$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\Aex}{{A_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\X}{\boldsymbol{X}} \renewcommand{\u}{\boldsymbol{u}} \renewcommand{\v}{\boldsymbol{v}} \newcommand{\e}{\boldsymbol{e}} \newcommand{\f}{\boldsymbol{f}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\Iz}{\mathcal{I}_z} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\Ifb}{{I_b}} % for FEM \newcommand{\sequencei}[1]{\left\{ {#1}_i \right\}_{i\in\If}} \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\psib}{\boldsymbol{\psi}} \newcommand{\sinL}[1]{\sin\left((#1+1)\pi\frac{x}{L}\right)} \newcommand{\xno}[1]{x_{#1}} \newcommand{\Xno}[1]{X_{(#1)}} \newcommand{\xdno}[1]{\boldsymbol{x}_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

A program with the fundamental algorithmic steps

# Use modified fe_approx1D module
from fe_approx1D_numint import *

x = sp.Symbol('x')
f = x*(1 - x)

N_e = 10
# Create mesh with P3 (cubic) elements
vertices, cells, dof_map = mesh_uniform(N_e, d=3, Omega=[0,1])

# Create basis functions on the mesh
phi = [basis(len(dof_map[e])-1) for e in range(N_e)]

# Create linear system and solve it
A, b = assemble(vertices, cells, dof_map, phi, f)
c = np.linalg.solve(A, b)

# Make very fine mesh and sample u(x) on this mesh for plotting
x_u, u = u_glob(c, vertices, cells, dof_map,
                resolution_per_element=51)
plot(x_u, u)

« Previous
Next »