(e)

ϕq(e,r)(x)ϕq(e,s)(x) dx

over some element Ω(e) = [xL, xR], it is convenient to map the element domain [xL, xR] to a
standardized reference element domain [−1, 1]. (We have now introduced xL and xR as the left
and right boundary points of an arbitrary element. With a natural, regular numbering of nodes
and elements from left to right through the domain, we have xL = xe and xR = xe+1 for P1
elements.)

Let X ∈ [−1, 1] be the coordinate in the reference element. A linear or affine mapping from
X to x reads
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Figure 28: Illustration of matrix assembly: irregularly numbered P1 elements.

x = 1
2(xL + xR) + 1

2(xR − xL)X . (61)

This relation can alternatively be expressed by

x = xm + 1
2hX, (62)

where we have introduced the element midpoint xm = (xL + xR)/2 and the element length
h = xR − xL.

Integrating on the reference element is a matter of just changing the integration variable from
x to X. Let

ϕ̃r(X) = ϕq(e,r)(x(X)) (63)

be the basis function associated with local node number r in the reference element. The integral
transformation reads

Ã(e)
r,s =

∫
Ω(e)

ϕq(e,r)(x)ϕq(e,s)(x) dx =
∫ 1

−1
ϕ̃r(X)ϕ̃s(X) dx

dX
dX . (64)

The stretch factor dx/dX between the x and X coordinates becomes the determinant of the
Jacobian matrix of the mapping between the coordinate systems in 2D and 3D. To obtain a
uniform notation for 1D, 2D, and 3D problems we therefore replace dx/dX by det J already now.
In 1D, det J = dx/dX = h/2. The integration over the reference element is then written as
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Ã(e)
r,s =

∫ 1

−1
ϕ̃r(X)ϕ̃s(X) detJ dX . (65)

The corresponding formula for the element vector entries becomes

b̃(e)r =
∫

Ω(e)
f(x)ϕq(e,r)(x)dx =

∫ 1

−1
f(x(X))ϕ̃r(X) detJ dX . (66)

Since we from now on will work in the reference element, we need explicit mathematical
formulas for the basis functions ϕi(x) in the reference element only, i.e., we only need to specify
formulas for ϕ̃r(X). This is a very convenient simplification compared to specifying piecewise
polynomials in the physical domain.

The ϕ̃r(x) functions are simply the Lagrange polynomials defined through the local nodes
in the reference element. For d = 1 and two nodes per element, we have the linear Lagrange
polynomials

ϕ̃0(X) = 1
2(1−X) (67)

ϕ̃1(X) = 1
2(1 +X) (68)

Quadratic polynomials, d = 2, have the formulas

ϕ̃0(X) = 1
2(X − 1)X (69)

ϕ̃1(X) = 1−X2 (70)

ϕ̃2(X) = 1
2(X + 1)X (71)

In general,

ϕ̃r(X) =
d∏

s=0,s 6=r

X −X(s)

X(r) −X(s)
, (72)

where X(0), . . . , X(d) are the coordinates of the local nodes in the reference element. These are
normally uniformly spaced: X(r) = −1 + 2r/d, r ∈ Id.

Why reference elements?

The great advantage of using reference elements is that the formulas for the basis functions,
ϕ̃r(X), are the same for all elements and independent of the element geometry (length and
location in the mesh). The geometric information is “factored out” in the simple mapping
formula and the associated det J quantity, but this information is (here taken as) the same
for element types. Also, the integration domain is the same for all elements.
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3.9 Example: Integration over a reference element
To illustrate the concepts from the previous section in a specific example, we now consider
calculation of the element matrix and vector for a specific choice of d and f(x). A simple choice is
d = 1 (P1 elements) and f(x) = x(1− x) on Ω = [0, 1]. We have the general expressions (65) and
(66) for Ã(e)

r,s and b̃(e)r . Writing these out for the choices (67) and (68), and using that det J = h/2,
we can do the following calculations of the element matrix entries:

Ã
(e)
0,0 =

∫ 1

−1
ϕ̃0(X)ϕ̃0(X)h2 dX

=
∫ 1

−1

1
2(1−X)1

2(1−X)h2 dX = h

8

∫ 1

−1
(1−X)2dX = h

3 , (73)

Ã
(e)
1,0 =

∫ 1

−1
ϕ̃1(X)ϕ̃0(X)h2 dX

=
∫ 1

−1

1
2(1 +X)1

2(1−X)h2 dX = h

8

∫ 1

−1
(1−X2)dX = h

6 , (74)

Ã
(e)
0,1 = Ã

(e)
1,0, (75)

Ã
(e)
1,1 =

∫ 1

−1
ϕ̃1(X)ϕ̃1(X)h2 dX

=
∫ 1

−1

1
2(1 +X)1

2(1 +X)h2 dX = h

8

∫ 1

−1
(1 +X)2dX = h

3 . (76)

The corresponding entries in the element vector becomes

b̃
(e)
0 =

∫ 1

−1
f(x(X))ϕ̃0(X)h2 dX

=
∫ 1

−1
(xm + 1

2hX)(1− (xm + 1
2hX))1

2(1−X)h2 dX

= − 1
24h

3 + 1
6h

2xm −
1
12h

2 − 1
2hx

2
m + 1

2hxm (77)

b̃
(e)
1 =

∫ 1

−1
f(x(X))ϕ̃1(X)h2 dX

=
∫ 1

−1
(xm + 1

2hX)(1− (xm + 1
2hX))1

2(1 +X)h2 dX

= − 1
24h

3 − 1
6h

2xm + 1
12h

2 − 1
2hx

2
m + 1

2hxm . (78)

In the last two expressions we have used the element midpoint xm.
Integration of lower-degree polynomials above is tedious, and higher-degree polynomials involve

very much more algebra, but sympy may help. For example, we can easily calculate (73), (73),
and (77) by

>>> import sympy as sp
>>> x, x_m, h, X = sp.symbols(’x x_m h X’)
>>> sp.integrate(h/8*(1-X)**2, (X, -1, 1))
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h/3
>>> sp.integrate(h/8*(1+X)*(1-X), (X, -1, 1))
h/6
>>> x = x_m + h/2*X
>>> b_0 = sp.integrate(h/4*x*(1-x)*(1-X), (X, -1, 1))
>>> print b_0
-h**3/24 + h**2*x_m/6 - h**2/12 - h*x_m**2/2 + h*x_m/2

For inclusion of formulas in documents (like the present one), sympy can print expressions in
LATEX format:

>>> print sp.latex(b_0, mode=’plain’)
- \frac{1}{24} h^{3} + \frac{1}{6} h^{2} x_{m}
- \frac{1}{12} h^{2} - \half h x_{m}^{2}
+ \half h x_{m}

4 Implementation
Based on the experience from the previous example, it makes sense to write some code to automate
the analytical integration process for any choice of finite element basis functions. In addition, we
can automate the assembly process and linear system solution. Appropriate functions for this
purpose document all details of all steps in the finite element computations and can found in the
module file fe_approx1D.py7. The key steps in the computational machinery are now explained
in detail in terms of code and text.

4.1 Integration
First we need a Python function for defining ϕ̃r(X) in terms of a Lagrange polynomial of degree
d:

import sympy as sp
import numpy as np

def phi_r(r, X, d):
if isinstance(X, sp.Symbol):

h = sp.Rational(1, d) # node spacing
nodes = [2*i*h - 1 for i in range(d+1)]

else:
# assume X is numeric: use floats for nodes
nodes = np.linspace(-1, 1, d+1)

return Lagrange_polynomial(X, r, nodes)

def Lagrange_polynomial(x, i, points):
p = 1
for k in range(len(points)):

if k != i:
p *= (x - points[k])/(points[i] - points[k])

return p

Observe how we construct the phi_r function to be a symbolic expression for ϕ̃r(X) if X is a
Symbol object from sympy. Otherwise, we assume that X is a float object and compute the
corresponding floating-point value of ϕ̃r(X). Recall that the Lagrange_polynomial function,
here simply copied from Section 2.7, works with both symbolic and numeric variables.

7http://tinyurl.com/nm5587k/fem/fe_approx1D.py
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The complete basis ϕ̃0(X), . . . , ϕ̃d(X) on the reference element, represented as a list of symbolic
expressions, is constructed by

def basis(d=1):
X = sp.Symbol(’X’)
phi = [phi_r(r, X, d) for r in range(d+1)]
return phi

Now we are in a position to write the function for computing the element matrix:

def element_matrix(phi, Omega_e, symbolic=True):
n = len(phi)
A_e = sp.zeros((n, n))
X = sp.Symbol(’X’)
if symbolic:

h = sp.Symbol(’h’)
else:

h = Omega_e[1] - Omega_e[0]
detJ = h/2 # dx/dX
for r in range(n):

for s in range(r, n):
A_e[r,s] = sp.integrate(phi[r]*phi[s]*detJ, (X, -1, 1))
A_e[s,r] = A_e[r,s]

return A_e

In the symbolic case (symbolic is True), we introduce the element length as a symbol h in the
computations. Otherwise, the real numerical value of the element interval Omega_e is used and
the final matrix elements are numbers, not symbols. This functionality can be demonstrated:

>>> from fe_approx1D import *
>>> phi = basis(d=1)
>>> phi
[1/2 - X/2, 1/2 + X/2]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=True)
[h/3, h/6]
[h/6, h/3]
>>> element_matrix(phi, Omega_e=[0.1, 0.2], symbolic=False)
[0.0333333333333333, 0.0166666666666667]
[0.0166666666666667, 0.0333333333333333]

The computation of the element vector is done by a similar procedure:

def element_vector(f, phi, Omega_e, symbolic=True):
n = len(phi)
b_e = sp.zeros((n, 1))
# Make f a function of X
X = sp.Symbol(’X’)
if symbolic:

h = sp.Symbol(’h’)
else:

h = Omega_e[1] - Omega_e[0]
x = (Omega_e[0] + Omega_e[1])/2 + h/2*X # mapping
f = f.subs(’x’, x) # substitute mapping formula for x
detJ = h/2 # dx/dX
for r in range(n):

b_e[r] = sp.integrate(f*phi[r]*detJ, (X, -1, 1))
return b_e

Here we need to replace the symbol x in the expression for f by the mapping formula such that f
can be integrated in terms of X, cf. the formula b̃(e)r =

∫ 1
−1 f(x(X))ϕ̃r(X)h2dX.
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The integration in the element matrix function involves only products of polynomials, which
sympy can easily deal with, but for the right-hand side sympy may face difficulties with certain
types of expressions f. The result of the integral is then an Integral object and not a number
or expression as when symbolic integration is successful. It may therefore be wise to introduce a
fallback on numerical integration. The symbolic integration can also take much time before an
unsuccessful conclusion so we may also introduce a parameter symbolic and set it to False in
order to avoid symbolic integration:

def element_vector(f, phi, Omega_e, symbolic=True):
...
if symbolic:

I = sp.integrate(f*phi[r]*detJ, (X, -1, 1))
if not symbolic or isinstance(I, sp.Integral):

h = Omega_e[1] - Omega_e[0] # Ensure h is numerical
detJ = h/2
integrand = sp.lambdify([X], f*phi[r]*detJ)
I = sp.mpmath.quad(integrand, [-1, 1])

b_e[r] = I
...

Numerical integration requires that the symbolic integrand is converted to a plain Python function
(integrand) and that the element length h is a real number.

4.2 Linear system assembly and solution
The complete algorithm for computing and assembling the elementwise contributions takes the
following form

def assemble(nodes, elements, phi, f, symbolic=True):
N_n, N_e = len(nodes), len(elements)
if symbolic:

A = sp.zeros((N_n, N_n))
b = sp.zeros((N_n, 1)) # note: (N_n, 1) matrix

else:
A = np.zeros((N_n, N_n))
b = np.zeros(N_n)

for e in range(N_e):
Omega_e = [nodes[elements[e][0]], nodes[elements[e][-1]]]

A_e = element_matrix(phi, Omega_e, symbolic)
b_e = element_vector(f, phi, Omega_e, symbolic)

for r in range(len(elements[e])):
for s in range(len(elements[e])):

A[elements[e][r],elements[e][s]] += A_e[r,s]
b[elements[e][r]] += b_e[r]

return A, b

The nodes and elements variables represent the finite element mesh as explained earlier.
Given the coefficient matrix A and the right-hand side b, we can compute the coefficients

{ci}i∈Is
in the expansion u(x) =

∑
j cjϕj as the solution vector c of the linear system:

if symbolic:
c = A.LUsolve(b)

else:
c = np.linalg.solve(A, b)

When A and b are sympy arrays, the solution procedure implied by A.LUsolve is symbolic.
Otherwise, A and b are numpy arrays and a standard numerical solver is called. The symbolic
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version is suited for small problems only (small N values) since the calculation time becomes
prohibitively large otherwise. Normally, the symbolic integration will be more time consuming in
small problems than the symbolic solution of the linear system.

4.3 Example on computing symbolic approximations
We can exemplify the use of assemble on the computational case from Section 3.6 with two P1
elements (linear basis functions) on the domain Ω = [0, 1]. Let us first work with a symbolic
element length:

>>> h, x = sp.symbols(’h x’)
>>> nodes = [0, h, 2*h]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, 0]
[h/6, 2*h/3, h/6]
[ 0, h/6, h/3]
>>> b
[ h**2/6 - h**3/12]
[ h**2 - 7*h**3/6]
[5*h**2/6 - 17*h**3/12]
>>> c = A.LUsolve(b)
>>> c
[ h**2/6]
[12*(7*h**2/12 - 35*h**3/72)/(7*h)]
[ 7*(4*h**2/7 - 23*h**3/21)/(2*h)]

4.4 Comparison with finite elements and interpolation/collocation
We may, for comparison, compute the c vector corresponding to an interpolation/collocation
method with finite element basis functions. Choosing the nodes as points, the principle is

u(xi) =
∑
j∈Is

cjϕj(xi) = f(xi), i ∈ Is .

The coefficient matrix Ai,j = ϕj(xi) becomes the identity matrix because basis function number
j vanishes at all nodes, except node j: ϕj(xi = δij . Therefore, ci = f(xi.

The associated sympy calculations are

>>> fn = sp.lambdify([x], f)
>>> c = [fn(xc) for xc in nodes]
>>> c
[0, h*(1 - h), 2*h*(1 - 2*h)]

These expressions are much simpler than those based on least squares or projection in combination
with finite element basis functions.

4.5 Example on computing numerical approximations
The numerical computations corresponding to the symbolic ones in Section 4.3, and still done by
sympy and the assemble function, go as follows:
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>>> nodes = [0, 0.5, 1]
>>> elements = [[0, 1], [1, 2]]
>>> phi = basis(d=1)
>>> x = sp.Symbol(’x’)
>>> f = x*(1-x)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=False)
>>> A
[ 0.166666666666667, 0.0833333333333333, 0]
[0.0833333333333333, 0.333333333333333, 0.0833333333333333]
[ 0, 0.0833333333333333, 0.166666666666667]
>>> b
[ 0.03125]
[0.104166666666667]
[ 0.03125]
>>> c = A.LUsolve(b)
>>> c
[0.0416666666666666]
[ 0.291666666666667]
[0.0416666666666666]

The fe_approx1D module contains functions for generating the nodes and elements lists
for equal-sized elements with any number of nodes per element. The coordinates in nodes can
be expressed either through the element length symbol h (symbolic=True) or by real numbers
(symbolic=False):

nodes, elements = mesh_uniform(N_e=10, d=3, Omega=[0,1],
symbolic=True)

There is also a function

def approximate(f, symbolic=False, d=1, N_e=4, filename=’tmp.pdf’):

which computes a mesh with N_e elements, basis functions of degree d, and approximates a
given symbolic expression f by a finite element expansion u(x) =

∑
j cjϕj(x). When symbolic is

False, u(x) =
∑
j cjϕj(x) can be computed at a (large) number of points and plotted together

with f(x). The construction of u points from the solution vector c is done elementwise by
evaluating

∑
r crϕ̃r(X) at a (large) number of points in each element in the local coordinate

system, and the discrete (x, u) values on each element are stored in separate arrays that are
finally concatenated to form a global array for x and for u. The details are found in the u_glob
function in fe_approx1D.py.

4.6 The structure of the coefficient matrix
Let us first see how the global matrix looks like if we assemble symbolic element matrices,
expressed in terms of h, from several elements:

>>> d=1; N_e=8; Omega=[0,1] # 8 linear elements on [0,1]
>>> phi = basis(d)
>>> f = x*(1-x)
>>> nodes, elements = mesh_symbolic(N_e, d, Omega)
>>> A, b = assemble(nodes, elements, phi, f, symbolic=True)
>>> A
[h/3, h/6, 0, 0, 0, 0, 0, 0, 0]
[h/6, 2*h/3, h/6, 0, 0, 0, 0, 0, 0]
[ 0, h/6, 2*h/3, h/6, 0, 0, 0, 0, 0]
[ 0, 0, h/6, 2*h/3, h/6, 0, 0, 0, 0]
[ 0, 0, 0, h/6, 2*h/3, h/6, 0, 0, 0]
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[ 0, 0, 0, 0, h/6, 2*h/3, h/6, 0, 0]
[ 0, 0, 0, 0, 0, h/6, 2*h/3, h/6, 0]
[ 0, 0, 0, 0, 0, 0, h/6, 2*h/3, h/6]
[ 0, 0, 0, 0, 0, 0, 0, h/6, h/3]

The reader is encouraged to assemble the element matrices by hand and verify this result, as this
exercise will give a hands-on understanding of what the assembly is about. In general we have a
coefficient matrix that is tridiagonal:

A = h

6



2 1 0 · · · · · · · · · · · · · · · 0

1 4 1
. . .

...

0 1 4 1
. . .

...
...

. . . . . . . . . 0
...

...
. . . . . . . . . . . . . . .

...
... 0 1 4 1

. . .
...

...
. . . . . . . . . . . . 0

...
. . . 1 4 1

0 · · · · · · · · · · · · · · · 0 1 2



(79)

The structure of the right-hand side is more difficult to reveal since it involves an assembly of
elementwise integrals of f(x(X))ϕ̃r(X)h/2, which obviously depend on the particular choice of
f(x). Numerical integration can give some insight into the nature of the right-hand side. For this
purpose it is easier to look at the integration in x coordinates, which gives the general formula
(56). For equal-sized elements of length h, we can apply the Trapezoidal rule at the global node
points to arrive at

bi = h

1
2ϕi(x0)f(x0) + 1

2ϕi(xN )f(xN ) +
N−1∑
j=1

ϕi(xj)f(xj)

 (80)

=
{ 1

2hf(xi), i = 0 or i = N,
hf(xi), 1 ≤ i ≤ N − 1 (81)

The reason for this simple formula is simply that ϕi is either 0 or 1 at the nodes and 0 at all but
one of them.

Going to P2 elements (d=2) leads to the element matrix

A(e) = h

30

 4 2 −1
2 16 2
−1 2 4

 (82)

and the following global assembled matrix from four elements:
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A = h

30



4 2 −1 0 0 0 0 0 0
2 16 2 0 0 0 0 0 0
−1 2 8 2 −1 0 0 0 0
0 0 2 16 2 0 0 0 0
0 0 −1 2 8 2 −1 0 0
0 0 0 0 2 16 2 0 0
0 0 0 0 −1 2 8 2 −1
0 0 0 0 0 0 2 16 2
0 0 0 0 0 0 −1 2 4


(83)

In general, for i odd we have the nonzeroes

Ai,i−2 = −1, Ai−1,i = 2, Ai,i = 8, Ai+1,i = 2, Ai+2,i = −1,

multiplied by h/30, and for i even we have the nonzeros

Ai−1,i = 2, Ai,i = 16, Ai+1,i = 2,

multiplied by h/30. The rows with odd numbers correspond to nodes at the element boundaries
and get contributions from two neighboring elements in the assembly process, while the even
numbered rows correspond to internal nodes in the elements where the only one element contributes
to the values in the global matrix.

4.7 Applications
With the aid of the approximate function in the fe_approx1D module we can easily investigate
the quality of various finite element approximations to some given functions. Figure 29 shows
how linear and quadratic elements approximates the polynomial f(x) = x(1− x)8 on Ω = [0, 1],
using equal-sized elements. The results arise from the program

import sympy as sp
from fe_approx1D import approximate
x = sp.Symbol(’x’)

approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=4)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=2)
approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=8)
approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=4)

The quadratic functions are seen to be better than the linear ones for the same value of N , as we
increase N . This observation has some generality: higher degree is not necessarily better on a
coarse mesh, but it is as we refined the mesh.

4.8 Sparse matrix storage and solution
Some of the examples in the preceding section took several minutes to compute, even on small
meshes consisting of up to eight elements. The main explanation for slow computations is unsuc-
cessful symbolic integration: sympy may use a lot of energy on integrals like

∫
f(x(X))ϕ̃r(X)h/2dx

before giving up, and the program then resorts to numerical integration. Codes that can deal
with a large number of basis functions and accept flexible choices of f(x) should compute all
integrals numerically and replace the matrix objects from sympy by the far more efficient array
objects from numpy.
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Figure 29: Comparison of the finite element approximations: 4 P1 elements with 5 nodes (upper
left), 2 P2 elements with 5 nodes (upper right), 8 P1 elements with 9 nodes (lower left), and 4 P2
elements with 9 nodes (lower right).

Another reason for slow code is related to the fact that most of the matrix entries Ai,j are
zero, because (ϕi, ϕj) = 0 unless i and j are nodes in the same element. A matrix whose majority
of entries are zeros, is known as a sparse matrix. The sparsity should be utilized in software as it
dramatically decreases the storage demands and the CPU-time needed to compute the solution
of the linear system. This optimization is not critical in 1D problems where modern computers
can afford computing with all the zeros in the complete square matrix, but in 2D and especially
in 3D, sparse matrices are fundamental for feasible finite element computations.

In 1D problems, using a numbering of nodes and elements from left to right over the domain,
the assembled coefficient matrix has only a few diagonals different from zero. More precisely,
2d + 1 diagonals are different from zero. With a different numbering of global nodes, say a
random ordering, the diagonal structure is lost, but the number of nonzero elements is unaltered.
Figures 30 and 31 exemplify sparsity patterns.

The scipy.sparse library supports creation of sparse matrices and linear system solution.

• scipy.sparse.diags for matrix defined via diagonals

• scipy.sparse.lil_matrix for creation via setting matrix entries

• scipy.sparse.dok_matrix for creation via setting matrix entries
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Figure 30: Matrix sparsity pattern for left-to-right numbering (left) and random numbering
(right) of nodes in P1 elements.

Figure 31: Matrix sparsity pattern for left-to-right numbering (left) and random numbering
(right) of nodes in P3 elements.

5 Comparison of finite element and finite difference ap-
proximation

The previous sections on approximating f by a finite element function u utilize the projection/-
Galerkin or least squares approaches to minimize the approximation error. We may, alternatively,
use the collocation/interpolation method as described in Section 4.4. Here we shall compare these
three approaches with what one does in the finite difference method when representing a given
function on a mesh.

5.1 Finite difference approximation of given functions
Approximating a given function f(x) on a mesh in a finite difference context will typically just
sample f at the mesh points. If ui is the value of the approximate u at the mesh point xi, we
have ui = f(xi). The collocation/interpolation method using finite element basis functions gives
exactly the same representation, as shown Section 4.4,

u(xi) = ci = f(xi) .

How does a finite element Galerkin or least squares approximation differ from this straightfor-
ward interpolation of f? This is the question to be addressed next. We now limit the scope to P1
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elements since this is the element type that gives formulas closest to those arising in the finite
difference method.

5.2 Finite difference interpretation of a finite element approximation
The linear system arising from a Galerkin or least squares approximation reads in general∑

j∈Is

cj(ψi, ψj) = (f, ψi), i ∈ Is .

In the finite element approximation we choose ψi = ϕi. With ϕi corresponding to P1 elements
and a uniform mesh of element length h we have in Section 3.6 calculated the matrix with entries
(ϕi, ϕj). Equation number i reads

h

6 (ui−1 + 4ui + ui+1) = (f, ϕi) . (84)

The first and last equation, corresponding to i = 0 and i = N are slightly different, see Section 4.6.
The finite difference counterpart to (84) is just ui = fi as explained in Section 5.1. To easier

compare this result to the finite element approach to approximating functions, we can rewrite the
left-hand side of (84) as

h(ui + 1
6(ui−1 − 2ui + ui+1)) . (85)

Thinking in terms of finite differences, we can write this expression using finite difference operator
notation:

[h(u+ h2

6 DxDxu)]i,

which is nothing but the standard discretization of

h(u+ h2

6 u
′′) .

Before interpreting the approximation procedure as solving a differential equation, we need to
work out what the right-hand side is in the context of P1 elements. Since ϕi is the linear function
that is 1 at xi and zero at all other nodes, only the interval [xi−1, xi+1] contribute to the integral
on the right-hand side. This integral is naturally split into two parts according to (54):

(f, ϕi) =
∫ xi

xi−1

f(x) 1
h

(x− xi−1)dx+
∫ xi+1

xi

f(x) 1
h

(1− (x− xi))dx .

However, if f is not known we cannot do much else with this expression. It is clear that many
values of f around xi contributes to the right-hand side, not just the single point value f(xi) as
in the finite difference method.

To proceed with the right-hand side, we can turn to numerical integration schemes. The
Trapezoidal method for (f, ϕi), based on sampling the integrand fϕi at the node points xi = ih
gives

(f, ϕi) =
∫

Ω
fϕidx ≈ h

1
2(f(x0)ϕi(x0) + f(xN )ϕi(xN )) + h

N−1∑
j=1

f(xj)ϕi(xj) .

Since ϕi is zero at all these points, except at xi, the Trapezoidal rule collapses to one term:
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(f, ϕi) ≈ hf(xi), (86)

for i = 1, . . . , N − 1, which is the same result as with collocation/interpolation, and of course the
same result as in the finite difference method. For i = 0 and i = N we get contribution from only
one element so

(f, ϕi) ≈
1
2hf(xi), i = 0, i = N . (87)

Simpson’s rule with sample points also in the middle of the elements, at xi+ 1
2

= (xi + xi+1)/2,
can be written as

∫
Ω
g(x)dx ≈ h̃

3

g(x0) + 2
N−1∑
j=1

g(xj) + 4
N−1∑
j=0

g(xj+ 1
2
) + f(x2N )

 ,

where h̃ = h/2 is the spacing between the sample points. Our integrand is g = fϕi. For all
the node points, ϕi(xj) = δij , and therefore

∑N−1
j=1 f(xj)ϕi(xj) = f(xi). At the midpoints,

ϕi(xi± 1
2
) = 1/2 and ϕi(xj+ 1

2
) = 0 for j > 1 and j < i− 1. Consequently,

N−1∑
j=0

f(xj+ 1
2
)ϕi(xj+ 1

2
) = 1

2(fxj− 1
2

+ xj+ 1
2
) .

When 1 ≤ i ≤ N − 1 we then get

(f, ϕi) ≈
h

3 (fi− 1
2

+ fi + fi+ 1
2
) . (88)

This result shows that, with Simpson’s rule, the finite element method operates with the average
of f over three points, while the finite difference method just applies f at one point. We may
interpret this as a "smearing" or smoothing of f by the finite element method.

We can now summarize our findings. With the approximation of (f, ϕi) by the Trapezoidal
rule, P1 elements give rise to equations that can be expressed as a finite difference discretization
of

u+ h2

6 u
′′ = f, u′(0) = u′(L) = 0, (89)

expressed with operator notation as

[u+ h2

6 DxDxu = f ]i . (90)

As h→ 0, the extra term proportional to u′′ goes to zero, and the two methods are then equal.
With the Simpson’s rule, we may say that we solve

[u+ h2

6 DxDxu = f̄ ]i, (91)

where f̄i means the average 1
3 (fi−1/2 + fi + fi+1/2).

The extra term h2

6 u
′′ represents a smoothing effect: with just this term, we would find

u by integrating f twice and thereby smooth f considerably. In addition, the finite element
representation of f involves an average, or a smoothing, of f on the right-hand side of the equation
system. If f is a noisy function, direct interpolation ui = fi may result in a noisy u too, but with
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a Galerkin or least squares formulation and P1 elements, we should expect that u is smoother
than f unless h is very small.

The interpretation that finite elements tend to smooth the solution is valid in applications far
beyond approximation of 1D functions.

5.3 Making finite elements behave as finite differences
With a simple trick, using numerical integration, we can easily produce the result ui = fi with
the Galerkin or least square formulation with P1 elements. This is useful in many occasions when
we deal with more difficult differential equations and want the finite element method to have
properties like the finite difference method (solving standard linear wave equations is one primary
example).

Computations in physical space. We have already seen that applying the Trapezoidal rule
to the right-hand side (f, ϕi) simply gives f sampled at xi. Using the Trapezoidal rule on the
matrix entries Ai,j = (ϕi, ϕj) involves a sum∑

k

ϕi(xk)ϕj(xk),

but ϕi(xk) = δik and ϕj(xk) = δjk. The product ϕiϕj is then different from zero only when
sampled at xi and i = j. The Trapezoidal approximation to the integral is then

(ϕi, ϕj) ≈ h, i = j,

and zero if i 6= j. This means that we have obtained a diagonal matrix! The first and last
diagonal elements, (ϕ0, ϕ0) and (ϕN , ϕN ) get contribution only from the first and last element,
respectively, resulting in the approximate integral value h/2. The corresponding right-hand side
also has a factor 1/2 for i = 0 and i = N . Therefore, the least squares or Galerkin approach with
P1 elements and Trapezoidal integration results in

ci = fi, i ∈ Is .

Simpsons’s rule can be used to achieve a similar result for P2 elements, i.e, a diagonal coefficient
matrix, but with the previously derived average of f on the right-hand side.

Elementwise computations. Identical results to those above will arise if we perform element-
wise computations. The idea is to use the Trapezoidal rule on the reference element for computing
the element matrix and vector. When assembled, the same equations ci = f(xi) arise. Exercise 19
encourages you to carry out the details.

Terminology. The matrix with entries (ϕi, ϕj) typically arises from terms proportional to u in
a differential equation where u is the unknown function. This matrix is often called the mass
matrix, because in the early days of the finite element method, the matrix arose from the mass
times acceleration term in Newton’s second law of motion. Making the mass matrix diagonal
by, e.g., numerical integration, as demonstrated above, is a widely used technique and is called
mass lumping. In time-dependent problems it can sometimes enhance the numerical accuracy and
computational efficiency of the finite element method. However, there are also examples where
mass lumping destroys accuracy.
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6 A generalized element concept
So far, finite element computing has employed the nodes and element lists together with the
definition of the basis functions in the reference element. Suppose we want to introduce a piecewise
constant approximation with one basis function ϕ̃0(x) = 1 in the reference element, corresponding
to a ϕi(x) function that is 1 on element number i and zero on all other elements. Although we
could associate the function value with a node in the middle of the elements, there are no nodes
at the ends, and the previous code snippets will not work because we cannot find the element
boundaries from the nodes list.

6.1 Cells, vertices, and degrees of freedom
We now introduce cells as the subdomains Ω(e) previously referred as elements. The cell boundaries
are denoted as vertices. The reason for this name is that cells are recognized by their vertices
in 2D and 3D. We also define a set of degrees of freedom, which are the quantities we aim to
compute. The most common type of degree of freedom is the value of the unknown function u
at some point. (For example, we can introduce nodes as before and say the degrees of freedom
are the values of u at the nodes.) The basis functions are constructed so that they equal unity
for one particular degree of freedom and zero for the rest. This property ensures that when we
evaluate u =

∑
j cjϕj for degree of freedom number i, we get u = ci. Integrals are performed

over cells, usually by mapping the cell of interest to a reference cell.
With the concepts of cells, vertices, and degrees of freedom we increase the decoupling of

the geometry (cell, vertices) from the space of basis functions. We will associate different sets of
basis functions with a cell. In 1D, all cells are intervals, while in 2D we can have cells that are
triangles with straight sides, or any polygon, or in fact any two-dimensional geometry. Triangles
and quadrilaterals are most common, though. The popular cell types in 3D are tetrahedra and
hexahedra.

6.2 Extended finite element concept
The concept of a finite element is now

• a reference cell in a local reference coordinate system;

• a set of basis functions ϕ̃i defined on the cell;

• a set of degrees of freedom that uniquely determines the basis functions such that ϕ̃i = 1
for degree of freedom number i and ϕ̃i = 0 for all other degrees of freedom;

• a mapping between local and global degree of freedom numbers, here called the dof map;

• a geometric mapping of the reference cell onto to cell in the physical domain.

There must be a geometric description of a cell. This is trivial in 1D since the cell is an interval
and is described by the interval limits, here called vertices. If the cell is Ω(e) = [xL, xR], vertex 0
is xL and vertex 1 is xR. The reference cell in 1D is [−1, 1] in the reference coordinate system X.

The expansion of u over one cell is often used:

u(x) = ũ(X) =
∑
r

crϕ̃r(X), x ∈ Ω(e), X ∈ [−1, 1], (92)

where the sum is taken over the numbers of the degrees of freedom and cr is the value of u for
degree of freedom number r.
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Our previous P1, P2, etc., elements are defined by introducing d+ 1 equally spaced nodes
in the reference cell and saying that the degrees of freedom are the d + 1 function values at
these nodes. The basis functions must be 1 at one node and 0 at the others, and the Lagrange
polynomials have exactly this property. The nodes can be numbered from left to right with
associated degrees of freedom that are numbered in the same way. The degree of freedom mapping
becomes what was previously represented by the elements lists. The cell mapping is the same
affine mapping (61) as before.

6.3 Implementation
Implementationwise,

• we replace nodes by vertices;

• we introduce cells such that cell[e][r] gives the mapping from local vertex r in cell e
to the global vertex number in vertices;

• we replace elements by dof_map (the contents are the same for Pd elements).

Consider the example from Section 3.1 where Ω = [0, 1] is divided into two cells, Ω(0) = [0, 0.4]
and Ω(1) = [0.4, 1], as depicted in Figure 16. The vertices are [0, 0.4, 1]. Local vertex 0 and 1 are
0 and 0.4 in cell 0 and 0.4 and 1 in cell 1. A P2 element means that the degrees of freedom are
the value of u at three equally spaced points (nodes) in each cell. The data structures become

vertices = [0, 0.4, 1]
cells = [[0, 1], [1, 2]]
dof_map = [[0, 1, 2], [2, 3, 4]]

If we would approximate f by piecewise constants, known as P0 elements, we simply introduce
one point or node in an element, preferably X = 0, and define one degree of freedom, which is
the function value at this node. Moreover, we set ϕ̃0(X) = 1. The cells and vertices arrays
remain the same, but dof_map is altered:

dof_map = [[0], [1]]

We use the cells and vertices lists to retrieve information on the geometry of a cell, while
dof_map is the q(e, r) mapping introduced earlier in the assembly of element matrices and vectors.
For example, the Omega_e variable (representing the cell interval) in previous code snippets must
now be computed as

Omega_e = [vertices[cells[e][0], vertices[cells[e][1]]

The assembly is done by

A[dof_map[e][r], dof_map[e][s]] += A_e[r,s]
b[dof_map[e][r]] += b_e[r]

We will hereafter drop the nodes and elements arrays and work exclusively with cells,
vertices, and dof_map. The module fe_approx1D_numint.py now replaces the module fe_approx1D
and offers similar functions that work with the new concepts:
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from fe_approx1D_numint import *
x = sp.Symbol(’x’)
f = x*(1 - x)
N_e = 10
vertices, cells, dof_map = mesh_uniform(N_e, d=3, Omega=[0,1])
phi = [basis(len(dof_map[e])-1) for e in range(N_e)]
A, b = assemble(vertices, cells, dof_map, phi, f)
c = np.linalg.solve(A, b)
# Make very fine mesh and sample u(x) on this mesh for plotting
x_u, u = u_glob(c, vertices, cells, dof_map,

resolution_per_element=51)
plot(x_u, u)

These steps are offered in the approximate function, which we here apply to see how well four
P0 elements (piecewise constants) can approximate a parabola:

from fe_approx1D_numint import *
x=sp.Symbol("x")
for N_e in 4, 8:

approximate(x*(1-x), d=0, N_e=N_e, Omega=[0,1])

Figure 32 shows the result.
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Figure 32: Approximation of a parabola by 4 (left) and 8 (right) P0 elements.

6.4 Computing the error of the approximation
So far we have focused on computing the coefficients cj in the approximation u(x) =

∑
j cjϕj

as well as on plotting u and f for visual comparison. A more quantitative comparison needs to
investigate the error e(x) = f(x)− u(x). We mostly want a single number to reflect the error and
use a norm for this purpose, usually the L2 norm

||e||L2 =
(∫

Ω
e2dx

)1/2
.

Since the finite element approximation is defined for all x ∈ Ω, and we are interested in how
u(x) deviates from f(x) through all the elements, we can either integrate analytically or use an
accurate numerical approximation. The latter is more convenient as it is a generally feasible and
simple approach. The idea is to sample e(x) at a large number of points in each element. The
function u_glob in the fe_approx1D_numint module does this for u(x) and returns an array x
with coordinates and an array u with the u values:
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x, u = u_glob(c, vertices, cells, dof_map,
resolution_per_element=101)

e = f(x) - u

Let us use the Trapezoidal method to approximate the integral. Because different elements may
have different lengths, the x array has a non-uniformly distributed set of coordinates. Also, the
u_glob function works in an element by element fashion such that coordinates at the boundaries
between elements appear twice. We therefore need to use a "raw" version of the Trapezoidal rule
where we just add up all the trapezoids:∫

Ω
g(x)dx ≈

n−1∑
j=0

1
2(g(xj) + g(xj+1))(xj+1 − xj),

if x0, . . . , xn are all the coordinates in x. In vectorized Python code,

g_x = g(x)
integral = 0.5*np.sum((g_x[:-1] + g_x[1:])*(x[1:] - x[:-1]))

Computing the L2 norm of the error, here named E, is now achieved by

e2 = e**2
E = np.sqrt(0.5*np.sum((e2[:-1] + e2[1:])*(x[1:] - x[:-1]))

How does the error depend on h and d?

Theory and experiments show that the least squares or projection/Galerkin method in
combination with Pd elements of equal length h has an error

||e||L2 = Chd+1, (93)

where C is a constant depending on f , but not on h or d.

6.5 Example: Cubic Hermite polynomials
The finite elements considered so far represent u as piecewise polynomials with discontinuous
derivatives at the cell boundaries. Sometimes it is desirable to have continuous derivatives. A
primary examples is the solution of differential equations with fourth-order derivatives where
standard finite element formulations lead to a need for basis functions with continuous first-order
derivatives. The most common type of such basis functions in 1D is the so-called cubic Hermite
polynomials. The construction of such polynomials, as explained next, will further exemplify the
concepts of a cell, vertex, degree of freedom, and dof map.

Given a reference cell [−1, 1], we seek cubic polynomials with the values of the function and
its first-order derivative at X = −1 and X = 1 as the four degrees of freedom. Let us number the
degrees of freedom as

• 0: value of function at X = −1

• 1: value of first derivative at X = −1

• 2: value of function at X = 1
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• 3: value of first derivative at X = 1

By having the derivatives as unknowns, we ensure that the derivative of a basis function in two
neighboring elements is the same at the node points.

The four basis functions can be written in a general form

ϕ̃i(X) =
3∑
j=0

Ci,jX
j ,

with four coefficients Ci,j , j = 0, 1, 2, 3, to be determined for each i. The constraints that basis
function number i must be 1 for degree of freedom number i and zero for the other three degrees
of freedom, gives four equations to determine Ci,j for each i. In mathematical detail,

ϕ̃0(−1) = 1, ϕ̃0(1) = ϕ̃′0(−1) = ϕ̃′i(1) = 0,
ϕ̃′1(−1) = 1, ϕ̃1(−1) = ϕ̃1(1) = ϕ̃′1(1) = 0,
ϕ̃2(1) = 1, ϕ̃2(−1) = ϕ̃′2(−1) = ϕ̃′2(1) = 0,
ϕ̃′3(1) = 1, ϕ̃3(−1) = ϕ̃′3(−1) = ϕ̃3(1) = 0 .

These four 4× 4 linear equations can be solved, yielding the following formulas for the cubic basis
functions:

ϕ̃0(X) = 1− 3
4(X + 1)2 + 1

4(X + 1)3 (94)

ϕ̃1(X) = −(X + 1)(1− 1
2(X + 1))2 (95)

ϕ̃2(X) = 3
4(X + 1)2 − 1

2(X + 1)3 (96)

ϕ̃3(X) = −1
2(X + 1)(1

2(X + 1)2 − (X + 1)) (97)

(98)

The construction of the dof map needs a scheme for numbering the global degrees of freedom.
A natural left-to-right numbering has the function value at vertex xi as degree of freedom number
2i and the value of the derivative at xi as degree of freedom number 2i+ 1, i = 0, . . . , Ne + 1.

7 Numerical integration
Finite element codes usually apply numerical approximations to integrals. Since the integrands
in the coefficient matrix often are (lower-order) polynomials, integration rules that can integrate
polynomials exactly are popular.

The numerical integration rules can be expressed in a common form,∫ 1

−1
g(X)dX ≈

M∑
j=0

wjg(X̄j), (99)

where X̄j are integration points and wj are integration weights, j = 0, . . . ,M . Different rules
correspond to different choices of points and weights.
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The very simplest method is the Midpoint rule,∫ 1

−1
g(X)dX ≈ 2g(0), X̄0 = 0, w0 = 2, (100)

which integrates linear functions exactly.

7.1 Newton-Cotes rules
The Newton-Cotes8 rules are based on a fixed uniform distribution of the integration points. The
first two formulas in this family are the well-known Trapezoidal rule,∫ 1

−1
g(X)dX ≈ g(−1) + g(1), X̄0 = −1, X̄1 = 1, w0 = w1 = 1, (101)

and Simpson’s rule, ∫ 1

−1
g(X)dX ≈ 1

3 (g(−1) + 4g(0) + g(1)) , (102)

where

X̄0 = −1, X̄1 = 0, X̄2 = 1, w0 = w2 = 1
3 , w1 = 4

3 . (103)

Newton-Cotes rules up to five points is supported in the module file numint.py9.
For higher accuracy one can divide the reference cell into a set of subintervals and use the

rules above on each subinterval. This approach results in composite rules, well-known from basic
introductions to numerical integration of

∫ b
a
f(x)dx.

7.2 Gauss-Legendre rules with optimized points
More accurate rules, for a given M , arise if the location of the integration points are optimized for
polynomial integrands. The Gauss-Legendre rules10 (also known as Gauss-Legendre quadrature
or Gaussian quadrature) constitute one such class of integration methods. Two widely applied
Gauss-Legendre rules in this family have the choice

M = 1 : X̄0 = − 1√
3
, X̄1 = 1√

3
, w0 = w1 = 1 (104)

M = 2 : X̄0 = −
√

3
5 , X̄0 = 0, X̄2 =

√
3
5 , w0 = w2 = 5

9 , w1 = 8
9 . (105)

These rules integrate 3rd and 5th degree polynomials exactly. In general, an M -point Gauss-
Legendre rule integrates a polynomial of degree 2M + 1 exactly. The code numint.py contains a
large collection of Gauss-Legendre rules.

8http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas
9http://tinyurl.com/nm5587k/fem/numint.py

10http://en.wikipedia.org/wiki/Gaussian_quadrature
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8 Approximation of functions in 2D
All the concepts and algorithms developed for approximation of 1D functions f(x) can readily be
extended to 2D functions f(x, y) and 3D functions f(x, y, z). Basically, the extensions consists of
defining basis functions ψi(x, y) or ψi(x, y, z) over some domain Ω, and for the least squares and
Galerkin methods, the integration is done over Ω.

As in 1D, the least squares and projection/Galerkin methods two lead to linear systems

∑
j∈Is

Ai,jcj = bi, i ∈ Is,

Ai,j = (ψi, ψj),
bi = (f, ψi),

where the inner product of two functions f(x, y) and g(x, y) is defined completely analogously to
the 1D case (24):

(f, g) =
∫

Ω
f(x, y)g(x, y)dxdy (106)

8.1 2D basis functions as tensor products of 1D functions
One straightforward way to construct a basis in 2D is to combine 1D basis functions. Say we
have the 1D vector space

Vx = span{ψ̂0(x), . . . , ψ̂Nx
(x)} . (107)

A similar space for variation in y can be defined,

Vy = span{ψ̂0(y), . . . , ψ̂Ny
(y)} . (108)

We can then form 2D basis functions as tensor products of 1D basis functions.

Tensor products.

Given two vectors a = (a0, . . . , aM ) and b = (b0, . . . , bN ), their outer tensor product, also
called the dyadic product, is p = a⊗ b, defined through

pi,j = aibj , i = 0, . . . ,M, j = 0, . . . , N .

In the tensor terminology, a and b are first-order tensors (vectors with one index, also
termed rank-1 tensors), and then their outer tensor product is a second-order tensor (matrix
with two indices, also termed rank-2 tensor). The corresponding inner tensor product is the
well-known scalar or dot product of two vectors: p = a · b =

∑N
j=0 ajbj . Now, p is a rank-0

tensor.
Tensors are typically represented by arrays in computer code. In the above example, a

and b are represented by one-dimensional arrays of length M and N , respectively, while
p = a⊗ b must be represented by a two-dimensional array of size M ×N .

Tensor productsa can be used in a variety of context.
ahttp://en.wikipedia.org/wiki/Tensor_product
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Given the vector spaces Vx and Vy as defined in (107) and (108), the tensor product space
V = Vx ⊗ Vy has a basis formed as the tensor product of the basis for Vx and Vy. That is, if
{ϕi(x)}i∈Ix

and {ϕi(y)}i∈Iy
are basis for Vx and Vy, respectively, the elements in the basis for V

arise from the tensor product: {ϕi(x)ϕj(y)}i∈Ix,j∈Iy
. The index sets are Ix = {0, . . . , Nx} and

Iy = {0, . . . , Ny}.
The notation for a basis function in 2D can employ a double index as in

ψp,q(x, y) = ψ̂p(x)ψ̂q(y), p ∈ Ix, q ∈ Iy .

The expansion for u is then written as a double sum

u =
∑
p∈Ix

∑
q∈Iy

cp,qψp,q(x, y) .

Alternatively, we may employ a single index,

ψi(x, y) = ψ̂p(x)ψ̂q(y),

and use the standard form for u,

u =
∑
j∈Is

cjψj(x, y) .

The single index is related to the double index through i = p(Ny + 1) + q or i = q(Nx + 1) + p.

8.2 Example: Polynomial basis in 2D
Suppose we choose ψ̂p(x) = xp, and try an approximation with Nx = Ny = 1:

ψ0,0 = 1, ψ1,0 = x, ψ0,1 = y, ψ1,1 = xy .

Using a mapping to one index like i = q(Nx + 1) + p, we get

ψ0 = 1, ψ1 = x, ψ2 = y, ψ3 = xy .

With the specific choice f(x, y) = (1 + x2)(1 + 2y2) on Ω = [0, Lx]× [0, Ly], we can perform
actual calculations:

A0,0 = (ψ0, ψ0) =
∫ Ly

0

∫ Lx

0
ψ0(x, y)2dxdy =

∫ Ly

0

∫ Lx

0
dxdy = LxLy,

A1,0 = (ψ1, ψ0) =
∫ Ly

0

∫ Lx

0
xdxdy = 1

2L
2
xLy,

A0,1 = (ψ0, ψ1) =
∫ Ly

0

∫ Lx

0
ydxdy = 1

2L
2
yLx,

A0,1 = (ψ0, ψ1) =
∫ Ly

0

∫ Lx

0
xydxdy =

∫ Ly

0
ydy

∫ Lx

0
xdx = 1

4L
2
yL

2
x .

The right-hand side vector has the entries
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b0 = (ψ0, f) =
∫ Ly

0

∫ Lx

0
1 · (1 + x2)(1 + 2y2)dxdy

=
∫ Ly

0
(1 + 2y2)dy

∫ Lx

0
(1 + x2)dx = (Ly + 2

3L
3
y)(Lx + 1

3L
3
x)

b1 = (ψ1, f) =
∫ Ly

0

∫ Lx

0
x(1 + x2)(1 + 2y2)dxdy

=
∫ Ly

0
(1 + 2y2)dy

∫ Lx

0
x(1 + x2)dx = (Ly + 2

3L
3
y)(1

2L
2
x + 1

4L
4
x)

b2 = (ψ2, f) =
∫ Ly

0

∫ Lx

0
y(1 + x2)(1 + 2y2)dxdy

=
∫ Ly

0
y(1 + 2y2)dy

∫ Lx

0
(1 + x2)dx = (1

2Ly + 1
2L

4
y)(Lx + 1

3L
3
x)

b3 = (ψ2, f) =
∫ Ly

0

∫ Lx

0
xy(1 + x2)(1 + 2y2)dxdy

=
∫ Ly

0
y(1 + 2y2)dy

∫ Lx

0
x(1 + x2)dx = (1

2L
2
y + 1

2L
4
y)(1

2L
2
x + 1

4L
4
x) .

There is a general pattern in these calculations that we can explore. An arbitrary matrix
entry has the formula

Ai,j = (ψi, ψj) =
∫ Ly

0

∫ Lx

0
ψiψjdxdy

=
∫ Ly

0

∫ Lx

0
ψp,qψr,sdxdy =

∫ Ly

0

∫ Lx

0
ψ̂p(x)ψ̂q(y)ψ̂r(x)ψ̂s(y)dxdy

=
∫ Ly

0
ψ̂q(y)ψ̂s(y)dy

∫ Lx

0
ψ̂p(x)ψ̂r(x)dx

= Â(x)
p,rÂ

(y)
q,s ,

where

Â(x)
p,r =

∫ Lx

0
ψ̂p(x)ψ̂r(x)dx, Â(y)

q,s =
∫ Ly

0
ψ̂q(y)ψ̂s(y)dy,

are matrix entries for one-dimensional approximations. Moreover, i = qNy + q and j = sNy + r.
With ψ̂p(x) = xp we have

Â(x)
p,r = 1

p+ r + 1L
p+r+1
x , Â(y)

q,s = 1
q + s+ 1L

q+s+1
y ,

and

Ai,j = Â(x)
p,rÂ

(y)
q,s = 1

p+ r + 1L
p+r+1
x

1
q + s+ 1L

q+s+1
y ,

for p, r ∈ Ix and q, s ∈ Iy.
Corresponding reasoning for the right-hand side leads to
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bi = (ψi, f) =
∫ Ly

0

∫ Lx

0
ψif dxdx

=
∫ Ly

0

∫ Lx

0
ψ̂p(x)ψ̂q(y)f dxdx

=
∫ Ly

0
ψ̂q(y)(1 + 2y2)dy

∫ Ly

0
ψ̂p(x)xp(1 + x2)dx

=
∫ Ly

0
yq(1 + 2y2)dy

∫ Ly

0
xp(1 + x2)dx

= ( 1
q + 1L

q+1
y + 2

q + 3L
q+3
y )( 1

p+ 1L
p+1
x + 2

q + 3L
p+3
x )

Choosing Lx = Ly = 2, we have

A =


4 4 4 4
4 16

3 4 16
3

4 4 16
3

16
3

4 16
3

16
3

64
9

 , b =


308
9140
3

44
60

 , c =


− 1

94
3
− 2

3
8

 .
Figure 33 illustrates the result.
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Figure 33: Approximation of a 2D quadratic function (left) by a 2D bilinear function (right)
using the Galerkin or least squares method.

8.3 Implementation
The least_squares function from Section 2.8 and/or the file approx1D.py11 can with very
small modifications solve 2D approximation problems. First, let Omega now be a list of the
intervals in x and y direction. For example, Ω = [0, Lx] × [0, Ly] can be represented by
Omega = [[0, L_x], [0, L_y]].

Second, the symbolic integration must be extended to 2D:

import sympy as sp

integrand = psi[i]*psi[j]
I = sp.integrate(integrand,

11http://tinyurl.com/nm5587k/fem/fe_approx1D.py
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(x, Omega[0][0], Omega[0][1]),
(y, Omega[1][0], Omega[1][1]))

provided integrand is an expression involving the sympy symbols x and y. The 2D version of
numerical integration becomes

if isinstance(I, sp.Integral):
integrand = sp.lambdify([x,y], integrand)
I = sp.mpmath.quad(integrand,

[Omega[0][0], Omega[0][1]],
[Omega[1][0], Omega[1][1]])

The right-hand side integrals are modified in a similar way.
Third, we must construct a list of 2D basis functions. Here are two examples based on tensor

products of 1D "Taylor-style" polynomials xi and 1D sine functions sin((i+ 1)πx):

def taylor(x, y, Nx, Ny):
return [x**i*y**j for i in range(Nx+1) for j in range(Ny+1)]

def sines(x, y, Nx, Ny):
return [sp.sin(sp.pi*(i+1)*x)*sp.sin(sp.pi*(j+1)*y)

for i in range(Nx+1) for j in range(Ny+1)]

The complete code appears in approx2D.py12.
The previous hand calculation where a quadratic f was approximated by a bilinear function

can be computed symbolically by

>>> from approx2D import *
>>> f = (1+x**2)*(1+2*y**2)
>>> psi = taylor(x, y, 1, 1)
>>> Omega = [[0, 2], [0, 2]]
>>> u, c = least_squares(f, psi, Omega)
>>> print u
8*x*y - 2*x/3 + 4*y/3 - 1/9
>>> print sp.expand(f)
2*x**2*y**2 + x**2 + 2*y**2 + 1

We may continue with adding higher powers to the basis:

>>> psi = taylor(x, y, 2, 2)
>>> u, c = least_squares(f, psi, Omega)
>>> print u
2*x**2*y**2 + x**2 + 2*y**2 + 1
>>> print u-f
0

For Nx ≥ 2 and Ny ≥ 2 we recover the exact function f , as expected, since in that case f ∈ V
(see Section 2.5).

8.4 Extension to 3D
Extension to 3D is in principle straightforward once the 2D extension is understood. The only
major difference is that we need the repeated outer tensor product,

V = Vx ⊗ Vy ⊗ Vz .
12http://tinyurl.com/nm5587k/fem/fe_approx2D.py
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In general, given vectors (first-order tensors) a(q) = (a(q)
0 , . . . , a

(q)
Nq

, q = 0, . . . ,m, the tensor
product p = a(0) ⊗ · · · ⊗ am has elements

pi0,i1,...,im = a
(0)
i1
a

(1)
i1
· · · a(m)

im
.

The basis functions in 3D are then

ψp,q,r(x, y, z) = ψ̂p(x)ψ̂q(y)ψ̂r(z),

with p ∈ Ix, q ∈ Iy, r ∈ Iz. The expansion of u becomes

u(x, y, z) =
∑
p∈Ix

∑
q∈Iy

∑
r∈Iz

cp,q,rψp,q,r(x, y, z) .

A single index can be introduced also here, e.g., i = NxNyr + qNx+ p, u =
∑
i ciψi(x, y, z).

Use of tensor product spaces.

Constructing a multi-dimensional space and basis from tensor products of 1D spaces is
a standard technique when working with global basis functions. In the world of finite
elements, constructing basis functions by tensor products is much used on quadrilateral and
hexahedra cell shapes, but not on triangles and tetrahedra. Also, the global finite element
basis functions are almost exclusively denoted by a single index and not by the natural
tuple of indices that arises from tensor products.

9 Finite elements in 2D and 3D
Finite element approximation is particularly powerful in 2D and 3D because the method can
handle a geometrically complex domain Ω with ease. The principal idea is, as in 1D, to divide the
domain into cells and use polynomials for approximating a function over a cell. Two popular cell
shapes are triangles and the quadrilaterals. Figures 34, 35, and 36 provide examples. P1 elements
means linear functions (a0 + a1x+ a2y) over triangles, while Q1 elements have bilinear functions
(a0 + a1x+ a2y + a3xy) over rectangular cells. Higher-order elements can easily be defined.
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Figure 34: Examples on 2D P1 elements.

9.1 Basis functions over triangles in the physical domain
Cells with triangular shape will be in main focus here. With the P1 triangular element, u is a
linear function over each cell, as depicted in Figure 37, with discontinuous derivatives at the cell
boundaries.
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Figure 35: Examples on 2D P1 elements in a deformed geometry.

We give the vertices of the cells global and local numbers as in 1D. The degrees of freedom in
the P1 element are the function values at a set of nodes, which are the three vertices. The basis
function ϕi(x, y) is then 1 at the vertex with global vertex number i and zero at all other vertices.
On an element, the three degrees of freedom uniquely determine the linear basis functions in
that element, as usual. The global ϕi(x, y) function is then a combination of the linear functions
(planar surfaces) over all the neighboring cells that have vertex number i in common. Figure 38
tries to illustrate the shape of such a "pyramid"-like function.

Element matrices and vectors. As in 1D, we split the integral over Ω into a sum of integrals
over cells. Also as in 1D, ϕi overlaps ϕj (i.e., ϕiϕj 6= 0) if and only if i and j are vertices in the
same cell. Therefore, the integral of ϕiϕj over an element is nonzero only when i and j run over
the vertex numbers in the element. These nonzero contributions to the coefficient matrix are, as
in 1D, collected in an element matrix. The size of the element matrix becomes 3× 3 since there
are three degrees of freedom that i and j run over. Again, as in 1D, we number the local vertices
in a cell, starting at 0, and add the entries in the element matrix into the global system matrix,
exactly as in 1D. All details and code appear below.

9.2 Basis functions over triangles in the reference cell
As in 1D, we can define the basis functions and the degrees of freedom in a reference cell and
then use a mapping from the reference coordinate system to the physical coordinate system. We
also have a mapping of local degrees of freedom numbers to global degrees of freedom numbers.
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Figure 36: Examples on 2D Q1 elements.

The reference cell in an (X,Y ) coordinate system has vertices (0, 0), (1, 0), and (0, 1), corre-
sponding to local vertex numbers 0, 1, and 2, respectively. The P1 element has linear functions
ϕ̃r(X,Y ) as basis functions, r = 0, 1, 2. Since a linear function ϕ̃r(X,Y ) in 2D is on the form
Cr,0 +Cr,1X +Cr,2Y , and hence has three parameters Cr,0, Cr,1, and Cr,2, we need three degrees
of freedom. These are in general taken as the function values at a set of nodes. For the P1
element the set of nodes is the three vertices. Figure 39 displays the geometry of the element and
the location of the nodes.

Requiring ϕ̃r = 1 at node number r and ϕ̃r = 0 at the two other nodes, gives three linear
equations to determine Cr,0, Cr,1, and Cr,2. The result is

ϕ̃0(X,Y ) = 1−X − Y, (109)
ϕ̃1(X,Y ) = X, (110)
ϕ̃2(X,Y ) = Y (111)

Higher-order approximations are obtained by increasing the polynomial order, adding addi-
tional nodes, and letting the degrees of freedom be function values at the nodes. Figure 40 shows
the location of the six nodes in the P2 element.

A polynomial of degree p in X and Y has np = (p+ 1)(p+ 2)/2 terms and hence needs np
nodes. The values at the nodes constitute np degrees of freedom. The location of the nodes for
ϕ̃r up to degree 6 is displayed in Figure 41.
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Figure 37: Example on piecewise linear 2D functions defined on triangles.

The generalization to 3D is straightforward: the reference element is a tetrahedron13 with
vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) in a X,Y, Z reference coordinate system. The P1
element has its degrees of freedom as four nodes, which are the four vertices, see Figure 42. The
P2 element adds additional nodes along the edges of the cell, yielding a total of 10 nodes and
degrees of freedom, see Figure 43.

The interval in 1D, the triangle in 2D, the tetrahedron in 3D, and its generalizations to higher
space dimensions are known as simplex cells (the geometry) or simplex elements (the geometry,
basis functions, degrees of freedom, etc.). The plural forms simplices14 and simplexes are also a
much used shorter terms when referring to this type of cells or elements. The side of a simplex is
called a face, while the tetrahedron also has edges.

Acknowledgment. Figures 39 to 43 are created by Anders Logg and taken from the FEniCS
book15: Automated Solution of Differential Equations by the Finite Element Method, edited by A.
Logg, K.-A. Mardal, and G. N. Wells, published by Springer16, 2012.

9.3 Affine mapping of the reference cell
Let ϕ̃(1)

r denote the basis functions associated with the P1 element in 1D, 2D, or 3D, and let
xq(e,r) be the physical coordinates of local vertex number r in cell e. Furthermore, let X be a

13http://en.wikipedia.org/wiki/Tetrahedron
14http://en.wikipedia.org/wiki/Simplex
15https://launchpad.net/fenics-book
16http://goo.gl/lbyVMH
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Figure 38: Example on a piecewise linear 2D basis function over a patch of triangles.

Figure 39: 2D P1 element.

point in the reference coordinate system corresponding to the point x in the physical coordinate
system. The affine mapping of any X onto x is then defined by

x =
∑
r

ϕ̃(1)
r (X)xq(e,r), (112)

where r runs over the local vertex numbers in the cell. The affine mapping essentially stretches,
translates, and rotates the triangle. Straight or planar faces of the reference cell are therefore
mapped onto straight or planar faces in the physical coordinate system. The mapping can be
used for both P1 and higher-order elements, but note that the mapping itself always applies the
P1 basis functions.
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Figure 40: 2D P2 element.

Figure 41: 2D P1, P2, P3, P4, P5, and P6 elements.

9.4 Isoparametric mapping of the reference cell
Instead of using the P1 basis functions in the mapping (112), we may use the basis functions of
the actual Pd element:

x =
∑
r

ϕ̃r(X)xq(e,r), (113)

where r runs over all nodes, i.e., all points associated with the degrees of freedom. This is called
an isoparametric mapping. For P1 elements it is identical to the affine mapping (112), but for
higher-order elements the mapping of the straight or planar faces of the reference cell will result
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Figure 42: P1 elements in 1D, 2D, and 3D.

Figure 43: P2 elements in 1D, 2D, and 3D.

in a curved face in the physical coordinate system. For example, when we use the basis functions
of the triangular P2 element in 2D in (113), the straight faces of the reference triangle are mapped
onto curved faces of parabolic shape in the physical coordinate system, see Figure 45.

From (112) or (113) it is easy to realize that the vertices are correctly mapped. Consider a
vertex with local number s. Then ϕ̃s = 1 at this vertex and zero at the others. This means that
only one term in the sum is nonzero and x = xq(e,s), which is the coordinate of this vertex in the
global coordinate system.

9.5 Computing integrals
Let Ω̃r denote the reference cell and Ω(e) the cell in the physical coordinate system. The
transformation of the integral from the physical to the reference coordinate system reads

∫
Ω(e)

ϕi(x)ϕj(x) dx =
∫

Ω̃r

ϕ̃i(X)ϕ̃j(X) detJ dX, (114)∫
Ω(e)

ϕi(x)f(x) dx =
∫

Ω̃r

ϕ̃i(X)f(x(X)) detJ dX, (115)

where dx means the infinitesimal area element dxdy in 2D and dxdydz in 3D, with a similar
definition of dX. The quantity det J is the determinant of the Jacobian of the mapping x(X).
In 2D,
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Figure 45: Isoparametric mapping of a P2 element.

J =
[

∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

]
, det J = ∂x

∂X

∂y

∂Y
− ∂x

∂Y

∂y

∂X
. (116)

With the affine mapping (112), det J = 2∆, where ∆ is the area or volume of the cell in the
physical coordinate system.

Remark. Observe that finite elements in 2D and 3D builds on the same ideas and concepts as
in 1D, but there is simply much more to compute because the specific mathematical formulas in
2D and 3D are more complicated and the book keeping with dof maps also gets more complicated.
The manual work is tedious, lengthy, and error-prone so automation by the computer is a must.
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10 Exercises
Exercise 1: Linear algebra refresher I
Look up the topic of vector space in your favorite linear algebra book or search for the term at
Wikipedia. Prove that vectors in the plane (a, b) form a vector space by showing that all the
axioms of a vector space are satisfied. Similarly, prove that all linear functions of the form ax+ b
constitute a vector space, a, b ∈ R.

On the contrary, show that all quadratic functions of the form 1 + ax2 + bx do not constitute
a vector space. Filename: linalg1.pdf.

Exercise 2: Linear algebra refresher II
As an extension of Exercise 1, check out the topic of inner product spaces. Suggest a possible
inner product for the space of all linear functions of the form ax+ b, a, b ∈ R. Show that this
inner product satisfies the general requirements of an inner product in a vector space. Filename:
linalg2.pdf.

Exercise 3: Approximate a three-dimensional vector in a plane
Given f = (1, 1, 1) in R3, find the best approximation vector u in the plane spanned by the unit
vectors (1, 0) and (0, 1). Repeat the calculations using the vectors (2, 1) and (1, 2). Filename:
vec111_approx.pdf.

Exercise 4: Approximate the exponential function by power functions
Let V be a function space with basis functions xi, i = 0, 1, . . . , N . Find the best approximation
to f(x) = exp(−x) on Ω = [0, 8] among all functions in V for N = 2, 4, 6. Illustrate the three
approximations in three separate plots.

Hint. The exercise is easy to solve if you apply the lest_squares and comparison_plot
functions in the approx1D.py module.
Filename: exp_powers.py.

Exercise 5: Approximate the sine function by power functions
In this exercise we want to approximate the sine function by polynomials of order N + 1. Consider
two bases:

V1 = {x, x3, x5, . . . , xN−2, xN},
V2 = {1, x, x2, x3, . . . , xN} .

The basis V1 is motivated by the fact that the Taylor polynomial approximation to the sine
function has only odd powers, while V2 is motivated by the assumption that also the even powers
could improve the approximation in a least-squares setting.

Compute the best approximation to f(x) = sin(x) among all functions in V1 and V2 on two
domains of increasing sizes: Ω1,k = [0, kπ], k = 2, 3 . . . , 6 and Ω2,k = [−kπ/2, kπ/2], k = 2, 3 . . . , 6.
Make plots for all combinations of V1, V2, Ω1, Ω2, k = 2, 3, . . . , 6.

Add a plot of the N -th degree Taylor polynomial approximation of sin(x) around x = 0.
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Hint. You can make a loop over V1 and V2, a loop over Ω1 and Ω2, and a loop over k. Inside
the loops, call the functions least_squares and comparison_plot from the approx1D module.
N = 9 is a suggested value.
Filename: sin_powers.py.

Exercise 6: Approximate a steep function by sines
Find the best approximation of f(x) = tanh(s(x − π)) on [0, 2π] in the space V with basis
ψi(x) = sin((2i + 1)x), i ∈ Is = {0, . . . , N}. Make a movie showing how u =

∑
j∈Is

cjψj(x)
approximates f(x) as N grows. Choose s such that f is steep (s = 20 may be appropriate).

Hint. One may naively call the least_squares_orth and comparison_plot from the approx1D
module in a loop and extend the basis with one new element in each pass. This approach implies
a lot of recomputations. A more efficient strategy is to let least_squares_orth compute with
only one basis function at a time and accumulate the corresponding u in the total solution.
Filename: tanh_sines_approx.py.

Remarks. Approximation of a discontinuous (or steep) f(x) by sines, results in slow convergence
and oscillatory behavior of the approximation close to the abrupt changes in f . This is known as
the Gibb’s phenomenon17.

Exercise 7: Animate the approximation of a steep function by sines
Make a movie that shows how the approximation in Exercise 6 is improved as N grows. Illustrate
a smooth case where s = 0.5 and a steep case where s = 20 in the tanh(s(x − π)) function.
Filename: tanh_sines_approx_movie.py.

Exercise 8: Fourier series as a least squares approximation
Given a function f(x) on an interval [0, L], look up the formula for the coefficients aj and bj in
the Fourier series of f :

f(x) = a0 +
∞∑
j=1

aj cos
(
j
πx

L

)
+
∞∑
j=1

bj sin
(
j
πx

L

)
.

Let an infinite-dimensional vector space V have the basis functions cos j πxL for j = 0, 1, . . . ,∞
and sin j πxL for j = 1, . . . ,∞. Show that the least squares approximation method from Section 2
leads to a linear system whose solution coincides with the standard formulas for the coefficients
in a Fourier series of f(x) (see also Section 2.7). You may choose

ψ2i = cos
(
i
π

L
x
)
, ψ2i+1 = sin

(
i
π

L
x
)
,

for i = 0, 1, . . . , N →∞.
Choose f(x) = tanh(s(x− 1

2 )) on Ω = [0, 1], which is a smooth function, but with considerable
steepness around x = 1/2 as s grows in size. Calculate the coefficients in the Fourier expansion by
solving the linear system, arising from the least squares or Galerkin methods, by hand. Plot some
truncated versions of the series together with f(x) to show how the series expansion converges
for s = 10 and s = 100. Filename: Fourier_approx.py.

17http://en.wikipedia.org/wiki/Gibbs_phenomenon
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Exercise 9: Approximate a steep function by Lagrange polynomials
Use interpolation/collocation with uniformly distributed points and Chebychev nodes to approxi-
mate

f(x) = − tanh(s(x− 1
2)), x ∈ [0, 1],

by Lagrange polynomials for s = 10 and s = 100, and N = 3, 6, 9, 11. Make separate plots of the
approximation for each combination of s, point type (Chebyshev or uniform), and N . Filename:
tanh_Lagrange.py.

Exercise 10: Define nodes and elements
Consider a domain Ω = [0, 2] divided into the three P2 elements [0, 1], [1, 1.2], and [1.2, 2].

For P1 and P2 elements, set up the list of coordinates and nodes (nodes) and the numbers
of the nodes that belong to each element (elements) in two cases: 1) nodes and elements
numbered from left to right, and 2) nodes and elements numbered from right to left. Filename:
fe_numberings1.py..

Exercise 11: Define vertices, cells, and dof maps
Repeat Exercise 10, but define the data structures vertices, cells, and dof_map instead of
nodes and elements. Filename: fe_numberings2.py.

Exercise 12: Construct matrix sparsity patterns
Exercise 10 describes a element mesh with a total of five elements, but with two different element
and node orderings. For each of the two orderings, make a 5× 5 matrix and fill in the entries
that will be nonzero.

Hint. A matrix entry (i, j) is nonzero if i and j are nodes in the same element.
Filename: fe_sparsity_pattern.pdf.

Exercise 13: Perform symbolic finite element computations
Perform symbolic calculations to find formulas for the coefficient matrix and right-hand side when
approximating f(x) = sin(x) on Ω = [0, π] by two P1 elements of size π/2. Solve the system and
compare u(π/2) with the exact value 1. Filename: sin_approx_P1.py.

Exercise 14: Approximate a steep function by P1 and P2 elements
Given

f(x) = tanh(s(x− 1
2))

use the Galerkin or least squares method with finite elements to find an approximate function
u(x). Choose s = 40 and try Ne = 4, 8, 16 P1 elements and Ne = 2, 4, 8 P2 elements. Integrate
fϕi numerically. Filename: tanh_fe_P1P2_approx.py.
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Exercise 15: Approximate a steep function by P3 and P4 elements
Solve Exercise 14 using Ne = 1, 2, 4 P3 and P4 elements. How will a collocation/interpolation
method work in this case with the same number of nodes? Filename: tanh_fe_P3P4_approx.py.

Exercise 16: Investigate the approximation error in finite elements
The theory (93) from Section 6.4 predicts that the error in the Pd approximation of a function
should behave as hd+1, where h is the length of the element. Use experiments to verify this
asymptotic behavior (i.e., for small enough h). Choose three examples: f(x) = Ae−ωx on [0, 3/ω],
f(x) = A sin(ωx) on Ω = [0, 2π/ω] for constant A and ω, and f(x) =

√
x on [0, 1].

Hint. Run a series of experiments: (hi, Ei), i = 0, . . . ,m, where Ei is the L2 norm of the error
corresponding to element length hi. Assume an error model E = Chr and compute r from two
successive experiments:

ri = ln(Ei+1/Ei)/ ln(hi+1/hi), i = 0, . . . ,m− 1 .

Hopefully, the sequence r0, . . . , rm−1 converges to the true r, and rm−1 can be taken as an
approximation to r. Run such experiments for different d for the different f(x) functions.
Filename: Pd_approx_error.py.

Exercise 17: Approximate a step function by finite elements
Approximate the step function

f(x) =
{

1 0 ≤ x < 1/2,
2 1/2 ≤ x ≥ 1/2

by 2, 4, and 8 P1 and P2 elements. Compare approximations visually.

Hint. This f can also be expressed in terms of the Heaviside function H(x): f(x) = H(x−1/2).
Therefore, f can be defined by

f = sp.Heaviside(x - sp.Rational(1,2))

making the approximate function in the fe_approx1D.py module an obvious candidate to solve
the problem. However, sympy does not handle symbolic integration with this particular integrand,
and the approximate function faces a problem when converting f to a Python function (for
plotting) since Heaviside is not an available function in numpy. It is better to make special-
purpose code for this case or perform all calculations by hand.
Filename: Heaviside_approx_P1P2.py.

Exercise 18: 2D approximation with orthogonal functions
Assume we have basis functions ϕi(x, y) in 2D that are orthogonal such that (ϕi, ϕj) = 0 when
i 6= j. The function least_squares in the file approx2D.py18 will then spend much time on
computing off-diagonal terms in the coefficient matrix that we know are zero. To speed up the
computations, make a version least_squares_orth that utilizes the orthogonality among the
basis functions. Apply the function to approximate

18http://tinyurl.com/nm5587k/fem/fe_approx2D.py
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f(x, y) = x(1− x)y(1− y)e−x−y

on Ω = [0, 1]× [0, 1] via basis functions

ϕi(x, y) = sin((p+ 1)πx) sin((q + 1)πy), i = q(Nx + 1) + p,

where p = 0, . . . , Nx and q = 0, . . . , Ny.

Hint. Get ideas from the function least_squares_orth in Section 2.8 and file approx1D.py19.
Filename: approx2D_least_squares_orth.py.

Exercise 19: Use the Trapezoidal rule and P1 elements
Consider approximation of some f(x) on an interval Ω using the least squares or Galerkin methods
with P1 elements. Derive the element matrix and vector using the Trapezoidal rule (101) for
calculating integrals on the reference element. Assemble the contributions, assuming a uniform
cell partitioning, and show that the resulting linear system has the form ci = f(xi) for i ∈ Is.
Filename: fe_P1_trapez.pdf.

Problem 20: Compare P1 elements and interpolation
We shall approximate the function

f(x) = 1 + ε sin(2πnx), x ∈ Ω = [0, 1],
where n ∈ Z and ε ≥ 0.

a) Plot f(x) for n = 1, 2, 3 and find the wave length of the function.

b) We want to use NP elements per wave length. Show that the number of elements is then
nNP .

c) The critical quantity for accuracy is the number of elements per wave length, not the element
size in itself. It therefore suffices to study an f with just one wave length in Ω = [0, 1]. Set
ε = 0.5.

Run the least squares or projection/Galerkin method for NP = 2, 4, 8, 16, 32. Compute the
error E = ||u− f ||L2 .

Hint. Use the fe_approx1D_numint module to compute u and use the technique from Section 6.4
to compute the norm of the error.

d) Repeat the set of experiments in the above point, but use interpolation/collocation based
on the node points to compute u(x) (recall that ci is now simply f(xi)). Compute the error
E = ||u− f ||L2 . Which method seems to be most accurate?
Filename: P1_vs_interp.py.

Exercise 21: Implement 3D computations with global basis functions
Extend the approx2D.py20 code to 3D applying ideas from Section 8.4. Use a 3D generalization
of the test problem in Section 8.3 to test the implementation. Filename: approx3D.py.

19http://tinyurl.com/nm5587k/fem/fe_approx1D.py
20http://tinyurl.com/nm5587k/fem/approx2D.py
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Exercise 22: Use Simpson’s rule and P2 elements
Redo Exercise 19, but use P2 elements and Simpson’s rule based on sampling the integrands at
the nodes in the reference cell. Filename: fe_P2_simpson.pdf.

11 Basic principles for approximating differential equations
The finite element method is a very flexible approach for solving partial differential equations. Its
two most attractive features are the ease of handling domains of complex shape in two and three
dimensions and the ease of constructing higher-order discretization methods. The finite element
method is usually applied for discretization in space, and therefore spatial problems will be our
focus in the coming sections. Extensions to time-dependent problems may, for instance, use finite
difference approximations in time.

Before studying how finite element methods are used to tackle differential equation, we first
look at how global basis functions and the least squares, Galerkin, and collocation principles can
be used to solve differential equations.

11.1 Differential equation models
Let us consider an abstract differential equation for a function u(x) of one variable, written as

L(u) = 0, x ∈ Ω . (117)

Here are a few examples on possible choices of L(u), of increasing complexity:

L(u) = d2u

dx2 − f(x), (118)

L(u) = d

dx

(
α(x)du

dx

)
+ f(x), (119)

L(u) = d

dx

(
α(u)du

dx

)
− au+ f(x), (120)

L(u) = d

dx

(
α(u)du

dx

)
+ f(u, x) . (121)

Both α(x) and f(x) are considered as specified functions, while a is a prescribed parameter.
Differential equations corresponding to (118)-(119) arise in diffusion phenomena, such as steady
transport of heat in solids and flow of viscous fluids between flat plates. The form (120) arises
when transient diffusion or wave phenomenon are discretized in time by finite differences. The
equation (121) appear in chemical models when diffusion of a substance is combined with chemical
reactions. Also in biology, (121) plays an important role, both for spreading of species and in
models involving generation and propagation of electrical signals.

Let Ω = [0, L] be the domain in one space dimension. In addition to the differential equation,
u must fulfill boundary conditions at the boundaries of the domain, x = 0 and x = L. When L
contains up to second-order derivatives, as in the examples above, m = 1, we need one boundary
condition at each of the (two) boundary points, here abstractly specified as

B0(u) = 0, x = 0, B1(u) = 0, x = L (122)

There are three common choices of boundary conditions:
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Bi(u) = u− g, Dirichlet condition (123)

Bi(u) = −αdu
dx
− g, Neumann condition (124)

Bi(u) = −αdu
dx
− h(u− g), Robin condition (125)

Here, g and a are specified quantities.
From now on we shall use ue(x) as symbol for the exact solution, fulfilling

L(ue) = 0, x ∈ Ω, (126)

while u(x) is our notation for an approximate solution of the differential equation.

Remark on notation.
In the literature about the finite element method, is common to use u as the exact solution
and uh as the approximate solution, where h is a discretization parameter. However, the
vast part of the present text is about the approximate solutions, and having a subscript
h attached all the time is cumbersome. Of equal importance is the close correspondence
between implementation and mathematics that we strive to achieve in this text: when it
is natural to use u and not u_h in code, we let the mathematical notation be dictated by
the code’s preferred notation. After all, it is the powerful computer implementations of the
finite element method that justifies studying the mathematical formulation and aspects of
the method.

11.2 Simple model problems
A common model problem used much in the forthcoming examples is

− u′′(x) = f(x), x ∈ Ω = [0, L], u(0) = 0, u(L) = D . (127)

A closely related problem with a different boundary condition at x = 0 reads

− u′′(x) = f(x), x ∈ Ω = [0, L], u′(0) = C, u(L) = D . (128)

A third variant has a variable coefficient,

− (α(x)u′(x))′ = f(x), x ∈ Ω = [0, L], u′(0) = C, u(L) = D . (129)

We can easily solve these using sympy. For (127) we can write the function

def model1(f, L, D):
"""Solve -u’’ = f(x), u(0)=0, u(L)=D."""
u_x = - sp.integrate(f, (x, 0, x)) + c_0
u = sp.integrate(u_x, (x, 0, x)) + c_1
r = sp.solve([u.subs(x, 0)-0, u.subs(x,L)-D], [c_0, c_1])
u = u.subs(c_0, r[c_0]).subs(c_1, r[c_1])
u = sp.simplify(sp.expand(u))
return u
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Calling model1(2, L, D) results in the solution

u(x) = 1
L
x
(
D + L2 − Lx

)
(130)

Model (128) can be solved by

def model2(f, L, C, D):
"""Solve -u’’ = f(x), u’(0)=C, u(L)=D."""
u_x = - sp.integrate(f, (x, 0, x)) + c_0
u = sp.integrate(u_x, (x, 0, x)) + c_1
r = sp.solve([sp.diff(u,x).subs(x, 0)-C, u.subs(x,L)-D], [c_0, c_1])
u = u.subs(c_0, r[c_0]).subs(c_1, r[c_1])
u = sp.simplify(sp.expand(u))
return u

to yield

u(x) = −x2 + Cx− CL+D + L2, (131)

if f(x) = 2. Model (129) requires a bit more involved code,

def model3(f, a, L, C, D):
"""Solve -(a*u’)’ = f(x), u(0)=C, u(L)=D."""
au_x = - sp.integrate(f, (x, 0, x)) + c_0
u = sp.integrate(au_x/a, (x, 0, x)) + c_1
r = sp.solve([u.subs(x, 0)-C, u.subs(x,L)-D], [c_0, c_1])
u = u.subs(c_0, r[c_0]).subs(c_1, r[c_1])
u = sp.simplify(sp.expand(u))
return u

With f(x) = 0 and α(x) = 1 + x2 we get

u(x) = C atan (L)− C atan (x) +D atan (x)
atan (L)

11.3 Forming the residual
The fundamental idea is to seek an approximate solution u in some space V ,

V = span{ψ0(x), . . . , ψN (x)},

which means that u can always be expressed as a linear combination of the basis functions
{ϕi}i∈Is

, with Is as the index set {0, . . . , N}:

u(x) =
∑
j∈Is

cjψj(x) .

The coefficients {ci}i∈Is
are unknowns to be computed.

(Later, in Section 14, we will see that if we specify boundary values of u different from zero,
we must look for an approximate solution u(x) = B(x) +

∑
j cjψj(x), where

∑
j cjψj ∈ V and

B(x) is some function for incorporating the right boundary values. Because of B(x), u will not
necessarily lie in V . This modification does not imply any difficulties.)

We need principles for deriving N + 1 equations to determine the N + 1 unknowns {ci}i∈Is
.

When approximating a given function f by u =
∑
j cjϕj , a key idea is to minimize the square

norm of the approximation error e = u− f or (equivalently) demand that e is orthogonal to V .
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Working with e is not so useful here since the approximation error in our case is e = ue − u and
ue is unknown. The only general indicator we have on the quality of the approximate solution is
to what degree u fulfills the differential equation. Inserting u =

∑
j cjψj into L(u) reveals that

the result is not zero, because u is only likely to equal ue. The nonzero result,

R = L(u) = L(
∑
j

cjψj), (132)

is called the residual and measures the error in fulfilling the governing equation.
Various principles for determining {ci}i∈Is

try to minimize R in some sense. Note that R
varies with x and the {ci}i∈Is

parameters. We may write this dependence explicitly as

R = R(x; c0, . . . , cN ) . (133)

Below, we present three principles for making R small: a least squares method, a projection or
Galerkin method, and a collocation or interpolation method.

11.4 The least squares method
The least-squares method aims to find {ci}i∈Is

such that the square norm of the residual

||R|| = (R,R) =
∫

Ω
R2 dx (134)

is minimized. By introducing an inner product of two functions f and g on Ω as

(f, g) =
∫

Ω
f(x)g(x) dx, (135)

the least-squares method can be defined as

min
c0,...,cN

E = (R,R) . (136)

Differentiating with respect to the free parameters {ci}i∈Is
gives the N + 1 equations∫

Ω
2R∂R

∂ci
dx = 0 ⇔ (R, ∂R

∂ci
) = 0, i ∈ Is . (137)

11.5 The Galerkin method
The least-squares principle is equivalent to demanding the error to be orthogonal to the space V
when approximating a function f by u ∈ V . With a differential equation we do not know the
true error so we must instead require the residual R to be orthogonal to V . This idea implies
seeking {ci}i∈Is

such that

(R, v) = 0, ∀v ∈ V . (138)

This is the Galerkin method for differential equations.
This statement is equivalent to R being orthogonal to the N + 1 basis functions only:

(R,ψi) = 0, i ∈ Is, (139)

resulting in N + 1 equations for determining {ci}i∈Is
.
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11.6 The Method of Weighted Residuals
A generalization of the Galerkin method is to demand that R is orthogonal to some space W , but
not necessarily the same space as V where we seek the unknown function. This generalization is
naturally called the method of weighted residuals:

(R, v) = 0, ∀v ∈W . (140)

If {w0, . . . , wN} is a basis for W , we can equivalently express the method of weighted residuals as

(R,wi) = 0, i ∈ Is . (141)

The result is N + 1 equations for {ci}i∈Is
.

The least-squares method can also be viewed as a weighted residual method with wi = ∂R/∂ci.

Variational formulation of the continuous problem.

Formulations like (140) (or (141)) and (138) (or (139)) are known as variational formulations.
These equations are in this text primarily used for a numerical approximation u ∈ V , where
V is a finite-dimensional space with dimension N + 1. However, we may also let V be an
infinite-dimensional space containing the exact solution ue(x) such that also ue fulfills the
same variational formulation. The variational formulation is in that case a mathematical way
of stating the problem and acts as an alternative to the usual formulation of a differential
equation with initial and/or boundary conditions.

11.7 Test and Trial Functions
In the context of the Galerkin method and the method of weighted residuals it is common to
use the name trial function for the approximate u =

∑
j cjψj . The space containing the trial

function is known as the trial space. The function v entering the orthogonality requirement in
the Galerkin method and the method of weighted residuals is called test function, and so are the
ψi or wi functions that are used as weights in the inner products with the residual. The space
where the test functions comes from is naturally called the test space.

We see that in the method of weighted residuals the test and trial spaces are different and so
are the test and trial functions. In the Galerkin method the test and trial spaces are the same
(so far).

Remark.

It may be subject to debate whether it is only the form of (140) or (138) after integration
by parts, as explained in Section 11.10, that qualifies for the term variational formulation.
The result after integration by parts is what is obtained after taking the first variation of
an optimization problem, see Section 11.13. However, here we use variational formulation
as a common term for formulations which, in contrast to the differential equation R = 0,
instead demand that an average of R is zero: (R, v) = 0 for all v in some space.
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11.8 The collocation method
The idea of the collocation method is to demand that R vanishes at N + 1 selected points
x0, . . . , xN in Ω:

R(xi; c0, . . . , cN ) = 0, i ∈ Is . (142)

The collocation method can also be viewed as a method of weighted residuals with Dirac delta
functions as weighting functions. Let δ(x−xi) be the Dirac delta function centered around x = xi
with the properties that δ(x− xi) = 0 for x 6= xi and∫

Ω
f(x)δ(x− xi) dx = f(xi), xi ∈ Ω . (143)

Intuitively, we may think of δ(x− xi) as a very peak-shaped function around x = xi with integral
1, roughly visualized in Figure 46. Because of (143), we can let wi = δ(x − xi) be weighting
functions in the method of weighted residuals, and (141) becomes equivalent to (142).
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Figure 46: Approximation of delta functions by narrow Gaussian functions.

The subdomain collocation method. The idea of this approach is to demand the integral
of R to vanish over N + 1 subdomains Ωi of Ω:∫

Ωi

R dx = 0, i ∈ Is . (144)
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This statement can also be expressed as a weighted residual method∫
Ω
Rwi dx = 0, i ∈ Is, (145)

where wi = 1 for x ∈ Ωi and wi = 0 otherwise.

11.9 Examples on using the principles
Let us now apply global basis functions to illustrate the principles for minimizing R.

The model problem. We consider the differential equation problem

− u′′(x) = f(x), x ∈ Ω = [0, L], u(0) = 0, u(L) = 0 . (146)

Basis functions. Our choice of basis functions ψi for V is

ψi(x) = sin
(

(i+ 1)π x
L

)
, i ∈ Is . (147)

An important property of these functions is that ψi(0) = ψi(L) = 0, which means that the
boundary conditions on u are fulfilled:

u(0) =
∑
j

cjψj(0) = 0, u(L) =
∑
j

cjψj(L) = 0 .

Another nice property is that the chosen sine functions are orthogonal on Ω:

L∫
0

sin
(

(i+ 1)π x
L

)
sin
(

(j + 1)π x
L

)
dx =

{ 1
2L i = j
0, i 6= j

(148)

provided i and j are integers.

The residual. We can readily calculate the following explicit expression for the residual:

R(x; c0, . . . , cN ) = u′′(x) + f(x),

= d2

dx2

∑
j∈Is

cjψj(x)

+ f(x),

=
∑
j∈Is

cjψ
′′
j (x) + f(x) . (149)

The least squares method. The equations (137) in the least squares method require an
expression for ∂R/∂ci. We have

∂R

∂ci
= ∂

∂ci

∑
j∈Is

cjψ
′′
j (x) + f(x)

 =
∑
j∈Is

∂cj
∂ci

ψ′′j (x) = ψ′′i (x) . (150)

The governing equations for {ci}i∈Is
are then
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(
∑
j

cjψ
′′
j + f, ψ′′i ) = 0, i ∈ Is, (151)

which can be rearranged as ∑
j∈Is

(ψ′′i , ψ′′j )cj = −(f, ψ′′i ), i ∈ Is . (152)

This is nothing but a linear system∑
j∈Is

Ai,jcj = bi, i ∈ Is,

with

Ai,j = (ψ′′i , ψ′′j )

= π4(i+ 1)2(j + 1)2L−4
∫ L

0
sin
(

(i+ 1)π x
L

)
sin
(

(j + 1)π x
L

)
dx

=
{ 1

2L
−3π4(i+ 1)4 i = j

0, i 6= j
(153)

bi = −(f, ψ′′i ) = (i+ 1)2π2L−2
∫ L

0
f(x) sin

(
(i+ 1)π x

L

)
dx (154)

Since the coefficient matrix is diagonal we can easily solve for

ci = 2L
π2(i+ 1)2

∫ L

0
f(x) sin

(
(i+ 1)π x

L

)
dx . (155)

With the special choice of f(x) = 2 can be calculated in sympy by

from sympy import *
import sys

i, j = symbols(’i j’, integer=True)
x, L = symbols(’x L’)
f = 2
a = 2*L/(pi**2*(i+1)**2)
c_i = a*integrate(f*sin((i+1)*pi*x/L), (x, 0, L))
c_i = simplify(c_i)
print c_i

The answer becomes

ci = 4
L2
(

(−1)i + 1
)

π3 (i3 + 3i2 + 3i+ 1)
Now, 1 + (−1)i = 0 for i odd, so only the coefficients with even index are nonzero. Introducing
i = 2k for k = 0, . . . , N/2 to count the relevant indices (for N odd, k goes to (N − 1)/2), we get
the solution

u(x) =
N/2∑
k=0

8L2

π3(2k + 1)3 sin
(

(2k + 1)π x
L

)
. (156)
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The coefficients decay very fast: c2 = c0/27, c4 = c0/125. The solution will therefore be dominated
by the first term,

u(x) ≈ 8L2

π3 sin
(
π
x

L

)
.

The Galerkin method. The Galerkin principle (138) applied to (146) consists of inserting
our special residual (149) in (138)

(u′′ + f, v) = 0, ∀v ∈ V,

or

(u′′, v) = −(f, v), ∀v ∈ V . (157)

This is the variational formulation, based on the Galerkin principle, of our differential equation.
The ∀v ∈ V requirement is equivalent to demanding the equation (u′′, v) = −(f, v) to be fulfilled
for all basis functions v = ψi, i ∈ Is, see (138) and (139). We therefore have

(
∑
j∈Is

cjψ
′′
j , ψi) = −(f, ψi), i ∈ Is . (158)

This equation can be rearranged to a form that explicitly shows that we get a linear system for
the unknowns {ci}i∈Is

: ∑
j∈Is

(ψi, ψ′′j )cj = (f, ψi), i ∈ Is . (159)

For the particular choice of the basis functions (147) we get in fact the same linear system as in
the least squares method because ψ′′ = −(i+ 1)2π2L−2ψ.

The collocation method. For the collocation method (142) we need to decide upon a set of
N + 1 collocation points in Ω. A simple choice is to use uniformly spaced points: xi = i∆x,
where ∆x = L/N in our case (N ≥ 1). However, these points lead to at least two rows in the
matrix consisting of zeros (since ψi(x0) = 0 and ψi(xN ) = 0), thereby making the matrix singular
and non-invertible. This forces us to choose some other collocation points, e.g., random points
or points uniformly distributed in the interior of Ω. Demanding the residual to vanish at these
points leads, in our model problem (146), to the equations

−
∑
j∈Is

cjψ
′′
j (xi) = f(xi), i ∈ Is, (160)

which is seen to be a linear system with entries

Ai,j = −ψ′′j (xi) = (j + 1)2π2L−2 sin
(

(j + 1)πxi
L

)
,

in the coefficient matrix and entries bi = 2 for the right-hand side (when f(x) = 2).
The special case of N = 0 can sometimes be of interest. A natural choice is then the

midpoint x0 = L/2 of the domain, resulting in A0,0 = −ψ′′0 (x0) = π2L−2, f(x0) = 2, and hence
c0 = 2L2/π2.
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Comparison. In the present model problem, with f(x) = 2, the exact solution is u(x) = x(L−x),
while for N = 0 the Galerkin and least squares method result in u(x) = 8L2π−3 sin(πx/L) and
the collocation method leads to u(x) = 2L2π−2 sin(πx/L). We can quickly use sympy to verify
that the maximum error occurs at the midpoint x = L/2 and find what the errors are:

>>> import sympy as sp
>>> # Computing with Dirichlet conditions: -u’’=2 and sines
>>> x, L = sp.symbols(’x L’)
>>> e_Galerkin = x*(L-x) - 8*L**2*sp.pi**(-3)*sp.sin(sp.pi*x/L)
>>> e_colloc = x*(L-x) - 2*L**2*sp.pi**(-2)*sp.sin(sp.pi*x/L)

>>> # Verify max error for x=L/2
>>> dedx_Galerkin = sp.diff(e_Galerkin, x)
>>> dedx_Galerkin.subs(x, L/2)
0
>>> dedx_colloc = sp.diff(e_colloc, x)
>>> dedx_colloc.subs(x, L/2)
0

# Compute max error: x=L/2, evaluate numerical, and simplify
>>> sp.simplify(e_Galerkin.subs(x, L/2).evalf(n=3))
-0.00812*L**2
>>> sp.simplify(e_colloc.subs(x, L/2).evalf(n=3))
0.0473*L**2

The error in the collocation method is about 6 times larger than the error in the Galerkin or least
squares method.

11.10 Integration by parts
A problem arises if we want to apply popular finite element functions to solve our model problem
(146) by the standard least squares, Galerkin, or collocation methods: the piecewise polynomials
ψi(x) have discontinuous derivatives at the cell boundaries which makes it problematic to compute
the second-order derivative. This fact actually makes the least squares and collocation methods
less suitable for finite element approximation of the unknown function. (By rewriting the equation
−u′′ = f as a system of two first-order equations, u′ = v and −v′ = f , the least squares
method can be applied. Also, differentiating discontinuous functions can actually be handled by
distribution theory in mathematics.) The Galerkin method and the method of weighted residuals
can, however, be applied together with finite element basis functions if we use integration by parts
as a means for transforming a second-order derivative to a first-order one.

Consider the model problem (146) and its Galerkin formulation

−(u′′, v) = (f, v) ∀v ∈ V .

Using integration by parts in the Galerkin method, we can move a derivative of u onto v:

∫ L

0
u′′(x)v(x) dx = −

∫ L

0
u′(x)v′(x) dx+ [vu′]L0

= −
∫ L

0
u′(x)v′(x) dx+ u′(L)v(L)− u′(0)v(0) . (161)

Usually, one integrates the problem at the stage where the u and v functions enter the formulation.
Alternatively, but less common, we can integrate by parts in the expressions for the matrix entries:
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∫ L

0
ψi(x)ψ′′j (x) dx = −

∫ L

0
ψ′i(x)ψ′j(x)dx+ [ψiψ′j ]L0

= −
∫ L

0
ψ′i(x)ψ′j(x) dx+ ψi(L)ψ′j(L)− ψi(0)ψ′j(0) . (162)

Integration by parts serves to reduce the order of the derivatives and to make the coefficient
matrix symmetric since (ψ′i, ψ′j) = (ψ′i, ψ′j). The symmetry property depends on the type of terms
that enter the differential equation. As will be seen later in Section 15, integration by parts also
provides a method for implementing boundary conditions involving u′.

With the choice (147) of basis functions we see that the "boundary terms" ψi(L)ψ′j(L) and
ψi(0)ψ′j(0) vanish since ψi(0) = ψi(L) = 0.

Weak form. Since the variational formulation after integration by parts make weaker demands
on the differentiability of u and the basis functions ψi, the resulting integral formulation is referred
to as a weak form of the differential equation problem. The original variational formulation with
second-order derivatives, or the differential equation problem with second-order derivative, is
then the strong form, with stronger requirements on the differentiability of the functions.

For differential equations with second-order derivatives, expressed as variational formulations
and solved by finite element methods, we will always perform integration by parts to arrive at
expressions involving only first-order derivatives.

11.11 Boundary function
So far we have assumed zero Dirichlet boundary conditions, typically u(0) = u(L) = 0, and
we have demanded that ψi(0) = ψi(L) = 0 for i ∈ Is. What about a boundary condition like
u(L) = D 6= 0? This condition immediately faces a problem: u =

∑
j cjϕj(L) = 0 since all

ϕi(L) = 0.
A boundary condition of the form u(L) = D can be implemented by demanding that all

ψi(L) = 0, but adding a boundary function B(x) with the right boundary value, B(L) = D, to
the expansion for u:

u(x) = B(x) +
∑
j∈Is

cjψj(x) .

This u gets the right value at x = L:

u(L) = B(L) +
∑
j∈Is

cjψj(L) = B(L) = D .

The idea is that for any boundary where u is known we demand ψi to vanish and construct a
function B(x) to attain the boundary value of u. There are no restrictions how B(x) varies with
x in the interior of the domain, so this variation needs to be constructed in some way.

For example, with u(0) = 0 and u(L) = D, we can choose B(x) = xD/L, since this form
ensures that B(x) fulfills the boundary conditions: B(0) = 0 and B(L) = D. The unknown
function is then sought on the form

u(x) = x

L
D +

∑
j∈Is

cjψj(x), (163)
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with ψi(0) = ψi(L) = 0.
The B(x) function can be chosen in many ways as long as its boundary values are correct.

For example, B(x) = D(x/L)p for any power p will work fine in the above example.
As another example, consider a domain Ω = [a, b] where the boundary conditions are u(a) = Ua

and u(b) = Ub. A class of possible B(x) functions is

B(x) = Ua + Ub − Ua
(b− a)p (x− a)p, p > 0 . (164)

Real applications will most likely use the simplest version, p = 1, but here such a p parameter
was included to demonstrate the ambiguity in the construction of B(x).

Summary.

The general procedure of incorporating Dirichlet boundary conditions goes as follows. Let
∂ΩE be the part(s) of the boundary ∂Ω of the domain Ω where u is specified. Set ψi = 0 at
the points in ∂ΩE and seek u as

u(x) = B(x) +
∑
j∈Is

cjψj(x), (165)

where B(x) equals the boundary conditions on u at ∂ΩE .

Remark. With the B(x) term, u does not in general lie in V = span {ψ0, . . . , ψN} anymore.
Moreover, when a prescribed value of u at the boundary, say u(a) = Ua is different from zero, it
does not make sense to say that u lies in a vector space, because this space does not obey the
requirements of addition and scalar multiplication. For example, 2u does not lie in the space
since its boundary value is 2Ua, which is incorrect. It only makes sense to split u in two parts, as
done above, and have the unknown part

∑
j cjψj in a proper function space.

11.12 Abstract notation for variational formulations
We have seen that variational formulations end up with a formula involving u and v, such as
(u′, v′) and a formula involving v and known functions, such as (f, v). A widely used notation is to
introduce an abstract variational statement written as a(u, v) = L(v), where a(u, v) is a so-called
bilinear form involving all the terms that contain both the test and trial function, while L(v) is a
linear form containing all the terms without the trial function. For example, the statement∫

Ω
u′v′ dx =

∫
Ω
fv dx or (u′, v′) = (f, v) ∀v ∈ V

can be written in abstract form: find u such that

a(u, v) = L(v) ∀v ∈ V,

where we have the definitions

a(u, v) = (u′, v′), L(v) = (f, v) .
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The term linear means that L(α1v1 + α2v2) = α1L(v1) + α2L(v2) for two test functions v1
and v2, and scalar parameters α1 and α2. Similarly, the term bilinear means that a(u, v) is linear
in both its arguments:

a(α1u1 + α2u2, v) = α1a(u1, v) + α2a(u2, v),
a(u, α1v1 + α2v2) = α1a(u, v1) + α2a(u, v2) .

In nonlinear problems these linearity properties do not hold in general and the abstract notation
is then F (u; v) = 0.

The matrix system associated with a(u, v) = L(v) can also be written in an abstract form by
inserting v = ψi and u =

∑
j cjψj in a(u, v) = L(v). Using the linear properties, we get∑

j∈Is

a(ψj , ψi)cj = L(ψi), i ∈ Is,

which is a linear system ∑
j∈Is

Ai,jcj = bi, i ∈ Is,

where

Ai,j = a(ψj , ψi), bi = L(ψi) .

In many problems, a(u, v) is symmetric such that a(ψj , ψi) = a(ψi, ψj). In those cases the
coefficient matrix becomes symmetric, Ai,j = Aj,i, a property that can simplify solution algorithms
for linear systems and make them more stable in addition to saving memory and computations.

The abstract notation a(u, v) = L(v) for linear differential equation problems is much used in
the literature and in description of finite element software (in particular the FEniCS21 documen-
tation). We shall frequently summarize variational forms using this notation.

11.13 Variational problems and optimization of functionals
If a(u, v) = a(v, u), it can be shown that the variational statement

a(u, v) = L(v) ∀v ∈ V,

is equivalent to minimizing the functional

F (v) = 1
2a(v, v)− L(v)

over all functions v ∈ V . That is,

F (u) ≤ F (v) ∀v ∈ V .

Inserting a v =
∑
j cjψj turns minimization of F (v) into minimization of a quadratic function

F̄ (c0, . . . , cN ) =
∑
j∈Is

∑
i∈Is

a(ψi, ψj)cicj −
∑
j∈Is

L(ψj)cj

of N + 1 parameters.
Minimization of F̄ implies

21http://fenicsproject.org
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∂F̄

∂ci
= 0, i ∈ Is .

After some algebra one finds∑
j ∈ Isa(ψi, ψj)cj = L(ψi), i ∈ Is,

which is the same system as that arising from a(u, v) = L(v).
Many traditional applications of the finite element method, especially in solid mechanics and

structural analysis, start with formulating F (v) from physical principles, such as minimization of
energy, and then proceeds with deriving a(u, v) = L(v), which is the equation usually desired in
implementations.

12 Examples on variational formulations
The following sections derive variational formulations for some prototype differential equations
in 1D, and demonstrate how we with ease can handle variable coefficients, mixed Dirichlet and
Neumann boundary conditions, first-order derivatives, and nonlinearities.

12.1 Variable coefficient
Consider the problem

− d

dx

(
α(x)du

dx

)
= f(x), x ∈ Ω = [0, L], u(0) = C, u(L) = D . (166)

There are two new features of this problem compared with previous examples: a variable coefficient
a(x) and nonzero Dirichlet conditions at both boundary points.

Let us first deal with the boundary conditions. We seek

u(x) = B(x) +
∑
j∈Is

cjψi(x),

with ψi(0) = ψi(L) = 0 for i ∈ Is. The function B(x) must then fulfill B(0) = C and B(L) = D.
How B varies in between x = 0 and x = L is not of importance. One possible choice is

B(x) = C + 1
L

(D − C)x,

which follows from (164) with p = 1.
We seek (u−B) ∈ V . As usual,

V = span{ψ0, . . . , ψN},

but the two Dirichlet boundary conditions demand that

ψi(0) = ψi(L) = 0, i ∈ Is .

Note that any v ∈ V has the property v(0) = v(L) = 0.
The residual arises by inserting our u in the differential equation:

R = − d

dx

(
α
du

dx

)
− f .
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Galerkin’s method is

(R, v) = 0, ∀v ∈ V,

or written with explicit integrals,∫
Ω

(
d

dx

(
α
du

dx

)
− f

)
v dx = 0, ∀v ∈ V .

We proceed with integration by parts to lower the derivative from second to first order:

−
∫

Ω

d

dx

(
α(x)du

dx

)
v dx =

∫
Ω
α(x)du

dx

dv

dx
dx−

[
α
du

dx
v

]L
0
.

The boundary term vanishes since v(0) = v(L) = 0. The variational formulation is then∫
Ω
α(x)du

dx

dv

dx
dx =

∫
Ω
f(x)v dx, ∀v ∈ V .

The variational formulation can alternatively be written in a more compact form:

(αu′, v′) = (f, v), ∀v ∈ V .

The corresponding abstract notation reads

a(u, v) = L(v) ∀v ∈ V,

with
a(u, v) = (αu′, v′), L(v) = (f, v) .

Note that the a in the notation a(·, ·) is not to be mixed with the variable coefficient a(x) in the
differential equation.

We may insert u = B +
∑
j cjψj and v = ψi to derive the linear system:

(αB′ + α
∑
j∈Is

cjψ
′
j , ψ
′
i) = (f, ψi), i ∈ Is .

Isolating everything with the cj coefficients on the left-hand side and all known terms on the
right-hand side gives∑

j∈Is

(αψ′j , ψ′i)cj = (f, ψi) + (a(D − C)L−1, ψ′i), i ∈ Is .

This is nothing but a linear system
∑
j Ai,jcj = bi with

Ai,j = (aψ′j , ψ′i) =
∫

Ω
α(x)ψ′j(x), ψ′i(x) dx,

bi = (f, ψi) + (a(D − C)L−1, ψ′i) =
∫

Ω

(
f(x)ψi(x) + α(x)D − C

L
ψ′i(x)

)
dx .
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12.2 First-order derivative in the equation and boundary condition
The next problem to formulate in variational form reads

− u′′(x) + bu′(x) = f(x), x ∈ Ω = [0, L], u(0) = C, u′(L) = E . (167)

The new features are a first-order derivative u′ in the equation and the boundary condition
involving the derivative: u′(L) = E. Since we have a Dirichlet condition at x = 0, we must force
ψi(0) = 0 and use a boundary function to take care of the condition u(0) = C. Because there
is no Dirichlet condition on x = L we do not make any requirements to ψi(L). The simplest
possible choice of B(x) is B(x) = C.

The expansion for u becomes

u = C +
∑
j∈Is

cjψi(x) .

The variational formulation arises from multiplying the equation by a test function v ∈ V and
integrating over Ω:

(−u′′ + bu′ − f, v) = 0, ∀v ∈ V

We apply integration by parts to the u′′v term only. Although we could also integrate u′v by
parts, this is not common. The result becomes

(u′ + bu′, v′) = (f, v) + [u′v]L0 , ∀v ∈ V .

Now, v(0) = 0 so

[u′v]L0 = u′(L)v(L) = Ev(L),

because u′(L) = E. Integration by parts allows us to take care of the Neumann condition in the
boundary term.

Natural and essential boundary conditions.

Omitting a boundary term like [u′v]L0 implies that we actually impose the condition u′ = 0
unless there is a Dirichlet condition (i.e., v = 0) at that point! This result has great practical
consequences, because it is easy to forget the boundary term, and this mistake may implicitly
set a boundary condition! Since homogeneous Neumann conditions can be incorporated
without doing anything, and non-homogeneous Neumann conditions can just be inserted in
the boundary term, such conditions are known as natural boundary conditions. Dirichlet
conditions requires more essential steps in the mathematical formulation, such as forcing
all ϕi = 0 on the boundary and constructing a B(x), and are therefore known as essential
boundary conditions.

The final variational form reads

(u′, v′) + (bu′, v) = (f, v) + Ev(L), ∀v ∈ V .

In the abstract notation we have

a(u, v) = L(v) ∀v ∈ V,
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with the particular formulas

a(u, v) = (u′, v′) + (bu′, v), L(v) = (f, v) + Ev(L) .

The associated linear system is derived by inserting u = B +
∑
j cjψj and replacing v by ψi

for i ∈ Is. Some algebra results in∑
j∈Is

((ψ′j , ψ′i) + (bψ′j , ψi))︸ ︷︷ ︸
Ai,j

cj = (f, ψi) + Eψi(L)︸ ︷︷ ︸
bi

.

Observe that in this problem, the coefficient matrix is not symmetric, because of the term

(bψ′j , ψi) =
∫

Ω
bψ′jψi dx 6=

∫
Ω
bψ′iψj dx = (ψ′i, bψj) .

12.3 Nonlinear coefficient
Finally, we show that the techniques used above to derive variational forms also apply to nonlinear
differential equation problems as well. Here is a model problem with a nonlinear coefficient and
right-hand side:

− (α(u)u′)′ = f(u), x ∈ [0, L], u(0) = 0, u′(L) = E . (168)

Our space V has basis {ψi}i∈Is
, and because of the condition u(0) = 0, we must require ψi(0) = 0,

i ∈ Is.
Galerkin’s method is about inserting the approximate u, multiplying the differential equation

by v ∈ V , and integrate,

−
∫ L

0

d

dx

(
α(u)du

dx

)
v dx =

∫ L

0
f(u)v dx ∀v ∈ V .

The integration by parts does not differ from the case where we have α(x) instead of α(u):∫ L

0
α(u)du

dx

dv

dx
dx =

∫ L

0
f(u)v dx+ [α(u)vu′]L0 ∀v ∈ V .

The term α(u(0))v(0)u′(0) = 0 since v(0). The other term, α(u(L))v(L)u′(L), is used to impose
the other boundary condition u′(L) = E, resulting in∫ L

0
α(u)du

dx

dv

dx
dx =

∫ L

0
f(u)v dx+ α(u(L))v(L)E ∀v ∈ V,

or alternatively written more compactly as

(α(u)u′, v′) = (f(u), v) + α(u(L))v(L)E ∀v ∈ V .

Since the problem is nonlinear, we cannot identify a bilinear form a(u, v) and a linear form L(v).
An abstract notation is typically find u such that

F (u; v) = 0 ∀v ∈ V,

with
F (u; v) = (a(u)u′, v′)− (f(u), v)− a(L)v(L)E .
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By inserting u =
∑
j cjψj we get a nonlinear system of algebraic equations for the unknowns

ci, i ∈ Is. Such systems must be solved by constructing a sequence of linear systems whose
solutions hopefully converge to the solution of the nonlinear system. Frequently applied methods
are Picard iteration and Newton’s method.

12.4 Computing with Dirichlet and Neumann conditions
Let us perform the necessary calculations to solve

−u′′(x) = 2, x ∈ Ω = [0, 1], u′(0) = C, u(1) = D,

using a global polynomial basis ψi ∼ xi. The requirements on ψi is that ψi(1) = 0, because u is
specified at x = 1, so a proper set of polynomial basis functions can be

ψi(x) = (1− x)i+1, i ∈ Is .

A suitable B(x) function to handle the boundary condition u(1) = D is B(x) = Dx. The
variational formulation becomes

(u′, v′) = (2, v)− Cv(0) ∀v ∈ V .

From inserting u = B +
∑
j cjψj and choosing v = ψi we get∑

j∈Is

(ψ′j , ψ′i)cj = (2, ψi)− (B′, ψ′i)− Cψi(0), i ∈ Is .

The entries in the linear system are then

Ai,j = (ψ′j , ψ′i) =
∫ 1

0
ψ′i(x)ψ′j(x) dx =

∫ 1

0
(i+ 1)(j + 1)(1− x)i+j dx = (i+ 1)(j + 1)

i+ j + 1 ,

bi = (2, ψi)− (D,ψ′i)− Cψi(0)

=
∫ 1

0
(2ψi(x)−Dψ′i(x)) dx− Cψi(0)

=
∫ 1

0

(
2(1− x)i+1 −D(i+ 1)(1− x)i

)
dx− C

= (D − C)(i+ 2) + 2
i+ 2 = D − C + 2

i+ 2 .

Relevant sympy commands to help calculate these expressions are

from sympy import *
x, C, D = symbols(’x C D’)
i, j = symbols(’i j’, integer=True, positive=True)
psi_i = (1-x)**(i+1)
psi_j = psi_i.subs(i, j)
integrand = diff(psi_i, x)*diff(psi_j, x)
integrand = simplify(integrand)
A_ij = integrate(integrand, (x, 0, 1))
A_ij = simplify(A_ij)
print ’A_ij:’, A_ij
f = 2
b_i = integrate(f*psi_i, (x, 0, 1)) - \

integrate(diff(D*x, x)*diff(psi_i, x), (x, 0, 1)) - \
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C*psi_i.subs(x, 0)
b_i = simplify(b_i)
print ’b_i:’, b_i

The output becomes

A_ij: (i + 1)*(j + 1)/(i + j + 1)
b_i: ((-C + D)*(i + 2) + 2)/(i + 2)

We can now choose some N and form the linear system, say for N = 1:

N = 1
A = zeros((N+1, N+1))
b = zeros(N+1)
print ’fresh b:’, b
for r in range(N+1):

for s in range(N+1):
A[r,s] = A_ij.subs(i, r).subs(j, s)

b[r,0] = b_i.subs(i, r)

The system becomes (
1 1
1 4/3

)(
c0
c1

)
=
(

1− C +D
2/3− C +D

)
The solution (c = A.LUsolve(b)) becomes c0 = 2− C +D and c1 = −1, resulting in

u(x) = 1− x2 +D + C(x− 1), (169)

We can form this u in sympy and check that the differential equation and the boundary conditions
are satisfied:

u = sum(c[r,0]*psi_i.subs(i, r) for r in range(N+1)) + D*x
print ’u:’, simplify(u)
print "u’’:", simplify(diff(u, x, x))
print ’BC x=0:’, simplify(diff(u, x).subs(x, 0))
print ’BC x=1:’, simplify(u.subs(x, 1))

The output becomes

u: C*x - C + D - x**2 + 1
u’’: -2
BC x=0: C
BC x=1: D

The complete sympy code is found in u_xx_2_CD.py22.
The exact solution is found by integrating twice and applying the boundary conditions, either

by hand or using sympy as shown in Section 11.2. It appears that the numerical solution coincides
with the exact one. This result is to be expected because if (ue −B) ∈ V , u = ue, as proved next.

12.5 When the numerical method is exact
We have some variational formulation: find (u − B) ∈ V such that a(u, v) = L(u) ∀V . The
exact solution also fulfills a(ue, v) = L(v), but normally (ue −B) lies in a much larger (infinite-
dimensional) space. Suppose, nevertheless, that ue −B = E, where E ∈ V . That is, apart from

22http://tinyurl.com/nm5587k/fem/u_xx_2_CD.py
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Dirichlet conditions, ue lies in our finite-dimensional space V we use to compute u. Writing also
u on the same form u = B + F , F ∈ V , we have

a(B + E, v) = L(v) ∀v ∈ V,
a(B + F, v) = L(v) ∀v ∈ V .

Since these are two variational statements in the same space, we can subtract them and use the
bilinear property of a(·, ·):

a(B + E, v)− a(B + F, v) = L(v)− L(v)
a(B + E − (B + F ), v) = 0

a(E − F ), v) = 0

If a(E−F ), v) = 0 for all v in V , then E−F must be zero everywhere in the domain, i.e., E = F .
Or in other words: u = ue. This proves that the exact solution is recovered if ue −B lies in V .,
i.e., can expressed as

∑
j∈Is

djψj if {ψj}j∈Is
is a basis for V . The method will then compute the

solution cj = dj , j ∈ Is.
The case treated in Section 12.4 is of the type where ue −B is a quadratic function that is 0

at x = 1, and therefore (ue −B) ∈ V , and the method finds the exact solution.

13 Computing with finite elements
The purpose of this section is to demonstrate in detail how the finite element method can the be
applied to the model problem

−u′′(x) = 2, x ∈ (0, L), u(0) = u(L) = 0,

with variational formulation

(u′, v′) = (2, v) ∀v ∈ V .

The variational formulation is derived in Section 11.10.

13.1 Finite element mesh and basis functions
We introduce a finite element mesh with Ne cells, all with length h, and number the cells from left
to right. global nodes. Choosing P1 elements, there are two nodes per cell, and the coordinates
of the nodes become

xi = ih, h = L/Ne, i = 0, . . . , Nn = Ne + 1,

provided we number the nodes from left to right.
Each of the nodes, i, is associated a finite element basis function ϕi(x). When approximating

a given function f by a finite element function u, we expand u using finite element basis functions
associated with all nodes in the mesh, i.e., N = Nn. However, when solving differential equations
we will often have N < Nn because of Dirichlet boundary conditions. Why this is the case will
now be explained in detail.

In our case with homogeneous Dirichlet boundary conditions we do not need any boundary
function B(x) and can work with the expansion
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u(x) =
∑
j∈Is

cjψj(x) . (170)

Because of the boundary conditions, we must demand ψi(0) = ψi(L) = 0, i ∈ Is. When ψi,
i = 0, . . . , N , is to be selected among the finite element basis functions ϕj , i = 0, . . . , Nn, we have
to avoid using ϕj functions that do not vanish at x0 = 0 and xNn

= L. However, all ϕj vanish at
these two nodes for j = 1, . . . , Nn. Only basis functions associated with the end nodes, ϕ0 and
ϕNn , violate the boundary conditions of our differential equation. Therefore, we select the basis
functions ϕi to be the set of finite element basis functions associated with all the interior nodes
in the mesh:

ψi = ϕi+1, i = 0, . . . , N .

Here, N = Nn − 2.
In the general case, the nodes are not necessarily numbered from left to right, so we introduce

a mapping from the node numbering, or more precisely the degree of freedom numbering, to the
numbering of the unknowns in the final equation system. These unknowns take on the numbers
0, . . . , N . Unknown number j in the linear system corresponds to degree of freedom number ν(j),
j ∈ Is. We can then write

ψi = ϕν(i), i = 0, . . . , N .

With a regular numbering as in the present example, ν(j) = j + 1, j = 1, . . . , N = Nn − 2.

13.2 Computation in the global physical domain
We shall first perform a computation in the x coordinate system because the integrals can be
easily computed here by simple, visual, geometric considerations. This is called a global approach
since we work in the x coordinate system and compute integrals on the global domain [0, L].

The entries in the coefficient matrix and right-hand side are

Ai,j =
∫ L

0
ψ′i(x)ψ′j(x) dx, bi =

∫ L

0
2ψi(x) dx, i, j ∈ Is .

Expressed in terms of finite element basis functions ϕi we get the alternative expressions

Ai,j =
∫ L

0
ϕ′i+1(x)ϕ′j+1(x) dx, bi =

∫ L

0
2ϕi+1(x) dx, i, j ∈ Is .

For the following calculations the subscripts on the finite element basis functions are more
conveniently written as i and j instead of i+ 1 and j + 1, so our notation becomes

Ai−1,j−1 =
∫ L

0
ϕ′i(x)ϕ′j(x) dx, bi−1 =

∫ L

0
2ϕi(x) dx,

where the i and j indices run as i, j = 1, . . . , Nn − 1 = N + 1.
The ϕi(x) function is a hat function with peak at x = xi and a linear variation in [xi−1, xi]

and [xi, xi+1]. The derivative is 1/h to the left of xi and −1/h to the right, or more formally,

ϕ′i(x) =


0, x < xi−1,
h−1, xi−1 ≤ x < xi,
−h−1, xi ≤ x < xi+1,
0, x ≥ xi+1

(171)
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Figure 47 shows ϕ′1(x) and ϕ′2(x).
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Figure 47: Illustration of the derivative of piecewise linear basis functions associated with nodes
in cell 2.

We realize that ϕ′i and ϕ′j has no overlap, and hence their product vanishes, unless i and j
are nodes belonging to the same cell. The only nonzero contributions to the coefficient matrix
are therefore

Ai−1,i−2 =
∫ L

0
ϕ′i(x)ϕ′i−1(x) dx,

Ai−1,i−1 =
∫ L

0
ϕ′i(x)2 dx,

Ai−1,i =
∫ L

0
ϕ′i(x)ϕ′i+1(x) dx,

for i = 1, . . . , Nn − 1, but for i = 1, Ai−1,i−2 is not defined, and for i = Nn − 1, Ai−1,i is not
defined.

We see that ϕ′i−1(x) and ϕ′i(x) have overlap of one cell Ω(i−1) = [xi−1, xi] and that their
product then is −1/h2. The integrand is constant and therefore Ai−1,i−2 = −h−2h = −h−1. A
similar reasoning can be applied to Ai−1,i, which also becomes −h−1. The integral of ϕ′i(x)2 gets
contributions from two cells, Ω(i−1) = [xi−1, xi] and Ω(i) = [xi, xi+1], but ϕ′i(x)2 = h−2 in both
cells, and the length of the integration interval is 2h so we get Ai−1,i−1 = 2h−1.

The right-hand side involves an integral of 2ϕi(x), i = 1, . . . , Nn − 1, which is just the area
under a hat function of height 1 and width 2h, i.e., equal to h. Hence, bi−1 = 2h.

To summarize the linear system, we switch from i to i+ 1 such that we can write

Ai,i−1 = Ai,i−1 = −h−1, Ai,i = 2h−1, bi = 2h .

The equation system to be solved only involves the unknowns ci for i ∈ Is. With our
numbering of unknowns and nodes, we have that ci equals u(xi+1). The complete matrix system
that takes the following form:
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2 −1 0 · · · · · · · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . . . . . . . . 0
...

...
. . . . . . . . . . . . . . .

...
... 0 −1 2 −1

. . .
...

...
. . . . . . . . . . . . 0

...
. . . . . . . . . −1

0 · · · · · · · · · · · · · · · 0 −1 2





c0
...
...
...
...
...
...
...
cN



=



2h
...
...
...
...
...
...
...

2h



(172)

13.3 Comparison with a finite difference discretization
A typical row in the matrix system can be written as

− 1
h
ci−1 + 2

h
ci −

1
h
ci+1 = 2h . (173)

Let us introduce the notation uj for the value of u at node j: uj = u(xj) since we have the
interpretation u(xj) =

∑
j cjϕ(xj) =

∑
j cjδij = cj . The unknowns c0, . . . , cN are u1, . . . , uNn .

Shifting i with i+ 1 in (173) and inserting ui = ci−1, we get

− 1
h
ui−1 + 2

h
ui −

1
h
ui+1 = 2h, (174)

A finite difference discretization of −u′′(x) = 2 by a centered, second-order finite difference
approximation u′′(xi) ≈ [DxDxu]i with ∆x = h yields

− ui−1 − 2ui + ui+1

h2 = 2, (175)

which is, in fact, equivalent to (174) if (174) is divided by h. Therefore, the finite difference and
the finite element method are equivalent in this simple test problem.

Sometimes a finite element method generates the finite difference equations on a uniform mesh,
and sometimes the finite element method generates equations that are different. The differences
are modest, but may influence the numerical quality of the solution significantly, especially in
time-dependent problems.

13.4 Cellwise computations
We now employ the cell by cell computational procedure where an element matrix and vector are
calculated for each cell and assembled in the global linear system. All integrals are mapped to
the local reference coordinate system X ∈ [−1, 1]. In the present case, the matrix entries contain
derivatives with respect to x,

A
(e)
i−1,j−1 =

∫
Ω(e)

ϕ′i(x)ϕ′j(x) dx =
∫ 1

−1

d

dx
ϕ̃r(X) d

dx
ϕ̃s(X)h2 dX,

where the global degree of freedom i is related to the local degree of freedom r through i = q(e, r).
Similarly, j = q(e, s). The local degrees of freedom run as r, s = 0, 1 for a P1 element.
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The integral for the element matrix. There are simple formulas for the basis functions
ϕ̃r(X) as functions of X. However, we now need to find the derivative of ϕ̃r(X) with respect to
x. Given

ϕ̃0(X) = 1
2(1−X), ϕ̃1(X) = 1

2(1 +X),

we can easily compute dϕ̃r/dX:

dϕ̃0

dX
= −1

2 ,
dϕ̃1

dX
= 1

2 .

From the chain rule,

dϕ̃r
dx

= dϕ̃r
dX

dX

dx
= 2
h

dϕ̃r
dX

. (176)

The transformed integral is then

A
(e)
i−1,j−1 =

∫
Ω(e)

ϕ′i(x)ϕ′j(x) dx =
∫ 1

−1

2
h

dϕ̃r
dX

2
h

dϕ̃s
dX

h

2 dX .

The integral for the element vector. The right-hand side is transformed according to

b
(e)
i−1 =

∫
Ω(e)

2ϕi(x) dx =
∫ 1

−1
2ϕ̃r(X)h2 dX, i = q(e, r), r = 0, 1 .

Detailed calculations of the element matrix and vector. Specifically for P1 elements we
arrive at the following calculations for the element matrix entries:

Ã
(e)
0,0 =

∫ 1

−1

2
h

(
−1

2

)
2
h

(
−1

2

)
h

2 dX = 1
h

Ã
(e)
0,1 =

∫ 1

−1

2
h

(
−1

2

)
2
h

(
1
2

)
h

2 dX = − 1
h

Ã
(e)
1,0 =

∫ 1

−1

2
h

(
1
2

)
2
h

(
−1

2

)
h

2 dX = − 1
h

Ã
(e)
1,1 =

∫ 1

−1

2
h

(
1
2

)
2
h

(
1
2

)
h

2 dX = 1
h

The element vector entries become

b̃
(e)
0 =

∫ 1

−1
21

2(1−X)h2 dX = h

b̃
(e)
1 =

∫ 1

−1
21

2(1 +X)h2 dX = h .

Expressing these entries in matrix and vector notation, we have

Ã(e) = 1
h

(
1 −1
−1 1

)
, b̃(e) = h

(
1
1

)
. (177)
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Contributions from the first and last cell. The first and last cell involve only one unknown
and one basis function because of the Dirichlet boundary conditions at the first and last node.
The element matrix therefore becomes a 1× 1 matrix and there is only one entry in the element
vector. On cell 0, only ψ0 = ϕ1 is involved, corresponding to integration with ϕ̃1. On cell Ne,
only ψN = ϕNn−1 is involved, corresponding to integration with ϕ̃0. We then get the special
end-cell contributions

Ã(e) = 1
h

(
1
)
, b̃(e) = h

(
1
)
, (178)

for e = 0 and e = Ne. In these cells, we have only one degree of freedom, not two as in the
interior cells.

Assembly. The next step is to assemble the contributions from the various cells. The assembly
of an element matrix and vector into the global matrix and right-hand side can be expressed as

Aq(e,r),q(e,s) = Aq(e,r),q(e,s) + Ã(e)
r,s , bq(e,r) = bq(e,r) + b̃(e)r ,

for r and s running over all local degrees of freedom in cell e.
To make the assembly algorithm more precise, it is convenient to set up Python data structures

and a code snippet for carrying out all details of the algorithm. For a mesh of four equal-sized P1
elements and L = 2 we have

vertices = [0, 0.5, 1, 1.5, 2]
cells = [[0, 1], [1, 2], [2, 3], [3, 4]]
dof_map = [[0], [0, 1], [1, 2], [2]]

The total number of degrees of freedom is 3, being the function values at the internal 3 nodes
where u is unknown. In cell 0 we have global degree of freedom 0, the next cell has u unknown at
its two nodes, which become global degrees of freedom 0 and 1, and so forth according to the
dof_map list. The mathematical q(e, r) quantity is nothing but the dof_map list.

Assume all element matrices are stored in a list Ae such that Ae[e][i,j] is Ã(e)
i,j . A corre-

sponding list for the element vectors is named be, where be[e][r] is b̃(e)r . A Python code snippet
illustrates all details of the assembly algorithm:

# A[i,j]: coefficient matrix, b[i]: right-hand side
for e in range(len(Ae)):

for r in range(Ae[e].shape[0]):
for s in range(Ae[e].shape[1]):

A[dof_map[e,r],dof_map[e,s]] += Ae[e][i,j]
b[dof_map[e,r]] += be[e][i,j]

The general case with N_e P1 elements of length h has

N_n = N_e + 1
vertices = [i*h for i in range(N_n)]
cells = [[e, e+1] for e in range(N_e)]
dof_map = [[0]] + [[e-1, e] for i in range(1, N_e)] + [[N_n-2]]

Carrying out the assembly results in a linear system that is identical to (172), which is not
surprising since the procedures is mathematically equivalent to the calculations in the physical
domain.

A fundamental problem with the matrix system we have assembled is that the boundary
conditions are not incorporated if u(0) or u(L) are different from zero. The next sections deals
with this issue.
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14 Boundary conditions: specified nonzero value
We have to take special actions to incorporate Dirichlet conditions, such as u(L) = D, into
the computational procedures. The present section outlines alternative, yet mathematically
equivalent, methods.

14.1 General construction of a boundary function
In Section 11.11 we introduce a boundary function B(x) to deal with nonzero Dirichlet boundary
conditions for u. The construction of such a function is not always trivial, especially not in
multiple dimensions. However, a simple and general construction idea exists when the basis
functions have the property

ϕi(xj) = δij , δij =
{

1, i = j,
0, i 6= j,

where xj is a boundary point. Examples on such functions are the Lagrange interpolating
polynomials and finite element functions.

Suppose now that u has Dirichlet boundary conditions at nodes with numbers i ∈ Ib. For
example, Ib = {0, Nn} in a 1D mesh with node numbering from left to right. Let Ui be the
corresponding prescribed values of u(xi). We can then, in general, use

B(x) =
∑
j∈Ib

Ujϕj(x) . (179)

It is easy to verify that B(xi) =
∑
j∈Ib

Ujϕj(xi) = Ui.
The unknown function can then be written as

u(x) =
∑
j∈Ib

Ujϕj(x) +
∑
j∈Is

cjϕν(j), (180)

where ν(j) maps unknown number j in the equation system to node ν(j). We can easily show
that with this u, a Dirichlet condition u(xk) = Uk is fulfilled:

u(xk) =
∑
j∈Ib

Uj ϕj(x)︸ ︷︷ ︸
6=0 only for j=k

+
∑
j∈Is

cj ϕν(j)(xk)︸ ︷︷ ︸
=0, k 6∈Is

= Uk

Some examples will further clarify the notation. With a regular left-to-right numbering of
nodes in a mesh with P1 elements, and Dirichlet conditions at x = 0, we use finite element basis
functions associated with the nodes 1, 2, . . . , Nn, implying that ν(j) = j + 1, j = 0, . . . , N , where
N = Nn − 1. For the particular mesh below the expansion becomes

u(x) = U0ϕ0(x) + c0ϕ1(x) + c1ϕ2(x) + · · ·+ c4ϕ5(x) .

110



0 2 4 6
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

543210

x

Ω(4)Ω(0) Ω(1) Ω(2) Ω(3)

Here is a mesh with an irregular cell and node numbering:
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Say we in this latter mesh have Dirichlet conditions on the left-most and right-most node,
with numbers 3 and 1, respectively. Then we can number the unknowns at the interior nodes
from left to right, giving ν(0) = 0, ν(1) = 4, ν(2) = 5, ν(3) = 2. This gives

B(x) = U3ϕ3(x) + U1ϕ1(x),
and

u(x) = B(x) +
3∑
j=0

cjϕν(j) = U3ϕ3 + U1ϕ1 + c0ϕ0 + c1ϕ4 + c2ϕ5 + c3ϕ2 .

Switching to the more standard case of left-to-right numbering and boundary conditions
u(0) = C, u(L) = D, we have N = Nn − 2 and

u(x) = Cϕ0 +DϕNn
+
∑
j∈Is

cjϕj+1

= Cϕ0 +DϕNn + c0ϕ1 + c1ϕ2 + · · ·+ cNϕNn−1 .

The idea of constructing B described here generalizes almost trivially to 2D and 3D problems:
B =

∑
j∈Ib

Ujϕj , where Ib is the index set containing the numbers of all the nodes on the
boundaries where Dirichlet values are prescribed.
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14.2 Example on computing with finite element-based a boundary
function

Let us see how the model problem −u′′ = 2, u(0) = C, u(L) = D, is affected by a B(x) to
incorporate boundary values. Inserting the expression

u(x) = B(x) +
∑
j∈Is

cjψj(x)

in −(u′′, ψi) = (f, ψi) and integrating by parts results in a linear system with

Ai,j =
∫ L

0
ψ′i(x)ψ′j(x) dx, bi =

∫ L

0
(f(x)ψi(x)−B′(x)ψ′i(x)) dx .

We choose ψi = ϕi+1, i = 0, . . . , N = Nn − 2 if the node numbering is from left to right. (Later
we also need the assumption that the cells too are numbered from left to right.) The boundary
function becomes

B(x) = Cϕ0(x) +DϕNn
(x) .

The expansion for u(x) is

u(x) = B(x) +
∑
j∈Is

cjϕj+1(x) .

We can write the matrix and right-hand side entries as

Ai−1,j−1 =
∫ L

0
ϕ′i(x)ϕ′j(x) dx, bi−1 =

∫ L

0
(f(x)− Cϕ′0(x)−Dϕ′Nn

(x))ϕ′i(x) dx,

for i, j = 1, . . . , N + 1 = Nn − 1. Note that we have here used B′ = Cϕ′0 +Dϕ′Nn
.

Computations in physical coordinates. Most of the terms in the linear system have already
been computed so we concentrate on the new contribution from the boundary function. The
integral C

∫ L
0 ϕ′0(x))ϕ′i(x) dx can only get a nonzero contribution from the first cell, Ω(0) = [x0, x1]

since ϕ′0(x) = 0 on all other cells. Moreover, ϕ′0(x)ϕ′i(x) dx 6= 0 only for i = 0 and i = 1 (but
i = 0 is excluded), since ϕi = 0 on the first cell if i > 1. With a similar reasoning we realize
that D

∫ L
0 ϕ′Nn

(x))ϕ′i(x) dx can only get a nonzero contribution from the last cell. From the
explanations of the calculations in Section 3.6 we then find that

∫ L

0
ϕ′0(x)ϕ′1(x) dx = (− 1

h
) · 1
h
· h = − 1

h
,

∫ L

0
ϕ′Nn

(x)ϕ′Nn−1(x) dx = 1
h
· (− 1

h
) · h = −1

2 .

The extra boundary term because of B(x) boils down to adding C/h to b0 and D/h to bN .

Cellwise computations on the reference element. As an equivalent alternative, we now
turn to cellwise computations. The element matrices and vectors are calculated as Section 13.4,
so we concentrate on the impact of the new term involving B(x). We observe that Cϕ′0 = 0 on
all cells except e = 0, and Dϕ′Nn

= 0 on all cells except e = Ne. In this case there is only one
unknown in these cells since u(0) and u(L) are prescribed, so the element vector has only one
entry. The entry for the last cell, e = Ne, becomes
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b̃
(e)
0 =

∫ 1

−1

(
f −D 2

h

dϕ̃1

dX

)
ϕ̃0
h

2 dX = (h2 (2−D 2
h

1
2)
∫ 1

−1
ϕ̃0 dX = h−D/2 .

Similar computations on the first cell yield

b̃
(0)
0 =

∫ 1

−1

(
f − C 2

h

dϕ̃0

dX

)
ϕ̃1
h

2 dX = (h2 (2 + C
2
h

1
2)
∫ 1

−1
ϕ̃1 dX = h+ C/2 .

When assembling these contributions, we see that b0 gets right-hand side of the linear system
gets an extra term C/2 and bN gets −D/2, as in the computations in the physical domain.

14.3 Modification of the linear system
From an implementational point of view, there is a convenient alternative to adding the B(x)
function and using only the basis functions associated with nodes where u is truly unknown.
Instead of seeking

u(x) =
∑
j∈Ib

Ujϕj(x) +
∑
j∈Is

cjϕν(j)(x), (181)

we use the sum over all degrees of freedom, including the known boundary values:

u(x) =
∑
j∈Is

cjϕj(x) . (182)

Note that the collections of unknowns {ci}i∈Is
in (181) and (182) are different: in (181) N counts

the number of nodes where u is not known, while in (181) N counts all the nodes (N = Nn).
The idea is to compute the entries in the linear system as if no Dirichlet values are prescribed.

Afterwards, we modify the linear system to ensure that the known cj values are incorporated.
A potential problem arises for the boundary term [u′v]L0 from the integration by parts:

imagining no Dirichlet conditions means that we no longer require v = 0 at Dirichlet points,
and the boundary term is then nonzero at these points. However, when we modify the linear
system, we will erase whatever the contribution from [u′v]L0 should be at the Dirichlet points in
the right-hand side of the linear system. We can therefore safely forget [u′v]L0 at any point where
a Dirichlet condition applies.

Computations in the physical system. Let us redo the computations in the example in
Section 14.1. We solve −u′′ = 2 with u(0) = 0 and u(L) = D. The expressions for Ai,j and bi are
the same, but the numbering is different as the numbering of unknowns and nodes now coincide:

Ai,j =
∫ L

0
ϕ′i(x)ϕ′j(x) dx, bi =

∫ L

0
f(x)ϕi(x) dx,

for i, j = 0, . . . , N = Nn. The integrals involving basis functions corresponding to interior mesh
nodes, i, j = 1, . . . , Nn− 1, are obviously the same as before. We concentrate on the contributions
from ϕ0 and ϕNn :
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A0,0 =
∫ L

0
(ϕ′0)2 dx =

∫ x1

0
= (ϕ′0)2 dx 1

h
,

A0,1 =
∫ L

0
ϕ′0ϕ

′
1 dx =

∫ x1

0
ϕ′0ϕ

′
1 dx = − 1

h
,

AN,N =
∫ L

0
(ϕ′N )2 dx =

∫ xNn

xNn−1

(ϕ′N )2 dx = 1
h
,

AN,N−1 =
∫ L

0
ϕ′Nϕ

′
N−1 dx =

∫ xNn

xNn−1

ϕ′Nϕ
′
N−1 dx = − 1

h
.

The new terms on the right-hand side are also those involving ϕ0 and ϕNn
:

b0 =
∫ L

0
2ϕ0(x) dx =

∫ x1

0
2ϕ0(x) dx = h,

bN =
∫ L

0
2ϕNn

dx =
∫ xNn

xNn−1

2ϕNn
dx = h .

The complete matrix system, involving all degrees of freedom, takes the form

1
h



1 −1 0 · · · · · · · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . . . . . . . . 0
...

...
. . . . . . . . . . . . . . .

...
... 0 −1 2 −1

. . .
...

...
. . . . . . . . . . . . 0

...
. . . . . . . . . −1

0 · · · · · · · · · · · · · · · 0 −1 1





c0
...
...
...
...
...
...
...
cN



=



h
2h
...
...
...
...
...

2h
h



(183)

Incorporation of Dirichlet values can now be done by replacing the first and last equation by
c0 = 0 and cN = D. This action changes the system to

1
h



h 0 0 · · · · · · · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . . . . . . . . 0
...

...
. . . . . . . . . . . . . . .

...
... 0 −1 2 −1

. . .
...

...
. . . . . . . . . . . . 0

...
. . . . . . . . . −1

0 · · · · · · · · · · · · · · · 0 0 h





c0
...
...
...
...
...
...
...
cN



=



0
2h
...
...
...
...
...

2h
D



(184)
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Note that because we do not require ϕi(0) = 0 and ϕi(L), i ∈ Is, the boundary term [u′v]L0
gives in principle contributions u′(0)ϕ0(0) to b0 and u′(L)ϕN (L) to bN (u′ϕi vanishes for x = 0
or x = L for i = 1, . . . , N − 1). Nevertheless, we erase these contributions in b0 and bN and insert
boundary values instead. This argument shows why we can drop computing [u′v]L0 at Dirichlet
nodes when we implement the Dirichlet values by modifying the linear system.

14.4 Symmetric modification of the linear system
The original matrix system (172) is symmetric, but the modifications in (184) destroy the
symmetry. Our described modification will in general destroy an initial symmetry in the matrix
system. This is not a particular computational disadvantage for tridiagonal systems arising in
1D problems, but may be more serious in 2D and 3D problems when the systems are large and
exploiting symmetry can be important for halving the storage demands, speeding up computations,
and/or making the solution algorithm more robust. Therefore, an alternative modification which
preserves symmetry is frequently applied.

Let ck be a coefficient corresponding to a known value u(xk) = Uk. We want to replace
equation k in the system by ck = Uk, i.e., insert zeroes in row number k in the coefficient matrix,
set 1 on the diagonal, and replace bk by Uk. A symmetry-preserving modification consists in first
subtracting column number k in the coefficient matrix, i.e., Ai,k for i ∈ Is, times the boundary
value Uk, from the right-hand side: bi ← bi −Ai,kUk. Then we put zeroes in row number k and
column number k in the coefficient matrix, and finally set bk = Uk. The steps in algorithmic form
becomes

1. bi ← bi −Ai,kUk for i ∈ Is
2. Ai,k = Ak,i = 0 for i ∈ Is
3. Ak,k = 1

4. bi = Uk

This modification goes as follows for the specific linear system written out in (183) in Section 14.3.
First we subtract the first column in the coefficient matrix, times the boundary value, from the
right-hand side. Because c0 = 0, this subtraction has no effect. Then we subtract the last column,
times the boundary value D, from the right-hand side. This action results in bN−1 = 2h+D/h
and bN = h − 2D/h. Thereafter, we place zeros in the first and last row and column in the
coefficient matrix and 1 on the two corresponding diagonal entries. Finally, we set b0 = 0 and
bN = D. The result becomes

1
h



h 0 0 · · · · · · · · · · · · · · · 0

0 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . . . . . . . . 0
...

...
. . . . . . . . . . . . . . .

...
... 0 −1 2 −1

. . .
...

...
. . . . . . . . . . . . 0

...
. . . . . . . . . 0

0 · · · · · · · · · · · · · · · 0 0 h





c0
...
...
...
...
...
...
...
cN



=



0
2h
...
...
...
...
...

2h+D/h
D



(185)
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14.5 Modification of the element matrix and vector
The modifications of the global linear system can alternatively be done for the element matrix and
vector. (The assembled system will get the value n on the main diagonal if n elements contribute
to the same unknown, but the factor n will also appear on the right-hand side and hence cancel
out.)

We have, in the present computational example, the element matrix and vector (177). The
modifications are needed in cells where one of the degrees of freedom is known. Here, this means
the first and last cell. We compute the element matrix and vector as there are no Dirichlet
conditions. The boundary term [u′v]L0 is simply forgotten at nodes that have Dirichlet conditions
because the modification of the element vector will anyway erase the contribution from the
boundary term. In the first cell, local degree of freedom number 0 is known and the modification
becomes

Ã(0) = A = 1
h

(
h 0
−1 1

)
, b̃(0) =

(
0
h

)
. (186)

In the last cell we set

Ã(Ne) = A = 1
h

(
1 −1
0 h

)
, b̃(Ne) =

(
h
D

)
. (187)

We can also perform the symmetric modification. This operation affects only the last cell
with a nonzero Dirichlet condition. The algorithm is the same as for the global linear system,
resulting in

Ã(N−1) = A = 1
h

(
1 0
0 h

)
, b̃(N−1) =

(
h+D/h

D

)
. (188)

The reader is encouraged to assemble the element matrices and vectors and check that the result
coincides with the system (185).

15 Boundary conditions: specified derivative
Suppose our model problem −u′′(x) = f(x) features the boundary conditions u′(0) = C and
u(L) = D. As already indicated in Section 12, the former condition can be incorporated through
the boundary term that arises from integration by parts. This details of this method will now be
illustrated in the context of finite element basis functions.

15.1 The variational formulation
Starting with the Galerkin method,∫ L

0
(u′′(x) + f(x))ψi(x) dx = 0, i ∈ Is,

integrating u′′ψi by parts results in∫ L

0
u′(x)′ψ′i(x) dx− (u′(L)ψi(L)− u′(0)ψi(0)) =

∫ L

0
f(x)ψi(x) dx, i ∈ Is .

The first boundary term, u′(L)ψi(L), vanishes because u(L) = D. There are two arguments
for this result, explained in detail below. The second boundary term, u′(0)ψi(0), can be used to
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implement the condition u′(0) = C, provided ψi(0) 6= 0 for some i (but with finite elements we
fortunately have ψ0(0) = 1). The variational form of the differential equation then becomes∫ L

0
u′(x)ϕ′i(x) dx+ Cϕi(0) =

∫ L

0
f(x)ϕi(x) dx, i ∈ Is .

15.2 Boundary term vanishes because of the test functions
At points where u is known we may require ψi to vanish. Here, u(L) = D and then ψi(L) = 0,
i ∈ Is. Obviously, the boundary term u′(L)ψi(L) then vanishes.

The set of basis functions {ψi}i∈Is
contains in this case all the finite element basis functions

on the mesh, expect the one that is 1 at x = L. The basis function that is left out is used in a
boundary function B(x) instead. With a left-to-right numbering, ψi = ϕi, i = 0, . . . , Nn − 1, and
B(x) = DϕNn

:

u(x) = DϕNn
(x) +

N=Nn−1∑
j=0

cjϕj(x) .

Inserting this expansion for u in the variational form (15.1) leads to the linear system

N∑
j=0

(∫ L

0
ϕ′i(x)ϕ′j(x) dx

)
cj =

∫ L

0

(
f(x)ϕi(x)−Dϕ′Nn

(x)ϕ′i(x)
)

dx− Cϕi(0), (189)

for i = 0, . . . , N = Nn − 1.

15.3 Boundary term vanishes because of linear system modifications
We may, as an alternative to the approach in the previous section, use a basis {ψi}i∈Is

which
contains all the finite element functions on the mesh: ψi = ϕi, i = 0, . . . , Nn = N . In this case,
u′(L)ψi(L) = u′(L)ϕi(L) 6= 0 for the i corresponding to the boundary node at x = L (where
ϕi = 1). The number of this node is i = Nn = N if a left-to-right numbering of nodes is utilized.

However, even though u′(L)ϕN (L) 6= 0, we do not need to compute this term. For i < N we
realize that ϕi(L) = 0. The only nonzero contribution to the right-hand side from the affects
bN (i = N). Without a boundary function we must implement the condition u(L) = D by the
equivalent statement cN = D and modify the linear system accordingly. This modification will
erase the last row and replace bN by another value. Any attempt to compute the boundary term
u′(L)ϕN (L) and store it in bN will be lost. Therefore, we can safely forget about boundary terms
corresponding to Dirichlet boundary conditions also when we use the methods from Section 14.3
or Section 14.4.

The expansion for u reads

u(x) =
∑
j∈Is

cjϕj(x) .

Insertion in the variational form (15.1) leads to the linear system

∑
j∈Is

(∫ L

0
ϕ′i(x)ϕ′j(x) dx

)
cj =

∫ L

0
(f(x)ϕi(x)) dx− Cϕi(0), i ∈ Is . (190)
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After having computed the system, we replace the last row by cN = D, either straightforwardly
as in Section 14.3 or in a symmetric fashion as in Section 14.4. These modifications can also be
performed in the element matrix and vector for the right-most cell.

15.4 Direct computation of the global linear system
We now turn to actual computations with P1 finite elements. The focus is on how the linear
system and the element matrices and vectors are modified by the condition u′(0) = C.

Consider first the approach where Dirichlet conditions are incorporated by a B(x) function
and the known degree of freedom CNn

is left out from the linear system (see Section 15.2). The
relevant formula for the linear system is given by (189). There are three differences compared to
the extensively computed case where u(0) = 0 in Sections 13.2 and 13.4. First, because we do
not have a Dirichlet condition at the left boundary, we need to extend the linear system (172)
with an equation associated with the node x0 = 0. According to Section 14.3, this extension
consists of including A0,0 = 1/h, A0,1 = −1/h, and b0 = h. For i > 0 we have Ai,i = 2/h,
Ai−1,i = Ai,i+1 = −1/h. Second, we need to include the extra term −Cϕi(0) on the right-hand
side. Since all ϕi(0) = 0 for i = 1, . . . , N , this term reduces to −Cϕ0(0) = −C and affects only
the first equation (i = 0). We simply add −C to b0 such that b0 = h− C. Third, the boundary
term −

∫ L
0 DϕNn

(x)ϕi dx must be computed. Since i = 0, . . . , N = Nn − 1, this integral can only
get a nonzero contribution with i = Nn − 1 over the last cell. The result becomes −Dh/6. The
resulting linear system can be summarized in the form

1
h



1 −1 0 · · · · · · · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . . . . . . . . 0
...

...
. . . . . . . . . . . . . . .

...
... 0 −1 2 −1

. . .
...

...
. . . . . . . . . . . . 0

...
. . . . . . . . . −1

0 · · · · · · · · · · · · · · · 0 −1 2





c0
...
...
...
...
...
...
...
cN



=



h− C
2h
...
...
...
...
...
...

2h−Dh/6



. (191)

Next we consider the technique where we modify the linear system to incorporate Dirichlet
conditions (see Section 15.3). Now N = Nn. The two differences from the case above is that the
−
∫ L

0 DϕNn
ϕi dx term is left out of the right-hand side and an extra last row associated with the

node xNn
= L where the Dirichlet condition applies is appended to the system. This last row is

anyway replaced by the condition CN = D or this condition can be incorporated in a symmetric
fashion. Using the simplest, former approach gives
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1
h



1 −1 0 · · · · · · · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . . . . . . . . 0
...

...
. . . . . . . . . . . . . . .

...
... 0 −1 2 −1

. . .
...

...
. . . . . . . . . . . . 0

...
. . . −1 2 −1

0 · · · · · · · · · · · · · · · 0 0 h





c0
...
...
...
...
...
...
...
cN



=



h− C
2h
...
...
...
...
...

2h
D



. (192)

15.5 Cellwise computations
Now we compute with one element at a time, working in the reference coordinate system
X ∈ [−1, 1]. We need to see how the u′(0) = C condition affects the element matrix and vector.
The extra term −Cϕi(0) in the variational formulation only affects the element vector in the
first cell. On the reference cell, −Cϕi(0) is transformed to −Cϕ̃r(−1), where r counts local
degrees of freedom. We have ϕ̃0(−1) = 1 and ϕ̃1(−1) = 0 so we are left with the contribution
−Cϕ̃0(−1) = −C to b̃(0)

0 :

Ã(0) = A = 1
h

(
1 1
−1 1

)
, b̃(0) =

(
h− C
h

)
. (193)

No other element matrices or vectors are affected by the −Cϕi(0) boundary term.
There are two alternative ways of incorporating the Dirichlet condition. Following Section 15.2,

we get a 1× 1 element matrix in the last cell and an element vector with an extra term containing
D:

Ã(e) = 1
h

(
1
)
, b̃(e) = h

(
1−D/6

)
, (194)

Alternatively, we include the degree of freedom at the node with u specified. The element
matrix and vector must then be modified to constrain the c̃1 = cN value at local node r = 1:

Ã(Ne) = A = 1
h

(
1 1
0 h

)
, b̃(Ne) =

(
h
D

)
. (195)

16 Implementation
It is tempting to create a program with symbolic calculations to perform all the steps in
the computational machinery, both for automating the work and for documenting the complete
algorithms. As we have seen, there are quite many details involved with finite element computations
and incorporation of boundary conditions. An implementation will also act as a structured
summary of all these details.
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16.1 Global basis functions
We first consider implementations when ψi are global functions are hence different from zero on
most of Ω = [0, L] so all integrals need integration over the entire domain. Since the expressions
for the entries in the linear system depend on the differential equation problem being solved, the
user must supply the necessary formulas via Python functions. The implementations here attempt
to perform symbolic calculations, but fall back on numerical computations if the symbolic ones
fail.

The user must prepare a function integrand_lhs(psi, i, j) for returning the integrand
of the integral that contributes to matrix entry (i, j). The psi variable is a Python dictionary
holding the basis functions and their derivatives in symbolic form. More precisely, psi[q] is a
list of

{d
qψ0

dxq
, . . . ,

dqψN
dxq

} .

Similarly, integrand_rhs(psi, i) returns the integrand for entry number i in the right-hand
side vector.

Since we also have contributions to the right-hand side vector, and potentially also the
matrix, from boundary terms without any integral, we introduce two additional functions,
boundary_lhs(psi, i, j) and boundary_rhs(psi, i) for returning terms in the variational
formulation that are not to be integrated over the domain Ω. Examples shown later will explain
in more detail how these user-supplied function may look like.

The linear system can be computed and solved symbolically by the following function:

import sympy as sp

def solve(integrand_lhs, integrand_rhs, psi, Omega,
boundary_lhs=None, boundary_rhs=None):

N = len(psi[0]) - 1
A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))
x = sp.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
integrand = integrand_lhs(psi, i, j)
I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
if boundary_lhs is not None:

I += boundary_lhs(psi, i, j)
A[i,j] = A[j,i] = I # assume symmetry

integrand = integrand_rhs(psi, i)
I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
if boundary_rhs is not None:

I += boundary_rhs(psi, i)
b[i,0] = I

c = A.LUsolve(b)
u = sum(c[i,0]*psi[0][i] for i in range(len(psi[0])))
return u

Not surprisingly, symbolic solution of differential equations, discretized by a Galerkin or least
squares method with global basis functions, is of limited interest beyond the simplest problems,
because symbolic integration might be very time consuming or impossible, not only in sympy but
also in WolframAlpha23 (which applies the perhaps most powerful symbolic integration software
available today: Mathematica). Numerical integration as an option is therefore desirable.

23http://wolframalpha.com
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The extended solve function below tries to combine symbolic and numerical integration. The
latter can be enforced by the user, or it can be invoked after a non-successful symbolic integration
(being detected by an Integral object as the result of the integration in sympy). Note that
for a numerical integration, symbolic expressions must be converted to Python functions (using
lambdify), and the expressions cannot contain other symbols than x. The real solve routine in
the varform1D.py24 file has error checking and meaningful error messages in such cases. The
solve code below is a condensed version of the real one, with the purpose of showing how to
automate the Galerkin or least squares method for solving differential equations in 1D with global
basis functions:

def solve(integrand_lhs, integrand_rhs, psi, Omega,
boundary_lhs=None, boundary_rhs=None, symbolic=True):

N = len(psi[0]) - 1
A = sp.zeros((N+1, N+1))
b = sp.zeros((N+1, 1))
x = sp.Symbol(’x’)
for i in range(N+1):

for j in range(i, N+1):
integrand = integrand_lhs(psi, i, j)
if symbolic:

I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sp.Integral):

symbolic = False # force num.int. hereafter
if not symbolic:

integrand = sp.lambdify([x], integrand)
I = sp.mpmath.quad(integrand, [Omega[0], Omega[1]])

if boundary_lhs is not None:
I += boundary_lhs(psi, i, j)

A[i,j] = A[j,i] = I
integrand = integrand_rhs(psi, i)
if symbolic:

I = sp.integrate(integrand, (x, Omega[0], Omega[1]))
if isinstance(I, sp.Integral):

symbolic = False
if not symbolic:

integrand = sp.lambdify([x], integrand)
I = sp.mpmath.quad(integrand, [Omega[0], Omega[1]])

if boundary_rhs is not None:
I += boundary_rhs(psi, i)

b[i,0] = I
c = A.LUsolve(b)
u = sum(c[i,0]*psi[0][i] for i in range(len(psi[0])))
return u

16.2 Example: constant right-hand side
To demonstrate the code above, we address

−u′′(x) = b, x ∈ Ω = [0, 1], u(0) = 1, u(1) = 0,

with b as a (symbolic) constant. A possible basis for the space V is ψi(x) = xi+1(1− x), i ∈ Is.
Note that ψi(0) = ψi(1) = 0 as required by the Dirichlet conditions. We need a B(x) function to
take care of the known boundary values of u. Any function B(x) = 1− xp, p ∈ R, is a candidate,
and one arbitrary choice from this family is B(x) = 1−x3. The unknown function is then written
as

24http://tinyurl.com/nm5587k/fem/varform1D.py
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u(x) = B(x) +
∑
j∈Is

cjψj(x) .

Let us use the Galerkin method to derive the variational formulation. Multiplying the
differential equation by v and integrate by parts yield∫ 1

0
u′v′ dx =

∫ 1

0
fv dx ∀v ∈ V,

and with u = B +
∑
j cjψj we get the linear system

∑
j∈Is

(∫ 1

0
ψ′iψ

′
j dx

)
cj =

∫ 1

0
(fψi −B′ψ′i) dx, i ∈ Is . (196)

The application can be coded as follows in sympy:

x, b = sp.symbols(’x b’)
f = b
B = 1 - x**3
dBdx = sp.diff(B, x)

# Compute basis functions and their derivatives
N = 3
psi = {0: [x**(i+1)*(1-x) for i in range(N+1)]}
psi[1] = [sp.diff(psi_i, x) for psi_i in psi[0]]

def integrand_lhs(psi, i, j):
return psi[1][i]*psi[1][j]

def integrand_rhs(psi, i):
return f*psi[0][i] - dBdx*psi[1][i]

Omega = [0, 1]

u_bar = solve(integrand_lhs, integrand_rhs, psi, Omega,
verbose=True, symbolic=True)

u = B + u_bar
print ’solution u:’, sp.simplify(sp.expand(u))

The printout of u reads -b*x**2/2 + b*x/2 - x + 1. Note that expanding u and then simplify-
ing is in the present case necessary to get a compact, final expression with sympy. A non-expanded
u might be preferable in other cases - this depends on the problem in question.

The exact solution ue(x) can be derived by some sympy code that closely follows the examples
in Section 11.2. The idea is to integrate −u′′ = b twice and determine the integration constants
from the boundary conditions:

C1, C2 = sp.symbols(’C1 C2’) # integration constants
f1 = sp.integrate(f, x) + C1
f2 = sp.integrate(f1, x) + C2
# Find C1 and C2 from the boundary conditions u(0)=0, u(1)=1
s = sp.solve([u_e.subs(x,0) - 1, u_e.subs(x,1) - 0], [C1, C2])
# Form the exact solution
u_e = -f2 + s[C1]*x + s[C2]
print ’analytical solution:’, u_e
print ’error:’, sp.simplify(sp.expand(u - u_e))
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The last line prints 0, which is not surprising when ue(x) is a parabola and our approximate u
contains polynomials up to degree 4. It suffices to have N = 1, i.e., polynomials of degree 2, to
recover the exact solution.

We can play around with the code and test that with f ∼ xp, the solution is a polynomial of
degree p+ 2, and N = p+ 1 guarantees that the approximate solution is exact.

Although the symbolic code is capable of integrating many choices of f(x), the symbolic
expressions for u quickly become lengthy and non-informative, so numerical integration in the
code, and hence numerical answers, have the greatest application potential.

16.3 Finite elements
Implementation of the finite element algorithms for differential equations follows closely the
algorithm for approximation of functions. The new additional ingredients are

1. other types of integrands (as implied by the variational formulation)

2. additional boundary terms in the variational formulation for Neumann boundary conditions

3. modification of element matrices and vectors due to Dirichlet boundary conditions

Point 1 and 2 can be taken care of by letting the user supply functions defining the integrands
and boundary terms on the left- and right-hand side of the equation system:

integrand_lhs(phi, r, s, x)
boundary_lhs(phi, r, s, x)
integrand_rhs(phi, r, x)
boundary_rhs(phi, r, x)

Here, phi is a dictionary where phi[q] holds a list of the derivatives of order q of the basis
functions at the an evaluation point; r and s are indices for the corresponding entries in the
element matrix and vector, and x is the global coordinate value corresponding to the current
evaluation point.

Given a mesh represented by vertices, cells, and dof_map as explained before, we can
write a pseudo Python code to list all the steps in the computational algorithm for finite element
solution of a differential equation.

<Declare global matrix and rhs: A, b>

for e in range(len(cells)):

# Compute element matrix and vector
n = len(dof_map[e]) # no of dofs in this element
h = vertices[cells[e][1]] - vertices[cells[e][1]]
<Declare element matrix and vector: A_e, b_e>

# Integrate over the reference cell
points, weights = <numerical integration rule>
for X, w in zip(points, weights):

phi = <basis functions and derivatives at X>
detJ = h/2
x = <affine mapping from X>
for r in range(n):

for s in range(n):
A_e[r,s] += integrand_lhs(phi, r, s, x)*detJ*w

b_e[r] += integrand_rhs(phi, r, x)*detJ*w
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# Add boundary terms
for r in range(n):

for s in range(n):
A_e[r,s] += boundary_lhs(phi, r, s, x)*detJ*w

b_e[r] += boundary_rhs(phi, r, x)*detJ*w

# Incorporate essential boundary conditions
for r in range(n):

global_dof = dof_map[e][r]
if global_dof in essbc_dofs:

# dof r is subject to an essential condition
value = essbc_docs[global_dof]
# Symmetric modification
b_e -= value*A_e[:,r]
A_e[r,:] = 0
A_e[:,r] = 0
A_e[r,r] = 1
b_e[r] = value

# Assemble
for r in range(n):

for s in range(n):
A[dof_map[e][r], dof_map[e][r]] += A_e[r,s]

b[dof_map[e][r] += b_e[r]

<solve linear system>

17 Variational formulations in 2D and 3D
The major difference between deriving variational formulations in 2D and 3D compared to 1D
is the rule for integrating by parts. A typical second-order term in a PDE may be written in
dimension-independent notation as

∇2u or ∇ · (a(x)∇u) .
The explicit forms in a 2D problem become

∇2u = ∇ · ∇u = ∂2u

∂x2 + ∂2u

∂y2 ,

and
∇ · (a(x)∇u) = ∂

∂x

(
a(x, y)∂u

∂x

)
+ ∂

∂y

(
a(x, y)∂u

∂y

)
.

We shall continue with the latter operator as the form arises from just setting a = 1.
The general rule for integrating by parts is often referred to as Green’s first identity25:

−
∫

Ω
∇ · (a(x)∇u)v dx =

∫
Ω
a(x)∇u · ∇v dx−

∫
∂Ω
a
∂u

∂n
v ds, (197)

where ∂Ω is the boundary of Ω and ∂u/∂n = n · ∇u is the derivative of u in the outward normal
direction, n being an outward unit normal to ∂Ω. The integrals

∫
Ω() dx are area integrals in 2D

and volume integrals in 3D, while
∫
∂Ω() ds is a line integral in 2D and a surface integral in 3D.

Let us divide the boundary into two parts:

• ∂ΩN , where we have Neumann conditions −a ∂u∂n = g, and
25http://en.wikipedia.org/wiki/Green’s_identities
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• ∂ΩD, where we have Dirichlet conditions u = u0.

The test functions v are required to vanish on ∂ΩD.

Example. Here is a quite general, stationary, linear PDE arising in many problems:

v · ∇u+ αu = ∇ · (a∇u) + f, x ∈ Ω, (198)
u = u0, x ∈ ∂ΩD, (199)

−a∂u
∂n

= g, x ∈ ∂ΩN . (200)

The vector field v and the scalar functions a, α, f , u0, and g may vary with the spatial coordinate
x and must be known.

Such a second-order PDE needs exactly one boundary condition at each point of the boundary,
so ∂ΩN ∪ ∂ΩD must be the complete boundary ∂Ω.

Assume that the boundary function u0(x) is defined for all x ∈ Ω. The unknown function
can then be expanded as

u = B +
∑
j∈Is

cjψj , B = u0 .

The variational formula is obtained from Galerkin’s method, which technically implies multiplying
the PDE by a test function v and integrating over Ω:∫

Ω
(v · ∇u+ αu)v dx =

∫
Ω
∇ · (a∇u) dx+

∫
Ω
fv dx .

The second-order term is integrated by parts, according to∫
Ω
∇ · (a∇u) v dx = −

∫
Ω
a∇u · ∇v dx+

∫
∂Ω
a
∂u

∂n
v ds .

The variational form now reads∫
Ω

(v · ∇u+ αu)v dx = −
∫

Ω
a∇u · ∇v dx+

∫
∂Ω
a
∂u

∂n
v ds+

∫
Ω
fv dx .

The boundary term can be developed further by noticing that v 6= 0 only on ∂ΩN ,∫
∂Ω
a
∂u

∂n
v ds =

∫
∂ΩN

a
∂u

∂n
v ds,

and that on ∂ΩN , we have the condition a ∂u∂n = −g, so the term becomes

−
∫
∂ΩN

gv ds .

The variational form is then∫
Ω

(v · ∇u+ αu)v dx = −
∫

Ω
a∇u · ∇v dx−

∫
∂ΩN

gv ds+
∫

Ω
fv dx .

Instead of using the integral signs we may use the inner product notation:
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(v · ∇u, v) + (αu, v) = −(a∇u,∇v)− (g, v)N + (f, v) .
The subscript N in (g, v)N is a notation for a line or surface integral over ∂ΩN .

Inserting the u expansion results in

∑
j∈Is

((v · ∇ψj , ψi) + (αψj , ψi) + (a∇ψj ,∇ψi))cj =

(g, ψi)N + (f, ψi)− (v · ∇u0, ψi) + (αu0, ψi) + (a∇u0,∇ψi) .

This is a linear system with matrix entries

Ai,j = (v · ∇ψj , ψi) + (αψj , ψi) + (a∇ψj ,∇ψi)
and right-hand side entries

bi = (g, ψi)N + (f, ψi)− (v · ∇u0, ψi) + (αu0, ψi) + (a∇u0,∇ψi),
for i, j ∈ Is.

In the finite element method, we usually express u0 in terms of basis functions and restrict i
and j to run over the degrees of freedom that are not prescribed as Dirichlet conditions. However,
we can also keep all the cj , j ∈ Is, as unknowns drop the u0 in the expansion for u, and incorporate
all the known cj values in the linear system. This has been explained in detail in the 1D case.

17.1 Transformation to a reference cell in 2D and 3D
We consider an integral of the type ∫

Ω(e)
a(x)∇ϕi · ∇ϕj dx, (201)

where the ϕi functions are finite element basis functions in 2D or 3D, defined in the physical
domain. Suppose we want to calculate this integral over a reference cell, denoted by Ω̃r, in a
coordinate system with coordinates X = (X0, X1) (2D) or X = (X0, X1, X2) (3D). The mapping
between a point X in the reference coordinate system and the corresponding point x in the
physical coordinate system is given by a vector relation x(X). The corresponding Jacobian, J , of
this mapping has entries

Ji,j = ∂xj
∂Xi

.

The change of variables requires dx to be replaced by det J dX. The derivatives in the ∇
operator in the variational form are with respect to x, which we may denote by ∇x. The ϕi(x)
functions in the integral are replaced by local basis functions ϕ̃r(X) so the integral features
∇xϕ̃r(X). We readily have ∇X ϕ̃r(X) from formulas for the basis functions in the reference cell,
but the desired quantity ∇xϕ̃r(X) requires some efforts to compute. All the details are provided
below.

Let i = q(e, r) and consider two space dimensions. By the chain rule,

∂ϕ̃r
∂X

= ∂ϕi
∂X

= ∂ϕi
∂x

∂x

∂X
+ ∂ϕi

∂y

∂y

∂X
,

and
∂ϕ̃r
∂Y

= ∂ϕi
∂Y

= ∂ϕi
∂x

∂x

∂Y
+ ∂ϕi

∂y

∂y

∂Y
.

126



We can write these two equations as a vector equation[
∂ϕ̃r

∂X
∂ϕ̃r

∂Y

]
=
[

∂x
∂X

∂y
∂X

∂x
∂Y

∂y
∂Y

][ ∂ϕi

∂x
∂ϕi

∂y

]
Identifying

∇X ϕ̃r =
[

∂ϕ̃r

∂X
∂ϕ̃r

∂Y

]
, J =

[
∂x
∂X

∂y
∂X

∂x
∂Y

∂y
∂Y

]
, ∇xϕr =

[
∂ϕi

∂x
∂ϕi

∂y

]
,

we have the relation

∇X ϕ̃r = J · ∇xϕi,

which we can solve with respect to ∇xϕi:

∇xϕi = J−1 · ∇X ϕ̃r . (202)
On the reference cell, ϕi(x) = ϕ̃r(X), so

∇xϕ̃r(X) = J−1(X) · ∇X ϕ̃r(X) . (203)
This means that we have the following transformation of the integral in the physical domain

to its counterpart over the reference cell:

∫ (e)

Ω
a(x)∇xϕi · ∇xϕj dx

∫
Ω̃r

a(x(X))(J−1 · ∇X ϕ̃r) · (J−1 · ∇ϕ̃s) detJ dX (204)

17.2 Numerical integration
Integrals are normally computed by numerical integration rules. For multi-dimensional cells,
various families of rules exist. All of them are similar to what is shown in 1D:

∫
f dx ≈

∑
j wif(xj),

where wj are weights and xj are corresponding points.
The file numint.py26 contains the functions quadrature_for_triangles(n) and quadrature_for_tetrahedra(n),

which returns lists of points and weights corresponding to integration rules with n points over the
reference triangle with vertices (0, 0), (1, 0), (0, 1), and the reference tetrahedron with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), respectively. For example, the first two rules for integration
over a triangle have 1 and 3 points:

>>> import numint
>>> x, w = numint.quadrature_for_triangles(num_points=1)
>>> x
[(0.3333333333333333, 0.3333333333333333)]
>>> w
[0.5]
>>> x, w = numint.quadrature_for_triangles(num_points=3)
>>> x
[(0.16666666666666666, 0.16666666666666666),
(0.66666666666666666, 0.16666666666666666),
(0.16666666666666666, 0.66666666666666666)]

>>> w
[0.16666666666666666, 0.16666666666666666, 0.16666666666666666]

Rules with 1, 3, 4, and 7 points over the triangle will exactly integrate polynomials of degree 1, 2,
3, and 4, respectively. In 3D, rules with 1, 4, 5, and 11 points over the tetrahedron will exactly
integrate polynomials of degree 1, 2, 3, and 4, respectively.

26http://tinyurl.com/nm5587k/fem/numint.py
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17.3 Convenient formulas for P1 elements in 2D
We shall now provide some formulas for piecewise linear ϕi functions and their integrals in the
physical coordinate system. These formulas make it convenient to compute with P1 elements
without the need to work in the reference coordinate system and deal with mappings and Jacobians.
A lot of computational and algorithmic details are hidden by this approach.

Let Ω(e) be cell number e, and let the three vertices have global vertex numbers I, J , and K.
The corresponding coordinates are (xI , yI), (xJ , yJ), and (xK , yK). The basis function ϕI over
Ω(e) have the explicit formula

ϕI(x, y) = 1
2∆ (αI + βIx+ γIy) , (205)

where

αI = xJyK − xKyJ , (206)
βI = yJ − yK , (207)
γI = xK − xJ , (208)

2∆ = det

 1 xI yI
1 xJ yJ
1 xK yK

 . (209)

The quantity ∆ is the area of the cell.
The following formula is often convenient when computing element matrices and vectors:∫

Ω(e)
ϕpIϕ

q
Jϕ

r
Kdxdy = p!q!r!

(p+ q + r + 2)!2∆ . (210)

(Note that the q in this formula is not to be mixed with the q(e, r) mapping of degrees of freedom.)
As an example, the element matrix entry

∫
Ω(e) ϕIϕJ dx can be computed by setting p = q = 1

and r = 0, when I 6= J , yielding ∆/12, and p = 2 and q = r = 0, when I = J , resulting in ∆/6.
We collect these numbers in a local element matrix:

∆
12

 2 1 1
1 2 1
1 1 2


The common element matrix entry

∫
Ω(e) ∇ϕI · ∇ϕJ dx, arising from a Laplace term ∇2u, can

also easily be computed by the formulas above. We have

∇ϕI · ∇ϕJ = ∆2

4 (βIβJ + γIγJ) = const,

so that the element matrix entry becomes 1
4∆3(βIβJ + γIγJ).

From an implementational point of view, one will work with local vertex numbers r = 0, 1, 2,
parameterize the coefficients in the basis functions by r, and look up vertex coordinates through
q(e, r).

Similar formulas exist for integration of P1 elements in 3D.
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18 Summary
• When approximating f by u =

∑
j cjϕj , the least squares method and the Galerkin/pro-

jection method give the same result. The interpolation/collocation method is simpler and
yields different (mostly inferior) results.

• Fourier series expansion can be viewed as a least squares or Galerkin approximation
procedure with sine and cosine functions.

• Basis functions should optimally be orthogonal or almost orthogonal, because this gives
little round-off errors when solving the linear system, and the coefficient matrix becomes
diagonal or sparse.

• Finite element basis functions are piecewise polynomials, normally with discontinuous
derivatives at the cell boundaries. The basis functions overlap very little, leading to stable
numerics and sparse matrices.

• To use the finite element method for differential equations, we use the Galerkin method or
the method of weighted residuals to arrive at a variational form. Technically, the differential
equation is multiplied by a test function and integrated over the domain. Second-order
derivatives are integrated by parts to allow for typical finite element basis functions that
have discontinuous derivatives.

• The least squares method is not much used for finite element solution of differential equations
of second order, because it then involves second-order derivatives which cause trouble for
basis functions with discontinuous derivatives.

• We have worked with two common finite element terminologies and associated data structures
(both are much used, especially the first one, while the other is more general):

1. elements, nodes, and mapping between local and global node numbers
2. an extended element concept consisting of cell, vertices, degrees of freedom, local basis

functions, geometry mapping, and mapping between local and global degrees of freedom

• The meaning of the word "element" is multi-fold: the geometry of a finite element (also
known as a cell), the geometry and its basis functions, or all information listed under point
2 above.

• One normally computes integrals in the finite element method element by element (cell by
cell), either in a local reference coordinate system or directly in the physical domain.

• The advantage of working in the reference coordinate system is that the mathematical
expressions for the basis functions depend on the element type only, not the geometry of
that element in the physical domain. The disadvantage is that a mapping must be used,
and derivatives must be transformed from reference to physical coordinates.

• Element contributions to the global linear system are collected in an element matrix and
vector, which must be assembled into the global system using the degree of freedom mapping
(dof_map) or the node numbering mapping (elements), depending on which terminology
that is used.
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• Dirichlet conditions, involving prescribed values of u at the boundary, are implemented
either via a boundary function that take on the right Dirichlet values, while the basis
functions vanish at such boundaries. In the finite element method, one has a general
expression for the boundary function, but one can also incorporate Dirichlet conditions in
the element matrix and vector or in the global matrix system.

• Neumann conditions, involving prescribed values of the derivative (or flux) of u, are
incorporated in boundary terms arising from integrating terms with second-order derivatives
by part. Forgetting to account for the boundary terms implies the condition ∂u/∂n = 0 at
parts of the boundary where no Dirichlet condition is set.

19 Time-dependent problems
The finite element method is normally used for discretization in space. There are two alternative
strategies for performing a discretization in time:

• use finite differences for time derivatives to arrive at a recursive set of spatial problems that
can be discretized by the finite element method, or

• discretize in space by finite elements first, and then solve the resulting system of ordinary
differential equations (ODEs) by some standard method for ODEs.

We shall exemplify these strategies using a simple diffusion problem

∂u

∂t
= α∇2u+ f(x, t), x ∈ Ω, t ∈ (0, T ], (211)

u(x, 0) = I(x), x ∈ Ω, (212)
∂u

∂n
= 0, x ∈ ∂Ω, t ∈ (0, T ] . (213)

Here, u(x, t) is the unknown function, α is a constant, and f(x, t) and I(x) are given functions.
We have assigned the particular boundary condition (213) to minimize the details on handling
boundary conditions in the finite element method.

19.1 Discretization in time by a Forward Euler scheme
Time discretization. We can apply a finite difference method in time to (211). First we need
a mesh in time, here taken as uniform with mesh points tn = n∆t, n = 0, 1, . . . , Nt. A Forward
Euler scheme consists of sampling (211) at tn and approximating the time derivative by a forward
difference [D+

t u]n ≈ (un+1 − un)/∆t. This approximation turns (211) into a differential equation
that is discrete in time, but still continuous in space. With a finite difference operator notation
we can write the time-discrete problem as

[D+
t u = α∇2u+ f ]n, (214)

for n = 1, 2, . . . , Nt − 1. Writing this equation out in detail and isolating the unknown un+1 on
the left-hand side, demonstrates that the time-discrete problem is a recursive set of problems
that are continuous in space:
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un+1 = un + ∆t
(
α∇2un + f(x, tn)

)
. (215)

Given u0 = I, we can use (215) to compute u1, u2, . . . , uNt .
For absolute clarity in the various stages of the discretizations, we introduce ue(x, t) as the

exact solution of the space-and time-continuous partial differential equation (211) and une (x) as
the time-discrete approximation, arising from the finite difference method in time (214). More
precisely, ue fulfills

∂ue
∂t

= α∇2ue + f(x, t), (216)

while un+1
e , with a superscript, is the solution of the time-discrete equations

un+1
e = une + ∆t

(
α∇2une + f(x, tn)

)
. (217)

Space discretization. We now introduce a finite element approximation to une and un+1
e in

(217), where the coefficients depend on the time level:

une ≈ un =
N∑
j=0

cnj ψj(x), (218)

un+1
e ≈ un+1 =

N∑
j=0

cn+1
j ψj(x) . (219)

Note that, as before, N denotes the number of degrees of freedom in the spatial domain. The
number of time points is denoted by Nt. We define a space V spanned by the basis functions
{ψi}i∈Is

.

19.2 Variational forms
A weighted residual method with weighting functions wi can now be formulated. We insert (218)
and (219) in (217) to obtain the residual

R = un+1 − un −∆t
(
α∇2un + f(x, tn)

)
.

The weighted residual principle, ∫
Ω
Rw dx = 0, ∀w ∈W,

results in ∫
Ω

[
un+1 − un −∆t

(
α∇2un + f(x, tn)

)]
w dx = 0, ∀w ∈W .

From now on we use the Galerkin method so W = V . Isolating the unknown un+1 on the
left-hand side gives∫

Ω
un+1ψi dx =

∫
Ω

[
un −∆t

(
α∇2un + f(x, tn)

)]
v dx, ∀v ∈ V .
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As usual in spatial finite element problems involving second-order derivatives, we apply
integration by parts on the term

∫
(∇2un)v dx:∫

Ω
α(∇2un)v dx = −

∫
Ω
α∇un · ∇v dx+

∫
∂Ω
α
∂un

∂n
v dx .

The last term vanishes because we have the Neumann condition ∂un/∂n = 0 for all n. Our
discrete problem in space and time then reads∫

Ω
un+1v dx =

∫
Ω
unvdx−∆t

∫
Ω
α∇un · ∇v dx+ ∆t

∫
Ω
fnv dx, ∀v ∈ V . (220)

This is the variational formulation of our recursive set of spatial problems.

Nonzero Dirichlet boundary conditions.

As in stationary problems, we can introduce a boundary function B(x, t) to take care of
nonzero Dirichlet conditions:

une ≈ un = B(x, tn) +
N∑
j=0

cnj ψj(x), (221)

un+1
e ≈ un+1 = B(x, tn+1) +

N∑
j=0

cn+1
j ψj(x) . (222)

19.3 Simplified notation for the solution at recent time levels
In a program it is only necessary to store un+1 and un at the same time. We therefore drop the
n index in programs and work with two functions: u for un+1, the new unknown, and u_1 for un,
the solution at the previous time level. This is also convenient in the mathematics to maximize
the correspondence with the code. From now on u1 means the discrete unknown at the previous
time level (un) and u represents the discrete unknown at the new time level (un+1). Equation
(220) with this new naming convention is expressed as∫

Ω
uvdx =

∫
Ω
u1vdx−∆t

∫
Ω
α∇u1 · ∇v dx+ ∆t

∫
Ω
fnv dx . (223)

This variational form can alternatively be expressed by the inner product notation:

(u, v) = (u1, v)−∆t(α∇u1,∇v) + (fn, v) . (224)

19.4 Deriving the linear systems
To derive the equations for the new unknown coefficients cn+1

j , now just called cj , we insert

u =
N∑
j=0

cjψj(x), u1 =
N∑
j=0

c1,jψj(x)
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in (223) or (224), let the equation hold for all v = ψ, i = 0, . . . ,N, and order the terms as
matrix-vector products:

N∑
j=0

(ψi, ψj)cj =
N∑
j=0

(ψi, ψj)c1,j −∆t
N∑
j=0

(∇ψi, α∇ψj)c1,j + (fn, ψi), i = 0, . . . , N . (225)

This is a linear system
∑
j Ai,jcj = bi with

Ai,j = (ψi, ψj)

and

bi =
N∑
j=0

(ψi, ψj)c1,j −∆t
N∑
j=0

(∇ψi, α∇ψj)c1,j + (fn, ψi) .

It is instructive and convenient for implementations to write the linear system on the form

Mc = Mc1 −∆tKc1 + f, (226)

where

M = {Mi,j}, Mi,j = (ψi, ψj), i, j ∈ Is,
K = {Ki,j}, Ki,j = (∇ψi, α∇ψj), i, j ∈ Is,
f = {(f(x, tn), ψi)}i∈Is

,

c = {ci}i∈Is
,

c1 = {c1,i}i∈Is
.

We realize that M is the matrix arising from a term with the zero-th derivative of u, and
called the mass matrix, while K is the matrix arising from a Laplace term ∇2u. The K matrix
is often known as the stiffness matrix. (The terms mass and stiffness stem from the early days
of finite elements when applications to vibrating structures dominated. The mass matrix arises
from the mass times acceleration term in Newton’s second law, while the stiffness matrix arises
from the elastic forces in that law. The mass and stiffness matrix appearing in a diffusion have
slightly different mathematical formulas.)

Remark. The mathematical symbol f has two meanings, either the function f(x, t) in the
PDE or the f vector in the linear system to be solved at each time level. The symbol u also has
different meanings, basically the unknown in the PDE or the finite element function representing
the unknown at a time level. The actual meaning should be evident from the context.

19.5 Computational algorithm
We observe that M and K can be precomputed so that we can avoid computing the matrix
entries at every time level. Instead, some matrix-vector multiplications will produce the linear
system to be solved. The computational algorithm has the following steps:

1. Compute M and K.

133



2. Initialize u0 by interpolation or projection

3. For n = 1, 2, . . . , Nt:

(a) compute b = Mc1 −∆tKc1 + f

(b) solve Mc = b

(c) set c1 = c

In case of finite element basis functions, interpolation of the initial condition at the nodes means
c1,j = I(xj). Otherwise one has to solve the linear system

∑
j ψj(xi)cj = I(xi), where xj denotes

an interpolation point. Projection (or Galerkin’s method) implies solving a linear system with M
as coefficient matrix :

∑
jMi,jc1,j = (I, ψi), i ∈ Is.

19.6 Comparing P1 elements with the finite difference method
We can compute the M and K matrices using P1 elements in 1D. A uniform mesh on [0, L] is
introduced for this purpose. Since the boundary conditions are solely of Neumann type in this
sample problem, we have no restrictions on the basis functions ψi and can simply choose ψi = ϕi,
i = 0, . . . , N = Nn.

From Section 13.2 or 13.4 we have that the K matrix is the same as we get from the finite
difference method: h[DxDxu]ni , while from Section 5.2 we know that M can be interpreted as the
finite difference approximation [u+ 1

6h
2DxDxu]ni (times h). The equation system Mc = b in the

algorithm is therefore equivalent to the finite difference scheme

[D+
t (u+ 1

6h
2DxDxu) = αDxDxu+ f ]ni . (227)

(More precisely, Mc = b divided by h gives the equation above.)

Lumping the mass matrix. By applying Trapezoidal integration one can turn M into a
diagonal matrix with (h/2, h, . . . , h, h/2) on the diagonal. Then there is no need to solve a linear
system at each time level, and the finite element scheme becomes identical to a standard finite
difference method

[D+
t u = αDxDxu+ f ]ni . (228)

The Trapezoidal integration is not as accurate as exact integration and introduces therefore
an error. Whether this error has a good or bad influence on the overall numerical method is not
immediately obvious, and is analyzed in detail in Section 19.10. The effect of the error is at least
not more severe than what is produced by the finite difference method.

Making M diagonal is usually referred to as lumping the mass matrix. There is an alternative
method to using an integration rule based on the node points: one can sum the entries in each
row, place the sum on the diagonal, and set all other entries in the row equal to zero. For P1
elements the methods of lumping the mass matrix give the same result.

19.7 Discretization in time by a Backward Euler scheme
Time discretization. The Backward Euler scheme in time applied to our diffusion problem
can be expressed as follows using the finite difference operator notation:

[D−t u = α∇2u+ f(x, t)]n .

134



Written out, and collecting the unknown un on the left-hand side and all the known terms on the
right-hand side, the time-discrete differential equation becomes

une −∆t
(
α∇2une + f(x, tn)

)
= un−1

e . (229)

Equation (229) can compute u1
e, u

2
e, . . . , u

Nte , if we have a start u0
e = I from the initial condition.

However, (229) is a partial differential equation in space and needs a solution method based on
discretization in space. For this purpose we use an expansion as in (218)-(219).

Variational forms. Inserting (218)-(219) in (229), multiplying by ψi (or v ∈ V ), and integrating
by parts, as we did in the Forward Euler case, results in the variational form∫

Ω
(unv + ∆tα∇un · ∇v) dx =

∫
Ω
un−1v dx−∆t

∫
Ω
fnv dx, ∀v ∈ V . (230)

Expressed with u as un and u1 as un−1, this becomes∫
Ω

(uv + ∆tα∇u · ∇v) dx =
∫

Ω
u1v dx+ ∆t

∫
Ω
fnv dx, (231)

or with the more compact inner product notation,

(u, v) + ∆t(α∇u,∇v) = (u1, v) + ∆t(fn, v) . (232)

Linear systems. Inserting u =
∑
j cjψi and u1 =

∑
j c1,jψi, and choosing v to be the basis

functions ψi ∈ V , i = 0, . . . , N , together with doing some algebra, lead to the following linear
system to be solved at each time level:

(M + ∆tK)c = Mc1 + f, (233)

where M , K, and f are as in the Forward Euler case. This time we really have to solve a linear
system at each time level. The computational algorithm goes as follows.

1. Compute M , K, and A = M + ∆tK

2. Initialize u0 by interpolation or projection

3. For n = 1, 2, . . . , Nt:

(a) compute b = Mc1 + f

(b) solve Ac = b

(c) set c1 = c

In case of finite element basis functions, interpolation of the initial condition at the nodes means
c1,j = I(xj). Otherwise one has to solve the linear system

∑
j ψj(xi)cj = I(xi), where xj denotes

an interpolation point. Projection (or Galerkin’s method) implies solving a linear system with M
as coefficient matrix :

∑
jMi,jc1,j = (I, ψi), i ∈ Is.

We know what kind of finite difference operators the M and K matrices correspond to (after
dividing by h), so (233) can be interpreted as the following finite difference method:

[D−t (u+ 1
6h

2DxDxu) = αDxDxu+ f ]ni . (234)
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The mass matrix M can be lumped, as explained in Section 19.6, and then the linear system
arising from the finite element method with P1 elements corresponds to a plain Backward Euler
finite difference method for the diffusion equation:

[D−t u = αDxDxu+ f ]ni . (235)

19.8 Dirichlet boundary conditions
Suppose now that the boundary condition (213) is replaced by a mixed Neumann and Dirichlet
condition,

u(x, t) = u0(x, t), x ∈ ∂ΩD, (236)

−α ∂

∂n
u(x, t) = g(x, t), x ∈ ∂ΩN . (237)

Using a Forward Euler discretization in time, the variational form at a time level becomes∫
Ω
un+1v dx =

∫
Ω

(un −∆tα∇un · ∇v) dx−∆t
∫
∂ΩN

gv ds, ∀v ∈ V . (238)

Boundary function. The Dirichlet condition u = u0 at ∂ΩD can be incorporated through a
boundary function B(x) = u0(x) and demanding that v = 0 at ∂ΩD. The expansion for un is
written as

un(x) = u0(x, tn) +
∑
j∈Is

cnj ψj(x) .

Inserting this expansion in the variational formulation and letting it hold for all basis functions
ψi leads to the linear system

∑
j∈Is

(∫
Ω
ψiψj dx

)
cn+1
j =

∑
j∈Is

(∫
Ω

(ψiψj −∆tα∇ψi · ∇ψj) dx
)
cnj−∫

Ω
(u0(x, tn+1)− u0(x, tn) + ∆tα∇u0(x, tn) · ∇ψi) dx

+ ∆t
∫

Ω
fψi dx−∆t

∫
∂ΩN

gψi ds, i ∈ Is .

In the following, we adopt the convention that the unknowns cn+1
j are written as cj , while the

known cnj from the previous time level are denoted by c1,j .

Finite element basis functions. When using finite elements, each basis function ϕi is asso-
ciated with a node xi. We have a collection of nodes {xi}i∈Ib

on the boundary ∂ΩD. Suppose
Unk is the known Dirichlet value at xk at time tn (Unk = u0(xk, tn)). The appropriate boundary
function is then

B(x, tn) =
∑
j∈Ib

Unj ϕj .
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The unknown coefficients cj are associated with the rest of the nodes, which have numbers ν(i),
i ∈ Is = {0, . . . , N}. The basis functions for V are chosen as ψi = ϕν(i), i ∈ Is, and all of these
vanish at the boundary nodes as they should. The expansion for un+1 and un become

un =
∑
j∈Ib

Unj ϕj +
∑
j∈Is

c1,jϕν(j),

un+1 =
∑
j∈Ib

Un+1
j ϕj +

∑
j∈Is

cjϕν(j) .

The equations for the unknown coefficients ci become

∑
j∈Is

(∫
Ω
ϕiϕj dx

)
cj =

∑
j∈Is

(∫
Ω

(ϕiϕj −∆tα∇ϕi · ∇ϕj) dx
)
c1,j−

∑
j∈Ib

∫
Ω

(
ϕiϕj(Un+1

j − Unj ) + ∆tα∇ϕi · ∇ϕjUnj
)

dx

+ ∆t
∫

Ω
fϕi dx−∆t

∫
∂ΩN

gϕi ds, i ∈ Is .

Modification of the linear system. Instead of introducing a boundary function B we can
work with basis functions associated with all the nodes and incorporate the Dirichlet conditions by
modifying the linear system. Let Is be the index set that counts all the nodes: {0, 1, . . . , N = Nn}.
The expansion for un is then

∑
j∈Is

cnj ϕj and the variational form becomes

∑
j∈Is

(∫
Ω
ϕiϕj dx

)
cj =

∑
j∈Is

(∫
Ω

(ϕiϕj −∆tα∇ϕi · ∇ϕj) dx
)
c1,j

−∆t
∫

Ω
fϕi dx−∆t

∫
∂ΩN

gϕi ds .

We introduce the matricesM and K with entriesMi,j =
∫

Ω ϕiϕj dx and Ki,j =
∫

Ω α∇ϕi ·∇ϕj dx,
respectively. In addition, we define the vectors c, c1, and f with entries ci, c1,i, and

∫
Ω fϕi dx−∫

∂ΩN
gϕi ds. The equation system can then be written as

Mc = Mc1 −∆tKc1 + ∆tf . (239)

When M , K, and b are assembled without paying attention to Dirichlet boundary conditions,
we need to replace equation k by ck = Uk for k corresponding to all boundary nodes (k ∈ Ib).
The modification of M consists in setting Mk,j = 0, j ∈ Is, and the Mk,k = 1. Alternatively, a
modification that preserves the symmetry of M can be applied. At each time level one forms
b = Mc1 −∆tKc1 + ∆tf and sets bk = Un+1

k , k ∈ Ib, and solves the system Mc = b.
In case of a Backward Euler method, the system becomes (233). We can write the system as

Ac = b, with A = M + ∆tK and b = Mc1 + f . Both M and K needs to be modified because of
Dirichlet boundary conditions, but the diagonal entries in K should be set to zero and those in
M to unity. In this way, Ak,k = 1. The right-hand side must read bk = Unk for k ∈ Ib (assuming
the unknown is sought at time level tn).
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19.9 Example: Oscillating Dirichlet boundary condition
We shall address the one-dimensional initial-boundary value problem

ut = (αux)x + f, x ∈ Ω = [0, L], t ∈ (0, T ], (240)
u(x, 0) = 0, x ∈ Ω, (241)
u(0, t) = a sinωt, t ∈ (0, T ], (242)

ux(L, t) = 0, t ∈ (0, T ] . (243)

A physical interpretation may be that u is the temperature deviation from a constant mean
temperature in a body Ω that is subject to an oscillating temperature (e.g., day and night, or
seasonal, variations) at x = 0.

We use a Backward Euler scheme in time and P1 elements of constant length h in space.
Incorporation of the Dirichlet condition at x = 0 through modifying the linear system at each
time level means that we carry out the computations as explained in Section 19.7 and get a
system (233). The M and K matrices computed without paying attention to Dirichlet boundary
conditions become

M = h

6



2 1 0 · · · · · · · · · · · · · · · 0

1 4 1
. . .

...

0 1 4 1
. . .

...
...

. . . . . . . . . 0
...

...
. . . . . . . . . . . . . . .

...
... 0 1 4 1

. . .
...

...
. . . . . . . . . . . . 0

...
. . . 1 4 1

0 · · · · · · · · · · · · · · · 0 1 2



(244)

K = α

h



1 −1 0 · · · · · · · · · · · · · · · 0

−1 2 −1
. . .

...

0 −1 2 −1
. . .

...
...

. . . . . . . . . 0
...

...
. . . . . . . . . . . . . . .

...
... 0 −1 2 −1

. . .
...

...
. . . . . . . . . . . . 0

...
. . . −1 2 −1

0 · · · · · · · · · · · · · · · 0 −1 1



(245)

The right-hand side of the variational form contains Mc1 since there is no source term (f) and
no boundary term from the integration by parts (ux = 0 at x = L and we compute as if ux = 0
at x = 0 too). We must incorporate the Dirichlet boundary condition c0 = a sinωtn by ensuring
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that this is the first equation in the linear system. To this end, the first row in K and M are
set to zero, but the diagonal entry M0,0 is set to 1. The right-hand side is b = Mc1, and we set
b0 = a sinωtn. Note that in this approach, N = Nn, and c equals the unknown u at each node in
the mesh. We can write the complete linear system as

c0 = a sinωtn, (246)
h

6 (ci−1 + 4ci + ci+1) + ∆tα
h

(−ci−1 + 2ci + ci+1) = h

6 (c1,i−1 + 4c1,i + c1,i+1), (247)

i = 1, . . . , Nn − 1,
h

6 (ci−1 + 2ci) + ∆tα
h

(−ci−1 + ci) = h

6 (c1,i−1 + 2c1,i), i = Nn . (248)

The Dirichlet boundary condition can alternatively be implemented through a boundary
function B(x, t) = a sinωtϕ0(x):

un(x) = a sinωtnϕ0(x) +
∑
j∈Is

cjϕν(j)(x), ν(j) = j + 1 .

Now, N = Nn − 1 and the c vector contains values of u at nodes 1, 2, . . . , Nn. The right-hand
side gets a contribution∫ L

0
(a(sinωtn − sinωtn−1)ϕ0ϕi −∆tαa sinωtn∇ϕ0 · ∇ϕi) dx . (249)

19.10 Analysis of the discrete equations
The diffusion equation ut = αuxx allows a (Fourier) wave component u = exp (βt+ ikx) as
solution if β = −αk2, which follows from inserting the wave component in the equation. The
exact wave component can alternatively be written as

u = Ane e
ikx, Ae = e−αk

2∆t . (250)

Many numerical schemes for the diffusion equation has a similar wave component as solution:

unq = Aneikx, (251)

where is an amplification factor to be calculated by inserting (252) in the scheme. We introduce
x = qh, or x = q∆x to align the notation with that frequently used in finite difference methods.

A convenient start of the calculations is to establish some results for various finite difference
operators acting on

unq = Aneikq∆x . (252)
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[D+
t A

neikq∆x]n = Aneikq∆x
A− 1

∆t ,

[D−t Aneikq∆x]n = Aneikq∆x
1−A−1

∆t ,

[DtA
neikq∆x]n+ 1

2 = An+ 1
2 eikq∆x

A
1
2 −A− 1

2

∆t = Aneikq∆x
A− 1

∆t ,

[DxDxA
neikq∆x]q = −An 4

∆x2 sin2
(
k∆x

2

)
.

Forward Euler discretization. We insert (252) in the Forward Euler scheme with P1 elements
in space and f = 0 (this type of analysis can only be carried out if f = 0),

[D+
t (u+ 1

6h
2DxDxu) = αDxDxu]nq . (253)

We have

[D+
t DxDxAe

ikx]nq = [D+
t A]n[DxDxe

ikx]q = −Aneikp∆xA− 1
∆t

4
∆x2 sin2(k∆x

2 ) .

The term [D+
t Ae

ikx + 1
6∆x2D+

t DxDxAe
ikx]nq then reduces to

A− 1
∆t −

1
6∆x2A− 1

∆t
4

∆x2 sin2(k∆x
2 ),

or
A− 1

∆t

(
1− 2

3 sin2(k∆x/2)
)
.

Introducing p = k∆x/2 and C = α∆t/∆x2, the complete scheme becomes

(A− 1)
(

1− 2
3 sin2 p

)
= −4C sin2 p,

from which we find A to be

A = 1− 4C sin2 p

1− 2
3 sin2 p

.

How does this A change the stability criterion compared to the Forward Euler finite difference
scheme and centered differences in space? The stability criterion is |A| ≤ 1, which here implies
A ≤ 1 and A ≥ −1. The former is always fulfilled, while the latter leads to

4C sin2 p

1 + 2
3 sin2 p

≤ 2 .

The factor sin2 p/(1− 2
3 sin2 p) can be plotted for p ∈ [0, π/2], and the maximum value goes to 3

as p→ π/2. The worst case for stability therefore occurs for the shortest possible wave, p = π/2,
and the stability criterion becomes

C ≤ 1
6 ⇒ ∆t ≤ ∆x2

6α , (254)

which is a factor 1/3 worse than for the standard Forward Euler finite difference method for the
diffusion equation, which demands C ≤ 1/2. Lumping the mass matrix will, however, recover the
finite difference method and therefore imply C ≤ 1/2 for stability.
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Backward Euler discretization. We can use the same approach and insert (252) in the
Backward Euler scheme with P1 elements in space and f = 0:

[D−t (u+ 1
6h

2DxDxu) = αDxDxu]ni . (255)

Similar calculations as in the Forward Euler case lead to

(1−A−1)
(

1− 2
3 sin2 p

)
= −4C sin2 p,

and hence

A =
(

1 + 4C sin2 p

1− 2
3 sin2 p

)−1

.

Comparing amplification factors. It is of interest to compare A and Ae as functions of p
for some C values. Figure 48 display the amplification factors for the Backward Euler scheme
corresponding a coarse mesh with C = 2 and a mesh at the stability limit of the Forward Euler
scheme in the finite difference method, C = 1/2. Figures 49 and 50 shows how the accuracy
increases with lower C values for both the Forward Euler and Backward schemes, respectively.
The striking fact, however, is that the accuracy of the finite element method is significantly less
than the finite difference method for the same value of C. Lumping the mass matrix to recover
the numerical amplification factor A of the finite difference method is therefore a good idea in
this problem.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.60.0

0.2

0.4

0.6

0.8

1.0 Method: BE

C=2, FEM
C=2, FDM
C=1/2, FEM
C=1/2, FDM
exact

Figure 48: Comparison of coarse-mesh amplification factors for Backward Euler discretization of
a 1D diffusion equation.
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1.0 Method: FE

C=1/6, FEM
C=1/6, FDM
C=1/12, FEM
C=1/12, FDM
exact

Figure 49: Comparison of fine-mesh amplification factors for Forward Euler discretization of a
1D diffusion equation.

Remaining tasks:

• Taylor expansion of the error in the amplification factor Ae −A

• Taylor expansion of the error e = (Ane −An)eikx

• L2 norm of e
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Figure 50: Comparison of fine-mesh amplification factors for Backward Euler discretization of a
1D diffusion equation.

20 Systems of differential equations
Many mathematical models involve m + 1 unknown functions governed by a system of m + 1
differential equations. In abstract form we may denote the unknowns by u(0), . . . , u(m) and write
the governing equations as

L0(u(0), . . . , u(m)) = 0,
...

Lm(u(0), . . . , u(m)) = 0,

where Li is some differential operator defining differential equation number i.

20.1 Variational forms
There are basically two ways of formulating a variational form for a system of differential equations.
The first method treats each equation independently as a scalar equation, while the other method
views the total system as a vector equation with a vector function as unknown.

Let us start with the one equation at a time approach. We multiply equation number i by
some test function v(i) ∈ V (i) and integrate over the domain:
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∫
Ω
L(0)(u(0), . . . , u(m))v(0) dx = 0, (256)

... (257)∫
Ω
L(m)(u(0), . . . , u(m))v(m) dx = 0 . (258)

Terms with second-order derivatives may be integrated by parts, with Neumann conditions
inserted in boundary integrals. Let

V (i) = span{ψ(i)
0 , . . . , ψ

(i)
Ni
},

such that

u(i) = B(i)(x) +
Ni∑
j=0

c
(i)
j ψ

(i)
j (x),

where B(i) is a boundary function to handle nonzero Dirichlet conditions. Observe that different
unknowns live in different spaces with different basis functions and numbers of degrees of freedom.

From the m equations in the variational forms we can derive m coupled systems of algebraic
equations for the Πm

i=0Ni unknown coefficients c(i)j , j = 0, . . . , Ni, i = 0, . . . ,m.
The alternative method for deriving a variational form for a system of differential equations

introduces a vector of unknown functions

u = (u(0), . . . , u(m)),

a vector of test functions

v = (u(0), . . . , u(m)),

with

u,v ∈ V = V (0) × · · · × V (m) .

With nonzero Dirichlet conditions, we have a vectorB = (B(0), . . . , B(m)) with boundary functions
and then it is u−B that lies in V , not u itself.

The governing system of differential equations is written

L(u) = 0,

where

L(u) = (L(0)(u), . . . ,L(m)(u)) .

The variational form is derived by taking the inner product of the vector of equations and the
test function vector: ∫

Ω
L(u) · v = 0 ∀v ∈ V . (259)
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Observe that (259) is one scalar equation. To derive systems of algebraic equations for
the unknown coefficients in the expansions of the unknown functions, one chooses m lin-
early independent v vectors to generate m independent variational forms from (259). The
particular choice v = (v(0), 0, . . . , 0) recovers (256), v = (0, . . . , 0, v(m) recovers (258), and
v = (0, . . . , 0, v(i), 0, . . . , 0) recovers the variational form number i,

∫
Ω L

(i)v(i) dx = 0, in (256)-
(258).

20.2 A worked example
We now consider a specific system of two partial differential equations in two space dimensions:

µ∇2w = −β, (260)
κ∇2T = −µ||∇w||2 . (261)

The unknown functions w(x, y) and T (x, y) are defined in a domain Ω, while µ, β, and κ are
given constants. The norm in (261) is the standard Eucledian norm:

||∇w||2 = ∇w · ∇w = w2
x + w2

y .

The boundary conditions associated with (260)-(261) are w = 0 on ∂Ω and T = T0 on ∂Ω.
Each of the equations (260) and (261) need one condition at each point on the boundary.

The system (260)-(261) arises from fluid flow in a straight pipe, with the z axis in the direction
of the pipe. The domain Ω is a cross section of the pipe, w is the velocity in the z direction, µ is
the viscosity of the fluid, β is the pressure gradient along the pipe, T is the temperature, and κ is
the heat conduction coefficient of the fluid. The equation (260) comes from the Navier-Stokes
equations, and (261) follows from the energy equation. The term −µ||∇w||2 models heating of
the fluid due to internal friction.

Observe that the system (260)-(261) has only a one-way coupling: T depends on w, but
w does not depend on T , because we can solve (260) with respect to w and then (261) with
respect to T . Some may argue that this is not a real system of PDEs, but just two scalar PDEs.
Nevertheless, the one-way coupling is convenient when comparing different variational forms and
different implementations.

20.3 Identical function spaces for the unknowns
Let us first apply the same function space V for w and T (or more precisely, w ∈ V and
T − T0 ∈ V ). With

V = span{ψ0(x, y), . . . , ψN (x, y)},

we write

w =
N∑
j=0

c
(w)
j ψj , T = T0 +

N∑
j=0

c
(T )
j ψj . (262)

Note that w and T in (260)-(261) denote the exact solution of the PDEs, while w and T (262) are
the discrete functions that approximate the exact solution. It should be clear from the context
whether a symbol means the exact or approximate solution, but when we need both at the same
time, we use a subscript e to denote the exact solution.
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Variational form of each individual PDE. Inserting the expansions (262) in the governing
PDEs, results in a residual in each equation,

Rw = µ∇2w + β, (263)
RT = κ∇2T + µ||∇w||2 . (264)

A Galerkin method demands Rw and RT do be orthogonal to V :

∫
Ω
Rwv dx = 0 ∀v ∈ V,∫

Ω
RT v dx = 0 ∀v ∈ V .

Because of the Dirichlet conditions, v = 0 on ∂Ω. We integrate the Laplace terms by parts and
note that the boundary terms vanish since v = 0 on ∂Ω:

∫
Ω
µ∇w · ∇v dx =

∫
Ω
βv dx ∀v ∈ V, (265)∫

Ω
κ∇T · ∇v dx =

∫
Ω
µ∇w · ∇w v dx ∀v ∈ V . (266)

Compound scalar variational form. The alternative way of deriving the variational from
is to introduce a test vector function v ∈ V = V × V and take the inner product of v and the
residuals, integrated over the domain:∫

Ω
(Rw, RT ) · v dx = 0 ∀v ∈ V .

With v = (v0, v1) we get ∫
Ω

(Rwv0 +RT v1) dx = 0 ∀v ∈ V .

Integrating the Laplace terms by parts results in∫
Ω

(µ∇w · ∇v0 + κ∇T · ∇v1) dx =
∫

Ω
(βv0 + µ∇w · ∇w v1) dx, ∀v ∈ V . (267)

Choosing v0 = v and v1 = 0 gives the variational form (265), while v0 = 0 and v1 = v gives (266).
With the inner product notation, (p, q) =

∫
Ω pq dx, we can alternatively write (265) and (266)

as

(µ∇w,∇v) = (β, v) ∀v ∈ V,
(κ∇T,∇v) = (µ∇w · ∇w, v) ∀v ∈ V,

or since µ and κ are considered constant,

µ(∇w,∇v) = (β, v) ∀v ∈ V, (268)
κ(∇T,∇v) = µ(∇w · ∇w, v) ∀v ∈ V . (269)
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Decoupled linear systems. The linear systems governing the coefficients c(w)
j and c

(T )
j ,

j = 0, . . . , N , are derived by inserting the expansions (262) in (265) and (266), and choosing
v = ψi for i = 0, . . . , N . The result becomes

N∑
j=0

A
(w)
i,j c

(w)
j = b

(w)
i , i = 0, . . . , N, (270)

N∑
j=0

A
(T )
i,j c

(T )
j = b

(T )
i , i = 0, . . . , N, (271)

A
(w)
i,j = µ(∇ψj ,∇ψi), (272)

b
(w)
i = (β, ψi), (273)

A
(T )
i,j = κ(∇ψj ,∇ψi), (274)

b
(T )
i = µ((

∑
j

c
(w)
j ∇ψj) · (

∑
k

c
(w)
k ∇ψk), ψi) . (275)

It can also be instructive to write the linear systems using matrices and vectors. Define K
as the matrix corresponding to the Laplace operator ∇2. That is, Ki,j = (∇ψj ,∇ψi). Let us
introduce the vectors

b(w) = (b(w)
0 , . . . , b

(w)
N ),

b(T ) = (b(T )
0 , . . . , b

(T )
N ),

c(w) = (c(w)
0 , . . . , c

(w)
N ),

c(T ) = (c(T )
0 , . . . , c

(T )
N ) .

The system (270)-(271) can now be expressed in matrix-vector form as

µKc(w) = b(w), (276)
κKc(T ) = b(T ) . (277)

We can solve the first system for c(w), and then the right-hand side b(T ) is known such that
we can solve the second system for c(T ).

Coupled linear systems. Despite the fact that w can be computed first, without knowing
T , we shall now pretend that w and T enter a two-way coupling such that we need to derive
the algebraic equations as one system for all the unknowns c(w)

j and c(T )
j , j = 0, . . . , N . This

system is nonlinear in c(w)
j because of the ∇w · ∇w product. To remove this nonlinearity, imagine

that we introduce an iteration method where we replace ∇w · ∇w by ∇w− · ∇w, w− being the w
computed in the previous iteration. Then the term ∇w− · ∇w is linear in w since w− is known.
The total linear system becomes
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N∑
j=0

A
(w,w)
i,j c

(w)
j +

N∑
j=0

A
(w,T )
i,j c

(T )
j = b

(w)
i , i = 0, . . . , N, (278)

N∑
j=0

A
(T,w)
i,j c

(w)
j +

N∑
j=0

A
(T,T )
i,j c

(T )
j = b

(T )
i , i = 0, . . . , N, (279)

A
(w,w)
i,j = µ(∇ψj , ψi), (280)

A
(w,T )
i,j = 0, (281)

b
(w)
i = (β, ψi), (282)

A
(w,T )
i,j = µ((∇ψw−) · ∇ψj), ψi), (283)

A
(T,T )
i,j = κ(∇ψj , ψi), (284)

b
(T )
i = 0 . (285)

This system can alternatively be written in matrix-vector form as

µKc(w) = 0b(w), (286)
Lc(w) + κKc(T ) = 0, (287)

with L as the matrix from the ∇w− · ∇ operator: Li,j = A
(w,T )
i,j .

The matrix-vector equations are often conveniently written in block form:(
µK 0
L κK

)(
c(w)

c(T )

)
=
(
b(w)

0

)
,

Note that in the general case where all unknowns enter all equations, we have to solve the
compound system (297)-(298) since then we cannot utilize the special property that (270) does
not involve T and can be solved first.

When the viscosity depends on the temperature, the µ∇2w term must be replaced by
∇ · (µ(T )∇w), and then T enters the equation for w. Now we have a two-way coupling since
both equations contain w and T and therefore must be solved simultaneously Th equation
∇ · (µ(T )∇w) = −β is nonlinear, and if some iteration procedure is invoked, where we use a
previously computed T− in the viscosity (µ(T−)), the coefficient is known, and the equation
involves only one unknown, w. In that case we are back to the one-way coupled set of PDEs.

We may also formulate our PDE system as a vector equation. To this end, we introduce the
vector of unknowns u = (u(0), u(1)), where u(0) = w and u(1) = T . We then have

∇2u =
(

−µ−1β
−κ−1µ∇u(0) · ∇u(0)

)
.

20.4 Different function spaces for the unknowns
It is easy to generalize the previous formulation to the case where w ∈ V (w) and T ∈ V (T ), where
V (w) and V (T ) can be different spaces with different numbers of degrees of freedom. For example,
we may use quadratic basis functions for w and linear for T . Approximation of the unknowns by
different finite element spaces is known as mixed finite element methods.
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We write

V (w) = span{ψ(w)
0 , . . . , ψ

(w)
Nw
},

V (T ) = span{ψ(T )
0 , . . . , ψ

(T )
NT
} .

The next step is to multiply (260) by a test function v(w) ∈ V (w) and (261) by a v(T ) ∈ V (T ),
integrate by parts and arrive at

∫
Ω
µ∇w · ∇v(w) dx =

∫
Ω
βv(w) dx ∀v(w) ∈ V (w), (288)∫

Ω
κ∇T · ∇v(T ) dx =

∫
Ω
µ∇w · ∇w v(T ) dx ∀v(T ) ∈ V (T ) . (289)

The compound scalar variational formulation applies a test vector function v = (v(w), v(T ))
and reads ∫

Ω
(µ∇w · ∇v(w) + κ∇T · ∇v(T )) dx =

∫
Ω

(βv(w) + µ∇w · ∇w v(T )) dx, (290)

valid ∀v ∈ V = V (w) × V (T ).
The associated linear system is similar to (270)-(271) or (297)-(298), except that we need to

distinguish between ψ(w)
i and ψ(T )

i , and the range in the sums over j must match the number of
degrees of freedom in the spaces V (w) and V (T ). The formulas become

Nw∑
j=0

A
(w)
i,j c

(w)
j = b

(w)
i , i = 0, . . . , Nw, (291)

NT∑
j=0

A
(T )
i,j c

(T )
j = b

(T )
i , i = 0, . . . , NT , (292)

A
(w)
i,j = µ(∇ψ(w)

j , ψ
(w)
i ), (293)

b
(w)
i = (β, ψ(w)

i ), (294)

A
(T )
i,j = κ(∇ψ(T )

j , ψ
(T )
i ), (295)

b
(T )
i = µ(∇w−, ψ(T )

i ) . (296)

In the case we formulate one compound linear system involving both c(w)
j , j = 0, . . . , Nw, and

c
(T )
j , j = 0, . . . , NT , (297)-(298) becomes
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Nw∑
j=0

A
(w,w)
i,j c

(w)
j +

NT∑
j=0

A
(w,T )
i,j c

(T )
j = b

(w)
i , i = 0, . . . , Nw, (297)

Nw∑
j=0

A
(T,w)
i,j c

(w)
j +

NT∑
j=0

A
(T,T )
i,j c

(T )
j = b

(T )
i , i = 0, . . . , NT , (298)

A
(w,w)
i,j = µ(∇ψ(w)

j , ψ
(w)
i ), (299)

A
(w,T )
i,j = 0, (300)

b
(w)
i = (β, ψ(w)

i ), (301)

A
(w,T )
i,j = µ(∇w− · ∇ψ(w)

j ), ψ(T )
i ), (302)

A
(T,T )
i,j = κ(∇ψ(T )

j , ψ
(T )
i ), (303)

b
(T )
i = 0 . (304)

The corresponding block form(
µK(w) 0
L κK(T )

)(
c(w)

c(T )

)
=
(
b(w)

0

)
,

has square and rectangular block matrices: K(w) is Nw × Nw, K(T ) is NT × NT , while L is
NT ×Nw,

20.5 Computations in 1D
We can reduce the system (260)-(261) to one space dimension, which corresponds to flow in
a channel between two flat plates. Alternatively, one may consider flow in a circular pipe,
introduce cylindrical coordinates, and utilize the radial symmetry to reduce the equations to a
one-dimensional problem in the radial coordinate. The former model becomes

µwxx = −β, (305)
κTxx = −µw2

x, (306)

while the model in the radial coordinate r reads

µ
1
r

d

dr

(
r
dw

dr

)
= −β, (307)

κ
1
r

d

dr

(
r
dT

dr

)
= −µ

(
dw

dr

)2
. (308)

The domain for (305)-(306) is Ω = [0, H], with boundary conditions w(0) = w(H) = 0 and
T (0) = T (H) = T0. For (307)-(308) the domain is [0, R] (R being the radius of the pipe) and the
boundary conditions are du/dr = dT/dr = 0 for r = 0, u(R) = 0, and T (R) = T0.

Calculations to be continued...
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21 Exercises
Exercise 23: Refactor functions into a more general class
Section 11.2 displays three functions for computing the analytical solution of some simple model
problems. There is quite some repetitive code, suggesting that the functions can benefit from
being refactored into a class where the user can define the f(x), a(x), and the boundary conditions
in particular methods in subclasses. Demonstrate how the new class can be used to solve the
three particular problems in Section 11.2.

In the method that computes the solution, check that the solution found fulfills the differential
equation and the boundary conditions. Filename: uxx_f_sympy_class.py.

Exercise 24: Compute the deflection of a cable with sine functions
A hanging cable of length L with significant tension T has a downward deflection w(x) governed
by

Solve
Tw′′(x) = `(x),

when `(x) the vertical load per unit length. The cable is fixed at x = 0 and x = L so the boundary
conditions become w(0) = w(L) = 0.

If we assume a constant load `(x) = const, the solution is expected to be symmetric around
x = L/2. For a function w(x) that is symmetric around some point x0, it means that w(x0−h) =
w(x0 + h), and then w′(x0) = limh→0(w(x0 + h)− w(x0 − h))/(2h) = 0. We can therefore halve
the domain and seek w(x) in [0, L/2] with boundary conditions w(0) = 0 and w′(L/2) = 0.

The problem can be scaled by introducing a dimensionless coordinate (also called x) in [0, 1]
and a dimensionless vertical deflection u(x). The differential equation problem for u(x) becomes

u′′ = 1, x ∈ (0, 1), u(0) = 0, u′(1) = 0 .

A possible function space is spanned by ψi = sin((2i+ 1)πx/2), i = 0, . . . , N . Use a Galerkin
and a least squares method to find the coefficients cj in u(x) =

∑
j cjψj . Find how fast the

coefficients decrease in magnitude by looking at cj/cj−1. Find the error in the maximum deflection
at x = 1 when only one basis function is used (N = 0).

What happens if we choose basis functions ψi = sin((i + 1)πx)? These basis functions are
appropriate if we do not utilize symmetry and solve the original problem on [0, L]. A scaled
version of this problem reads

u′′ = 1, x ∈ (0, 1), u(0) = u(1) = 0 .

Carry out the computations with N = 0 and demonstrate that the maximum deflection u(1/2) is
the same in the problem utilizing symmetry and the problem covering the whole cable. Filenames:
cable_sin.pdf, cable_sin.py.

Exercise 25: Check integration by parts
Consider the Galerkin method for the problem involving u in Exercise 24. Show that the
formulas for cj are independent of whether we perform integration by parts or not. Filename:
cable_integr_by_parts.pdf.
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Exercise 26: Compute the deflection of a cable with 2 P1 elements
Solve the problem for u in Exercise 24 using two P1 linear elements. Filename: cable_2P1.pdf.

Exercise 27: Compute the deflection of a cable with 1 P2 element
Solve the problem for u in Exercise 24 using one P2 element with quadratic basis functions.
Filename: cable_1P2.pdf.

Exercise 28: Compute the deflection of a cable with a step load
We consider the deflection of a tension cable as described in Exercise 24. Now the load is

`(x) =
{
`1, x < L/2,
`2, x ≥ L/2 x ∈ [0, L] .

This load is not symmetric with respect to the midpoint x = L/2 so the solution loses its symmetry
and we must solve the scaled problem

u′′ =
{

1, x < 1/2,
0, x ≥ 1/2 x ∈ (0, 1), u(0) = 0, u(1) = 0 .

a) Use ψi = sin((i+ 1)πx), i = 0, . . . , N and the Galerkin method without integration by parts.
Derive a formula for cj in the solution expansion u =

∑
j cjψj . Plot how fast the coefficients cj

tend to zero (on a log scale).

b) Solve the problem with P1 finite elements. Plot the solution for Ne = 2, 4, 8 elements.
Filename: cable_discont_load.pdf.

Exercise 29: Show equivalence between linear systems
Incorporation of Dirichlet conditions at x = 0 and x = L in a finite element mesh on Ω = [0, L]
can either be done by introducing an expansion u(x) = U0ϕ0 + UNn

ϕNn
+
∑N
j=0 cjϕν(j), with

N = Nn − 2 and considering u values at the inner nodes as unknowns, or one can assemble the
matrix system with u(x) =

∑N=Nn

j=0 cjϕj and afterwards replace the rows corresponding to known
cj values by the boundary conditions. Show that the two approaches are equivalent.

Exercise 30: Compute with a non-uniform mesh
Derive the linear system for the problem −u′′ = 2 on [0, 1], with u(0) = 0 and u(1) = 1, using P1
elements and a non-uniform mesh. The vertices have coordinates x0 = 0 < x1 < · · · < xN = 1,
and the length of cell number e is he = xe+1 − xe.

It is of interest to compare the discrete equations for the finite element method in a non-
uniform mesh with the corresponding discrete equations arising from a finite difference method.
Go through the derivation of the finite difference formula u′′(xi) ≈ [DxDxu]i and modify it to
find a natural discretization of u′′(xi) on a non-uniform mesh. Filename: nonuniform_P1.pdf.
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Problem 31: Solve a 1D finite element problem by hand
The following scaled 1D problem is a very simple, yet relevant, model for convective transport in
fluids:

u′ = εu′′, u(0) = 0, u(1) = 1, x ∈ [0, 1] . (309)

a) Find the analytical solution to this problem. (Introduce w = u′, solve the first-order differential
equation for w(x), and integrate once more.)

b) Derive the variational form of this problem.

c) Introduce a finite element mesh with uniform partitioning. Use P1 elements and compute the
element matrix and vector for a general element.

d) Incorporate the boundary conditions and assemble the element contributions.

e) Identify the resulting linear system as a finite difference discretization of the differential
equation using

[D2xu = εDxDxu]i .

f) Compute the numerical solution and plot it together with the exact solution for a mesh with
20 elements and ε = 10, 1, 0.1, 0.01.
Filename: convdiff1D_P1.pdf.

Exercise 32: Compare finite elements and differences for a radially sym-
metric Poisson equation
We consider the Poisson problem in a disk with radius R with Dirichlet conditions at the boundary.
Given that the solution is radially symmetric and hence dependent only on the radial coordinate
(r =

√
x2 + y2), we can reduce the problem to a 1D Poisson equation

− 1
r

d

dr

(
r
du

dr

)
= f(r), r ∈ (0, R), u′(0) = 0, u(R) = UR . (310)

a) Derive a variational form of (310) by integrating over the whole disk, or posed equivalently:
use a weighting function 2πrv(r) and integrate r from 0 to R.

b) Use a uniform mesh partition with P1 elements and show what the resulting set of equations
becomes. Integrate the matrix entries exact by hand, but use a Trapezoidal rule to integrate the
f term.

c) Explain that an intuitive finite difference method applied to (310) gives

1
ri

1
h2

(
ri+ 1

2
(ui+1 − ui)− ri− 1

2
(ui − ui−1)

)
= fi, i = rh .

For i = 0 the factor 1/ri seemingly becomes problematic. One must always have u′(0) = 0,
because of the radial symmetry, which implies u−1 = u1, if we allow introduction of a fictitious
value u−1. Using this u−1 in the difference equation for i = 0 gives
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1
r0

1
h2

(
r 1

2
(u1 − u0)− r− 1

2
(u0 − u1)

)
=

1
r0

1
2h2 ((r0 + r1)(u1 − u0)− (r−1 + r0)(u0 − u1)) ≈ 2(u1 − u0),

if we use r−1 + r1 ≈ 2r0.
Set up the complete set of equations for the finite difference method and compare to the finite

element method in case a Trapezoidal rule is used to integrate the f term in the latter method.
Filename: radial_Poisson1D_P1.pdf.

Exercise 33: Compute with variable coefficients and P1 elements by
hand
Consider the problem

− d

dx

(
a(x)du

dx

)
+ γu = f(x), x ∈ Ω = [0, L], u(0) = α, u′(L) = β . (311)

We choose a(x) = 1 + x2. Then

u(x) = α+ β(1 + L2) tan−1(x), (312)

is an exact solution if f(x) = γu.
Derive a variational formulation and compute general expressions for the element matrix

and vector in an arbitrary element, using P1 elements and a uniform partitioning of [0, L]. The
right-hand side integral is challenging and can be computed by a numerical integration rule. The
Trapezoidal rule (101) gives particularly simple expressions. Filename: atan1D_P1.pdf.

Exercise 34: Solve a 2D Poisson equation using polynomials and sines
The classical problem of applying a torque to the ends of a rod can be modeled by a Poisson
equation defined in the cross section Ω:

−∇2u = 2, (x, y) ∈ Ω,
with u = 0 on ∂Ω. Exactly the same problem arises for the deflection of a membrane with shape
Ω under a constant load.

For a circular cross section one can readily find an analytical solution. For a rectangular cross
section the analytical approach ends up with a sine series. The idea in this exercise is to use a
single basis function to obtain an approximate answer.

We assume for simplicity that the cross section is the unit square: Ω = [0, 1]× [0, 1].

a) We consider the basis ψp,q(x, y) = sin((p + 1)πx) sin(qπy), p, q = 0, . . . , n. These basis
functions fulfill the Dirichlet condition. Use a Galerkin method and n = 0.

b) The basis function involving sine functions are orthogonal. Use this property in the Galerkin
method to derive the coefficients cp,q in a formula u =

∑
p

∑
q cp,qψp,q(x, y).

c) Another possible basis is ψi(x, y) = (x(1 − x)y(1 − y))i+1, i = 0, . . . , N . Use the Galerkin
method to compute the solution for N = 0. Which choice of a single basis function is best,
u ∼ x(1− x)y(1− y) or u ∼ sin(πx) sin(πy)? In order to answer the question, it is necessary to
search the web or the literature for an accurate estimate of the maximum u value at x = y = 1/2.
Filename: torsion_sin_xy.pdf.
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Exercise 35: Analyze a Crank-Nicolson scheme for the diffusion equa-
tion
Perform the analysis in Section 19.10 for a 1D diffusion equation ut = αuxx discretized by the
Crank-Nicolson scheme in time:

un+1 − un

∆t = α
1
2

(
∂un+1

∂x2
∂un

∂x2

)
,

or written compactly with finite difference operators,

[Dtu = αDxDxu
t]n+ 1

2 .

(From a strict mathematical point of view, the un and un+1 in these equations should be replaced
by une and un+1

e to indicate that the unknown is the exact solution of the PDE discretized in time,
but not yet in space, see Section 19.1.) Make plots similar to those in Section 19.10. Filename:
fe_diffusion.pdf.
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mixed finite elements, 145

natural boundary condition, 97
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numerical integration

Midpoint rule, 63
Newton-Cotes formulas, 63
Simpson’s rule, 63
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P1 element, 36
P2 element, 36
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functions, 11
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quadratic elements, 36

reference cell, 58
residual, 85
Runge’s phenomenon, 25

simplex elements, 72
simplices, 72
Simpson’s rule, 63
sparse matrices, 52
stiffness matrix, 130
strong form, 92

tensor product, 64
test function, 86
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variational formulation, 86
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