$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\Aex}{{A_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\X}{\boldsymbol{X}} \renewcommand{\u}{\boldsymbol{u}} \renewcommand{\v}{\boldsymbol{v}} \newcommand{\e}{\boldsymbol{e}} \newcommand{\f}{\boldsymbol{f}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\Iz}{\mathcal{I}_z} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\Ifb}{{I_b}} % for FEM \newcommand{\sequencei}[1]{\left\{ {#1}_i \right\}_{i\in\If}} \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\psib}{\boldsymbol{\psi}} \newcommand{\sinL}[1]{\sin\left((#1+1)\pi\frac{x}{L}\right)} \newcommand{\xno}[1]{x_{#1}} \newcommand{\Xno}[1]{X_{(#1)}} \newcommand{\xdno}[1]{\boldsymbol{x}_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Dirichlet boundary conditions

Dirichlet condition at \( x=0 \) and Neumann condition at \( x=L \): $$ \begin{align*} u(\x,t) &= u_0(\x,t),\quad & \x\in\partial\Omega_D\\ -\dfc\frac{\partial}{\partial n} u(\x,t) &= g(\x,t),\quad & \x\in\partial{\Omega}_N \end{align*} $$

Forward Euler in time, Galerkin's method, and integration by parts: $$ \begin{equation*} \int_\Omega u^{n+1}v\dx = \int_\Omega (u^n - \Delta t\dfc\nabla u^n\cdot\nabla v)\dx - \Delta t\int_{\partial\Omega_N} gv\ds,\quad \forall v\in V \end{equation*} $$

Requirement: \( v=0 \) on \( \partial\Omega_D \)

« Previous
Next »