Boundary terms \( u'\basphi_i \) at points \( \xno{i} \) where Dirichlet values apply
can always be forgotten.
$$
\begin{equation*}
u(x) = \sum_{j=0}^{N=N_n} c_j\basphi_j(x)
\end{equation*}
$$
$$
\begin{equation*}
\sum_{j=0}^{N=N_n}\left(
\int_0^L \basphi_i'(x)\basphi_j'(x) dx \right)c_j =
\int_0^L f(x)\basphi_i(x) dx - C\basphi_i(0)
\end{equation*}
$$
Assemble entries for \( i=0,\ldots,N=N_n \) and then
modify the last equation to \( c_N=D \)