$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\Aex}{{A_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\X}{\boldsymbol{X}} \renewcommand{\u}{\boldsymbol{u}} \renewcommand{\v}{\boldsymbol{v}} \newcommand{\e}{\boldsymbol{e}} \newcommand{\f}{\boldsymbol{f}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\Iz}{\mathcal{I}_z} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\Ifb}{{I_b}} % for FEM \newcommand{\sequencei}[1]{\left\{ {#1}_i \right\}_{i\in\If}} \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\psib}{\boldsymbol{\psi}} \newcommand{\sinL}[1]{\sin\left((#1+1)\pi\frac{x}{L}\right)} \newcommand{\xno}[1]{x_{#1}} \newcommand{\Xno}[1]{X_{(#1)}} \newcommand{\xdno}[1]{\boldsymbol{x}_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

How to deal with the boundary conditions?

Since \( u(0)=0 \) and \( u(L)=0 \), we must force $$ v(0)=v(L)=0,\quad \baspsi_i(0)=\baspsi_i(L)=0$$

Now we choose the finite element basis: \( \baspsi_i=\basphi_i \), \( i=0,\ldots,N_n \)

Problem: \( \basphi_0(0)\neq 0 \) and \( \basphi_{N_n}(L)\neq 0 \)

Solution: we just exclude \( \basphi_0 \) and \( \basphi_{N_n} \) from the basis and work with $$ \baspsi_i=\basphi_{i+1},\quad i=0,\ldots,N=N_n-2$$

Introduce index mapping \( \nu(i) \): \( \baspsi_i = \basphi_{\nu(i)} \) $$ u = \sum_{j\in\If}c_j\basphi_{\nu(j)},\quad i=0,\ldots,N,\quad \nu(j) = j+1$$

Irregular numbering: more complicated \( \nu(j) \) table

« Previous
Next »