Study guide: Introduction to finite element methods Hans Petter Langtangen 1,2 Center for Biomedical Computing, Simula Research Laboratory¹ Department of Informatics, University of Oslo² Oct 31, 2014 # Can with ease solve PDEs in domains with complex geometry Can with ease provide higher-order approximations Has (in simpler stationary problems) a rigorous mathematical analysis framework (not much considered here) # Stationary PDEs: • Transform the PDE problem to a variational form • Define function approximation over finite elements • Use a machinery to derive linear systems • Solve linear systems Time-dependent PDEs: • Finite elements in space • Finite difference (or ODE solver) in time Learning strategy Start with approximation of functions, not PDEs Introduce finite element approximations See later how this machinery is applied to PDEs Reason: The finite element method has many concepts and a jungle of details. This learning strategy minimizes the mixing of ideas, concepts, and technical details. # Approximation in vector spaces # Approximation set-up General idea of finding an approximation u(x) to some given f(x): $$u(x) = \sum_{i=0}^{N} c_i \psi_i(x)$$ wh ere - \bullet $\psi_i(x)$ are prescribed functions - ullet $c_{i},\ i=0,\ldots,N$ are unknown coefficients to be determined # How to determine the coefficients? We shall address three approaches: - The least squares method - The projection (or Galerkin) method - The interpolation (or collocation) method # Underlying motivation for our notation Our mathematical framework for doing this is phrased in a way such that it becomes easy to understand and use the FEniCS software package for finite element computing. # Approximation of planar vectors; problem Given a vector f = (3, 5), find an approximation to f directed along a given line. # Approximation of planar vectors; vector space terminology $$V=\operatorname{\mathsf{span}}\left\{oldsymbol{\psi}_0 ight\}$$ - ullet ψ_0 is a basis vector in the space V - Seek $u = c_0 \psi_0 \in V$ - ullet Determine c_0 such that $oldsymbol{u}$ is the "best" approximation to $oldsymbol{f}$ - Visually, "best" is obvious ### Define - the error e = f u - ullet the (Eucledian) scalar product of two vectors: (u,v) - the norm of e: $||e|| = \sqrt{(e,e)}$ # The least squares method; principle - Idea: find c_0 such that ||e|| is minimized - Mathematical convenience: minimize $E = ||e||^2$ $$\frac{\partial E}{\partial c_0} = 0$$ # The least squares method; calculations $$E(c_0) = (e, e) = (f - u, (f - u)) = (f - c_0\psi_0, f - c_0\psi_0)$$ = $(f, f) - 2c_0(f, \psi_0) + c_0^2(\psi_0, \psi_0)$ $$\frac{\partial E}{\partial c_0} = -2(\mathbf{f}, \psi_0) + 2c_0(\psi_0, \psi_0) = 0 \tag{1}$$ $$c_0 = \frac{(f, \psi_0)}{(\psi_0, \psi_0)} = \frac{3a + 5b}{a^2 + b^2}$$ Observation to be used later: the vanishing derivative (1) can be alternatively written as $\frac{1}{2}$ $$(e, \psi_0) = 0$$ # The projection (or Galerkin) method - Last slide: min E is equivalent with $(e, \psi_0) = 0$ - $(e, \psi_0) = 0$ implies $(e, \mathbf{v}) = 0$ for any $\mathbf{v} \in V$ - That is: instead of using the least-squares principle, we can require that e is orthogonal to $any \ v \in V$ (visually clear, but can easily be computed too) - ullet Precise math: find c_0 such that $(oldsymbol{e},oldsymbol{v})=0, \quad orall oldsymbol{v} \in V$ - Equivalent (see notes): find c_0 such that $(e, \psi_0) = 0$ - Insert $e = f c_0 \psi_0$ and solve for c_0 - ullet Same equation for c_0 and hence same solution as in the least squares method # Approximation of general vectors Given a vector f, find an approximation $u \in V$: $$V = \operatorname{span} \{\psi_0, \dots, \psi_N\}$$ We have a set of linearly independent basis vectors ψ_0,\dots,ψ_N . Any $u\in V$ can then be written as $$u = \sum_{j=0}^{N} c_j \psi_j$$ # The least squares method Idea: find c_0, \ldots, c_N such that $E = ||e||^2$ is minimized, e = f - u. $$E(c_0, ..., c_N) = (e, e) = (f - \sum_j c_j \psi_j, f - \sum_j c_j \psi_j)$$ $$= (f, f) - 2 \sum_{j=0}^{N} c_j (f, \psi_j) + \sum_{p=0}^{N} \sum_{q=0}^{N} c_p c_q (\psi_p, \psi_q)$$ $$\frac{\partial E}{\partial c_i} = 0, \quad i = 0, \dots, N$$ After some work we end up with a linear system $$\sum_{j=0}^{N} A_{i,j} c_j = b_i, \quad i = 0, \dots, N$$ (2) $$A_{i,j} = (\psi_i, \psi_j) \tag{3}$$ # The projection (or Galerkin) method Can be shown that minimizing ||e|| implies that e is orthogonal to all $\mathbf{v} \in V$: $$(e, \mathbf{v}) = 0, \quad \forall \mathbf{v} \in V$$ which implies that e most be orthogonal to each basis vector: $$(e, \psi_i) = 0, \quad i = 0, ..., N$$ This orthogonality condition is the principle of the projection (or Galerkin) method. Leads to the same linear system as in the least squares method. # Approximation of functions Let V be a function space spanned by a set of basis functions ψ_0, \dots, ψ_N , $$V = \operatorname{span} \{\psi_0, \dots, \psi_N\}$$ Find $u \in V$ as a linear combination of the basis functions: $$u = \sum_{j \in \mathcal{I}_{\sigma}} c_j \psi_j, \quad \mathcal{I}_{\sigma} = \{0, 1, \dots, N\}$$ # The least squares method can be extended from vectors to functions As in the vector case, minimize the (square) norm of the error, E, with respect to the coefficients $c_i, j \in \mathcal{I}_s$: $$E = (e, e) = (f - u, f - u) = (f(x) - \sum_{j \in \mathcal{I}_s} c_j \psi_j(x), f(x) - \sum_{j \in \mathcal{I}_s} c_j \psi_j(x))$$ $$\frac{\partial E}{\partial c_i} = 0, \quad i = \in \mathcal{I}_s$$ But what is the scalar product when ψ_i is a function? $$(f,g) = \int_{\Omega} f(x)g(x) \, dx$$ (natural extension from Eucledian product $(u, v) = \sum_i u_i v_i$) # The least squares method; details $$E(c_0, ..., c_N) = (e, e) = (f - u, f - u)$$ = $(f, f) - 2 \sum_{j \in \mathcal{I}_s} c_j(f, \psi_i) + \sum_{\rho \in \mathcal{I}_s} \sum_{q \in \mathcal{I}_s} c_\rho c_q(\psi_\rho, \psi_q)$ $$\frac{\partial E}{\partial c_i} = 0, \quad i = \in \mathcal{I}_s$$ The computations are identical to the vector case, and consequently we get a linear system $$\sum_{i\in\mathcal{I}_s}^N A_{i,j}c_j = b_i, \ i\in\mathcal{I}_s, \quad A_{i,j} = (\psi_i,\psi_j), \ b_i = (f,\psi_i)$$ # The projection (or Galerkin) method As before, minimizing (e, e) is equivalent to $$(e, \psi_i) = 0, \quad i \in \mathcal{I}_s$$ which is equivalent to $$(e, v) = 0, \forall v \in V$$ which is the projection (or Galerkin) method The algebra is the same as in the multi-dimensional vector case, and we get the same linear system as arose from the least squares method. # Example: linear approximation; problem ### Problem Approximate a parabola $f(x) = 10(x-1)^2 - 1$ by a straight line. $$V = \operatorname{span} \{1, x\}$$ That is, $\psi_0(x)=1$, $\psi_1(x)=x$, and N=1. We seek $$u = c_0\psi_0(x) + c_1\psi_1(x) = c_0 + c_1x$$ # Example: linear approximation; solution $$A_{0,0} = (\psi_0, \psi_0) = \int_1^2 1 \cdot 1 \, dx = 1$$ $$A_{0,1} = (\psi_0, \psi_1) = \int_1^2 1 \cdot x \, dx = 3/2$$ $$A_{1,0} = A_{0,1} = 3/2$$ $$A_{1,1} = (\psi_1, \psi_1) = \int_1^2 x \cdot x \, dx = 7/3$$ $$b_1 = (f, \psi_0) = \int_1^2 (10(x - 1)^2 - 1) \cdot 1 \, dx = 7/3$$ $$b_2 = (f, \psi_1) = \int_1^2 (10(x - 1)^2 - 1) \cdot x \, dx = 13/3$$ Solution of 2x2 linear system: $$c_0 = -38/3$$, $c_1 = 10$, $u(x) = 10x - \frac{38}{3}$ # Example: linear approximation; plot # Implementation of the least squares method; ideas Consider symbolic computation of the linear system, where - f(x) is given as a sympy expression f (involving the symbol x), - ullet psi is a list of $\{\psi_i\}_{i\in\mathcal{I}_s}$ - ullet Omega is a 2-tuple/list holding the domain Ω Carry out the integrations, solve the linear system, and return $u(x) = \sum_i c_i \psi_i(x)$ # Implementation of the least squares method; symbolic code Observe: symmetric coefficient matrix so we can halve the integrations. # Improved code if symbolic integration fails - If sp.integrate fails, it returns an sp.Integral object. We can test on this object and fall back on numerical integration. - We can include a boolean argument symbolic to explicitly choose between symbolic and numerical computing. # Implementation of the least squares method; plotting ``` Compare f and u visually: def comparison_plot(f, u, Omega, filename='tmp.pdf'): x = sp Symbol('x') # Turn f and u to ordinary Python functions f = sp.lambdify([x], t, modules="numpy") u = sp.lambdify([x], u, modules="numpy") resolution = 401 # no of points in plot xcoor = linspace(Omega[0], Omega[1], resolution) exact = f(xcoor) approx = u(xcoor) plot(xcoor, approx) hold('on') plot(xcoor, exact) legend(['approximation', 'exact']) savefig(filename) All code in module approx1D.py ``` # ``` What if we add $\psi_2 = x^2$ to the space V? That is, approximating a parabola by any parabola? (Hopefully we get the exact parabola!) >>> from approxiD import * >>> x = sp. Symbol(*x*) >>> f = 10*(x*-1)***2-1 >>> u, c = least_squares(f=f, psi=[1, x, x**2], 0mega=[1, 2]) >>> print u 10*x**2 - 20*x + 9 >>> print sp. expand(f) 10*x**2 - 20*x + 9 ``` Perfect approximation; parabola approximating parabola # Perfect approximation; the general result - What if we use $\psi_i(x) = x^i$ for i = 0, ..., N = 40? - The output from least_squares is $c_i = 0$ for i > 2 ### General result If $f \in V$, least squares and projection/Galerkin give u = f. # Perfect approximation; proof of the general result If $f \in V$, $f = \sum_{j \in \mathcal{I}_s} d_j \psi_j$, for some $\{d_i\}_{i \in \mathcal{I}_s}$. Then $$b_i = (f, \psi_i) = \sum_{j \in \mathcal{I}_s} d_j(\psi_j, \psi_i) = \sum_{j \in \mathcal{I}_s} d_j A_{i,j}$$ The linear system $\sum_j A_{i,j} c_j = b_i, \ i \in \mathcal{I}_s$, is then $$\sum_{j \in \mathcal{I}_s} c_j A_{i,j} = \sum_{j \in \mathcal{I}_s} d_j A_{i,j}, \quad i \in \mathcal{I}_s$$ which implies that $c_i = d_i$ for $i \in \mathcal{I}_s$ and u is identical to f. # Finite-precision/numerical computations; question The previous
computations were symbolic. What if we solve the linear system numerically with standard arrays? That is, f is parabola, but we approximate with $$u(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots + c_N x^N$$ We expect $c_2 = c_3 = \cdots = c_N = 0$ since $f \in V$ implies u = f. Will we get this result with finite precision computer arithmetic? # Finite-precision/numerical computations; results | exact | sympy | numpy 32 | numpy 64 | |-------|--------|----------|----------| | 9 | 9.62 | 5.57 | 8.98 | | -20 | -23.39 | -7.65 | -19.93 | | 10 | 17.74 | -4.50 | 9.96 | | 0 | -9.19 | 4.13 | -0.26 | | 0 | 5.25 | 2.99 | 0.72 | | 0 | 0.18 | -1.21 | -0.93 | | 0 | -2.48 | -0.41 | 0.73 | | 0 | 1.81 | -0.013 | -0.36 | | 0 | -0.66 | 0.08 | 0.11 | | 0 | 0.12 | 0.04 | -0.02 | | 0 | -0.001 | -0.02 | 0.002 | | | | | | - Column 2: matrix and lu_solve from sympy.mpmath.fp - Column 3: numpy matrix with 4-byte floats - Column 4: numpy matrix with 8-byte floats # The ill-conditioning is due to almost linearly dependent basis functions for large $\,N\,$ - Significant round-off errors in the numerical computations (!) - But if we plot the approximations they look good (!) Source or problem: the \mathbf{x}^i functions become almost linearly dependent as i grows: # Ill-conditioning: general conclusions - Almost linearly dependent basis functions give almost singular matrices - Such matrices are said to be *ill conditioned*, and Gaussian elimination is severely affected by round-off errors - The basis $1, x, x^2, x^3, x^4, \dots$ is a bad basis - ullet Polynomials are fine as basis, but the more orthogonal they are, $(\psi_i,\psi_i)pprox 0$, the better # Fourier series approximation; problem and code Let's approximate f by a typical Fourier series expansion $$u(x) = \sum_i a_i \sin i\pi x = \sum_{j=0}^N c_j \sin((j+1)\pi x)$$ which means that $$V = \operatorname{span} \left\{ \sin \pi x, \sin 2\pi x, \dots, \sin (N+1)\pi x \right\}$$ Computations using the least_squares function: ``` N = 3 from sympy import sin, pi psi = [sin(pi*(i+1)*x) for i in range(N+1)] f = 10*(x-1)**2 - 1 Omega = [0, i] u, c = least_squares(f, psi, Omega) comparison_plot(f, u, Omega) ``` # Fourier series approximation; improvements - \bullet Considerably improvement with ${\it N}=11$, but still undesired discrepancy at x=0 and x=1 - Possible remedy: add a term that leads to correct boundary values $$u(x) = f(0)(1-x) + xf(1) + \sum_{j \in \mathcal{I}_s} c_j \psi_j(x)$$ The extra terms ensure u(0)=f(0) and u(1)=f(1) and is a strikingly good help to get a good approximation! # Orthogonal basis functions This choice of sine functions as basis functions is popular because - the basis functions are orthogonal: $(\psi_i, \psi_i) = 0$ - implying that $A_{i,j}$ is a diagonal matrix - implying that we can solve for $c_i = 2 \int_0^1 f(x) \sin((i+1)\pi x) dx$ - ullet and what we get is the standard Fourier sine series of f In general, for an orthogonal basis, $A_{i,j}$ is diagonal and we can easily solve for c_i : $$c_i = \frac{b_i}{A_{i,i}} = \frac{(f, \psi_i)}{(\psi_i, \psi_i)}$$ # Function for the least squares method with orthogonal basis functions ``` def least_squares_orth(f, psi, Omega): N = len(psi) - 1 A = [0]*(N+1) b = [0]*(N+1) x = sp.Symbol('x') for i in range(N+1): A[i] = sp integrate(psi[i]**2, (x, Omega[0], Omega[1])) b[i] = sp integrate(psi[i]*f, (x, Omega[0], Omega[1])) c = [b[i]/A[i] for i in range(len(b))] u = 0 for i in range(len(psi)): u + c[i]*psi[i] return u, c ``` # Function for the least squares method with orthogonal basis functions; symbolic and numerical integration ### Extensions: - We can choose between symbolic or numerical integration (symbolic argument). - If symbolic, we fall back on numerical integration after failure (sp.Integral is returned from sp.integrate). # The collocation or interpolation method; implementation points holds the interpolation/collocation points ``` def interpolation(f, psi, points): N = len(psi) - 1 A = sp.zeros((N+1, N+1)) b = sp.zeros((N+1, 1)) x = sp.Symbol('x') # Turn psi and f into Python functions psi = [sp. lambdify([xl], psi[i]) for i in range(N+1)] f = sp lambdify([xl], ff) for i in range(N+1): for j in range(N+1): A[i,j] = psi[j](points[i]) c = A.LUsolve(b) u = 0 for i in range(len(psi)): u += c[i,0]*psi[j](x) return u ``` # Lagrange polynomials; motivation and ideas ### Motivation - The interpolation/collocation method avoids integration - ullet With a diagonal matrix $A_{i,j}=\psi_j(x_i)$ we can solve the linear system by hand The Lagrange interpolating polynomials ψ_i have the property that $$\psi_i(x_j) = \delta_{ij}, \quad \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$ Hence, $c_i = f(x_i)$ and $$u(x) = \sum_{j \in \mathcal{I}_s} f(x_i) \psi_i(x)$$ Lagrange polynomials and interpolation/collocation look convenient # The collocation or interpolation method; ideas and math Here is another idea for approximating f(x) by $u(x) = \sum_i c_i \psi_i$: - Force $u(x_i) = f(x_i)$ at some selected *collocation* points $\{x_i\}_{i \in \mathcal{T}_*}$ - Then u is said to interpolate f - The method is known as interpolation or collocation $$u(x_i) = \sum_{j \in \mathcal{I}_s} c_j \psi_j(x_i) = f(x_i) \quad i \in \mathcal{I}_s, N$$ This is a linear system with no need for integration: $$\sum_{j\in\mathcal{I}_s} A_{i,j}c_j = b_i, \quad i\in\mathcal{I}_s$$ (5) $$A_{i,j} = \psi_j(x_i) \tag{6}$$ $$b_i = f(x_i) \tag{7}$$ No symmetric matrix: $\psi_i(x_i) \neq \psi_i(x_i)$ in general # The collocation or interpolation method; approximating a parabola by linear functions - Potential difficulty: how to choose x_i ? - The results are sensitive to the points! # Lagrange polynomials; formula and code $$\psi_i(x) = \prod_{j=0, j \neq i}^{N} \frac{x - x_j}{x_i - x_j} = \frac{x - x_0}{x_i - x_0} \cdots \frac{x - x_{i-1}}{x_i - x_{i-1}} \frac{x - x_{i+1}}{x_i - x_{i+1}} \cdots \frac{x - x_N}{x_i - x_N}$$ # Lagrange polynomials; remedy for strong oscillations The oscillations can be reduced by a more clever choice of interpolation points, called the *Chebyshev nodes*: $$x_i = \frac{1}{2}(a+b) + \frac{1}{2}(b-a)\cos\left(\frac{2i+1}{2(N+1)}\rho i\right), \quad i = 0..., N$$ on an interval [a, b]. In the finite element method we use basis functions with local support - Local support: $\psi_i(x) \neq 0$ for x in a small subdomain of Ω - Typically hat-shaped - u(x) based on these ψ_i is a piecewise polynomial defined over many (small) subdomains - ullet We introduce $arphi_i$ as the name of these finite element hat functions (and for now choose $\psi_i = \varphi_i$) # Elements and nodes Split Ω into non-overlapping subdomains called *elements*: $$\Omega = \Omega^{(0)} \cup \cdots \cup \Omega^{(N_e)}$$ On each element, introduce points called *nodes*: x_0, \ldots, x_{N_n} - The finite element basis functions are named $\varphi_i(x)$ - $ullet arphi_i = 1$ at node i and 0 at all other nodes - ullet $arphi_i$ is a Lagrange polynomial on each element - ullet For nodes at the boundary between two elements, $arphi_i$ is made up of a Lagrange polynomial over each element the node numbers in each element # Interpretation of the coefficients c_i Important property: c_i is the value of u at node i, x_i : $$u(x_i) = \sum_{j \in \mathcal{I}_s} c_j \varphi_j(x_i) = c_i \varphi_i(x_i) = c_i$$ because $\varphi_i(x_i) = 0$ if $i \neq j$ and $\varphi_i(x_i) = 1$ # Properties of the basis functions - $\varphi_i(x) \neq 0$ only on those elements that contain global node i - $\varphi_i(x)\varphi_j(x) \neq 0$ if and only if i and j are global node numbers in the same element Since $A_{i,j} = \int \varphi_i \varphi_j \, \mathrm{d}x$, most of the elements in the coefficient matrix will be zero____ # How to construct quadratic φ_i (P2 elements) - Associate Lagrange polynomials with the nodes in an element - When the polynomial is 1 on the element boundary, combine it with the polynomial in the neighboring element that is also 1 at the same point # Example on linear φ_i (P1 elements) $$\varphi_i(x) = \begin{cases} 0, & x < x_{i-1} \\ (x - x_{i-1})/h & x_{i-1} \le x < x_i \\ 1 - (x - x_i)/h, & x_i \le x < x_{i+1} \\ 0, & x \ge x_{i+1} \end{cases}$$ # Example on cubic φ_i (P3 elements) # Calculating the linear system for c_i # Computing a specific matrix entry (1) $A_{2,3}=\int_{\Omega} arphi_2 arphi_3 dx\colon arphi_2 arphi_3 eq 0$ only over element 2. There, $$\varphi_3(x) = (x - x_2)/h, \quad \varphi_2(x) = 1 - (x - x_2)/h$$ $$A_{2,3} = \int_{\Omega} \varphi_2 \varphi_3 \, \mathrm{d}x = \int_{x_2}^{x_3} \left(1 - \frac{x - x_2}{h} \right) \frac{x - x_2}{h} \, \mathrm{d}x = \frac{h}{6}$$ # Computing a specific matrix entry (2) $$A_{2,2} = \int_{x_1}^{x_2} \left(\frac{x - x_1}{h} \right)^2 dx + \int_{x_2}^{x_3} \left(1 - \frac{x - x_2}{h} \right)^2 dx = \frac{2h}{3}$$ # Calculating a general row in the matrix; figure $$A_{i,i-1} = \int_{\Omega} \varphi_i \varphi_{i-1} \, \mathrm{d}x = ?$$ # Calculating a general row in the matrix; details $$\begin{split} A_{i,i-1} &= \int_{\Omega} \varphi_i \varphi_{i-1} \, \mathrm{d} \mathbf{x} \\ &= \underbrace{\int_{\mathbf{x}_{i-1}}^{\mathbf{x}_{i-1}} \varphi_i \varphi_{i-1} \, \mathrm{d} \mathbf{x}}_{\varphi_i = 0} + \underbrace{\int_{\mathbf{x}_{i-1}}^{\mathbf{x}_i} \varphi_i \varphi_{i-1} \, \mathrm{d} \mathbf{x}}_{\varphi_{i-1} = 0} + \underbrace{\int_{\mathbf{x}_i}^{\mathbf{x}_{i+1}} \varphi_i \varphi_{i-1} \, \mathrm{d} \mathbf{x}}_{\varphi_{i-1} = 0} \\ &= \underbrace{\int_{\mathbf{x}_{i-1}}^{\mathbf{x}_i} \underbrace{\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)}_{\varphi_i(\mathbf{x})} \underbrace{\left(1 - \frac{\mathbf{x} - \mathbf{x}_{i-1}}{h}\right)}_{\varphi_{i-1}(\mathbf{x})} \, \mathrm{d} \mathbf{x} = \frac{h}{6} \end{split}$$ - $A_{i,i+1} = A_{i,i-1}$ due to symmetry - $A_{i,i} = 2h/3$ (same calculation as for $A_{2,2}$) - $A_{0.0} = A_{N.N} = h/3$ (only one element) # Calculation of the right-hand side $$b_{i}
= \int_{\Omega} \varphi_{i}(x) f(x) dx = \int_{x_{i-1}}^{x_{i}} \frac{x - x_{i-1}}{h} f(x) dx + \int_{x_{i}}^{x_{i+1}} \left(1 - \frac{x - x_{i}}{h}\right) f(x)$$ Need a specific f(x) to do more... # Specific example with two elements; linear system and solution - f(x) = x(1-x) on $\Omega = [0,1]$ - ullet Two equal-sized elements [0,0.5] and [0.5,1] $$A = \frac{h}{6} \begin{pmatrix} 2 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \quad b = \frac{h^2}{12} \begin{pmatrix} 2 - 3h \\ 12 - 14h \\ 10 - 17h \end{pmatrix}$$ $$c_0 = \frac{h^2}{6}$$, $c_1 = h - \frac{5}{6}h^2$, $c_2 = 2h - \frac{23}{6}h^2$ # Specific example with two elements; plot $$u(x) = c_0\varphi_0(x) + c_1\varphi_1(x) + c_2\varphi_2(x)$$ # Specific example with four elements; plot # Specific example: what about P2 elements? Recall: if $f \in V$, u becomes exact. When f is a parabola, any choice of P2 elements (1 or many) will give u = fexactly. The same is true for P3, P4, ... elements since all of them can represent a 2nd-degree polynomial exactly. # Assembly of elementwise computations # Split the integrals into elementwise integrals $$A_{i,j} = \int_{\Omega} \varphi_i \varphi_j dx = \sum_{e} \int_{\Omega(e)} \varphi_i \varphi_j dx, \quad A_{i,j}^{(e)} = \int_{\Omega(e)} \varphi_i \varphi_j dx$$ Important observations: - $A_{i,j}^{(e)} \neq 0$ if and only if i and j are nodes in element e (otherwise no overlap between the basis functions) All the nonzero elements in $A_{i,j}^{(e)}$ are collected in an element - ullet The element matrix has contributions from the $arphi_i$ functions associated with the nodes in element - It is convenient to introduce a local numbering of the nodes in an element: $0, 1, \ldots, d$ # The element matrix and local vs global node numbers $$\tilde{A}^{(e)} = \{\tilde{A}_{r,s}^{(e)}\}, \quad \tilde{A}_{r,s}^{(e)} = \int_{\Omega^{(e)}} \varphi_{q(e,r)} \varphi_{q(e,s)} dx, \quad r,s \in I_d = \{0,\ldots,d\}$$ - r, s run over local node numbers in an element: $0, 1, \ldots, d$ - i,j run over global node numbers $i,j \in \mathcal{I}_s = \{0,1,\ldots,N\}$ - i = q(e, r): mapping of local node number r in element e to the global node number i (math equivalent to i=elements[e][r]) - Add $\tilde{A}_{r,s}^{(e)}$ into the global $A_{i,i}$ (assembly) $$A_{q(e,r),q(e,s)} := A_{q(e,r),q(e,s)} + \tilde{A}_{r,s}^{(e)}, \quad r,s \in I_d$$ $b_{q(e,r)} := b_{q(e,r)} + \tilde{b}_{r}^{(e)}, \quad r, s \in I_{d}$ # Mapping to a reference element $\vec{A}_{r,s}^{(e)} = \int_{\Omega^{(e)}} \varphi_{q(e,r)}(x) \varphi_{q(e,s)}(x) dx = \int_{x_L}^{x_R} \varphi_{q(e,r)}(x) \varphi_{q(e,s)}(x) dx$ we now map $[x_L, x_R]$ to a standardized reference element domain [-1,1] with local coordinate X We use affine mapping: linear stretch of $$X \in [-1,1]$$ to $x \in [x_L,x_R]$ $$x = \frac{1}{2}(x_L + x_R) + \frac{1}{2}(x_R - x_L)X$$ or rewritten as $$x = x_m + \frac{1}{2}hX, \qquad x_m = (x_L + x_R)/2, \quad h = x_R - x_L$$ # Integral transformation Reference element integration: just change integration variable from x to X. Introduce local basis function $$\tilde{\varphi}_r(X) = \varphi_{q(e,r)}(x(X))$$ $$\tilde{A}_{r,s}^{(e)} = \int_{\Omega^{(e)}} \varphi_{q(e,r)}(x) \varphi_{q(e,s)}(x) dx = \int_{-1}^{1} \tilde{\varphi}_{r}(X) \tilde{\varphi}_{s}(X) \underbrace{\frac{dx}{dX}}_{\det J = h/2} dX = \int_{-1}^{1} \tilde{\varphi}_{r}(X) \tilde{\varphi}_{s}(X) \underbrace{\frac{dx}{dX}}_{\det J = h/2} dX = \int_{-1}^{1} \tilde{\varphi}_{r}(X) \tilde{\varphi}_{s}(X) \underbrace{\frac{dx}{dX}}_{\det J = h/2} dX = \underbrace{\int_{-1}^{1} \tilde{\varphi}_{r}(X) \tilde{\varphi}_{s}(X)}_{\det \tilde{\varphi}_{r}(X)}_{\det J = h/2} dX = \underbrace{\int_{-1}^{1} \tilde{\varphi}_{r}(X)}_{\det J}_{\det J$$ $$\tilde{b}_r^{(e)} = \int_{\Omega^{(e)}} f(x) \varphi_{q(e,r)}(x) dx = \int_{-1}^1 f(x(X)) \tilde{\varphi}_r(X) \det J \, dX$$ # Advantages of the reference element - Always the same domain for integration: [-1, 1] - ullet We only need formulas for $ilde{arphi}_r(X)$ over one element (no piecewise polynomial definition) - \bullet $\tilde{\varphi}_r(X)$ is the same for all elements: no dependence on element length and location, which is "factored out" in the mapping and $\det J$ # Standardized basis functions for P1 elements $$\tilde{\varphi}_0(X) = \frac{1}{2}(1 - X) \tag{8}$$ $$\tilde{\varphi}_1(X) = \frac{1}{2}(1+X) \tag{9}$$ Note: simple polynomial expressions (no need to consider piecewisely defined functions) # Standardized basis functions for P2 elements $$\tilde{\varphi}_0(X) = \frac{1}{2}(X - 1)X$$ (10) $$\tilde{\varphi}_1(X) = 1 - X^2$$ (11) $$\tilde{\rho}_1(X) = 1 - X^2 \tag{11}$$ $$\tilde{\varphi}_2(X) = \frac{1}{2}(X+1)X$$ (12) Easy to generalize to arbitrary order! # How to find the polynomial expressions? Three alternatives: - Map the global basis function $\varphi_i(x)$ over an element to X - ② Compute $\tilde{\varphi}_r(X)$ from scratch using - a given polynomial order d - $\tilde{\varphi}_r(X) = 1 \text{ at local node } 1$ - $\tilde{\varphi}_r(X) = 1$ at all other local nodes - Use formulas for Lagrange interpolating polynomials on the el em en t # Integration over a reference element; element matrix P1 elements and f(x) = x(1-x). $$\begin{split} \tilde{A}_{0,0}^{(e)} &= \int_{-1}^{1} \tilde{\varphi}_{0}(X) \tilde{\varphi}_{0}(X) \frac{h}{2} dX \\ &= \int_{-1}^{1} \frac{1}{2} (1 - X) \frac{1}{2} (1 - X) \frac{h}{2} dX = \frac{h}{8} \int_{-1}^{1} (1 - X)^{2} dX = \frac{h}{3} \\ \tilde{A}_{1,0}^{(e)} &= \int_{-1}^{1} \tilde{\varphi}_{1}(X) \tilde{\varphi}_{0}(X) \frac{h}{2} dX \end{split}$$ (13 $$\begin{split} \widetilde{A}_{1,0}^{(e)} &= \int_{-1}^{1} \widetilde{\varphi}_{1}(X) \widetilde{\varphi}_{0}(X) \frac{h}{2} dX \\ &= \int_{-1}^{1} \frac{1}{2} (1+X) \frac{1}{2} (1-X) \frac{h}{2} dX = \frac{h}{8} \int_{-1}^{1} (1-X^{2}) dX = \frac{h}{6} \end{split}$$ (1) $$\tilde{A}_{0,1}^{(e)} = \tilde{A}_{1,0}^{(e)} \tag{15}$$ $$\begin{split} \tilde{A}_{0,1}^{(e)} &= \tilde{A}_{1,0}^{(e)} \\ \tilde{A}_{1,1}^{(e)} &= \int_{-1}^{1} \tilde{\varphi}_1(X) \tilde{\varphi}_1(X) \frac{h}{2} dX \end{split}$$ ## Integration over a reference element; element vector $$\tilde{b}_{0}^{(e)} = \int_{-1}^{1} f(x(X)) \tilde{\varphi}_{0}(X) \frac{h}{2} dX = \int_{-1}^{1} (x_{m} + \frac{1}{2}hX) (1 - (x_{m} + \frac{1}{2}hX)) \frac{1}{2} (1 - X) \frac{h}{2} dX = -\frac{1}{24} h^{3} + \frac{1}{6} h^{2} x_{m} - \frac{1}{12} h^{2} - \frac{1}{2} h x_{m}^{2} + \frac{1}{2} h x_{m}$$ $$\tilde{b}_{1}^{(e)} = \int_{-1}^{1} f(x(X)) \tilde{\varphi}_{1}(X) \frac{h}{2} dX = \int_{-1}^{1} (x_{m} + \frac{1}{2}hX) (1 - (x_{m} + \frac{1}{2}hX)) \frac{1}{2} (1 + X) \frac{h}{2} dX = -\frac{1}{24} h^{3} - \frac{1}{6} h^{2} x_{m} + \frac{1}{12} h^{2} - \frac{1}{2} h x_{m}^{2} + \frac{1}{2} h x_{m}$$ (18) x_m : element midpoint. # Implementation Coming functions appear in fe_approx1D.py Compute the element matrix - Functions can operate in symbolic or numeric mode - The code documents all steps in finite element calculations! ``` Compute finite element basis functions in the reference ``` Tedious calculations! Let's use symbolic software >>> import sympy as sp >>> x, x_m, h, X = sp.symbols('x x_m h X') >>> sp.integrate(h/8*(1-X)**2, (X, -1, 1)) $\Rightarrow \Rightarrow x = x_m + h/2*X$ >>> sp.integrate(h/8*(1+X)*(1-X), (X, -1, 1)) >>> print sp.latex(b_0, mode='plain') - \frac{1}{24} h^{3} + \frac{1}{6} h^{2} x_{m} - \frac{1}{12} h^{2} + \half h x_{m}^{2} + \half h x_{m} >>> b_0 = sp.integrate(h/4*x*(1-x)*(1-X), (X, -1, 1)) >>> print b_0 -h**3/24 + h**2*x_m/6 - h**2/12 - h*x_m**2/2 + h*x_m/2 Can print out in LATEX too (convenient for copying into reports): ``` Compute finite element basis functions in the reference element Let φ̄_r(X) be a Lagrange polynomial of degree d: import sympy as sp import numpy as np def phir r(r, X, d): if isinstance(X, sp. Symbol): h - sp. Rational(1, d) # node spacing nodes = [2*i*h - 1 for i in range(d+1)] else: # assume I is numeric: use floats for nodes nodes = np. linspace(-1, 1, d*1) return Lagrange.polynomial(X, r, nodes) def Lagrange.polynomial(x, i, points): p = 1 for k in range(elne(points)): if k != i: p *= (x - points[k])/(points[i] - points[k]) return p def basis(d=1): """Beturn the complete basis.""" X = sp. Symbol.(X*) phi = [phi.r(x*), d) for r in range(d+1)] ``` # def element_vector(f, phi, Omega_e, symbolic=True): n = len(phi) b_e = ep zeros((n, 1)) # Make f a function of I X = sp.Symbol('X') if symbolic: h = sp.Symbol('X') else: h = Omega_e[i] - Omega_e[i] x = (Omega_e[i] + Omega_e[i])/2 + h/2*X # mapping f = f.subs('X', x) # substitute mapping formula for x detJ = h/2 # dx/dI for r in range(n): b_e[r] = sp. integrate(f*phi[r]*detJ, (X, -1, 1)) return b_e Note f.subs('X', x): replace x by x(X) such that f contains X # ``` def assemble(nodes, elements, phi, f, symbolic=True): N_n, N_e = len(nodes), len(elements) zeros = sp.zeros if symbolic else np.zeros A = zeros((N_n, N_n)) b = zeros((N_n, 1)) for e in range(M_e): Omega_e = [nodes[elements[e] [0]], nodes[elements[e] [-i]]] A_e = element_matrix(phi, Omega_e, symbolic) b_e = element_vector(f, phi, Omega_e, symbolic) for r in range(len(elements[e])): for s in range(len(elements[e])): A (elements[e] [r], elements[e] [s]] += A_e[r,s] b[elements[e][r]] += b_e[r] return A, b ``` ``` if symbolic: c = A.LUsolve(b) # sympy arrays, symbolic Gaussian elim. else: c = np.linalg.solve(A, b) # numpy arrays, numerical solve Note: the symbolic computation of A, b and A.LUsolve(b) can be very tedious. ``` # The structure of the coefficient matrix Note: do this by hand to understand what is going on! # General result: the coefficient matrix is sparse - Sparse = most of the entries are zeros - Below: P1 elements # Exemplifying the sparsity for P2 elements $$A = \frac{h}{30} \begin{pmatrix} 4 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 16 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & 8 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 16 & 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & 8 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 &
0 & 2 & 16 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 16 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & 8 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 16 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & 4 & J \end{pmatrix}$$ # Matrix sparsity pattern for regular/random numbering of P1 elements - Left: number nodes and elements from left to right - Right: number nodes and elements arbitrarily # Matrix sparsity pattern for regular/random numbering of P3 elements - Left: number nodes and elements from left to right - Right: number nodes and elements arbitrarily # Sparse matrix storage and solution The minimum storage requirements for the coefficient matrix $A_{i,j}$: - P1 elements: only 3 nonzero entries per row - P2 elements: only 5 nonzero entries per row - P3 elements: only 7 nonzero entries per row - It is important to utilize sparse storage and sparse solvers - In Python: scipy.sparse package # Approximate $f \sim x^9$ by various elements; code Compute a mesh with N_e elements, basis functions of degree d, and approximate a given symbolic expression f(x) by a finite element expansion $u(x) = \sum_i c_i \varphi_i(x)$: ``` import sympy as sp from fe_approxID import approximate x = sp.Symbol('x') approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=4) approximate(f=x*(1-x)**8, symbolic=False, d=2, N_e=2) approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=5) approximate(f=x*(1-x)**8, symbolic=False, d=1, N_e=6) ``` # Comparison of finite element and finite difference approximation - Finite difference approximation u_i of a function f(x): simply choose $u_i = f(x_i)$ - This is the same as $u \approx \sum_i c_i \varphi_i$ + interpolation (see next slide) - $u \approx \sum_i c_i \varphi_i$ + Galerkin/projection or least squares method: must derive and solve a linear system - ullet What is really the difference in the approximation u? # Interpolation/collocation with finite elements Let $\{x_i\}_{i\in\mathcal{I}_s}$ be the nodes in the mesh. Collocation/interpolation means $$u(x_i) = f(x_i), i \in \mathcal{I}_s,$$ which translates to $$\sum_{j\in\mathcal{I}_s}c_j\varphi_j(x_i)=f(x_i),$$ but $\varphi_j(x_i)=0$ if $i\neq j$ so the sum collapses to one term $c_i\varphi_i(x_i)=c_i$, and we have the result $$c_i = f(x_i)$$ Same result as the standard finite difference approach, but finite elements define u also between the x_i points # Galerkin/project and least squares vs collocation/interpolation or finite differences - Scope: work with P1 elements - Use projection/Galerkin or least squares (equivalent) - Interpret the resulting linear system as finite difference equations The P1 finite element machinery results in a linear system where equation no \boldsymbol{i} is $$\frac{h}{6}(u_{i-1} + 4u_i + u_{i+1}) = (f, \varphi_i)$$ Note: - ullet We have used u_i for c_i to make notation similar to finite differences - The finite difference counterpart is just $u_i = f_i$ # Expressing the left-hand side in finite difference operator notation Rewrite the left-hand side of finite element equation no i: $$h(u_i + \frac{1}{6}(u_{i-1} - 2u_i + u_{i+1})) = [h(u + \frac{h^2}{6}D_x D_x u)]_i$$ This is the standard finite difference approximation of $$h(u+\frac{h^2}{6}u'')$$ # Treating the right-hand side; Trapezoidal rule $$(f,\varphi_i) = \int_{x_{i-1}}^{x_i} f(x) \frac{1}{h} (x - x_{i-1}) dx + \int_{x_i}^{x_{i+1}} f(x) \frac{1}{h} (1 - (x - x_i)) dx$$ Cannot do much unless we specialize f or use *numerical integration*. Trapezoidal rule using the nodes: $$(f,\varphi_i) = \int_{\Omega} f\varphi_i dx \approx h \frac{1}{2} (f(x_0)\varphi_i(x_0) + f(x_N)\varphi_i(x_N)) + h \sum_{j=1}^{N-1} f(x_j)\varphi_i(x_j)$$ $\varphi_i(x_i) = \delta_{ii}$, so this formula collapses to one term: $$(f,\varphi_i)\approx hf(x_i), \quad i=1,\ldots,N-1.$$ Same result as in collocation (interpolation) and the finite difference method! # Finite element approximation vs finite differences With Trapezoidal integration of (f, φ_i) , the finite element method essentially solve $$u + \frac{h^2}{6}u'' = f$$, $u'(0) = u'(L) = 0$, by the finite difference method $$[u+\frac{h^2}{6}D_XD_Xu=f]_i$$ With Simpson integration of (f, φ_i) we essentially solve $$[u+\frac{h^2}{6}D_x D_x u=\bar{f}]_i,$$ where $$\bar{f}_i = \frac{1}{3}(f_{i-1/2} + f_i + f_{i+1/2})$$ Note: as $h \to 0$, $hu'' \to 0$ and $\bar{f}_i \to f_i$. ## Limitations of the nodes and element concepts So far, - Nodes: points for defining φ_i and computing u values - Elements: subdomain (containing a few nodes) - This is a common notion of nodes and elements One problem: - Our algorithms need nodes at the element boundaries - This is often not desirable, so we need to throw the nodes and elements arrays away and find a more generalized element concept # Treating the right-hand side; Simpson's rule $$\int_{\Omega} g(x)dx \approx \frac{h}{6} \left(g(x_0) + 2 \sum_{j=1}^{N-1} g(x_j) + 4 \sum_{j=0}^{N-1} g(x_{j+\frac{1}{2}}) + f(x_{2N}) \right),$$ Our case: $g=f\varphi_i$. The sums collapse because $\varphi_i=0$ at most of the points. $$(f,\varphi_i)pprox rac{h}{3}(f_{i- rac{1}{2}}+f_i+f_{i+ rac{1}{2}})$$ Conclusions: - While the finite difference method just samples f at x_i, the finite element method applies an average (smoothing) of f around x_i - ullet On the left-hand side we have a term $\sim hu''$, and u'' also contribute to smoothing - There is some inherent smoothing in the finite element method # Making finite elements behave as finite differences - Can we adjust the finite element method so that we do not get the extra hu'' smoothing term and averaging of f? - This allows finite elements to inherit (desired) properties of finite differences Result: - Compute all integrals by the Trapezoidal method and P1 elements - Specifically, the coefficient matrix becomes diagonal ("lumped") - no linear system (!) - ullet Loss of accuracy? The Trapezoidal rule has error $\mathcal{O}(h^2)$, the same as the approximation error in P1 elements # The generalized element concept has cells, vertices, nodes, and degrees of freedom - We introduce *cell* for the subdomain that we up to now called element - A cell has *vertices* (interval end points) - Nodes are, almost as before, points where we want to compute unknown functions - ullet Degrees of freedom is what the c_j represent (usually function values at nodes) # The concept of a finite element - a reference cell in a local reference coordinate system - $oldsymbol{Q}$ a set of basis functions $ilde{arphi}_r$ defined on the cell - a set of degrees of freedom (e.g., function values) that uniquely determine the basis functions such that $\tilde{\varphi}_r=1$ for degree of freedom number r and $\tilde{\varphi}_r=0$ for all other degrees of freedom - a mapping between local and global degree of freedom numbers (dof map) - a geometric mapping of the reference cell onto to cell in the physical domain: $[-1,1] \Rightarrow [x_I,x_R]$ # Basic data structures: vertices, cells, dof_map - Cell vertex coordinates: vertices (equals nodes for P1 elements) - Element vertices: cells[e][r] holds global vertex number of local vertex nor in element e (same as elements for P1 elements) - dof_map[e,r] maps local dof r in element e to global dof number (same as elements for Pd elements) The assembly process now applies dof_map: ``` A[dof_map[e][r], dof_map[e][s]] += A_e[r,s] b[dof_map[e][r]] += b_e[r] ``` # # Example: P0 elements Example: Same mesh, but *u* is piecewise constant in each cell (P0 element). Same vertices and cells, but ``` dof_map = [[0], [1]] ``` May think of one node in the middle of each element. ### Note: We will hereafter work with cells, vertices, and dof_map. # A program with the fundamental algorithmic steps # Approximating a parabola by P0 elements The approximate function automates the steps in the previous ``` from fe_approxiD_numint import * x=sp.Symbol("x") for N_e in 4, 8: approximate(x*(i-x), d=0, N_e=N_e, Omega=[0,1]) ``` # Computing the error of the approximation; principles $$L^2 \text{ error: } ||e||_{L^2} = \left(\int_{\Omega} e^2 dx\right)^{1/2}$$ Accurate approximation of the integral: - Sample u(x) at many points in each element (call u_glob , returns x and u) - Use the Trapezoidal rule based on the samples - It is important to integrate u accurately over the elements - (In a finite difference method we would just sample the mesh point values) # Computing the error of the approximation; details ### Not We need a version of the Trapezoidal rule valid for non-uniformly spaced points: $$\int_{\Omega} g(x) dx \approx \sum_{j=0}^{n-1} \frac{1}{2} (g(x_j) + g(x_{j+1})) (x_{j+1} - x_j)$$ # How does the error depend on h and d? Theory and experiments show that the least squares or projection/Galerkin method in combination with $P\emph{d}$ elements of equal length \emph{h} has an error $$||e||_{L^2} = Ch^{d+1}$$ where C depends on f, but not on h or d. # Cubic Hermite polynomials; definition • Can we construct $\varphi_i(x)$ with continuous derivatives? Yes! Consider a reference cell [-1,1]. We introduce two nodes, X=-1 and X=1. The degrees of freedom are - ullet 0: value of function at X=-1 - 1: value of first derivative at X=-1 - ullet 2: value of function at X=1 - 3: value of first derivative at X=1 Derivatives as unknowns ensure the same $\varphi_i'(x)$ value at nodes and thereby continuous derivatives. # Cubic Hermite polynomials; derivation 4 constraints on $\tilde{\varphi}_r$ (1 for dof r, 0 for all others): $$ilde{arphi}_0(X_{(0)})=1$$, $ilde{arphi}_0(X_{(1)})=0$, $ilde{arphi}_0'(X_{(0)})=0$, $ilde{arphi}_0'(X_{(1)})=0$ • $$\tilde{\varphi}'_1(X_{(0)}) = 1$$, $\tilde{\varphi}'_1(X_{(1)}) = 0$, $\tilde{\varphi}_1(X_{(0)}) = 0$, $\tilde{\varphi}_1(X_{(1)}) = 0$ $$\bullet \ \ \tilde{\varphi}_2(X_{(1)})=1, \ \tilde{\varphi}_2(X_{(0)})=0, \ \tilde{\varphi}_2'(X_{(0)})=0, \ \tilde{\varphi}_2'(X_{(1)})=0$$ • $$\tilde{\varphi}_3'(X_{(1)}) = 1$$, $\tilde{\varphi}_3'(X_{(0)}) = 0$, $\tilde{\varphi}_3(X_{(0)}) = 0$,
$\tilde{\varphi}_3(X_{(1)}) = 0$ This gives 4 linear, coupled equations for each $\tilde{\varphi}_r$ to determine the 4 coefficients in the cubic polynomial # Cubic Hermite polynomials; result $$\tilde{\varphi}_0(X) = 1 - \frac{3}{4}(X+1)^2 + \frac{1}{4}(X+1)^3$$ (19) $$\tilde{\varphi}_1(X) = -(X+1)(1-\frac{1}{2}(X+1))^2 \tag{20}$$ $$\tilde{\varphi}_2(X) = \frac{3}{4}(X+1)^2 - \frac{1}{2}(X+1)^3 \tag{21}$$ $$\tilde{\varphi}_3(X) = -\frac{1}{2}(X+1)(\frac{1}{2}(X+1)^2 - (X+1)) \tag{22}$$ (23) # Numerical integration - $ullet \int_\Omega f arphi_i dx$ must in general be computed by numerical integration - Numerical integration is often used for the matrix too # Common form of a numerical integration rule $$\int_{-1}^{1} g(X)dX \approx \sum_{i=0}^{M} w_{i}g(\bar{X}_{i}),$$ wher - \bar{X}_i are integration points - w; are integration weights Different rules correspond to different choices of points and weights # The Midpoint rule Simplest possibility: the Midpoint rule, $$\int_{-1}^{1} g(X)dX \approx 2g(0), \quad \bar{X}_{0} = 0, \ w_{0} = 2,$$ Exact for linear integrands # Newton-Cotes rules apply the nodes - ullet ldea: use a fixed, uniformly distributed set of points in [-1,1] - The points often coincides with nodes - ullet Very useful for making $arphi_iarphi_j=0$ and get diagonal ("mass") matrices ("lumping") The Trapezoidal rule: $$\int_{-1}^{1} g(X)dX \approx g(-1) + g(1), \quad \bar{X}_{0} = -1, \ \bar{X}_{1} = 1, \ w_{0} = w_{1} = 1,$$ Simpson's rule: $$\int_{-1}^{1} g(X) dX \approx \frac{1}{3} (g(-1) + 4g(0) + g(1)),$$ wher # Gauss-Legendre rules apply optimized points - Optimize the location of points to get higher accuracy - Gauss-Legendre rules (quadrature) adjust points and weights to integrate polynomials exactly $$M=1: \quad \bar{X}_0=-\frac{1}{\sqrt{3}}, \ \bar{X}_1=\frac{1}{\sqrt{3}}, \ w_0=w_1=1$$ (24) $$M=2:$$ $\bar{X}_0=-\sqrt{\frac{3}{5}}, \ \bar{X}_0=0, \ \bar{X}_2=\sqrt{\frac{3}{5}}, \ w_0=w_2=\frac{5}{9}, \ w_1=\frac{8}{9}$ (25) - M = 1: integrates 3rd degree polynomials exactly - M=2: integrates 5th degree polynomials exactly - In general, M-point rule integrates a polynomial of degree 2M+1 exactly. See numint.py for a large collection of Gauss-Legendre rules. # Approximation of functions in 2D ### Extensibility of 1D ideas. All the concepts and algorithms developed for approximation of 1D functions f(x) can readily be extended to 2D functions f(x, y) and 3D functions f(x, y, z). Key formulas stay the same. # Quick overview of the 2D case Inner product in 2D: $$(f,g) = \int_{\Omega} f(x,y)g(x,y)dxdy$$ Least squares and project/Galerkin lead to a linear system $$\sum_{j \in \mathcal{I}_s} A_{i,j} c_j = b_i, \quad i \in \mathcal{I}_s$$ $$A_{i,j} = (\psi_i, \psi_j)$$ $$b_i = (f, \psi_i)$$ Challenge: How to construct 2D basis functions $\psi_i(x, y)$? # 2D basis functions as tensor products of 1D functions Use a 1D basis for x variation and a similar for y variation: $$V_x = \text{span}\{\hat{\psi}_0(x), \dots, \hat{\psi}_{N_x}(x)\}$$ (26) $$V_y = \text{span}\{\hat{\psi}_0(y), \dots, \hat{\psi}_{N_y}(y)\}$$ (27) The 2D vector space can be defined as a *tensor product* $V=V_x\otimes V_y$ with basis functions $$\psi_{p,q}(x,y) = \hat{\psi}_p(x)\hat{\psi}_q(y) \quad p \in \mathcal{I}_x, q \in \mathcal{I}_y.$$ # Tensor products Given two vectors $a=(a_0,\ldots,a_M)$ and $b=(b_0,\ldots,b_N)$ their outer tensor product, also called the dyadic product, is $p=a\otimes b$, defined through $$p_{i,j} = a_i b_j, \quad i = 0, \dots, M, \ j = 0, \dots, N.$$ Note: p has two indices (as a matrix or two-dimensional array) Example: 2D basis as tensor product of 1D spaces, $$\psi_{p,q}(x,y) = \hat{\psi}_p(x)\hat{\psi}_q(y), \quad p \in \mathcal{I}_x, q \in \mathcal{I}_y$$ # Double or single index? The 2D basis can employ a double index and double sum: $$u = \sum_{p \in \mathcal{I}_x} \sum_{q \in \mathcal{I}_y} c_{p,q} \psi_{p,q}(x,y)$$ Or just a single index: $$u = \sum_{j \in \mathcal{I}_s} c_j \psi_j(x, y)$$ with an index mapping $(p, q) \rightarrow i$: $$\psi_i(x,y) = \hat{\psi}_p(x)\hat{\psi}_q(y), \quad i = p(N_y + 1) + q \text{ or } i = q(N_x + 1) + p$$ # Example on 2D (bilinear) basis functions; formulas In 1D we use the basis $$\{1, x\}$$ 2D tensor product (all combinations): $$\psi_{0,0}=1, \quad \psi_{1,0}=x, \quad \psi_{0,1}=y, \quad \psi_{1,1}=xy$$ or with a single index: $$\psi_0 = 1$$, $\psi_1 = x$, $\psi_2 = y$, $\psi_3 = xy$ See notes for details of a hand-calculation. # Example on 2D (bilinear) basis functions; plot Quadratic $f(x,y) = (1+x^2)(1+2y^2)$ (left), bilinear u (right): # Implementation; principal changes to the 1D code Very small modification of approx1D.py - Omega = [[O, L_x], [O, L_y]] - Symbolic integration in 2D - Construction of 2D (tensor product) basis functions # Implementation; 2D integration # Implementation; 2D basis functions Tensor product of 1D "Taylor-style" polynomials x^i : ``` def taylor(x, y, Nx, Ny): return [x**i*y**j for i in range(Nx+1) for j in range(Ny+1)] ``` Tensor product of 1D sine functions $\sin((i+1)\pi x)$: Complete code in approx2D.py # Implementation; application $$f(x,y) = (1+x^2)(1+2y^2)$$ >>> from approx2D import * >>> f = (1*x**2)*(1*2*y**2) >>> psi = taylor(x, y, 1, 1) >>> u, c = least_squares(f, psi, Omega) >>> print u 8*x*y - 2*x/3 + 4*y/3 - 1.9 >>> print sp. expand(f) 2*x**2*y**2 + x**2 + 2*y**2 + 1 # Implementation; trying a perfect expansion Add higher powers to the basis such that $f \in V$: Expected: u=f when $f\in V$ # Generalization to 3D Key idea: $$V = V_x \otimes V_y \otimes V_z$$ Repeated outer tensor product of multiple vectors $$\begin{aligned} a^{(q)} &= (a_0^{(q)}, \dots, a_{N_q}^{(q)}), \quad q = 0, \dots, m \\ p &= a^{(0)} \otimes \dots \otimes a^{(m)} \\ p_{b_i, i_1, \dots, i_m} &= a_{i_1}^{(0)} a_{i_1}^{(1)} \dots a_{i_m}^{(m)} \end{aligned}$$ $$\psi_{p,q,r}(x,y,z) = \hat{\psi}_{p}(x)\hat{\psi}_{q}(y)\hat{\psi}_{r}(z)$$ $$u(x,y,z) = \sum_{p \in \mathcal{I}_{x}} \sum_{q \in \mathcal{I}_{y}} \sum_{r \in \mathcal{I}_{z}} c_{p,q,r} \psi_{p,q,r}(x,y,z)$$ # Finite elements in 2D and 3D The two great advantages of the finite element method: • Can handle complex-shaped domains in 2D and 3D • Can easily provide higher-order polynomials in the approximation Finite elements in 1D: mostly for learning, insight, debugging # Basic features of 2D elements - Cells = triangles - Vertices = corners of the cells - Nodes = vertices - Degrees of freedom = function values at the nodes # φ_i : pyramid shape, composed of planes - $\varphi_i(x,y)$ varies linearly over each cell - $ullet arphi_i = 1$ at vertex (node) i, 0 at all other vertices (nodes) # Element matrices and vectors As in 1D, the contribution from one cell to the matrix involves just a few entries, collected in the element matrix and vector - $\varphi_i \varphi_j \neq 0$ only if i and j are degrees of freedom (vertices/nodes) in the same element - ullet The 2D P1 element has a 3 imes 3 element matrix $$\tilde{\varphi}_0(X,Y) = 1 - X - Y \tag{28}$$ $$\tilde{\varphi}_1(X,Y) = X \tag{29}$$ (30) $$\tilde{\varphi}_2(X, Y) = Y$$ Higher-degree $ilde{arphi}_r$ introduce more nodes (dof = node values) # 2D P1, P2, P3, P4, P5, and P6 elements # P2 elements in 1D, 2D, and 3D - Interval, triangle, tetrahedron: simplex element (plural quick-form: simplices) - Side of the cell is called face - Thetrahedron has also edges # Affine mapping of the reference cell; formula Mapping of local X = (X, Y) coordinates in the reference cell to global, physical x = (x, y) coordinates: $$\mathbf{x} = \sum_{r} \tilde{\varphi}_r^{(1)}(\mathbf{X}) \mathbf{x}_{q(e,r)} \tag{31}$$ where - r runs over the local vertex numbers in the cell - x_i are the (x, y) coordinates of vertex i - $\tilde{\varphi}_r^{(1)}$ are P1 basis functions This mapping preserves the straight/planar faces and edges. # Affine mapping of the reference cell; figure # Isoparametric mapping of the reference cell Idea: Use the basis functions of the element (not only the P1 functions) to map the element $$x = \sum_{r} \tilde{\varphi}_r(X) x_{q(e,r)}$$ Advantage: higher-order polynomial basis functions now map the reference cell to a curved triangle or tetrahedron. # Computing integrals Integrals must be transformed from $\Omega^{(e)}$ (physical cell) to $\tilde{\Omega}^r$ (reference cell): $$\int_{\Omega^{(e)}} \varphi_i(\mathbf{x}) \varphi_j(\mathbf{x}) \, d\mathbf{x} = \int_{\tilde{\Omega}'} \tilde{\varphi}_i(\mathbf{X}) \tilde{\varphi}_j(\mathbf{X}) \, \det J \, d\mathbf{X}$$ $$\int_{\Omega^{(e)}} \varphi_i(\mathbf{x}) f(\mathbf{x}) \, d\mathbf{x} = \int_{\tilde{\Omega}'} \tilde{\varphi}_i(\mathbf{X}) f(\mathbf{x}(\mathbf{X})) \, \det J \, d\mathbf{X}$$ (32) $$\int_{\Omega^{(e)}} \varphi_i(\mathbf{x}) f(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \int_{\tilde{\Omega}'} \tilde{\varphi}_i(\mathbf{X}) f(\mathbf{x}(\mathbf{X})) \, \mathrm{det} \, J \, \mathrm{d}\mathbf{X}$$ (33) where dx = dxdy or dx = dxdydz and $\det J$ is the determinant of the Jacobian of the mapping x(X). $$J = \left[\begin{array}{cc} \frac{\partial x}{\partial X} & \frac{\partial x}{\partial Y} \\ \frac{\partial y}{\partial X} & \frac{\partial y}{\partial Y} \end{array} \right], \quad \det J = \frac{\partial x}{\partial X} \frac{\partial y}{\partial Y} - \frac{\partial x}{\partial Y} \frac{\partial y}{\partial X}$$ Affine mapping (31): det $J = 2\Delta$, $\Delta = \text{cell volume}$ # Remark on going from 1D to 2D/3D Finite elements in 2D and 3D builds on the same ideas and concepts as in 1D, but there is simply much more to compute because the specific mathematical formulas in 2D and 3D are more complicated and the book keeping with dof maps also gets more complicated. The manual work is tedious, lengthy, and error-prone so automation by the computer is a must. # We shall apply least squares, Galerkin/projection, and collocation to differential equation models Our aim is to extend the ideas for approximating f by u, or solving $$u = f$$ to real, spatial
differential equations like $$-u'' + bu = f$$, $u(0) = C$, $u'(L) = D$ Emphasis will be on the Galerkin/projection method # Abstract differential equation $$\mathcal{L}(u) = 0, \quad x \in \Omega$$ Examples (1D problems): $$\mathcal{L}(u) = \frac{d^2 u}{dx^2} - f(x),$$ $$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(x) \frac{du}{dx} \right) + f(x),$$ $$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(u) \frac{du}{dx} \right) - au + f(x),$$ $$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(u) \frac{du}{dx} \right) + f(u, x)$$ # Abstract boundary conditions $$\mathcal{B}_0(u) = 0, \ x = 0, \quad \mathcal{B}_1(u) = 0, \ x = L$$ Examples: $$B_i(u) = u - g$$ $$\mathcal{B}_i(u) = -\alpha \frac{du}{dx} - g$$ $$\mathcal{B}_i(u) = u - g,$$ Dirichlet condition $\mathcal{B}_i(u) = -lpha rac{du}{dx} - g,$ Neumann condition $\mathcal{B}_i(u) = -lpha rac{du}{dx} - h(u - g),$ Robin condition # Reminder about notation - $u_e(x)$ is the symbol for the exact solution of $\mathcal{L}(u_e) = 0$ + $B_i = 0$ - u(x) denotes an approximate solution - $V = \operatorname{span}\{\psi_0(x), \dots, \psi_N(x)\}$, V has basis $\{\psi_i\}_{i \in \mathcal{I}_s}$ - We seek $u \in V$ - $\mathcal{I}_s = \{0, \dots, N\}$ is an index set - $u(x) = \sum_{j \in \mathcal{I}_s} c_j \psi_j(x)$ - Inner product: $(u, v) = \int_{\Omega} uv \, dx$ - Norm: $||u|| = \sqrt{(u,u)}$ # New topics: variational formulation and boundary conditions Much is similar to approximating a function (solving u = f), but two new topics are needed: - Variational formulation of the differential equation problem (including integration by parts) - Handling of boundary conditions # Residual-minimizing principles - ullet When solving u=f we knew the error e=f-u and could use principles for minimizing the error - ullet When solving $\mathcal{L}(u_{\mathrm{e}})=0$ we do not know u_{e} and cannot work with the error $e=u_{\mathrm{e}}-u$ - ullet We can only know the error in the equation: the residual R Inserting $u=\sum_{i}c_{j}\psi_{j}$ in $\mathcal{L}=0$ gives a residual R $$\mathcal{L}(u) = \mathcal{L}(\sum_{j} c_{j}\psi_{j}) = R \neq 0$$ Goal: minimize R with respect to $\{c_i\}_{i\in\mathcal{I}_{\mathbf{z}}}$ (and hope it makes a small e too) $$R = R(c_0, \ldots, c_N; x)$$ # The least squares method ldea: minimize $$E = ||R||^2 = (R, R) = \int_{\Omega} R^2 dx$$ Minimization wrt $\left\{c_i ight\}_{i\in\mathcal{I}_s}$ implies $$\frac{\partial E}{\partial c_i} = \int_{\Omega} 2R \frac{\partial R}{\partial c_i} dx = 0 \quad \Leftrightarrow \quad (R, \frac{\partial R}{\partial c_i}) = 0, \quad i \in \mathcal{I}_s$$ $\mathit{N}+1$ equations for $\mathit{N}+1$ unknowns $\{c_i\}_{i\in\mathcal{I}_r}$ # The Galerkin method Idea: make R orthogonal to V, $$(R, v) = 0, \quad \forall v \in V$$ This implies $$(R, \psi_i) = 0, \quad i \in \mathcal{I}_s$$ N+1 equations for N+1 unknowns $\{c_i\}_{i\in\mathcal{I}_e}$ # The Method of Weighted Residuals Generalization of the Galerkin method: demand R orthogonal to some space W, possibly $W \neq V$: $$(R, v) = 0, \forall v \in W$$ If $\{w_0, \ldots, w_N\}$ is a basis for W: $$(R, w_i) = 0, \quad i \in \mathcal{I}_s$$ - ullet N+1 equations for N+1 unknowns $\{c_i\}_{i\in\mathcal{I}_{ullet}}$ - Weighted residual with $w_i = \partial R/\partial c_i$ gives least squares # New terminology: test and trial functions - ullet ψ_j used in $\sum_i c_j \psi_j$ is called *trial function* - ullet ψ_i or w_i used as weight in Galerkin's method is called test ## The collocation method Idea: demand R=0 at N+1 points in space $$R(x_i; c_0, \ldots, c_N) = 0, \quad i \in \mathcal{I}_s$$ The collocation method is a weighted residual method with delta functions as weights $$0 = \int_{\Omega} R(x; c_0, \ldots, c_N) \delta(x - x_i) dx = R(x_i; c_0, \ldots, c_N)$$ property of $$\delta(x)$$: $\int_{\Omega} f(x)\delta(x-x_i)dx = f(x_i), \quad x_i \in \Omega$ # Examples on using the principles ### Goal Exemplify the least squares, Galerkin, and collocation methods in a simple 1D problem with global basis functions. # The first model problem $$-u''(x) = f(x), \quad x \in \Omega = [0, L], \quad u(0) = 0, \ u(L) = 0$$ Basis functions: $$\psi_i(x) = \sin\left((i+1)\pi\frac{x}{L}\right), \quad i \in \mathcal{I}_s$$ Residual: $$R(x; c_0, ..., c_N) = u''(x) + f(x),$$ $$= \frac{d^2}{dx^2} \left(\sum_{j \in \mathcal{I}_s} c_j \psi_j(x) \right) + f(x),$$ $$= -\sum_{j \in \mathcal{I}_s} c_j \psi_j''(x) + f(x)$$ # Boundary conditions Since u(0)=u(L)=0 we must ensure that all $\psi_i(0)=\psi_i(L)=0$, because then $$u(0) = \sum_{j} c_{j} \psi_{j}(0) = 0, \quad u(L) = \sum_{j} c_{j} \psi_{j}(L) = 0$$ - u known: Dirichlet boundary condition - u' known: Neumann boundary condition - Must have $\psi_i = 0$ where Dirichlet conditions apply # The least squares method; principle $$(R, \frac{\partial R}{\partial c_i}) = 0, \quad i \in \mathcal{I}_s$$ $$\frac{\partial R}{\partial c_i} = \frac{\partial}{\partial c_i} \left(\sum_{j \in \mathcal{I}_s} c_j \psi_j''(x) + f(x) \right) = \psi_i''(x)$$ Because $$\frac{\partial}{\partial c_i} \left(c_0 \psi_0'' + c_1 \psi_1'' + \dots + c_{i-1} \psi_{i-1}'' + \frac{c_i \psi_i''}{i} + c_{i+1} \psi_{i+1}'' + \dots + c_N \psi_N'' \right) =$$ # The least squares method; equation system $$(\sum_{j} c_{j}\psi_{j}'' + f, \psi_{i}'') = 0, \quad i \in \mathcal{I}_{s}$$ Rearrangement: $$\sum_{j\in\mathcal{I}_s} (\psi_i'', \psi_j'') c_j = -(f, \psi_i''), \quad i\in\mathcal{I}_s$$ This is a linear system $$\sum_{i\in\mathcal{I}_s}A_{i,j}c_j=b_i,\quad i\in\mathcal{I}_s$$ # The least squares method; matrix and right-hand side expressions $$\begin{split} A_{i,j} &= (\psi_i'', \psi_j'') \\ &= \pi^4 (i+1)^2 (j+1)^2 L^{-4} \int_0^L \sin\left((i+1)\pi\frac{x}{L}\right) \sin\left((j+1)\pi\frac{x}{L}\right) \, dx \\ &= \left\{ \begin{array}{l} \frac{1}{2} L^{-3} \pi^4 (i+1)^4 & i = j \\ 0, & i \neq j \end{array} \right. \\ b_i &= -(f, \psi_i'') = (i+1)^2 \pi^2 L^{-2} \int_0^L f(x) \sin\left((i+1)\pi\frac{x}{L}\right) \, dx \end{split}$$ # Orthogonality of the basis functions gives diagonal matrix Useful property of the chosen basis functions: $$\int\limits_{0}^{L}\sin\left((i+1)\pi\frac{\mathbf{x}}{L}\right)\sin\left((j+1)\pi\frac{\mathbf{x}}{L}\right)\;\mathrm{d}\mathbf{x}=\delta_{ij},\qquad \delta_{ij}=\left\{\begin{array}{ll}\frac{1}{2}L & i=j\\ 0, & i\neq j\end{array}\right.$$ \Rightarrow $(\psi_i'',\psi_i'')=\delta_{ij}$, i.e., diagonal $A_{i,j}$, and we can easily solve for c_i : $$c_i = \frac{2L}{\pi^2(i+1)^2} \int_0^L f(x) \sin\left((i+1)\pi \frac{x}{L}\right) dx$$ # Least squares method; solution Let sympy do the work (f(x) = 2): $$c_i = 4\frac{L^2\left(\left(-1\right)^i + 1\right)}{\pi^3\left(i^3 + 3i^2 + 3i + 1\right)}, \quad u(x) = \sum_{k=0}^{N/2} \frac{8L^2}{\pi^3(2k+1)^3} \sin\left((2k+1)\pi\frac{x}{L}\right)$$ Fast decay: $c_2=c_0/27$, $c_4=c_0/125$ - only one term might be good enough: $$u(x) \approx \frac{8L^2}{3} \sin\left(\pi \frac{x}{L}\right)$$ # The Galerkin method; principle $$R = u'' + f$$: $$(u''+f,v)=0, \forall v\in V,$$ or rearranged, $$(u'', v) = -(f, v), \forall v \in V$$ This is a *variational formulation* of the differential equation problem. $\forall v \in V$ is equivalent with $\forall v \in \psi_i$, $i \in \mathcal{I}_s$, resulting in $$(\sum_{i\in\mathcal{I}_s}c_j\psi_j'',\psi_i)=-(f,\psi_i),\quad i\in\mathcal{I}_s$$ $$\sum_{i\in\mathcal{I}_s}(\psi_j'',\psi_i)c_j=-(f,\psi_i),\quad i\in\mathcal{I}_s$$ # The Galerkin method; solution Since $\psi_i'' \propto -\psi_i$. Galerkin's method gives the same linear system and the same solution as the least squares method (in this particular example). ## The collocation method ${\it R}=0$ (i.e.,the differential equation) must be satisfied at ${\it N}+1$ points: $$-\sum_{j\in\mathcal{I}_s}c_j\psi_j''(x_i)=f(x_i),\quad i\in\mathcal{I}_s$$ This is a linear system $\sum_i A_{i,j} = b_i$ with entries $$A_{i,j} = -\psi_j''(x_i) = (j+1)^2 \pi^2 L^{-2} \sin\left((j+1)\pi \frac{x_i}{L}\right), \quad b_i = 2$$ Choose: N = 0, $x_0 = L/2$ $$c_0 = 2L^2/\pi^2$$ # Comparison of the methods - Exact solution: u(x) = x(L-x) - Galerkin or least squares (N=0): $u(x)=8L^2\pi^{-3}\sin(\pi x/L)$ - Collocation method (N=0): $u(x)=2L^2\pi^{-2}\sin(\pi x/L)$. ``` >>> import sympy as sp >>> # Computing with Dirichlet conditions: -u''=2 and sines >>> x, L = sp. symbols('x L'') >>> e_Galerkin = x*(L-x) - 3*L**2*sp.pi**(-3)*sp.sin(sp.pi*x/L) >>> e_colloc = x*(L-x) - 2*L**2*sp.pi**(-2)*sp.sin(sp.pi*x/L) >>> # Verify max error for z=L/2 >>> dedx_Galerkin = sp.diff(e_Galerkin, x) >>> dedx_Galerkin.subs(x, L/2) 0 ``` # Compute max error: x=L/2, evaluate numerical, and simplify >> sp.simplify(e_Galerkin.subs(x, L/2).evalf(n=3)) -0.008124L**2 >> sp.simplify(e_colloc.subs(x, L/2).evalf(n=3)) 0.0473L**2 # Integration by parts has many advantages Second-order derivatives will hereafter be integrated by parts $$\int_0^L u''(x)v(x)dx = -\int_0^L u'(x)v'(x)dx + [vu']_0^L$$ $$= -\int_0^L u'(x)v'(x)dx + u'(L)v(L) - u'(0)v(0)$$ ### Motivation: - Lowers the order of derivatives - Gives more symmetric forms (incl. matrices) - Enables easy handling of Neumann boundary conditions - ullet Finite element basis functions $arphi_i$ have discontinuous derivatives (at cell boundaries) and are not suited for terms with $arphi_i''$ # We use a boundary function to deal with non-zero Dirichlet boundary conditions - What about nonzero Dirichlet conditions? Say u(L) = D - We always require $\psi_i(L) = 0$ (i.e., $\psi_i = 0$ where Dirichlet conditions applies) - ullet Problem: $u(L) = \sum_j c_j \psi_j(L) = \sum_j c_j \cdot 0 = 0 eq D$ always! - Solution: $u(x) = B(x) + \sum_{i} c_{i} \psi_{i}(x)$ - ullet B(x): user-constructed boundary function that fulfills the Dirichlet conditions - If u(L) = D, make sure B(L) = D - ullet No restrictions of how B(x) varies in the interior of Ω # Example on constructing a boundary function for two Dirichlet conditions Dirichlet conditions: u(0) = C and u(L) = D. Choose for example $$B(x) =
\frac{1}{L}(C(L-x) + Dx):$$ $B(0) = C, B(L) = D$ $$u(x) = B(x) + \sum_{j \in \mathcal{I}_s} c_j \psi_j(x),$$ $$u(0) = B(0) = C, \quad u(L) = B(L) = D$$ # Example on constructing a boundary function for one Dirichlet conditions Dirichlet condition: u(L) = D. Choose for example $$B(x) = D$$: $B(L) = D$ $$u(x) = B(x) + \sum_{j \in \mathcal{I}_s} c_j \psi_j(x),$$ $$u(L) = B(L) = D$$ # With a B(x), $u \notin V$, but $\sum_i c_i \psi_i \in V$ - ullet $\{\psi_i\}_{i\in\mathcal{I}_{\mathbf{s}}}$ is a basis for V - $\sum_{j\in\mathcal{I}_s} c_j \psi_j(x) \in V$ - But $u \notin V!$ - Reason: say u(0) = C and $u \in V$; any $v \in V$ has v(0) = C, then $2u \notin V$ because 2u(0) = 2C (wrong value) - $\begin{array}{ll} \bullet \text{ When } u(x) = B(x) + \sum_{j \in \mathcal{I}_s} c_j \psi_j(x), \ B \not\in V \ \text{(in general) and} \\ u \not\in V, \ \text{but } (u-B) \in V \ \text{since} \ \sum_j c_j \psi_j \in V \end{array}$ # Abstract notation for variational formulations The finite element literature (and much FEniCS documentation) applies an abstract notation for the variational formulation: Find $$(u - B) \in V$$ such that $$a(u, v) = L(v) \quad \forall v \in V$$ # Example on abstract notation $$-u'' = f$$, $u'(0) = C$, $u(L) = D$, $u = D + \sum_{j} c_{j}\psi_{j}$ Variational formulation: $$\int_{\Omega} u'v'dx = \int_{\Omega} fvdx - v(0)C \quad \text{or} \quad (u',v') = (f,v) - v(0)C \quad \forall v \in V$$ Abstract formulation: find $(u - B) \in V$ such that $$a(u, v) = L(v) \quad \forall v \in V$$ We identify $$a(u, v) = (u', v'), L(v) = (f, v) - v(0)C$$ # Bilinear and linear forms - a(u, v) is a bilinear form - L(v) is a linear form Linear form means $$L(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 L(v_1) + \alpha_2 L(v_2),$$ Bilinear form means $$a(\alpha_1 u_1 + \alpha_2 u_2, v) = \alpha_1 a(u_1, v) + \alpha_2 a(u_2, v),$$ $a(u, \alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 a(u, v_1) + \alpha_2 a(u, v_2)$ In nonlinear problems: Find $(u-B) \in V$ such that $F(u;v) = 0 \ \forall v \in V$ # The linear system associated with the abstract form $$a(u, v) = L(v) \quad \forall v \in V \quad \Leftrightarrow \quad a(u, \psi_i) = L(\psi_i) \quad i \in \mathcal{I}_s$$ We can now derive the corresponding linear system once and for all by inserting $u=B+\sum_i c_i\psi_i$: $$a(B + \sum_{j \in \mathcal{I}_s} c_j \psi_j, \psi_i) c_j = L(\psi_i) \quad i \in \mathcal{I}_s$$ Because of linearity, $$\sum_{j \in \mathcal{I}_{\mathtt{s}}} \underbrace{a(\psi_{j}, \psi_{i})}_{A_{i,i}} c_{j} = \underbrace{L(\psi_{i}) - a(B, \psi_{i})}_{b_{i}} \quad i \in \mathcal{I}_{\mathtt{s}}$$ # Equivalence with minimization problem If a is symmetric: a(u, v) = a(v, u), $$a(u, v) = L(v) \quad \forall v \in V$$ is equivalent to minimizing the functional $$F(v) = \frac{1}{2}a(v,v) - L(v)$$ over all functions $v \in V$. That is, $$F(u) \leq F(v) \quad \forall v \in V$$ - Much used in the early days of finite elements - Still much used in structural analysis and elasticity - Not as general as Galerkin's method (since we require a(u, v) = a(v, u)) # Examples on variational formulations ### Goa Derive variational formulations for some prototype differential equations in 1D that include - variable coefficients - mixed Dirichlet and Neumann conditions - nonlinear coefficients # Variable coefficient; problem $$-\frac{d}{dx}\left(\alpha(x)\frac{du}{dx}\right)=f(x),\quad x\in\Omega=[0,L],\ u(0)=C,\ u(L)=D$$ - Variable coefficient $\alpha(x)$ - $V = \operatorname{span}\{\psi_0, \dots, \psi_N\}$ - Nonzero Dirichlet conditions at x = 0 and x = L - Must have $\psi_i(0) = \psi_i(L) = 0$ - Any $v \in V$ has then v(0) = v(L) = 0 - $B(x) = C + \frac{1}{L}(D C)x$ $$u(x) = B(x) + \sum_{i \in \mathcal{I}_s} c_i \psi_i(x),$$ # Variable coefficient; Galerkin principle $$R = -\frac{d}{dx} \left(a \frac{du}{dx} \right) - f$$ Galerkin's method: $$(R, v) = 0, \forall v \in V$$ or with integrals: $$\int_{\Omega} \left(\frac{d}{dx} \left(\alpha \frac{du}{dx} \right) - f \right) v \, dx = 0, \quad \forall v \in V$$ # Variable coefficient; integration by parts $$-\int_{\Omega} \frac{d}{dx} \left(\alpha(x) \frac{du}{dx} \right) v \, \mathrm{d}x = \int_{\Omega} \alpha(x) \frac{du}{dx} \frac{dv}{dx} \, \mathrm{d}x - \left[\alpha \frac{du}{dx} v \right]_{0}^{L}$$ Boundary terms vanish since v(0) = v(L) = 0 # Variable coefficient; variational formulation ### Variational formulation Find $(u - B) \in V$ such that $$\int_{\Omega} \alpha(x) \frac{du}{dx} \frac{dv}{dx} dx = \int_{\Omega} f(x) v dx, \quad \forall v \in V$$ Compact notation: $$\underbrace{(\alpha u', v')}_{a(u,v)} = \underbrace{(f,v)}_{L(v)}, \quad \forall v \in V$$ # Variable coefficient; linear system (the easy way) With $$a(u, v) = (\alpha u', v'), L(v) = (f, v)$$ we can just use the formula for the linear system: $$\begin{aligned} A_{i,j} &= \mathsf{a}(\psi_j, \psi_i) = (\alpha \psi_j', \psi_i') = \int_{\Omega} \alpha \psi_j' \psi_i' \, \mathrm{d}x = \int_{\Omega} \psi_i' \alpha \psi_j' \, \mathrm{d}x \quad (= \mathsf{a}(\psi_i, \psi_j)) \\ b_i &= (f, \psi_i) - (\alpha B', \psi_i) = \int_{\Omega} (f \psi_i - \alpha L^{-1}(D - C) \psi_i') \, \mathrm{d}x \end{aligned}$$ # Variable coefficient; linear system (full derivation) $v=\psi_i$ and $u=B+\sum_j c_j\psi_j$: $$(\alpha B' + \alpha \sum_{j \in \mathcal{I}_s} c_j \psi'_j, \psi'_i) = (f, \psi_i), \quad i \in \mathcal{I}_s$$ Reorder to form linear system: $$\sum_{j\in\mathcal{I}_{\mathtt{S}}}(\alpha\psi_{j}',\psi_{i}')c_{j}=(f,\psi_{i})+(\mathsf{a}\mathsf{L}^{-1}(\mathsf{D}-\mathsf{C}),\psi_{i}'),\quad i\in\mathcal{I}_{\mathtt{S}}$$ This is $\sum_i A_{i,j} c_j = b_i$ with $$\begin{aligned} A_{i,j} &= (a\psi_j', \psi_i') = \int_{\Omega} \alpha(x)\psi_j'(x)\psi_i'(x) \,\mathrm{d}x \\ b_i &= (f, \psi_i) + (aL^{-1}(D-C), \psi_i') = \int_{\Omega} \left(f\psi_i + \alpha \frac{D-C}{L}\psi_i' \right) \,\mathrm{d}x \end{aligned}$$ # First-order derivative in the equation and boundary condition; problem $$-u''(x)+bu'(x)=f(x),\quad x\in\Omega=[0,L],\ u(0)=C,\ u'(L)=E$$ New features: - ullet first-order derivative u' in the equation - boundary condition with u': u'(L) = E Initial steps: - Must force $\psi_i(0) = 0$ because of Dirichlet condition at x = 0 - Boundary function: B(x) = C(L-x) or just B(x) = C - No requirements on $\psi_i(L)$ (no Dirichlet condition at x=L) # First-order derivative in the equation and boundary condition; details $$u = C + \sum_{j \in \mathcal{I}_s} c_j \psi_i(x)$$ Galerkin's method: multiply by $\nu_{\rm t}$ integrate over $\Omega_{\rm t}$ integrate by parts. $$(-u'' + bu' - f, v) = 0, \quad \forall v \in V$$ $$(u', v') + (bu', v) = (f, v) + [u'v]_0^L, \quad \forall v \in V$$ $$[u'v]_0^L=u'(L)v(L)-u'(0)v(0)=Ev(L)$$ since $v(0)=0$ and $u'(L)=E$ $$(u'v') + (bu', v) = (f, v) + Ev(L), \forall v \in V$$ ## First-order derivative in the equation and boundary condition; observations $$(u'v') + (bu', v) = (f, v) + Ev(L), \quad \forall v \in V$$ Important observations: - The boundary term can be used to implement Neumann conditions - Forgetting the boundary term implies the condition u'=0 (!) - Such conditions are called natural boundary conditions # First-order derivative in the equation and boundary condition; abstract notation (optional) Abstract notation: $$a(u, v) = L(v) \quad \forall v \in V$$ With $$(u'v') + (bu', v) = (f, v) + Ev(L), \forall v \in V$$ we have $$a(u, v) = (u', v') + (bu', v)$$ $L(v) = (f, v) + Ev(L)$ # First-order derivative in the equation and boundary condition; linear system Insert $$u=C+\sum_{j}c_{j}\psi_{j}$$ and $v=\psi_{i}$ in $$(u'v') + (bu', v) = (f, v) + Ev(L), \forall v \in V$$ and manipulate to get $$\sum_{j \in \mathcal{I}_s} \underbrace{\left(\left(\psi_j', \psi_i' \right) + \left(b \psi_j', \psi_i \right) \right)}_{A_{i,i}} c_j = \underbrace{\left(f, \psi_i \right) + E \psi_i(L)}_{b_i}, \quad i \in \mathcal{I}_s$$ Observation: $A_{i,i}$ is not symmetric because of the term $$(b\psi_j',\psi_i)=\int_{\Omega}b\psi_j'\psi_i\mathsf{d}x eq\int_{\Omega}b\psi_i'\psi_j\mathsf{d}x=(\psi_i',b\psi_j)$$ ### Terminology: natural and essential boundary conditions $$(u', v') + (bu', v) = (f, v) + u'(L)v(L) - u'(0)v(0)$$ - Note: forgetting the boundary terms implies u'(L) = u'(0) = 0 (unless prescribe a Dirichlet condition) - \bullet Conditions on u' are simply inserted in the variational form and called $\it natural\ conditions$ - Conditions on u at x=0 requires modifying V (through $\psi_i(0)=0$) and are known as essential conditions #### Lesson learned It is easy to forget the boundary term when integrating by parts. That mistake may prescribe a condition on $u^\prime!$ ### Nonlinear coefficient; problem Problem: $$-(\alpha(u)u')' = f(u), \quad x \in [0, L], \ u(0) = 0, \ u'(L) = E$$ - ullet V: basis $\{\psi_i\}_{i\in\mathcal{I}_s}$ with $\psi_i(0)=0$ because of u(0)=0 - How does the nonlinear coefficients $\alpha(u)$ and f(u) impact the variational formulation? (Not much!) #### Nonlinear coefficient; variational formulation Galerkin: multiply by v, integrate, integrate by parts $$\int_0^L \alpha(u) \frac{du}{dx} \frac{dv}{dx} dx = \int_0^L f(u)v dx + [\alpha(u)vu']_0^L \quad \forall v \in V$$ - $\alpha(u(0))v(0)u'(0) = 0$ since v(0) - $\alpha(u(L))v(L)u'(L) = \alpha(u(L))v(L)E$ since u'(L) = E $$\int_0^L \alpha(u) \frac{du}{dx} \frac{dv}{dx} v \, dx = \int_0^L f(u) v \, dx + \alpha(u(L)) v(L) E \quad \forall v \in V$$ or $$(\alpha(u)u', v') = (f(u), v) + \alpha(u(L))v(L)E \quad \forall v \in V$$ ## Nonlinear coefficient; where does the nonlinearity cause challenges? - ullet Abstract notation: no a(u,v) and L(v) because a and L get nonlinear - Abstract notation for nonlinear problems: $F(u; v) = 0 \ \forall v \in V$ - What about forming a linear system? We get a *nonlinear* system of algebraic equations - Must use methods like Picard iteration or Newton's method to solve nonlinear algebraic equations - But: the variational formulation was not much affected by nonlinearities ### Dirichlet and Neumann conditions; problem
$$-u''(x) = f(x), \quad x \in \Omega = [0, 1], \quad u'(0) = C, \ u(1) = D$$ - Use a global polynomial basis $\psi_i \sim x^i$ on [0,1] - Because of u(1) = D: $\psi_i(1) = 0$ - Basis: $\psi_i(x) = (1-x)^{i+1}, i \in \mathcal{I}_s$ - Boundary function: B(x) = Dx - $u(x) = B(x) + \sum_{j \in \mathcal{I}_s} c_j \varphi_j = Dx + \sum_{j \in \mathcal{I}_s} c_j (1-x)^{i+1}$ Variational formulation: find $(u - B) \in V$ such that $$(u, \psi_i') = (f, \psi_i) - (B', \psi_i) - C\psi_i(0), i \in \mathcal{I}_s$$ ### Dirichlet and Neumann conditions; linear system Insert $u(x) = B(x) + \sum_{j \in \mathcal{I}_s} c_j \varphi_j$ and derive $$\sum_{i\in\mathcal{I}_s}A_{i,j}c_j=b_i,\quad i\in\mathcal{I}_s$$ wit $$A_{i,j} = (\psi'_j, \psi'_i)$$ $$b_i = (f, \psi_i) - (D, \psi'_i) - C\psi_i(0)$$ ### Dirichlet and Neumann conditions; integration $$A_{i,j} = (\psi'_j, \psi'_i) = \int_0^1 \psi'_i(x)\psi'_j(x)dx = \int_0^1 (i+1)(j+1)(1-x)^{i+j}dx$$ Choose f(x) = 2: $$b_i = (2, \psi_i) - (D, \psi_i') - C\psi_i(0)$$ = $\int_0^1 (2(1-x)^{i+1} - D(i+1)(1-x)^i) dx - C\psi_i(0)$ ## Dirichlet and Neumann conditions; 2×2 system Can easily do the integrals with sympy. N=1 and $\mathcal{I}_s=\{0,1\}$: $$\begin{pmatrix} 1 & 1 \\ 1 & 4/3 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} -C + D + 1 \\ 2/3 - C + D \end{pmatrix}$$ $$c_0 = -C + D + 2, \quad c_1 = -1,$$ $$u(x) = 1 - x^2 + D + C(x - 1) \quad \text{(exact solution)}$$ ### When is the numerical method is exact? Assume that apart from boundary conditions, u_e lies in the same space V as where we seek u: $$u = B + F, \quad F \in V$$ $$a(B + F, v) = L(v), \quad \forall v \in V$$ $$u_e = B + E, \quad E \in V$$ $$a(B + E, v) = L(v), \quad \forall v \in V$$ Subtract: $$a(F - E, v) = 0 \implies E = F \text{ and } u = u_e$$ ## Computing with finite elements #### Tasks: - Address the model problem -u''(x) = 2, u(0) = u(L) = 0 - Uniform finite element mesh with P1 elements - Show all finite element computations in detail ### Variational formulation $$-u''(x) = 2$$, $x \in (0, L)$, $u(0) = u(L) = 0$, Variational formulation: $$(u', v') = (2, v) \quad \forall v \in V$$ ### How to deal with the boundary conditions? Since u(0) = 0 and u(L) = 0, we must force $$v(0) = v(L) = 0, \quad \psi_i(0) = \psi_i(L) = 0$$ Now we choose the finite element basis: $\psi_i = \varphi_i, i = 0, \dots, N_n$ Problem: $\varphi_0(0) \neq 0$ and $\varphi_{N_n}(L) \neq 0$ Solution: we just exclude $arphi_0$ and $arphi_{N_0}$ from the basis and work with $$\psi_i = \varphi_{i+1}, \quad i = 0, \dots, N = N_n - 2$$ Introduce index mapping $\nu(i)$: $\psi_i = \varphi_{\nu(i)}$ $$u = \sum_{i \in \mathcal{I}_*} c_j \varphi_{\nu(j)}, \quad i = 0, \dots, N, \quad \nu(j) = j + 1$$ Irregular numbering: more complicated u(j) table ## Computation in the global physical domain; formulas $$A_{i,j} = \int_0^L \varphi'_{i+1}(x) \varphi'_{j+1}(x) dx, \quad b_i = \int_0^L 2\varphi_{i+1}(x) dx$$ Many will prefer to change indices to obtain a $\varphi_i'\varphi_j'$ product: $i+1 \to i, \ j+1 \to j$ $$A_{i-1,j-1} = \int_0^L \varphi_i'(x) \varphi_j'(x) \,\mathrm{d} x, \quad b_{i-1} = \int_0^L 2\varphi_i(x) \,\mathrm{d} x$$ ## Computation in the global physical domain; details $$\varphi_i' \sim \pm h^{-1}$$ $$A_{i-1,i-1} = h^{-2}2h = 2h^{-1}, \quad A_{i-1,i-2} = h^{-1}(-h^{-1})h = -h^{-1}$$ and $$A_{i-1,i}=A_{i-1,i-2}$$ $$b_{i-1} = 2(\frac{1}{2}h + \frac{1}{2}h) = 2h$$ ### Computation in the global physical domain; linear system #### Write out the corresponding difference equation General equation at node i: $$-\frac{1}{h}c_{i-1} + \frac{2}{h}c_i - \frac{1}{h}c_{i+1} = 2h$$ Now, $c_i = u(x_{i+1}) \equiv u_{i+1}$. Writing out the equation at node i-1, $$-\frac{1}{h}c_{i-2} + \frac{2}{h}c_{i-1} - \frac{1}{h}c_i = 2h$$ translates directly to $$-\frac{1}{h}u_{i-1} + \frac{2}{h}u_i - \frac{1}{h}u_{i+1} = 2h$$ ### Comparison with a finite difference discretization The standard finite difference method for -u''=2 is $$-\frac{1}{h^2}u_{i-1} + \frac{2}{h^2}u_i - \frac{1}{h^2}u_{i+1} = 2$$ Multiply by h! The finite element method and the finite difference method are identical *in this example*. (Remains to study the equations at the end points, which involve boundary values - but these are also the same for the two methods) ### Cellwise computations; formulas - Repeat the previous example, but apply the cellwise algorithm - Work with one cell at a time - Transform physical cell to reference cell $X \in [-1, 1]$ $$A_{i-1,j-1}^{(e)} = \int_{\Omega(e)} \varphi_i'(x) \varphi_j'(x) \, \mathrm{d}x = \int_{-1}^1 \frac{d}{dx} \tilde{\varphi}_r(X) \frac{d}{dx} \tilde{\varphi}_s(X) \frac{h}{2} \, \mathrm{d}X,$$ $$\tilde{\varphi}_0(X) = \frac{1}{2}(1-X), \quad \tilde{\varphi}_1(X) = \frac{1}{2}(1+X)$$ $$\frac{d\tilde{\varphi}_0}{dX} = -\frac{1}{2}, \quad \frac{d\tilde{\varphi}_1}{dX} = \frac{1}{2}$$ From the chain rule $$\frac{d\tilde{\varphi}_r}{dx} = \frac{d\tilde{\varphi}_r}{dX} \frac{dX}{dx} = \frac{2}{h} \frac{d\tilde{\varphi}_r}{dX}$$ ### Cellwise computations; details $$A_{i-1,j-1}^{(e)} = \int_{\Omega^{(e)}} \varphi_i'(x) \varphi_j'(x) \, \mathrm{d}x = \int_{-1}^1 \frac{2}{h} \frac{d\tilde{\varphi}_r}{dX} \frac{2}{h} \frac{d\tilde{\varphi}_s}{dX} \frac{h}{2} \, \mathrm{d}X = \tilde{A}_{r,s}^{(e)}$$ $$b_{i-1}^{(\mathbf{e})} = \int_{\Omega^{(\mathbf{e})}} 2\varphi_i(x) \, \mathrm{d}x = \int_{-1}^1 2\tilde{\varphi}_r(X) \frac{h}{2} \, \mathrm{d}X = \tilde{b}_r^{(\mathbf{e})}, \quad i = q(\mathbf{e}, r), \, r = 0, 1$$ Must run through all r,s=0,1 and r=0,1 and compute each entry in the element matrix and vector: $$\tilde{A}^{(e)} = rac{1}{h} \left(egin{array}{cc} 1 & -1 \ -1 & 1 \end{array} ight), \quad ilde{b}^{(e)} = h \left(egin{array}{c} 1 \ 1 \end{array} ight)$$ Example: $$\tilde{A}_{0,1}^{(e)} = \int_{-1}^{1} \frac{2}{h} \frac{d\tilde{\varphi}_{0}}{dX} \frac{2}{h} \frac{d\tilde{\varphi}_{1}}{dX} \frac{h}{2} \, \mathrm{d}X = \frac{2}{h} (-\frac{1}{2}) \frac{2}{h} \frac{1}{2} \frac{h}{2} \int_{-1}^{1} \, \mathrm{d}X = -\frac{1}{h}$$ ### Cellwise computations; details of boundary cells - The boundary cells involve only one unknown - \bullet $\Omega^{(0)}\colon$ left node value known, only a contribution from right node - \bullet $\Omega^{(N_e)}\colon$ right node value known, only a contribution from left node For e = 0 and $= N_e$ $$\tilde{A}^{(e)} = \frac{1}{h} \begin{pmatrix} 1 \end{pmatrix}, \quad \tilde{b}^{(e)} = h \begin{pmatrix} 1 \end{pmatrix}$$ Only one degree of freedom ("node") in these cells (r=0 counts the only dof) ### Cellwise computations; assembly #### 4 P1 elements: Python code for the assembly algorithm: Result: same linear system as arose from computations in the physical domain ### General construction of a boundary function - Now we address nonzero Dirichlet conditions - B(x) is not always easy to construct (i.e., extend to the interior of Ω), especially not in 2D and 3D - With finite element basis functions, φ_i , B(x) can be constructed in a completely general way (!) #### Define - I_b: set of indices with nodes where u is known - U_i : Dirichlet value of u at node i, $i \in I_h$ The general formula for B is now $$B(x) = \sum_{j \in I_b} U_j \varphi_j(x)$$ #### Explanation Suppose we have a Dirichlet condition $u(x_k) = U_k$, $k \in I_b$: $$u(x_k) = \sum_{j \in I_b} U_j \underbrace{\varphi_j(x)}_{\neq 0 \text{ only for } j = k} + \sum_{j \in \mathcal{I}_s} c_j \underbrace{\varphi_{\nu(j)}(x_k)}_{=0, \ k \notin \mathcal{I}_s} = U_k$$ ## Example with two *nonzero* Dirichlet values; variational formulation $$-u'' = 2$$, $u(0) = C$, $u(L) = D$ $$\int_0^L u'v' \, \mathrm{d}x = \int_0^L 2v \, \mathrm{d}x \quad \forall v \in V$$ $$(u', v') = (2, v) \quad \forall v \in V$$ ### Example with two Dirichlet values; boundary function $$B(x) = \sum_{j \in I_b} U_j \varphi_j(x)$$ Here $I_b=\{0,N_n\},\ U_0=C,\ U_{N_n}=D;\ \psi_i$ are the internal φ_i functions: $$\psi_i = \varphi_{\nu(i)}, \quad \nu(i) = i+1, \quad i \in \mathcal{I}_s = \{0, \dots, N = N_n - 2\}$$ $$u(x) = \underbrace{C \cdot \varphi_0 + D\varphi_{N_n}}_{B(x)} + \sum_{j \in \mathcal{I}_s} c_j \varphi_{j+1}$$ $$= C \cdot \varphi_0 + D\varphi_{N_n} + c_0 \varphi_1 + c_1 \varphi_2 + \dots + c_N \varphi_{N_n-1}$$ #### Example with two Dirichlet values; details Insert $u=B+\sum_{j}c_{j}\psi_{j}$ in variational formulation: $$(u',v')=(2,v) \quad \Rightarrow \quad (\sum_j c_j\psi'_j,\psi'_i)=(2-B',\psi_i) \quad \forall v \in V$$ $$\begin{aligned} A_{i-1,j-1} &= \int_0^L \varphi_i'(x) \varphi_j'(x) \, \mathrm{d}x \\ b_{i-1} &= \int_0^L (f(x) \varphi_i(x) - B'(x) \varphi_i'(x)) \, \mathrm{d}x, \quad B'(x) = C \varphi_0'(x) + D \varphi_{N_n}'(x) \end{aligned}$$ for $$i, j = 1, \dots, N + 1 = N_n - 1$$. New boundary terms from $-\int B' \varphi_i' \, \mathrm{d}x$: C/2 for i=1 and -D/2 for $i=N_n-1$ ### Example with two Dirichlet values; cellwise computations - All element matrices are as in the previous example - New element vector in the first and last cell From the last cell: $$\tilde{b}_0^{(N_e)} = \int_{-1}^1 \left(f \tilde{\varphi}_0 - D \frac{2}{h} \frac{d \tilde{\varphi}_1}{dX} \frac{2}{h} \frac{d \tilde{\varphi}_0}{dX} \right) \frac{h}{2} \, \mathrm{d}X = h + \frac{D}{h}$$ From the first cell: $$\tilde{b}_0^{(0)} = \int_{-1}^1 \left(f \tilde{\varphi}_1 - C \frac{2}{h} \frac{d \tilde{\varphi}_0}{dX} \frac{2}{h} \frac{\tilde{\varphi}_1}{dX} \right) \frac{h}{2} \, \mathrm{d}X = h + \frac{C}{h}$$ ### Modification of the linear system; ideas - Method 1: incorporate Dirichlet values through a B(x) function and demand $\psi_i = 0$ where Dirichlet values apply - Method 2: drop B(x), drop demands to ψ_i , just assemble as if there were no Dirichlet conditions, and modify the linear system instead Method 2: always choose $\psi_i = \varphi_i$ for all $i \in \mathcal{I}_s$ and set $$u(x) = \sum_{j \in \mathcal{I}_s} c_j \varphi_j(x), \quad \mathcal{I}_s = \{0, \dots, N = N_n\}$$ ### Attractive way of incorporating
Dirichlet conditions u is treated as unknown at all boundaries when computing entries in the linear system ### Modification of the linear system; original system $$-u'' = 2$$, $u(0) = 0$, $u(L) = D$ Assemble as if there were no Dirichlet conditions: $$\frac{1}{h} \begin{pmatrix} 1 & -1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ -1 & 2 & -1 & \ddots & & & & \vdots \\ 0 & -1 & 2 & -1 & \ddots & & & & \vdots \\ \vdots & \ddots & & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\ \vdots & & & & & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & 0$$ ### Modification of the linear system; row replacement - Dirichlet condition $u(x_k) = U_k$ means $c_k = U_k$ (since $c_k = u(x_k)$) - Replace first row by $c_0 = 0$ - Replace last row by $c_N = D$ $$\frac{1}{h} \begin{pmatrix} h & 0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ -1 & 2 & -1 & \ddots & & & & \vdots \\ 0 & -1 & 2 & -1 & \ddots & & & & \vdots \\ \vdots & \ddots & & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & \cdots & \cdots & 0 & 0 & h \end{pmatrix} \begin{pmatrix} c_0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ c_N \end{pmatrix} = \begin{pmatrix} 0 \\ 2h \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ c_N \end{pmatrix}$$ ## Modification of the linear system; element matrix/vector In cell 0 we know u for local node (degree of freedom) r=0. Replace the first cell equation by $\tilde{c}_0=0$: $$\tilde{A}^{(0)} = A = \frac{1}{h} \begin{pmatrix} h & 0 \\ -1 & 1 \end{pmatrix}, \quad \tilde{b}^{(0)} = \begin{pmatrix} 0 \\ h \end{pmatrix}$$ In cell N_e we know u for local node r=1. Replace the last equation in the cell system by $\tilde{c}_1=D$: $$\tilde{A}^{(N_e)} = A = \frac{1}{h} \begin{pmatrix} 1 & -1 \\ 0 & h \end{pmatrix}, \quad \tilde{b}^{(N_e)} = \begin{pmatrix} h \\ D \end{pmatrix}$$ ### Symmetric modification of the linear system; algorithm - \bullet The modification above destroys symmetry of the matrix: e.g., $A_{0,1} \neq A_{1,0}$ - Symmetry is often important in 2D and 3D (faster computations, less storage) - A more complex modification can preserve symmetry! Algorithm for incorporating $c_i = U_i$ in a symmetric way: - \bigcirc Subtract column *i* times U_i from the right-hand side - Zero out column and row no i - Place 1 on the diagonal ### Symmetric modification of the linear system; example $$\frac{1}{h} \begin{pmatrix} h & 0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & 2 & -1 & \ddots & & & & \vdots \\ 0 & -1 & 2 & -1 & \ddots & & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & \ddots & 0 \\ \vdots & & & & & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & & & & & & & & & & & & \\ \end{pmatrix} \begin{pmatrix} c_0 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ c_N \end{pmatrix} = \begin{pmatrix} 0 \\ 2h \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 2h + \frac{D}{h} \end{pmatrix}$$ ### Symmetric modification of the linear system; element level Symmetric modification applied to $\tilde{A}^{(N_e)}$: $$\tilde{A}^{(N_e)} = A = \frac{1}{h} \begin{pmatrix} 1 & 0 \\ 0 & h \end{pmatrix}, \quad \tilde{b}^{(N-1)} = \begin{pmatrix} h + D/h \\ D \end{pmatrix}$$ ### Boundary conditions: specified derivative #### Neumann conditions How can we incorporate u'(0) = C with finite elements? $$-u'' = f$$, $u'(0) = C$, $u(L) = D$ - $\psi_i(L) = 0$ because of Dirichlet condition u(L) = D (or no demand and modify linear system) - No demand to $\psi_i(0)$ - ullet The condition u'(0)=C will be handled (as usual) through a boundary term arising from integration by parts ### The variational formulation Galerkin's method: $$\int_0^L (u''(x) + f(x))\psi_i(x)dx = 0, \quad i \in \mathcal{I}_s$$ Integration of $u''\psi_i$ by parts: $$\int_0^L u'(x) \psi_i'(x) \, \mathrm{d}x - (u'(L) \psi_i(L) - u'(0) \psi_i(0)) - \int_0^L f(x) \psi_i(x) \, \mathrm{d}x = 0$$ - $u'(L)\psi_i(L) = 0$ since $\psi_i(L) = 0$ - $u'(0)\psi_i(0) = C\psi_i(0)$ since u'(0) = C # Method 1: Boundary function and exclusion of Dirichlet degrees of freedom • $$\psi_i = \varphi_i$$, $i \in \mathcal{I}_s = \{0, ..., N = N_n - 1\}$ • $$B(x) = D\varphi_{N_n}(x)$$, $u = B + \sum_{i=0}^{N} c_i \varphi_i$ $$\int_0^L u'(x)\varphi_i'(x)dx = \int_0^L f(x)\varphi_i(x)dx - C\varphi_i(0), \quad i \in \mathcal{I}_s$$ $$\sum_{i=0}^{N} \left(\int_{0}^{L} \varphi_{i}' \varphi_{j}' dx \right) c_{j} = \int_{0}^{L} \left(f \varphi_{i} - D \varphi_{N}' \varphi_{i} \right) dx - C \varphi_{i}(0)$$ for $$i = 0, ..., N = N_n - 1$$. # Method 2: Use all φ_i and insert the Dirichlet condition in the linear system - Now $\psi_i = \varphi_i$, $i = 0, \dots, N = N_n$ - $\varphi_N(L) \neq 0$, so $u'(L)\varphi_N(L) \neq 0$ - However, the term $u'(L)\varphi_N(L)$ in b_N will be erased when we insert the Dirichlet value in $b_N=D$ We can therefore forget about the term $u'(L)\varphi_i(L)!$ Boundary terms $u'\varphi_i$ at points x_i where Dirichlet values apply canalways be forgotten. $$u(x) = \sum_{j=0}^{N=N_n} c_j \varphi_j(x)$$ $$\sum_{j=0}^{N=N_n} \left(\int_0^L \varphi_i'(x) \varphi_j'(x) dx \right) c_j = \int_0^L f(x) \varphi_i(x) dx - C \varphi_i(0)$$ ## How the Neumann condition impacts the element matrix and vector The extra term $C\varphi_0(0)$ affects only the element vector from the first cell since $\varphi_0=0$ on all other cells. $$\tilde{A}^{(0)} = A = \frac{1}{h} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \quad \tilde{b}^{(0)} = \begin{pmatrix} h - C \\ h \end{pmatrix}$$ #### The finite element algorithm The differential equation problem defines the integrals in the variational formulation. Request these functions from the user: ``` integrand_lhs(phi, r, s, x) boundary_lhs(phi, r, s, x) integrand_rhs(phi, r, x) boundary_rhs(phi, r, x) ``` Must also have a mesh with vertices, cells, and dof_map ### Python pseudo code; the element matrix and vector ### Python pseudo code; boundary conditions and assembly ``` for e in range(len(cells)): ... # Incorporate essential boundary conditions for r in range(n): global_dof = dof_map[e][r] if global_dof in essbc_dofs: # dof r is subject to an essential condition value = essbc_dose[global_dof] # Symmetric modification b.e. -= value*A_e[:,r] A.e[:,r] = 0 A.e[:,r] = 0 A.e[:,r] = value*A_e[:,r]
b.e[r] = value # Assemble for r in range(n): for s in range(n): A[dof_map[e][r], dof_map[e][r]] += A_e[r,s] bldof_map[e][r] += b_e[r] <solve linear system> ``` ### Variational formulations in 2D and 3D How to do integration by parts is the major difference when moving to 2D and 3D. ### Integration by parts ### Rule for multi-dimensional integration by parts $$-\int_{\Omega}\nabla\cdot (a(x)\nabla u)v\,\mathrm{d}x=\int_{\Omega}a(x)\nabla u\cdot\nabla v\,\mathrm{d}x-\int_{\partial\Omega}a\frac{\partial u}{\partial n}v\,\mathrm{d}s$$ - \int_{Ω} () dx: area (2D) or volume (3D) integral - $\int_{\partial\Omega}()\,\mathrm{d}s$: line(2D) or surface (3D) integral - $\partial \Omega_N$: Neumann conditions $-a \frac{\partial u}{\partial n} = g$ - $\partial\Omega_D$: Dirichlet conditions $u=u_0$ - $ullet v \in V$ must vanish on $\partial\Omega_D$ (in method 1) ### Example on integration by parts; problem $$\begin{split} \mathbf{v} \cdot \nabla \mathbf{u} + \alpha \mathbf{u} &= \nabla \cdot (\mathbf{a} \nabla \mathbf{u}) + f, & \mathbf{x} \in \Omega \\ \mathbf{u} &= \mathbf{u}_0, & \mathbf{x} \in \partial \Omega_D \\ -\mathbf{a} \frac{\partial \mathbf{u}}{\partial \mathbf{n}} &= \mathbf{g}, & \mathbf{x} \in \partial \Omega_N \end{split}$$ - Known: a, α , f, u_0 , and g. - Second-order PDE: must have exactly one boundary condition at each point of the boundary Method 1 with boundary function and $\psi_i = 0$ on $\partial\Omega_D$: $$u(\mathbf{x}) = B(\mathbf{x}) + \sum_{j \in \mathcal{I}_s} c_j \psi_j(\mathbf{x}), \quad B(\mathbf{x}) = u_0(\mathbf{x})$$ ## Example on integration by parts in 1D/2D/3D Galerkin's method: multiply by $v \in V$ and integrate over Ω . $$\int_{\Omega} (\mathbf{v} \cdot \nabla \mathbf{u} + \alpha \mathbf{u}) \mathbf{v} \, \mathrm{d} \mathbf{x} = \int_{\Omega} \nabla \cdot (\mathbf{a} \nabla \mathbf{u}) \mathbf{v} \, \mathrm{d} \mathbf{x} + \int_{\Omega} \mathbf{f} \mathbf{v} \, \mathrm{d} \mathbf{x}$$ Integrate the second-order term by parts: $$\int_{\Omega} \nabla \cdot (a \nabla u) v \, dx = - \int_{\Omega} a \nabla u \cdot \nabla v \, dx + \int_{\partial \Omega} a \frac{\partial u}{\partial n} v \, ds,$$ Resul $$\int_{\Omega} (\mathbf{v} \cdot \nabla \mathbf{u} + \alpha \mathbf{u}) \mathbf{v} \, \mathrm{d} \mathbf{x} = -\int_{\Omega} \mathbf{a} \nabla \mathbf{u} \cdot \nabla \mathbf{v} \, \mathrm{d} \mathbf{x} + \int_{\partial \Omega} \mathbf{a} \frac{\partial \mathbf{u}}{\partial \mathbf{n}} \mathbf{v} \, \mathrm{d} \mathbf{s} + \int_{\Omega} \mathbf{f} \mathbf{v} \, \mathrm{d} \mathbf{x}$$ ## Incorporation of the Neumann condition in the variational formulation Note: $v \neq 0$ only on $\partial \Omega_N$ (since v = 0 on $\partial \Omega_D$): $$\int_{\partial\Omega} a \frac{\partial u}{\partial n} v \, \mathrm{d}s = \int_{\partial\Omega_N} \underbrace{a \frac{\partial u}{\partial n}}_{-g} v \, \mathrm{d}s = -\int_{\partial\Omega_N} g v \, \mathrm{d}s$$ The final variational form: $$\int_{\Omega} (\mathbf{v} \cdot \nabla \mathbf{u} + \alpha \mathbf{u}) \mathbf{v} \, \mathrm{d} \mathbf{x} = -\int_{\Omega} \mathbf{a} \nabla \mathbf{u} \cdot \nabla \mathbf{v} \, \mathrm{d} \mathbf{x} - \int_{\partial \Omega_N} \mathbf{g} \mathbf{v} \, \mathrm{d} \mathbf{s} + \int_{\Omega} \mathbf{f} \mathbf{v} \, \mathrm{d} \mathbf{x}$$ Or with inner product notation: $$(\mathbf{v} \cdot \nabla \mathbf{u}, \mathbf{v}) + (\alpha \mathbf{u}, \mathbf{v}) = -(\mathbf{a} \nabla \mathbf{u}, \nabla \mathbf{v}) - (\mathbf{g}, \mathbf{v})_N + (\mathbf{f}, \mathbf{v})$$ $(g,v)_N$: line or surface integral over $\partial\Omega_N$. ### Derivation of the linear system - $\forall v \in V$ is replaced by for all ψ_i , $i \in \mathcal{I}_s$ - ullet Insert $u=B+\sum_{j\in {\mathcal I}_s}c_j\psi_j$, $B=u_0$, in the variational form - Identify i, j terms (matrix) and i terms (right-hand side) - ullet Write on form $\sum_{i\in\mathcal{I}_s} A_{i,j} c_j = b_i$, $i\in\mathcal{I}_s$ $$A_{i,j} = (\mathbf{v} \cdot \nabla \psi_j, \psi_i) + (\alpha \psi_j, \psi_i) + (\mathbf{a} \nabla \psi_j, \nabla \psi_i)$$ $$b_i = (g, \psi_i)_N + (f, \psi_i) - (\mathbf{v} \cdot \nabla u_0, \psi_i) + (\alpha u_0, \psi_i) + (a \nabla u_0, \nabla \psi_i)$$ ## Transformation to a reference cell in 2D/3D (1) We want to compute an integral in the physical domain by integrating over the reference cell. $$\int_{\Omega^{(e)}} a(x) \nabla \varphi_i \cdot \nabla \varphi_j \, dx$$ Mapping from reference to physical coordinates: with Jacobian J. $$J_{i,j} = \frac{\partial x_j}{\partial X_i}$$ ## Transformation to a reference cell in 2D/3D (2) - $dx \rightarrow \det J dX$. - Must express $\nabla \varphi_i$ by an expression with $\tilde{\varphi}_r$, i=q(e,r): $\nabla \tilde{\varphi}_r(\pmb{X})$ - We want $\nabla_x \tilde{\varphi}_r(X)$ (derivatives wrt x) - What we readily have is $\nabla_X \tilde{\varphi}_r(X)$ (derivative wrt X) - Need to transform $\nabla_{\mathbf{X}} \tilde{\varphi}_r(\mathbf{X})$ to $\nabla_{\mathbf{X}} \tilde{\varphi}_r(\mathbf{X})$ ### Transformation to a reference cell in 2D/3D (3) Can derive $$\nabla_{\mathbf{X}}\tilde{\varphi}_{r} = J \cdot \nabla_{\mathbf{x}}\varphi_{i}$$ $$\nabla_{\mathbf{x}}\varphi_{i} = \nabla_{\mathbf{x}}\tilde{\varphi}_{r}(\mathbf{X}) = J^{-1} \cdot \nabla_{\mathbf{X}}\tilde{\varphi}_{r}(\mathbf{X})$$ Integral transformation from physical to reference coordinates: $$\int_{\Omega^{(e)}} a(\mathbf{x}) \nabla_{\mathbf{x}} \varphi_i \cdot \nabla_{\mathbf{x}} \varphi_j \, \mathrm{d}\mathbf{x} = \int_{\tilde{\Omega}'} a(\mathbf{x}(\mathbf{X})) (J^{-1} \cdot \nabla_{\mathbf{X}} \tilde{\varphi}_r) \cdot (J^{-1} \cdot \nabla \tilde{\varphi}_s) \, \mathrm{det} \, J \, \mathrm{d}\mathbf{X}$$ ### Numerical integration Numerical integration over reference cell triangles and tetrahedra: $$\int_{\tilde{\Omega}^r} g \, \mathrm{d}X = \sum_{i=0}^{n-1} w_i g(\bar{X}_i)$$ Module numint.py contains different rules: - >>> x, w = numint.quadrature_for_triangles(num_points=3) - >>> x [(0.16666666666666666, 0.166666666666666), (0.6666666666666666, 0.16666666666666666)] - Triangle: rules with n = 1, 3, 4, 7 integrate exactly polynomials of degree 1, 2, 3, 4, resp. - Tetrahedron: rules with n = 1, 4, 5, 11 integrate exactly polynomials of degree 1, 2, 3, 4, resp. ### Time-dependent problems - So far: used the finite element framework for discretizing in - What about $u_t = u_{xx} + f$? - Use finite differences in time to obtain a set of recursive spatial - Solve the spatial problems by the finite element method ### Example: diffusion problem $$\frac{\partial u}{\partial t} = \alpha \nabla^2 u + f(\mathbf{x}, t), \qquad \mathbf{x} \in \Omega, t \in (0, T]$$ $$u(\mathbf{x}, 0) = l(\mathbf{x}), \qquad \mathbf{x} \in \Omega$$ $$\frac{\partial u}{\partial n} = 0, \qquad \mathbf{x} \in \partial \Omega, \ t \in (0, T]$$ $$\frac{\partial u}{\partial n} = 0,$$ $x \in \partial \Omega, \ t \in (0, 1)$ ### A Forward Euler scheme; ideas $$[D_t^+ u = \alpha \nabla^2 u + f]^n$$, $n = 1, 2, ..., N_t - 1$ Solving wrt u^{n+1} : $$u^{n+1} = u^n + \Delta t \left(\alpha \nabla^2 u^n + f(x, t_n) \right)$$ - $u^n = \sum_i c_i^n \psi_i \in V$, $u^{n+1} = \sum_i c_i^{n+1} \psi_i \in V$ - Compute u⁰ from 1 - Compute u^{n+1} from u^n by solving the PDE for u^{n+1} at each #### A Forward Euler scheme; stages in the discretization - $u_e(x, t)$: exact solution of the PDE problem - $u_{\rm e}^n(x)$: exact solution of time-discrete problem (after applying a finite difference scheme in time) - $u_n^n(x) \approx u^n = \sum_{j \in \mathcal{I}_x} c_j^n \psi_j = \text{solution of the time-}$ and space-discrete problem (after applying a Galerkin method in $$\frac{\partial u_{\mathsf{e}}}{\partial t} = \alpha \nabla^2 u_{\mathsf{e}} + f(x, t)$$ $$u_{\mathsf{e}}^{n+1} = u_{\mathsf{e}}^{n} + \Delta t \left(\alpha \nabla^{2} u_{\mathsf{e}}^{n} + f(\mathbf{x}, t_{\mathsf{n}}) \right)$$ $$u_{\mathsf{e}}^{n} \approx u^{n} = \sum_{j=0}^{N} c_{j}^{n} \psi_{j}(\mathbf{x}), \quad u_{\mathsf{e}}^{n+1} \approx u^{n+1} = \sum_{j=0}^{N} c_{j}^{n+1} \psi_{j}(\mathbf{x})$$ $$R = u^{n+1} - u^n - \Delta t \left(\alpha \nabla^2 u^n + f(x, t_n)\right)$$ # A Forward Euler scheme; weighted residual (or Galerkin) principle $$R = u^{n+1} - u^n - \Delta t \left(\alpha \nabla^2 u^n + f(x, t_n) \right)$$ The weighted residual principle: $$\int_{\Omega} Rw \, \mathrm{d}x = 0, \quad \forall w \in W$$ results in $$\int_{\Omega} \left[u^{n+1} - u^n - \Delta t \left(\alpha \nabla^2 u^n + f(x, t_n) \right) \right] w \, \mathrm{d}x = 0, \quad \forall w \in W$$ Galerkin: W = V, w = v ### A Forward Euler scheme; integration by parts Isolating the unknown u^{n+1} on the left-hand side: $$\int_{\Omega} u^{n+1} \psi_i \, \mathrm{d}x = \int_{\Omega} \left[u^n - \Delta t \left(\alpha \nabla^2 u^n + f(x, t_n) \right) \right] v \, \mathrm{d}x$$ Integration by parts of $\int \alpha(\nabla^2 u^n) v \, dx$: $$\int_{\Omega} \alpha (\nabla^2 u^n) v \, \mathrm{d}x = - \int_{\Omega} \alpha \nabla u^n \cdot \nabla v \, \mathrm{d}x + \underbrace{\int_{\partial \Omega} \alpha \frac{\partial u^n}{\partial n} v \, \mathrm{d}x}_{=0 \quad \leftarrow \quad \partial u^n / \partial n = 0}$$ Variational form: $$\int_{\Omega} u^{n+1} v \, \mathrm{d} x = \int_{\Omega} u^n v \, \mathrm{d} x - \Delta t \int_{\Omega} \alpha \nabla u^n \cdot \nabla v \, \mathrm{d} x + \Delta t \int_{\Omega} f^n v \, \mathrm{d} x, \quad \forall v \in V$$ ### New notation for the solution at the most recent time levels - u and u: the spatial unknown function to be computed - ullet u_1 and u_1 : the spatial function at the previous time level $t-\Delta t$ - u_2 and u_2 : the spatial function at $t-2\Delta t$ - This new notation gives close correspondence between code and math $$\int_{\Omega} u v \, \mathrm{d}x = \int_{\Omega} u_1 v \, \mathrm{d}x - \Delta t \int_{\Omega} \alpha \nabla u_1 \cdot \nabla v \, \mathrm{d}x + \Delta t \int_{\Omega} f^n v \, \mathrm{d}x$$ or shorter $$(u, v) = (u_1, v)
- \Delta t(\alpha \nabla u_1, \nabla v) + (f^n, v)$$ ### Deriving the linear systems - $u = \sum_{i=0}^{N} c_i \psi_i(\mathbf{x})$ - $u_1 = \sum_{j=0}^{N} c_{1,j} \psi_j(x)$ - $\forall v \in V$: for $v = \psi_i$, i = 0, ..., N Insert these in $$(u, \psi_i) = (u_1, \psi_i) - \Delta t(\alpha \nabla u_1, \nabla \psi_i) + (f^n, \psi_i)$$ and order terms as matrix-vector products (i = 0, ..., N): $$\sum_{j=0}^{N}\underbrace{\left(\psi_{i},\psi_{j}\right)}_{M_{i,j}}c_{j}=\sum_{j=0}^{N}\underbrace{\left(\psi_{i},\psi_{j}\right)}_{M_{i,j}}c_{1,j}-\Delta t\sum_{j=0}^{N}\underbrace{\left(\nabla\psi_{i},\alpha\nabla\psi_{j}\right)}_{K_{i,j}}c_{1,j}+\left(f^{n},\psi_{i}\right)$$ ### Structure of the linear systems $$Mc = Mc_1 - \Delta t Kc_1 + f$$ $$\begin{split} M &= \{M_{i,j}\}, \quad M_{i,j} = (\psi_i, \psi_j), \quad i, j \in \mathcal{I}_s \\ K &= \{K_{i,j}\}, \quad K_{i,j} = (\nabla \psi_i, \alpha \nabla \psi_j), \quad i, j \in \mathcal{I}_s \\ f &= \{(f(\boldsymbol{x}, t_n), \psi_i)\}_{i \in \mathcal{I}_s} \\ c &= \{c_i\}_{i \in \mathcal{I}_s} \\ c_1 &= \{c_{1,i}\}_{i \in \mathcal{I}_s} \end{split}$$ ## Computational algorithm - \bigcirc Compute M and K. - \bigcirc Initialize u^0 by either interpolation or projection - **o** For $n = 1, 2, ..., N_t$: - $oldsymbol{0}$ solve $\mathit{Mc} = \mathit{b}$ Initial condition: - Either interpolation: $c_{1,i} = l(x_i)$ (finite elements) - Or projection: solve $\sum_i M_{i,j} c_{1,j} = (I, \psi_i), i \in \mathcal{I}_s$ ## Comparing P1 elements with the finite difference method; ideas - P1 elements in 1D - Uniform mesh on [0, L] with cell length h - No Dirichlet conditions: $\psi_i = \varphi_i, i = 0, ..., N = N_n$ - Have found formulas for M and K at the element level - Have assembled the global matrices - Have developed corresponding finite difference operator formulas - M: $h[D_t^+(u+\frac{1}{6}h^2D_xD_xu)]_i^n$ - $K: h[\alpha D_x D_x u]_i^n$ ## Comparing P1 elements with the finite difference method; results Diffusion equation with finite elements is equivalent to $$[D_t^+(u+\frac{1}{6}h^2D_xD_xu)=\alpha D_xD_xu+f]_i^n$$ Can lump the mass matrix by Trapezoidal integration and get the standard finite difference scheme $$[D_t^+ u = \alpha D_x D_x u + f]_i^n$$ ### Discretization in time by a Backward Euler scheme Backward Euler scheme in time: $$[D_t^- u = \alpha \nabla^2 u + f(x, t)]^n$$ $$u_{\mathsf{P}}^{n} - \Delta t \left(\alpha \nabla^{2} u_{\mathsf{P}}^{n} + f(\mathbf{x}, t_{\mathsf{P}}) \right) = u_{\mathsf{P}}^{n-1}$$ $$u_{\mathsf{e}}^{n} \approx u^{n} = \sum_{j=0}^{N} c_{j}^{n} \psi_{j}(\mathbf{x}), \quad u_{\mathsf{e}}^{n+1} \approx u^{n+1} = \sum_{j=0}^{N} c_{j}^{n+1} \psi_{j}(\mathbf{x})$$ ### The variational form of the time-discrete problem $$\int_{\Omega} \left(u^n v + \Delta t \alpha \nabla u^n \cdot \nabla v \right) \, \mathrm{d}x = \int_{\Omega} u^{n-1} v \, \mathrm{d}x - \Delta t \int_{\Omega} f^n v \, \mathrm{d}x, \quad \forall v \in V$$ 0 $$(u, v) + \Delta t(\alpha \nabla u, \nabla v) = (u_1, v) + \Delta t(f^n, \psi_i)$$ The linear system: insert $u=\sum_j c_j \psi_i$ and $u_1=\sum_j c_{1,j} \psi_i$ $$(M + \Delta t \alpha K)c = Mc_1 + f$$ ### Calculations with P1 elements in 1D Can interpret the resulting equation system as $$[D_t^-(u+\frac{1}{6}h^2D_xD_xu)=\alpha D_xD_xu+f]_i^n$$ Lumped mass matrix (by Trapezoidal integration) gives a standard finite difference method: $$[D_t^- u = \alpha D_x D_x u + f]_i^n$$ ### Dirichlet boundary conditions Dirichlet condition at x = 0 and Neumann condition at x = L: $$u(x,t) = u_0(x,t), x \in \partial \Omega_D$$ $$-\alpha \frac{\partial}{\partial \rho} u(x,t) = g(x,t), x \in \partial \Omega_N$$ Forward Euler in time, Galerkin's method, and integration by parts: $$\int_{\Omega} u^{n+1} v \, \mathrm{d}x = \int_{\Omega} (u^n - \Delta t \alpha \nabla u^n \cdot \nabla v) \, \mathrm{d}x - \Delta t \int_{\partial \Omega_N} g v \, \mathrm{d}s, \quad \forall v \in V$$ Requirement: v=0 on $\partial\Omega_D$ ### Boundary function $$u^n(\mathbf{x}) = u_0(\mathbf{x}, t_n) + \sum_{j \in \mathcal{I}_s} c_j^n \psi_j(\mathbf{x})$$ $$\begin{split} \sum_{j \in \mathcal{I}_{s}} \left(\int_{\Omega} \psi_{i} \psi_{j} \, \mathrm{d}x \right) c_{j}^{n+1} &= \sum_{j \in \mathcal{I}_{s}} \left(\int_{\Omega} \left(\psi_{i} \psi_{j} - \Delta t \alpha \nabla \psi_{i} \cdot \nabla \psi_{j} \right) \, \mathrm{d}x \right) c_{j}^{n} - \\ &\int_{\Omega} \left(u_{0}(\mathbf{x}, t_{n+1}) - u_{0}(\mathbf{x}, t_{n}) + \Delta t \alpha \nabla u_{0}(\mathbf{x}, t_{n}) \cdot \nabla \psi_{i} \right) \, \mathrm{d}x \\ &+ \Delta t \int_{\Omega} f \psi_{i} \, \mathrm{d}x - \Delta t \int_{\partial \Omega_{s, t}} g \psi_{i} \, \mathrm{d}s, \quad i \in \mathcal{I}_{s} \end{split}$$ ### Finite element basis functions - $\begin{array}{l} \bullet \; B(\mathbf{x},t_n) = \sum_{j \in I_b} \mathcal{U}_j^n \varphi_j \\ \bullet \; \; \psi_i = \varphi_{\nu(j)}, \; j \in \mathcal{I}_{\mathbf{s}} \\ \bullet \; \; \nu(j), \; j \in \mathcal{I}_{\mathbf{s}}, \; \text{are the node numbers corresponding to all nodes} \end{array}$ without a Dirichlet condition $$\begin{split} u^n &= \sum_{j \in I_b} U_j^n \varphi_j + \sum_{j \in \mathcal{I}_s} c_{1,j} \varphi_{\nu(j)}, \\ u^{n+1} &= \sum_{j \in I_b} U_j^{n+1} \varphi_j + \sum_{j \in \mathcal{I}_s} c_j \varphi_{\nu(j)} \end{split}$$ $$\begin{split} \sum_{j \in \mathcal{I}_{s}} \left(\int_{\Omega} \varphi_{i} \varphi_{j} \, \mathrm{d}x \right) c_{j} &= \sum_{j \in \mathcal{I}_{s}} \left(\int_{\Omega} \left(\varphi_{i} \varphi_{j} - \Delta t \alpha \nabla \varphi_{i} \cdot \nabla \varphi_{j} \right) \, \mathrm{d}x \right) c_{1,j} - \\ &= \sum_{j \in I_{b}} \int_{\Omega} \left(\varphi_{i} \varphi_{j} (U_{j}^{n+1} - U_{j}^{n}) + \Delta t \alpha \nabla \varphi_{i} \cdot \nabla \varphi_{j} U_{j}^{n} \right) \, \mathrm{d}x \\ &+ \Delta t \int_{\Omega} f \varphi_{i} \, \mathrm{d}x - \Delta t \int_{\partial \Omega_{N}} g \varphi_{i} \, \mathrm{d}s, \quad i \in \mathcal{I}_{s} \end{split}$$ ### Modification of the linear system; the raw system - Drop boundary function - Compute as if there are not Dirichlet conditions - Modify the linear system to incorporate Dirichlet conditions - \mathcal{I}_s holds the indices of all nodes $\{0, 1, \dots, N = N_n\}$ $$\begin{split} \sum_{j \in \mathcal{I}_{s}} & \left(\underbrace{\int_{\Omega} \varphi_{i} \varphi_{j} \, \mathrm{d}x}_{M_{i,j}} \right) c_{j} = \sum_{j \in \mathcal{I}_{s}} \left(\underbrace{\int_{\Omega} \varphi_{i} \varphi_{j} \, \mathrm{d}x}_{M_{i,j}} - \Delta t \underbrace{\int_{\Omega} \alpha \nabla \varphi_{i} \cdot \nabla \varphi_{j} \, \mathrm{d}x}_{K_{i,j}} \right) c_{1,j} \\ & \underbrace{-\Delta t \int_{\Omega} f \varphi_{i} \, \mathrm{d}x - \Delta t \int_{\partial \Omega_{N}} g \varphi_{i} \, \mathrm{d}s}_{f_{i}}, \quad i \in \mathcal{I}_{s} \end{split}$$ ### Modification of the linear system; setting Dirichlet conditions $$Mc = b$$, $b = Mc_1 - \Delta t Kc_1 + \Delta t f$ For each k where a Dirichlet condition applies, $u(x_k, t_{n+1}) = U_k^{n+1}$, - set row k in M to zero and 1 on the diagonal: $M_{k,j} = 0$, $j \in \mathcal{I}_s$, $M_{k,k} = 1$ - $b_k = U_k^{n+1}$ Or apply the slightly more complicated modification which preserves symmetry of M ## Modification of the linear system; Backward Euler example Backward Euler discretization in time gives a more complicated coefficient matrix: $$Ac = b$$, $A = M + \Delta tK$, $b = Mc_1 + \Delta tf$ - Set row k to zero and 1 on the diagonal: $M_{k,j}=0, j\in\mathcal{I}_s$, $M_{k,k} = 1$ - Set row k to zero: $K_{k,j} = 0$, $j \in \mathcal{I}_s$ - $b_k = U_i^{n+1}$ Observe: $A_{k,k} = M_{k,k} + \Delta t K_{k,k} = 1 + 0$, so $c_k = U_k^{n+1}$ ### Analysis of the discrete equations The diffusion equation $u_t = \alpha u_{xx}$ allows a (Fourier) wave component $$u = A_e^n e^{ikx}, \quad A_e = e^{-\alpha k^2 \Delta t}$$ Numerical schemes often allow the similar solution $$u_a^n = A^n e^{ikx}$$ - A: amplification factor to be computed - How good is this A compared to the exact one? ### Handy formulas $$\begin{split} &[D_t^+A^ne^{ikq\Delta x}]^n=A^ne^{ikq\Delta x}\frac{A-1}{\Delta t},\\ &[D_t^-A^ne^{ikq\Delta x}]^n=A^ne^{ikq\Delta x}\frac{1-A^{-1}}{\Delta t},\\ &[D_tA^ne^{ikq\Delta x}]^{n+\frac{1}{2}}=A^ne^{ikq\Delta x}\frac{1-A^{-1}}{\Delta t},\\ &[D_tA^ne^{ikq\Delta x}]^{n+\frac{1}{2}}=A^{n+\frac{1}{2}}e^{ikq\Delta x}\frac{A^{\frac{1}{2}}-A^{-\frac{1}{2}}}{\Delta t}=A^ne^{ikq\Delta x}\frac{A-1}{\Delta t},\\ &[D_xD_xA^ne^{ikq\Delta x}]_q=-A^n\frac{4}{\Delta x^2}\sin^2\left(\frac{k\Delta x}{2}\right) \end{split}$$ ### Amplification factor for the Forward Euler method; results Introduce $p = k\Delta x/2$ and $C = \alpha \Delta t/\Delta x^2$: $$A = 1 - 4C \frac{\sin^2 p}{1 - \underbrace{\frac{2}{3}\sin^2 p}_{\text{from } M}}$$ (See notes for details) Stability: $|A| \le 1$: $$C \leq \frac{1}{6} \quad \Rightarrow \quad \Delta t \leq \frac{\Delta x^2}{6\alpha}$$ Finite differences: $C \leq \frac{1}{2}$, so finite elements give a *stricter* stability criterion for this PDE!