$$ \newcommand{\uex}{{u_{\small\mbox{e}}}} \newcommand{\Aex}{{A_{\small\mbox{e}}}} \newcommand{\half}{\frac{1}{2}} \newcommand{\tp}{\thinspace .} \newcommand{\Oof}[1]{\mathcal{O}(#1)} \newcommand{\x}{\boldsymbol{x}} \newcommand{\X}{\boldsymbol{X}} \renewcommand{\u}{\boldsymbol{u}} \renewcommand{\v}{\boldsymbol{v}} \newcommand{\e}{\boldsymbol{e}} \newcommand{\f}{\boldsymbol{f}} \newcommand{\dfc}{\alpha} % diffusion coefficient \newcommand{\Ix}{\mathcal{I}_x} \newcommand{\Iy}{\mathcal{I}_y} \newcommand{\Iz}{\mathcal{I}_z} \newcommand{\If}{\mathcal{I}_s} % for FEM \newcommand{\Ifd}{{I_d}} % for FEM \newcommand{\Ifb}{{I_b}} % for FEM \newcommand{\sequencei}[1]{\left\{ {#1}_i \right\}_{i\in\If}} \newcommand{\basphi}{\varphi} \newcommand{\baspsi}{\psi} \newcommand{\refphi}{\tilde\basphi} \newcommand{\psib}{\boldsymbol{\psi}} \newcommand{\sinL}[1]{\sin\left((#1+1)\pi\frac{x}{L}\right)} \newcommand{\xno}[1]{x_{#1}} \newcommand{\Xno}[1]{X_{(#1)}} \newcommand{\xdno}[1]{\boldsymbol{x}_{#1}} \newcommand{\dX}{\, \mathrm{d}X} \newcommand{\dx}{\, \mathrm{d}x} \newcommand{\ds}{\, \mathrm{d}s} $$

« Previous
Next »

Function for the least squares method with orthogonal basis functions; symbolic and numerical integration

Extensions:

def least_squares_orth(f, psi, Omega, symbolic=True):
    ...
    for i in range(N+1):
        # Diagonal matrix term
        A[i] = sp.integrate(psi[i]**2, (x, Omega[0], Omega[1]))

        # Right-hand side term
        integrand = psi[i]*f
        if symbolic:
            I = sp.integrate(integrand,  (x, Omega[0], Omega[1]))
        if not symbolic or isinstance(I, sp.Integral):
            print 'numerical integration of', integrand
            integrand = sp.lambdify([x], integrand)
            I = sp.mpmath.quad(integrand, [Omega[0], Omega[1]])
        b[i] = I
    ...

Assumption above: \( \int_\Omega\basphi_i^2dx \) works symbolically (but there is no guarantee!)

« Previous
Next »