$$
\newcommand{\uex}{{u_{\small\mbox{e}}}}
\newcommand{\Aex}{{A_{\small\mbox{e}}}}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\tp}{\thinspace .}
\newcommand{\Oof}[1]{\mathcal{O}(#1)}
\newcommand{\x}{\boldsymbol{x}}
\newcommand{\X}{\boldsymbol{X}}
\renewcommand{\u}{\boldsymbol{u}}
\renewcommand{\v}{\boldsymbol{v}}
\newcommand{\e}{\boldsymbol{e}}
\newcommand{\f}{\boldsymbol{f}}
\newcommand{\dfc}{\alpha} % diffusion coefficient
\newcommand{\Ix}{\mathcal{I}_x}
\newcommand{\Iy}{\mathcal{I}_y}
\newcommand{\Iz}{\mathcal{I}_z}
\newcommand{\If}{\mathcal{I}_s} % for FEM
\newcommand{\Ifd}{{I_d}} % for FEM
\newcommand{\Ifb}{{I_b}} % for FEM
\newcommand{\sequencei}[1]{\left\{ {#1}_i \right\}_{i\in\If}}
\newcommand{\basphi}{\varphi}
\newcommand{\baspsi}{\psi}
\newcommand{\refphi}{\tilde\basphi}
\newcommand{\psib}{\boldsymbol{\psi}}
\newcommand{\sinL}[1]{\sin\left((#1+1)\pi\frac{x}{L}\right)}
\newcommand{\xno}[1]{x_{#1}}
\newcommand{\Xno}[1]{X_{(#1)}}
\newcommand{\xdno}[1]{\boldsymbol{x}_{#1}}
\newcommand{\dX}{\, \mathrm{d}X}
\newcommand{\dx}{\, \mathrm{d}x}
\newcommand{\ds}{\, \mathrm{d}s}
$$
Example on integration by parts in 1D/2D/3D
Galerkin's method: multiply by \( v\in V \) and integrate over \( \Omega \),
$$
\int_{\Omega} (\v\cdot\nabla u + \alpha u)v\dx =
\int_{\Omega} \nabla\cdot\left( a\nabla u\right)v\dx + \int_{\Omega}fv \dx
$$
Integrate the second-order term by parts:
$$
\int_{\Omega} \nabla\cdot\left( a\nabla u\right) v \dx =
-\int_{\Omega} a\nabla u\cdot\nabla v\dx
+ \int_{\partial\Omega} a\frac{\partial u}{\partial n} v\ds,
$$
Result:
$$
\int_{\Omega} (\v\cdot\nabla u + \alpha u)v\dx =
-\int_{\Omega} a\nabla u\cdot\nabla v\dx
+ \int_{\partial\Omega} a\frac{\partial u}{\partial n} v\ds
+ \int_{\Omega} fv \dx
$$